
Custom Control Help
See Also Other InformationSources
When you add a custom control to your project, its icon is displayed in the Toolbox. You can
select the custom control by clicking this icon.
The toolbox icons for the custom controls are listed in the following table.

3D check box MAPI session
3D command button MAPI message
3D frame Masked edit
3D group push
button

Multimedia MCI

3D option button Outline
3D panel Pen BEdit
Animated button Pen HEdit
Communications Pen ink-on-bitmap
Gauge Pen on-screen

keyboard
Graph Picture clip
Key status Spin button

See Also
Object Type
Creating, Running, and Distributing Executable (.EXE) Files
The VB.LIC File
Using Custom Controls with Visual C++

Object Type
In Visual Basic, a controls object type is used with the TypeOf keyword in an
If...Then...Else statement. This is useful for creating a variable of that object type, or
determining the type of a control that is passed as an argument to an event (for example,
the Source argument of the DragDrop event). For more information on using a controls
object type, search Help for the If keyword.
In Visual C++, you can return the controls object class name, or object type, by using
CVBControl::GetVBXClass. Refer to the Class Library Reference for more information.
The object type, or class name, for each control in the Visual Control Pack is listed in the
following table. (In Visual Basic, the object type for a control also appears in the Properties
window.)
Control Object type
3D check box SSCheck
3D command button SSCommand
3D frame SSFrame
3D group push button SSRibbon
3D option button SSOption
3D panel SSPanel
Animated button AniPushButton
Communications MSComm
Gauge Gauge
Graph Graph
Key status MhState
MAPI MapiSession, MapiMessages
Masked edit MaskEdBox
Multimedia MCI MMControl
Outline Outline
Pen edit VBedit, VHedit
Pen ink-on-bitmap InkOnBitmap
Pen on-screen keyboard SKBButton
Picture clip PictureClip
Spin button SpinButton

Creating, Running, and Distributing Executable (.EXE) Files
To run your application under Microsoft Windows outside Visual Basic or Visual C++, create
an executable (.EXE) file. You create executable files for applications that use custom
controls the same as you would for any other application. There are a few issues to
consider, however, when running such an application.

See Also
Visual Basic Executable (.EXE) Files
Visual C++ Executable (.EXE) Files
Required Custom Control Files

Visual Basic Executable (.EXE) Files
A custom control file is a DLL that is accessed both by Visual Basic and applications created
by using Visual Basic. When you run an executable file that contains a custom control,
the .VBX file associated with it must be on your systems path, or in the same directory as
the .EXE file. Otherwise, the application will not be able to find the code needed to create
the control.
If a custom control cannot be found, the Visual Basic run-time DLL generates the error
message dialog box, File Not Found. If you want to distribute an application that uses
custom controls, it is recommended that your installation procedure copy all required .VBX
files into the users Microsoft Windows \SYSTEM subdirectory.
You can freely distribute any application you create with Visual Basic to any Microsoft
Windows user. (Visual Basic provides a Setup Wizard for writing your own application
setups.) Users will need copies of the following:

The Visual Basic run-time file (VBRUN300.DLL).
Any .VBX files.
Additional DLLs as required by your application or by custom controls.

Visual C++ Executable (.EXE) Files
As with Visual Basic, a custom control file is accessed both by Visual C++ and applications
created by using Visual C++. When you run an executable file that contains a custom
control, the .VBX file associated with it must be on your systems path, or in the same
directory as the .EXE file. Otherwise, the Visual C++ application will not be able to find the
code needed to create the control.
If a custom control cannot be found, no error is generated and the application may no
longer behave correctly. You can, however, add error handling code to ensure that a .VBX
file loads correctly. The following code is from VBCIRCLE.CPP, which is part of the VBCIRCLE
sample application:
// Check to see that the VBX control is present
if (LoadVBXFile("Circ3.vbx") > HINSTANCE_ERROR)

UnloadVBXFile("Circ3.vbx");
else
{

AfxMessageBox("Cannot Load Circ3.VBX\nPlace the file on the path", MB_OK |
MB_ICONEXCLAMATION);

return FALSE;
}

If you want to distribute an application that uses custom controls, it is recommended that
your installation procedure copy all required .VBX files into the users Microsoft Windows \
SYSTEM directory.
You can freely distribute any application you create with Visual Basic custom controls to
any Microsoft Windows user. Users will need copies of the following:

The Microsoft Foundation Class (MFC) run-time file (MFC200.DLL), if the application
does not statically link in the MFC200 library.

Any .VBX files.
Additional DLLs as required by your application or by custom controls.

Required Custom Control Files
The files required by each custom control in the Visual Control Pack are listed in the
following table.
Control Required files
3D check box THREED.VBX
3D command button THREED.VBX
3D frame THREED.VBX
3D group push button THREED.VBX
3D option button THREED.VBX
3D panel THREED.VBX
Animated button ANIBUTON.VBX
Communications MSCOMM.VBX
Gauge GAUGE.VBX
Graph GRAPH.VBX, GSW.EXE, GSWDLL.DLL
Key status KEYSTAT.VBX
MAPI 1 MSMAPI.VBX
Masked edit MSMASKED.VBX
Multimedia MCI 2 MCI.VBX
Outline MSOUTLIN.VBX
Pen edit 3 PENCTRLS.VBX
Pen ink-on-bitmap 3 PENCTRLS.VBX
Pen on-screen keyboard 3 PENCTRLS.VBX
Picture clip PICCLIP.VBX
Spin button SPIN.VBX

1 MAPI-compliant electronic mail system required
2 Multimedia PC required
3 Windows for Pen Computing required

The VB.LIC File
When you install the Professional Edition, the design-time license file, VB.LIC, is installed in your
Microsoft Windows \SYSTEM subdirectory. The VB.LIC file allows you to use the Professional Edition
custom controls at design time in both Visual Basic and Visual C++. The Professional Edition VB.LIC file
is downward compatible with any previously installed VB.LIC files.

Note You are not allowed to include VB.LIC with any application that you develop and distribute.

Other Information Sources
All help and text files included with the Standard Edition are also included with the
Professional Edition.

Standard Edition
Help Files
Text Files

Professional Edition
Help Files
Text Files

Note      When Visual Basic is installed, as each Help file is installed, it is listed in
WINHELP.INI, located in your Windows directory.    If you move a Help file to a different
directory, be sure to change the path in WINHELP.INI.    If a Help file does not exist, is not in
your path, or is not in the directory specified in WINHELP.INI, WinHelp displays an
appropriate message.

Standard Edition Help Files
You can click on any help file to go to the main table of contents of that file.    If the file is
not available, an error occurs.
Visual Basic Help Documents Visual Basic for Windows.

SetupWizard Documents the SetupWizard application.    For information about the Setup
Toolkit, search for Setup in the Visual Basic help file.
Data Manager Documents the Data Manager application.
Note      When Visual Basic is installed, as each Help file is installed, it is listed in
WINHELP.INI, located in your Windows directory.    If you move a Help file to a different
directory, be sure to change the path in WINHELP.INI.    If a Help file does not exist, is not in
your path, or is not in the directory specified in WINHELP.INI, WinHelp displays an
appropriate message.

Professional Edition Help Files
In addition to the help files provided with the Standard Edition, these help files are included
with the Professional Edition.    You can click on any help file to go to the main table of
contents of that file.    If the file is not available, an error occurs.
Crystal Reports Documents the Crystal Reports application.

Custom Control Reference Documents each of the cusom controls provided with the
Professional Edition.
Help Compiler Reference Documents the Windows Help application for Help writers and
programmers.
Hotspot Editor Documents the segmented hypergraphic editor for creating hotspots within
graphics for use in authoring Help files.
KnowledgeBase A collection of articles from Microsoft Technical Support with tips, ideas and
solutions.
ODBC Installation Help Documents the installation tools for ODBC.

Oracle ODBC Driver Documents the ODBC driver for Oracle databases.
SQL Server ODBC Driver Documents the ODBC driver for SQL Server databases.
Visual Basic API Reference Documents the Custom Control Development Kit.
Windows 3.1 API for Visual Basic Declarations, structures, and constants for the Windows
API as used in Visual Basic.
Windows 3.1 SDK Help Documents Windows functions as used in the C programming
language.
Note      When Visual Basic is installed, as each Help file is installed, it is listed in
WINHELP.INI, located in your Windows directory.    If you move a Help file to a different
directory, be sure to change the path in WINHELP.INI.    If a Help file does not exist, is not in
your path, or is not in the directory specified in WINHELP.INI, WinHelp displays an
appropriate message.

Standard Edition Text Files
You can click on any of these files to launch Notepad and load the file.
README.TXT Information on last minute changes to Visual Basic, as well as additional

information.
CONSTANT.TXT Global symbolic constants for Visual Basic properties, events, functions and
statements.
DATACONS.TXT Global symbolic constants for the data access features of Visual Basic.
EXTERNAL.TXT Additional README information about connecting to external databases.
PACKING.LST List of all files on the distribution disks provided with Visual Basic.

Professional Edition Text Files
In addition to the text files provided with the Standard Edition, these text files are included
with the Professional Edition.    You can click on any file to launch Notepad and load that file.
If the file is too large for Notepad, you may have to use a different word processor.
BTRIEVE.TXT Supplementary information on importing, exporting, or attaching Btrieve

tables with Visual Basic.
ORACLE.TXT Setup information for the ODBC Oracle driver to run with your ORACLE RDBMS
software.    If you installed ODBC, this file is in your Windows\SYSTEM directory.
PERFORM.TXT Performance tuning tips for Visual Basic version 3.0 and Microsoft Access (TM)
Relational Database System for Windows version 1.1.
SAMPLES.TXT List of applications written in Visual Basic that demonstrate techniques
discussed in the printed documentation.
WIN30API.TXT Global symbolic constants for Windows 3.0 API functions.

WIN31API.TXT Global symbolic constants for Windows 3.1 API functions.
WINMMSYS.TXT Type declarations and global symbolic constants for Windows 3.1
multimedia API functions.

 3D Check Box Control
Properties Methods Events

Description
The 3D check box control emulates the standard Visual Basic check box control, which
displays an option that can be turned on or off. In addition, this control allows you to align
three-dimensional text to the right or left of the check box.
File Name
THREED.VBX

Object Type
SSCheck

Remarks
The 3D check box has several custom properties that allow you to adjust the three-
dimensional appearance of the control. When you draw a 3D check box on a form, the
custom property settings for the control are saved and used as a template for the next 3D
check box that you create.
Since the three-dimensional gray scale look requires a background color of light gray, the
BackColor property is not available with this control. In Visual Basic, this control should be
used on forms that have the BackColor property set to light gray (&H00C0C0C0&). In Visual
C++, you should call the CWinApp::SetDialogBkColor member function in your
application's CWinApp::InitInstance member function. For more information, see the
Visual C++ Class Library Reference.

Bound Properties
The 3D check box has three bound properties: DataChanged, DataField, and DataSource. This means
that it can be linked to a data control and display field values for the current record in the recordset. The
3D check box can only be bound to a field that is of a boolean data type. The 3D check box control can
also write out values to the recordset.
When the value of the field referenced by the DataField property is read, it is converted to a Value
property value, if possible. If the field value is NULL, then the Value property is set to 2, which means the
check box is grayed.
For more information on using bound controls, refer to Chapter 20, Accessing Databases With the Data
Control, in the Programmers Guide.

Distribution Note When you create and distribute applications that use the 3D check box
control, you should install the file THREED.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Wizard included with Visual Basic provides tools to help
you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Alignment *Font3D Height TabIndex
Caption FontBold HelpContextID TabStop
DataChanged FontItalic hWnd Tag
DataField FontName Index Top
DataSource FontSize Left Value
DragIcon FontStrikethru MousePointer Visible
DragMode FontUnderline Name Width
Enabled ForeColor Parent
Value is the default value of the control

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the same as the CtlName property in Visual
Basic 1.0 and Visual C++.
The DataChanged, DataField, and DataSource properties are bound properties and are only
available in Visual Basic 3.0.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Click DragOver KeyDown KeyUp
DragDrop GotFocus KeyPress LostFocus

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Refresh ZOrder
Move SetFocus

Note The Drag and ZOrder methods are only available in Visual Basic.

Alignment Property, 3D Check Box Control

Description
Sets or returns the alignment of text in the check box.

Visual Basic
[form.]CheckBox3d.Alignment[= setting%]

Visual C++
pCheckBox3d->GetNumProperty("Alignment")
pCheckBox3d->SetNumProperty("Alignment", setting)

Remarks
The following table lists the Alignment property settingsfor the 3D check box.
Setting Description
0 (Default) Caption appears to the right of the check box.
1 Caption appears to the left of the check box.

Data Type
Integer (Enumerated)

Font3D Property, 3D Check Box Control

Description
Sets or returns the three-dimensional style of the check box caption.

Visual Basic
[form.]CheckBox3d.Font3D[= setting%]

Visual C++
pCheckBox3d->GetNumProperty("Font3D")
pCheckBox3d->SetNumProperty("Font3D", setting)

Remarks
The following table lists the Font3D property settings for the 3D check box.
Setting Description
0 (Default) No shading. Caption is displayed flat (not three- dimensional).
1 Raised with light shading. Caption appears raised off the screen.
2 Raised with heavy shading. Caption appears more raised.
3 Inset with light shading. Caption appears inset on the screen.
4 Inset with heavy shading. Caption appears more inset.
The Font3D property works with all the other Font properties. Settings 2 and 4 (heavy
shading) look best with larger, bolder fonts.

Data Type
Integer (Enumerated)

Click Event, 3D Check Box Control

Description
Occurs when the user presses and then releases a mouse button over a control. You can
trigger the Click event in code by setting the control's Value property to True.

Visual Basic
Sub CheckBox3d_Click (Value As Integer)

Visual C++
Function Signature:   
void CMyDialog::OnClickCheckBox3d (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM(short, lpParams)

Remarks
This is the same as the standard Visual Basic Click event, except that the control's Value is
passed as an argument. When the user selects the check box, Value = True. When the user
does not select it, Value = False.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

 3D Command Button Control
Properties Methods Events Error Messages

Description
The 3D command button control emulates the standard Visual Basic command button
control, which performs a task when the user either clicks the button or presses a key. In
addition, this control can display a three-dimensional caption as well as a bitmap or icon. A
variable bevel width allows the button to appear raised off the screen.

File Name
THREED.VBX

Object Type
SSCommand

Remarks
The 3D command button has several custom properties that allow you to adjust the three-
dimensional appearance of the control. When you draw a 3D command button on a form,
the custom property settings for the control are saved and used as a template for the next
3D command button that you create.
Since the three-dimensional gray scale look requires a background color of light gray, the
BackColor property is not available with this control. In Visual Basic, this control should be
used on forms that have the BackColor property set to light gray (&H00C0C0C0&). In Visual
C++, you should call the CWinApp::SetDialogBkColor member function in your
application's CWinApp::InitInstance member function. For more information, see the
Visual C++ Class Library Reference.

Distribution Note When you create and distribute applications that use the 3D command
button control, you should install the file THREED.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to
help you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*AutoSize FontName Left Tag
*BevelWidth FontSize MousePointer Top
Caption FontStrikethru Name Value
DragIcon FontUnderline *Outline Visible
DragMode ForeColor Parent Width
Enabled Height *Picture
*Font3D HelpContextID *RoundedCorner

s
FontBold hWnd TabIndex
FontItalic Index TabStop
Value is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the same as the CtlName property in Visual
Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. For documentation of these
events, see Appendix A, "Standard Properties, Events, and Methods," in the Custom Control
Reference.
Click DragOver KeyDown KeyUp
DragDrop GotFocus KeyPress LostFocus

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Refresh ZOrder
Move SetFocus

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

AutoSize Property, 3D Command Button Control

Description
Determines whether the command button is automatically sized to its picture or the picture
is sized to the button.

Visual Basic
[form.]CommandButton3d.AutoSize[= setting%]

Visual C++
pCommandButton3d->GetNumProperty("AutoSize")
pCommandButton3d->SetNumProperty("AutoSize", setting)

Remarks
The following table lists the AutoSize property settings for the 3D command button control.
Setting Description
0 (Default) No automatic sizing takes place.
1 Adjusts the picture size to the command button. This setting will shrink the

picture to fit the size of the button. This option has no effect if the picture is an
icon or if there is a caption specified for the command button.

2 Adjusts the command button size to the picture. This setting will resize the
button to exactly fit the size of the picture. This option has no effect if there is
a caption specified for the command button.

Data Type
Integer (Enumerated)

BevelWidth Property, 3D Command Button Control

Description
Sets or returns the width of the bevel along the four sides of the command button to
determine the height of the three-dimensional shadow effect.

Visual Basic
[form.]CommandButton3d.BevelWidth[= width%]

Visual C++
pCommandButton3d->GetNumProperty("BevelWidth")
pCommandButton3d->SetNumProperty("BevelWidth", width)

Remarks
The setting for this property determines the number of pixels used to draw the bevel that
surrounds the command button.
The bevel width can be set to a value between 0 and 10, inclusive.

Data Type
Integer

Font3D Property, 3D Command Button Control

Description
Sets or returns the three-dimensional style of the command button caption.

Visual Basic
[form.]CommandButton3d.Font3D[= setting%]

Visual C++
pCommandButton3d->GetNumProperty("Font3D")
pCommandButton3d->SetNumProperty("Font3D", setting)

Remarks
The following table lists the Font3D property settings for the 3D command button control.
Setting Description
0 (Default) No shading. Caption is displayed flat (not three- dimensional).
1 Raised with light shading. Caption appears raised off the screen.
2 Raised with heavy shading. Caption appears more raised.
3 Inset with light shading. Caption appears inset on the screen.
4 Inset with heavy shading. Caption appears more inset.
The Font3D property works with all the other Font properties. Settings 2 and 4 (heavy
shading) look best with larger, bolder fonts.

Data Type
Integer (Enumerated)

Outline Property, 3D Command Button Control

Description
Determines whether the command button is displayed with a 1-pixel black border around
its outer edge.

Visual Basic
[form.]CommandButton3d.Outline[= {True | False}]

Visual C++
pCommandButton3d->GetNumProperty("Outline")
pCommandButton3d->SetNumProperty("Outline", {TRUE | FALSE})

Remarks
The following table lists the Outline property settings for the 3D command button control.
Setting Description
True (Default) A 1-pixel black border is drawn around the button.
False No border is drawn around the button.

Data Type
Integer (Boolean)

Picture Property, 3D Command Button Control
Example

Description
Specifies a bitmap or an icon to display on the command button. This property is write-only
at design time.

Visual Basic
[form.]CommandButton3d.Picture[= picture]

Visual C++
pCommandButton3d->GetPictureProperty("Picture")
pCommandButton3d->SetPictureProperty("Picture", picture)

Remarks
The following table lists the Picture property settings for the 3D command button control.
Setting Description
(none) (Default) No picture.
(bitmap) or (icon) Designates a graphic to display. You can load the

graphic from the Properties window at design time.
In Visual Basic, you can load a graphic at design time from the Properties window. At run
time, you can set this property by using the LoadPicture function on a bitmap or icon or,
you can use Clipboard methods such as GetData, SetData, and GetFormat with the
nontext Clipboard formats CF_BITMAP and CF_DIB, as defined in the CONSTANT.TXT file.
Visual C++ provides three functions that allow you to manipulate Picture property values.
These functions are AfxSetPict, AfxGetPict, and AfxReferencePict. Refer to Technical
Note 27: Emulation Support for Visual Basic Custom Controls, which you can access by
selecting TN027 in the Visual C++ online help file, MFCNOTES.HLP.
If you set the Picture property at design time, the graphic is saved and loaded with the
form. If you create an executable file, the file contains the image. When you load a graphic
at run time, the graphic is not saved with the application. Use the SavePicture function to
save a graphic from a form or picture box into a file.

Note This control can display bitmaps (.BMP) and icons (.ICO), but not Windows metafiles
(.WMF). At run time, you can set the Picture property to any other object's DragIcon, Icon,
Picture, or Image property, or you can assign it the graphic returned by the LoadPicture
function. You can only assign the Picture property directly.

Data Type
Integer

Picture Property Example, 3D Command Button Control

Visual Basic Example
The following example pastes a bitmap from the Clipboard onto a command button. To find
the value of the CF_ formats, look at the CONSTANT.TXT file, or load that file into the global
module. To try this example, create a form with a command button, and then, in another
application, copy a picture onto the Clipboard, switch to Visual Basic, and run this example.

Note The picture must be on the Clipboard in bitmap form.
Sub Form_Click ()

Const CF_BITMAP = 2
Command3D1.Picture = Clipboard.GetData(CF_BITMAP)

End Sub

RoundedCorners Property, 3D Command Button Control

Description
Determines whether the command button is displayed with rounded corners.

Visual Basic
[form.]CommandButton3d.RoundedCorners[= {True | False}]

Visual C++
pCommandButton3d->GetNumProperty("RoundedCorners")
pCommandButton3d->SetNumProperty("RoundedCorners", {TRUE | FALSE})

Remarks
The following table lists the RoundedCorners property settings for the 3D command button
control.
Setting Description
True (Default) The button's outline appears rounded (the four corner pixels are not

drawn).
False The button's outline appears square.

Note This property has no effect when the Outline property is False.

Data Type
Integer (Boolean)

Error Messages, 3D Command Button Control
The following table lists the trappable errors for the 3D command button.
Error Message
number explanation
30000 Only picture formats '.BMP' & '.ICO' supported.

This error results when an unsupported graphic type is assigned to the Picture
property of the command button. Only bitmap and icon formats are supported.

30004 Bevel width must be from 0 to 10.
This error results when the bevel width is set to an invalid value.

 3D Frame Control
Properties Methods Events

Description
The 3D frame control emulates the standard Visual Basic frame control, which provides a
graphical or functional grouping of controls. The 3D frame control also allows the use of
three-dimensional text (right, left, or centered in the frame), and the frame itself can
appear raised or inset.

File Name
THREED.VBX

Object Type
SSFrame

Remarks
The 3D frame has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D frame on a form, the custom property
settings for the control are saved and used as a template for the next 3D frame that you
create.
Since the three-dimensional gray scale look requires a background color of light gray, the
BackColor property is not available with this control. In Visual Basic, this control should be
used on forms that have the BackColor property set to light gray (&H00C0C0C0&). In Visual
C++, you should call the CWinApp::SetDialogBkColor member function in your
application's CWinApp::InitInstance member function. For more information, see the
Visual C++ Class Library Reference.

Distribution Note When you create and distribute applications that use the 3D frame
control, you should install the file THREED.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to help you
write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
Align FontName Left Visible
*Alignment FontSize MousePointer Width
Caption FontStrikethru Name
DragIcon FontUnderline Parent
DragMode ForeColor *ShadowColor
Enabled Height *ShadowStyle
*Font3D HelpContextID TabIndex
FontBold hWnd Tag
FontItalic Index Top
Caption is the default value of the control.

Note The Align, DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the same as the CtlName property in Visual
Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. For documentation of these
events, see Appendix A, "Standard Properties, Events, and Methods," in the Custom Control
Reference.
DragDrop DragOver

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Move Refresh ZOrder

Note The Drag and ZOrder methods are only available in Visual Basic.

Alignment Property, 3D Frame Control

Description
Sets or returns the alignment of text in the frame.

Visual Basic
[form.]Frame3d.Alignment[= setting%]

Visual C++
pFrame3d->GetNumProperty("Alignment")
pFrame3d->SetNumProperty("Alignment", setting)

Remarks
The following table lists the Alignment property settings for the 3D frame control.
Setting Description
0 (Default) Caption appears left-justified within the top bar.
1 Caption appears right-justified within the top bar.
2 Caption appears centered within the top bar.

Data Type
Integer (Enumerated)

Font3D Property, 3D Frame Control

Description
Sets or returns the three-dimensional style of the frame caption.

Visual Basic
[form.]Frame3d.Font3D[= setting%]

Visual C++
pFrame3d->GetNumProperty("Font3D")
pFrame3d->SetNumProperty("Font3D", setting)

Remarks
The following table lists the Font3D property settings for the 3D frame control.
Setting Description
0 (Default) No shading. Caption is displayed flat (not three-dimensional).
1 Raised with light shading. Caption appears raised off the screen.
2 Raised with heavy shading. Caption appears more raised.
3 Inset with light shading. Caption appears inset on the screen.
4 Inset with heavy shading. Caption appears more inset.
The Font3D property works in conjunction with all the other Font properties. Settings 2 and
4 (heavy shading) look best with larger, bolder fonts.

Data Type
Integer (Enumerated)

ShadowColor Property, 3D Frame Control

Description
Sets or returns the color used to draw the dark shading lines that make up the frame.

Visual Basic
[form.]Frame3d.ShadowColor[= setting%]

Visual C++
pFrame3d->GetNumProperty("ShadowColor")
pFrame3d->SetNumProperty("ShadowColor", setting)

Remarks
The following table lists the ShadowColor property settings for the 3D frame control.
Setting Description
0 (Default) Dark gray
1 Black
The dark gray setting looks good in most situations. If you would like the frame to have a
crisper look, or if you want to be consistent with the ShadowColor property setting on a
Panel that resides on the same form, choose setting 1 (black).

Data Type
Integer (Enumerated)

ShadowStyle Property, 3D Frame Control

Description
Determines whether the frame appears inset or raised.

Visual Basic
[form.]Frame3d.ShadowStyle[= color%]

Visual C++
pFrame3d->GetNumProperty("ShadowStyle")
pFrame3d->SetNumProperty("ShadowStyle", color)

Remarks
The following table lists the ShadowStyle property settings for the 3D frame control.
Setting Description
0 (Default) Inset. Frame appears inset into the form.
1 Raised. Frame appears raised off the form.

Data Type
Integer (Enumerated)

 3D Group Push Button Control
Properties Methods Events Error Messages

Description
The 3D group push button control is a push button that turns its state on and off when
clicked. Individual 3D group push buttons can be used in groups to emulate the
functionality of the tool bar in Microsoft Excel spreadsheets or the ribbon in Microsoft Word
for Windows word processing program. This control has a Picture property to which a
bitmap graphic can be assigned.

File Name
THREED.VBX

Object Type
SSRibbon

Remarks
The buttons on the 3D group push button control look similar to command buttons, but
they behave more like option buttons; that is, depressing one button within a button group
automatically raises the previously depressed button. You group buttons using the
GroupNumber property. The GroupAllowAllUp property also allows all 3D group push
buttons in a group to be in the up position.
The button has three picture properties: PictureUp, PictureDn, and PictureDisabled. The
PictureDisabled property determines which graphic is displayed when the button is in the
disabled state. You can specify both PictureUp and PictureDn properties, or you can specify
the up bitmap only, in which case the 3D group push button will either dither, invert, or use
the unchanged up bitmap when displaying the button in the down position. You choose the
type of change with the PictureDnChange property.

Note If the BevelWidth property is set to 1 or 2 rather than 0, the bitmap that you specify
is only for the area inside the bevels. The 3D group push button takes care of drawing the
bevels and offsetting the bitmap down and to the right when it is pressed. However, you
may set the BevelWidth property to 0 and incorporate the button shading for the up and
down positions in your pictures.
Unlike most three-dimensional controls, the 3D group push button has a BackColor
property. The BackColor property defaults to light gray, but it can be changed to match the
background color of the bitmap that is placed on it. In this way a bitmap with a dominant
background color can appear to be part of the button. Note that the BackColor property
only affects the area inside the 3D group push button's beveled edges. The edges are
always shaded with white and dark gray.
The 3D group push button has several custom properties that allow you to adjust the three-
dimensional appearance of the control. When you draw a 3D group push button on a form,
the custom property settings for the control are saved and used as a template for the next
3D group push button that you create.

Distribution Note When you create and distribute applications that use the 3D group
push button control, you should install the file THREED.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to
help you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
Align *GroupNumber *Outline Top
*AutoSize Height Parent Value
BackColor HelpContextID *PictureDisabled Visible
*BevelWidth hWnd *PictureDn Width
DragIcon Index *PictureDnChang

e
DragMode Left *PictureUp
Enabled MousePointer *RoundedCorner

s
*GroupAllowAllU
p

Name Tag

Value is the default value of the control.

Note The Align, DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. Name is the same as the CtlName property in Visual Basic 1.0 and
Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the events not unique to this control, see Appendix A,
"Standard Properties, Events, and Methods," in the Custom Control Reference.
*Click DragDrop DragOver

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Move Refresh ZOrder

Note The Drag and ZOrder methods are only available in Visual Basic.

AutoSize Property, 3D Group Push Button Control

Description
Determines whether the button is automatically sized to its picture or the picture is sized to
the button.

Visual Basic
[form.]GroupPushButton.AutoSize[= setting%]

Visual C++
pGroupPushButton->GetNumProperty("AutoSize")
pGroupPushButton->SetNumProperty("AutoSize", setting)

Remarks
The following table lists the AutoSize property settings for the 3D group push button
control.
Setting Description
0 No automatic sizing takes place.
1 Adjusts the picture size to the command button. This will stretch or shrink the

bitmap to fit the size of the button.
2 (Default) Adjusts the button size to the picture. This will resize the button to

exactly fit the size of the picture.
Data Type
Integer (Enumerated)

BevelWidth Property, 3D Group Push Button Control

Description
Sets or returns the width of the bevel along the four sides of the 3D group push button.

Visual Basic
[form.]GroupPushButton.BevelWidth[= width%]

Visual C++
pGroupPushButton->GetNumProperty("BevelWidth")
pGroupPushButton->SetNumProperty("BevelWidth", width)

Remarks
BevelWidth determines the height of the three-dimensional shadow effect.
This property determines the number of pixels used to draw the bevel that surrounds the
button. The valid range for BevelWidth is from 0 to 2.

Data Type
Integer

GroupAllowAllUp Property, 3D Group Push Button Control

Description
Determines whether all buttons in a logical group can be in the up position.

Visual Basic
[form.]GroupPushButton.GroupAllowAllUp[= {True | False}]

Visual C++
pGroupPushButton->GetNumProperty("GroupAllowAllUp")
pGroupPushButton->SetNumProperty("GroupAllowAllUp", {TRUE | FALSE})

Remarks
The following table lists the GroupAllowAllUp property settings for the 3D group push
button control.
Setting Description
True (Default) All buttons in the current logical group may be in the up position.
False At least one button in the current logical group must be depressed.
The setting of the GroupAllowAllUp property for a button in one group has no effect on any
other group.
If the GroupAllowAllUp property is set to False, no check will be made by the 3D group
push button control to ensure that at least one button is depressed when the form on which
the button resides is loaded. It is up to you to set the initial state of the Value property for
one of the buttons in the group to True (depressed).

Note When the GroupAllowAllUp property is set for a button in a logical group, the
GroupAllowAllUp property is automatically set to the same value for all the other buttons in
the group. Use the GroupNumber property to create logical groups of 3D group push
buttons.

Data Type
Integer (Boolean)

GroupNumber Property, 3D Group Push Button Control

Description
Sets or returns the GroupNumber associated with the 3D group push button.

Visual Basic
[form.]GroupPushButton.GroupNumber[= group%]

Visual C++
pGroupPushButton->GetNumProperty("GroupNumber")
pGroupPushButton->SetNumProperty("GroupNumber", group)

Remarks
The following table lists the GroupNumber property settings for the 3D group push button
control.
Setting Description
0 The button is not part of a logical grouping and as such can be turned on and

off (by means of code or a mouse click) independently of any other group push
buttons on the form.

1 99 (Default = 1) The button is a member of a logical grouping of 3D group push
buttons (that is, other buttons on the same form with the same GroupNumber
property setting).

The GroupNumber property only has a grouping effect on buttons that are siblings, that is,
buttons with the same parent. For example, in Visual Basic, you could consider two buttons
placed directly on a form siblings, and you can use their GroupNumber property to group
them. Then, if you place a third button in a frame control on the same form, the third
button would not be a sibling of the first two, even though they are all on the same form. In
Visual C++, all controls in a dialog or form view are siblings.
This property defaults to 1, and all sibling buttons form a group.
If this property is set to 0, the button will operate independently. It will turn its state on or
off when clicked.
It is possible to set up multiple logical groups on a single form, frame, panel, or picture box
by varying the GroupNumber property. All siblings with the same GroupNumber will operate
as a group.

Note There are two types of groups. The first type requires that at least one button in the
group be depressed (it operates like an option button group); the other type allows all
buttons to be up. Refer to the GroupAllowAllUp property for details.

Data Type
Integer

Outline Property, 3D Group Push Button Control

Description
Sets or returns a 1-pixel black border around the button's outer edge.

Visual Basic
[form.]GroupPushButton.Outline[= {True | False}]

Visual C++
pGroupPushButton->GetNumProperty("Outline")
pGroupPushButton->SetNumProperty("Outline", {TRUE | FALSE})

Remarks
The following table lists the Outline property settings for the 3D group push button control.
Setting Description
True (Default) A 1-pixel black border is drawn.
False No border is drawn.

Data Type
Integer (Boolean)

PictureDisabled Property, 3D Group Push Button Control

Description
Specifies a bitmap to display on the 3D group push button when it is disabled. This property
is write-only at design time.

Visual Basic
[form.]GroupPushButton.PictureDisabled[= picture]

Visual C++
pGroupPushButton->GetPictureProperty("PictureDisabled")
pGroupPushButton->SetPictureProperty("PictureDisabled", picture)

Remarks
The following table lists the PictureDisabled property settings for the 3D group push button
control.
Setting Description
(none) (Default) No bitmap is specified for display when the button is disabled.
(bitmap) Designates a graphic to display on the button when it is disabled. You can load

the graphic from the Properties window at design time.
This graphic is only displayed if the 3D group push button is disabled, that is, its Enabled
property is set to False. Setting this property is optional. If you do not set this property, the
button will display the graphic specified for the PictureUp property.
In Visual Basic, you can load a graphic at design time from the Properties window. At run
time, you can set this property by using the LoadPicture function on a bitmap or, you can
use Clipboard methods such as GetData, SetData, and GetFormat with the nontext
Clipboard formats CF_BITMAP and CF_DIB, as defined in CONSTANT.TXT, a file that specifies
system defaults.
Visual C++ provides three functions that allow you to manipulate Picture property values.
These functions are AfxSetPict, AfxGetPict, and AfxReferencePict. Refer to Technical
Note 27: Emulation Support for Visual Basic Custom Controls, which you can access by
selecting TN027 in the Visual C++ online Help file, MFCNOTES.HLP.
When setting the Picture property at design time, the graphic is saved and loaded with the
form. If you create an executable file, the file contains the image. When you load a graphic
at run time, the graphic is not saved with the application. Use the SavePicture statement
to save a graphic from a form or picture box into a file.

Note At run time, you can set the Picture property to any other object's Picture or Image
property, or you can assign it the graphic returned by the LoadPicture function. The
Picture property can only be assigned directly.

Data Type
Integer

PictureDn Property, 3D Group Push Button Control

Description
Specifies a bitmap to display on the button when it is in the depressed or down position.
This property is write-only at design time.

Visual Basic
[form.]GroupPushButton.PictureDn[= picture]

Visual C++
pGroupPushButton->GetPictureProperty("PictureDn")
pGroupPushButton->SetPictureProperty("PictureDn", picture)

Remarks
The following table lists the PictureDn property settings for the 3D group push button
control.
Setting Description
(none) (Default) No bitmap is specified for display when the button is down. When the

button is down, the PictureUp bitmap is displayed modified, as determined by
the PictureDnChange property.

(bitmap) Designates a graphic to display on the button when it is down. You can load
the graphic from the Properties window at design time.

This bitmap is displayed only if the button is in the down state; that is, the Value property is
True. It is not necessary to assign a bitmap to this property; if this property is set to none,
the 3D group push button automatically creates the bitmap to be displayed when the
button is in the down position. See the PictureDnChange property for an explanation of the
options available when you want to have the 3D group push button create the down
bitmap.
If the BevelWidth property is set to 1 or 2 rather than 0, the bitmap that you specify is only
for the area inside the bevels. The 3D group push button takes care of drawing the bevels
and offsetting the bitmap down and to the right when it is pressed. However, you may set
the BevelWidth property to 0 and incorporate button shading for the up and down positions
in your pictures.
In Visual Basic, you can load a graphic at design time from the Properties window. At run
time, you can set this property by using the LoadPicture function on a bitmap or, you can
use Clipboard methods such as GetData, SetData, and GetFormat with the nontext
Clipboard formats CF_BITMAP and CF_DIB as defined in the CONSTANT.TXT file.
Visual C++ provides three functions that allow you to manipulate Picture property values.
These functions are AfxSetPict, AfxGetPict, and AfxReferencePict. Refer to Technical
Note 27: Emulation Support for Visual Basic Custom Controls, which you can access by
selecting TN027 in the Visual C++ online Help file, MFCNOTES.HLP.
When setting the Picture property at design time, the graphic is saved and loaded with the
form. If you create an executable file, the file contains the image. When you load a graphic
at run time, the graphic is not saved with the application. Use the SavePicture statement
to save a graphic from a form or picture box into a file.

Note At run time, the Picture property can be set to any other object's Picture or Image
property, or you can assign it the graphic returned by the LoadPicture function. The
Picture property can only be assigned directly.

Data Type
Integer

PictureDnChange Property, 3D Group Push Button Control

Description
Determines how the PictureUp bitmap is used to create the PictureDn bitmap if a PictureDn
bitmap is not specified.

Visual Basic
[form.]GroupPushButton.PictureDnChange[= setting%]

Visual C++
pGroupPushButton->GetNumProperty("PictureDnChange")
pGroupPushButton->SetNumProperty("PictureDnChange", setting)

Remarks
The following table lists the PictureDnChange property settings for the 3D group push
button control.
Setting Description
0 PictureUp bitmap unchanged.
1 (Default) Dither PictureUp bitmap. Create a copy of the up bitmap and change

every other pixel that is in the BackColor color to white. This has the effect of
lightening that color (for example, light gray will appear to be a lighter shade
of gray).

2 Invert PictureUp bitmap.
When using setting 1 with large bitmaps, due to the overhead of dithering the bitmap,
there is a slight time lag the first time the button is pressed. If the time lag is unacceptable,
use one of the other settings, or specify a PictureDn bitmap.

Data Type
Integer (Enumerated)

PictureUp Property, 3D Group Push Button Control

Description
Specifies a bitmap to display on the button when it is in the up position. This property is
write-only at design time.

Visual Basic
[form.]GroupPushButton.PictureUp[= picture]

Visual C++
pGroupPushButton->GetPictureProperty("PictureUp")
pGroupPushButton->SetPictureProperty("PictureUp", picture)

Remarks
The following table lists the PictureUp property settings for the 3D group push button
control.
Setting Description
(none) (Default) No bitmap is specified for display when the button is in the up

position.
(bitmap) Designates a graphic to display on the button when it is up. You can load the

graphic from the Properties window at design time.
This bitmap is displayed if the button is in the up state; that is, the Value property is False.
If the PictureDn property is set to none, you can also use the PictureUp to create the bitmap
to be displayed when the button is in the down position. See the PictureDnChange property
for an explanation of the options available when you choose to have the 3D group push
button create the down bitmap.
In Visual Basic, you can load a graphic at design time from the Properties window. At run
time, you can set this property by using the LoadPicture function on a bitmap or, you can
use Clipboard methods such as GetData, SetData, and GetFormat with the nontext
Clipboard formats CF_BITMAP and CF_DIB as defined in the CONSTANT.TXT file.
Visual C++ provides three functions that allow you to manipulate Picture property values.
These functions are AfxSetPict, AfxGetPict, and AfxReferencePict. Refer to Technical
Note 27: Emulation Support for Visual Basic Custom Controls, which you can access by
selecting TN027 in the Visual C++ online Help file, MFCNOTES.HLP.
When setting the Picture property at design time, the graphic is saved and loaded with the
form. If you create an executable file, the file contains the image. When you load a graphic
at run time, the graphic is not saved with the application. Use the SavePicture statement
to save a graphic from a form or picture box into a file.

Note At run time, you can set the Picture property to any other object's Picture or Image
property, or you can assign it the graphic returned by the LoadPicture function. The
Picture property can only be assigned directly.

Data Type
Integer

RoundedCorners Property, 3D Group Push Button Control

Description
Determines whether the 3D group push button is displayed with rounded corners.

Visual Basic
[form.]GroupPushButton.RoundedCorners[= {True | False}]

Visual C++
pGroupPushButton->GetNumProperty("RoundedCorners")
pGroupPushButton->SetNumProperty("RoundedCorners", {TRUE | FALSE})

Remarks
The following table lists the RoundedCorners property settings for the 3D group push
button control.
Setting Description
True (Default) The button's outline appears rounded (the four corner pixels are not

drawn).
False The button's outline appears square.

Data Type
Integer (Boolean)

Click Event, 3D Group Push Button Control

Description
Occurs when the user presses and then releases a mouse button over a 3D group push
button. You can trigger the Click event for a group push button in code by setting the
control's Value property to True.

Visual Basic
Sub GroupPush3D_Click (Value As Integer)

Visual C++
Function Signature:
void CMyDialog::OnClickGroupPushButton (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (short, lpParams)

Remarks
This event is the same as the standard Visual Basic Click event, except that the control's
Value is passed as an argument. When the button is in the down position, Value = True.
When it is in the up position, Value = False.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Error Messages, 3D Group Push Button Control
The following table lists the trappable errors for the 3D group push button.
Error Message
number explanation
30001 Only picture format '.BMP' supported.

This error results when an unsupported graphic type is assigned to the Picture
property of the 3D group push button. Only the bitmap format is supported.

30005 Group number must be from 0 to 99.
This error results when the GroupNumber property is set to an invalid value.

30007 Bevel width must be from 0 to 2.
This error results when the bevel width is set to an invalid value.

 3D Option Button Control
Properties Methods Events

Description
The 3D option button control emulates the standard Visual Basic option button control,
which displays an option that can be turned on or off. This control also allows you to align
three-dimensional text to the right or left of the option button.

File Name
THREED.VBX

Object Type
SSOption

Remarks
The 3D option button has several custom properties that allow you to adjust the three-
dimensional appearance of the control. When you draw a 3D option button on a form, the
custom properties for the control are remembered and used as a template for the next 3D
option button that you create.
Since the three-dimensional gray scale look requires a background color of light gray, the
BackColor property is not available with this control. In Visual Basic, this control should be
used on forms that have the BackColor property set to light gray (&H00C0C0C0&). In Visual
C++, you should call the CWinApp::SetDialogBkColor member function in your
application's CWinApp::InitInstance member function. For more information, see the
Visual C++ Class Library Reference.

Distribution Note When you create and distribute applications that use the 3D option
button control, you should install the file THREED.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to
help you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Alignment FontName Index Top
Caption FontSize Left Value
DragIcon FontStrikethru MousePointer Visible
DragMode FontUnderline Name Width
Enabled ForeColor Parent
*Font3D Height TabIndex
FontBold HelpContextID TabStop
FontItalic hWnd Tag
Value is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the same as the CtlName property in Visual
Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Click DragOver KeyDown KeyUp
*DblClick GotFocus KeyPress LostFocus
DragDrop

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Refresh ZOrder
Move SetFocus

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

Alignment Property, 3D Option Button Control

Description
Sets or returns the alignment of text in the option button.

Visual Basic
[form.]OptionButton3d.Alignment[= setting%]

Visual C++
pOptionButton3d->GetNumProperty("Alignment")
pOptionButton3d->SetNumProperty("Alignment", setting)

Remarks
The following table lists the Alignment property settings for the 3D option button control.
Setting Description
0 (Default) Caption appears to the right of the option button.
1 Caption appears to the left of the option button.

Data Type
Integer (Enumerated)

Font3D Property, 3D Option Button Control

Description
Sets or returns the three-dimensional style of the option button caption.

Visual Basic
[form.]OptionButton3d.Font3D[= setting%}

Visual C++
pOptionButton3d->GetNumProperty("Font3D")
pOptionButton3d->SetNumProperty("Font3D", setting)

Remarks
The following table lists the Font3D property settings for the 3D option button control.
Setting Description
0 (Default) No shading. Caption is displayed flat (not three-dimensional).
1 Raised with light shading. Caption appears raised off the screen.
2 Raised with heavy shading. Caption appears more raised.
3 Inset with light shading. Caption appears inset on the screen.
4 Inset with heavy shading. Caption appears more inset.
The Font3D property works with all the other Font properties. Settings 2 and 4 (heavy
shading) look best with larger, bolder fonts.

