
Help Compiler Reference

Creating Help Macros
Rules for Coding Help Macros
Macro Command Reference
Virtual-Key Codes

Testing and Debugging Help Files
Interpreting Error Messages
Warning Message Reporting
Help Compiler Error Messages



Coding Help Macros
Authors must follow these rules when coding Help macros:

Macros are not case-sensitive, so you can type the macro using the capitalization 
shown in the reference or any other capitalization convention you choose.

A single macro string may include more than one Help macro, in which case you must
use a semicolon to separate each macro in the string.

Specify empty spaces in a macro string by placing the surrounding text in quotation 
marks.

Insert special characters in a quotation-marked string prefaced by a backslash. 
Special characters include double quotation marks ("), opening and closing single quotation 
marks (` '), and backslashes (\).
Note The single open quotation mark is different from the single close quotation mark. The
single open quotation mark (`) is paired with the tilde (~) above the TAB key on extended 
keyboards; the single close quotation mark (') is the same as the apostrophe.

Quotation marks may be either matching double quotation marks, or a pair of single 
open and close quotation marks. You cannot use double quotation marks inside a string 
already enclosed in double quotation marks. Use single open and close quotation marks 
instead. For example,

CreateButton("time_btn", "&Time", "ExecProgram("clock", 0)")
is illegal because the string clock uses double quotation marks within the double 
quotation marks used for the ExecProgram macro. The following example corrects the 
error by enclosing clock in single quotation marks:
CreateButton("time_btn", "&Time", "ExecProgram(`clock', 0)")

Macros may be included within other macros. In other words, a macro can be used as
a parameter value for another macro.

A single macro must be 512 or fewer characters in length.



Macro Command Reference
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A
About
AddAccelerator (AA)
Annotate
AppendItem

B
Back
BookmarkDefine
BookmarkMore
BrowseButtons



C
ChangeButtonBinding (CBB)
ChangeItemBinding (CIB)
CloseWindow
Contents
CopyDialog
CopyTopic
CreateButton (CB)

D
DeleteItem
DeleteMark
DestroyButton
DisableButton (DB)
DisableItem (DI)

E
EnableButton (EB)
EnableItem (EI)
ExecProgram (EP)
Exit

F
FileOpen
FocusWindow

G
GotoMark

H
HelpOn
History

I
IfThen
IfThenElse
InsertItem
InsertMenu
IsMark

J M
JumpContents
JumpContext (JC)
JumpHelpOn



JumpID (JI)
JumpKeyword (JK)

N O
Next
Not

P Q
PopupContext (PC)
PopupId (PI)
PositionWindow (PW)
Prev
Print
PrinterSetup

R
RegisterRoutine (RR)

S Z
SaveMark
Search
SetContents
SetHelpOnFile



About
This macro displays the About dialog box (same as the About command on the Help menu).

Syntax
About()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.



AddAccelerator (AA)
See Also
This macro assigns a Help macro to an accelerator key (or key combination) so that the 
macro is run when the user presses the accelerator key(s).

Syntax
AddAccelerator(key, shift-state, "macro")
AA(key, shift-state, "macro")

Parameters
Argument Definition
key The Windows virtual-key value.
shift-state A number specifying the combination of ALT, SHIFT, and CTRL keys used with the

accelerator: 0 (none), 1 (SHIFT), 2 (CTRL), 3 (SHIFT+CTRL), 4 (ALT), 5 (ALT+SHIFT), 
6 (ALT+CTRL), or 7 (SHIFT+ALT+CTRL)

macro The Help macro or macro string that is run when the user presses the 
accelerator key(s). The macro must appear in quotation marks. Multiple 
macros in a string must be separated by semicolons (;).

Example
The following macro starts the Windows Clock program (provided in Windows version 3.1) 
when the user presses ALT+SHIFT+CTRL+F4:
AddAccelerator(0x73, 7, "ExecProgram(`clock.exe', 1)")

Comments
The Help macro that is run by AddAccelerator might not work in secondary windows, or 
its use may be discouraged if the macro it runs is prohibited or discouraged in secondary 
windows. Check the usage notes for the macro before using AddAccelerator to run it in a 
secondary window.



See Also
Virtual-Key Codes



Annotate
This macro displays the Annotation dialog box (same as the Annotate command on the Edit
menu).

Syntax
Annotate()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.
If the Annotate macro is run from a pop-up window, the annotation is attached to the topic
that contains the hot spot to the pop-up window.



AppendItem
This macro appends a menu item to the end of a menu you create with the InsertMenu 
macro.