Data Type
Integer (Enumerated)

Click Event, 3D Option Button Control

Description
Occurs when the user presses and then releases a mouse button over a 3D option button
control. You can trigger the Click event in code by setting the control's Value property to
True.

Visual Basic
Sub OptionButton3d_Click (Value As Integer)

Visual C++
Function Signature:
void CMyDialog::OnClickOptionButton3d (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (short, lpParams)

Remarks
This event is the same as the standard Visual Basic Click event, except that the control's
Value is passed as an argument. When the option button is selected, Value = True. When it
is not selected, Value = False.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

DblClick Event, 3D Option Button Control

Description
Occurs when the user presses and then releases a mouse button, then presses it again
over an option button. You can trigger the DblClick event in code by setting the control's
Value property to True.

Visual Basic
Sub OptionButton3d_DblClick (Value As Integer)

Visual C++
Function Signature:
void CMyDialog::OnDblClickOptionButton3d (UINT, int, CWND*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (short, lpParams)

Remarks
This event is the same as the standard Visual Basic DblClick event, except that the control's
Value is passed as an argument. When the option button is selected, Value = True. When it
is not selected, Value = False.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

 3D Panel Control
Properties Methods Events Error Messages

Description
You can use the 3D panel control to display plain or three-dimensional text on a three-
dimensional background, to group other controls on a three-dimensional background as an
alternative to the frame control, or to lend a three-dimensional appearance to standard
controls such as list boxes, combo boxes, scroll bars, and so on.

File Name
THREED.VBX

Object Type
SSPanel

Remarks
The 3D panel is a three-dimensional rectangular area of variable size that can be as large
as the form itself or just large enough to display a single line of text. It can present status
information in a dynamically colored circle or bar with or without showing percent. (See the
FloodShowPct property.)
While you can create some dramatic effects with the 3D panel, the control only has four
basic visual properties: OuterBevel, InnerBevel, BevelWidth, and BorderWidth. By
combining these properties in different ways, you can generate interesting backgrounds for
text and controls.
Unlike most 3D controls, the 3D panel has a BackColor property. It defaults to light gray but
can be changed to any color you choose. When used sparingly, the BackColor property can
give presentation panels additional impact without getting in the way of the form's
usefulness.
Like frames, 3D panels can have other controls placed on them.
The 3D panel has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D panel on a form, the custom property
settings for the control are saved and used as a template for the next 3D panel that you
create.

Bound Properties
The 3D panel has three bound properties: DataChanged, DataField, and DataSource. This means that it
can be linked to a data control and display field values for the current record in the recordset. The 3D
panel control can also write out values to the recordset.
When the value of the field referenced by the DataField property is read, it is converted to a Caption
property string, if possible. If the recordset is updatable, the string is converted to the data type of the
field.
For more information on using bound controls, refer to Chapter 20, Accessing Databases With the Data
Control, in the Programmers Guide.

Distribution Note When you create and distribute applications that use the 3D panel
control, you should install the file THREED.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Wizard included with Visual Basic provides tools to help
you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Alignment DragIcon FontSize *Outline
*AutoSize DragMode FontStrikethru Parent
BackColor Enabled FontUnderline *RoundedCorners
*BevelInner *FloodColor ForeColor *ShadowColor
*BevelOuter *FloodPercent Height TabIndex
*BevelWidth *FloodShowPct HelpContextID Tag
*BorderWidth *FloodType hWnd Top
Caption *Font3D Index Visible
DataChanged FontBold Left Width
DataField FontItalic MousePointer
DataSource FontName Name
Caption is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the same as the CtlName property in Visual
Basic 1.0 and Visual C++.
The DataChanged, DataField, and DataSource properties are bound properties and are only
available in Visual Basic 3.0.

Events
All of the events for this control are listed in the following table. For documentation of the
events not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
DragDrop DragOver

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Move Refresh ZOrder

Note The Drag and ZOrder methods are only available in Visual Basic.

Alignment Property, 3D Panel Control

Description
Sets or returns the alignment of text in the panel.

Visual Basic
[form.]Panel3d.Alignment[= setting%]

Visual C++
pPanel3d->GetNumProperty("Alignment")
pPanel3d->SetNumProperty("Alignment", setting)

Remarks
The following table lists the Alignment property settings for the 3D panel control.
Setting Description
0 Caption appears left-justified at the top of the panel.
1 Caption appears left-justified in the middle of the panel.
2 Caption appears left-justified at the bottom of the panel.
3 Caption appears right-justified at the top of the panel.
4 Caption appears right-justified in the middle of the panel.
5 Caption appears right-justified at the bottom of the panel.
6 Caption appears centered at the top of the panel.
7 (Default) Caption appears centered in the middle of the panel.
8 Caption appears centered at the bottom of the panel.

Data Type
Integer (Enumerated)

AutoSize Property, 3D Panel Control

Description
Determines whether the panel is automatically sized to its contents.

Visual Basic
[form.]Panel3d.AutoSize[= setting%]

Visual C++
pPanel3d->GetNumProperty("AutoSize")
pPanel3d->SetNumProperty("AutoSize", setting)

Remarks
The following table lists the AutoSize property settings for the 3D panel control.
Setting Description
0 (Default) No automatic sizing takes place.
1 AutoSize panel width sized to caption. This setting adjusts the width of the

panel to fit the caption within its inner bevel. The panel height remains
unchanged. With this setting, the caption is displayed as a single line,
regardless of its length.

2 AutoSize panel height sized to caption. This setting adjusts the height of the
panel to fit the caption within its inner bevel. The panel width remains
unchanged. With this setting, the caption may be displayed on multiple lines if
it does not fit within the current width of the panel.

3 AutoSize child sized to panel. If a single control has been placed on the panel,
this setting resizes the child control to fit exactly within the panel's inner
bevel. This setting has no effect if there are no child controls, more than one
child control, or if the panel has no bevels. This setting gives a three-
dimensional look to standard controls such as list boxes and scroll bars. Note
that if the child control has a fixed dimension (that is, the height of a combo
box or drive box is fixed), that dimension of the panel is adjusted to fit it
instead.

Data Type
Integer (Enumerated)

BevelInner Property, 3D Panel Control

Description
Determines the style of the inner bevel of the panel.

Visual Basic
[form.]Panel3d.BevelInner[= setting%]

Visual C++
pPanel3d->GetNumProperty("BevelInner")
pPanel3d->SetNumProperty("BevelInner", setting)

Remarks
The following table lists the BevelInner property settings for the 3D panel control.
Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears inset on the screen.
2 Raised. The inner bevel appears raised off the screen.
Use this property with the BevelOuter, BorderWidth, and BevelWidth properties.

Data Type
Integer (Enumerated)

BevelOuter Property, 3D Panel Control

Description
Determines the style of the outer bevel of the panel.

Visual Basic
[form.]Panel3d.BevelOuter[= setting%]

Visual C++
pPanel3d->GetNumProperty("BevelOuter")
pPanel3d->SetNumProperty("BevelOuter", setting)

Remarks
The following table lists the BevelOuter property settings for the 3D panel control.
Setting Description
0 None. No outer bevel is drawn.
1 Inset. The outer bevel appears inset on the screen.
2 (Default) Raised. The outer bevel appears raised off the screen.
Use this property with the BevelInner, BorderWidth, and BevelWidth properties.

Data Type
Integer (Enumerated)

BevelWidth Property, 3D Panel Control

Description
Sets or returns the width of the outer and inner bevels of the panel; determines the amount
of the three-dimensional shadow effect.

Visual Basic
[form.]Panel3d.BevelWidth[= width%]

Visual C++
pPanel3d->GetNumProperty("BevelWidth")
pPanel3d->SetNumProperty("BevelWidth", width)

Remarks
The setting for this property determines the number of pixels used to draw the inner and
outer bevels that surround the panel.
Bevel width can be set to a value between 0 and 30, inclusive.
Use this property in conjunction with the BevelInner, BevelOuter, and BorderWidth
properties.

Data Type
Integer

BorderWidth Property, 3D Panel Control

Description
Sets or returns the width of the border, which is the distance between the outer and inner
bevels of the panel.

Visual Basic
[form.]Panel3d.BorderWidth[= width%]

Visual C++
pPanel3d->GetNumProperty("BorderWidth")
pPanel3d->SetNumProperty("BorderWidth", width)

Remarks
The setting for this property determines the number of pixels between the inner and outer
bevels that surround the panel.
Border width can be set to a value between 0 and 30, inclusive.
Use this property in conjunction with the BevelInner, BevelOuter, and BevelWidth
properties.

Data Type
Integer

FloodColor Property, 3D Panel Control

Description
Sets or returns the color used to paint the area inside the panel's inner bevel when the 3D
panel is used as a status or progress indicator (that is, when the FloodType property setting
is other than none).

Visual Basic
[form.]Panel3d.FloodColor[= color&]

Visual C++
pPanel3d->GetNumProperty("FloodColor")
pPanel3d->SetNumProperty("FloodColor", color)

Remarks
The FloodColor property has the same range of settings as standard Visual Basic color
settings.
Setting Description
Normal RGB colors In Visual Basic, specified by using the Color palette, the RGB scheme,

or QBColor functions in code. In Visual C++, standard RGB colors can
be used.

System default colors In Visual Basic, specified with system color constants from the
CONSTANT.TXT file. In Visual C++, use the MAKESYSCOLOR macro
defined in the AFXEXT.H file to create system color constants. Microsoft
Windows substitutes the user's choices as specified through the user's
control panel settings.

Use this property with FloodPercent, FloodShowPct, and FloodType to cause the panel to
display a colored status bar indicating the degree of completion of a task.
At design time you can set this property by entering a hexadecimal value in the Settings
box or by clicking the three dots that appear at the right of the Settings box. Clicking this
button displays a dialog box that allows you to select a FloodColor setting from a palette of
colors similar to the Visual Basic Color Palette window.

Note The FloodColor property defaults to bright blue: RGB (0, 0, 255). The valid range for a
normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range
equals 0; the lower three bytes, from least to most significant, determine the amount of
red, green, and blue, respectively. The red, green, and blue components are each
represented by a number between 0 and 255 (&HFF).

Data Type
Long

FloodPercent Property, 3D Panel Control
Example

Description
Sets or returns the percentage of the painted area inside the panel's inner bevel when the
panel is used as a status or progress indicator (that is, FloodType property setting other
than none). This property is not available at design time.

Visual Basic
[form.]Panel3d.FloodPercent[= percent%]

Visual C++
pPanel3d->GetNumProperty("FloodPercent")
pPanel3d->SetNumProperty("FloodPercent", percent)

Remarks
The FloodPercent property can be set to an integer value between 0 and 100.
Use this property in conjunction with FloodColor, FloodShowPct, and FloodType to cause the
panel to display a colored status bar, indicating the degree of completion of a task.

Data Type
Integer

FloodPercent Example, 3D Panel Control

Visual Basic Example
The following example shows how the FloodPercent property updates the display of a panel
status bar.
Sub Command1_Click ()

Panel3d1.FloodPercent = 0 ' Init status
Panel3d1.FloodType = 1 ' Left to right
' Do some long running process and update status bar at 10%
' intervals.
For I% = 1 To 10

DoLongRunningProcess
Panel3d1.FloodPercent = I% * 10
a% = DoEvents() ' Let Windows do other operations.

Next I%
End Sub

FloodShowPct Property, 3D Panel Control

Description
Determines whether the current setting of the FloodPercent property will be displayed in
the center of the panel when the panel is used as a status or progress indicator (that is,
FloodType property setting is other than none).

Visual Basic
[form.]Panel3d.FloodShowPct[= {True | False}]

Visual C++
pPanel3d->GetNumProperty("FloodShowPct")
pPanel3d->SetNumProperty("FloodShowPct", {TRUE | FALSE})

Remarks
The following table lists the FloodShowPct property settings for the 3D panel control.
Setting Description
True (Default) The current setting of the FloodPercent property will be displayed.
False The current setting of the FloodPercent property will not be displayed.

Data Type
Integer (Boolean)

FloodType Property, 3D Panel Control

Description
Determines if and how the panel is used as a status or progress indicator.

Visual Basic
[form.]Panel3d.FloodType[= setting%]

Visual C++
pPanel3d->GetNumProperty("FloodType")
pPanel3d->SetNumProperty("FloodType", setting)

Remarks
The following table lists the FloodType property settings for the 3D panel control.
Setting Description
0 (Default) None. Panel has no status bar capability and the caption (if any) is

displayed.
1 Left to right. Panel will be painted in a color, which is specified by the

FloodColor property, from the left inner bevel to the right as the FloodPercent
property increases.

2 Right to left. Panel will be painted in a color, which is specified by the
FloodColor property, from the right inner bevel to the left as the FloodPercent
property increases.

3 Top to bottom. Panel will be painted in a color, which is specified by the
FloodColor property, from the top inner bevel downward as the FloodPercent
property increases.

4 Bottom to top. Panel will be painted in a color, which is specified by the
FloodColor property, from the bottom inner bevel upward as the FloodPercent
property increases.

5 Widening circle. Panel will be painted in a color, which is specified by the
FloodColor property, from the center outward in a widening circle as the
FloodPercent property increases.

Note If the FloodType setting is a value other than 0, the panel caption (if any) will not be
displayed.

Data Type
Integer (Enumerated)

Font3D Property, 3D Panel Control

Description
Sets or returns the three-dimensional style of the panel caption.

Visual Basic
[form.]Panel3d.Font3D[= setting%]

Visual C++
pPanel3d->GetNumProperty("Font3D")
pPanel3d->SetNumProperty("Font3D", setting)

Remarks
The following table lists the Font3D property settings for the 3D panel control.
Setting Description
0 (Default) None. Caption is displayed flat (not three-dimensional).
1 Raised with light shading. Caption appears raised off the screen.
2 Raised with heavy shading. Caption appears more raised.
3 Inset with light shading. Caption appears inset on the screen.
4 Inset with heavy shading. Caption appears more inset.
The Font3D property works with all the other font properties. Settings 2 and 4 (heavy
shading) look best with larger, bolder fonts.

Data Type
Integer (Enumerated)

Outline Property, 3D Panel Control

Description
Determines whether the panel is displayed with a 1-pixel black border around its outer
edge.

Visual Basic
[form.]Panel3d.Outline[= {True | False}]

Visual C++
pPanel3d->GetNumProperty("Outline")
pPanel3d->SetNumProperty("Outline", {TRUE | FALSE})

Remarks
The following table lists the Outline property settings for the 3D panel control.
Setting Description
True Draws a 1-pixel black border around the panel.
False (Default) No border.

Data Type
Integer (Boolean)

RoundedCorners Property, 3D Panel Control

Description
Determines whether the panel is displayed with rounded corners.

Visual Basic
[form.]Panel3d.RoundedCorners[= {True | False}]

Visual C++
pPanel3d->GetNumProperty("RoundedCorners")
pPanel3d->SetNumProperty("RoundedCorners", {TRUE | FALSE})

Remarks
The following table lists the RoundedCorners property settings for the 3D panel control.
Setting Description
True (Default) The button's outline appears rounded (the four corner pixels are not

drawn).
False The button's outline appears square.

Note The property has no effect when Outline is False.

Data Type
Integer (Boolean)

ShadowColor Property, 3D Panel Control

Description
Sets or returns the color used to draw the dark shading lines that make up the panel.

Visual Basic
[form.]Panel3d.ShadowColor[= setting%]

Visual C++
pPanel3d->GetNumProperty("ShadowColor")
pPanel3d->SetNumProperty("ShadowColor", setting)

Remarks
The following table lists the ShadowColor property settings for the 3D panel control.
Setting Description
0 (Default) Dark gray.
1 Black.
The dark gray setting works well in most situations. If you want the panel to have a crisper
look, or if you want to be consistent with the ShadowColor property setting on a frame on
the same form, choose setting 1 (black).
If the BackColor property is set to a color other than the default light gray, setting
ShadowColor to black sometimes looks better than dark gray.

Data Type
Integer (Enumerated)

Error Messages, 3D Panel Control
The following table lists the trappable errors for the 3D panel control.
Error Message
number explanation
30002 Bevel width must be from 0 to 30.

This error results if the BevelWidth property is set to an invalid value.
30003 Border width must be from 0 to 30.

This error results if the BorderWidth property is set to an invalid value.
30006 Flood percent must be from 0 to 100.

This error results if the FloodPercent property is set to an invalid value.

 Animated Button Control
Properties Methods Events Error Messages

Description
The animated button control is a flexible button control that allows you to use any icon,
bitmap, or metafile to define your own button controls. Control types include animated
buttons, multistate buttons, and animated check boxes.

File Name
ANIBUTON.VBX

Object Type
AniPushButton

Remarks
Each animated button can contain zero or more images and an optional text caption. An
animated button can be thought of as a series of frames that are displayed in sequence:
You can use the Picture property to load images into the animated button control. The
Frame property indicates which picture is currently accessible through the Picture property.
In other words, the Frame property is an index of the array of images in the control.
The images are displayed within the control's border. The default is to display the images in
the center of the control, but you can use the PictureXpos and PictureYpos properties to
position the image within the control. You can also use the PictDrawMode property to scale
the image to the exact size of the control or to adjust the control to the size of your image.
The Caption text can be displayed next to the images or on the images, depending on the
TextPosition property.

Distribution Note When you create and distribute applications that use the animated
button control, you should install the file ANIBUTON.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to
help you write setup programs that install your applications correctly.

Animation Cycles and Button Types
The following table shows how you can use frame sequences to implement various types of
animated buttons.
Button type Cycle Description
Animated 0 When the left mouse button is clicked, half of the frames are

displayed in order. When the button is released, the remaining
frames are displayed in order, returning to the first frame.

Multistate 1 Each frame specifies a particular state. When the left button is
clicked, it automatically switches to the next state and displays
the appropriate frame.

2-state animated 2 When the left button is clicked, frames are displayed in
sequential order until the middle frame appears, and the state
is changed to 2 (that is, checked).
When the button is clicked again, the remaining frames are
displayed, returning to the first frame. The state is changed
back to 1.

Enhanced button 0 An animated button with only two frames.
Enhanced check box 1 A multistate button with two frames.
It is possible to pass Clipboard images directly into animated button frames. When loading
frames, it is also possible to pass Windows metafiles; images are scaled to the control and
then converted into bitmaps.

Note The animated button control is generally used to create small- to medium-sized
buttons. However, the control is capable of holding large bitmaps. Bitmaps and icons held

in an animated button control use few Windows resources. The data is stored in global
memory in a private format and does not use Windows bitmap or icon resource handles.
The animated button control is a useful tool for archiving bitmaps or icons.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
BackColor FontItalic Left Tag
BorderStyle FontName MousePointer *TextPosition
Caption FontSize Name *TextXpos
*CCBfileLoad FontStrikethru Parent *TextYpos
*CCBfileSave FontUnderline *PictDrawMode Top
*ClearFirst ForeColor *Picture *Value
*ClickFilter *Frame *PictureXpos Visible
*Cycle Height *PictureYpos Width
DragIcon HelpContextID *SpecialOp
DragMode hWnd *Speed
Enabled *HideFocusBox TabIndex
FontBold Index TabStop
Value is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the same as the CtlName property in Visual
Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). documentation of the remaining events, see Appendix A, "Standard Properties,
Events, and Methods," in the Custom Control Reference.
*Click DragOver KeyDown KeyUp
DragDrop GotFocus KeyPress LostFocus

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Refresh ZOrder
Move SetFocus

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

CCBfileLoad Property, Animated Button Control

Description
Loads image and animated button property information from files previously saved with the
CCBfileSave property. This property is write-only.

Visual Basic
[form.]AniButton.CCBfileLoad = filename$

Visual C++
pAniButton->SetStrProperty("CCBfileLoad", filename)

Remarks
All animated button files have the extension .CCB.
CCB files save only image information and animated button property information. Except
for the BorderStyle property, information for standard properties is not saved in these files.
If you want to save all of the information for an animated button control, place it on a form
and save the form. In App Studio, place the control on a dialog and save the dialog. You can
also copy controls using the Clipboard.
You can type the name of the file directly or click the ellipsis (...) to the right of the Settings
box to open a CCBfileLoad dialog box.
Animated button CCB files are fully compatible with Desaware's Custom Control Factory
and can be used to transfer frame sequences to and from Custom Control Factory controls.

Data Type
String

CCBfileSave Property, Animated Button Control

Description
Saves information for an animated button control in a file. This property is write-only.

Visual Basic
[form.]AniButton.CCBfileSave = filename$

Visual C++
pAniButton->SetStrProperty("CCBfileSave", filename)

Remarks
The name of the CCB file to save is indicated by the placeholder filename$. All animated
button files have the extension .CCB.
You can save image and property information into CCB files that can then be distributed or
used to build a library of animated button controls. These files save only image and
animated button property information. Except for the BorderStyle property, information for
standard properties is not saved in the CCB files. If you want to save all of the information
for an animated button control, place it on a form and save the form. In App Studio, place
the control on a dialog and save the dialog. You can also use the Clipboard to copy controls.
You can type in the name of the file directly or click the ellipsis (...) to the right of the
Settings box to open a CCBfileSave dialog box.
Animated button CCB files are fully compatible with Desaware's Custom Control Factory
and can be used to transfer frame sequences to and from Custom Control Factory controls.

Data Type
String

ClearFirst Property, Animated Button Control

Description
Determines whether the control is cleared between frames.

Visual Basic
[form.]AniButton.ClearFirst[= {True | False}]

Visual C++
pAniButton->GetNumProperty("ClearFirst")
pAniButton->SetNumProperty("ClearFirst", {TRUE | FALSE})

Remarks
Normally, button controls are animated by drawing a new frame right on top of a previous
frame. This produces a smooth animation effect when either the image is stable or changes
are gradual.
If you animate an image with large changes (for example, if an object is moving rapidly), an
illusion of tearing may occur when part of the old image and part of the new image are on
the screen at the same time.
Setting ClearFirst to True causes the control to be cleared between frames. This eliminates
the tearing effect; however, it does tend to cause increased flicker between frames. Try the
control both ways to determine which produces the best effect.
The following table lists the ClearFirst property settings for the animated button control.
Setting Description
False (Default) ClearFirst feature disabled.
True ClearFirst feature enabled.

Data Type
Integer (Boolean)

ClickFilter Property, Animated Button Control

Description
Determines what part of the animated button control detects a mouse click.

Visual Basic
[form.]AniButton.ClickFilter[= setting%]

Visual C++
pAniButton->GetNumProperty("ClickFilter")
pAniButton->SetNumProperty("ClickFilter", setting)

Remarks
The following table lists the ClickFilter property settings for the animated button control.
Setting Description
0 (Default) Mouse clicks are detected anywhere in the control.
1 Mouse clicks must be on either the caption text or the actual image frame in

order to be detected.
2 Mouse clicks must be on the image frame in order to be detected.
3 Mouse clicks must be on the caption text in order to be detected.
All mouse clicks on parts of the window that are not specified will be ignored. The animated
button invokes a Click event when a mouse click is detected.

Data Type
Integer (Enumerated)

Cycle Property, Animated Button Control

Description
Controls the animation cycle and differentiates between animated, multistate, and 2-state
animated buttons.

Visual Basic
[form.]AniButton.Cycle[= setting%]

Visual C++
pAniButton->GetNumProperty("Cycle")
pAniButton->SetNumProperty("Cycle", setting)

Remarks
The following table lists the Cycle property settings for the animated button control.
Setting Description
0 (Default) Plays one half of the frame sequence when the user chooses (clicks)

the button. Plays the rest of the frame sequence when the button is released.
Returns to the first frame.

1 Jumps to the next frame in the sequence when the button is released.
Increments the Value property at this time. This implements a one-frame-per-
state multistate button. Clicking the button when the button is set to the last
frame (last state) causes the button to return to the first frame (first state).

2 Plays one half of the frame sequence when the user chooses (clicks) the
button for the first time. This sets the property Value to 2 (from 1). When the
button is clicked again, the remaining frames will be played and the button will
return to frame 1. At this time the Value property will be set back to 1. This
implements a 2-state animated button.

The Cycle property affects only the display sequence of images. The Click event occurs
when the mouse button is released. Pressing the spacebar when a button has the focus
causes the button to be selected and released (as if it were clicked by the mouse).

Data Type
Integer (Enumerated)

Frame Property, Animated Button Control
Example

Description
Indicates the current frame.

Visual Basic
[form.]AniButton.Frame[= setting%]

Visual C++
pAniButton->GetNumProperty("Frame")
pAniButton->SetNumProperty("Frame", setting)

Remarks
The frame property has the following effects:

The current frame is the frame displayed while in design mode.
The current frame is the frame that can be accessed using the Picture property (in

both design and run modes under program control).
The Frame property has no effect on the appearance of the control at run time. It still can
be set to choose the frame to set or to retrieve using the Picture property.
The Frame property can have the values one through the number of frames plus one. The
argument setting% is the number of the individual frame that is displayed in design mode
and that can be accessed in both design and run mode.

Data Type
Integer

Frame Example, Animated Button Control

Visual Basic Example
The following example shows how to determine the number of frames in an animated
button control at run time.
Sub Form_Click ()

Dim a%, done%
' This will hold the frame number.
a% = 1
' This flag tells us when done.
done% = 0
On Error GoTo foundprop
Do

' Buttons CtlName property here.
AniButton1.frame = a%
' Done. a% contains the number of
' the frame that caused the error.
If done% Then Exit Do
a% = a% + 1

Loop While - 1
' Calculate the actual number of images.
' a% - 1 is the empty trailing frame.

a% = a% - 1
Exit Sub
FoundProp:

done% = -1
Resume Next

End Sub

HideFocusBox Property, Animated Button Control

Description
Normally, when an animated button has the focus, a dotted-line rectangle appears around
the caption (or around the image if no caption is present).
There are occasions, however, when the focus rectangle might interfere with the animation.
To prevent the focus rectangle from appearing, set this property to True.

Visual Basic
[form.]AniButton.HideFocusBox[= {True | False}]

Visual C++
pAniButton->GetNumProperty("HideFocusBox")
pAniButton->SetNumProperty("HideFocusBox", {TRUE | FALSE})

Remarks
The following table lists the HideFocusBox property settings for the animated button
control.
Setting Description
False (Default) Focus rectangle appears when the control has the focus.
True Focus rectangle is hidden when the control has the focus.

Data Type
Integer (Boolean)

PictDrawMode Property, Animated Button Control

Description
Defines how the image frame is drawn within the control. It is possible for any given image
frame (bitmap or icon) to be smaller or larger than the control.

Visual Basic
[form.]AniButton.PictDrawMode[= setting%]

Visual C++
pAniButton->GetNumProperty("PictDrawMode")
pAniButton->SetNumProperty("PictDrawMode", setting)

Remarks
The following table lists the PictDrawMode property settings for the animated button
control.
Setting Description
0 (Default) Positions the image according to the values in the PictureXpos and

PictureYpos properties and places the caption according to the TextPosition
property value. These properties control the X and Y position on a scale of 0 to
100.

1 Automatically controls the sizing mode. The animated button control is sized to
fit the largest image frame or the caption, whichever is largest.

2 Stretches the image to fit. The image frame is expanded or contracted to fill
the current size of the control. In this mode, the caption (if present) is always
printed as if the TextPosition property were set to 0 (that is, displayed on top of
the image).

Data Type
Integer (Enumerated)

Picture Property, Animated Button Control

Description
You can use this property to set and get the image frames in the control. In design mode,
you can click the ellipsis (...) to the right of the Settings box to open the Load Picture dialog
box.
You can use this property to transfer images between forms and picture controls and the
animated button control. This is done by assignment in the same way that images can be
transferred using the Picture property in forms and picture controls. For example, in Visual
Basic:
Form.Picture = Anibutton1.Picture.

And, in Visual C++:
HPIC hPict = pAniButton1->GetPictureProperty ("Picture"); pAniButton2-
>SetPictureProperty ("Picture"),hPict);.

The image frame that is accessed with this property is always the image specified by the
Frame property.

PictureXpos Property, Animated Button Control

Description
Controls the horizontal placement of the image in the control.

Visual Basic
[form.]AniButton.PictureXpos[= setting%]

Visual C++
pAniButton->GetNumProperty("PictureXpos")
pAniButton->SetNumProperty("PictureXpos", setting)

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the
percentage placement from the upper-left corner of the control. Thus, a value of 0 places
the image at the upper-left corner of the control; a value of 100 places it at the lower-right
corner of the control. The default value is 50. Refer to the TextPosition property for details
on how the behavior of this property may be modified by the positioning of the caption.

Data Type
Integer

PictureYpos Property, Animated Button Control

Description
Controls the vertical placement of the image in the control.

Visual Basic
[form.]AniButton.PictureYpos[= setting%]

Visual C++
pAniButton->GetNumProperty("PictureYpos")
pAniButton->SetNumProperty("PictureYpos", setting)

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the
percentage placement from the upper-left corner of the control. Thus, a value of 0 places
the image at the upper-left corner of the control; a value of 100 places it at the lower-right
corner of the control. The default value is 50. Refer to the TextPosition property for details
on how the behavior of this property may be modified by the positioning of the caption.

Data Type
Integer

SpecialOp Property, Animated Button Control

Description
Triggers special operations on the part of the animated button control. A special operation
is triggered by assigning a value to this property at run time. This property is not available
at design time and is write-only at run time.

Visual Basic
[form.]AniButton.SpecialOp = setting%

Visual C++
pAniButton->SetNumProperty("SpecialOp", setting)

Remarks
The following table lists the SpecialOp property settings for the animated button control.
Setting Description
1 Simulates a click. The control behaves exactly as if it had been clicked.

The control receives the focus and the form is activated if necessary. This
option will not work if the button's Enabled property is False. This option
has no effect if the control's Visible property is set to False.

Any other value No effect. No error is reported.
Data Type
Integer

Speed Property, Animated Button Control

Description
Specifies the approximate delay, in milliseconds, between frames.

Visual Basic
[form.]AniButton.Speed[= setting%]

Visual C++
pAniButton->GetNumProperty("Speed")
pAniButton->SetNumProperty("Speed", setting)

Remarks
Enter a value between 0 and 32767, inclusive. The default value is 0.
Larger numbers slow down the animation speed, and using very large numbers with this
property significantly impacts system performance. For best results, choose values below
100.

Data Type
Integer

TextPosition Property, Animated Button Control

Description
Controls the position of the caption in the control. By doing so, it also influences the
position of the image.

Visual Basic
[form.]AniButton.TextPosition[= setting%]

Visual C++
pAniButton->GetNumProperty("TextPosition")
pAniButton->SetNumProperty("TextPosition", setting)

Remarks
The following table lists the TextPosition property settings for the animated button control.
Setting Description
0 (Default) Caption is positioned within the control based on the TextXpos and

TextYpos properties. The image is positioned according to the PictDrawMode,
PictureXpos, and PictureYpos properties.

1 Image is placed at the left of the control. The TextXpos property positions the
caption within the space between the rightmost position of the image and the
rightmost position of the control. The vertical position is determined the same
as when the TextPosition property is 0.

2 Image is placed at the right of the control. The TextXpos property positions the
caption within the space between the leftmost position of the image and the
leftmost position of the control. The vertical position is determined the same
as when the TextPosition property is 0.

3 Image is placed at the bottom of the control. The TextYpos property positions
the caption within the space between the top of the image and the top of the
control. The horizontal position is determined the same as when the
TextPosition property is 0.

4 Image is placed at the top of the control. The TextYpos property positions the
caption within the space between the bottom of the image and the bottom of
the control. The horizontal position is determined the same as when the
TextPosition property is 0.

Note When the PictDrawMode property is 2, the image and caption positions are the same
as when the TextPosition property is 0.

Data Type
Integer (Enumerated)

TextXpos Property, Animated Button Control

Description
Controls the horizontal placement of the text caption.

Visual Basic
[form.]AniButton.TextXpos[= setting%]

Visual C++
pAniButton->GetNumProperty("TextXpos")
pAniButton->SetNumProperty("TextXpos", setting)

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the
percentage placement from the upper-left corner of the caption area in the control. Thus, a
value of 0 places the caption at the upper-left corner of the caption area; a value of 100
places it at the lower-right corner of the caption area. The default value is 50.
The caption area refers to the part of the control reserved for the text caption. This
depends on which setting you use for the TextPosition property, as described in the
following table.
Setting Description
0 Caption area is entire control. Caption overlays any images in the control.
1 Caption placed to the right of the image.
2 Caption placed to the left of the image.
3 Caption placed above the image.
4 Caption placed below the image.

Data Type
Integer (Enumerated)

TextYpos Property, Animated Button Control

Description
Controls the vertical placement (TextYpos) of the text caption.

Visual Basic
[form.]AniButton.TextYpos[= setting%]

Visual C++
pAniButton->GetNumProperty("TextYpos")
pAniButton->SetNumProperty("TextYpos", setting)

Remarks
The value of this propertycan vary from 0 to 100, inclusive. The value represents the
percentage placement from the upper-left corner of the caption area in the control. Thus, a
value of 0 places the caption at the upper-left corner of the caption area; a value of 100
places it at the lower-right corner of the caption area. The default value is 50.
The caption area refers to the part of the control reserved for the text caption. This
depends on which setting you use for the TextPosition property, as described in the
following table.
Setting Description
0 Caption area is entire control. Caption overlays any images in the control.
1 Caption placed to the right of the image.
2 Caption placed to the left of the image.
3 Caption placed above the image.
4 Caption placed below the image.

Data Type
Integer (Enumerated)

Value Property, Animated Button Control

Description
Indicates the state of a 2-state or multistate animated button. Refer to the Cycle property
for how this property works for the different button and animation modes. This property is
not available at design time.

Visual Basic
[form.]AniButton.Value[= setting%]

Visual C++
pAniButton->GetNumProperty("Value")
pAniButton->SetNumProperty("Value", setting)

Remarks
This property can be retrieved to determine the current frame number of an animated
button control. When the Cycle property is set to 1, you can use the Value property to
specify the frame of the cycle you want to display.
When the Value of a control is changed, the display may not be updated until subsequential
events have occurred (such as the DoEvents() function in Visual Basic or the Yield()
function in Visual C++).
Setting the Value of a control does not cause a Click event to occur.

Data Type
Integer (Enumerated)

Click Event, Animated Button Control

Description
Occurs when the user presses and then releases a mouse button over an animated button.

Visual Basic
Sub AniButton_Click (Value As Integer)

Visual C++
Function Signature:
void CMyDialog::OnClickAniButton (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (short, lpParams)

Remarks
This event is the same as the standard Visual Basic Click event, except that it is not
generated when the user presses Enter. You can use a KeyPress event to detect when the
user presses Enter.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Error Messages, Animated Button Control
The following table lists the trappable errors for the animated button control.
Error Message
number explanation
321 Invalid file format.

This error occurs when attempting to load an invalid CCB file. The animated
button can load CCB files created by the Custom Control Factory; however,
these files may use features that are unique to the Custom Control Factory and
are not supported by the animated button control. In this case, the
unsupported features are ignored, and substitute property values are set as
needed.

361 Can't load or unload this object.
This error indicates that there is insufficient memory available to load or
unload the specified CCB file or control . Loading an animated button control
into a control array may cause this error to occur (especially if the controls
contain many frames).

380 Invalid property value.
Attempting to set a property to an invalid value causes this error.

 Communications Control
Properties                    Events                    Functions                    Example

Description
The communications control provides serial communications for your application by
allowing the transmission and reception of data through a serial port.

File Name
MSCOMM.VBX

Object Type
MSComm

Remarks
The communications control provides the following two ways for handling communications:

Event-driven communications is a very powerful method for handling serial port
interactions. In many situations you want to be notified the moment an event takes place, as
when a character arrives or a change occurs in the Carrier Detect (CD) or Request To Send
(RTS) lines. In such cases, you would use the communications control's OnComm event to
trap and handle these communications events. The OnComm event also detects and
handles communications errors. For a list of all possible events and communications errors,
see the CommEvent property.

You can also poll for events and errors by checking the value of the CommEvent
property after each critical function of your program. This may be preferable if your
application is small and self-contained. For example, if you are writing a simple phone dialer,
it may not make sense to generate an event after receiving every character, because the
only characters you plan to receive are the OK response from the modem.
Each communications control you use corresponds to one serial port. If you need to access
more than one serial port in your application, you must use more than one communications
control. The port address and interrupt address can be changed from the Windows Control
Panel.
Although the communications control has many important properties, there are a few that
you should be familiar with first.
Properties Description
CommPort Sets and returns the communications port number.
Settings Sets and returns the baud rate, parity, data bits, and stop bits as a string.
PortOpen Sets and returns the state of a communications port. Also opens and closes a

port.
Input Returns and removes characters from the receive buffer.
Output Writes a string of characters to the transmit buffer.
The actual values of the event and error constants are defined in the Visual Basic
CONSTANT.TXT file or the CONSTANT.H file included with the Visual Control Pack.

Distribution Note When you create and distribute applications that use the
communications control, you should install the file MSCOMM.VBX in the customer's
Microsoft Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides
tools to help you write setup programs that install your applications correctly.

Communications Control Example

Visual Basic Example
The following simple example shows how to perform basic serial port communications:
Sub Form_Load ()

' Use COM1.
Comm1.CommPort = 1
' 9600 baud, no parity, 8 data, and 1 stop bit.
Comm1.Settings = "9600,N,8,1"
' Tell the control to read entire buffer when Input is used.
Comm1.InputLen = 0
' Open the port.
Comm1.PortOpen = True
' Send the attention command to the modem.
Comm1.Output = "AT" + Chr$(13)
' Wait for data to come back to the serial port.
Do

Dummy = DoEvents()
Loop Until Comm1.InBufferCount >= 2
' Read the "OK" response data in the serial port.
InString$ = Comm1.Input
' Close the serial port.
Comm1.PortOpen = False

End Sub

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation on the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Break *DSRHolding *InputLen *ParityReplace
*CDHolding *DSRTimeout *Interval *PortOpen
*CDTimeout *DTREnable Left *RThreshold
*CommEvent *Handshaking Name *RTSEnable
*CommID *InBufferCount *NullDiscard *Settings
*CommPort *InBufferSize *OutBufferCount *SThreshold
*CTSHolding Index *OutBufferSize Tag
*CTSTimeout *Input *Output Top
Input is the default value of the control.

Note The Index property is only available in Visual Basic. The Name property is the same
as the CtlName property in Visual Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*).
*OnComm

Functions
All of the functions for this control are listed in the following table. Functions that apply only
to this control, or that require special consideration when used with it, are marked with an
asterisk (*).
*ComInput *ComOutput

Break Property, Communications Control
Example

Description
Sets or clears the break signal state. This property is not available at design time.

Visual Basic
[form.]MSComm.Break[= {True | False}]

Visual C++
pMSComm->GetNumProperty("Break")
pMSComm->SetNumProperty("Break", {TRUE | FALSE})

Remarks
The following table lists the Break property settings for the communications control.
Setting Description
True Sets the break signal state.
False Clears the break signal state.
When set to True, the Break property sends a break signal. The break signal suspends
character transmission and places the transmission line in a break state until you set the
Break property to False.
Typically, you set the break state for a short interval of time, and only if the device with
which you are communicating requires that a break signal be set.

Data Type
Integer (Boolean)

Break Example, Communications Control

Visual Basic Example
The following example shows how to send a break signal for a tenth of a second:
' Set the Break condition.
Comm1.Break = True
' Set duration to 1/10 second.
Duration! = Timer + .1
' Wait for the duration to pass.
Do Until Timer > Duration!

Dummy = DoEvents()
Loop
' Clear the Break condition.
Comm1.Break = False

CDHolding Property, Communications Control

Description
Determines whether the carrier is present by querying the state of the Carrier Detect (CD)
line. Carrier Detect is a signal sent from a modem to the attached computer to indicate that
the modem is online. This property is not available at design time and is read-only at run
time.

Visual Basic
[form.]MSComm.CDHolding

Visual C++
pMSComm->GetNumProperty("CDHolding")

Remarks
The following table lists the CDHolding property settings for the communications control.
Setting Description
True Carrier Detect line is high.
False Carrier Detect line is low.
When the Carrier Detect line is high (CDHolding = True) and the CDTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to
MSCOMM_ER_CDTO (Carrier Detect Timeout Error), and generates the OnComm event.

Note It is especially important to trap a loss of the carrier in a host application, such as a
bulletin board, because the caller can hang up (dropping the carrier) at any time.
The Carrier Detect is also known as the Receive Line Signal Detect (RLSD).
See the CDTimeout property for information on trapping this condition using the OnComm
event.

Data Type
Integer (Boolean)

CDTimeout Property, Communications Control

Description
Sets and returns the maximum amount of time (in milliseconds) that the control waits for
the Carrier Detect (CD) signal before timing out. This property indicates timing out by
setting the CommEvent property to MSCOMM_ER_CDTO (Carrier Detect Timeout Error) and
generating the OnComm event.

Visual Basic
[form.]MSComm.CDTimeout[= milliseconds&]

Visual C++
pMSComm->GetNumProperty("CDTimeout")
pMSComm->SetNumProperty("CDTimeout", milliseconds)

Remarks
When the Carrier Detect line is low (CDHolding = False) and CDTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to
MSCOMM_ER_CDTO (Carrier Detect Timeout Error) and generates the OnComm event.
Refer to the CDHolding property for more information on detecting the presence of a
carrier.

Data Type
Long

CommEvent Property, Communications Control

Description
Returns the most recent communication event or error. This property is not available at
design time and is read-only at run time.

Visual Basic
[form.]MSComm.CommEvent

Visual C++
pMSComm->GetNumProperty("CommEvent")

Remarks
Although the OnComm event is generated whenever a communication error or event
occurs, the CommEvent property holds the numeric code for that error or event. To
determine the actual error or event that caused the OnComm event, you must reference
the CommEvent property.
The code returned by the CommEvent property is one of the settings of the following
communication errors or events, as specified in the Visual Basic CONSTANT.TXT file or the
CONSTANT.H file included with the Visual Control Pack.
Communications errors include the following settings.
Setting Description
MSCOMM_ER_BREAK A Break signal was received.
MSCOMM_ER_CDTO Carrier Detect Timeout. The Carrier Detect line was low for

CDTimeout number of milliseconds while trying to transmit a
character. Carrier Detect is also known as the Receive Line
Signal Detect (RLSD).

MSCOMM_ER_CTSTO Clear To Send Timeout. The Clear To Send line was low for
CTSTimeout number of milliseconds while trying to transmit a
character.

MSCOMM_ER_DSRTO Data Set Ready Timeout. The Data Set Ready line was low for
DSRTimeout number of milliseconds while trying to transmit a
character.

MSCOMM_ER_FRAME Framing Error. The hardware detected a framing error.
MSCOMM_ER_OVERRUN Port Overrun. A character was not read from the hardware

before the next character arrived and was lost. If you get this
error under Windows version 3.0, decrease the value of the
Interval property. For more details, refer to the Interval property.

MSCOMM_ER_RXOVER Receive Buffer Overflow. There is no room in the receive buffer.
MSCOMM_ER_RXPARITY Parity Error. The hardware detected a parity error.
MSCOMM_ER_TXFULL Transmit Buffer Full. The transmit buffer was full while trying to

queue a character.
Communications events include the following settings.
Setting Description
MSCOMM_EV_CD Change in Carrier Detect line.
MSCOMM_EV_CTS Change in Clear To Send line.
MSCOMM_EV_DSR Change in Data Set Ready line. This event is only fired when

DSR changes from    1 to 0.
MSCOMM_EV_EOF End Of File (ASCII character 26) character received.
MSCOMM_EV_RING Ring detected. Some UARTs (universal asynchronous receiver-
transmitter) may not support this event.
MSCOMM_EV_RECEIVE Received RThreshold number of characters. This event is
generated continuously until you use the Input property to remove the data from the receive

buffer.
MSCOMM_EV_SEND There are fewer than SThreshold number of characters in the transmit
buffer.
Data Type
Integer

CommID Property, Communications Control

Description
Returns a handle that identifies the communications device. This property is not available
at design time and is read-only at run time.

Visual Basic
[form.]MSComm.CommID

Visual C++
pMSComm->GetNumProperty("CommID")

Remarks
This is the value returned by the Windows API OpenComm function and used by the
internal communications routines in the Windows API.

Data Type
Integer

CommPort Property, Communications Control

Description
Sets and returns the communications port number.

Visual Basic
[form.]MSComm.CommPort[= portNumber%]

Visual C++
pMSComm->GetNumProperty("CommPort")
pMSComm->SetNumProperty("CommPort", portNumber)

Remarks
You can set portNumber to any number between 1 and 99 at design time (the default is 1).
However, the communications control generates error 68 (Device unavailable) if the port
does not exist when you attempt to open it with the PortOpen property.

Warning You must set the CommPort property before opening the port.

Data Type
Integer

CTSHolding Property, Communications Control

Description
Determines whether you can send data by querying the state of the Clear To Send (CTS)
line. Typically, the Clear To Send signal is sent from a modem to the attached computer to
indicate that transmission can proceed. This property is not available at design time and is
read-only at run time.

Visual Basic
[form.]MSComm.CTSHolding

Visual C++
pMSComm->GetNumProperty("CTSHolding")

Remarks
The following table lists the CTSHolding property settings for the communications control.
Setting Description
True Clear To Send line high.
False Clear To Send line low.
When the Clear To Send line is high (CTSHolding = True) and the CTSTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to
MSCOMM_ER_CTSTO (Clear To Send Timeout) and invokes the OnComm event.
The Clear To Send line is used in RTS/CTS (Request To Send/Clear To Send) hardware
handshaking. The CTSHolding property gives you a way to manually poll the Clear To Send
line if you need to determine its state.
For more information on handshaking protocols, see the Handshaking property.

Data Type
Integer (Boolean)

CTSTimeout Property, Communications Control

Description
Sets and returns the number of milliseconds to wait for the Clear To Send signal before
setting the CommEvent property to MSCOMM_ER_CTSTO and generating the OnComm
event.

Visual Basic
[form.]MSComm.CTSTimeout[= milliseconds&]

Visual C++
pMSComm->GetNumProperty("CTSTimeout")
pMSComm->SetNumProperty("CTSTimeout", milliseconds)

Remarks
When the Clear To Send line is high (CTSHolding = True) and the CTSTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to
MSCOMM_ER_CTSTO (Clear To Send Timeout) and generates the OnComm event.
See the CTSHolding property, which gives you a means to manually poll the Clear To Send
line.

Data Type
Long

DSRHolding Property, Communications Control

Description
Determines the state of the Data Set Ready (DSR) line. Typically, the Data Set Ready signal
is sent by a modem to its attached computer to indicate that it is ready to operate. This
property is not available at design time and is read-only at run time.

Visual Basic
[form.]MSComm.DSRHolding

Visual C++
pMSComm->GetNumProperty("DSRHolding")

Remarks
The following table lists the DSRHolding property settings for the communications control.
Setting Description
True Data Set Ready line high.
False Data Set Ready line low.
When the Data Set Ready line is high (DSRHolding = True) and the DSRTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to
MSCOMM_ER_DSRTO (Data Set Ready Timeout) and invokes the OnComm event.
This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking
routine for a Data Terminal Equipment (DTE) machine.

Data Type
Integer (Boolean)

DSRTimeout Property, Communications Control

Description
Sets and returns the number of milliseconds to wait for the Data Set Ready (DSR) signal
before setting the CommEvent property to MSCOMM_ER_DSRTO and generating the
OnComm event.

Visual Basic
[form.]MSComm.DSRTimeout[= milliseconds&]

Visual C++
pMSComm->GetNumProperty("DSRTimeout")
pMSComm->SetNumProperty("DSRTimeout", milliseconds)

Remarks
When the Data Set Ready line is high (DSRHolding = True) and the DSRTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to
MSCOMM_ER_DSRTO (Data Set Ready Timeout) and generates the OnComm event.
This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking
routine for a DTE machine.
See the DSRHolding property, which allows you to manually poll the Data Set Ready line.

Data Type
Long

DTREnable Property, Communications Control

Description
Determines whether to enable the Data Terminal Ready (DTR) line during communications.
Typically, the Data Terminal Ready signal is sent by a computer to its modem to indicate
that the computer is ready to accept incoming transmission.

Visual Basic
[form.]MSComm.DTREnable[= {True | False}]

Visual C++
pMSComm->GetNumProperty("DTREnable")
pMSComm->SetNumProperty("DTREnable", {TRUE | FALSE})

Remarks
The following table lists the DTREnable property settings for the communications control.
Setting Description
True Enable the Data Terminal Ready line.
False (Default) Disable the Data Terminal Ready line.
When DTREnable is set to True, the Data Terminal Ready line is set to high (on) when the
port is opened, and low (off) when the port is closed. When DTREnable is set to False, the
Data Terminal Ready always remains low.

Note In most cases, setting the Data Terminal Ready line to low hangs up the telephone.

Data Type
Integer (Boolean)

Handshaking Property, Communications Control

Description
Sets and returns the hardware handshaking protocol.

Visual Basic
[form.]MSComm.Handshaking[= protocol%]

Visual C++
pMSComm->GetNumProperty("Handshaking")
pMSComm->SetNumProperty("Handshaking", protocol)

Remarks
Handshaking refers to the internal communications protocol by which data is transferred
from the hardware port to the receive buffer. When a character of data arrives at the serial
port, the communications device has to move it into the receive buffer so that your
program can read it. If there is no receive buffer and your program is expected to read
every character directly from the hardware, you will probably lose data because the
characters can arrive very quickly.
A handshaking protocol insures that data is not lost due to a buffer overrun, in which case
data arrives at the port too quickly for the communications device to move the data into
the receive buffer.
Valid protocols are listed in the following table.
Setting Description
MSCOMM_HANDSHAKE_NONE (Default) No handshaking.
MSCOMM_HANDSHAKE_XONXOFF XON/XOFF handshaking.
MSCOMM_HANDSHAKE_RTS RTS/CTS (Request To Send/Clear To Send)

handshaking.
MSCOMM_HANDSHAKE_RTSXONXOFF Both Request To Send and XON/XOFF handshaking.

Data Type
Integer

InBufferCount Property, Communications Control

Description
Returns the number of characters waiting in the receive buffer. This property is not
available at design time.

Visual Basic
[form.]MSComm.InBufferCount[= count%]

Visual C++
pMSComm->GetNumProperty("InBufferCount")
pMSComm->SetNumProperty("InBufferCount", count)

Remarks
InBufferCount refers to the number of characters that have been received by the modem
and are waiting in the receive buffer for you to take them out. You can clear the receive
buffer by setting the InBufferCount property to 0.

Note Do not confuse this property with the InBufferSize property InBufferSize reflects the
total size of the receive buffer.

Data Type
Integer

InBufferSize Property, Communications Control

Description
Sets and returns the size of the receive buffer in bytes.

Visual Basic
[form.]MSComm.InBufferSize[= numBytes%]

Visual C++
pMSComm->GetNumProperty("InBufferSize")
pMSComm->SetNumProperty("InBufferSize", numBytes)

Remarks
InBufferSize refers to the total size of the receive buffer. The default size is 1024 bytes. Do
not confuse this property with the InBufferCount property InBufferCount reflects the
number of characters currently waiting in the receive buffer.

Note Note that the larger you make the receive buffer, the less memory you have available
to your application. However, if your buffer is too small, it runs the risk of overflowing
unless handshaking is used. As a general rule, start with a buffer size of 1024 bytes. If an
overflow error occur, increase the buffer size to handle your application's transmission rate.

Data Type
Integer

Input Property, Communications Control
Example

Description
Returns and removes a string of characters from the receive buffer. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]MSComm.Input

Visual C++
pMSComm->GetStrProperty("Input")

Remarks
The Visual C++ syntax works for strings that do not contain Null characters, and strings
containing Null characters will be truncated. For strings that contain Null characters, use
either the ComInput function or the following syntax:
#define UM_INPUT WM_USER + 0x0B00
pMSComm->SendMessage(UM_INPUT, lpData, cbData)
lpData points to a data buffer to hold the input data, and cbData is the size of the buffer, in
bytes. This message will return the actual number of bytes of user input.
The InputLen property determines the number of characters that are read by the Input
property. Setting InputLen to 0 causes the Input property to read the entire contents of the
receive buffer.

Data Type
String

Input Example, Communications Control

Visual Basic Example
This example shows how to retrieve data from the receive buffer:
' Retrieve all available data.
Comm1.InputLen = 0
' Check for data.
If Comm1.InBufferCount Then

' Read data.
InString$ = Comm1.Input

End If

InputLen Property, Communications Control
Example

Description
Sets and returns the number of characters the Input property reads from the receive buffer.

Visual Basic
[form.]MSComm.InputLen[= numChars%]

Visual C++
pMSComm->GetNumProperty("InputLen")
pMSComm->SetNumProperty("InputLen", numChars)

Remarks
The default value for the InputLen property is 0. Setting InputLen to 0 causes the
communications control to read the entire contents of the receive buffer when Input is
used.
If InputLen characters are not available in the receive buffer, the Input property returns a
zero-length string (""). The user can optionally check the InBufferCount property to
determine if the required number of characters are present before using Input.
This property is useful when reading data from a machine whose output is formatted in
fixed-length blocks of data.

Data Type
Integer

InputLen Example, Communications Control

Visual Basic Example
This example shows how to read 10 characters of data:
' Specify a 10 character block of data.
Comm1.InputLen = 10
' Read data.
CommData$ = Comm1.Input

Interval Property, Communications Control

Description
Sets the interval, in milliseconds, for polling the hardware port for data under Windows
version 3.0.

Visual Basic
[form.]MSComm.Interval[= milliseconds&]

Visual C++
pMSComm->GetNumProperty("Interval")
pMSComm->SetNumProperty("Interval", milliseconds)

Remarks
The default value for the Interval property is 1000 (1 second).
You only need this property for applications that run under Windows graphical environment
version 3.0, because the communications control has to manually poll the hardware port for
data at a given interval. However, under Windows operating system version 3.1 this is not
necessary, and you don't need to use the Interval property.

Data Type
Long

NullDiscard Property, Communications Control

Description
Determines whether null characters are transferred from the port to the receive buffer.

Visual Basic
[form.]MSComm.NullDiscard[= {True | False}]

Visual C++
pMSComm->GetNumProperty("NullDiscard")
pMSComm->SetNumProperty("NullDiscard", {TRUE | FALSE})

Remarks
The following table lists the NullDiscard property settings for the communications control.
Setting Description
True Null characters are not transferred from the port to the receive buffer.
False (Default) Null characters are transferred from the port to the receive buffer.
A null character is defined as ASCII character 0, Chr$(0).

Data Type
Integer (Boolean)

OutBufferCount Property, Communications Control

Description
Returns the number of characters waiting in the transmit buffer. You can also use it to clear
the transmit buffer. This property is not available at design time.

Visual Basic
[form.]MSComm.OutBufferCount[= 0]

Visual C++
pMSComm->GetNumProperty("OutBufferCount")
pMSComm->SetNumProperty("OutBufferCount", 0)

Remarks
You can clear the transmit buffer by setting the OutBufferCount property to 0.

Note Do not confuse the OutBufferCount property with the OutBufferSize property
OutBufferSize reflects the total size of the transmit buffer.

Data Type
Integer

OutBufferSize Property, Communications Control

Description
Sets and returns the size, in characters, of the transmit buffer.

Visual Basic
[form.]MSComm.OutBufferSize[= NumBytes%]

Visual C++
pMSComm->GetNumProperty("OutBufferSize")
pMSComm->SetNumProperty("OutBufferSize", NumBytes)

Remarks
OutBufferSize refers to the total size of the transmit buffer. The default size is 512 bytes.
Do not confuse this property with the OutBufferCount property bmc emdash.bmp}
OutBufferCount reflects the number of bytes currently waiting in the transmit buffer.

Note Note that the larger you make the transmit buffer, the less memory you have
available to your application. However, if your buffer is too small, you run the risk of
overflowing unless you use handshaking. As a general rule, start with a buffer size of 512
bytes. If an overflow error occurs, increase the buffer size to handle your application's
transmission rate.

Data Type
Integer

Output Property, Communications Control
Example

Description
Writes a string of characters to the transmit buffer. This property is not available at design
time.

Visual Basic
[form.]MSComm.Output[= outString$]

Visual C++
pMSComm->SetStrProperty("Output", outString)

Remarks
The Visual C++ syntax will work for strings that do not contain Null characters. For strings
containing Null characters, use either the ComOutput function or the following syntax:
#define UM_OUTPUT WM_USER + 0x0B01
pMSComm->SendMessage(UM_OUTPUT, lpData, cbData)
lpData points to the string being sent, and cbData is the length of the string, in bytes. The
return value from this message is the actual number of bytes sent.

Data Type
String

Output Example, Communications Control

Visual Basic Example
The following example shows how to send every character the user types to the serial port:
Sub Form_KeyPress (KeyAscii As Integer)

Comm1.Output = Chr$(KeyAscii)
End Sub

ParityReplace Property, Communications Control

Description
Sets and returns the character that replaces an invalid character in the data stream when a
parity error occurs.

Visual Basic
[form.]MSComm.ParityReplace[= char$]

Visual C++
pMSComm->GetStrProperty("ParityReplace")
pMSComm->SetStrProperty("ParityReplace", char)

Remarks
The parity bit refers to a bit that is transmitted along with a specified number of data bits
to provide a small amount of error checking. When you use a parity bit, the
communications control adds up all the bits that are set (having a value of 1) in the data
and tests the sum as being odd or even (according to the parity setting used when the port
was opened).
By default, the control uses a question mark (?) character for replacing invalid characters.
Setting ParityReplace to an empty string ("") disables parity checking.

Data Type
String

PortOpen Property, Communications Control
Example

Description
Sets and returns the state of the communications port (open or closed). This property is not
available at design time.

Visual Basic
[form.]MSComm.PortOpen[= {True | False}]

Visual C++
pMSComm->GetNumProperty("PortOpen")
pMSComm->SetNumProperty("PortOpen", {TRUE | FALSE})

Remarks
The following table lists the PortOpen property settings for the communications control.
Setting Description
True Port is opened.
False Port is closed.
Setting the PortOpen property to True opens the port. Setting it to False closes the port
and clears the receive and transmit buffers. The communications control automatically
closes the serial port when your application is terminated.
Make sure that the CommPort property is set to a valid port number before opening the
port. If the CommPort property is set to an invalid port number when you try to open the
port, the communications control generates error 68 (Device unavailable).
In addition, your serial port device must support the Settings property. If the Settings
property contains communications settings that your hardware does not support, your
hardware may not work correctly.
If either the DTREnable or the RTSEnable properties is set to True before the port is
opened, the properties are set to False when the port is closed. Otherwise, the DTR and
RTS lines remain in their previous state.

Data Type
Integer (Boolean)

PortOpen Example, Communications Control

Visual Basic Example
The following example opens communications port number 1 at 2400 baud with no parity
checking, 8 data bits, and 1 stop bit:
Comm1.Settings = "2400,n,8,1"
Comm1.CommPort = 1
Comm1.PortOpen = True

RThreshold Property, Communications Control

Description
Sets and returns the number of characters to receive before the communications control
sets the CommEvent property to MSCOMM_EV_RECEIVE and generates the OnComm event.

Visual Basic
[form.]MSComm.RThreshold[= numChars%]

Visual C++
pMSComm->GetNumProperty("RThreshold")
pMSComm->SetNumProperty("RThreshold", numChars)

Remarks
Setting the RThreshold property to 0 (the default) disables generating the OnComm event
when characters are received.
Setting RThreshold to 1, for example, causes the communications control to generate the
OnComm event every time a single character is placed in the receive buffer.

Data Type
Integer

RTSEnable Property, Communications Control

Description
Determines whether to enable the Request To Send (RTS) line. Typically, the Request To
Send signal that requests permission to transmit data is sent from a computer to its
attached modem.

Visual Basic
[form.]MSComm.RTSEnable[= {True | False}]

Visual C++
pMSComm->GetNumProperty("RTSEnable")
pMSComm->SetNumProperty("RTSEnable", {TRUE | FALSE})

Remarks
The following table lists the RTSEnable property settings for the communications control.
Setting Description
True Enables the Request To Send line.
False (Default) Disables the Request To Send line.
When RTSEnable is set to True, the Request To Send line is set to high (on) when the port is
opened, and low (off) when the port is closed.
The Request To Send line is used in RTS/CTS hardware handshaking. The RTSEnable
property allows you to manually poll the Request To Send line if you need to determine its
state.
For more information on handshaking protocols, see the Handshaking property.

Data Type
Integer (Boolean)

Settings Property, Communications Control
Example

Description
Sets and returns the baud rate, parity, data bit, and stop bit parameters.

Visual Basic
[form.]MSComm.Settings[= paramString$]

Visual C++
pMSComm->GetStrProperty("Settings")
pMSComm->SetStrProperty("Settings", paramString)

Remarks
If paramString$ is not valid when the port is opened, the communications control generates
error 380 (Invalid property value).
ParamString$ is composed of four settings and has the following format:
"BBBB,P,D,S"

Where BBBB is the baud rate, P is the parity, D is the number of data bits, and S is the
number of stop bits. The default value of paramString$ is:
"9600,N,8,1"

The following table lists the valid baud rates.
Setting
110
300
600
1200
2400
9600 (Default)
14400
19200
38400 (reserved)
56000 (reserved)
128000 (reserved)
256000 (reserved)
The following table described the valid parity values.
Setting Description
E Even
M Mark
N (Default) None
O Odd
S Space

The following table lists the valid data bit values.
Setting
4
5
6
7

8 (Default)
The following table lists the valid stop bit values.
Setting
1 (Default)
1.5
2

Data Type
String

Settings Example, Communications Control

Visual Basic Example
The following example sets the control's port to communicate at 2400 baud with no parity
checking, 8 data bits, and 1 stop bit:
Comm1.Settings = "2400,N,8,1"

SThreshold Property, Communications Control

Description
Sets and returns the minimum number of characters allowable in the transmit buffer before
the communications control sets the CommEvent property to MSCOMM_EV_SEND and
generates the OnComm event.

Visual Basic
[form.]MSComm.SThreshold[= numChars%]

Visual C++
pMSComm->GetNumProperty("SThreshold")
pMSComm->SetNumProperty("SThreshold", numChars)

Remarks
Setting the SThreshold property to 0 (the default) disables generating the OnComm event
for data transmission events. Setting the SThreshold property to 1 causes the
communications control to generate the OnComm event when the transmit buffer is
completely empty.
If the number of characters in the transmit buffer is less than numChars%, the CommEvent
property is set to MSCOMM_EV_SEND, and the OnComm event is generated. The
MSCOMM_EV_SEND event is only fired once, when the number of characters crosses the
SThreshold. For example, if SThreshold equals five, the MSCOMM_EV_SEND event occurs
only when the number of characters drops from five to four in the output queue. If there are
never more than SThreshold characters in the output queue, the event is never fired.

Data Type
Integer

OnComm Event, Communications Control
Example

Description
The OnComm event is generated whenever the value of the CommEvent property changes,
indicating that either a communications event or an error occurred.

Visual Basic
Sub MSComm_OnComm ()

Visual C++
Function Signature:
void CMyDialog::OnOnCommMSComm (UINT, int, CWnd*, LPVOID)

Remarks
The CommEvent property contains the numeric code of the actual error or event that
generated the OnComm event. Note that setting the RThreshold or SThreshold properties to
0 disables trapping for the MSCOMM_EV_RECEIVE and MSCOMM_EV_SEND events,
respectively.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

OnComm Event Example, Communications Control

Visual Basic Example
The following example shows how to handle communications errors and events. You can
insert code to handle a particular error or event after its Case statement.
Sub Comm_OnComm ()

Select Case Comm1.CommEvent
' Errors

Case MSCOMM_ER_BREAK ' A Break was received.
' Code to handle a BREAK goes here.
Case MSCOMM_ER_CDTO ' CD (RLSD) Timeout.
Case MSCOMM_ER_CTSTO ' CTS Timeout.
Case MSCOMM_ER_DSRTO ' DSR Timeout.
Case MSCOMM_ER_FRAME ' Framing Error
Case MSCOMM_ER_OVERRUN ' Data Lost.
Case MSCOMM_ER_RXOVER ' Receive buffer overflow.
Case MSCOMM_ER_RXPARITY ' Parity Error.
Case MSCOMM_ER_TXFULL ' Transmit buffer full.

' Events
Case MSCOMM_EV_CD ' Change in the CD line.
Case MSCOMM_EV_CTS ' Change in the CTS line.
Case MSCOMM_EV_DSR ' Change in the DSR line.
Case MSCOMM_EV_RING ' Change in the Ring Indicator.
Case MSCOMM_EV_RECEIVE ' Received RThreshold # of chars.
Case MSCOMM_EV_SEND ' There are SThreshold number of

' characters in the transmit buffer.
End Select

End Sub

ComInput Function, Communications Control

Description
Returns and removes a string of characters from the receive buffer.

Visual Basic
ComInput(By Val hWnd As Integer, lpData As Any, By Val cbData As Integer) As
Integer

Visual C++
int ComInput(hWnd, lpData, cbData)
Parameter Type Description
hWnd HWND Window handle of the control.
lpData LPSTR Long pointer to the start of the data buffer.
cbData int The length of lpData in bytes.

Remarks
This function is equivalent to the Input property.
In Visual Basic 1.0 and Visual C++, the Input and Output properties are defined as HSZ
(null-terminated string) data types. This means that if an application attempts to retrieve a
string with an embedded Null character from the receive buffer, the resulting string is
truncated at the embedded Null character. The ComInput function can retrieve strings
from the receive buffer that have embedded Null characters.

Return Value
Number of bytes received.

ComOutput Function, Communications Control

Description
Writes a string of characters to the transmit buffer.

Visual Basic
ComOutput(By Val hWnd As Integer, lpData As Any, By Val cbData As Integer) As
Integer

Visual C++
int ComOutput(hWnd, lpData, cbData)
Parameter Type Description
hWnd HWND Window handle of the control.
lpData LPSTR Long pointer to the start of the data buffer.
cbData int The length of lpData in bytes.

Remarks
This function is equivalent to the Output property.   
In Visual Basic 1.0 and Visual C++, the Input and Output properties are defined as HSZ
(null-terminated string) data types. This means that if an application attempts to send a
string with an embedded Null character to the transmit buffer, the resulting string is
truncated at the embedded Null character. The ComOutput function can send strings to
the transmit buffer that have embedded Null characters.

Return Value
Number of bytes sent.

 Gauge Control
Properties Methods Events

Description
The gauge control creates user-defined gauges with a choice of linear (filled) or needle
styles.

File Name
GAUGE.VBX

Object Type
Gauge

Remarks
This control is useful for thermometers, fuel gauges, percent-complete indicators, or any
other type of analog gauge.
Several bitmaps that can be used with the gauge control are included with the Visual
Control Pack.

Note In Visual Basic, when you use bitmaps or icons in the gauge control and specify those
bitmaps in the Picture property at design time, the bitmaps become a part of your form.
This means you do not have to distribute them separately. On the other hand, if you use
LoadPicture to add bitmaps or icons at run time, then the bitmaps must be present at run
time.
The Style property defines the type of gauge to be displayed. The default setting is 0
(horizontal linear).   
The control's fill area is defined by the InnerTop, InnerBottom, InnerRight, and InnerLeft
properties. The default values for these properties create a fill area that covers most of the
control. Therefore, when you define a bitmap for the control, only the edges of the bitmap
are displayed. To display the bitmap, either set the Style property to 2 or 3 (semicircular or
full needle, respectively) or resize the fill area of the control.
When the Style property is either 0 or 1 (indicating a linear gauge), the BackColor and
ForeColor properties define the colors of the fill area. The Min, Max, and Value properties
determine how the colors are used to fill this area. For example, if Min is 0, Max is 100, and
Value is 25, then 25% of the fill area will be drawn with the ForeColor, and 75% will be
drawn with the BackColor.

Distribution Note When you create and distribute applications that use the gauge
control, you should install the file GAUGE.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to help you
write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
AutoSize Index Name *Value
*BackColor *InnerBottom *NeedleWidth Visible
DragIcon *InnerLeft Parent *Width
DragMode *InnerRight *Picture
Enabled *InnerTop *Style
*ForeColor Left TabIndex
*Height *Max TabStop
HelpContextID *Min Tag
hWnd MousePointer Top
Value is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. Name is the equivalent of the CtlName property in Visual Basic 1.0
and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Change DragOver KeyUp MouseUp
Click GotFocus LostFocus
DblClick KeyDown MouseDown
DragDrop KeyPress MouseMove

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
following methods, see Appendix A, "Standard Properties, Events, and Methods," in the
Custom Control Reference.
Drag Refresh ZOrder
Move SetFocus

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

BackColor Property, Gauge Control

Description
Sets or returns the color used to erase the area created by the InnerTop, InnerLeft,
InnerBottom, and InnerRight properties.

Visual Basic
[form.]Gauge.BackColor[= color&]

Visual C++
pGauge->GetNumProperty("BackColor")
pGauge->SetNumProperty("BackColor", color)

Remarks
BackColor has no effect on gauges with Style = 2 (semicircular needle), or Style = 3 (full
needle) when you assign the control's Picture property to a bitmap.

Data Type
Long

ForeColor Property, Gauge Control

Description
Sets the color used to fill the area defined by the InnerTop, InnerLeft, InnerBottom, and
InnerRight properties.

Visual Basic
[form.]Gauge.ForeColor[= color&]

Visual C++
pGauge->GetNumProperty("ForeColor")
pGauge->SetNumProperty("ForeColor", color)

Remarks
This property only affects gauges with Style = 0 or 1 (horizontal bar or vertical bar,
respectively).

Data Type
Long

Height, Width Properties, Gauge Control

Description
Determine the height and width of the gauge control.

Visual Basic
[form.]Gauge.Height[= setting%]
[form.]Gauge.Width[= setting%]

Visual C++
pGauge->GetNumProperty("Height")
pGauge->SetNumProperty("Height", setting)
pGauge->GetNumProperty("Width")
pGauge->SetNumProperty("Width", setting)

Remarks
You cannot resize a gauge control unless the AutoSize property is set to False.

Data Type
Integer

InnerBottom Property, Gauge Control

Description
Sets or returns the distance from the bottom edge of the gauge control used to display the
changeable portion of the gauge.

Visual Basic
[form.]Gauge.InnerBottom[= pixels%]

Visual C++
pGauge->GetNumProperty("InnerBottom")
pGauge->SetNumProperty("InnerBottom", pixels)

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerBottom is
relative to the bottom edge of the control.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this
area to fill the proportionate parts with two colors.

Data Type
Integer

InnerLeft Property, Gauge Control

Description
Sets or returns the distance from the left edge of the gauge control used to display the
changeable portion of the gauge.

Visual Basic
[form.]Gauge.InnerLeft[= pixels%]

Visual C++
pGauge->GetNumProperty("InnerLeft")
pGauge->SetNumProperty("InnerLeft", pixels)

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerLeft is relative
to the Top property of the control.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this
area to fill the proportionate parts with two colors.

Data Type
Integer

InnerRight Property, Gauge Control

Description
Sets or returns the distance from the right edge of the gauge control used to display the
changeable portion of the gauge.

Visual Basic
[form.]Gauge.InnerRight[= pixels%]

Visual C++
pGauge->GetNumProperty("InnerRight")
pGauge->SetNumProperty("InnerRight", pixels)

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerRight is relative
to the right edge of the control.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this
area to fill the proportionate parts with two colors.

Data Type
Integer

InnerTop Property, Gauge Control

Description
Sets or returns the distance from the top edge of the gauge control used to display the
changeable portion of the gauge.

Visual Basic
[form.]Gauge.InnerTop[= pixels%]

Visual C++
pGauge->GetNumProperty("InnerTop")
pGauge->SetNumProperty("InnerTop", pixels)

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerTop is relative
to the Top property.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this
area to fill the proportionate parts with two colors.

Data Type
Integer

Max Property, Gauge Control

Description
An integer value (0 32767) that sets or returns the maximum number that the Value
property can take on. The default value is 100.

Visual Basic
[form.]Gauge.Max[= setting%]

Visual C++
pGauge->GetNumProperty("Max")
pGauge->SetNumProperty("Max", setting)

Remarks
If you attempt to set the Value property to a value greater than the Max property, it is
adjusted to the value of the Max property.

Data Type
Integer

Min Property, Gauge Control

Description
An integer value (0 32767) that sets or returns the minimum number that the Value
property can take on. The default value is zero.

Visual Basic
[form.]Gauge.Min[= setting%]

Visual C++
pGauge->GetNumProperty("Min")
pGauge->SetNumProperty("Min", setting)

Remarks
If you attempt to set the Value property to a value less than the Min property, it is adjusted
to the value of the Min property.

Data Type
Integer

NeedleWidth Property, Gauge Control

Description
Sets or returns the width, in pixels, of the needle on needle-style gauges. The range is 0 to
32767.

Visual Basic
[form.]Gauge.NeedleWidth[= width%]

Visual C++
pGauge->GetNumProperty("NeedleWidth")
pGauge->SetNumProperty("NeedleWidth", width)

Data Type
Integer

Picture Property, Gauge Control

Description
Specifies a bitmap to display on the gauge.

Visual Basic
[form.]Gauge.Picture[= picture]

Visual C++
pGauge->GetPictureProperty("Picture")
pGauge->SetPictureProperty("Picture", picture)

Remarks
The following table lists the Picture property settings for the gauge control.
Setting Description
(none) (Default) No bitmap specified for the gauge.
(bitmap) Designates a graphic to display on the gauge. You can load the graphic from

the Properties window at design time.
Several bitmaps for the gauge control are located in the \BITMAPS\GAUGE subdirectory. The
style you choose for a gauge must be compatible with the bitmap or the graphic will not be
drawn properly.

Note This control can display bitmap (.BMP) and icon (.ICO) files.
In Visual Basic, you can load a graphic at design time from the Properties window. When
you set the Picture property at design time, the graphic is saved and loaded with the form.
If you create an executable file, the .EXE file contains the image.
You can set this property at run time by using the LoadPicture function on a bitmap or
icon or, you can use Clipboard methods such as GetData, SetData, and GetFormat with
the nontext Clipboard formats CF_BITMAP and CF_DIB, as defined in the CONSTANT.TXT file.
When you load a graphic at run time, the graphic is not saved with the application. Use the
SavePicture statement to save a graphic from a form or picture box into a file.
Visual C++ provides three functions that allow you to manipulate Picture property values.
These functions are AfxSetPict, AfxGetPict, and AfxReferencePict. Refer to Technical
Note 27: Emulation Support for Visual Basic Custom Controls, which you can access by
selecting TN027 in the Visual C++ online help file, MFCNOTES.HLP.

Note At run time, either you can set the Picture property to any other object's Picture or
Image property, or you can assign it the graphic returned by the LoadPicture function. You
can only assign the Picture property directly.

Data Type
Integer

Style Property, Gauge Control

Description
Sets or returns the type of gauge.

Visual Basic
[form.]Gauge.Style[= setting%]

Visual C++
pGauge->GetNumProperty("Style")
pGauge->SetNumProperty("Style", setting)

Remarks
The following table lists the Style property settings for the gauge control.
Setting Description
0 (Default) Horizontal linear gauge with fill.
2 Semicircular needle gauge.
3 Full circle needle gauge.
The semicircular needle gauge places the needle base in the bottom center of the area
defined by the Innerportion properties. The needle length is calculated so that the needle is
never drawn outside of this area. When Value = Min, the needle will point 90 degrees to the
left. When Value = Max, the needle will point 90 degrees to the right. When Value = (Min +
Max)/2, the needle points straight up.
The full-circle needle gauge places the needle base in the center of the area defined by the
Innerportion properties. The needle length is calculated so that the needle will never be
drawn outside of this area. When Value = Min or Value = Max, the needle points 90 degrees
to the left. Setting the Value property between Min and Max will point the needle to a
proportionate point on the circle, moving clockwise.

Data Type
Integer (Enumerated)

Value Property, Gauge Control

Description
Sets or returns the current position of the gauge. See the Style property for more details.

Visual Basic
[form.]Gauge.Value[= setting%]

Visual C++
pGauge->GetNumProperty("Value")
pGauge->SetNumProperty("Value", setting)

Remarks
If you attempt to set the Value property to a value less than the Min property, it is adjusted
to the value of the Min property. If you attempt to set the Value property to a value greater
than the Max property, it is adjusted to the value of the Max property.

Data Type
Integer

Change Event, Gauge Control

Description
Occurs when the control's Value property changes.

Visual Basic
Sub Gauge_Change ()

Visual C++
Function Signature:
void CMyDialog::OnChangeGauge (UINT, int, CWnd*, LPVOID)

Remarks
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

 Graph Control
See Also Properties Methods Events

Description
The graph control allows you to design graphs interactively on your forms. At run time, you
can send new data to the graphs and draw them, print them, copy them onto the
Clipboard, or change their styles and shapes. The following is a typical graph control:

File Name
GRAPH.VBX

Object Type
Graph

Remarks
The graph control acts as a link between your application and the Graphics Server graphing
and charting library.
At design time, the graph control has an automatic redraw capability. Every time you
change a property, the control redraws the graph so that you can see the effects of the
change. You can enter data for the graph either at design time or at run time. At run time,
when graph is given new data and style options, it combines these new values with your
design-time values.
As a design aid, the graph control automatically generates random data at design time to
give you an idea of what your graph will look like.

Distribution Note When you create and distribute applications that use the graph control,
you should install the files GRAPH.VBX, GSWDLL.DLL, and GSW.EXE in the customer's
Microsoft Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides
tools to help you write setup programs that install your applications correctly.

See Also
Property Types and Arrays
Graph Types and Negative Values

Property Types and Arrays, Graph Control
Example
The following table describes array properties for the graph control.
Property Description
GraphData Values to be graphed (this is a two-dimensional array when there are multiple

data sets).
ColorData Colors of bars, pie slices, lines, and so on.
ExtraData Extra style options (for example, which pie slices to explode).
LabelText Labels.
LegendText Legends.
PatternData Pattern and line styles.
SymbolData Symbols for lines, legends, and so on.
XPosData X-variable data for scatter graphs.
Array properties are controlled through two simple properties: ThisSet and ThisPoint.
ThisSet is the index for the data you entered with the GraphData property. ThisPoint
references the individual data points for the set specified by the ThisSet property. Both
have a minimum value of 1.
For example, if you set ThisSet to 1, ThisPoint to 5, and LabelText to "Friday," the fifth label
of the first data set is set to the text string "Friday."
The AutoInc property, when set to 1 (on), automatically increments ThisPoint and ThisSet
every time you enter an array property value.
At run time, when you dynamically create a new instance of a control array, you must
reassign all data associated with array properties.
The overall dimensions of the arrays are determined by the properties NumSets and
NumPoints. ThisSet and ThisPoint cannot exceed NumSets and NumPoints, respectively,
and the AutoInc property functions monitor their current values. NumSets and NumPoints
also determine what the graphs look like. For example, if you want to graph three data sets,
each containing ten points, set NumSets to 3 and NumPoints to 10, and then enter the
GraphData values.
DataReset is another property associated with arrays. It allows you to clear all the data held
in any or all of the array properties. For example, if you haven't set any LabelText strings,
the graph control labels your graph 1, 2, 3, and so on. Deleting all your labels individually
would have the effect of displaying no labels (that is, labels exist but they are all null).
Using DataReset sets the LabelText strings back to their original numeric values of 1, 2, 3,
and so on.

Property Types and Arrays Example, Graph Control

Visual Basic Example
At design time, to enter a data set of five points, set the AutoInc property to 1 (on), select
the GraphData property in the Properties window, and enter the following five values,
pressing ENTER between each number. For example:
10 ENTER
9 ENTER
8 ENTER
7 ENTER
6 ENTER
Other information about graphs, such as labels and legends, can be entered in the same
manner.
To change the values of a graph at run time, you write code. The following two Visual Basic
code examples would cause the same property value changes as in the previous example:
' Example 1
Graph1.AutoInc = 1
Graph1.GraphData = 10
Graph1.GraphData = 9
Graph1.GraphData = 8
Graph1.GraphData = 7
Graph1.GraphData = 6
Graph1.DrawMode = 2

' Example 2
Graph1.AutoInc = 1
For I% = 1 To 5

Graph1.GraphData = 11 i%
Next I%
Graph1.DrawMode = 2

Graph Types and Negative Values, Graph Control
Certain graph types cannot handle negative data meaningfully. They are the following:

Pie charts (2D & 3D).
Stacked Bar graphs.
Gantt charts.
Area graphs.
Polar graphs.

For these graphs, negative data is forced to a positive number, however the data is not
permanently changed. Changing to a graph type for which negative values are meaningful
restores the original data.

Properties
The following table lists the properties for this control. Properties that apply only to this
control, or that require special consideration, are marked with an asterisk (*). For
documentation of all other properties, see Appendix A of the Custom Control Reference.
*AutoInc *Foreground *LeftTitle TabStop
*Background *GraphCaption *LegendStyle Tag
BorderStyle *GraphData *LegendText *ThickLines
*BottomTitle *GraphStyle *LineStats *ThisPoint
*ColorData *GraphTitle Name *ThisSet
*CtlVersion *GraphType *NumPoints *TickEvery
*DataReset *GridStyle *NumSets *Ticks
DragIcon Height *Palette Top
DragMode HelpContextID *PatternData Visible
*DrawMode hWnd *PatternedLines Width
*DrawStyle *ImageFile *Picture *XPosData
Enabled Index *PrintStyle *YAxisMax
*ExtraData *IndexStyle *QuickData *YAxisMin
*FontFamily *LabelEvery *RandomData *YAxisPos
*FontSize *Labels *SeeThru *YAxisStyle
*FontStyle *LabelText *SymbolData *YAxisTicks
*FontUse Left TabIndex
QuickData is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, and Index properties are only available in
Visual Basic. Name is equivalent to the CtlName property in Visual Basic 1.0 and Visual C+
+.

Events
All of the events for this control are listed in the following table. For documentation on the
following events, see Appendix A, "Standard Properties, Events, and Methods," of the
Custom Control Reference.
Click DragOver KeyPress MouseDown
DblClick GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation on
the methods that are not unique to this control, see Appendix A, "Standard Properties,
Events, and Methods," of the Custom Control Reference.
Drag PrintForm SetFocus
Hide Refresh ZOrder

Note The Drag, Hide, PrintForm, SetFocus, and ZOrder methods are only available in
Visual Basic.

AutoInc Property, Graph Control
Example

Description
Allows the properties specific to arrays to be set without manually incrementing the
ThisPoint counter from ThisPoint = 1 to ThisPoint = NumPoints.
When NumSets > 1, AutoInc goes through all the points and sets them consecutively from
ThisPoint = 1 to ThisPoint = NumPoints and from ThisSet = 1 to ThisSet = NumSets.

Visual Basic
[form.]Graph.AutoInc[= setting%]

Visual C++
pGraph->GetNumProperty("AutoInc")
pGraph->SetNumProperty("AutoInc", setting)

Remarks
The following table lists the AutoInc property settings for the graph control.
Setting Description
0 Off
1 (Default) On
When AutoInc is set to a new value (0 or 1), ThisPoint and ThisSet are both reinitialized to
1.
If you set the AutoInc property to 1 (on), when you switch from setting one of the array
properties to setting a different one, both ThisPoint and ThisSet are reinitialized to 1.
AutoInc only changes ThisPoint and ThisSet when you set data values. When you get or use
data values, ThisPoint and ThisSet are unaffected.
The AutoInc property works for all the properties specific to arrays:

ColorData
ExtraData
GraphData
LabelText
LegendText
PatternData
SymbolData
XPosData

Data Type
Integer

AutoInc Example, Graph Control

Visual Basic Example
Graph1.ThisSet = 1
For I% = 1 to Graph1.NumSets

Graph1.ThisPoint = 1
For J% = 1 to Graph1.NumPoints

Graph1.GraphData = J%*I%
If Graph1.ThisPoint < Graph1.NumPoints Then

Graph1.ThisPoint = Graph1.ThisPoint + 1
End If

Next J%
If Graph1.ThisSet < Graph1.NumSets Then

Graph1.ThisSet = Graph1.ThisSet + 1
End If

Next I%
Graph1.DrawMode = 2

Using the AutoInc property, the preceding code may be rewritten as:
Graph1.AutoInc = 1
For I% = 1 To (Graph1.NumSets * Graph1.NumPoints)

Graph1.GraphData = Graph1.ThisPoint * Graph1.ThisSet
Next I%
Graph1.DrawMode = 2

It is not possible to use ThisPoint or ThisSet as counters in For statements. Visual Basic
does not allow it.

Background Property, Graph Control

Description
Selects the background color of the graph.

Visual Basic
[form.]Graph.Background[= color%]

Visual C++
pGraph->GetNumProperty("Background")
pGraph->SetNumProperty("Background", color)

Remarks
The following table lists the Background property settings for the graph control.
Setting Description
0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 (Default) White
When you change the background color, the colors for the components of the graph are
automatically selected. However, you may change the Foreground and the ColorData
properties.

Data Type
Integer (Enumerated)

BottomTitle Property, Graph Control
Example

Description
Places the text string that you provide at the bottom of the graph, parallel to the horizontal
axis.

Visual Basic
[form.]Graph.BottomTitle[= string$]

Visual C++
pGraph->GetStrProperty("BottomTitle")
pGraph->SetStrProperty("BottomTitle", string)

Remarks
This property is ignored for Pie charts.

Data Type
String

BottomTitle Example, Graph Control

Visual Basic Example
The following code places the title, "Title," at the bottom of a graph (Graph2) when you
click a command button and no title currently exists. If the BottomTitle property does have
a value, when you click the command button, the title will become blank. To try this
example, paste the code into the Declarations section of a form that contains a command
button and a graph.
Sub Command1_Click ()

Graph2.RandomData = 1
If Graph2.BottomTitle = "" Then

Graph2.BottomTitle = "Title"
Else

Graph2.BottomTitle = ""
End If
Graph2.DrawMode = 2

End Sub

ColorData Property, Graph Control

Description
Selects the colors for each of the data sets on the graph. For pie charts and for bar graphs
with NumSets = 1, you should specify a color for each point rather than for each set.

Visual Basic
[form.]Graph.ColorData[= setting%]

Visual C++
pGraph->GetNumProperty("ColorData")
pGraph->SetNumProperty("ColorData", setting)

Remarks
The following table lists the ColorData property settings for the graph control.
Setting Description
0 (Default) Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White
Once you select one color, colors should be selected for all sets or they are shown in black.
Since this is an array property, the array element is determined by the current value of the
ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

CtlVersion Property, Graph Control

Description
Gives the current release of your graph control. This property is read-only.

Visual Basic
[form.]Graph.CtlVersion

Visual C++
pGraph->GetStrProperty("CtlVersion")

Data Type
String

DataReset Property, Graph Control

Description
Allows you to remove any or all of the array information that has been supplied to the
graph control.

Visual Basic
[form.]Graph.DataReset[= setting%]

Visual C++
pGraph->GetNumProperty("DataReset")
pGraph->SetNumProperty("DataReset", setting)

Remarks
The following table lists the DataReset property settings for the graph control.
Setting Description
0 (Default) None
1 GraphData
2 ColorData
3 ExtraData
4 LabelText
5 LegendText
6 PatternData
7 SymbolData
8 XPosData
9 All Data
The All Data option resets all the data and text arrays.
When you reset an array, you reset it to the original empty state. All properties are set to
their default values.

Data Type
Integer (Enumerated)

DrawMode Property, Graph Control

Description
Defines the drawing mode for the graph control.

Visual Basic
[form.]Graph.DrawMode[= mode%]

Visual C++
pGraph->GetNumProperty("DrawMode")
pGraph->SetNumProperty("DrawMode", mode)

Remarks
The following table lists the DrawMode property settings for the graph control.
Setting Description
0 No Action
1 Clear
2 Draw
3 Blit
4 Copy
5 Print
6 Write
DrawMode property values 0 through 3 are recorded when a graph is saved to disk. These
values remain the same between design mode and run mode. DrawModes 4, 5, and 6 are
transient values that trigger the specified actions.
At design time, when you change a property value, the graph is automatically redrawn to
show the effect of the change. At run time, the graph is only redrawn when you set
DrawMode to 2 (Draw) or 3 (Blit). This allows you to change as many property values as
you want before displaying the graph. However, when the form containing a graph is first
displayed, the graph is automatically displayed according to the current DrawMode value.
Setting Action
0 The control is left blank; the graph will not appear. When you want the graph

to appear, reset DrawMode to 2.
1 No graph is drawn, but the background of the control is set to the color

specified by the Background property. If there is graph caption text, it is
displayed in the center of the control.