Syntax
AppendItem("menu-id", "item-id", "item-name", "macro")

Parameters
Argument Definition
menu-id Name used in the InsertMenu macro to create the menu. This name must 

appear in quotation marks. The new item is appended to this menu.
item-id Name that WinHelp uses internally to identify the menu item. This name is 

case-sensitive and must appear in quotation marks. Use this name in the 
DisableItem or DeleteItem macro if you want to disable or remove the item,
or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-
sensitive and must appear in quotation marks. Within the quotation marks, 
place an ampersand (&) before the character used as the macro's keyboard 
access key.

macro Help macro or macro string that is run when the user chooses the menu item. 
The name must appear in quotation marks. Multiple macros in a string must be
separated by semicolons (;).

Example
The following macro appends a menu item labeled "Tools" to a menu that has an identifier 
"mnu_books":
AppendItem("mnu_books", "mnu_tools", "&Tools", 
"JI(`tools.hlp',`first_topic')")

Choosing the menu item causes a jump to a topic with the context string "first_topic" in the
TOOLS.HLP file.

Comments
WinHelp ignores this macro if it is run in a secondary window.
Make sure that the keyboard access keys you assign to menu items are unique. If you 
assign a key that conflicts with other menu access keys, WinHelp displays the error 
message "Unable to add item" and ignores the macro.



Back
This macro displays the previous topic in the Back list. The Back list includes the last 40 
topics the user has displayed since starting WinHelp.

Syntax
Back()

Parameters
None

Comments
WinHelp ignores this macro if it is run in a secondary window.
If the Back macro is run when the Back list is empty, WinHelp takes no action.



BookmarkDefine
This macro displays the Define dialog box (same as the Define command on the Bookmark 
menu.

Syntax
BookmarkDefine()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.
If the BookmarkDefine macro is run from a pop-up window, the bookmark is attached to 
the topic that invoked the pop-up window.



BookmarkMore
This macro displays the More dialog box (same as the More command on the Bookmark 
menu). The More command appears on the Bookmark menu if the user has defined more 
than nine bookmarks.

Syntax
BookmarkMore()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.



BrowseButtons
This macro adds the << Browse button (backward) and the >> Browse button (forward) to 
the button bar in WinHelp.

Syntax
BrowseButtons()

Parameters
None

Example
The following macros in the .HPJ file cause the Clock button to appear immediately before 
the two Browse buttons on the button bar:
CreateButton("&Clock", "ExecProgram(`clock', 0)")
BrowseButtons()

Comments
WinHelp ignores this macro if it is run in a secondary window.
If the BrowseButtons macro is used with one or more CreateButton macros in the 
[CONFIG] section of the .HPJ file, the order of the Browse buttons on the WinHelp button bar
is determined by the order of the BrowseButtons macro in relation to the other macros 
listed in the [CONFIG] section.

Note WinHelp version 3.1 doesn't automatically provide >> Browse (forward) and << 
Browse (backward ) buttons. If your Help file includes one or more browse sequences, you 
must use the BrowseButtons() macro so the user can browse forward or backward.



ChangeButtonBinding (CBB)
This macro assigns a Help macro to a Help button.

Syntax
ChangeButtonBinding("button-id", "button-macro")
CBB("button-id", "button-macro")

Parameters
Argument Definition
button-id Identifier assigned to the button in the CreateButton macro or, for a 

standard Help button, one of the following predefined button identifiers: 
btn_contents (Contents), btn_search (Search), btn_back (Back), 
btn_history (History), btn_previous (<<), or btn_next (>>). The button 
identifier must appear in quotation marks.

button-macro Help macro run when the user chooses the button. The macro must appear 
in quotation marks.

Example
The following macro changes the function of the Contents button so that choosing it causes
a jump to the Table of Contents topic (identified by the context string "dict_contents") in 
the DICT.HLP file:
ChangeButtonBinding("btn_contents", "JumpId(`dict.hlp', 
`dict_contents')")

Comments
WinHelp ignores this macro if it is run in a secondary window.



ChangeItemBinding (CIB)
This macro assigns a Help macro to an item that you add to a WinHelp menu using the 
AppendItem macro.

Syntax
ChangeItemBinding("item-id", "item-macro")
CIB("item-id", "item-macro")

Parameters
Argument Definition
item-id Identifier assigned to the item in the AppendItem macro. The item identifier 

must appear in quotation marks.
item-macro Help macro that is run when the user selects the item. The macro must appear

in quotation marks.
Example
The following macro changes the menu item identified by "time_item" so that it starts the 
Windows Clock program:
ChangeItemBinding("time_item", "ExecProgram(`clock', 0)")

Comments
WinHelp ignores this macro if it is run in a secondary window.