2 (Default). At design time, this redraws your graph every time you change a
property. At run time, resetting DrawMode to 2 causes the graph to be
redrawn.

3 There is a brief pause, and then the graph appears all at once. In this mode,
the Graphics Server builds a hidden bitmap of the graph and then displays it
using the Windows API BitBlit function. This mode is useful if you want to
draw a graph, update it with new data, and then instantaneously display the
updated graph.

4 The image of the graph is copied onto the Clipboard in either bitmap or
metafile format. If DrawMode is set to 3 (Blit), it is in bitmap format; otherwise,
it is in metafile format.

5 A high-quality image of the graph can be printed without the form. For more
information, see the PrintStyle property.

6 The image of the graph is written to disk as a bitmap (.BMP) or metafile
(.WMF). For this option to work, the ImageFile property must be set to provide
a name for the file. If DrawMode is set to 3 (Blit), a bitmap is created;
otherwise, a metafile is created.

Data Type
Integer (Enumerated)

DrawStyle Property, Graph Control

Description
If the setting is monochrome, this property sets the background to white and all colors to
black. If no PatternData, SymbolData, or GraphStyle properties have been set, DrawStyle
supplies default patterns and symbols.

Visual Basic
[form.]Graph.DrawStyle[= style%]

Visual C++
pGraph->GetNumProperty("DrawStyle")
pGraph->SetNumProperty("DrawStyle", style)

Remarks
The following table lists the DrawStyle property settings for the graph control.
Setting Description
0 Monochrome
1 (Default) Color

Data Type
Integer (Enumerated)

ExtraData Property, Graph Control
Example

Description
The ExtraData property has two purposes:

To explode pie chart segment(s).
To specify the color of the sides of a three-dimensional bar chart.

Visual Basic
[form.]Graph.ExtraData[= setting%]

Visual C++
pGraph->GetNumProperty("ExtraData")
pGraph->SetNumProperty("ExtraData", setting)

Remarks
The ExtraData property settings for pie charts are listed in the following table.
Setting Description
0 (Default) Not exploded
1 Exploded
For three-dimensional bar charts, the ExtraData property settings are described in the
following table.
Setting Description
0 (Default) Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White
Since this is an array property, the array element you set is determined by the current
value of the ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

ExtraData Example, Graph Control

Visual Basic Example
The following code explodes the segments from the center of a three-dimensional pie chart.
To try this example, paste the code into the Form_Load event procedure of a form that
contains a graph (Graph1).
Sub Form_Load ()

For I% = 1 to 4
Graph1.GraphData = I%

Next I%
ThisPoint = 2
Graph1.ExtraData = 1
ThisPoint = 4
Graph1.ExtraData = 1
Graph1.DrawMode = 2
Graph1.GraphType = 2

End Sub

FontFamily Property, Graph Control

Description
Selects the font family in which the text specified by the FontUse property is displayed.

Visual Basic
[form.]Graph.FontFamily[= setting%]

Visual C++
pGraph->GetNumProperty("FontFamily")
pGraph->SetNumProperty("FontFamily", setting)

Remarks
The following table lists the FontFamily property settings for the graph control.
Setting Description
0 (Default) Roman
1 Swiss
2 Modern
The graph control specifies font families rather than type faces to avoid having to list all
the available fonts, which may vary from one computer to another. A font of the requested
generic type (Roman, Swiss, or Modern) is always available, regardless of the Windows
configuration used on your computer.

Data Type
Integer (Enumerated)

FontSize Property, Graph Control

Description
Determines the approximate font size in which the text specified by the FontUse property is
displayed.

Visual Basic
[form.]Graph.FontSize[= setting%]

Visual C++
pGraph->GetNumProperty("FontSize")
pGraph->SetNumProperty("FontSize", setting)

Remarks
Enter a value between 50 and 500, inclusive. This value is the percentage of the system
font size. The default depends on the setting of the FontUse property.
FontUse setting FontSize default
0 (graph title) 200%
1 (other titles) 150%
2 (labels) 100%
3 (legend) 100%
FontSize acts as a starting point rather than an absolute setting; the text is reduced, if
necessary, to fit into the available space.

Data Type
Integer

FontStyle Property, Graph Control

Description
Determines the style in which the text specified by the FontUse property is displayed.

Visual Basic
[form.]Graph.FontStyle[= setting%]

Visual C++
pGraph->GetNumProperty("FontStyle")
pGraph->SetNumProperty("FontStyle", setting)

Remarks
The following table lists the FontStyle property settings for the graph control.
Setting Description
0 (Default)
1 Italic
2 Bold
3 Bold italic
4 Underlined
5 Underlined italic
6 Underlined bold
7 Underlined bold italic

Data Type
Integer (Enumerated)

FontUse Property, Graph Control

Description
Determines to which text on a graph you will apply the settings for the FontFamily,
FontSize, and FontStyle properties.

Visual Basic
[form.]Graph.FontUse[= setting%]

Visual C++
pGraph->GetNumProperty("FontUse")
pGraph->SetNumProperty("FontUse", setting)

Remarks
The following table lists the FontUse property settings for the graph control.
Setting Description
0 (Default) Graph title
1 Other titles
2 Labels
3 Legend
4 All text
After you select a text type using FontUse, select the font family, size, and style for that
type by setting the FontFamily, FontSize, and FontStyle properties. You can use setting 4 (all
text) to make all of your text look alike. For example, you can set all text to display as Swiss
family, size 200%, and bold. You can then reuse the FontUse property to change one or
more specific text types; for example, you might make all legends bold and underline.

Note At design time, the values displayed in the Properties window for the font family, size,
and style are shown for the graph title only.

Data Type
Integer (Enumerated)

Foreground Property, Graph Control

Description
Sets the color of titles, labels, legends, and axes.

Visual Basic
[form.]Graph.Foreground[= setting%]

Visual C++
pGraph->GetNumProperty("Foreground")
pGraph->SetNumProperty("Foreground", setting)

Remarks
The following table lists the Foreground property settings for the graph control.
Setting Description
0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White
16 (Default) Auto black/white
The graph control automatically uses black or white as its foreground default color.
Depending on the background color set, it picks the color that gives the best contrast.
The ColorData property determines the colors of bars, pie slices, and so on.

Data Type
Integer (Enumerated)

GraphCaption Property, Graph Control
Example

Description
Accepts a single line of text that is displayed when DrawMode = 1 (Clear).

Visual Basic
[form.]Graph.GraphCaption[= caption$]

Visual C++
pGraph->GetStrProperty("GraphCaption")
pGraph->SetStrProperty("GraphCaption", caption)

Remarks
The colors of the text and the background can be selected using the Foreground and
Background properties.

Data Type
String

GraphCaption Example, Graph Control

Visual Basic Example
The following code displays the text, "Graphics Server," as the caption for Graph1.
Graph1.GraphCaption = "Graphics Server"
Graph1.DrawMode = 1

GraphData Property, Graph Control
Example

Description
Sets the data to be graphed.

Visual Basic
[form.]Graph.GraphData[= data!]

Visual C++
pGraph->GetFloatProperty("GraphData")
pGraph->SetFloatProperty("GraphData", data)

Remarks
Since this is a two-dimensional array property, the array element you set is determined by
the current value of the ThisPoint and ThisSet properties.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new value, the ThisPoint counter is automatically incremented.
When it reaches its maximum value (NumPoints), the ThisSet counter is incremented, and
ThisPoint is reset to 1. If ThisSet reaches its maximum value (NumSets), it is also reset to 1.

Data Type
Single

GraphData Example, Graph Control

Visual Basic Example
The following code draws the data sets for a bar graph. The data sets are specified by the
NumSets property, and the number of points per data set is specified by the NumPoints
property. To try this example, paste this code into the Form_Load event procedure of a form
that contains a graph (Graph1).
Sub Form_Load ()

Graph1.ThisSet = 1
For I% = 1 to Graph1.NumSets

Graph1.ThisPoint = 1
For J% = 1 to Graph1.NumPoints

Graph1.GraphData = J%*I%
If Graph1.ThisPoint < Graph1.NumPoints Then

Graph1.ThisPoint = Graph1.ThisPoint + 1
End If
Next J%
If Graph1.ThisSet < Graph1.NumSets Then

Graph1.ThisSet = Graph1.ThisSet + 1
End If

Next I%
Graph1.DrawMode = 2
Graph1.DrawMode = 4

End Sub

Using the AutoInc property, the preceding code may be rewritten as:
Graph1.AutoInc = 1
For I% = 1 To (Graph1.NumSets * Graph1.NumPoints)

Graph1.GraphData = Graph1.ThisPoint * Graph1.ThisSet
Next I%
Graph1.DrawMode = 2
Graph1.DrawMode = 4

GraphStyle Property, Graph Control

Description
Sets the characteristics of each type of graph.

Visual Basic
[form.]Graph.GraphStyle[= type%]

Visual C++
pGraph->GetNumProperty("GraphStyle")
pGraph->SetNumProperty("GraphStyle", type)

Remarks
The following table describes the GraphStyle property settings for each type of graph.
Graph typeGraphStyle setting Notes
2D and 3D
pie

0 (Default) Lines
join

labels to pie
1 No label lines
2 Colored labels
3 Colored labels

without lines
4 % Labels
5 % Labels without

lines
6 % Colored labels
7 % Colored labels

without lines

If LabelText values are set, then
those labels are used;
otherwise, the numerical value
is used as a label.

2D bar 0 (Default) Vertical
bars, clustered if
NumSets > 1

1 Horizontal
2 Stacked
3 Horizontal

stacked
4 Stacked %
5 Horizontal
stacked

%

If NumSets = 1, then each bar
has a different color. If NumSets
> 1, then the each data set is a
different color.

3D bar As preceding, plus:
6 Z-clustered
7 Horizontal Z-

clustered

Z-clustered means that the data
points for successive sets are
drawn in front of the previous
one. This gives an illusion of
depth.

Gantt 0 (Default)
Adjacent

bars
1 Spaced bars Spaced bars have a gap of one

bar's width between successive
bars.

Line,
Log/Lin, and
polar

0 (Default) Lines
1 Symbols
2 Sticks

You can create thick or
patterned lines by setting the
ThickLine or PatternLine

3 Sticks and
symbols

4 Lines
5 Lines and

symbols
6 Lines and sticks
7 Lines and sticks

and symbols

property to 1 (on).

Area 0 (Default) Stack
the

data sets
1 Absolute

2 Percentage

Absolute uses absolute values
from Y = 0 (so values can be
hidden).
Percentage shows the sets as a
percentage of the total.

Scatter 0 (Default) Symbols

only

Scatter graphs require XPosData
to be present.

HLC 0 (Default) High,
low, and close
bars

1 No close bar
2 No high-low bars
3 No bars

ThickLines may be used.

Data Type
Integer (Enumerated)

GraphTitle Property, Graph Control
Example

Description
Places a text string above the graph.

Visual Basic
[form.]Graph.GraphTitle[= title$]

Visual C++
pGraph->GetStrProperty("GraphTitle")
pGraph->SetStrProperty("GraphTitle", title)

Remarks
A graph title cannot contain more than 80 characters.
A graph title may not be displayed if it is too long to fit on a graph. When this occurs,
increase the width of the graph to display the graph title.

Data Type
String

GraphTitle Example, Graph Control

Visual Basic Example
The following code places the title, "Title," at the top of a graph (Graph2) when you click a
command button and no title currently exists. If the GraphTitle property does have a value,
when you click the command button, the title will become blank. To try this example, paste
the code into the Declarations section of a form that contains a command button and a
graph.
Sub Command1_Click ()

Graph2.RandomData = 1
If Graph2.GraphTitle = "" Then

Graph2.GraphTitle = "Title"
Else

Graph2.GraphTitle = ""
End If
Graph2.DrawMode = 2

End Sub

GraphType Property, Graph Control

Description
Specifies the type of graph. For illustrations of the different types of graphs, see the
Custom Control Reference.

Visual Basic
[form.]Graph.GraphType[= setting%]

Visual C++
pGraph->GetNumProperty("GraphType")
pGraph->SetNumProperty("GraphType", setting)

Remarks
The following table lists the GraphType property settings for the graph control.
Setting Description
0 None
1 2D pie
2 3D pie
3 (Default) 2D bar
4 3D bar
5 Gantt
6 Line
7 Log/Lin
8 Area
9 Scatter
10 Polar
11 HLC
For each graph type there are many style options. For more information, see the
GraphStyle property.

Data Type
Integer (Enumerated)

GridStyle Property, Graph Control

Description
Places reference grids on the graph axes. For illustrations showing each style of grid, see
the Custom Control Reference.

Visual Basic
[form.]Graph.GridStyle[= setting%]

Visual C++
pGraph->GetNumProperty("GridStyle")
pGraph->SetNumProperty("GridStyle", setting)
The following table lists the GridStyle property settings for the graph control.
Setting Description
0 (Default) None
1 Horizontal
2 Vertical
3 Both
For polar graphs, the horizontal axes are concentric circles, and the vertical axes are radial
lines (spokes).

Data Type
Integer (Enumerated)

ImageFile Property, Graph Control

Description
Sets a file name to which the bitmap or metafile is written when DrawMode is set to 6. If a
path is not specified, the current directory is used.

Visual Basic
[form.]Graph.ImageFile[= filename$]

Visual C++
pGraph->GetStrProperty("ImageFile")
pGraph->SetStrProperty("ImageFile",    filename)

Remarks
The appropriate extension (.BMP or .WMF) is appended automatically. If you set DrawMode
to 3 (Blit), a bitmap is created; otherwise, a metafile is created.

Note You cannot use this property to create a 256-color bitmap.

Data Type
String

IndexStyle Property, Graph Control
Example1 Example2

Description
Sets the data array index style.

Visual Basic
[form.]Graph.IndexStyle[= setting%]

Visual C++
pGraph->GetNumProperty("IndexStyle")
pGraph->SetNumProperty("IndexStyle", setting)

Remarks
The following table lists the IndexStyle property settings for the graph control.
Setting Description
0 (Default) Standard. One-dimensional arrays are accessed through the ThisPoint

property.
1 Enhanced. One-dimensional arrays are accessed through the IndexStyle

property.
When IndexStyle = 1, the graph control's arrays are accessed as described in the following
table.
Array Properties used
GraphData ThisSet and ThisPoint (two-dimensional array).
ColorData ThisSet or ThisPoint.
ExtraData ThisSet or ThisPoint.
LabelText ThisPoint.
LegendText ThisSet or ThisPoint.
PatternData ThisSet or ThisPoint.
SymbolData ThisSet.
XPosData ThisSet and ThisPoint (two-dimensional array).
If the current graph type is a pie chart or a single-data-set bar graph, ThisPoint is used. For
any other graph types, ThisSet is used. Pie charts and single-data-set bar graphs use
ThisPoint because they display legends per point rather than per data set.

Note If the AutoInc property is on, the IndexStyle setting does not matter because AutoInc
increments ThisSet and ThisPoint correctly irrespective of the IndexStyle setting. Also, once
data arrays have been created, graphs are drawn in the normal way, regardless of the
IndexStyle property.

Data Type
Integer (Enumerated)

IndexStyle Property Example 1, Graph Control

Visual Basic Example
Graph1.GraphType = 6 ' Line graph
Graph1.IndexStyle = 1 ' Enhanced index style

For i% = 1 To Graph1.NumSets
Graph1.ThisSet = i%
For j% = 1 To Graph1.NumPoints

Graph1.ThisPoint = j%
Graph1.GraphData = your data value
Graph1.XPosData = your data value

Next
Next

For i% = 1 to Graph1.NumSets
Graph1.ThisSet = i% ' Use ThisSet as index.
Graph1.LegendText = "Data set" + Str$(i%)
Graph1.ExtraData = your data value
Graph1.ColorData = your data value
Graph1.PatternData = your data value
Graph1.SymbolData = your data value

Next

For i% = 1 To Graph1.NumPoints
Graph1.ThisPoint = i%
Graph1.LabelText = "Data point" = Str$(i%)

Next

Graph1.DrawMode = 2

IndexStyle Example 2, Graph Control

Visual Basic Example
Graph1.GraphType = 6 ' Line graph
Graph1.IndexStyle = 0 ' Standard index style

For i% = 1 to Graph1.NumSets
Graph1.ThisSet = i%
For j% = 1 To Graph1.NumPoints

Graph1.ThisPoint = j%
Graph1.GraphData = your data value
Graph1.XPosData = your data value

Next
Next

For i% = 1 to Graph1.NumSets
Graph1.ThisPoint = i% ' Use ThisPoint as index.
Graph1.LegendText = "Legend" + Str$(i%)
Graph1.ExtraData = your data value
Graph1.ColorData = your data value
Graph1.PatternData = your data value
Graph1.SymbolData = your data value

Next

For i% = 1 To Graph1.NumPoints
Graph1.ThisPoint = i%
Graph1.LabelText = "Label" = Str$(i%)

Next

Graph1.DrawMode = 2

LabelEvery Property, Graph Control

Description
Determines the frequency of labels displayed on the X axis.

Visual Basic
[form.]Graph.LabelEvery[= frequency%]

Visual C++
pGraph->GetNumProperty("LabelEvery")
pGraph->SetNumProperty("LabelEvery",    frequency)

Remarks
Enter a value between 1 (the default) and 1000, inclusive.
For example, suppose you have a graph with five points and the LabelText property is set to
"Jan," "Feb," "Mar," "Apr," and "May." If the LabelEvery property is set to 1, all five labels
are displayed. If it is set to 2, "Jan," "Mar," and "May" (the first, third, and fifth labels) are
displayed. Finally, if LabelEvery is set to 3, only "Jan" and "Apr" (the first and fourth labels)
are displayed.

Note The LabelEvery property only affects the graph control when the XPosData property
is not set. Therefore, LabelEvery never affects scatter diagrams, which always use
XPosData.

Data Type
Integer

Labels Property, Graph Control

Description
Determines if labels are displayed along the graph's X and Y axes. For pie charts, this
property determines if labels are displayed.

Visual Basic
[form.]Graph.Labels[= setting%]

Visual C++
pGraph->GetNumProperty("Labels")
pGraph->SetNumProperty("Labels", setting)

Remarks
The following table lists the Labels property settings for the graph control.
Setting Description
0 (Default) Off
1 On
2 X labels displayed
3 Y labels displayed
You can display the labels for the X and Y axes separately. This property operates
independently of the Ticks property.

Data Type
Integer (Enumerated)

LabelText Property, Graph Control

Description
Allows label text to be entered. For illustrations of this property, see the Custom Control
Reference.

Visual Basic
[form.]Graph.LabelText[= label$]

Visual C++
pGraph->GetStrProperty("LabelText")
pGraph->SetStrProperty("LabelText", label)

Remarks
If no text has been entered, the labels show the value of the ThisPoint property for all
graphs except pie charts, which show the magnitude of the slices.
Since this is an array property, the array element you set is determined by the current
value of the ThisPoint property.
When entering text, you may use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new string, the ThisPoint counter is automatically incremented.
The LabelText property cannot contain more than 80 characters.
Label text may not be displayed if it is too long to fit on a graph.

Data Type
String

LeftTitle Property, Graph Control
Example

Description
Places the text string that you provide to the left of the vertical axis.

Visual Basic
[form.]Graph.LeftTitle[= title$]

Visual C++
pGraph->GetStrProperty("LeftTitle")
pGraph->SetStrProperty("LeftTitle", title)

Remarks
This property is ignored for pie charts.
A left title cannot contain more than 80 characters.
A left title may not be displayed if it is too long to fit on a graph. When this occurs, increase
the width of the graph to display the left title.

Data Type
String

LeftTitle Example, Graph Control

Visual Basic Example
The following code places the title, "Title," to the left of the vertical axis of a graph
(Graph2) when you click a command button and LeftTitle currently has no value. If the
LeftTitle property does contain a text string, when you click the command button, the title
will become blank. To try this example, paste the code into the Declarations section of a
form that contains a command button and a graph.
Sub Command1_Click ()

If Graph2.LeftTitle = "" Then
Graph2.LeftTitle = "Title"

Else
Graph2.LeftTitle = ""

End If
Graph2.DrawMode = 2

End Sub

LegendStyle Property, Graph Control

Description
Gives the option of coloring the text you enter as legends (LegendText property). This color
is in addition to the colored symbols or patterns.

Visual Basic
[form.]Graph.LegendStyle[= setting%]

Visual C++
pGraph->GetNumProperty("LegendStyle")
pGraph->SetNumProperty("LegendStyle", setting)

Remarks
The following table lists the LegendStyle property settings for the graph control.
Setting Description
0 Monochrome
1 Color

Data Type
Integer (Enumerated)

LegendText Property, Graph Control

Description
Allows you to enter text for legends.

Visual Basic
[form.]Graph.LegendText[= text$]

Visual C++
pGraph->GetStrProperty("LegendText")
pGraph->SetStrProperty("LegendText", text)

Remarks
There should be one text string for each data set. Pie charts and bar graphs with only one
data set should have a string for each data point.
Since this is an array property, the array element is determined by the current value of the
ThisPoint property.
When entering text, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new string, the ThisPoint counter is automatically incremented.
The LegendText property cannot contain more than 80 characters.
Legend text may not be displayed if it is too long to fit on a graph. When this occurs,
increase the width of the graph to display the legend text.

Data Type
String

LineStats Property, Graph Control

Description
Allows statistics lines to be superimposed on the graph. This property is valid for line or
log/lin graphs only.

Visual Basic
[form.]Graph.LineStats[= setting%]

Visual C++
pGraph->GetNumProperty("LineStats")
pGraph->SetNumProperty("LineStats", setting)

Remarks
The following table lists the LineStats property settings for the graph control.
Setting Description
0 None.
1 Mean.
2 MinMax.
3 Mean and MinMax.
4 StdDev.
5 StdDev and Mean.
6 StdDev and MinMax.
7 StdDev and MinMax and Mean.
8 BestFit.
9 BestFit and Mean.
10 BestFit and MinMax.
11 BestFit and MinMax and Mean.
12 BestFit and StdDev.
13 BestFit and StdDev and Mean.
14 BestFit and StdDev and MinMax.
15 All.

Data Type
Integer (Enumerated)

NumPoints Property, Graph Control

Description
Specifies the number of data points in each data set.

Visual Basic
[form.]Graph.NumPoints[= points%]

Visual C++
pGraph->GetNumProperty("NumPoints")
pGraph->SetNumProperty("NumPoints", points)

Remarks
The minimum value of NumPoints is 2. The default value for this property is 5.
The product of (NumPoints x NumSets) cannot be greater than 3800.
NumPoints can be changed at any time.
If NumPoints is less than the number of data items you have, excess array data is
discarded. If NumPoints is greater than the number of data items you have, additional null-
value data is created.

Data Type
Integer

NumSets Property, Graph Control

Description
Specifies the number of data sets to be graphed.

Visual Basic
[form.]Graph.NumSets[= sets%]

Visual C++
pGraph->GetNumProperty("NumSets")
pGraph->SetNumProperty("NumSets", sets)

Remarks
The minimum value for NumSets is 1. The default value for this property is 1.
The product of (NumPoints x NumSets) cannot be greater than 3800.
NumSets can be changed at any time.
If NumSets is less than the number of sets of data you have, any excess array data is
discarded. If NumSets is greater than the number of data sets, additional null-value data is
created.

Note Pie charts only use the first data set, even if NumSets > 1.

Data Type
Integer

Palette Property, Graph Control

Description
Allows you to select a specific set of palette colors.

Visual Basic
[form.]Graph.Palette [= setting%]

Visual C++
pGraph->GetNumProperty("Palette ")
pGraph->SetNumProperty("Palette ", setting)

Remarks
The following table lists the Palette property settings for the graph control.
Setting Description
0 (Default) Solid
1 Pastel (dithered)
2 Grayscale (dithered)
If the Palette property is set to 1, the color values for the graph change from solid colors to
dithered pastel colors. If the Palette property is set to 2, the color values for the graph are
changed to the nearest dithered shade of gray equivalent.

Data Type
Integer (Enumerated)

PatternData Property, Graph Control

Description
Selects a pattern for solid fills, a line pattern for patterned lines, or a line width (in pixels)
for thick lines.

Visual Basic
[form.]Graph.PatternData[= pattern%]

Visual C++
pGraph->GetNumProperty("PatternData")
pGraph->SetNumProperty("PatternData", pattern)

Remarks
The PatternData property settings are illustrated in the following figure.
Pattern data values range from 0 to 31. Select one pattern per data set or one pattern per
point for pie or bar charts with NumSets = 1.
For illustrations of the PatternData property settings, see the Custom Control Reference.
Since this is an array property, the array element you set is determined by the current
value of the ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new value, the ThisPoint counter is automatically incremented.

Note Fill patterns 8 through 15 do not exist.

Data Type
Integer (Enumerated)

PatternedLines Property, Graph Control

Description
Sets the style of the lines connecting the data points.

Visual Basic
[form.]Graph.PatternedLines[= setting%]

Visual C++
pGraph->GetNumProperty("PatternedLines")
pGraph->SetNumProperty("PatternedLines", setting)

Remarks
The following table lists the PatternedLines property settings for the graph control.
Setting Description
0 (Default) Off
1 On
When you set the PatternedLines property to 1 (on), the graph is plotted with dotted lines
of pattern 1, unless a different PatternData has been set. For information on different
pattern styles, see the PatternData property.

Data Type
Integer

Picture Property, Graph Control
Example

Description
Passes a graph image directly to a picture control. This property is not available at design
time and is read-only at run time.

Visual Basic
[form.]Graph.Picture

Visual C++
pGraph->GetPictureProperty("Picture")

Data Type
Integer

Picture Example, Graph Control

Visual Basic Example
The following Visual Basic code puts a copy of the graph currently displayed in Graph1 into
Picture1.
Picture1.Picture = Graph1.Picture

If Picture1 has a different aspect ratio from Graph1, the graph image is stretched or
compressed accordingly.

PrintStyle Property, Graph Control

Description
Selects the print style options when printing the control (DrawMode = 5).

Visual Basic
[form.]Graph.PrintStyle[= style%]

Visual C++
pGraph->GetNumProperty("PrintStyle")
pGraph->SetNumProperty("PrintStyle", style)

Remarks
The following table lists the PrintStyle property settings for the Graph control.
Setting Description
0 (Default) Monochrome
1 Color
2 Monochrome with border
3 Color with border
The default option temporarily converts the DrawStyle to Monochrome (0) before printing.
If you are using a color printer, or have a printer capable of printing gray scales, set
PrintStyle = 1.
If you use these options with DrawMode = 5, the graph is printed with the best resolution of
your printer. No bitmap is generated.

Data Type
Integer (Enumerated)

QuickData Property, Graph Control
Example

Description
Sets or returns all the data in the GraphData array in a single operation. This property is not
available at design time.

Visual Basic
[form.]Graph.QuickData[= data$]

Visual C++
pGraph->GetStrProperty("QuickData")
pGraph->SetStrProperty("QuickData", data)

Remarks
To assign values to the GraphData array, set this property to a string that contains tab-
delimited, numeric values.
To create the string in Visual Basic, separate each point in the data set with a tab character
(Chr$(9)), and each data set by a CR+LF (Chr$(13) + Chr$(10)). To create the string in Visual
C++, separate each point in the data set with a tab character ('\t') and each data set by a
CR+LF ("\r\n").
This property is useful when exchanging data between the graph control and the grid
control. The format required by QuickData is the same format used by the grid control's
Clip property. In Visual Basic, you assign a grid's data to a GraphData array with a single
line of code:
Graph1.QuickData = Grid1.Clip

Note When using QuickData to set the GraphData array, NumPoints and NumSets are
automatically set according to the number of points and sets within the QuickData string.
If the format of the QuickData string is incorrect (for example, the data sets do not contain
the same number of points), an error will occur. GraphData, NumPoints, and NumSets will
not be set.
QuickData must always contain at least one data set with at least two points.

Data Type
Integer

QuickData Example, Graph Control

Visual Basic Example
Dim T As String
Dim CL As String
Dim MyDataString As String

T = Chr$(9)
CRLF = Chr$(13) + Chr$(10)
MyDataString = "11" + T + "12" + T + "13" + CRLF + "21" + T + "22" + T + "23"
+ CRLF + "31" + T + "32" + T + "33" + CRLF
Graph1.QuickData = MyDataString

RandomData Property, Graph Control

Description
If you set the RandomData property to 1 (on), it generates random data to be graphed. This
is mainly useful at design time, when you want to see how the graph will appear at run
time.

Visual Basic
[form.]Graph.RandomData[= setting%]

Visual C++
pGraph->GetNumProperty("RandomData")
pGraph->SetNumProperty("RandomData", setting)

Remarks
The following table lists the RandomData property settings for the graph control.
Setting Description
0 Off
1 (Default) On
Random numbers that are generated are never negative. To see the effect of negative
values, enter your own data.

Note The RandomData property is automatically set to 0 (off) if GraphData values are
present. You can override the GraphData values by setting the RandomData property to 1
(on). Setting it to 0 (off) again reinstates the GraphData values. Using DataReset with
GraphData (or all data) sets the RandomData property back to 1 (on).

Data Type
Integer

SeeThru Property, Graph Control
Example

Description
If you set the SeeThru property to 1 (on), the graph background is not cleared. Instead,
whatever was there before the you inserted the graph will show through. You can create
special effects by drawing a graph over a picture control containing a bitmap. This property
is available at run time only.

Visual Basic
[form.]Graph.SeeThru[= setting%]

Visual C++
pGraph->GetNumProperty("SeeThru")
pGraph->SetNumProperty("SeeThru", setting)

Remarks
The following table lists the SeeThru property settings for the graph control.
Setting Description
0 (Default) Off
1 On
To function correctly, some programming is necessary. Otherwise, the graph cannot be
redrawn if it is covered and then uncovered by another window.

Note See-through graphs do not work when DrawMode = 3 (Blit).

Data Type
Integer

SeeThru Example, Graph Control

Visual Basic Example
Create a picture (Picture1), and then create a graph (Graph1), not as a child of the picture,
but directly on your form. Move the graph over the top of the picture, making sure the
graph does not entirely cover the picture. Leave a narrow border all the way around to
ensure the picture receives paint messages. The BorderStyle should be set to None, or a
black line will appear around the area of the graph.
When the picture (Picture1) receives a paint message, it refreshes both itself and the graph
(Graph1), ensuring that the graph is still on top of the picture with the picture showing
through. The flag is necessary to prevent entering the loop again. The Paint event is
triggered by Picture1.Refresh.
Dim Flag As Integer

Sub Form_Load ()
Flag = 0
Graph1.SeeThru = 1

End Sub

Sub Picture1_Paint ()
If Flag = 1 Then

Flag = 0
Picture1.Refresh
Graph1.Refresh

Else
Flag = 1

End If
End Sub

SymbolData Property, Graph Control

Description
Selects symbols to be used for line, log/lin, scatter, and polar graphs.

Visual Basic
[form.]Graph.SymbolData[= symbol%]

Visual C++
pGraph->GetNumProperty("SymbolData")
pGraph->SetNumProperty("SymbolData", symbol)

Remarks
The following table describes the settings for the SymbolData property
Setting Description
0 Cross (+)
1 Cross (X)
2 Triangle (up)
3 Solid Triangle (up)
4 Triangle (down)
5 Solid Triangle (down)
6 Square
7 Solid Square
8 Diamond
9 Solid Diamond
You should select one symbol per data set. The default setting is 0.
Since this is an array property, the array element you set is determined by the current
value of the ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

ThickLines Property, Graph Control

Description
Sets the width of the lines. For illustrations, see the Custom Control Reference.

Visual Basic
[form.]Graph.ThickLines[= setting%]

Visual C++
pGraph->GetNumProperty("ThickLines")
pGraph->SetNumProperty("ThickLines", setting)

Remarks
The following table lists the ThickLines property settings for the graph control.
Setting Description
0 (Default) Off
1 On
When the ThickLines property is set to 1 (on), 3-pixel thick lines are drawn, unless a
PatternData property is set. If DrawStyle = 0 (Monochrome), line widths between 2 and 7
pixels (depending on the PatternData property setting) are selected.

Data Type
Integer

ThisPoint Property, Graph Control
Example

Description
Sets the current point number manually so that a particular data point can be changed.

Visual Basic
[form.]Graph.ThisPoint[= point%]

Visual C++
pGraph->GetNumProperty("ThisPoint")
pGraph->SetNumProperty("ThisPoint", point)

Remarks
The property settings for ThisPoint are from 1 to NumPoints. Setting ThisPoint overrides the
AutoInc setting.

Data Type
Integer

ThisPoint Example, Graph Control

Visual Basic Example
The following code draws a 3D bar graph with 1 data set and 5 points. To try this example,
paste this code into the Form_Load event procedure of a form that contains a graph
(Graph1).
Sub Form_Load ()

Graph1.NumPoints = 5
Graph1.NumSets = 1
Graph1.AutoInc = 1
For I% = 1 to 5

Graph1.GraphData = i%
Next I%
Graph1.ThisPoint = 3
Graph1.GraphData = 10
Graph1.GraphType = 4
Graph1.DrawMode = 2

End Sub

ThisSet Property, Graph Control
Example

Description
Allows you to manually control the current set number so that a particular data set can be
changed.

Visual Basic
[form.]Graph.ThisSet[= set%]

Visual C++
pGraph->GetNumProperty("ThisSet")
pGraph->SetNumProperty("ThisSet", set)

Remarks
The property settings for ThisSet are from 1 to NumSets. Setting ThisSet overrides the
AutoInc setting. This allows you to address any individual data point when you have
multiple data sets.

Data Type
Integer

ThisSet Example, Graph Control

Visual Basic Example
The following code draws a 3D bar graph with 3 data sets with 5 points in each set. To try
this example, paste this code into the Form_Load event procedure of a form that contains a
graph (Graph1).
Sub Form_Load ()

Graph1.NumPoints = 5
Graph1.NumSets = 3
Graph1.AutoInc = 1
For I% = 1 To Graph2.NumPoints * Graph2.NumSets

Graph1.GraphData = 5
Next I%
Graph1.ThisSet = 2
Graph1.ThisPoint = 3
Graph1.GraphData = 10
Graph1.GraphType = 4
Graph1.DrawMode = 2

End Sub

TickEvery Property, Graph Control

Description
Determines the interval between tick marks on the X axis. The TickEvery value specifies
that the tick mark represents n data points, where n is a value in the range 1 to 1000. The
default value for this property is 1.

Visual Basic
[form.]Graph.TickEvery[= interval%]

Visual C++
pGraph->GetNumProperty("TickEvery")
pGraph->SetNumProperty("TickEvery", interval)

Remarks
This property is ignored when the XPosData property is set. This means that the TickEvery
property never has any effect on scatter graphs, which always have XPosData property
values.
If the NumPoints property is less than TickEvery, the X axis of your graph is extended to the
value of TickEvery. Also, since there must always be an integral number of ticks, the X axis
will be extended to a multiple of TickEvery, if necessary. For example, if NumPoints = 127
and TickEvery = 50, then the X axis is extended to 150.

Data Type
Integer

Ticks Property, Graph Control

Description
Determines whether axis ticks are displayed.

Visual Basic
[form.]Graph.Ticks[= setting%]

Visual C++
pGraph->GetNumProperty("Ticks")
pGraph->SetNumProperty("Ticks", setting)

Remarks
You can turn ticks on and off separately for the X and Y axes.
This property operates independently of the Labels property. Ticks has no affect on a three-
dimensional graph drawn with a cage affect.
The following table lists the Ticks property settings for the graph control.
Setting Description
0 (Default) Off
1 On
2 X ticks
3 Y ticks

Data Type
Integer (Enumerated)

XPosData Property, Graph Control
Example

Description
Gives an independent X value for a graph.

Visual Basic
[form.]Graph.XPosData[= xvalue!]

Visual C++
pGraph->GetFloatProperty("XPosData")
pGraph->SetFloatProperty("XPosData", xvalue)

Remarks
The property setting for XPosData is any real number.
This property can be set for all graph types except pie and Gantt charts.
Since this is a two-dimensional array property, the array element you set is determined by
the current value of the ThisSet and ThisPoint properties.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1
(on), every time you set a new value, the ThisSet and ThisPoint counters are automatically
incremented.
If you have multiple sets of GraphData, but only one set of XPosData, the graph control
automatically applies the single set of XPosData to each set of GraphData.

Data Type
Single

XPosData Example, Graph Control

Visual Basic Example
Graph2.AutoInc = 0
Graph2.NumPoints = 10
Graph2.NumSets = 2
For I% = 1 To 2

Graph2.ThisSet = I%
For J% = 1 To 10

Graph2.ThisPoint = J%
If I% = 1 Then Graph2.GraphData = 5 J%

If I% = 2 Then Graph2.GraphData = J% 5
Graph2.XPosData = J% / I%

Next J%
Next I%
Graph2.DrawMode = 2

YAxisMax, YAxisMin Properties

Description
Specifies the maximum Y-axis value (YAxisMax) and minimum Y-axis value (YAxisMin) on
your graph.

Visual Basic
[form.]Graph.YAxisMax[= max!]
[form.]Graph.YAxisMin[= min!]

Visual C++
pGraph->GetFloatProperty("YAxisMax")
pGraph->SetFloatProperty("YAxisMax", max)
pGraph->GetFloatProperty("YAxisMin")
pGraph->SetFloatProperty("YAxisMin", min)

Remarks
The property settings for YAxisMax and YAxisMin are any real numbers.
These properties are used in combination with YAxisTicks and only take affect when
YAxisStyle = 2 (user-defined). For more information, see the YAxisStyle property.

Data Type
Single

YAxisPos Property, Graph Control

Description
Specifies the position of the Y axis on your graph.

Visual Basic
[form.]Graph.YAxisPos[= position%]

Visual C++
pGraph->GetNumProperty("YAxisPos")
pGraph->SetNumProperty("YAxisPos", position)

Remarks
The following table lists the YAxisPos property settings for the graph control.
Setting Description
0 (Default) Y axis is positioned automatically according to your XPosData values.

When the values are all positive, the Y axis appears at the leftmost edge of the
graph. If the values are all negative, the Y axis appears on the rightmost edge
of the graph.

1 Left.
2 Right.

Data Type
Integer (Enumerated)

YAxisStyle Property, Graph Control

Description
Specifies the method used to scale and range the Y axis on your graph.

Visual Basic
[form.]Graph.YAxisStyle[= style%]

Visual C++
pGraph->GetNumProperty("YAxisStyle")
pGraph->SetNumProperty("YAxisStyle", style)

Remarks
The following table lists the YAxisStyle property settings for the graph control.
Setting Description
0 (Default) Y-axis range is calculated automatically based on the data to be

graphed. The maximum Y-axis value is greater than or equal to the maximum
data value. The minimum axis value is 0, or, if the data includes negative
values, it is less than or equal to the minimum data value. The Y axis,
therefore, always includes the 0 origin.

1 Variable origin. The maximum Y-axis value is equal to or greater than the
maximum data value. The minimum Y-axis value is less than or equal to the
minimum data value, whether the data includes negative values or not. The Y
axis, therefore, may not include the 0 origin.

2 User-defined origin. The YAxisMax, YAxisMin, and YAxisTicks properties work
together to control the range.

The variable origin style is useful when you are graphing data with a small variation around
a nonzero value. If you use the default style, the variation may not be visible.
Use the user-defined style when you want to present the data in a certain way. For
example, to create a series of comparable graphs, you might set the Y-axis range from
1000 to +1000, even though the data values for some graphs are all positive.

Caution If your data exceeds the limits of the Y-axis range, the graph is drawn outside
of the axes bounds and can result in strange affects.

YAxisTicks specifies the number of ticks from the origin to the greater of the YAxisMax and
YAxisMin values, regardless of sign. Because there must always be an integral number of
ticks on an axis, the graph will sometimes override the YAxisMin value or YAxisMax value.
In this example, YAxisMax has the greater value: YAxisMax = 300, YAxisMin = 10, and
YAxisTicks = 3. The graph places ticks 100 units apart, and the YAxisMin value displayed is
100.
In this example, YAxisMin has the greater value (even though it is negative): YAxisMax =
10, YAxisMin = 300, and YAxisTicks = 3. The YAxisMax value displayed is 100.

Data Type
Integer (Enumerated)

YAxisTicks Property, Graph Control

Description
Specifies the number of ticks on the Y axis of your graph.

Visual Basic
[form.]Graph.YAxisTicks[= ticks%]

Visual C++
pGraph->GetNumProperty("YAxisTicks")
pGraph->SetNumProperty("YAxisTicks", ticks)

Remarks
Enter a value between 1 (default) and 100, inclusive.
YAxisTicks works in combination with YAxisMax and YAxisMin and is only used when
YAxisStyle = 2 (user-defined). For more information, see the YAxisStyle property.

Data Type
Integer

 Key Status Control
Properties Methods Events

Description
You can use the key status control to display or modify the CAPS LOCK, NUM LOCK, INS and
SCROLL LOCK keyboard states.

File Name
KEYSTAT.VBX

Object Type
mhState

Remarks
Key status sets or returns the state of certain keys on your keyboard. The Style property
determines which key the control affects. At run time, you turn a key on and off by setting
the Value property to True and False, respectively. The user can also change the state of a
key at run time by clicking a key status control.
The first 16 controls automatically update their appearance when the user presses the
corresponding key. If you create more than 16 controls, the subsequent controls will be
visible, however, their appearance will not be updated when the key is pressed.

Distribution Note When you create and distribute applications that use the key status
control, you should install the file KEYSTAT.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to help you
write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk(*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
AutoSize Index TabIndex Visible
BackColor Left TabStop *Width
Enabled MousePointer Tag
*Height Name *TimerInterval
HelpContextID Parent Top
hWnd *Style *Value
Value is the default value of the control.

Note The HelpContextID, Index, and Parent properties are only available in Visual Basic.
The Name property is equivalent to the CtlName property in Visual Basic 1.0 and Visual C+
+.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk(*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Change GotFocus KeyPress LostFocus
Click KeyDown KeyUp

Methods
All of the methods for this control are listed in the following table. For documentation on
the events not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Move Refresh SetFocus ZOrder

Note The SetFocus and ZOrder methods are only available in Visual Basic.

Height, Width Properties, Key Status Control

Description
Determine the height and width of the key status control.

Visual Basic
[form.]KeyStatus.Height[= setting%]
[form.]KeyStatus.Width[= setting%]

Visual C++
pKeyStatus->GetNumProperty("Height")
pKeyStatus->SetNumProperty("Height", setting)
pKeyStatus->GetNumProperty("Width")
pKeyStatus->SetNumProperty("Width", setting)

Remarks
You cannot resize a key status control unless the AutoSize property is set to False.

Data Type
Integer

Style Property, Key Status Control

Description
Determines which keyboard state is associated with the key status control.

Visual Basic
[form.]KeyStatus.Style[= setting%]

Visual C++
pKeyStatus->GetNumProperty("Style")
pKeyStatus->SetNumProperty("Style", setting)

Remarks
The following table lists the Style property settings for the key status control.
Setting Description
0 (Default) Capitals lock
1 Number lock
2 Insert state
3 Scroll lock

Data Type
Integer (Enumerated)

TimerInterval Property, Key Status Control

Description
Sets or returns the current timer interval setting for all key status controls. The default is
1000 milliseconds.

Visual Basic
[form.]KeyStatus.TimerInterval[= milliseconds%]

Visual C++
pKeyStatus->GetNumProperty("TimerInterval")
pKeyStatus->SetNumProperty("TimerInterval", milliseconds)

Remarks
This property determines the interval at which the key status is checked. If you are having
performance problems, try setting TimerInterval to a higher value.
Only one timer operates all key status controls. If you change the TimerInterval for one
control, you are changing it for all of them.
The TimerInterval property cannot be set to a negative value.

Data Type
Long

Value Property, Key Status Control

Description
Sets or returns the current status for the key defined in the Style property. The Value
property returns the lock state of the key, not the pressed state. This property is not
available at design time.

Visual Basic
[form.]KeyStatus.Value[= {True | False}]

Visual C++
pKeyStatus->GetNumProperty("Value")
pKeyStatus->SetNumProperty("Value", {TRUE | FALSE})

Remarks
The following table lists the Value property settings for the key status control.
Setting Description
False Key status is off (for example, Caps Lock is off).
True Key status is on (for example, Caps Lock is on).

Data Type
Integer (Boolean)

Change Event, Key Status Control

Description
Occurs when the Value property changes.

Visual Basic
Sub KeyStatus_Change ()

Visual C++
Function Signature:
void CMyDialog::OnChangeKeyStatus (UINT, int CWnd*, LPVOID)

Remarks
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," of the Custom Control Reference.

 MAPI
Properties Error Messages

Description
The messaging application program interface (MAPI) controls allow you to create a mail-
enabled Visual Basic MAPI application. There are two MAPI custom controls, MAPI session
and MAPI messages. The MAPI session control establishes a MAPI session, and then the
MAPI messages control allows the user to perform a variety of messaging system functions.
The MAPI controls are invisible at run time. In addition, there are no events for the controls.
To use them, you must set the appropriate Action property value.
For these controls to work, MAPI services must be present. MAPI services are provided in
MAPI compliant electronic mail systems using Windows version 3.0 or later.

File Name
MSMAPI.VBX

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control or require special consideration when used with it, are marked with an
asterisk (*). They are documented in the following sections. (Note that the list order is
alphabetic from top to bottom, then left to right.) See the Visual Basic Language Reference
or Help for documentation of the remaining properties.
About *LogonUI Tag
*Action Name Top
*DownloadMail *NewSession *UserName
Index *Password
Left *SessionID

Action Property

Description
Determines what action is performed when the MAPI session control is invoked. This
property is not available at design time. Setting the Action value at run time invokes the
control. The Action property is write-only at run time.

Usage
[form.]MapiSession.Action[= setting%]

Remarks
This property is used to select between signing on and signing off from a messaging
session. When signing on, a session handle is returned and stored in the SessionID
property.
The Action property settings are:
Setting Description
SESSION_SIGNON Logs user into the account specified by the UserName and Password

properties and provides a session handle to the underlying message
subsystem. The session handle is stored in the SessionID property.
Depending on the value of the NewSession property, the session
handle may refer to a newly created session or an existing session.

SESSION_SIGNOFF Ends the messaging session and signs the user off the specified
account.

Data Type
Integer (Enumerated)

DownloadMail Property

Description
Specifies whether new messages are downloaded from the mail server for the designated
user.

Usage
[form.]MapiSession.DownloadMail[= {True | False}]

Remarks
The DownloadMail property settings are:
Setting Description
True (Default) All new messages from the mail server are forced to the user's Inbox

during the sign-on process. A progress indicator is displayed until the message
download is complete.

False New messages on the server are not forced to the user's Inbox immediately,
but are downloaded at the time interval set by the user.

This property can be set to True when you want to access the user's complete set of
messages when signing on. However, processing time may increase as a result.

Data Type
Integer (Boolean)

LogonUI Property

Description
Specifies whether or not a dialog box is provided for sign-on.

Usage
[form.]MapiSession.LogonUI[= {True | False}]

Remarks
The LogonUI property settings are:
Setting Description
True (Default) A dialog box prompts new users for their user name and password

(unless a valid messaging session already exists    see the NewSession
property for more information).

False No dialog box is displayed.
The False setting is useful when you want to begin a mail session without user
intervention, and you already have the account name and password for the user. If
insufficient or incorrect values are provided, however, an error is generated.

Data Type
Integer (Boolean)

NewSession Property

Description
Specifies whether a new mail session should be established, even if a valid session
currently exists.

Usage
[form.]MapiSession.NewSession[= {True | False}]

Remarks
The NewSession property settings are:
Setting Description
True A new messaging session is established, regardless of whether a valid session

already exists.
False (Default) Use the existing session established by the user.

Data Type
Integer (Boolean)

Password Property

Description
Specifies the account password associated with the UserName property.

Usage
[form.]MapiSession.Password[= string$]

Remarks
An empty string in this property indicates that a sign-on dialog box with an empty password
field should be generated. The default is an empty string.

Data Type
String

SessionID Property

Description
Stores the current messaging session handle. This property is not available at design time,
and is read only at run time.

Usage
[form.]MapiSession.SessionID

Remarks
This property is set when you assign SESSION_SIGNON to the Action property. The
SessionID property contains the unique and messaging session handle. The default is 0.
Use this property to set the SessionID property of the MAPI messages control.

Data Type
Long

UserName Property

Description
Specifies the account user name.

Usage
[form.]MapiSession.UserName[= string$]

Remarks
This property contains the name of the user account desired for sign-on or sign-off. If the
LogonUI property is True, an empty string in the UserName property indicates that a sign-
on dialog box with an empty name field should be generated. The default is an empty
string.

Data Type
String

 MAPI messages
Properties Error Messages

Object Type
MapiMessages

Description
The MAPI messages control performs a variety of messaging system functions after a
messaging session is established with the MAPI session control. The MAPI messages control
is shown here, as it appears as an icon in the Toolbox, and on a form at design time.

Remarks
With the MAPI messages control, you can:

Access messages currently in the Inbox.
Compose a new message.
Add and delete message recipients and attachments.
Send messages (with or without a supporting user interface).
Save, copy, and delete messages.
Display the Address Book dialog box.
Display the Details dialog box.
Access attachments, including Object Linking and Embedding (OLE) attachments.
Resolve a recipient name during addressing.
Perform reply, reply-all, and forward actions on messages.

Most of the properties of the MAPI messages control can be categorized into four functional
areas: address book, file attachment, message, and recipient properties. The file
attachment, message, and recipient properties are controlled by the AttachmentIndex,
MsgIndex, and RecipIndex properties, respectively.
For example, as the index value changes in the MsgIndex property, all other message, file
attachment, and recipient properties change to reflect the characteristics of the specified
message. The set of message and recipient properties works the same way. The address
book properties specify the appearance of the address book dialog box.

Message Buffers
When using the MAPI messages control, you need to keep track of two buffers, the
compose buffer and the read buffer. The read buffer is made up of an indexed set of
messages fetched from a user's Inbox. The MsgIndex property is used to access individual
messages within this set, starting with a value of 0 for the first message and incrementing
by one for each message through the end of the set.
The message set is built using the MESSAGE_FETCH setting of the Action property. The set
includes all messages of type FetchMsgType and is sorted as specified by the FetchSorted
property. Previously read messages can be included or left out of the message set with the
FetchUnreadOnly property. Messages in the read buffer can't be altered by the user, but
can be copied to the compose buffer for alteration.
Messages can be created or edited in the compose buffer. The compose buffer is the active
buffer when the MsgIndex property is set to 1. Many of the messaging actions are valid
only within the compose buffer, such as sending messages, sending messages with a
dialog box, saving messages, or deleting recipients and attachments.
Refer to the CONSTANT.TXT file for property and error constants for the control.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control or require special consideration when used with it, are marked with an
asterisk (*). They are documented in the following sections. (Note that the list order is
alphabetic from top to bottom, then left to right.) See the Visual Basic Language Reference
or Help for documentation of the remaining properties.
About *FetchMsgType *MsgReceiptRequested
*Action *FetchSorted *MsgSent
*AddressCaption *FetchUnreadOnly *MsgSubject
*AddressEditFieldCo
unt

Index *MsgType

*AddressLabel *MsgConversationID Name
*AddressModifiable *MsgCount *RecipAddress
*AddressResolveUI *MsgDateReceived *RecipCount
*AttachmentCount *MsgID *RecipDisplayName
*AttachmentIndex *MsgIndex *RecipIndex
*AttachmentName *MsgNoteText *RecipType
*AttachmentPathNa
me

*MsgOrigAddress *SessionID

*AttachmentPositio
n

*MsgOrigDisplayName Tag

*AttachmentType *MsgRead Top

Action Property

Description
Determines what action is performed when the MAPI messages control is invoked. This
property is not available at design time. Setting the Action value at run time invokes the
control. This property is write-only at run time.

Usage
[form.]MapiMessages.Action[= setting%]

Remarks
This property is used to select an action for the MAPI messages control. The following list
contains the possible actions. For each action, the Buffer column indicates whether the
action works in the compose buffer (C), the read buffer (R), or both (C/R).
Setting BufferDescription

MESSAGE_FETCH C/R Creates a message set from selected messages in the
Inbox. The message set includes all messages of type
FetchMsgType found in the Inbox, sorted as selected by the
FetchSorted, and qualified by FetchUnreadOnly.
Any attachment files in the read buffer are deleted when a
subsequent fetch action occurs.

MESSAGE_SENDDLG C Sends a message using a dialog box. Prompts the user for
the various components of a message (subject, recipients,
text, and so on) and submits the message to the mail
server for delivery.

MESSAGE_SENDDLG C All message properties associated with a message being
built in the compose buffer (an outgoing message with
MsgIndex = 1) form the basis for the displayed message
dialog box. Changes made in the dialog box, however, do
not alter information in the compose buffer.

MESSAGE_SEND C Sends a message without using a dialog box. Submits the
outgoing message to the mail server for delivery. No dialog
box is displayed, and an error occurs if a user attempts to
send a message that has no recipients or if attachment
path names are missing.

MESSAGE_SAVEMSG C Saves the message currently in the compose buffer (with
MsgIndex = 1).

MESSAGE_COPY R Copies the currently indexed message to the compose
buffer. Sets the MsgIndex property to 1.

MESSAGE_COMPOSE R Composes a message. Clears all of the components of the
compose buffer. Sets the MsgIndex property to 1.

MESSAGE_REPLY R Replies to a message. Copies the currently indexed
message to the compose buffer as a reply and adds RE: to
the beginning of the Subject line.
The currently indexed message originator becomes the
outgoing message recipient, then text is copied, and so on.
Sets the MsgIndex property to 1.

MESSAGE_REPLYALL R Replies to all message recipients. Same as Reply, except
that all other To: and CC: recipients are maintained.
Sets the MsgIndex property to 1.

MESSAGE_FORWARD R Forwards a message. Copies the currently indexed
message to the compose buffer as a forwarded message
and adds FW: to the beginning of the Subject line.
Sets the MsgIndex property to 1.

MESSAGE_DELETE R Deletes a message. Deletes all components of the
currently indexed message, reduces the MsgCount
property by 1, and decrements the index number of each
message after the deleted message by 1.
If the deleted message was the last message in the set,
this action decrements the MsgIndex by 1.

MESSAGE_SHOWADBOOK C/R Displays the mail Address Book dialog box. The user can
use the Address Book to create or modify a recipient set.
Any changes to the Address Book outside of the compose
buffer (when MsgIndex does not equal 1) are not saved.

MESSAGE_SHOWDETAILS C/R Displays a dialog box that shows the details of the
currently indexed recipient. The amount of information
presented in the dialog box is determined by the message
system. At a minimum, it contains the display name and
address of the recipient.

MESSAGE_RESOLVENAME C/R Resolves the name of the currently indexed recipient.
Searches the Address Book for a match on the currently
indexed recipient name. If no match is found, an error is
returned. (No match is not considered ambiguous.)
The AddressResolveUI property determines whether a
dialog box is displayed to resolve ambiguous names. This
action does not provide additional resolution of the
message originator's name or address.
This action may cause the RecipType property to change.

RECIPIENT_DELETE C Deletes the currently indexed recipient. Automatically
reduces the RecipCount property by 1, and decrements the
index number of each recipient after the deleted recipient
1.
If the deleted recipient was the last recipient in the set,
this action decrements the RecipIndex by 1.

ATTACHMENT_DELETE C Deletes the currently indexed attachment. Automatically

reduces the AttachmentCount property by 1, and
decrements the index of each attachment after the
deleted attachment is decremented by 1.
If the deleted attachment was the last attachment in the
set, this action decrements the AttachmentIndex by 1.

To avoid using unnecessary disk space, you should delete all temporary attachment files
associated with the compose buffer before selecting any actions that alter attachment data
for the message in the compose buffer. These include the following actions:

MESSAGE_COPY
MESSAGE_COMPOSE
MESSAGE_REPLY
MESSAGE_REPLYALL
MESSAGE_FORWARD
ATTACHMENT_DELETE (delete only the temporary attachment file associated

with the deleted attachment)
Data Type
Integer

AddressCaption Property

Description
Specifies the caption appearing at the top of the Address Book dialog box when the Action
property is set to MESSAGE_SHOWADBOOK (show the address book).

Usage
[form.]MapiMessages.AddressCaption[= string$]

Remarks
If this property is a null or empty string, the default value of the Address Book is used.

Data Type
String

AddressEditFieldCount Property

Description
Specifies the number of edit controls available to the user in the Address Book dialog box
when the Action property is set to MESSAGE_SHOWADBOOK (show the address book).

Usage
[form.]MapiMessages.AddressEditFieldCount[= setting%]

Remarks
The AddressEditFieldCount property settings are:
Setting Description
0 No edit controls; only browsing is allowed.
1 (Default) Only the To edit control should be present in the dialog box.
2 The To and CC (copy) edit controls should be present in the dialog box.
3 The To, CC (copy), and BCC (blind copy) edit controls should be present in the

dialog box.
4 Only those edit controls supported by the messaging system should be

present in the dialog box.
For example, if AddressEditFieldCount is 3, the user can select from the To, CC, and BCC
edit controls in the Address Book dialog box. The AddressEditFieldCount is adjusted so that
it is equal to at least the minimum number of edit controls required by the recipient set.

Data Type
Integer (Enumerated)

AddressLabel Property

Description
Specifies the appearance of the To edit control in the Address Book when the Action
property is set to MESSAGE_SHOWADBOOK (show the address book).

Usage
[form.]MapiMessages.AddressLabel[= string$]

Remarks
This property is normally ignored and should contain an empty string to use the default
label "To." However, when the AddressEditFieldCount property is set to 1, the user has the
option of explicitly specifying another label (providing the number of editing controls
required by the recipient set equals 1).

Data Type
String

AddressModifiable Property

Description
Specifies whether the Address Book can be modified.

Usage
[form.]MapiMessages.AddressModifiable[= {True | False}]

Remarks
The AddressModifiable property settings are:
Setting Description
True The user is allowed to modify their personal address book.
False (Default) The user is not allowed to modify their personal address book.

Data Type
Integer (Boolean)

AddressResolveUI Property

Description
Specifies whether a dialog box is displayed for recipient name resolution during addressing
when the Action property is set to MESSAGE_RESOLVENAME (resolve name of currently
indexed recipient).

Usage
[form.]MapiMessages.AddressResolveUI[= {True | False}]

Remarks
The AddressResolveUI property settings are:
Setting Description
True A dialog box is displayed with names that closely match the intended

recipient's name.
False (Default) No dialog box is displayed for ambiguous names. An error occurs if

no potential matches are found (no matches is not an ambiguous situation).
Data Type
Integer (Boolean)

AttachmentCount Property

Description
Specifies the total number of attachments associated with the currently indexed message.
This property is not available at design time, and is read-only at run time.

Usage
[form.]MapiMessages.AttachmentCount

Remarks
The default value is 0. The value of AttachmentCount depends on the number of
attachments in the current indexed message.

Data Type
Long

AttachmentIndex Property

Description
Sets the currently indexed attachment. This property is not available at design time.

Usage
[form.]MapiMessages.AttachmentIndex[= index%]

Remarks
Specifies an index number to identify a particular message attachment. The index number
in this property determines the values in the AttachmentFileName, AttachmentPathName,
AttachmentPosition, and AttachmentType properties. The attachment identified by the
AttachmentIndex property is called the currently indexed attachment. The value of
AttachmentIndex can range from 0 (the default) to AttachmentCount 1.
To add a new attachment, set the AttachmentIndex to a value greater than or equal to the
current attachment count while in the compose buffer (MsgIndex = 1). The
AttachmentCount property is updated automatically to reflect the implied new number of
attachments.
For example, if the current AttachmentCount property has the value 3, setting the
AttachmentIndex property to 4 adds 2 new attachments and increases the
AttachmentCount property to 5.
To delete an existing attachment, set the Action property to ATTACHMENT_DELETE (delete
the currently indexed attachment). Attachments can be added or deleted only when the
MsgIndex property is set to 1.

Data Type
Long

AttachmentName Property
Description
Specifies the name of the currently indexed attachment file. This property is not available
at design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.AttachmentName[= string$]

Remarks
The file name specified is the file name seen by the recipients of the currently indexed
message. If AttachmentFileName is an empty string, the file name from the
AttachmentPathName property is used.
If the attachment is an OLE object, AttachmentFileName contains the class name of the
object, for example, "Microsoft Excel Worksheet."
Attachments in the read buffer are deleted when a subsequent fetch action occurs. The
value of AttachmentName depends on the currently indexed message as selected by the
AttachmentIndex property.

Data Type
String

AttachmentPathName Property
Description
Specifies the full path name of the currently indexed attachment. This property is not
available at design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.AttachmentPathName[= string$]

Remarks
If you attempt to send a message with an empty string for a path name, an error results.
Attachments in the read buffer are deleted when a subsequent fetch action occurs.
Attachments in the compose buffer need to be manually deleted. The value of
AttachmentPathName depends on the currently indexed message, as selected by the
AttachmentIndex property.

Data Type
String

AttachmentPosition Property
Description
Specifies the position of the currently indexed attachment within the message body. This
property is not available at design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.AttachmentPosition[= position&]

Remarks
To determine where an attachment is placed, count the characters in the message body
and decide which character position you wish to replace with the attachment. The
character count at that position should be used for the AttachmentPosition value.
For example, in a message body that is five-characters long, you could place an attachment
at the end of the message by setting AttachmentPosition equal to 4. (The message body
occupies character positions 0 to 4.)
You can't place two attachments in the same position within the same message. In
addition, you can't place an attachment beyond the end of the message body.
The value of AttachmentPosition depends on the currently indexed message, as selected by
the AttachmentIndex property.

Data Type
Long

AttachmentType Property
Description
Specifies the type of the currently indexed file attachment. This property is not available at
design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.AttachmentType[= type%]

Remarks
The AttachmentType property settings are:
Setting Description
ATTACHTYPE_DATA The attachment is a data file.
ATTACHTYPE_EOLE The attachment is an embedded OLE object.
ATTACHTYPE_SOLE The attachment is a static OLE object.
The value of AttachmentType depends on the currently indexed message, as selected by
the AttachmentIndex property.

Data Type
Integer (Enumerated)

FetchMsgType Property
Description
Specifies the message type to populate the message set.

Usage
[form.]MapiMessages.FetchMsgType[= string$]

Remarks
This property determines which message types are added to the message set when the
MAPI messages control is invoked with the Action property set to MESSAGE_FETCH. A null or
empty string in this property specifies an interpersonal message type (IPM), which is the
default.

Data Type
String

FetchSorted Property

Description
Specifies the message order when populating the message set with messages from the
Inbox.

Usage
[form.]MapiMessages.FetchSorted[= {True | False}]

Remarks
The FetchSorted property settings are:
Setting Description
True Messages are added to the message set in the order they were received (first

in, first out).
False (Default) Messages are added in the sort order as specified by the user's

Inbox.
Data Type
Integer (Boolean)

FetchUnreadOnly Property

Description
Determines whether to restrict the messages in the message set to unread messages only.

Usage
[form.]MapiMessages.FetchUnreadOnly[= {True | False}]

Remarks
The FetchUnreadOnly property settings are:
Setting Description
True (Default) Only unread messages of the type specified in the FetchMsgType

property are added to the message set.
False All messages of the proper type in the Inbox are added.

Data Type
Integer (Boolean)

MsgConversationID Property

Description
Specifies the conversation thread identification value for the currently indexed message. It
is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.MsgConversationID[= string$]

Remarks
A conversation thread is used to identify a set of messages beginning with the original
message and including all the subsequent replies. Identical conversation IDs indicate that
the messages are part of the same thread. New messages are assigned an ID by the
message system. The value of MsgConversationID depends on the currently indexed
message, as selected by the MsgIndex property.

Data Type
String

MsgCount Property
Description
Indicates the total number of messages present in the message set during the current
messaging session. This property is not available at design time, and is read-only at run
time.

Usage
[form.]MapiMessages.MsgCount

Remarks
This property is used to get a current count of the messages in the message set. The
default value is 0. This property is reset each time a fetch action is performed.

Data Type
Long

MsgDateReceived Property
Description
Specifies the date on which the currently indexed message was received. This property is
not available at design time and is read-only at run time.

Usage
[form.]MapiMessages.MsgDateReceived

Remarks
The format for this property is YYYY/MM/DD HH:MM. Hours are measured on a standard 24-
hour base. The value of MsgDateReceived is set by the message system and depends on
the currently indexed message, as selected by the MsgIndex property.

Data Type
String

MsgID Property
Description
Specifies the string identifier of the currently indexed message. This property is not
available at design time and is read-only at run time.

Usage
[form.]Map/iMessages.MsgID

Remarks
The message-identifier string is a system-specific, nonprintable, 64-character string used to
uniquely identify a message. The value of MsgID depends on the currently indexed
message, as selected by the MsgIndex property.

Data Type
String

MsgIndex Property
Description
Specifies the index number of the currently indexed message. This property is not available
at design time.

Usage
[form.]MapiMessages.MsgIndex[= index&]

Remarks
The MsgIndex property determines the values of all the other message-related properties of
the MAPI messages control. The index number can range from 1 to MsgCount 1.

Note Changing the MsgIndex property also changes the entire set of attachments and
recipients.
The message identified by the MsgIndex property is called the currently indexed message.
When this index is changed, all of the other message properties change to reflect the
characteristics of the indexed message. A value of 1 signifies a message being built in the
compose buffer    in other words, an outgoing message.

Data Type
Long

MsgNoteText Property

Description
Specifies the text body of the message. This property is not available at design time. It is
read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.MsgNoteText[= string$]

Remarks
This property consists of the entire textual portion of the message body (minus any
attachments). An empty string indicates no text.
For inbound messages, each paragraph is terminated with a carriage return-line feed pair
(0x0d0a). For outbound messages, paragraphs can be delimited with a carriage return
0x0d), line feed 0x0a), or a carriage return-line feed pair (0x0d0a). The value of
MsgNoteText depends on the currently indexed message, as selected by the MsgIndex
property.

Data Type
String

MsgOrigAddress Property
Description
Indicates the mail address of the originator of the currently indexed message. This property
is not available at design time and is read-only at run time. The messaging system sets this
property for you when sending a message.

Usage
[form.]MapiMessages.MsgOrigAddress

Remarks
The value of MsgOrigAddress depends on the currently indexed message as selected by the
MsgIndex property. The value is null in the compose buffer.

Data Type
String

MsgOrigDisplayName Property
Description
Specifies the originator's name for the currently indexed message. This property is not
available at design time and is read-only at run time. The messaging system sets this
property for you.

Usage
[form.]MapiMessages.MsgOrigDisplayName

Remarks
The name in this property is the originator's name, as displayed in the message header.
The value of MsgOrigDisplayName depends on the currently indexed message, as selected
by the MsgIndex property. The value is null in the compose buffer.

Data Type
String

MsgRead Property
Description
Indicates whether the message has already been read. This property is not available at
design time and is read-only at run time.

Usage
[form.]MapiMessages.MsgRead

Remarks
The MsgRead property settings are:
Setting Description
True The currently indexed message has already been read by the user.
False (Default) The message remains unread.
The value of MsgRead depends on the currently indexed message, as selected by the
MsgIndex property. The message is marked as read when the note text or any of the
attachment information is accessed. However, accessing header information does not mark
the message as read.

Data Type
Integer (Boolean)

MsgReceiptRequested Property
Description
Specifies whether a return receipt is requested for the currently indexed message. This
property is not available at design time.

Usage
[form.]MapiMessages.MsgReceiptRequested[= {True | False}]

Remarks
The MsgReceiptRequested property settings are:
Setting Description
True A receipt notification is returned to the sender when the recipient opens the

message.
False (Default) No return receipt is generated.
The value of MsgReceiptRequested depends on the currently indexed message, as selected
by the MsgIndex property.

Data Type
Integer (Boolean)

MsgSent Property

Description
Specifies whether the currently indexed message has already been sent to the mail server
for distribution. This property is not available at design time and is read-only at run time.
The messaging system sets this property for you when sending a message.

Usage
[form.]MapiMessages.MsgSent

Remarks
The MsgSent property settings are:
Setting Description
True The currently indexed message has already been submitted to the mail server

as an outgoing message.
False The currently indexed message has not yet been delivered to the server.
The value of MsgSent depends on the currently indexed message, as selected by the
MsgIndex property.

Data Type
Integer (Boolean)

MsgSubject Property

Description
Specifies the subject line for the currently indexed message as displayed in the message
header. This property is not available at design time. It is read-only unless MsgIndex is set
to 1.

Usage
[form.]MapiMessages.MsgSubject[= string$]

Remarks
The value of MsgSubject depends on the currently indexed message, as selected by the
MsgIndex property. MsgSubject is limited to 64 characters, including the null character.

Data Type
String

MsgType Property

Description
Specifies the type of the currently indexed message. This property is not available at
design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.MsgType[= string$]

Remarks
The MsgType property is for use by applications other than interpersonal mail (IPM message
type). Not all mail systems support message types that are not IPM and may not provide (or
may ignore) this parameter.
A null or empty string indicates an IPM message type. The value of MsgType depends on
the currently indexed message, as selected by the MsgIndex property. This property is not
meant for use as a filter to isolate messages by sender, receipt time, and other categories.

Data Type
String

RecipAddress Property

Description
Specifies the electronic mail address of the currently indexed recipient. This property is not
available at design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.RecipAddress[= string$]

Remarks
The value of RecipAddress depends on the currently indexed recipient, as selected by the
RecipIndex property.

Data Type
String

RecipCount Property

Description
Specifies the total number of recipients for the currently indexed message. This property is
not available at design time, and is read-only at run time.

Usage
[form.]MapiMessages.RecipCount

Remarks
The default value is 0. The value of RecipCount depends on the currently indexed message,
as selected by the MsgIndex property.

Data Type
Long

RecipDisplayName Property

Description
Specifies the name of the currently indexed recipient. This property is not available at
design time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.RecipDisplayName[= string$]

Remarks
The name in this property is the recipient's name, as displayed in the message header. The
value of RecipDisplayName depends on the currently indexed message, as selected by the
RecipIndex property. The MESSAGE_RESOLVENAME setting of the Action property uses the
recipient name as it is stored here.

Data Type
String

RecipIndex Property

Description
Sets the currently indexed recipient. This property is not available at design time.

Usage
[form.]MapiMessages.RecipIndex[= index&]

Remarks
Specifies an index number to identify a particular message recipient. The index number in
this property determines the values in the RecipAddress, RecipCount, RecipDisplayName,
and RecipType properties.
The recipient identified by the RecipIndex property is called the currently indexed recipient.
The value of RecipIndex can range from 0 (the default) to RecipCount 1. When in the read
buffer with RecipIndex set to 1, values of the other recipient properties show message
originator information. The default setting is 0.
To add a new recipient, set the RecipIndex to a value greater than or equal to the current
recipient count while in the compose buffer. The RecipCount property is updated
automatically to reflect the implied new number of recipients. For example, if the current
RecipCount property has the value 3, setting the RecipIndex property to 4 adds 2 new
recipients and increases the RecipCount property to 5.
To delete an existing recipient, set the Action property to RECIPIENT_DELETE (delete the
current indexed recipient). Recipients can be added or deleted only when the MsgIndex
property is set to 1.

Data Type
Long

RecipType Property

Description
Specifies the type of the currently indexed recipient. This property is not available at design
time. It is read-only unless MsgIndex is set to 1.

Usage
[form.]MapiMessages.RecipType[= setting%]

Remarks
The RecipType property settings are:
Setting Description
RECIPTYPE_ORIG The message originator.
RECIPTYPE_TO The recipient is a primary recipient.
RECIPTYPE_CC The recipient is a copy recipient.
RECIPTYPE_BCC The recipient is a blind copy recipient.
The value of RecipType depends on the currently indexed message, as selected by the
RecipIndex property. You cannot set the recipient type to 0 (the message system uses a
value of 0 to indicate the message originator.)

Data Type
Integer

SessionID Property

Description
Stores the current messaging session handle. This property is not available at design time.

Usage
[form.]MapiMessages.SessionID[= handle&]

Remarks
This property contains the messaging session handle returned by the SessionID property of
the MAPI session control. To associate the MAPI messages control with a valid messaging
session, set this property to the SessionID of a MAPI session control that was successfully
signed on.

Data Type
Long

Error Messages
The following table lists the trappable errors for the MAPI session and the MAPI messages
controls.
Error number Message explanation
32000 Success.

The action returned successfully.
32001 User abort.

The user cancelled the process. The current action was not completed.
32002 Failure.

An unspecified error occurred during the current action. For example, the
action was unable to delete or address mail correctly.

32003 Login failure.
There was no default sign-on, and the user failed to sign on correctly.

32004 Disk full.
The disk is full. The current action could not create a disk file.

32005 Insufficient memory.
There is insufficient memory to proceed with the current action.

32006 Access denied.
32008 Too many sessions.

The user has too many sessions open at once.
32009 Too many files.

Too many file attachments are contained in the message. The mail wasn't sent
or read.

32010 Too many recipients.
There are too many message recipients specified. Mail wasn't sent or read.

32011 Attachment not found.
The specified attachment was not found. Mail wasn't sent.

32012 Attachment open failure.
The attachment could not be located. Mail wasn't sent. Verify that the
AttachmentPathName property is valid.

32013 Attachment write failure.
An attachment could not be written to a temporary file. Check directory
permissions.

32014 Unknown recipient.
The recipient does not appear in the address list. Mail wasn't sent.

32015 Bad recipient type.
The type of recipient was incorrect. Valid type values are 1 (primary recipient),
2 (copy recipient), and 3 (blind copy recipient).

32016 No messages.
Unable to find the next message.

32017 Invalid message.
An invalid message ID was used. The current action was not completed.

32018 Text too large.
The text in the message was too large to be sent. The mail wasn't sent. Text is
limited to 32K.

32019 Invalid session.
An invalid session ID was used. To associate the MAPI messages control with a
valid messaging session, set the SessionID property to the MAPI session
control's SessionID.

32020 Type not supported.
32021 Ambiguous recipient.

One or more recipient addresses are invalid. Make sure the addresses for the
RecipAddress property are valid.

32022 Message in use.

32023 Network failure.

32024 Invalid Editfields.
The value of the AddressEditFieldCount property is invalid. Valid values are
from 0 to 4.

32025 Invalid recipients.
One or more recipient addresses are invalid. Make sure the addresses for the
RecipAddress property are valid.

32026 Not supported.
The current action is not supported by the underlying mail system.

32050 Session ID already exists.
The MAPI messages control is already using a valid session ID.

32051 Read-only in read buffer.
The property is read-only while in the read buffer (MsgIndex is not set to 1).

32052 Valid in compose buffer only.
The action is valid only in the compose buffer.

32053 No valid session ID.
The MAPI messages control does not have a valid session handle from the
MAPI session control.

32054 Originator information not available.
You cannot see message originator information while in the compose buffer
(MsgIndex set to 1).

32055 Action not valid in compose buffer.
The attempted action is not valid in the compose buffer (MsgIndex set to 1).

32056 Control failure.
An unspecified error occurred while using the control.

32057 No recipients.
There are no specified recipients for this action.

32058 No attachments.
There are no specified attachments for this action.

le

 Masked Edit
See Also Properties Methods Events

Description
The masked edit control provides restricted data input as well as formatted data output.
This control supplies visual cues about the type of data being entered or displayed. This is
what the control looks like as an icon in the Toolbox:

File Name
MSMASKED.VBX

Object Type
MaskEdBox

Remarks
The masked edit control generally behaves as a standard text box control with
enhancements for optional masked input and formatted output. If you don't use an input
mask, the masked edit control behaves much like a standard text box, except for its
dynamic data exchange (DDE) capability.
If you define an input mask using the Mask property, each character position in the masked
edit control maps to either a placeholder of a specified type or a literal character. Literal
characters, or literals, give visual cues about the type of data being used. For example, the
parentheses surrounding the area code of a telephone number are literals: (206).
If you attempt to enter a character that conflicts with the input mask, the control generates
a ValidationError event. The input mask prevents you from entering invalid characters into
the control.

Bound Properties
The masked edit control has three bound properties: DataChanged, DataField, and
DataSource. This means that it can be linked to a data control and display field values for
the current record in the recordset. The masked edit control can also write out values to the
recordset.
When the value of the field referenced by the DataField property is read, it is converted to a
Text property string, if possible. If the recordset is updatable, the string is converted to the
data type of the field.
For more information on using bound controls, refer to Chapter 20, Accessing Databases
with the Data Control, in the Programmers Guide.

See Also
Bound Properties
Clearing Text
Editing with a Mask
Selecting Text

Bound Properties
The masked edit control has three bound properties: DataChanged, DataField, and
DataSource. This means that it can be linked to a data control and display field values for
the current record in the recordset. The masked edit control can also write out values to the
recordset.
When the value of the field referenced by the DataField property is read, it is converted to a
Text property string, if possible. If the recordset is updatable, the string is converted to the
data type of the field.
For more information on using bound controls, refer to Chapter 20, Accessing Databases
with the Data Control, in the Programmers Guide.

Clearing Text
To clear the Text property when you have a mask defined, you first need to set the Mask
property to an empty string, and then the Text property to an empty string:
MaskedEdit1.Mask = ""
MaskedEdit1.Text = ""

Editing with a Mask
When you define an input mask, the masked edit control behaves differently from the
standard text box. The insertion point automatically skips over literals as you enter data or
move the insertion point.
When you insert or delete a character, all nonliteral characters to the right of the insertion
point are shifted, as necessary. If shifting these characters leads to a validation error, the
insertion or deletion is prevented, and a ValidationError event is triggered.
Suppose the Mask property is defined as "?###", and the current value of the Text
property is "A12." If you attempt to insert the letter "B" before the letter "A," the "A" would
shift to the right. Since the second value of the input mask requires a number, the letter
"A" would cause the control to generate a ValidationError event.
The masked edit control also validates the values of the Text property at run time. If you set
the Text property so that it conflicts with the input mask, the control generates a run-time
error.

Selecting Text
You may select text in the same way as for a standard text box control. When selected text
is deleted, the control attempts to shift the remaining characters to the right of the
selection. However, any remaining character that might cause a validation error during this
shift is deleted, and no ValidationError event is generated.
Normally, when a selection in the masked edit control is copied onto the Clipboard, the
entire selection, including literals, is transferred onto the Clipboard. You can use the
ClipMode property to transfer only user-entered data onto the Clipboard literal characters
that are part of the input mask are not copied.

Properties, Events, and Methods
Proper verbage here; split PEM
All of the properties, events, and methods for this control are listed in the following table.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). They are documented in the following
sections. (Note that the list order is alphabetic from top to bottom, and then from left to
right.) See the Visual Basic Language Reference or Help for documentation on the
remaining properties, events, and all methods.

Properties
*AutoTab FontBold HideSelection SelLength
BackColor FontItalic hWnd SelStart
BorderStyle FontName Index *SelText
*ClipMode FontSize Left TabIndex
*ClipText FontStrikethru *Mask TabStop
DataChanged *FontUnderline *MaxLength Tag
DataField ForeColor MousePointer *Text
DataSource *Format Name Top
DragIcon *FormattedText Parent Visible
DragMode Height *PromptChar Width
Enabled HelpContextID *PromptInclude
Text is the default value of the control

Note The DataChanged, DataField, and DataSource properties are bound properties and
are only available in Visual Basic 3.0.

Events
Change GotFocus KeyUp
DragDrop KeyDown LostFocus
DragOver KeyPress *ValidationError

Methods
BringToFron
t

Move SetFocus ZOrder

Drag Refresh

AutoTab Property

Description
Determines whether or not the next control in the tab order receives the focus as soon as
the Text property of the masked edit control is filled with valid data. The Mask property
determines whether the values in the Text property are valid.

Usage
[form.]MaskedEdit.AutoTab[= {True | False}]

Remarks
Automatic tabbing occurs only if all the characters defined by the Mask property are
entered into the control, the characters are valid, and the AutoTab property is set to True.
Setting Description
False (Default) AutoTab is not on. A ValidationError event occurs when you enter

more characters than are defined by the input mask.
True AutoTab is on. When you enter all the characters defined by the input mask,

focus goes to the next control in the tab sequence, and all subsequent
characters entered are handled by the next control.

The masked edit control is considered filled when you enter the last valid character in the
control, regardless of where the character is in the input mask. This property has no effect
if the Mask property is set to the empty string ("").

Data Type
Integer (Boolean)

ClipMode Property

Description
Determines whether to include or exclude the literal characters in the input mask when
doing a cut or copy command.

Usage
[form.]MaskedEdit.ClipMode [= setting%]

Remarks
The following table lists the ClipMode property settings for the masked edit control.
Setting Description
0 (Default) Include literals on a cut or copy command.
1 Exclude literals on a cut or copy command.
This property has no effect if the Mask property is set to the empty string ("").

Data Type
Integer (Enumerated)

ClipText Property

Description
Returns the text in the masked edit control, excluding literal characters of the input mask.
This property is not available at design time and is read-only at run time.

Usage
[form.]MaskedEdit.ClipText

Remarks
This property acts the same as the SelText property when the Mask property is set to the
empty string ("").

Data Type
String

FontUnderline Property

Description
The masked edit control uses an underline character as a placeholder for user input. Under
normal behavior, the underline character disappears when the user enters a valid
character. If this property is set to True, characters entered in the control remain
underlined.

Usage
[form.]MaskedEdit.FontUnderline[= {True | False}]

Remarks
The following table lists the FontUnderline property settings for the masked edit control.
Setting Description
False (Default) Underlined characters in the control disappear when you enter a

valid character.
True Entered characters are underlined.

Data Type
Integer (Boolean)

Format Property

Description
Specifies the format for displaying and printing numbers, dates, times, and text.

Usage
[form.]MaskedEdit.Format [= format$]

Remarks
The Format property defines the format expression used to display the contents of the
control. You can use the same format expressions as defined by the Visual Basic Format$
function, with the exception that named formats ("On/Off") can't be used.
The following table shows a number of standard formats available to the user; however,
any valid Format$ expression may be defined.
Data type Value Description
Number (Default) Empty

string
General Numeric format.
Displays as entered.

Number $#,##0.00;
($#,##0.00)

Currency format. Uses
thousands separator; displays
negative numbers enclosed in
parentheses.

Number 0 Fixed number format. Displays
at least one digit.

Number #,##0 Commas format. Uses
commas as thousands
separator.

Number 0% Percent format. Multiplies
value by 100 and appends a
percent sign.

Number 0.00E+00 Scientific format. Uses
standard scientific notation.

Date/Time (Default) c General Date and Time
format. Displays date, time, or
both.

Date/Time dddddd Long Date format. Same as
the Long Date setting in the
International section of the
Microsoft Windows Control
Panel. Example: Tuesday, May
26, 1992.

Date/Time dd-mmm-yy Medium Date format.
Example: 26-May-92.

Date/Time ddddd Short Date format. Same as
the Short Date setting in the
International section of the
Microsoft Windows Control
Panel. Example: 5/26/92.

Date/Time ttttt Long Time format. Same as
the Time setting in the
International section of the
Microsoft Windows Control
Panel. Example: 05:36:17 A.M.

Date/Time hh:mm AM/PM Medium Time format.
Example: 05:36 A.M.

Date/Time hh:mm Short Time format. Example:

05:36.
Data Type
String

FormattedText Property

Description
This is identical to the string displayed in the masked edit control when the control doesn't
have the focus. This property is read-only at run time.

Usage
[form.]MaskedEdit.FormattedText

Remarks
If the Format property is equal to the empty string (""), this property is identical to the Text
property, except that it is read-only. If the HideSelection property is set to False, the
control doesn't display the formatted text when it doesn't have the focus. However, the
formatted text is still available through this property.

Data Type
String

HideSelection Property

Description
Specifies whether the selection in a masked edit control is hidden when the control loses
focus.

Usage
[form.]MaskedEdit.HideSelection [= { True | False }]

Remarks
Normally, selected text in a control is hidden when it loses focus. This is the default action
of the property.
When there is selected text that doesn't have the focus, setting the HideSelection property
to False inhibits formatted display of the text the FormattedText property is ignored.
Setting Description
False The selection in the masked edit control remains highlighted when the control

loses focus. When this value is specified, the control doesn't display the
formatted text when it doesn't have the focus.

True (Default) The selection in the masked edit control is hidden when the control
loses the focus. The control displays formatted text according to the
FormattedText property.

Data Type
Integer (Boolean)

Mask Property

Description
Determines the input mask for the control.

Usage
[form.]MaskedEdit.Mask [= string$]

Remarks
You can define input masks at both design time and run time. However, the following
standard, predefined input masks are available at design time.
Mask Description
Null String (Default) No mask. Acts like a standard text box.
(###) ###-#### Standard North American phone number.
(###) ###-#### Ext(#####) Standard North American phone number with extension.
###-##-#### Social Security Number.
##-???-## Medium date (US). Example: 20-May-92
##-##-## Short date (US). Example: 05-20-92
##:## ?? Medium time. Example: 05:36 AM
##:## Short time. Example: 17:23
The input mask can consist of the following characters.
Mask character Description
Digit placeholder.
. Decimal placeholder. The actual character used is the one

specified as the decimal placeholder in your international settings.
This character is treated as a literal for masking purposes.

, Thousands separator. The actual character used is the one
specified as the thousands separator in your international settings.
This character is treated as a literal for masking purposes.

: Time separator. The actual character used is the one specified as
the time separator in your international settings. This character is
treated as a literal for masking purposes.

/ Date separator. The actual character used is the one specified as
the date separator in your international settings. This character is
treated as a literal for masking purposes.

\ Treat the next character in the mask string as a literal. This allows
you to include the '#', '&', 'A', and '?' characters in the mask. This
character is treated as a literal for masking purposes.

& Character placeholder. Valid values for this placeholder are ANSI
characters in the following ranges: 32-126 and 128-255.

A Alphanumeric character placeholder. For example: a-z, A-Z, or 0-9.
? Letter placeholder. For example: a - z or A -Z.
Literal All other symbols are displayed as literals; that is, as themselves.
When the value of the Mask property is an empty string (""), the control behaves like a
standard text box control. When an input mask is defined, underscores appear beneath
every placeholder in the mask. You can only replace a placeholder with a character that is
of the same type as the one specified in the input mask. If you enter an invalid character,
the masked edit control rejects the character and generates a ValidationError event.

Note When you define an input mask for the masked edit control and you tab to another
control, the ValidationError event is generated if there are any invalid characters in the
masked edit control.

Data Type
String

MaxLength Property

Description
Sets or returns the maximum length of the masked edit control.

Usage
[form.]MaskedEdit.MaxLength [= setting%]

Remarks
The masked edit field can have a maximum of 64 characters (the valid range for this
property is 1 to 64). The default value is set to 64 characters, including literal characters in
the input mask.
If the user enters characters beyond the specified maximum length, the control generates
a beep.

Data Type
Integer

PromptChar Property

Description
Sets or returns the character used to prompt a user for input.

Usage
[form.]MaskedEdit.PromptChar [= char$]

Remarks
The underscore character "_" is the default character value for the property. The
PromptChar property can only be set to exactly one character.
Use the PromptInclude property to specify whether prompt characters are contained in the
Text property.

Data Type
String

PromptInclude Property

Description
Specifies whether prompt characters are contained in the Text property value. Use the
PromptChar property to change the value of the prompt character.

Usage
[form.]MaskedEdit.PromptInclude [= { True | False }]

Remarks
The following table lists the PromptInclude property settings for the masked edit control.
Setting Description
False The value of the Text property does not contain any prompt character.
True (Default) The value of the Text property contains prompt characters, if any.
If the masked edit control is bound to a data control, the PromptInclude property affects
how the data control reads the bound Text property. If PromptInclude is False, the data
control ignores any literals or prompt characters in the Text property. In this mode, the
value that the data control retrieves from the masked edit control is equivalent to the value
of the ClipText property.
If PromptInclude is True, the data control uses the value of the Text property as the data
value to store.

Data Type
Integer (Boolean)

SelText Property

Description
Sets or returns the text contained in the control.