CloseWindow
This macro closes the specified window, which is either the main WinHelp window or a 
secondary window.

Syntax
CloseWindow("window-name")

Parameters
Argument Definition
window-name The name of the window to close. The name "main" is reserved for the 

primary Help window. For secondary windows, the window name is defined 
in the [WINDOWS] section of the .HPJ file. This name must appear in 
quotation marks.

Example
The following macro closes the secondary window "keys":
CloseWindow("keys")

Comments
If the window does not exist, WinHelp ignores the macro.



Contents
This macro displays the contents topic in the current Help file. The contents topic is defined
by the CONTENTS option in the [OPTIONS] section of the Help project file.

Syntax
Contents()

Parameters
None

Comments
If the project file does not have a CONTENTS option, the contents topic is the first topic in 
the first topic file specified in the Help project file.



CopyDialog
This macro displays the Copy dialog box (same as the Copy command on the Edit menu).

Syntax
CopyDialog()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.



CopyTopic
This macro copies all the text in the currently displayed topic onto the Windows Clipboard.

Syntax
CopyTopic()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.
This macro copies text only; it does not copy bitmaps or any other images in the Help topic.



CreateButton (CB)
This macro adds a new button to the WinHelp button bar.

Syntax
CreateButton("button-id", "name", "macro")
CB("button-id", "name", "macro")

Parameters
Argument Definition
button-id Name that WinHelp uses internally to identify the button. This name must 

appear in quotation marks. Use this name in the DisableButton or 
DestroyButton macro if you want to remove or disable the button, or in the 
ChangeButtonBinding macro if you want to change the Help macro that the 
button runs in certain topics.

name The text that appears on the button. This name must appear in quotation 
marks. To designate a letter a keyboard access key for this button, place an 
ampersand (&) before a letter in this text. The button name is case-sensitive 
and can contain up to 29 characters, beyond which the name is clipped.

macro Help macro or macro string that is run when the user chooses the button. The 
macro must appear in quotation marks. Multiple macros in a macro string must
be separated by semicolons (;).

Example
The following macro creates a new button labeled "Ideas" that jumps to a topic with the 
context string "directory" in the IDEAS.HLP file when the button is chosen:
CreateButton("btn_ideas", "&Ideas", "JumpId(`ideas.hlp', `directory')")

Comments
WinHelp ignores this macro if it is run in a secondary window.
WinHelp allows a maximum of 16 authored buttons. It allows a total of 22 buttons, including
the standard Browse buttons, on the button bar.
If the BrowseButtons macro is used with one or more CreateButton macros in the 
[CONFIG] section of the .HPJ file, the order of the Browse buttons on the WinHelp button bar
is determined by where the BrowseButtons macro is listed in relation to the other macros 
in the [CONFIG] section.



DeleteItem
This macro removes a menu item that was added using the AppendItem macro.

Syntax
DeleteItem("item-id")

Parameters
Argument Definition
item-id The item identifier string used in the AppendItem macro. The item identifier 

must appear in quotation marks.
Example
The following macro removes the menu item "Tools" appended in the example for the 
AppendItem macro:
DeleteItem("mnu_tools")

Comments
WinHelp ignores this macro if it is run in a secondary window.



DeleteMark
This macro removes a text marker added with the SaveMark macro.

Syntax
DeleteMark("marker-text")

Parameters
Argument Definition
marker-text Marker text specified in the SaveMark macro. The marker text must appear in

quotation marks.
Example
The following macro removes the marker "Managing Memory" from the Troubleshooting 
Help file:
DeleteMark("Managing Memory")

Comments
If the marker does not exist when the DeleteMark macro is run, WinHelp displays a "Topic 
not found" error message.



DestroyButton
This macro removes a button added with the CreateButton macro.

Syntax
DestroyButton("button-id")

Parameters
Argument Definition
button-id Identifier assigned to the button in the CreateButton macro. The button 

identifier must appear in quotation marks. The button idenitifier cannot 
duplicate an identifier used for one of the standard Help buttons. (See the 
ChngeButtonBinding macro for a list of these identifiers.)

Comments
WinHelp ignores this macro if it is run in a secondary window.



DisableButton (DB)
This macro disables and dims a button added with the CreateButton macro.

Syntax
DisableButton("button-id")
DB("button-id")

Parameters
Argument Definition
button-id Identifier assigned to the button in the CreateButton macro. The button 

identifier appears in quotation marks.
Comments
WinHelp ignores this macro if it is run in a secondary window.
A button disabled by the DisableButton macro cannot be used in the topic until an 
EnableButton macro is run.