Usage
[form.]MaskedEdit.SelText[= string$]

Remarks
If an input mask is not defined for the masked edit control, the SelText property behaves
like the standard SelText property for the text box control.
If an input mask is defined and there is selected text in the masked edit control, the SelText
property returns a text string. Depending on the value of the ClipMode property, not all the
characters in the selected text are returned. If ClipMode is on, literal characters don't
appear in the returned string.
When the SelText property is set, the masked edit control behaves as if text was pasted
from the Clipboard. This means that each character in string$ is entered into the control as
if the user typed it in.

Data Type
String

Text Property
Description
Sets or returns the text contained in the control. This property is not available at design
time.

Usage
[form.]MaskedEdit.Text[= string$]

Remarks
This property sets and retrieves the text in the masked edit control, including literal
characters and underscores that are part of the input mask. When setting the text property,
the string$ value must match the characters in the input mask exactly, including literal
characters and underscores.

Note The ClipMode property setting has no effect on the value of the Text property.
The SelText property provides an easier way of setting the text in the masked edit control.

Data Type
String

ValidationError Event

Description
Occurs when the masked edit field receives invalid input, as determined by the input mask.

Syntax
Sub ctlname_ValidationError(InvalidText As String; StartPosition As Integer)

Remarks
InvalidText is the value of the Text property, including the invalid character. This means that
any placeholders and literal characters used in the input mask are included in InvalidText.
StartPosition is the position in InvalidText where the error occurred (the first invalid
character).

Multimedia MCI Control
See Also Properties Methods Events

Description
The multimedia MCI control manages the recording and playback of multimedia files on
Media Control Interface (MCI) devices. Conceptually, this control is a set of push buttons
that issues MCI commands to devices such as audio boards, MIDI sequencers, CD-ROM
drives, audio CD players, videodisc players, and videotape recorders and players. The MCI
control also supports the playback of Video for Windows (*.AVI) files.
When you add the multimedia MCI control to a form at design time, the control appears on
the form as follows:

The buttons are defined as Prev, Next, Play, Pause, Back, Step, Stop, Record, and Eject,
respectively.

File Name
MCI.VBX

Object Type
MMControl

Remarks
For this control to work, MCI services must be present. These services are provided in the
Windows operating system version 3.1 and the Windows graphical environment version 3.0
with Multimedia Extensions version 1.0.
Your application should already have the MCI device open and the appropriate buttons in
the multimedia MCI control enabled by the time the user chooses a button from the
multimedia MCI control. In Visual Basic, place the MCI Open command in the Form_Load
event. In Visual C++, place the MCI Open command in the OnInitDialog function for a
dialog or the OnInitialUpdate function for a form view.
When you intend to record audio with the multimedia MCI control, open a new file. This
action ensures that the data file containing the recorded sound will be in a format
compatible with your system's recording capabilities. Also, issue the MCI Save command
before closing the MCI device to store the recorded data in the file.
The multimedia MCI control is programmable in several ways:

The control can be visible or invisible at run time.
You can augment or completely redefine the functionality of the buttons in the

control.
You can control multiple devices in a form.

If you want to use the buttons in the multimedia MCI control, set the Visible and Enabled
properties to True. If you do not want to use the buttons in the control, but want to use the
multimedia MCI control for its multimedia functionality, set the Visible and Enabled
properties to False. An application can control MCI devices with or without user interaction.
The events (button definitions) of the multimedia MCI control are programmable. You can
augment or completely redefine the functionality of these buttons by developing code for
the button events.
The MCI extensions support multiple instances of the multimedia MCI control in a single
form to provide concurrent control of several MCI devices. You use one control per device.

Distribution Note When you create and distribute applications that use the multimedia
MCI control, you should install the file MCI.VBX in the customer's Microsoft Windows \

SYSTEM subdirectory. The Setup Wizard included with Visual Basic provides tools to help
you write setup programs that install your applications correctly.

See Also
Multimedia MCI
Examples

Multimedia MCI
Multimedia MCI consists of a set of high-level, device-independent commands that control
audio and visual peripherals. The first MCI command you issue is the Open command. This
command opens the specified MCI device and identifies the file that will play on the device
or be recorded by the device. (Some devices, such as CDAudio, VCR, and videodisc, do not
use files and do not require file names.)
Once the device is open, you can issue any of the other MCI commands (Prev, Next, Pause,
and so on). The Close command is the last MCI command you issue for the device,
returning it to the available pool of system resources. The Close command also closes the
data file associated with the device.
For a list of the MCI commands supported by the multimedia MCI control, see the Command
property. For additional information on multimedia MCI, refer to either the Microsoft
Multimedia Development Kit Programmer's Workbook or the Microsoft Windows Software
Development Kit Multimedia Programmer's Reference.

Examples, Multimedia MCI Control

Visual Basic Example
The following example illustrates the procedure used to open an MCI device with a
compatible data file. By placing this code in the Form_Load procedure, your application can
use the multimedia MCI control "as is" to play, record, and rewind the multimedia file
GONG.WAV. To try this example, first create a form with a multimedia MCI control.
Sub Form_Load ()

' Set properties needed by MCI to open.
Form1.MMControl1.Notify = FALSE
Form1.MMControl1.Wait = TRUE
Form1.MMControl1.Shareable = FALSE
Form1.MMControl1.DeviceType = "WaveAudio"
Form1.MMControl1.FileName = "C:\WINDOWS\MMDATA\GONG.WAV"

' Open the MCI WaveAudio device.
Form1.MMControl1.Command = "Open"

End Sub

To properly manage multimedia resources, you should close those MCI devices that are
open before exiting your application. You can place the following statement in the
Form_Unload procedure to close an open MCI device before exiting from the form
containing the multimedia MCI custom control.
Sub Form_Unload (Cancel As Integer)

MMControl1.Command = "Close"
End Sub

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration, when used with it, are marked
with an asterisk (*). For documentation on the remaining properties, see Appendix A in the
Custom Control Reference. Properties beginning with Button are defined for each of the
nine individual buttons in the multimedia MCI control.
*AutoEnable *Error Name *To
BorderStyle *ErrorMessage *Notify Top
* Button Enabled *FileName *NotifyMessage *Track
*Button Visible *Frames *NotifyValue *TrackLength
*CanEject *From *Orientation *TrackPosition
*CanPlay Height *Position *Tracks
*CanRecord HelpContextID *RecordMode *UpdateInterva

l
*CanStep hWnd *Shareable *UsesWindows
*Command *hWndDisplay *Silent *Visible
*DeviceID Index *Start *Wait
*DeviceType Left TabIndex Width
DragIcon *Length TabStop
DragMode *Mode Tag
*Enabled MousePointer *TimeFormat

Note The DragIcon, DragMode, HelpContextID, and Index properties are only available in
Visual Basic. The Name property is the equivalent of the CtlName property in Visual Basic
1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation on the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
Several of the following events are defined for each of the nine individual buttons in the
multimedia MCI control. Events defined separately for all nine buttons are described under
a heading beginning with Button.
*Button Click *Button GotFocus *Done DragOver
*Button Completed *Button LostFocus DragDrop *StatusUpdate

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation on
the methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Refresh ZOrder
Move SetFocus

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

AutoEnable Property, Multimedia MCI Control

Description
Determines if the multimedia MCI control can automatically enable or disable individual
buttons in the control. If the AutoEnable property is set to True, the multimedia MCI control
enables those buttons that are appropriate for the current mode of the specified MCI device
type. This property also disables those buttons that the current mode of the MCI device
does not support.

Visual Basic
[form.]MMControl.AutoEnable[= {True | False}]

Visual C++
pMMControl->GetNumProperty("AutoEnable")
pMMControl->SetNumProperty("AutoEnable", {TRUE | FALSE})

Remarks
The effect of the AutoEnable property is superseded by the Enabled property. The
AutoEnable property can automatically enable or disable individual buttons in the control
when the multimedia MCI control is enabled (Enabled property set to True). When the
Enabled property is False, keyboard and mouse run-time access to the multimedia MCI
control are turned off, regardless of the AutoEnable property setting.
The following table lists the AutoEnable property settings for the multimedia MCI control.
Setting Description
False Does not enable or disable buttons. The program controls the states of the

buttons by setting the Enabled and ButtonEnabled properties.
True (Default) Enables buttons whose functions are available and disables buttons

whose functions are not.
The following tables show how the MCI mode settings are reflected in the control's property
settings.
Play mode
Record mode
Pause mode
Stop mode
Open mode
Seek or Not Ready modes
The effect of the AutoEnable property supersedes the effects of ButtonEnabled properties.
When the Enabled and AutoEnable properties are both True, the ButtonEnable properties
are not used.

Data Type
Integer (Boolean)

Play mode
*Button is enabled if the operation is supported by the open MCI device.
Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Disabled
Prev Enabled
Record* Disabled
Step* Enabled
Stop Enabled

Record mode
*Button is enabled if the operation is supported by the open MCI device.
Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Disabled
Prev Enabled
Record* Disabled
Step* Enabled
Stop Enabled

Pause mode
*Button is enabled if the operation is supported by the open MCI device.
Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Enabled
Prev Enabled
Record* Enabled
Step* Enabled
Stop Enabled

Stop mode
Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Disabled
Play* Enabled
Prev Enabled
Record* Enabled
Step* Enabled
Stop Disabled

Open mode
*Button is enabled if the operation is supported by the open MCI device.
Button Status
Back* Disabled
Eject* Enabled
Next Disabled
Pause Disabled
Play* Disabled
Prev Disabled
Record* Disabled
Step* Disabled
Stop Disabled

Seek or Not Ready modes
*Button is enabled if the operation is supported by the open MCI device.
Button Status
Back* Disabled
Eject* Disabled
Next Disabled
Pause Disabled
Play* Disabled
Prev Disabled
Record* Disabled
Step* Disabled
Stop Disabled

ButtonEnabled Property, Multimedia MCI Control

Description
Determines if a button in the control is enabled or disabled (dimmed).

Visual Basic
[form.]MMControl.ButtonEnabled[= {True | False}]

Visual C++
pMMControl->GetNumProperty("ButtonEnabled")
pMMControl->SetNumProperty("ButtonEnabled", {TRUE | FALSE})

Remarks
The effects of the ButtonEnabled properties are superseded by the Enabled and AutoEnable
properties. Individual ButtonEnabled properties enable or disable the associated buttons in
the multimedia MCI control when the multimedia MCI control is enabled (Enabled property
set to True) and the AutoEnable property is turned off (set to False).
For this property, Button may be any of the following: Back, Eject, Next, Pause, Play, Prev,
Record, Step, or Stop.
The following table lists the ButtonEnabled property settings for the multimedia MCI
control.
Setting Description
False (Default) Disables (dims) the button specified by Button. This button's function

is not available in the control.
True Enables the button specified by Button. This button's function is available in

the control.
Data Type
Integer (Boolean)

ButtonVisible Property, Multimedia MCI Control

Description
Determines if the specified button is displayed in the control.

Visual Basic
[form.]MMControl.ButtonVisible[= {True | False}]

Visual C++
pMMControl->GetNumProperty("ButtonVisible")
pMMControl->SetNumProperty("ButtonVisible", {TRUE | FALSE})

Remarks
The effects of the ButtonVisible properties are superseded by the Visible property.
Individual ButtonVisible properties display and hide the associated buttons in the
multimedia MCI control when the multimedia MCI control is visible (Visible property set to
True). If the multimedia MCI control is invisible, these properties are not used.
For this property, Button may be any of the following: Back, Eject, Next, Pause, Play, Prev,
Record, Step, or Stop.
The following table lists the ButtonVisible property settings for the multimedia MCI control.
Setting Description
False Does not display the button specified by Button. This button's function is not

available in the control.
True (Default) Displays the button specified by Button.

Data Type
Integer (Boolean)

CanEject Property, Multimedia MCI Control

Description
Determines if the open MCI device can eject its media. This property is not available at
design time and is read-only at run time.

Visual Basic
[form.]MMControl.CanEject

Visual C++
pMMControl->GetNumProperty("CanEject")

Remarks
The following table lists the CanEject property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot eject its media.
True The device can eject its media.
The value of CanEject is retrieved using MCI_GETDEVCAPS during the processing of an
Open command.

Data Type
Integer (Boolean)

CanPlay Property, Multimedia MCI Control

Description
Determines if the open MCI device can play. This property is not available at design time
and is read-only at run time.

Visual Basic
[form.]MMControl.CanPlay

Visual C++
pMMControl->GetNumProperty("CanPlay")

Remarks
The following table lists the CanPlay property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot play.
True The device can play.
The value of CanPlay is retrieved using MCI_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanRecord Property, Multimedia MCI Control

Description
Determines if the open MCI device can record. This property is not available at design time
and is read-only at run time.

Visual Basic
[form.]MMControl.CanRecord

Visual C++
pMMControl->GetNumProperty("CanRecord")

Remarks
The following table lists the CanRecord property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot record.
True The device can record.
The value of CanRecord is retrieved using MCI_GETDEVCAPS during the processing of an
Open command.

Data Type
Integer (Boolean)

CanStep Property, Multimedia MCI Control

Description
Determines if the open MCI device can step a frame at a time. This property is not available
at design time and is read-only at run time.

Visual Basic
[form.]MMControl.CanStep

Visual C++
pMMControl->GetNumProperty("CanStep")

Remarks
The following table lists the CanStep property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot step a frame at a time.
True The device can step a frame at a time.
Currently only MMMovie, Overlay, and VCR MCI devices can step a frame at a time.
Because there is no way to check whether a device can step, programs set the value of this
property by checking if the device type is MMMovie, Overlay, or VCR during the processing
of an Open command.

Data Type
Integer (Boolean)

Command Property, Multimedia MCI Control

Description
Specifies an MCI command to execute. This property is not available at design time.

Visual Basic
[form.]MMControl.Command[= cmdstring$]

Visual C++
pMMControl->GetStrProperty("Command")
pMMControl->SetStrProperty("Command", cmdstring)

Remarks
The cmdstring$ argument gives the name of the MCI command to execute: Open, Close,
Play, Pause, Stop, Back, Step, Prev, Next, Seek, Record, Eject, Sound, or Save. The
command is executed immediately, and the error code is stored in the Error property.
The following table describes each command and lists the properties it uses. If a property is
not set, either a default value is used (shown in parentheses following the property name),
or the property is not used at all (if no default value is shown).
Command Description/Properties used
Open Opens a device using the MCI_OPEN command.

Notify (False)
Wait (True)
Shareable
DeviceType
FileName

Close Closes a device using the MCI_CLOSE command.
Notify (False)
Wait (True)

Play Plays a device using the MCI_PLAY command.
Notify (True)
Wait (False)
From
To

Pause Pauses playing or recording using the MCI_PLAY command. If executed while
the device is paused, tries to resume playing or recording using the
MCI_RESUME command.

Notify (False)
Wait (True)

Stop Stops playing or recording using the MCI_STOP command.
Notify (False)
Wait (True)

Back Steps backwards using the MCI_STEP command.
 Notify (False)

Wait (True)
Frames

Step Steps forwards using the MCI_STEP command.
Notify (False)
Wait (True)
Frames

Prev Goes to the beginning of the current track using the Seek command. If
executed within three seconds of the previous Prev command, goes to the
beginning of the previous track or to the beginning of the first track if at the
first track.

Notify (False)
Wait (True)

Next Goes to the beginning of the next track (if at last track, goes to beginning of
last track) using the Seek command.

Notify (False)
Wait (True)

Seek If not playing, seeks a position using the MCI_SEEK command. If playing,
continues playing from the given position using the MCI_PLAY command.

Notify (False)
Wait (True)
To

Record Records using the MCI_RECORD command.
Notify (True)
Wait (False)
From
To
RecordMode (0Insert)

Eject Ejects media using the MCI_SET command.
Notify (False)
Wait (True)

Sound Plays a sound using the MCI_SOUND command.
Notify (False)
Wait (False)
FileName

Save Saves an open file using the MCI_SAVE command.
Notify (False)
Wait (True)
FileName

Data Type
String

DeviceID Property, Multimedia MCI Control

Description
Specifies the device ID for the currently open MCI device. This property is not available at
design time and is read-only at run time.

Visual Basic
[form.]MMControl.DeviceID[= id%]

Visual C++
pMMControl->GetNumProperty("DeviceID")
pMMControl->SetNumProperty("DeviceID", id)

Remarks
The argument id% is the device ID of the currently open MCI device. This ID is obtained
from MCI_OPEN as a result of an Open command. If no device is open, this argument is 0.

Data Type
Integer

DeviceType Property, Multimedia MCI Control

Description
Specifies the type of MCI device to open.

Visual Basic
[form.]MMControl.DeviceType[= device$]

Visual C++
pMMControl->GetStrProperty("DeviceType")
pMMControl->SetStrProperty("DeviceType", device)

Remarks
The argument device$ is the type of MCI device to open: AVIVideo, CDAudio, DAT,
DigitalVideo, MMMovie, Other, Overlay, Scanner, Sequencer, VCR, Videodisc, or WaveAudio.
The value of this property must be set when opening simple devices (such as an audio CD
that does not use files). It must also be set when opening compound MCI devices when the
file-name extension does not specify the device to use.

Data Type
String

Enabled Property, Multimedia MCI Control

Description
Determines if the control can respond to user-generated events, such as the KeyPress and
mouse events.

Visual Basic
[form.]MMControl.Enabled[= {True | False}]

Visual C++
pMMControl->GetNumProperty("Enabled")
pMMControl->SetNumProperty("Enabled", {TRUE | FALSE})

Remarks
This property permits the multimedia MCI control to be enabled or disabled at run time. The
effect of the Enabled property supersedes the effects of the AutoEnable and ButtonEnable
properties. For example, if the Enabled property is False, the multimedia MCI control does
not permit access to its buttons, regardless of the settings of the AutoEnable and
ButtonEnable properties.
The following table lists the Enabled property settings for the multimedia MCI control
Setting Description
False All buttons on the control are disabled (dimmed).
True (Default) The control is enabled. Use the AutoEnable property to let the

multimedia MCI control automatically enable or disable the buttons in the
control. Or, use the ButtonEnable properties to enable or disable individual
buttons in the control.

Data Type
Integer (Boolean)

Error Property, Multimedia MCI Control

Description
Specifies the error code returned from the last MCI command. This property is not available
at design time and is read-only at run time.

Visual Basic
[form.]MMControl.Error

Visual C++
pMMControl->GetNumProperty("Error")

Remarks
If the last MCI command did not cause an error, this value is 0.

Data Type
Integer

ErrorMessage Property, Multimedia MCI Control

Description
Describes the error code stored in the Error property. This property is not available at
design time and is read-only at run time.

Visual Basic
[form.]MMControl.ErrorMessage

Visual C++
pMMControl->GetStrProperty("ErrorMessage")

Data Type
String

FileName Property, Multimedia MCI Control

Description
Specifies the file to be opened by an Open command or saved by a Save command.

Visual Basic
[form.]MMControl.FileName[= stringexpression$]

Visual C++
pMMControl->GetStrProperty("FileName")
pMMControl->SetStrProperty("FileName", stringexpression)

Remarks
The argument stringexpression$ specifies the file to be opened or saved.

Data Type
String

Frames Property, Multimedia MCI Control

Description
Specifies the number of frames the Step command steps forward or the Back command
steps backward. This property is not available at design time.

Visual Basic
[form.]MMControl.Frames[= frames&]

Visual C++
pMMControl->GetNumProperty("Frames")
pMMControl->SetNumProperty("Frames", frames)

Remarks
The argument frames& specifies the number of frames to step forward or backward.

Data Type
Long

From Property, Multimedia MCI Control

Description
Specifies the starting point, using the current time format, for the Play or Record command.
This property is not available at design time.

Visual Basic
[form.]MMControl.From[= location&]

Visual C++
pMMControl->GetNumProperty("From")
pMMControl->SetNumProperty("From", location)

Remarks
The argument location& specifies the starting point for the play or record operation. The
current time format is given by the TimeFormat property.
The value you assign to this property is used only with the next MCI command. Subsequent
MCI commands ignore the From property until you assign it another (different or identical)
value.

Data Type
Long

hWndDisplay Property, Multimedia MCI Control

Description
Specifies the output window for MCI MMMovie or Overlay devices that use a window to
display output. This property is not available at design time.

Visual Basic
[form.]MMControl.hWndDisplay

Visual C++
pMMControl->GetNumProperty("hWndDisplay")

Remarks
This property is a handle to the window that the MCI device uses for output. If the handle is
0, a default window (also known as the stage window) is used.
To determine whether a device uses this property, check the UsesWindows property.
In Visual Basic, to get a handle to a control, first use the SetFocus method to set the focus
to the desired control. Then call the Windows GetFocus function. For additional
information, see Chapter 22, "Calling DLL Procedures," in the Visual Basic Programmer's
Guide.
To get a handle to a Visual Basic form, use the hWnd property for that form.

Data Type
Integer

Length Property, Multimedia MCI Control

Description
Specifies, in the current time format, the length of the media in an open MCI device. This
property is not available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.Length

Visual C++
pMMControl->GetNumProperty("Length")

Data Type
Long

Mode Property, Multimedia MCI Control

Description
Specifies the current mode of an open MCI device. This property is not available at design
time and is read-only at run time.

Visual Basic
[form.]MMControl.Mode

Visual C++
pMMControl->GetNumProperty("Mode")

Remarks
The following table lists the Mode property return values for the multimedia MCI control.
Value Setting/Device mode
524 MCI_MODE_NOT_OPEN

Device is not open.
525 MCI_MODE_STOP

Device is stopped.
526 MCI_MODE_PLAY

Device is playing.
527 MCI_MODE_RECORD

Device is recording.
528 MCI_MODE_SEEK

Device is seeking.
529 MCI_MODE_PAUSE

Device is paused
530 MCI_MODE_READY

Device is ready.
Data Type
Long

Notify Property, Multimedia MCI Control

Description
Determines if the next MCI command uses MCI notification services. If set to True, the
Notify property generates a callback event (Done), which occurs when the next MCI
command is complete. This property is not available at design time.

Visual Basic
[form.]MMControl.Notify[= {True | False}]

Visual C++
pMMControl->GetNumProperty("Notify")
pMMControl->SetNumProperty("Notify", {TRUE | FALSE})

Remarks
The following table lists the Notify property settings for the multimedia MCI control.
Setting Description
False (Default) The next command does not generate the Done event.
True The next command generates the Done event.
The value assigned to this property is used only with the next MCI command. Subsequent
MCI commands ignore the Notify property until it is assigned another (different or identical)
value.

Note A notification message is aborted when you send a new command that prevents the
callback conditions, which were set by a previous command, from being satisfied. For
example, to restart a paused device that does not support the MCI Resume command, the
multimedia MCI control sends the Play command to the paused device. However, the Play
command that restarts the device sets callback conditions, superseding callback conditions
and pending notifications from earlier commands.

Data Type
Integer (Boolean)

NotifyMessage Property, Multimedia MCI Control

Description
Describes the notify code returned in the Done event. This property is not available at
design time and is read-only at run time.

Visual Basic
[form.]MMControl.NotifyMessage

Visual C++
pMMControl->GetStrProperty("NotifyMessage")

Data Type
String

NotifyValue Property, Multimedia MCI Control

Description
Specifies the result of the last MCI command that requested a notification. This property is
not available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.NotifyValue

Visual C++
pMMControl->GetNumProperty("NotifyValue")

Remarks
The following table lists the NotifyValue return values for the multimedia MCI control.
Value Setting/Device mode
1 MCI_NOTIFY_SUCCESSFUL

Command completed successfully.
2 MCI_NOTIFY_SUPERSEDED

Command was superseded by another command.
4 MCI_NOTIFY_ABORTED

Command was aborted by the user.
8 MCI_NOTIFY_FAILURE

Command failed.
The program can check the Done event to determine this value for the most recent MCI
command.

Data Type
Integer (Enumerated)

Orientation Property, Multimedia MCI Control

Description
Determines whether buttons on the control are arranged vertically or horizontally.

Visual Basic
[form.]MMControl.Orientation[= orientation%]

Visual C++
pMMControl->GetNumProperty("Orientation")
pMMControl->SetNumProperty("Orientation", orientation)

Remarks
The following table lists the Orientation property settings for the multimedia MCI control.
Setting Description
0 Buttons are arranged horizontally.
1 Buttons are arranged vertically.

Data Type
Integer (Enumerated)

Position Property, Multimedia MCI Control

Description
Specifies, in the current time format, the current position of an open MCI device. This
property is not available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.Position

Visual C++
pMMControl->GetNumProperty("Position")

Data Type
Long

RecordMode Property, Multimedia MCI Control

Description
Specifies the current recording mode for those MCI devices that support recording.

Visual Basic
[form.]MMControl.RecordMode[= mode%]

Visual C++
pMMControl->GetNumProperty("RecordMode")
pMMControl->SetNumProperty("RecordMode", mode)

Remarks
The following table lists the RecordMode property settings for the multimedia MCI control.
Setting Recording mode
0 Insert
1 Overwrite
To determine whether a device supports recording, check the CanRecord property.
A device that supports recording may support either or both of the recording modes. There
is no way to check ahead of time which mode a device supports. If recording with a
particular mode fails, try the other mode.
WaveAudio devices support Insert mode only.

Data Type
Integer (Enumerated)

Shareable Property, Multimedia MCI Control

Description
Determines if more than one program can share the same MCI device.

Visual Basic
[form.]MMControl.Shareable[= {True | False}]

Visual C++
pMMControl->GetNumProperty("Shareable")
pMMControl->SetNumProperty("Shareable", {TRUE | FALSE})

Remarks
The following table lists the Shareable property settings for the multimedia MCI control.
Setting Description
False No other controls or applications can access this device.
True More than one control or application can open this device.

Data Type
Integer (Boolean)

Silent Property, Multimedia MCI Control

Description
Determines if sound plays.

Visual Basic
[form.]MMControl.Silent[= {True | False}]

Visual C++
pMMControl->GetNumProperty("Silent")
pMMControl->SetNumProperty("Silent", {TRUE | FALSE})

Remarks
The following table lists the Silent property settings for the multimedia MCI control.
Setting Description
False Any sound present is played.
True Sound is turned off.

Data Type
Integer (Boolean)

Start Property, Multimedia MCI Control

Description
Specifies, in the current time format, the starting position of the current media. This
property is not available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.Start

Visual C++
pMMControl->GetNumProperty("Start")

Data Type
Long

TimeFormat Property, Multimedia MCI Control

Description
Specifies the time format used to report all position information.

Visual Basic
[form.]MMControl.TimeFormat[= format&]

Visual C++
pMMControl->GetNumProperty("TimeFormat")
pMMControl->SetNumProperty("TimeFormat", format)

Remarks
The following table lists the TimeFormat property settings for the multimedia MCI control.
Value Setting/Time format
0 MCI_FORMAT_MILLISECONDS

Milliseconds are stored as a 4-byte integer variable.
1 MCI_FORMAT_HMS

Hours, minutes, and seconds are packed into a 4-byte integer. From least
significant byte to most significant byte, the individual data values are:
Hours (least significant byte)
Minutes
Seconds
Unused (most significant byte)

2 MCI_FORMAT_MSF
Minutes, seconds, and frames are packed into a 4-byte integer. From least
significant byte to most significant byte, the individual data values are:
Minutes (least significant byte)
Seconds
Frames
Unused (most significant byte)

3 MCI_FORMAT_FRAMES
Frames are stored as a 4-byte integer variable.

4 MCI_FORMAT_SMPTE_24
24-frame SMPTE packs the following values in a 4-byte variable from least
significant byte to most significant byte:
Hours (least significant byte)
Minutes
Seconds
Frames (most significant byte)
SMPTE (Society of Motion Picture and Television Engineers) time is an absolute
time format expressed in hours, minutes, seconds, and frames. The standard
SMPTE division types are 24, 25, and 30 frames per second.

5 MCI_FORMAT_SMPTE_25
25-frame SMPTE packs data into the 4-byte variable in the same order as 24-
frame SMPTE.

6 MCI_FORMAT_SMPTE_30
30-frame SMPTE packs data into the 4-byte variable in the same order as 24-
frame SMPTE.

7 MCI_FORMAT_SMPTE_30DROP
30-drop-frame SMPTE packs data into the 4-byte variable in the same order as
24-frame SMPTE.

8 MCI_FORMAT_BYTES
Bytes are stored as a 4-byte integer variable.

9 MCI_FORMAT_SAMPLES

Samples are stored as a 4-byte integer variable.
10 MCI_FORMAT_TMSF

Tracks, minutes, seconds, and frame are packed in the 4-byte variable from
least significant byte to most significant byte:
Tracks (least significant byte)
Minutes
Seconds
Frames (most significant byte)
Note that MCI uses continuous track numbering.

Note Not all formats are supported by every device. If you try to set an invalid format, the
assignment is ignored.
The current timing information is always passed in a 4-byte integer. In some formats, the
timing information returned is not really an integer, but single bytes of information packed
in the long integer. Properties that access or send information in the current time format
are:
From To
Length TrackLength
Position TrackPosition
Start

Data Type
Long (Enumerated)

To Property, Multimedia MCI Control

Description
Specifies the ending point, using the current time format, for the Play or Record command.
This property is not available at design time.

Visual Basic
[form.]MMControl.To[= location&]

Visual C++
pMMControl->GetNumProperty("To")
pMMControl->SetNumProperty("To", location)

Remarks
The argument location& specifies the ending point for the play or record operation. The
current time format is given by the TimeFormat property.
The value assigned to this property is used only with the next MCI command. Subsequent
MCI commands ignore the To property until it is assigned another (different or identical)
value.

Data Type
Long

Track Property, Multimedia MCI Control

Description
Specifies the track about which the TrackLength and TrackPosition properties return
information. This property is not available at design time.

Visual Basic
[form.]MMControl.Track[= track&]

Visual C++
pMMControl->GetNumProperty("Track")
pMMControl->SetNumProperty("Track", track)

Remarks
The argument track& specifies the track number.
This property is used only to get information about a particular track. It has no relationship
to the current track.

Data Type
Long

TrackLength Property, Multimedia MCI Control

Description
Specifies the length, using the current time format, of the track given by the Track property.
This property is not available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.TrackLength

Visual C++
pMMControl->GetNumProperty("TrackLength")

Data Type
Long

TrackPosition Property, Multimedia MCI Control

Description
Specifies the starting position, using the current time format, of the track given by the
Track property. This property is not available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.TrackPosition

Visual C++
pMMControl->GetNumProperty("TrackPosition")

Data Type
Long

Tracks Property, Multimedia MCI Control

Description
Specifies the number of tracks available on the current MCI device. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.Tracks

Visual C++
pMMControl->GetNumProperty("Tracks")

Data Type
Long

UpdateInterval Property, Multimedia MCI Control

Description
Specifies the number of milliseconds between successive StatusUpdate events.

Visual Basic
[form.]MMControl.UpdateInterval[= milliseconds%]

Visual C++
pMMControl->GetNumProperty("UpdateInterval")
pMMControl->SetNumProperty("UpdateInterval", milliseconds)

Remarks
The argument milliseconds% specifies the number of milliseconds between events. If
milliseconds is 0, no StatusUpdate events occur.

Data Type
Integer

UsesWindows Property, Multimedia MCI Control

Description
Determines if the currently open MCI device uses a window for output. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]MMControl.UsesWindows

Visual C++
pMMControl->GetNumProperty("UsesWindows")

Remarks
The following table lists the UsesWindows property return values for the multimedia MCI
control.
Value Description
False The current device does not use a window for output.
True The current device uses a window.
Currently, only MMMovie and Overlay devices use windows for display. Because there is no
way to determine whether a device uses windows, the value of UsesWindows is set during
processing of an Open command by checking the device type. If the device type is
MMMovie, Overlay, or VCR, the device uses windows.
For devices that use windows, you can use the hWndDisplay property to set the window
that will display output.

Data Type
Integer (Boolean)

Visible Property, Multimedia MCI Control

Description
Determines if the multimedia MCI control is visible or invisible at run time.

Visual Basic
[form.]MMControl.Visible[= {True | False}]

Visual C++
pMMControl->GetNumProperty("Visible")
pMMControl->SetNumProperty("Visible", {TRUE | FALSE})

Remarks
The effect of the Visible property supersedes the effects of the individual ButtonVisible
properties. When the multimedia MCI control is visible, the individual ButtonVisible
properties govern the visibility of the associated buttons in the control. When the Visible
property is False, the entire control is invisible, and the ButtonVisible properties are not
used.
The following table lists the Visible property settings for the multimedia MCI control.
Setting Description
False The control is invisible.
True (Default) Each button is visible or hidden individually, depending on its

ButtonVisible property. This button's function is still available in the control.
Data Type
Integer (Boolean)

Wait Property, Multimedia MCI Control

Description
Determines whether the multimedia MCI control waits for the next MCI command to
complete before returning control to the application. This property is not available at design
time.

Visual Basic
[form.]MMControl.Wait[= {True | False}]

Visual C++
pMMControl->GetNumProperty("Wait")
pMMControl->SetNumProperty("Wait", {TRUE | FALSE})

Remarks
The following table lists the Wait property settings for the multimedia MCI control.
Setting Description
False Multimedia MCI does not wait until the MCI command completes before

returning control to the application.
True Multimedia MCI waits until the next MCI command completes before returning

control to the application.
The value assigned to this property is used only with the next MCI command. Subsequent
MCI commands ignore the Wait property until it is assigned another (different or identical)
value.

Data Type
Integer (Boolean)

ButtonClick Event, Multimedia MCI Control

Description
Occurs when the user presses and releases the mouse button over one of the buttons in
the multimedia MCI control.

Visual Basic
Sub MMControl_ButtonClick (Cancel As Integer)

Visual C++
Function Signature:
void CMyDialog::OnButtonClickMMControl (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or
Stop.
Each of the ButtonClick events, by default, perform an MCI command when the user
chooses a button. The following table lists the MCI commands performed for each button in
the control.
Button Command
Back MCI_STEP
Step MCI_STEP
Play MCI_PLAY
Pause MCI_PAUSE
Prev MCI_SEEK
Next MCI_SEEK
Stop MCI_STOP
Record MCI_RECORD
Eject MCI_SET with the MCI_SET_DOOR_OPEN parameter
Setting the Cancel parameter for the ButtonClick event to True prevents the default MCI
command from being performed. The Cancel parameter can take either of the following
settings.
Setting Description
True Prevents the default MCI command from being performed.
False Performs the MCI command associated with the button after performing the

body of the appropriate ButtonClick event.
The body of an event procedure is performed before performing the default MCI command
associated with the event. Adding code to the body of the ButtonClick events augments the
functionality of the buttons. If you set the Cancel parameter to True within the body of an
event procedure or pass the value True as the argument to a ButtonClick event procedure,
the default MCI command associated with the event will not be performed.

Note Issuing a Pause command to restart a paused device can end pending notifications
from the original Play command if the device does not support the MCI Resume command.
The multimedia MCI control uses the MCI Play command to restart devices that do not
support the MCI Resume command. Notifications from the Play command that restarts a
paused device cancel callback conditions and supersede pending notifications from the
original play command.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

ButtonCompleted Event, Multimedia MCI Control

Description
Occurs when the MCI command activated by a multimedia MCI control button finishes.

Visual Basic
Sub MMControl_ButtonCompleted (Errorcode As Long)

Visual C++
Function Signature:
void CMyDialog::OnButtonCompletedMMControl (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or
Stop.
The Errorcode argument can take the following settings.
Setting Description
0 Command completed successfully.
Any other value Command did not complete successfully.
If the Cancel argument is set to True during a ButtonClick event, the ButtonCompleted
event is not triggered.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

ButtonGotFocus Event, Multimedia MCI Control

Description
Occurs when a button in the multimedia MCI control receives the input focus.

Visual Basic
Sub MMControl_ButtonGotFocus ()

Visual C++
Function Signature:
void CMyDialog::OnButtonGotFocusMMControl (UINT, int, CWnd*, LPVOID)

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or
Stop.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

ButtonLostFocus Event, Multimedia MCI Control

Description
Occurs when a button in the multimedia MCI control loses the input focus.

Visual Basic
Sub MMControl_ButtonLostFocus ()

Visual C++
Function Signature:
void CMyDialog::OnButtonLostFocusMMControl (UINT, int, CWnd*, LPVOID)

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or
Stop.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Done Event, Multimedia MCI Control

Description
Occurs when an MCI command for which the Notify property is True finishes.

Visual Basic
Sub MMControl_Done (NotifyCode As Long)

Visual C++
Function Signature:
void CMyDialog::OnDoneMMControl (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
The NotifyCode argument indicates whether the MCI command succeeded. It can take any
of the following settings.
Value Setting/Result
1 MCI_NOTIFY_SUCCESSFUL

Command completed successfully.
2 MCI_NOTIFY_SUPERSEDED

Command was superseded by another command.
4 MCI_NOTIFY_ABORTED

Command was aborted by the user.
8 MCI_NOTIFY_FAILURE

Command failed.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

StatusUpdate Event, Multimedia MCI Control

Description
Occurs automatically at intervals given by the UpdateInterval property.

Visual Basic
Sub MMControl_StatusUpdate ()

Visual C++
Function Signature:
void CMyDialog::OnStatusUpdateMMControl (UINT, int, CWnd*, LPVOID)

Remarks
This event allows an application to update the display to inform the user about the status of
the current MCI device. The application can obtain status information from properties such
as Position, Length, and Mode.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Outline
See Also                      Properties                          Events       Methods                          Error Messages

Description
The outline control is a special type of list box that allows you to display items in a list
hierarchically. This is useful for showing directories and files in a file system, which is the
technique used by the Windows File Manager. This is what the control looks like as an icon
in the Toolbox:

File Name
MSOUTLIN.VBX

Object Type
Outline

Remarks
The outline control displays items in a list box hierarchically. Each item can have
subordinate items, which are visually represented by indentation levels. When an item is
expanded, its subordinate items are visible; when an item is collapsed, its subordinate
items are hidden. Items in the outline control can also display graphical elements to
provide visual cues about the state of the item.

Constants
The values of the property and error constants are defined in the Visual Basic
CONSTANT.TXT file.

Distribution Note      When you create and distribute applications that use the outline
control, you should install the file MSOUTLIN.VBX in the customers Microsoft Windows \
SYSTEM subdirectory. The Setup Wizard included with Visual Basic provides tools to help
you write setup programs that install your applications.

See Also
Visual Elements
Hot Spots
Keyboard Interface

Visual Elements
The outline control can display graphics and text for each item in a list. An item can have
five visual elements:

Tree lines    vertical and horizontal lines that link items with subordinate items.
Indentation    an items level of subordination. Each level of indentation is a level of
subordination you specify with the Indent property.
Plus/minus pictures    indicate whether subordinate items are visible or hidden. When
the plus sign is clicked, subordinate items become visible and a minus sign replaces the
plus sign. When the minus sign is clicked, the subordinate items are hidden and a plus
sign replaces the minus sign.
Type pictures    indicate the state of an item. Type pictures typically show whether an
item with subordinate items can be expanded or collapsed. The state of an item is user-
defined.
Text    the string displayed for an item.

Hot Spots
Each graphical element    tree lines, plus/minus pictures, and type pictures    is a hot spot
graphic. Clicking a hot spot triggers a special set of events. The following diagram shows an
items possible hot spots.

Note      To select an item, you must click or double-click the text; you cant select an item
by clicking a graphical element.

Keyboard Interface
You can use the keyboard to select items in an outline controls list. The following table lists
the keys and their actions.
This key Moves focus
LEFt Arrow To the parent item, if the current item is subordinate.
RIGHt Arrow To the first subordinate item, if visible.
UP Arrow To the previous item, if any.
DOWN Arrow To the next item, if any.
HOME To the first item in the list.
END To the last item that is visible.
PAGE UP Backward one page, or to the first item currently displayed.
PAGE DOWN Forward one page, or to the last item currently displayed.
In addition, you can use two keys to expand and collapse an item that has subordinate
items.
Key Action
 + (plus sign) Expands an item.
      (minus sign)- Collapses an item.

Properties
The Properties for this control are listed in the following table. Properties that apply only to
the outline control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation on the remaining properties, see Appendix A, Standard
Properties, Events, and Methods.

Properties
BackColor FontUnderline Left *PictureOpen
BorderStyle ForeColor *List *PicturePlus
DragIcon1 *FullPath ListCount *PictureType
DragMode1 *HasSubItems ListIndex *Style
Enabled Height MousePointer TabIndex
*Expand HelpContextID1 Name2 TabStop
FontBold hWnd Parent1 Tag
FontItalic *Indent1 *PathSeparator Top
FontName Index *PictureClosed *TopIndex
FontSize *IsItemVisible *PictureLeaf Visible
FontStrikethru ItemData *PictureMinus Width

1 Available only in Visual Basic.
2 Equivalent to the CtlName property in Visual Basic 1.0 and Visual C++.

Events
All the events for this control are listed in the following table.    Events that apply only to the
outline control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation on the remaining events, see Appendix A, Standard
Properties, Events, and Methods.

Events
Click DragOver1 KeyPress MouseMove
*Collapse *Expand KeyUp MouseUp
DblClick GotFocus LostFocus *PictureClick
DragDrop1 KeyDown MouseDown *PictureDblClick

Methods
All the methods for this control are listed in the following table. Methods that apply only to
the outline control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation on the remaining methods, see Appendix A, Standard
Properties, Events, and Methods.

Methods
*AddItem Drag1 Refresh SetFocus1
Clear Move *RemoveItem ZOrder1

Expand Property

Description
Specifies whether an item is expanded (subordinate items visible). If the Expand property is
set to True, the Expand event will be generated. Not available at design time.

Visual Basic
[form.]Outline1.Expand(index%)[= {True | False}]

Visual C++
pOutline->GetNumProperty("Expand", index)
pOutline->SetNumProperty("Expand", {TRUE | FALSE}, index)

Remarks
The following table lists the Expand property settings for the outline control.
Setting Description
True The item has expanded (visible) subordinate items.
False The items subordinate items, if any, are collapsed (hidden).
The Expand property gives you programmatic control over expanding and collapsing
subordinate items. This can be useful when the outline control is context-sensitive in
relation to other control values.
If an item is collapsed and you set Expand to True, the outline control will generate the
run-time error Parent Not Expanded.

Data Type
Integer (Boolean)

FullPath Property

Description
Returns the fully qualified name of an item. The fully qualified name is the concatenation of
the item with its parent item, the parent items parent item, and so on until the parent item
at indentation level 1 is reached. The FullPath property is an array whose index values
correspond to the items in the list. Not available at design time and read-only at run time.

Visual Basic
[form.]Outline1.FullPath(index)

Visual C++
pOutline->GetStrProperty("FullPath")

Remarks
If the first item in the outline control has an indentation level of 0 and is visible, then the
FullPath property includes the first item.
Use the PathSeparator property to create a delimiter between the components of the
FullPath property. This is useful when the outline control contains file-system components
such as directory names and file names.

Using the preceding figure of the outline control, the following code returns the FullPath
value of the selected item. First the code sets the PathSeparator property to \, which means
that all items in the value returned by FullPath are delimited by this string. Next, the
FullName$ variable is set to the FullPath property of the currently selected item:
Outline1.PathSeparator = "\"
FullName$ = Outline1.FullPath(Outline1.ListIndex)

The value of FullName$ is vb\clipart\business.

Data Type
String

HasSubItems Property

Description
Returns whether an item has subordinate items. The HasSubItems property is an array
whose index values correspond to the items in the list. Not available at design time and
read-only at run time.

Visual Basic
[form.]Outline1.HasSubItems(index)

Visual C++
pOutline->GetNumProperty("HasSubItems")

Remarks
If an item has subordinate items, the HasSubItems property will return True regardless of
whether the subordinate items are visible. To determine whether a specific item is visible,
use the IsItemVisible property.
Use the HasSubItems property to determine which type picture to display for an item. For
example, the following code sets a different type picture for each item depending on the
return value of HasSubItems:
For i = 0 To Outline1.ListCount - 1
If Outline1.HasSubItems(i) Then
Outline1.PictureType(i) = MSOUTLINE_PICTURE_OPEN

Else
Outline1.PictureType(i) = MSOUTLINE_PICTURE_LEAF

End If
Next

Data Type
Integer (Boolean)

Indent Property

Description
Sets and returns the indentation level for the specified index in the list. The Indent property
is an array whose index values correspond to the items in the list. Not available at design
time.

Visual Basic
[form.]Outline1.Indent(index)[= indentation%]

Visual C++
pOutline->GetNumProperty("Break", index)
pOutline->SetNumProperty("Break", indentation, index)

Remarks
If the value of indentation% is two or more than its parents indentation level, the run-time
error Bad Outline Indentation will be generated. For example, if the first item in a list has an
indentation value of 1, and you set the second item to an indentation value of 3, the run-
time error will occur.
An indentation level of 0 has two meanings. If an item is first, an indentation level of 0
means it is the root item in a hierarchy (for example, a drive letter). This is true only for
controls whose Style property includes pictures and tree lines. If an item is not first, an
indentation level of 0 means it is not visible until the indentation level is greater than 0.
If index refers to an item that does not exist, the outline control will automatically add
additional items to the list and the ListCount property will be adjusted. For example, notice
what happens when you create an outline control and specify the following code in the
Form_Load procedure:
Sub Form_Load ()
' Set indentation level.
Outline1.Indent(3) = 1

End Sub

Since index refers to 3, the outline control automatically adds 4 items to its list. However,
the list will not display any items until you add items to the list with the AddItem method,
or set items using the List property.

Data Type
Integer

IsItemVisible Property

Description
Returns whether an item is currently visible. The IsItemVisible property is an array whose
index values correspond to the items in the list. Not available at design time and read-only
at run time.

Visual Basic
[form.]Outline1.IsItemVisible(index)

Visual C++
pOutline->GetNumProperty("IsItemVisible", index)
pOutline->SetNumProperty("IsItemVisible", {TRUE | FALSE}, index)

Data Type
Integer (Boolean)

List Property

Description
Determines the items contained in the controls list portion. The list is a string array in
which each element is a list item. Not available at design time.

Visual Basic
[form.]Outline1.List(index)[= itemstring$]

Visual C++
pOutline->GetStrProperty("List", index)
pOutline->SetStrProperty("List", itemstring, index)

Remarks
The outline controls List property is similar to the standard List property for list boxes,
except for the following difference: If the index of the item doesnt exist, the outline control
will automatically add additional items to the list, and the ListCount property will be
adjusted. However, the items are not visible until the indentation level is greater than 0.

Data Type
String

PathSeparator Property

Description
Sets and returns the item delimiter string used when accessing the FullPath property. The
default value is the backslash character (\).

Visual Basic
[form.]Outline1.PathSeparator[= delimiter$]

Visual C++
pOutline->GetStrProperty("PathSeparator")
pOutline->SetStrProperty("PathSeparator", delimiter)

Remarks
For a code example of the PathSeparator property, see the Remarks section for the FullPath
property.

Data Type
String

PictureClosed, PictureOpen, PictureLeaf Properties

Description
Set and return the type picture associated with the PictureType property. Each item in the
outline control has a PictureType equal to 0, 1 or 2. A PictureType of 0 refers to the
PictureClosed picture; 1 refers to PictureOpen; 2 refers to PictureLeaf.

Visual Basic
[form.]Outline1.PictureClosed[= picture%]
[form.]Outline1.PictureOpen[= picture%]
[form.]Outline1.PictureLeaf[= picture%]

Visual C++
pOutline->GetPictureProperty("PictureClosed")
pOutline->SetPictureProperty("PictureClosed", picture)
pOutline->GetPictureProperty("PictureOpen")
pOutline->SetPictureProperty("PictureOpen", picture)
pOutline->GetPictureProperty("PictureLeaf")
pOutline->SetPictureProperty("PictureLeaf", picture)

Remarks
To display a type picture, the Style property must be set to 1, 3, or 5.
The PictureClosed, PictureOpen, and PictureLeaf properties can display either bitmap files
(*.BMP) or icon files (*.ICO).
If you dont set a value for PictureClosed, PictureOpen, and PictureLeaf, the outline control
will use default pictures. You can also change the picture value at run time (for example,
using the return value of the LoadPicture statement). In addition, the default bitmaps
CLOSED.BMP, OPEN.BMP, and LEAF.BMP are provided in the Visual Basic \BITMAPS\OUTLINE
subdirectory.

Data Type
Integer

PictureMinus, PicturePlus Properties

Description
PictureMinus    sets and returns the picture for an item whose subordinate items can be
collapsed.
PicturePlus    sets and returns the picture for an item whose subordinate items can be
expanded.

Visual Basic
[form.]Outline1.PictureMinus[= picture%]
[form.]Outline1.PicturePlus[= picture%]

Visual C++
pOutline->GetPictureProperty("PictureMinus")
pOutline->SetPictureProperty("PictureMinus", picture)
pOutline->GetPictureProperty("PicturePlus")
pOutline->SetPictureProperty("PicturePlus", picture)

Remarks
To display plus/minus pictures, the Style property must be set to 2 or 3.
The PictureMinus and PicturePlus properties can display either bitmap files (*.BMP) or icon
files (*.ICO).
If you dont set a value for PictureMinus and PicturePlus, the outline control will use default
pictures. You can also change the picture value at run time (for example, using the return
value of the LoadPicture statement). In addition, the default bitmaps MINUS.BMP and
PLUS.BMP are provided in the Visual Basic \BITMAPS\OUTLINE subdirectory.

Data Type
Integer

PictureType Property

Description
Sets and returns an integer representing the PictureClosed, PictureOpen, or PictureLeaf
picture. The PictureType property is an array whose index values correspond to the items in
the list. Not available at design time.

Visual Basic
[form.]Outline1.PictureType(index)[= type%]

Visual C++
pOutline->GetNumProperty("PictureType", index)
pOutline->SetNumProperty("PictureType", type, index)

Remarks
The following table lists the PictureType property settings for the outline control.
Constant Value Description
MSOUTLINE_PICTURE_CLOSED 0 Use PictureClosed picture.
MSOUTLINE_PICTURE_OPEN 1 Use PictureOpen picture.
MSOUTLINE_PICTURE_LEAF 2 Use PictureLeaf picture.
If you dont set a value for PictureClosed, PictureOpen, and PictureLeaf, the outline control
will use default pictures.

Data Type
Integer

Style Property

Description
Set and returns the style of graphics and text that appear for each item in the outline
control.

Visual Basic
[form.]Outline1.Style[= style%]

Visual C++
pOutline->GetNumProperty("Style")
pOutline->SetNumProperty("Style", style)

Remarks
The following table lists the Style property settings for the outline control.
Setting Description
0 Text only.
1 Picture and text.
2 (Default) Plus/minus and text.
3 Plus/minus, picture, and text.
4 Tree lines and text.
5 Tree lines, picture, and text.
Graphical elements are tree lines, plus/minus pictures, and type pictures. Here are two
examples of what you can display:

Data Type
Integer (Enumerated)

TopIndex Property

Description
Sets and returns the item that appears in the topmost position in the outline control. If the
specified item is not visible because it is collapsed, the next visible item will be set. The
default is 0, or the first item. Not available at design time.

Visual Basic
[form.]Outline1.TopIndex[= top%]

Visual C++
pOutline->GetNumProperty("TopIndex")
pOutline->SetNumProperty("TopIndex", top)

Data Type
Integer

Collapse Event
Description
Generated whenever an item is collapsed, which means the items subordinate items are
hidden.

Visual Basic
Sub Outline_Collapse ([Index As Integer,] I As Integer)

Visual C++
Function Signature:
void CMyDialog::OnOutlineCollapse (UINT, int, CWnd*, LPVOID /

lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
This event passes I, the index of the item in the list that was closed.

Expand Event

Description
Generated whenever an item is expanded, which means the items subordinate items are
visible.

Visual Basic
Sub Outline_Expand ([Index As Integer,] I As Integer)

Visual C++
Function Signature:
void CMyDialog::OnOutlineExpand (UINT, int, CWnd*, LPVOID /

lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
This event passes I, the index of the item in the list that was expanded.
You can use the Expand event to change an items type picture. For example, you can
display one picture when an item is expanded, and a different picture when the item is
collapsed. The following code displays the PictureOpen picture when the item is expanded:
Sub Outline1_Expand (I As Long)
If Outline1.HasSubItems(I) Then
Outline1.PictureType(I) = MSOUTLINE_PICTURE_OPEN

End If
End Sub

Note      If you set an items Expand property to True, an Expand event will occur even if the
item has no subordinate items.

PictureClick Event

Description
Generated whenever a type picture associated with an item is clicked.

Visual Basic
Sub Outline_PictureClick ([Index As Integer,] I As Integer)

Visual C++
Function Signature:
void CMyDialog::OnOutlinePictureClick (UINT, int, CWnd*, LPVOID /

lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
This event passes I, the index of the item whose picture was clicked.

PictureDblClick Event

Description
Generated whenever a type picture associated with an item is double-clicked.

Visual Basic
Sub Outline_PictureDblClick ([Index As Integer,] I As Integer)

Visual C++
Function Signature:
void CMyDialog::OnOutlinePictureDblClick (UINT, int, CWnd*, LPVOID /

lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
This event passes I, the index of the item whose picture was double-clicked.

AddItem Method

Description
Adds an item to the outline control at run time.

Visual Basic
[form.]Outline1.AddItem item [, index%]

Visual C++
pOutline->AddItem(item, index)

Remarks
If index% is specified and refers to an existing item, the new item is inserted into the list,
using the existing items indentation level. However, if index% is specified and the item
doesnt exist, the item is added with the indentation level set to 0. If an items indentation
level is 0 and it is not the first item in the outline control, the item will not be visible until its
indentation level is greater than 0.
If index% is not specified, the currently selected item determines where the new item is
added. For example, if the ListIndex property is set to 2, the new item is added to the end
of the subordinate items for the item whose ListIndex value is 2. In the case where
ListIndex is set to     1 (no item selected), the item is added to the end of the list with an
indentation level of 1.

RemoveItem Method

Description
Removes an item and its subordinate items from the outline control at run time.

Visual Basic
[form.]Outline1.RemoveItem index%

Visual C++
pOutline->RemoveItem(index)

Remarks
When applied to a standard list box or combo box control, the RemoveItem method
removes only the item specified by the index% argument. However, when applied to the
outline control, the RemoveItem method removes both the specified item and all of its
subordinate items.

Error Messages
The following table lists the trappable errors for the outline control.
Error number Message explanation
32000 MSOUTLINE_BADPICFORMAT

Picture Format Not Supported.
Only bitmap files (*.BMP) and icon files (*.ICO) are valid picture formats.

32001 MSOUTLINE_BADINDENTATION
Bad Outline Indentation.
The indentation value for the item is two or more than the indentation
level of its parent.

32002 MSOUTLINE_MEM
Out of Memory.
Too many items (6537 maximum) are in the list, or too much string space
has been used.

32003 MSOUTLINE_PARENTNOTEXPANDED
Parent Not Expanded.
An item must be visible (expanded) in order to expand its subordinate
items.

 Pen Edit Controls
Properties Methods Events Functions                    Error Messages

Description
The pen edit custom controls (BEdit and HEdit) allow you to develop pen-aware applications
under the Microsoft Windows for Pen Computing environment. The application designer
may substitute these custom controls for the standard input controls.
The HEdit control is a pen-enhanced version of the text box control. The BEdit, or boxed
edit control, provides the application with comb or box style guides that accept pen input.
Each segment or box accepts only a single character of input.

Note This control requires Microsoft Windows for Pen Computing.

File Name
PENCNTRL.VBX

Object Type
VBEdit, VHEdit

Remarks
The HEdit and BEdit controls are similar to the standard Visual Basic text box, except that
the user enters data into these controls using a pen instead of typing at the keyboard.
The HEdit control accepts free-form input from the user. This control supports most of the
Visual Basic text box properties; however, it does not have Dynamic Data Exchange (DDE)
capabilities.
The BEdit control expands upon the properties of the HEdit control and allows for additional
manipulation of the writing area. This control accepts a single character of input in each
box. This increases the accuracy of the recognition and in most cases is preferable to the
HEdit control.

Distribution Note When you create and distribute applications that use the pen edit
controls, you should install the file PENCNTRL.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to help you
write setup programs that install your applications correctly.

Properties
All of the properties for these controls are listed in the following table. Properties that apply
only to these controls, or that require special consideration when used with them, are
marked with an asterisk (*). For documentation of the remaining properties, see Appendix
A, "Standard Properties, Events, and Methods," in the Custom Control Reference.
Alignment *CombStyle hWnd Parent
BackColor *DelayRecog Index *ScrollBars
*BorderStyle Enabled *InflateBottom SelLength
*CellHeight *EraseInk *InflateLeft SelStart
*CellWidth FontBold *InflateRight SelText
*CharSet FontItalic *InflateTop TabIndex
*CombBaseLine FontName *InkColor TabStop
*CombColor Font Size *InkDataMode Tag
*CombEndHeight FontStrikethru *InkDataString Text
*CombEndMarker FontUnderline *InkWidth Top
*CombHeight ForeColor Left Visible
*CombNumCols Height MultiLine Width
*CombNumRows HelpContextID Name
*CombSpacing *hInk *OnTap
Text is the default value of the control.

Note The HelpContextID, Index, and Parent properties are only available in Visual Basic.
The Name property is the equivalent of the CtlName property in Visual Basic 1.0 and Visual
C++.

Events
All of the events for these controls are listed in the following table. Events that apply only
to these controls, or that require special consideration when used with them, are marked
with an asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
Change GotFocus KeyPress *RcResult
DragDrop KeyDown KeyUp *Update
DragOver

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for these controls are listed in the following table. For documentation on
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Move Refresh SetFocus ZOrder

Note The SetFocus and ZOrder methods are only available in Visual Basic.

Functions
All of the functions for these controls are listed in the following table. Functions that apply
only to these controls, or that require special consideration when used with them, are
marked with an asterisk (*). The following functions are only available in Visual Basic.
*CPointerToVBType *VBTypeToCPointer

BorderStyle Property, Pen Edit Controls

Description
Sets or returns the style of the control border.

Visual Basic
[form.]Penctrl.BorderStyle[= setting%]

Visual C++
pPenctrl->GetNumProperty("BorderStyle")
pPenctrl->SetNumProperty("BorderStyle", setting)

Remarks
The valid BorderStyle settings for a BEdit control are the same as for the standard Visual
Basic text and picture box controls. For the HEdit control, a new setting, underline, has
been added. The underline setting may only be used on a single-line HEdit control.
Setting Description
0 None.
1 (Default) Fixed Single.
2 Underline (HEdit only).

Data Type
Integer (Enumerated)

CellHeight, CellWidth Properties, Pen Edit Controls

Description
Set or return the height and width of the encapsulating cell for a comb- or box-style BEdit
control.

Visual Basic
[form.]BEdit.CellHeight[= setting&]
[form.]BEdit.CellWidth[= setting&]

Visual C++
pBEdit->GetNumProperty("CellHeight")
pBEdit->SetNumProperty("CellHeight", setting)
pBEdit->GetNumProperty("CellWidth")
pBEdit->SetNumProperty("CellWidth", setting)

Remarks
CellHeight determines the maximum settings for the CombBaseLine, CombEndHeight, and
CombHeight properties. CellWidth limits the CombSpacing.
These properties use the ScaleMode property setting of the underlying form, frame, or
picture box. For example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit
control is placed on that form, the CellHeight and CellWidth properties for that control are
measured in pixels. In Visual C++, all dimensions are in pixels.

Data Type
Long

CharSet Property, Pen Edit Controls

Description
Sets or returns the set of characters that will be recognized.

Visual Basic
[form.]Penctrl.CharSet[= setting%]

Visual C++
pPenctrl->GetNumProperty("CharSet")
pPenctrl->SetNumProperty("CharSet", setting)

Remarks
At design time, the CharSet property is set using the custom dialog. At run time, you must
calculate the character set by summing the value of your choices (inclusive Or) according
to the Alphabet codes found in the PENAPI.TXT file (Visual Basic) or the PENWIN.H file
(Visual C++).
The following table lists the CharSet property settings for the pen edit controls.
Setting Description
ALC_DEFAULT (Default) A recognizer-dependent set of characters. The default

system-wide character set always includes alphanumeric and white-
space characters, punctuation marks, and gestures.

ALC_LCALPHA Lowercase alphabetic characters.
ALC_UCALPHA Uppercase alphabetic characters.
ALC_NUMERIC Numeric characters: 0 through 9.
ALC_PUNC Punctuation: ! - ; ' " ? () & : .
ALC_MATH Math symbols: % ^ * () + = { } < >, / | .

ALC_MONETARY Monetary symbols (for example: $, .)
ALC_OTHER All symbols not included in the preceding sets, for example [] _ ~.
ALC_WHITE Spaces between characters.
ALC_GESTUREGestures.
Data Type
Integer

CombBaseLine Property, Pen Edit Controls

Description
Sets or returns the distance from the top of the encapsulating cell to the base of the box or
comb guide of a BEdit control.

Visual Basic
[form.]BEdit.CombBaseLine[= setting&]

Visual C++
pBEdit->GetNumProperty("CombBaseLine")
pBEdit->SetNumProperty("CombBaseLine", setting)

Remarks
CombBaseLine may range from 0 to the CellHeight. CombBaseLine also restricts the
CombEndHeight and CombHeight properties.
This property uses the ScaleMode property setting of the underlying form, frame, or picture
box. For example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit control is
placed on that form, the CombBaseLine property for that control is measured in pixels. In
Visual C++, all dimensions are in pixels.

Data Type
Long

CombColor Property, Pen Edit Controls

Description
Sets or returns the color of the comb or box guides displayed within a BEdit control.

Visual Basic
[form.]BEdit.CombColor[= color&]

Visual C++
pBEdit->GetNumProperty("CombColor")
pBEdit->SetNumProperty("CombColor", color)

Remarks
The following table lists the CombColor property settings for the pen edit controls.
Setting Description
&H80000006& (Default) Window frame color as set in the Windows Control Panel. This

corresponds to the WINDOW_FRAME constant defined in the Visual Basic
CONSTANT.TXT file or the Visual C++ WINDOWS.H file.

(color) In Visual Basic, color specified by using the RGB scheme or the QBColor
function in code. In Visual C++, use the MAKESYSCOLOR macro defined in
the AFXEXT.H file to create system color constants. Standard RGB colors
can be used in Visual C++ as well.

Data Type
Long

CombEndHeight Property, Pen Edit Controls

Description
CombEndHeight sets or returns the height of the teeth in the comb in a comb-style BEdit
control.

Visual Basic
[form.]BEdit.CombEndHeight[= setting&]

Visual C++
pBEdit->GetNumProperty("CombEndHeight")
pBEdit->SetNumProperty("CombEndHeight", setting)

Remarks
The CombEndHeight property sets the height of the beginning and end teeth of the comb.
This property has no effect when the BEdit control is in box style.

Note The value of the CombHeight and CombEndHeight properties cannot exceed the
CombBaseLine value.
In Visual Basic, these properties use the ScaleMode property setting of the underlying form,
frame, or picture box. For example, if a form's ScaleMode property is set to 3 (pixels), and a
BEdit control is placed on that form, the CombEndHeight and CombHeight properties for
that control are measured in pixels. In Visual C++, all the dimensions are in pixels.

Data Type
Long

CombEndMarker Property, Pen Edit Controls

Description
Determines whether the BEdit control end-of-text marker is visible.

Visual Basic
[form.]BEdit.CombEndMarker[= {True | False}]

Visual C++
pBEdit->GetNumProperty("CombEndMarker")
pBEdit->SetNumProperty("CombEndMarker", {TRUE | FALSE})

Remarks
The following table lists the CombEndMarker property settings for the pen edit controls.
Setting Description
True (Default) End-of-text marker is displayed.
False End-of-text marker is not displayed.

Data Type
Integer (Boolean)

CombHeight Property, Pen Edit Controls

Description
CombHeight sets or returns the height of the box in a box-style BEdit control.

Visual Basic
[form.]BEdit.CombHeight[= setting&]

Visual C++
pBEdit->GetNumProperty("CombHeight")
pBEdit->SetNumProperty("CombHeight", setting)

Remarks
The CombHeight property sets the height of the inner teeth of the comb. This setting is the
height of the boxes when the BEdit control is in box style.

Note The value of the CombHeight and CombEndHeight properties cannot exceed the
CombBaseLine value.
In Visual Basic, these properties use the ScaleMode property setting of the underlying form,
frame, or picture box. For example, if a form's ScaleMode property is set to 3 (pixels), and a
BEdit control is placed on that form, the CombEndHeight and CombHeight properties for
that control are measured in pixels. In Visual C++, all the dimensions are in pixels.

Data Type
Long

CombNumCols, CombNumRows Properties, Pen Edit Controls

Description
Return the number of columns and rows displayed in a BEdit control. These properties are
not available at design time and are read-only at run time.

Visual Basic
[form.]BEdit.CombNumCols
[form.]BEdit.CombNumRows

Visual C++
pBEdit->GetNumProperty("CombNumCols")
pBEdit->GetNumProperty("CombNumRows")

Remarks
The CombNumCols property returns the number of columns in a BEdit control. The
CombNumRows property returns the number of rows. These settings are dependent on the
dimensions of the control and on the CellHeight and CellWidth properties. CombNumRows
will always be 1 if the MultiLine property is set to False.

Data Type
Integer

CombSpacing Property, Pen Edit Controls

Description
Sets or returns the distance between the side of the encapsulating cell walls and the side of
the comb or box guide.

Visual Basic
[form.]BEdit.CombSpacing[= setting&]

Visual C++
pBEdit->GetNumProperty("CombSpacing")
pBEdit->SetNumProperty("CombSpacing", setting)

Remarks
The distance specified in the CombSpacing property is applied to both sides of the box and
the comb guide area. CombSpacing cannot be greater than half the CellWidth.
This property uses the ScaleMode property setting of the underlying form, frame, or picture
box. For example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit control is
placed on that form, the CombSpacing property for that control is measured in pixels. In
Visual C++, all dimensions are in pixels.

Data Type
Long

CombStyle Property, Pen Edit Controls

Description
Sets or returns the BEdit style type.

Visual Basic
[form.]BEdit.CombStyle[= setting%]

Visual C++
pBEdit->GetNumProperty("CombStyle")
pBEdit->SetNumProperty("CombStyle", setting)

Remarks
The following table lists the CombStyle property settings for the pen edit controls.
Setting Description
0 (Default) Comb style.
1 Box style.

Data Type
Integer (Enumerated)

DelayRecog Property, Pen Edit Controls

Description
Determines whether the control recognizes the user's writing immediately or leaves it as
ink on the control for recognition at a later time.

Visual Basic
[form.]Penctrl.DelayRecog[= {True | False}]

Visual C++
pPenctrl->GetNumProperty("DelayRecog")
pPenctrl->SetNumProperty("DelayRecog", {TRUE | FALSE})

Remarks
The following table lists the DelayRecog property settings for the pen edit controls.
Setting Description
False (Default) Recognition is not delayed.
True Recognition is delayed; writing remains as ink.
When DelayRecog is set to True, all writing remains as ink on the control until the property
is set to False. When it is changed from True to False, the OnTap property is examined. If
OnTap is True, recognition of the collected ink takes place when the user taps on the
control with the pen; otherwise, recognition occurs immediately.
When DelayRecog is set to True, the RcResult event occurs after the pen recognition time
has elapsed. You can set the time-out for the entire system through the control panel.
Any writing performed on the control while DelayRecog is set to False is recognized
according to the user preferences set in the control panel.

Data Type
Integer (Boolean)

EraseInk Property, Pen Edit Controls

Description
Setting the EraseInk property to True will erase any ink in a control if DelayRecog is True.
This property is not available at design time.

Visual Basic
[form.]Penctrl.EraseInk[= {True | False}]

Visual C++
pPenctrl->GetNumProperty("EraseInk")
pPenctrl->SetNumProperty("EraseInk", {TRUE | FALSE})

Remarks
If a control has DelayRecog set to True, the action of setting EraseInk to True causes any
ink in the control to be erased. The property setting reverts to False immediately after
being set. It is used somewhat like a method rather than a property. Changing this property
has no effect on a control if DelayRecog is set to False.

Data Type
Integer (Boolean)

hInk Property, Pen Edit Controls

Description
Returns a handle to an ink structure (HPENDATA) used by Microsoft Windows for Pen
Computing. This property is not available at design time and is read-only at run time.

Visual Basic
[form.]Penctrl.hInk

Visual C++
pPenctrl->GetNumProperty("hInk")

Remarks
The operating environment provides the handle, which you can use to call Microsoft
Windows for Pen Computing API functions that require a handle to a PENDATA structure.
Refer to the Microsoft Windows for Pen Computing Programmer's Reference for details on
handles to pen data.

Data Type
Integer

InflateBottom Property, Pen Edit Controls

Description
Sets or returns the area around a control's boundary onto which ink will be allowed.

Visual Basic
[form.]Penctrl.InflateBottom[= setting&]

Visual C++
pPenctrl->GetNumProperty("InflateBottom")
pPenctrl->SetNumProperty("InflateBottom", setting)

Remarks
This property defines a boundary around the control onto which ink can be placed after
initially starting to draw ink within the control. This property must have a value greater
than or equal to zero.
The settings are only applicable if the control is not in delayed-recognition mode (that is,
the DelayRecog property is False). In delayed-recognition mode, ink cannot be drawn
outside a control's boundary.

Data Type
Long

InflateLeft Property, Pen Edit Controls

Description
Sets or returns the area around a control's boundary onto which ink will be allowed.

Visual Basic
[form.]Penctrl.InflateLeft[= setting&]

Visual C++
pPenctrl->GetNumProperty("InflateLeft")
pPenctrl->SetNumProperty("InflateLeft", setting)

Remarks
This property defines a boundary around the control onto which ink can be placed after
initially starting to draw ink within the control. This property must have a value greater
than or equal to zero.
The settings are only applicable if the control is not in delayed-recognition mode (that is,
the DelayRecog property is False). In delayed-recognition mode, ink cannot be drawn
outside a control's boundary.

Data Type
Long

InflateRight Property, Pen Edit Controls

Description
Sets or returns the area around a control's boundary onto which ink will be allowed.

Visual Basic
[[form.]Penctrl.InflateRight[= setting&]

Visual C++
pPenctrl->GetNumProperty("InflateRight")
pPenctrl->SetNumProperty("InflateRight", setting)

Remarks
This property defines a boundary around the control onto which ink can be placed after
initially starting to draw ink within the control. This property must have a value greater
than or equal to zero.
The settings are only applicable if the control is not in delayed-recognition mode (that is,
the DelayRecog property is False). In delayed-recognition mode, ink cannot be drawn
outside a control's boundary.

Data Type
Long

InflateTop Property, Pen Edit Controls

Description
Sets or returns the area around a control's boundary onto which ink will be allowed.

Visual Basic
[form.]Penctrl.InflateTop[= setting&]

Visual C++
pPenctrl->GetNumProperty("InflateTop")
pPenctrl->SetNumProperty("InflateTop", setting)

Remarks
This property defines a boundary around the control onto which ink can be placed after
initially starting to draw ink within the control. This property must have a value greater
than or equal to zero.
The settings are only applicable if the control is not in delayed-recognition mode (that is,
the DelayRecog property is False). In delayed-recognition mode, ink cannot be drawn
outside a control's boundary.

Data Type
Long

InkColor Property, Pen Edit Controls

Description
Sets or returns the ink color.

Visual Basic
[form.]Penctrl.InkColor[= color&]

Visual C++
pPenctrl->GetNumProperty("InkColor")
pPenctrl->SetNumProperty("InkColor", color)

Remarks
The following table lists the InkColor property settings for the pen edit controls.
Setting Description
&H8000000F& (Default) Pen ink color as set in the Control Panel for Microsoft

Windows for Pen Computing.
(color) In Visual Basic, color specified by using the RGB scheme or the

QBColor function in code. In Visual C++, use the MAKESYSCOLOR
macro defined in the AFXEXT.H file to create system color constants.
Standard RGB colors can be used in Visual C++ as well.

Data Type
Long

InkDataMode Property, Pen Edit Controls

Description
Sets or returns the mode that controls how the InkDataString data is used.

Visual Basic
[form.]Penctrl.InkDataMode[= setting%]

Visual C++
pPenctrl->GetNumProperty("InkDataMode")
pPenctrl->SetNumProperty("InkDataMode", setting)

Remarks
The following table lists the InkDataMode property settings for the pen edit controls.
Setting Description
0 (Default) Replaces any ink that may be in the control when data is assigned to

the InkDataString property.
1 Merges the currently displayed ink when ink data is assigned to the

InkDataString property.
Data Type
Integer (Enumerated)

InkDataString Property, Pen Edit Controls

Description
Sets or returns a string containing the compressed ink data associated with the control.
This property is only available at run time.

Visual Basic
[form.]Penctrl.InkDataString[= inkdatastring$]

Visual C++
pPenctrl->GetStrProperty("InkDataString")
pPenctrl->SetStrProperty("InkDataString", inkdatastring)

Remarks
When a string is assigned to a control with DelayRecog set to True, the InkDataMode is
checked to determine whether the new ink data replaces the existing ink, or if the new ink
is merged with the existing ink. Assigning invalid or uncompressed ink data to the
InkDataString property generates a run-time error.
If the control has DelayRecog set to False and ink data is assigned to the control's
InkDataString property, then the ink is immediately recognized as if it were written on the
control. If InkDataMode is set to '0 - Replace' when this assignment is done, then any
existing text in the control is replaced by the result from recognizing the ink. Otherwise, the
new recognition result is appended to the text in the control.
When DelayRecog is set to False on a control, the InkDataString property is always a null
string ("").

Data Type
String

InkWidth Property, Pen Edit Controls

Description
Sets or returns the width of the ink that is drawn.

Visual Basic
[form.]Penctrl.InkWidth[= setting%]

Visual C++
pPenctrl->GetNumProperty("InkWidth")
pPenctrl->SetNumProperty("InkWidth", setting)

Remarks
The InkWidth setting defaults to 1, which tells the control to use the system default ink
width (as set using the Control Panel). The valid range for the InkWidth property is 0 to 15
pixels. No ink is displayed when InkWidth is set to 0.

Data Type
Integer

OnTap Property, Pen Edit Controls

Description
Determines whether the control recognizes the user's writing immediately upon changing
the DelayRecog property from True to False or waits until the user taps the control.

Visual Basic
[form.]Penctrl.OnTap[= {True | False}]

Visual C++
pPenctrl->GetNumProperty("OnTap")
pPenctrl->SetNumProperty("OnTap", {TRUE | FALSE})

Remarks
The following table lists the OnTap property settings for the pen edit controls.
Setting Description
False (Default) Recognition is not delayed after DelayRecog is set to False.
True Recognition is delayed until the user taps the control (after DelayRecog is set

to False).
When DelayRecog is set to False, this property has no effect on the control. Its state is
examined only when the DelayRecog property is changed from True to False.

Data Type
Integer (Boolean)

ScrollBars Property, Pen Edit Controls

Description
Determines if the control has horizontal or vertical scroll bars.

Visual Basic
[form.]Penctrl.ScrollBars[= setting%]

Visual C++
pPenctrl->GetNumProperty("ScrollBars")
pPenctrl->SetNumProperty("ScrollBars", setting)

Remarks
The following table lists the ScrollBars property settings for the pen edit controls.
Setting Description
0 (Default) None
1 Horizontal (HEdit only)
2 Vertical
3 Both (HEdit only)
The settings for the ScrollBars property in a BEdit or HEdit control operate in the same
manner as the settings for a standard Visual Basic text box control.
Horizontal scroll bars are not allowed on BEdit controls.
You can change the value of the ScrollBars property at run time.

Data Type
Integer (Enumerated)

RcResult Event, Pen Edit Controls

Description
Occurs whenever the control receives recognition results from the recognizer. The returned
result can be used as a parameter to call the Pen API.

Visual Basic
Sub Penctrl_RcResult (RcResult As Long)

Visual C++
Function Signature:
void CMyDialog::OnRcResultPenctrl (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks
The RcResult event occurs whenever the recognizer returns any recognition results to the
control. The RcResult parameter of this event is a long pointer to the RCRESULT structure
that is returned by the recognizer to the control. The pointer to the RCRESULT structure is
valid only during the processing of this event.
The RCRESULT structure contains a symbol graph that describes the possible results from
the ink, a handle to the ink, and the best guess at the symbols. If DelayRecog is True, the
ink remains on the screen. In this case, RcResult is still valid but does not contain any
information about recognized symbols. For further information, consult the Microsoft
Windows for Pen Computing SDK documentation.
The PENCNTRL.VBX file provides two exported functions that you can call from your Visual
Basic program: CPointerToVBType and VBTypeToCPointer.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Update Event, Pen Edit Controls

Description
Occurs whenever the data in a control is changed.

Visual Basic
Sub Penctrl_Update ()

Visual C++
Function Signature:
void CMyDialog::OnUpdatePenctrl (UINT, int, CWnd*, LPVOID)

Remarks
The Update event occurs before the control redraws the data. This differs from the Change
event, which redraws the data before the event. You can use Update to format the new
data so that flashes do not appear. An Update event does not occur when an application
changes the text in the control using the Text property of the control.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

CPointerToVBType Function, Pen Edit Controls
Example

Description
Copies bytes from a system memory location to a Visual Basic variable memory location.

Visual Basic Syntax
CPointerToVBType(ByVal lpSrc As Long, vbDest As Any, ByVal cNum By Integer)

Remarks
Copies cNum number of bytes from a memory location pointed to by lpSrc and places them
in the vbDest memory location. This function is useful for manipulating the RcResult
parameter that is passed by the RcResult event.

CPointertoVBType Example, Pen Edit Controls

Visual Basic Example
The pen application in the \SAMPLES\PEN subdirectory uses the CPointerToVBType
function to copy the returned RcResult parameter into a Visual Basic variable in order to
modify the value:
Sub HEdit_RcResult (RcResult As Long)

Dim VBRC As RcResult ' RCRESULT Structure
.
.
.
Rem --- Get a copy of the RcResult Structure
CPointerToVBType ByVal RcResult, VBRC, 80

VBTypeToCPointer Function, Pen Edit Controls
Example

Description
Copies bytes from a Visual Basic variable memory location to a system memory location.

Visual Basic Syntax
VBTypeToCPointer(vbSrc As Any, ByVal lpDest As Long, ByVal cNum By Integer)

Remarks
Copies cNum number of bytes from a memory location pointed to by lpSrc and places them
in the vbDest memory location. This function is useful for manipulating the RcResult
parameter that is passed by the RcResult event.

VBTypeToCPointer Example, Pen Edit Controls

Visual Basic Example
The pen application in the \SAMPLES\PEN subdirectory uses the VBTypeToCPointer
function to copy the value of the modified Visual Basic variable into the memory location
specified by the RcResult parameter:
Sub HEdit1_RcResult (RcResult As Long)

Dim VBrc As RcResult ' VB Copy of the RcResult Structure
... // Process RcResult value

Rem --- Copy the Possibly modified RCResult back
VBTypeToCPointer VBRC, ByVal RcResult, 80

Error Messages, Pen Edit Controls
The following table lists the trappable errors for the pen edit controls.
Error Message
number explanation
32001 PENERR_INKWIDTH

InkWidth must be in range 0 15 or
1 for default.

This error is caused by setting the InkWidth property to an invalid value.
32002PENERR_NEGCELLWIDTH
CellWidth has to be greater than 0.

This error occurs if the CellWidth property is set to a value less than one.
32003PENERR_CELLWIDTH
CellWidth has to be greater than or equal to (CombSpacing * 2).

This error occurs if the CellWidth property is set to a value that is less than two times
the value of the CombSpacing property. Try setting CombSpacing to 0 before setting the
CellWidth property.
32004 PENERR_NEGCELLHEIGHT
CellHeight has to be greater than 0.

This error occurs if the CellHeight property is set to a value less than zero.
32005PENERR_CELLHEIGHT
CellHeight has to be greater than or equal to CombBaseLine.

This error occurs if the CellHeight property is set to a value less than the
CombBaseLine property. Change the CombBaseLine property before changing the CellHeight
property.
32006 PENERR_COMBSPACING

CombSpacing out of range (0 CellWidth / 2).
This error occurs if the CombSpacing property is set to a value that is either less than

zero or more than half the cell width.
32007PENERR_COMBBASELINE
CombBaseLine out of range (0 - CellHeight).

This error occurs if the CombBaseLine property is set to a value that is either less
than 0 or greater than the CellHeight property.
32009PENERR_COMBHEIGHT
CombHeight out of range (0 - CombBaseLine).

This error occurs if the CombHeight property is set to a value that is either less than
0 or greater than the value of the CombBaseLine property.
32010PENERR_COMBENDHEIGHT
CombEndHeight out of range (0 - CombBaseLine).

This error occurs if the CombEndHeight property is set to a value less than 0 or
greater than the value of the CombBaseLine property.
32011 PENERR_INFLATE

Inflate value has to be greater than or equal to 0.
This error occurs if either InflateTop, InflateLeft, InflateRight, or InflateBottom
property is set to a value less than zero.

32015 PENERR_MERGEFAILED
Unable to merge ink data.
The control was unable to merge new ink data with its existing ink data. This
error can occur when trying to merge a large amount of ink data.

32016 PENERR_INVALIDINKDATA
Invalid InkDataString format.
This error can occur when trying to assign invalid or uncompressed ink data to
the InkDataString property.

 Pen Ink-On-Bitmap Control
Properties Methods Events Error Messages

Description
The pen ink-on-bitmap control is an enhanced picture box control that allows the user to
draw and erase the ink on a bitmap. The ink refers to what you draw on top of the bitmap.
You can also save the ink in three ways: as a bitmap, as compressed ink, or as a combined
bitmap of the background image and the ink.

Note This control requires Microsoft Windows for Pen Computing.
In Visual Basic, the values of the error constants are in the PENAPI.TXT file in the \SAMPLES\
PEN subdirectory. In Visual C++, these values are in the CONSTANT.H file.

File Name
PENCNTRL.VBX

Object Type
InkOnBitmap

Distribution Note When you create and distribute applications that use the pen ink-on-
bitmap control, you should install the file PENCNTRL.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to
help you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*AutoSize *hDC *InkDataString TabIndex
BackColor HelpContextID *InkingMode TabStop
BorderStyle *hInk *InkPicture Tag
DragIcon hWnd *InkWidth Top
DragMode *Image Left Visible
Enabled Index Name Width
*EraseInk *InkColor Parent
Height *InkDataMode * Picture
Picture is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the equivalent of the CtlName property in
Visual Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
DragDrop GotFocus *IOBChange LostFocus
DragOver

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Move Refresh ZOrder

Note The Drag and ZOrder methods are only available in Visual Basic.

AutoSize Property, Pen Ink-On-Bitmap Control

Description
Determines the appearance of the background image in the pen ink-on-bitmap control.

Visual Basic
[form.]IOB.AutoSize[= setting%]

Visual C++
pIOB->GetNumProperty("AutoSize")
pIOB->SetNumProperty("AutoSize", setting)

Remarks
The following table lists the AutoSize property settings for the pen ink-on-bitmap control.
Setting Description
0 (Default) No automatic sizing takes place, and the image is displayed in the

upper-left corner of the control.
1 Automatically stretches the image to the size of the control.
2 Automatically adjusts the size of the control to exactly fit the bitmap.
3 Tiles the background image on the control.

Data Type
Integer (Enumerated)

EraseInk Property, Pen Ink-On-Bitmap Control

Description
Setting the EraseInk property to True erases any ink in the control. This property is not
available at design time.

Visual Basic
[form.]IOB.EraseInk[= {True | False}]

Visual C++
pIOB->GetNumProperty("EraseInk")
pIOB->SetNumProperty("EraseInk", {TRUE | FALSE})

Remarks
The property setting reverts to False immediately after being set to True.

Data Type
Integer (Boolean)

hDC Property, Pen Ink-On-Bitmap Control

Description
Returns a handle provided by the operating environment to the device context of the pen
ink-on-bitmap control. This property is not available at design time and is read-only at run
time.

Visual Basic
[form.]IOB.hDC

Visual C++
pIOB->GetNumProperty("hDC")

Remarks
This property is a Microsoft Windows device-context handle. Use this handle when you need
to pass an hDC value to Windows API function calls.
The device context is that of the combined bitmap image of the InkPicture picture and the
Picture property.

Data Type
Integer

hInk Property, Pen Ink-On-Bitmap Control

Description
Returns a handle to an ink structure (HPENDATA) used by Microsoft Windows for Pen
Computing. This property is not available at design time and is read-only at run time.

Visual Basic
[form.]IOB.hInk

Visual C++
pIOB->GetNumProperty("hInk")

Remarks
Use this handle when you need to make calls to Windows for Pen Computing API functions
that require a handle to a PENDATA structure. Refer to the Microsoft Windows for Pen
Computing Programmer's Reference for details on handles to pen data.

Data Type
Integer

Image Property, Pen Ink-On-Bitmap Control

Description
Returns a handle to a bitmap containing the combined Picture and InkPicture bitmaps. This
property is not available at design time and is read-only at run time.

Visual Basic
[form.]IOB.Image

Visual C++
pIOB->GetNumProperty("Image")

Data Type
Integer

InkColor Property, Pen Ink-On-Bitmap Control

Description
Sets or returns the ink color.

Visual Basic
[form.]IOB.InkColor[= color&]

Visual C++
pIOB->GetNumProperty("InkColor")
pIOB->SetNumProperty("InkColor", color)

Remarks
The following table lists the InkColor property settings for the pen ink-on-bitmap control.
Setting Description
&H8000000F(Default) Pen ink color as set in the Control Panel.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor

function in code. In Visual C++, use the MAKESYSCOLOR macro defined in the
AFXEXT.H file to create system color constants. Standard RGB colors can be
used in Visual C++ as well.

The color of the erase ink that is displayed while erasing is the nearest solid color to the
BackColor property of the control.

Data Type
Long

InkDataMode Property, Pen Ink-On-Bitmap Control

Description
Sets or returns the mode that controls how the InkDataString data is used.

Visual Basic
[form.]IOB.InkDataMode[= setting%]

Visual C++
pIOB->GetNumProperty("InkDataMode")
pIOB->SetNumProperty("InkDataMode", setting)

Remarks
The following table lists the InkDataMode property settings for the pen ink-on-bitmap
control.
Setting Description
0 (Default) Replaces any ink that may be in the control when data is assigned to

the InkDataString property.
1 Merges the currently displayed ink when ink data is assigned to the

InkDataString property.
Data Type
Integer (Enumerated)

InkDataString Property, Pen Ink-On-Bitmap Control

Description
Sets or returns a string containing the compressed ink data associated with the control.
This property is only available at run time.

Visual Basic
[form.]IOB.InkDataString[= inkdatastring$]

Visual C++
pIOB->GetStrProperty("InkDataString")
pIOB->SetStrProperty("InkDataString", inkdatastring)

Remarks
When a string is assigned to a control, the InkDataMode is checked to determine whether
the new ink data replaces the existing ink, or if the new ink is merged with the existing ink.
Assigning invalid or uncompressed ink data to the InkDataString property generates a run-
time error.

Data Type
String

InkingMode Property, Pen Ink-On-Bitmap Control

Description
Sets or returns the currently selected inking mode of the pen ink-on-bitmap control.

Visual Basic
[form.]IOB.InkingMode[= setting%]

Visual C++
pIOB->GetNumProperty("InkingMode")
pIOB->SetNumProperty("InkingMode", setting)

Remarks
The following table lists the InkingMode property settings for the pen ink-on-bitmap control.
Setting Description
0 Pen tip and barrel button disabled. No drawing or erasure takes place.
1 Pen tip draws ink. Barrel button is disabled.
2 Pen tip erases. Barrel button is disabled.
3 (Default) Pen tip draws ink. Barrel button, if pressed, sets pen tip to erase.
The color of the erase ink that is displayed while erasing is the nearest solid color to the
BackColor property of the control.

Note This property is hardware-dependent not all pen systems have a barrel button (or its
equivalent).

Data Type
Integer (Enumerated)

InkPicture Property, Pen Ink-On-Bitmap Control

Description
Returns a handle to a bitmap containing the ink in the color specified by the InkColor
property. This property is not available at design time and is read-only at run time.

Visual Basic
[form.]IOB.InkPicture

Visual C++
pIOB->GetPictureProperty("InkPicture")

Data Type
Integer

InkWidth Property, Pen Ink-On-Bitmap Control

Description
Sets or returns the width of the ink.

Visual Basic
[form.]IOB.InkWidth[= setting%]

Visual C++
pIOB->GetNumProperty("InkWidth")
pIOB->SetNumProperty("InkWidth", setting)

Remarks
The following table lists the InkWidth property settings for the pen ink-on-bitmap control.
Setting Description
1 (Default) Sets the ink width to the default system ink width (as defined in the

Control Panel).
0 No ink is displayed.
1 to 15 The range of valid, visible ink widths, in pixels.

Data Type
Integer

Picture Property, Pen Ink-On-Bitmap Control

Description
Specifies the graphic to be displayed as the background image on the pen ink-on-bitmap
control. This property is write-only at design time.

Visual Basic
[form.]IOB.Picture[= picture%]

Visual C++
pIOB->GetPictureProperty("Picture")
pIOB->SetPictureProperty("Picture", picture)

Remarks
The following table lists the Picture property settings for the pen ink-on-bitmap control.
Setting Description
(none) (Default) No image is used in the background.
(Bitmap) Designates that a bitmap is displayed in the background.
(Icon) Designates that an icon is displayed in the background.

Data Type
Integer

IOBChange Event, Pen Ink-On-Bitmap Control

Description
Indicates that the contents of the pen ink-on-bitmap control have changed. This occurs if
the Picture property is reassigned, or if inking or erasure occurs on the control.

Visual Basic
Sub IOB_IOBChange ()

Visual C++
Function Signature:
void CMyDialog::OnChangeIOB (UINT, int, CWnd*, LPVOID)

Remarks
The IOBChange event is generated after bitmaps are updated in the control.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Error Messages, Pen Ink-On-Bitmap Control
The following table lists the trappable run-time errors for the pen ink-on-bitmap control.
Error Message
number explanation
32001 PENNERR_INKWIDTH

InkWidth must be in range 0 15 or
 1 for default.

This error is caused by setting the InkWidth property to an invalid value.
32012PENERR_INVALIDPICTURE
Picture format not supported.

This error is caused by setting the InkPicture property to an invalid value. The control
can display only bitmap (.BMP) and icon (.ICO) format files.
32013PENERR_DISPLAYFAILED
Unable to display bitmap.

The control is unable to display the bitmap. This error can be caused by low memory.
32014PENERR_AUTOSIZEHW
Cannot change Height or Width while AutoSize equals 2.

When AutoSize is set to 2 (Adjust Window Size to Picture) on a control, its Height and
Width properties cannot be modified.
32015PENERR_MERGEFAILED
Unable to merge ink data.

The control was unable to merge new ink data with its existing ink data. This error
can occur when trying to merge a large amount of ink data.
32016PENERR_INVALIDINKDATA
Invalid InkDataString format.

This error can occur when trying to assign invalid or uncompressed ink data to the
InkDataString property.

 Pen On-Screen Keyboard Control
Properties Methods Events Error Messages

Description
The pen on-screen keyboard control allows you to directly access the Windows for Pen
Computing on-screen keyboard without having to use the Windows for Pen Application
Program Interface (API).

Note This control requires Microsoft Windows for Pen Computing.

This control provides a special command button that allows the user to display the on-screen
keyboard. The user can make the on-screen keyboard appear and disappear by clicking the
keyboard command button or by altering the value of the SKBVisible property of the control.
When the on-screen keyboard is activated, its output is sent to the control on the Visual
Basic form that currently has the focus. The on-screen keyboard never gets the focus.
Certain keys on the keyboard are sticky; that is, when the button is pressed once, the
button remains down until the user presses the button again. The SHIFT key is a sticky key.
In Visual Basic, the values of the error constants are in the PENAPI.TXT file in the \SAMPLES\
PEN subdirectory. In Visual C++, these values are in the CONSTANT.H file.

File Name
PENCNTRL.VBX

Object Type
SKBButton

Distribution Note When you create and distribute applications that use the pen on-
screen keyboard control, you should install the file PENCNTRL.VBX in the customer's
Microsoft Windows \SYSTEM subdirectory. The Setup Kit included with Visual Basic provides
tools to help you write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*AutoSize Name *SKBType
DragIcon Parent *SKBTypeStatus
DragMode *Picture *SKBVisible
Enabled *SKBLeft *SKBVisibleStatus
Height *SKBLeftStatus Tag
HelpContextID *SKBMin Top
hWnd *SKBMinStatus Visible
Index *SKBTop Width
Left *SKBTopStatus
Visible is the default value of the control.

Note The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only
available in Visual Basic. The Name property is the equivalent of the CtlName property in
Visual Basic 1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
Click DragDrop DragOver *SKBChange

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Move Refresh ZOrder

Note The Drag and ZOrder methods are only available in Visual Basic.

AutoSize Property, Pen On-Screen Keyboard Control

Description
Determines the appearance of the bitmap on the keyboard command button.

Visual Basic
[form.]SKB.AutoSize[= setting%]

Visual C++
pSKB->GetNumProperty("AutoSize")
pSKB->SetNumProperty("AutoSize", setting)

Remarks
The following table lists the AutoSize property settings for the pen on-screen keyboard
control.
Setting Description
0 (Default) No automatic sizing takes place, and the bitmap is centered within

the keyboard command button.
1 Automatically stretches the picture to the size of the keyboard command

button.
2 Automatically adjusts the size of the keyboard command button to exactly fit

the bitmap.
Data Type
Integer (Enumerated)

Picture Property, Pen On-Screen Keyboard Control

Description
Specifies a bitmap or an icon to display on the keyboard command button. This property is
write-only at design time.

Visual Basic
[form.]SKB.Picture[= picture%]

Visual C++
pSKB->GetPictureProperty("Picture")
pSKB->SetPictureProperty("Picture", picture)

Remarks
The following table lists the Picture property settings for the pen on-screen keyboard
control.
Setting Description
(none) No image is displayed on the button.
(Bitmap) (Default) A bitmap image is displayed on the button.
(Icon) An icon image is displayed on the button.
If the Picture property is set to (Bitmap) and you do not specify a bitmap image, a bitmap of
the keyboard is displayed on the button as the default image.
The keyboard command button automatically draws the button in the up, down, and
disabled states.

Data Type
Integer

SKBLeft, SKBTop Properties, Pen On-Screen Keyboard Control

Description
SKBLeft determines the distance between the left edge of the on-screen keyboard and the
left edge of the keyboard command button's container when the pen on-screen keyboard
control is active.
SKBTop determines the distance between the top edge of the on-screen keyboard and the
top edge of the keyboard command button's container when the pen on-screen keyboard
control is active.

Visual Basic
[form.]SKB.SKBLeft[= x&]
[form.]SKB.SKBTop[= y&]

Visual C++
pSKB->GetNumProperty("SKBLeft")
pSKB->SetNumProperty("SKBLeft", x)
pSKB->GetNumProperty("SKBTop")
pSKB->SetNumProperty("SKBTop", y)

Remarks
Use SKBLeft and SKBTop to set the position of the on-screen keyboard's upper-left corner.
The default value for the (x, y) position is (0, 0).
In Visual Basic, the units of measure for both properties are those of the underlying
container (that is, the form, picture, or frame), and are measured relative to the upper-left
corner of the container's window. In Visual C++, all dimensions are in pixels.

Data Type
Long

SKBLeftStatus, SKBTopStatus Properties, Pen On-Screen Keyboard
Control

Description
SKBLeftStatus returns the current distance between the left edge of the on-screen keyboard
and the left edge of the keyboard command button's container. This property is not
available at design time and is read-only at run time.
SKBTopStatus returns the current distance between the top edge of the on-screen keyboard
and the top edge of the keyboard command button's container. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]SKB.SKBLeftStatus
[form.]SKB.SKBTopStatus

Visual C++
pSKB->GetNumProperty("SKBLeftStatus")
pSKB->GetNumProperty("SKBTopStatus")

Remarks
The SKBLeftStatus and SKBTopStatus properties reflect the current state of the on-screen
keyboard. If the user moves the on-screen keyboard, these values are updated to reflect
the keyboard's actual position.

Note If the on-screen keyboard is not visible, the values of these properties may not be
valid.
In Visual Basic, the units of measure for both properties are those of the underlying
container (that is, the form, picture, or frame), and are measured relative to the upper-left
corner of the container's window. In Visual C++, all dimensions are in pixels.

Data Type
Long

SKBMin Property, Pen On-Screen Keyboard Control

Description
Determines whether the on-screen keyboard is minimized when the keyboard command
button is activated.

Visual Basic
[form.]SKB.SKBMin[= {True | False}]

Visual C++
pSKB->GetNumProperty("SKBMin")
pSKB->SetNumProperty("SKBMin", {TRUE | FALSE})

Remarks
The following table lists the SKBMin property settings for the pen on-screen keyboard
control.
Setting Description
True The on-screen keyboard is minimized when the keyboard command button is

activated.
False (Default) The on-screen keyboard is not minimized when the keyboard

command button is activated.
Data Type
Integer (Boolean)

SKBMinStatus Property, Pen On-Screen Keyboard Control

Description
Returns the current minimized state of the on-screen keyboard. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]SKB.SKBMinStatus

Visual C++
pSKB->GetNumProperty("SKBMinStatus")

Remarks
The following table lists the SKBMinStatus property settings for the pen on-screen keyboard
control.
Setting Description
True The on-screen keyboard is currently minimized.
False The on-screen keyboard is not currently minimized.

Data Type
Integer (Boolean)

SKBType Property, Pen On-Screen Keyboard Control

Description
Determines the type of on-screen keyboard that is displayed when the keyboard command
button is activated.

Visual Basic
[form.]SKB.SKBType[= setting%]

Visual C++
pSKB->GetNumProperty("SKBType")
pSKB->SetNumProperty("SKBType", setting)

Remarks
The following table lists the SKBType property settings for the pen on-screen keyboard
control.
Setting Description
0 (Default) A full keyboard is displayed.
1 A basic keyboard, without the numeric keypad, is displayed.
2 The numeric keypad is displayed.

Data Type
Integer (Enumerated)

SKBTypeStatus Property, Pen On-Screen Keyboard Control

Description
Returns the type of screen keyboard currently being displayed. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]SKB.SKBTypeStatus

Visual C++
pSKB->GetNumProperty("SKBTypeStatus")

Remarks
The following table lists the SKBTypeStatus property settings for the pen on-screen
keyboard control.
Setting Description
0 (Default) A full keyboard is displayed.
1 A basic keyboard, without the numeric keypad, is displayed.
2 The numeric keypad is displayed.

Data Type
Integer (Enumerated)

SKBVisible Property, Pen On-Screen Keyboard Control

Description
Sets or returns the visual state of the on-screen keyboard that occurs when the keyboard
command button is activated. This property is not available at design time.

Visual Basic
[form.]SKB.SKBVisible[= {True | False}]

Visual C++
pSKB->GetNumProperty("SKBVisible")
pSKB->SetNumProperty("SKBVisible", {TRUE | FALSE})

Remarks
The SKBVisible property returns or sets the state of the on-screen keyboard when the
keyboard command button is activated. A True value indicates that the current keyboard
command button is in control of the on-screen keyboard. If a False value is returned, the
keyboard command button is currently not in control of the keyboard. By setting this
property, control of the keyboard can be switched from one keyboard command button to
another.
The following table lists the SKBVisible property settings for the pen on-screen keyboard
control.
Setting Description
True The keyboard command button controls the on-screen keyboard, and it is

visible.
False (Default) The keyboard command button is not in control of the on-screen

keyboard.
If all keyboard command buttons have SKBVisible = False, then the on-screen keyboard is
not visible unless the keyboard is started by another application.

Note The pen on-screen keyboard control also supports the standard Visible property.
However, this property only affects the keyboard command button's state of visibility.

Data Type
Integer (Boolean)

SKBVisibleStatus Property, Pen On-Screen Keyboard Control

Description
Returns the on-screen keyboard's current state of visibility. This property is not available at
design time and is read-only at run time.

Visual Basic
[form.]SKB.SKBVisibleStatus

Visual C++
pSKB->GetNumProperty("SKBVisibleStatus")

Remarks
The following table lists the SKBVisibleStatus property settings for the pen on-screen
keyboard control.
Setting Description
True The on-screen keyboard is currently visible.
False The on-screen keyboard is not currently visible.
If the on-screen keyboard is visible, then the SKBVisibleStatus property is True for all
keyboard command buttons, regardless of which button controls the on-screen keyboard. In
fact, if the on-screen keyboard is visible, the SKBVisibleStatus property is True, even if an
entirely different application controls the on-screen keyboard.

Note If you hide the form that contains the keyboard command button currently in control
of the on-screen keyboard, you do not affect the visibility state of the keyboard. However, if
you terminate the application or unload the form that contains the keyboard command
button currently in control of the on-screen keyboard, the keyboard disappears.

Data Type
Integer (Boolean)

SKBChange Event, Pen On-Screen Keyboard Control

Description
The SKBChange event occurs when you change the on-screen keyboard directly.

Visual Basic
Sub SKB_SKBChange (ChangeCode As Integer)

Visual C++
Function Signature:
void CMyDialog::OnChangeSKB (UINT, int, CWnd*, LPVOID lpParams)
Parameter Usage:
AFX_NUM_EVENTPARAM (short, lpParams)

Remarks
This event is generated when the user moves, minimizes, or closes the on-screen keyboard,
or changes the type of keyboard being displayed. This event is only generated for the
keyboard command button that currently controls the on-screen keyboard.
The ChangeCode parameter identifies which features have changed. If more than one
change occurred, use the OR operator to combine values.
ChangeCode Description
SKN_MINCHANGED The on-screen keyboard has changed the minimized state.
SKN_PADCHANGED The on-screen keyboard has changed keyboard types.
SKN_POSCHANGED The on-screen keyboard has changed position.
SKN_TERMINATED The on-screen keyboard has been closed.
SKN_VISCHANGED The on-screen keyboard has changed its visible state.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

Error Messages, Pen On-Screen Keyboard Control
The following table lists the trappable run-time errors for the pen on-screen keyboard
control.
Error Message
number explanation
32012 PENERR_INVALIDPICTURE

Picture format not supported.
This error is caused by setting the Picture property to an invalid value. The
control can display only bitmap (.BMP) and icon (.ICO) format files.

32013 PENERR_DISPLAYFAILED
Unable to display bitmap.
The control is unable to display the bitmap. This error can be caused by low
memory.

32014 PENERR_AUTOSIZEHW
Cannot change Height or Width while AutoSize equals 2.
When AutoSize is set to 2 (Adjust Window Size to Picture) on a control, its
Height and Width properties cannot be modified.

 Picture Clip Control
Properties Error Messages

Description
The picture clip control allows you to select an area of a source bitmap and then display the
image of that area in a form or picture box. Picture clip controls are invisible at run time.
This is a typical bitmap that might be used in the picture clip control:

File Name
PICCLIP.VBX

Object Type
PictureClip

Remarks
Picture clip provides an efficient mechanism for storing multiple picture resources. Instead
of using multiple bitmaps or icons, create a source bitmap that contains all the icon images
required by your application. When you need to access an individual icon, use picture clip
to select the region in the source bitmap that contains that icon.
For example, you could use this control to store all the images needed to display a toolbox
for your application. It is much more efficient to store all of the toolbox images in a single
picture clip control than it is to store each image in a separate picture box. To do this, you
first need to create a source bitmap that contains all of the toolbar icons. The preceding
picture is an example of such a bitmap.
You can use the following two methods to specify the clipping region in the source bitmap:

Use the Random Access method to select any portion of the source bitmap as the
clipping region. Specify the upper-left corner of the clipping region using the ClipX and ClipY
properties. The ClipHeight and ClipWidth properties determine the area of the clipping
region. This method is useful when you want to view a portion of a bitmap.

Use the Enumerated Access method to divide the source bitmap into a specified
number of rows and columns. The result is a uniform matrix of picture cells numbered 0, 1,
2, and so on. You can access individual cells with the GraphicCell property. This method is
useful when the source bitmap contains a palette of icons that you want to access
individually, such as in the preceding bitmap.

Load the source bitmap into the picture clip control using the Picture property. You can
only load bitmap (.BMP) files into the picture clip control.

Distribution Note When you create and distribute applications that use the picture clip
control, you should install the file PICCLIP.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory. The Setup Kit included with Visual Basic provides tools to help you
write setup programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation on the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
*Clip *Cols Name *StretchY
*ClipHeight *GraphicCell Parent Tag
*ClipWidth *Height *Picture *Width
*ClipX hWnd *Rows
*ClipY Index *StretchX
Picture is the default value of the control.

Note The Index and Parent properties are only available in Visual Basic. The Name property
is the equivalent of the CtlName property in Visual Basic 1.0 and Visual C++.

Clip Property, Picture Clip Control
Example

Description
Returns a bitmap of the area in the picture clip control specified by the ClipX, ClipY,
ClipWidth, and ClipHeight properties. This property is read-only at run time.

Visual Basic
[form.]PictureClip.Clip

Visual C++
pPictureClip->GetPictureProperty("Clip")

Remarks
Use this property to specify a clipping region when using the Random Access Method.
When assigning a Clip image to a picture control in Visual Basic, make sure that the
ScaleMode property for the picture control is set to 3 (pixels). You must do this since the
ClipHeight and ClipWidth properties that define the clipping region are measured in pixels.
In Visual C++, all dimensions are in pixels.

Data Type
Integer

Clip Example, Picture Clip Control

Visual Basic Example
The following example displays a Clip image in a picture box when the user specifies X and
Y coordinates and then clicks a form. First create a form with a picture box, a picture clip
control, and two text boxes. At design time, use the Properties window to load a valid
bitmap into the picture clip control.
Sub Form_Click ()

Dim SaveMode As Integer
' Save the current ScaleMode for the picture box.
SaveMode = Picture1.ScaleMode
' Get X and Y coordinates of the clipping region.
PicClip1.ClipX = Val(Text1.Text)
PicClip1.ClipY = Val(Text2.Text)
' Set the area of the clipping region (in pixels).
PicClip1.ClipHeight = 100
PicClip1.ClipWidth = 100
' Set the picture box ScaleMode to pixels.
Picture1.ScaleMode = 3
' Set the destination area to fill the picture box.
PicClip1.StretchX = Picture1.ScaleWidth
PicClip1.StretchY = Picture1.ScaleHeight
' Assign the clipped bitmap to the picture box.
Picture1.Picture = PicClip1.Clip
' Reset the ScaleMode of the picture box.
Picture1.ScaleMode = SaveMode

End Sub

ClipHeight Property, Picture Clip Control

Description
Specifies the area of the picture clip control to be copied by the Clip property. This property
is not available at design time.

Visual Basic
[form.]PictureClip.ClipHeight[= Height%]
[form.]PictureClip.ClipWidth[= Width%]
[form.]PictureClip.ClipX[= X%]
[form.]PictureClip.ClipY[= Y%]

Visual C++
pPictureClip->GetNumProperty("ClipHeight")
pPictureClip->SetNumProperty("ClipHeight", Height)

Remarks
This property is measured in pixels.

Data Type
Integer

ClipWidth Property, Picture Clip Control

Description
Specifies the area of the picture clip control to be copied by the Clip property. This property
is not available at design time.

Visual Basic
[form.]PictureClip.ClipWidth[= Width%]

Visual C++
pPictureClip->GetNumProperty("ClipWidth")
pPictureClip->SetNumProperty("ClipWidth", Width)

Remarks
This property is measured in pixels.

Data Type
Integer

ClipX Property, Picture Clip Control

Description
Specifies the area of the picture clip control to be copied by the Clip property. This property
is not available at design time.

Visual Basic
[form.]PictureClip.ClipX[= X%]

Visual C++
pPictureClip->GetNumProperty("ClipX")
pPictureClip->SetNumProperty("ClipX", X)

Remarks
This property is measured in pixels.

Data Type
Integer

ClipY Property, Picture Clip Control

Description
Specifies the area of the picture clip control to be copied by the Clip property. This property
is not available at design time.

Visual Basic
[form.]PictureClip.ClipY[= Y%]

Visual C++
pPictureClip->GetNumProperty("ClipY")
pPictureClip->SetNumProperty("ClipY", Y)

Remarks
This property is measured in pixels.

Data Type
Integer

Cols, Rows Properties, Picture Clip Control

Description
Set or return the total number of columns or rows in the picture.

Visual Basic
[form.]PictureClip.Cols[= cols%]
[form.]PictureClip.Rows[= rows%]

Visual C++
pPictureClip->GetNumProperty("Cols")
pPictureClip->SetNumProperty("Cols", cols)
pPictureClip->GetNumProperty("Rows")
pPictureClip->SetNumProperty("Rows", rows)

Remarks
Use these properties to divide the source bitmap into a uniform matrix of picture cells. Use
the GraphicCell property to specify individual cells.
A picture clip control must have at least one column and one row.
The height of each graphic cell is determined by dividing the height of the source bitmap
by the number of specified rows. Leftover pixels at the bottom of the source bitmap
(caused by integer rounding) are clipped.
The width of each graphic cell is determined by dividing the width of the source bitmap by
the number of specified columns. Leftover pixels at the right of the source bitmap (caused
by integer rounding) are clipped.

Data Type
Integer

GraphicCell Property, Picture Clip Control

Description
A one-dimensional array of pictures representing all of the picture cells. This property is not
available at design time and is read-only at run time.

Visual Basic
[form.]PictureClip.GraphicCell (Index%)

Visual C++
pPictureClip->GetPictureProperty("GraphicCell", Index)

Remarks
Use the Rows and Cols properties to divide a picture into a uniform matrix of graphic

cells.
The cells specified by GraphicCell are indexed, beginning with 0, and increase from

left to right and top to bottom.
Use this property to specify a clipping region when using the Sequential Access

method.
When reading this property, an error is generated when there is no picture or the

Rows or Cols property is set to 0.
Data Type
Integer

Height, Width Properties, Picture Clip Control

Description
Return the height and width (in pixels) of a bitmap displayed in the control. These
properties are not available at design time and are read-only at run time.

Visual Basic
[form.]PictureClip.Height
[form.]PictureClip.Width

Visual C++
pPictureClip->GetNumProperty("Height")
pPictureClip->GetNumProperty("Width")

Remarks
These properties are only valid when the control contains a bitmap.
You can load a bitmap into a picture clip control at design time using the Properties window.
In Visual Basic, you can also set this property at run time by using the LoadPicture
function.

Data Type
Integer

Picture Property, Picture Clip Control

Description
This property is the same as the standard Visual Basic Picture property except that it only
supports bitmap (.BMP) files.

StretchX, StretchY Properties, Picture Clip Control

Description
Specify the target size for the bitmap created with the Clip property. These properties are
not available at design time.

Visual Basic
[form.]PictureClip.StretchX[= X%]
[form.]PictureClip.StretchY[= Y%]

Visual C++
pPictureClip->GetNumProperty("StretchX")
pPictureClip->SetNumProperty("StretchX", X)
pPictureClip->GetNumProperty("StretchY")
pPictureClip->SetNumProperty("StretchY", Y)

Remarks
Use these properties to define the area to which the Clip bitmap is copied. When the
bitmap is copied, it is either stretched or condensed to fit the area defined by StretchX and
StretchY.
StretchX and StretchY are measured in pixels.

Note In Visual Basic, the default ScaleMode for forms and picture boxes is twips. Set
ScaleMode = 3 (pixels) for all controls that display pictures from a picture clip control. In
Visual C++, all dimensions are in pixels.

Data Type
Integer

Error Messages, Picture Clip Control
The following table lists the trappable errors for the picture clip control.
Error Message
number explanation
32000 Picture format not supported.

You can only load bitmap (.BMP) files into the picture clip control.
32001 Unable to obtain display context.
32002 Unable to obtain memory device context.
32003 Unable to obtain bitmap.
32004 Unable to select bitmap object.
32005 Unable to allocate internal picture structure.
32006 Bad GraphicCell index.

The index argument for the GraphicCell property is out of range. This
argument must be in the range 0 to (PicClip.Rows * PicClip.Cols) 1.

32007 No GraphicCell picture size specified.
32008 Only bitmap GraphicCell pictures allowed.
32010 Bad GraphicCell picture size or stretch property request.
32011Clipboard already open.
32012 GetObject () Windows function failure.

A call to the Windows function GetObject () failed.
32013 CreateCompatibleDC () Windows function failure.

A call to the Windows function CreateCompatibleDC () failed.
32014 GlobalAlloc () Windows function failure.

A call to the Windows function GlobalAlloc () failed.
32015 Clip region boundary error.

The ClipHeight and ClipWidth properties specify coordinates which are outside
the boundary of the bitmap loaded in the picture clip control.

32016 Cell size too small (must be at least 1 by 1 pixels).
32017 Rows property must be greater than zero.
32018 Cols property must be greater than zero.
32019 StretchX property cannot be negative.
32020 StretchY property cannot be negative.
32021 No picture assigned.

 Spin Button Control
Properties Methods Events Error Messages

Description
Spin button is a spinner control you can use with another control to increment and
decrement numbers. You can also use it to scroll back and forth through a range of values
or a list of items.

File Name
SPIN.VBX

Object Type
SpinButton

Remarks
You can use the spin button control to increment or decrement numbers that are displayed
in a text box or other control. At run time, when the user clicks the up (or right) arrow of the
spin button, SpinUp events are generated repeatedly until the user releases the mouse.
Likewise, when the user clicks the down (or left) arrow, SpinDown events are generated
until the user releases the mouse. When using this control, you write code for the SpinUp
and SpinDown events that increments or decrements the desired values.
The Delay property determines how often the SpinUp and SpinDown events are generated.
The spin button supports additional color properties that you can set using the Visual Basic
Color Palette.

Distribution Note When you create and distribute applications that use the spin button
control, you should install the file SPIN.VBX in the customer's Microsoft Windows \SYSTEM
subdirectory. The Setup Kit included with Visual Basic provides tools to help you write setup
programs that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked with
an asterisk (*). For documentation of the remaining properties, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
BackColor ForeColor MousePointer Tag
*BorderColor Height Name *TdThickness
*BorderThickness HelpContextID *ShadeColor Top
*Delay hWnd *ShadowBackColor Visible
DragIcon Index *ShadowForeColor Width
DragMode Left *ShadowThickness
Enabled *LightColor *SpinOrientation

Note The DragIcon, DragMode, HelpContextID, and Index properties are only available in
Visual Basic. The Name property is the equivalent of the CtlName property in Visual Basic
1.0 and Visual C++.

Events
All of the events for this control are listed in the following table. Events that apply only to
this control, or that require special consideration when used with it, are marked with an
asterisk (*). For documentation of the remaining events, see Appendix A, "Standard
Properties, Events, and Methods," in the Custom Control Reference.
DragDrop DragOver *SpinDown *SpinUp

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the
methods not unique to this control, see Appendix A, "Standard Properties, Events, and
Methods," in the Custom Control Reference.
Drag Move Refresh ZOrder

Note The Drag amd ZOrder methods are only available in Visual Basic.

BorderColor Property, Spin Button Control

Description
Determines the color of the border drawn around the control.

Visual Basic
[form.]SpinButton.BorderColor[= color&]

Visual C++
pSpinButton->GetNumProperty("BorderColor")
pSpinButton->SetNumProperty("BorderColor", color)

Remarks
The following table lists the BorderColor property settings for the spin button control.
Setting Description
&H00000000&(Default) Black.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor

function in code. In Visual C++, use the MAKESYSCOLOR macro defined in
the AFXEXT.H file to create system color constants. Standard RGB colors can
be used in Visual C++ as well.

Data Type
Long

BorderThickness Property, Spin Button Control

Description
Sets the width of the border.

Visual Basic
[form.]SpinButton.BorderThickness[= setting%]

Visual C++
pSpinButton->GetNumProperty("BorderThickness")
pSpinButton->SetNumProperty("BorderThickness", setting)

Remarks
The following table lists the BorderThickness property settings for the spin button control.
Setting Description
0 No border.
1 (Default) 1-pixel border.
(integer) Width of three-dimensional border, in pixels.

Data Type
Integer

Delay Property, Spin Button Control

Description
Sets the delay between SpinUp or SpinDown events.
The Delay property slows the number of SpinUp or SpinDown events generated when the
user clicks one of the arrows in a spin button and then continues to hold down the button.

Visual Basic
[form.]SpinButton.Delay[= setting%]

Visual C++
pSpinButton->GetNumProperty("Delay")
pSpinButton->SetNumProperty("Delay", setting)

Remarks
The following table lists the Delay property settings for the spin button control.
Setting Description
250 (Default) 250 milliseconds, 1/4 of a second.
(0 32767) Milliseconds delay between events.

Data Type
Integer

LightColor Property, Spin Button Control

Description
Sets the color of a narrow margin located along the left and upper edges of the control.

Visual Basic
[form.]SpinButton.LightColor[= color&]

Visual C++
pSpinButton->GetNumProperty("LightColor")
pSpinButton->SetNumProperty("LightColor", color)

Remarks
The following table lists the LightColor property settings for the spin button control.
Setting Description
&H00FFFFFF& (Default) White.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor

function in code. In Visual C++, use the MAKESYSCOLOR macro defined in
the AFXEXT.H file to create system color constants. Standard RGB colors can
be used in Visual C++ as well.

Setting the LightColor property to a lighter shade of the same color as the ShadeColor
property generates a raised visual effect. Setting it to a darker shade of the same color as
the ShadeColor generates an inset visual effect.

Note To see the effect of the LightColor and ShadeColor properties, you should set the
TdThickness property to a value greater than 1.

Data Type
Long

ShadeColor Property, Spin Button Control

Description
Sets the color of a narrow margin that is located along the right and lower edges of the
control.

Visual Basic
[form.]SpinButton.ShadeColor[= color&]

Visual C++
pSpinButton->GetNumProperty("ShadeColor")
pSpinButton->SetNumProperty("ShadeColor", color)

Remarks
The following table lists the ShadeColor property settings for the spin button control.
Setting Description
&H007F7F7F& (Default) Dark gray.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor

function in code. In Visual C++, use the MAKESYSCOLOR macro defined in
the AFXEXT.H file to create system color constants. Standard RGB colors can
be used in Visual C++ as well.

This property is used with the LightColor property to generate a raised or inset effect.

Note To see the effect of the LightColor and ShadeColor properties, you should set the
TdThickness property to a value greater than 1.

Data Type
Long

ShadowBackColor Property, Spin Button Control

Description
Sets the background color for the shadow effect.

Visual Basic
[form.]SpinButton.ShadowBackColor[= color&]

Visual C++
pSpinButton->GetNumProperty("ShadowBackColor")
pSpinButton->SetNumProperty("ShadowBackColor", color)

Remarks
The following table lists the ShadowBackColor property settings for the spin button control.
Setting Description
&H00FFFFFF& (Default) White.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor

function in code. In Visual C++, use the MAKESYSCOLOR macro defined in
the AFXEXT.H file to create system color constants. Standard RGB colors can
be used in Visual C++ as well.

ShadowBackColor is usually set to the same color as the surrounding area. It is visible at
the lower-left and upper-right areas of the shadow area where the shadow does not cover
the background.

Note To see the effect of the ShadowBackColor and ShadowForeColor properties, you
should set the ShadowThickness property to a value greater than 0.

Data Type
Long

ShadowForeColor Property, Spin Button Control

Description
Sets the color of the shadow effect.

Visual Basic
[form.]SpinButton.ShadowForeColor[= color&]

Visual C++
pSpinButton->GetNumProperty("ShadowForeColor")
pSpinButton->SetNumProperty("ShadowForeColor", color)

Remarks
The following table lists the ShadowForeColor property settings for the spin button control.
Setting Description
&H007F7F7F& (Default) Dark Gray.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor

function in code. In Visual C++, use the MAKESYSCOLOR macro defined in
the AFXEXT.H file to create system color constants. Standard RGB colors can
be used in Visual C++ as well.

ShadowForeColor makes a control appear as if it were floating above the surrounding
surface. Usually a control will have a dark shadow, but you can use a variation of the
underlying form color. For example, in Visual Basic, if the form's BackColor property is set to
green, you may want to set the ShadowForeColor property to a darker shade of green.

Note To see the effect of the ShadowBackColor and ShadowForeColor properties, you
should set the ShadowThickness property to a value greater than 0.

Data Type
Long

ShadowThickness Property, Spin Button Control

Description
Sets the width of the shadow effect.

Visual Basic
[form.]SpinButton.ShadowThickness[= setting%]

Visual C++
pSpinButton->GetNumProperty("ShadowThickness")
pSpinButton->SetNumProperty("ShadowThickness", setting)

Remarks
The following table lists the ShadowThickness property settings for the spin button control.
Setting Description
0 (Default) No shadow.
(integer) Width of shadow in pixels.
ShadowThickness varies the width of the shadow to give the control a floating appearance.
The floating effect is most realistic when ShadowThickness is just a few pixels.

Note To see the effect of the ShadowBackColor and ShadowForeColor properties, you
should set the ShadowThickness property to a value greater than 0.

Data Type
Integer

SpinOrientation Property, Spin Button Control

Description
Sets the direction of the spin control arrows.

Visual Basic
[form.]SpinButton.SpinOrientation[= setting%]

Visual C++
pSpinButton->GetNumProperty("SpinOrientation")
pSpinButton->SetNumProperty("SpinOrientation", setting)

Remarks
The following table lists the SpinOrientation property settings for the spin button control.
Setting Description
0 (Default) Vertical:    up and down arrows.
1 Horizontal: left and right arrows.

Data Type
Integer

TdThickness Property, Spin Button Control

Description
Sets the width of the LightColor and the ShadeColor borders.

Visual Basic
[form.]SpinButton.TdThickness[= setting%]

Visual C++
pSpinButton->GetNumProperty("TdThickness")
pSpinButton->SetNumProperty("TdThickness", setting)

Remarks
The following table lists the TdThickness property settings for the spin button control.
Setting Description
0 (Default) No three-dimensional effect.
(integer) Width of three-dimensional margin in pixels.

Note To see the effect of the LightColor and ShadeColor properties, you should set the
TdThickness property to a value greater than 1.

Data Type
Integer

SpinUp, SpinDown Events, Spin Button Control
Example

Description
Occur when the user clicks one of the arrows of a spin button.

Visual Basic
Sub SpinButton_SpinUp ()
Sub SpinButton_SpinDown ()

Visual C++
Function Signatures:
void CMyDialog::OnSpinUpSpinButton (UINT, int, CWnd*, LPVOID)
void CMyDialog::OnSpinDownSpinButton (UINT, int, CWnd*, LPVOID)

Remarks
SpinUp is generated when the up or the right arrow is clicked. SpinDown is generated by
clicking the down or the left arrow. The arrows can be clicked once to send a single Spin
event, or the left mouse button can be held down to generate multiple events.
Holding down the mouse button allows the user to cycle through a range of values. The
Delay property slows the rate of cycling.
If you change the value or contents of a control in response to a Spin event, you must also
call that control's Refresh method to insure that the updated value is displayed.
For more information on using events in Visual C++, see Appendix B, "Using Custom
Controls with Visual C++," in the Custom Control Reference.

SpinUp, SpinDown Example, Spin Button Control

Visual Basic Example
The following examples illustrate how a number is incremented or decremented in a control
containing text. To run these examples, create a form with a spin button and a text box.
Sub Spin1_SpinUp ()

' Increment the value in the text box on every SpinUp event.
Text1.Text = Str$(Val(Text1.Text)+1)

 ' Display the current value in the text box.
Text1.Refresh

End Sub

Sub Spin1_SpinDown ()
' Decrement the value in the text box on every SpinDown event.
Text1.Text = Str$(Val(Text1.Text)-1)
' Display the current value in the text box.
Text1.Refresh

End Sub

Error Messages, Spin Button Control
The following table lists the trappable errors for the spin button control.
Error Message
number explanation
30000 Negative value invalid for this property.

The Delay, BorderThickness, ShadowThickness, and TdThickness properties
cannot be set to a negative value

Using Custom Controls with Visual C++
This appendix contains useful information for the Visual C++ programmer who is using
custom controls. This appendix supplements the information in Chapter 17, "Programming
with VBX Controls," of the Visual C++ Class Library User's Guide.
CVBControl Class
Getting and Setting Properties
Using Events
Using Methods

The CVBControl Class,    Visual C++ Custom Controls
The CVBControl class is a special MFC 2.0 class that maps directly to custom control
functionality. This class allows you to load controls, get control properties, and set control
properties through public member functions. The CVBControl class also provides support
for custom control events and methods. Refer to the Visual C++ Class Library Reference for
more information.

Creating Controls
In both Visual Basic and Visual C++, you can create controls at design time by selecting a
control from the Toolbox and placing it on the form or dialog.    However, there is a major
difference in how you dynamically create controls at run time.
In Visual Basic, you dynamically create controls at run time by cloning a control from a
master copy of a control. The master copy of the control must be created at design time. In
addition, all controls created in this way are part of a control array, meaning that every
control has the same control name but a different control index. You reference a specific
control in a control array as an array reference.
In Visual C++, you dynamically create controls at run time by using the
CVBControl::Create member function you do not need to have a master copy of a
control. In addition, CVBControl::Create allows you to determine the container of a
control by providing an argument that specifies the handle of the parent window.

Note Visual C++ does not support control arrays, as implemented in Visual Basic. You can,
however, create your own array of controls and manipulate them yourself.

Getting and Setting Properties,    Visual C++ Custom Controls
See Also
Use the property access member functions of the CVBControl class to get and set
properties for custom controls. The data type of the control's property determines which
one of the member functions you use. Refer to the Visual C++ Class Library Reference for
more information on the property access member functions.

Getting Properties
To get a property from a custom control, use one of the following CVBControl member
functions.
Member function Description
GetFloatProperty Gets the floating point value assigned to a floating point property.
GetNumProperty Gets the integer value assigned to an integer-valued property.
GetPictureProperty Gets a handle to the picture (HPIC) assigned to a picture

property.
GetStrProperty Gets the string assigned to a string property.
For example, if you wanted to return the Value property of a gauge control, you could write
the following code:
int nValue = (int)pGauge->GetNumProperty("Value");

Setting Properties
To set a property for a custom control, use one of the following CVBControl member
functions:
Member function Description
SetFloatProperty Sets a floating point property to the specified value.
SetNumProperty Sets an integer-valued property to the specified value.
SetPictureProperty Sets a picture property to the specified picture.
SetStrProperty Sets a string property to the specified string.
For example, if you wanted to set the GraphTitle property of a graph control, you could
write the following code:
pGraph->SetNumProperty("GraphTitle", lpszTitle);

See Also
Accessing Picture Data
Getting Custom Control Error Values

Accessing Picture Data
Some VBX controls have properties of the Picture type. Visual C++ provides three functions
that allow you to manipulate Picture property values of custom controls. These functions
are AfxSetPict, AfxGetPict, and AfxReferencePict. Refer to Technical Note 27:
Emulation Support for Visual Basic Custom Controls, which you can access by selecting
TN027 in the Visual C++ online Help file, MFCNOTES.HLP.

Getting Custom Control Error Values
The CVBControl::m_nError public data member variable holds the custom control error
value when a property access member function generates an error. (The value of m_nError
is equivalent to the Visual Basic run-time error code.)
The following table lists the general error code values that m_nError can have. Refer to
CONSTANT.H for the error constants.
Error number Message
7 AFX_VBX_ERR_OUT_OF_MEMORY

Out of memory.
61 AFX_VBX_ERR_DISK_FULL

Disk full.
62 AFX_VBX_ERR_INPUT_PAST_EOF

Input past end of file.
380 AFX_VBX_ERR_INVALID_PROP_VALUE

Invalid property value.
420 AFX_VBX_ERR_INVALID_OBJ_REF

Invalid object reference.
422 AFX_VBX_ERR_PROP_NOT_FOUND

Property item not found.
Custom controls may also generate error codes that are specific to the control. Refer to the
individual custom control description in the Custom Control Reference for any specific error
codes.

Using Events, Visual C++ Custom Controls
See Also
In order to use custom control events, you need to provide a linkage between the control's
events and message-handling functions in your application. Visual C++ provides the
ClassWizard tool to help you link events to functions. You can use ClassWizard to:

Create a member variable that points to the control. This pointer is placed in the
declaration of the class (usually derived from CDialog) that contains the VBX control.

Register events (messages) for the control.
Create a message map that associates the control's events to the member functions

that handle the events.
Create message-handling functions for VBX control notification in your

implementation file.
For more information on how to use ClassWizard with custom controls, refer to Chapter 17,
"Programming with VBX Controls," of the Visual C++ Class Library User's Guide.

See Also
Message Handling Functions
Accessing Event Parameters
Accessing the Control Pointer
Accessing the hWnd of a Custom Control

Message-Handling Functions
When the ClassWizard creates a message-handling function template, the function is called
with four arguments. For example, the DIALOG.CPP file in the VBCIRCLE sample application
contains the following line:
void CCircleDialog::OnClickinCircle(UINT, int, CWnd*, LPVOID)

The four arguments that are passed to OnClickinCircle are not named since they are not
used in the function itself. To use a function argument you need to name it. Normally, the
first two arguments are not used. The following table lists the naming convention and the
description for each argument:
Parameter Type Description
uCode UINT Notification code (normally not used).
nIndex int Index of event in event table (normally not used).
pWnd CWnd* Pointer to control.
lpParams LPVOID Event parameter structure.

Accessing Event Parameters
Some custom controls pass event parameters when an event is generated. For example,
the multimedia MCI control passes a notification code when the Done event is generated.
This means that the message-handling function needs to extract the parameters from the
lpParams argument.
The Visual C++ AFXEXT.H file provides two macro functions that extract a data value from
the lpParams argument. The first macro function, AFX_NUM_EVENTPARAM, requires the
data type of the value you want to extract. The second macro function,
AFX_HLSTR_EVENTPARAM, should only be used for extracting string data values.
#define AFX_NUM_EVENTPARAM(type, lpParams) \
 (type FAR&)(**(type FAR* FAR*)lpParams)

#define AFX_HLSTR_EVENTPARAM(lpParams) \
 (HLSTR FAR&)(*(HLSTR FAR*)lpParams)

The following table summarizes the usage of the two macro functions according to the data
type of lpParams:
Data type of lpParams Usage
ENUM AFX_NUM_EVENTPARAM(BYTE, lpParams)
Boolean, Integer AFX_NUM_EVENTPARAM(short, lpParams)
Long AFX_NUM_EVENTPARAM(LONG, lpParams)
Single AFX_NUM_EVENTPARAM(float, lpParams)
Picture AFX_NUM_EVENTPARAM(HPIC, lpParams)
String AFX_HLSTR_EVENTPARAM(lpParams)
For example, if you wanted to extract the notification code of the Done event that the
multimedia control passes to the message-handling function, you could write:
void CVideoDialog::OnDoneMmcontrol1(UINT, int, CWnd*, LPVOID lpParams)
{

LONG lCode = AFX_NUM_EVENTPARAM(LONG, lpParams);

Accessing the Control Pointer
The third argument passed to message-handling functions is the pointer to the VBX custom
control that generated the event. If you give the argument a name (for example, pWnd),
you can use any of the standard CWnd class functionality. However, since pWnd is actually
a CVBControl class, you can typecast pWnd to be a CVBControl pointer.
void CCircleDialog::OnClickinCircle(UINT, int, CWnd* pWnd, LPVOID)
{

CVBControl* pCircle = (CVBControl *)pWnd;
LPCSTR lpClass = pCircle->GetVBXClass();
...

Accessing the hWnd of a Custom Control
You can access the window handle of the custom control several ways. The easiest way to
access the window handle is through the public data member, CWnd::m_hWnd. This is
possible because the CVBControl class is derived from the CWnd class.
For example, if you created a pointer to a VBX control and defined it as a data member of
your class, the window handle of the custom control could be retrieved by writing:
HWND hWnd = m_control->m_hwnd;

You can also access the window handle of a custom control by using the
CWnd::GetSafeHwnd function. The following example uses the pWnd argument, which
points to the control that generated the event:
void CCircleDialog::OnClickinCircle(UINT, int, CWnd* pWnd, LPVOID)
{

HWND hWnd = pWnd->GetSafeHwnd();
.
.
.

Using Methods,    Visual C++ Custom Controls
To use custom control methods in Visual C++, use the methods set of public member
functions for the CVBControl class. This set of member functions consists of:
Method Description
AddItem Adds items to a list managed by a list box or combo box control.
Move Moves a control to a specified location and resizes the control at the same

time.
Refresh Updates a control to reflect changes that have been made to the control or

to the environment.
RemoveItem Removes an item from a list managed by a control.
Refer to the Visual C++ Class Library Reference for more information on using these
member functions.