DisableItem (DI)
This macro disables and dims a menu item added with the AppendItem macro.

Syntax
DisableItem("item-id")
DI("item-id")

Parameters
Argument Definition
item-id Identifier assigned to the menu item in the AppendItem macro. The item 

identifier must appear in quotation marks.
Comments
WinHelp ignores this macro if it is run in a secondary window.
A menu item disabled by the DisableItem macro cannot be used in the topic until an 
EnableItem macro is run.



EnableButton (EB)
This macro re-enables a button disabled with the DisableButton macro.

Syntax
EnableButton("button-id")
EB("button-id")

Parameters
Argument Definition
button-id Identifier assigned to the button in the CreateButton macro. The button 

identifier must appear in quotation marks.
Comments
WinHelp ignores this macro if it is run in a secondary window.



EnableItem (EI)
This macro re-enables a menu item disabled with the DisableItem macro.

Syntax
EnableItem("item-id")
EI("item-id")

Parameters
Argument Definition
item-id Identifier assigned to the menu item in the AppendItem macro. The item 

identifier must appear in quotation marks.
Comments
WinHelp ignores this macro if it is run in a secondary window.



ExecProgram (EP)
This macro runs a Windows - based application.

Syntax
ExecProgram("command-line", display-state)
EP("command-line", display-state)

Parameters
Argument Definition
command-line Command line for the application to be executed. The command line must 

appear in quotation marks. WinHelp searches for this application in the 
current directory, followed by the Windows directory, the user's path, and 
the directory of the currently displayed Help file.

display-state A value indicating how the application is shown when executed. A value of 
0 indicates normal, 1 indicates minimized, and 2 indicates maximized.

Example
The following macro runs the Windows Clock program in its normal window size:
ExecProgram("clock.exe", 0)



Exit
This macro exits the WinHelp application (same as the Exit command on the File menu).

Syntax
Exit()

Parameters
None



FileOpen
This macro displays the Open dialog box (same as the Open command on the File menu).

Syntax
FileOpen()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.



FocusWindow
This macro changes the focus to the specified window, which is either the main WinHelp 
window or a secondary window.

Syntax
FocusWindow("window-name")

Parameters
Argument Definition
window-name The name of the window to have the focus. The name "main" is reserved 

for the primary Help window. For secondary windows, the window name is 
defined in the [WINDOWS] section of the .HPJ file. This name must appear 
in quotation marks.

Example
The following macro changes the focus to the secondary window "keys":
FocusWindow("keys")

Comments
If the window does not exist, WinHelp ignores the macro.



GotoMark
This macro jumps to a marker set with the SaveMark macro.

Syntax
GotoMark("marker-text")

Parameters
Argument Definition
marker-text Marker text specified in the SaveMark macro. The marker text must appear in

quotation marks.
Example
The following macro jumps to the marker "Managing Memory" in the Troubleshooting Help 
file:
GoToMark("Managing Memory")



HelpOn
This macro displays the Using Help file for the WinHelp application (same as the Using Help
command on the Help menu).

Syntax
HelpOn()

Parameters
None



History
This macro displays the Windows Help History window, which shows the last 40 topics the 
user has viewed since opening a Help file in WinHelp. It has the same effect as choosing 
the History button on the WinHelp button bar.

Syntax
History()

Parameters
None

Comments
WinHelp ignores this macro if it is run in a secondary window.



IfThen
This macro runs a Help macro if a given marker exists. It uses the IsMark macro to make 
the test.

Syntax
IfThen(IsMark("marker-text"), "macro")

Parameters
Argument Definition
marker-text Marker text tested by the IsMark macro. The marker text must appear in 

quotation marks.
macro The Help macro or macro string that is run if the marker exists. The macro 

must appear in quotation marks. Multiple macros in a macro string must be 
separated by semicolons (;).

Example
The following macro jumps to the topic with the context string "man_mem" if a marker 
named "Managing Memory" has been set by the SaveMark macro:
IfThen(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')")



IfThenElse
This macro runs one of two Help macros, provided a marker exists. It uses the IsMark 
macro to make the test.

Syntax
IfThenElse(IsMark("marker-text"), "macro1", "macro2")

Parameters
Argument Definition
marker-text Marker text tested by the IsMark macro. The marker text must appear in 

quotation marks.
macro1, etc.WinHelp runs macro1 if the marker exists and macro2 if it does not. Both 

macros must appear in quotation marks. Multiple macros in either macro string
must be separated by semicolons (;).

Example
The following macro jumps to the topic with the context string "man_mem" if a marker 
named "Managing Memory" has been set by the SaveMark macro. If the marker does not 
exist, it jumps to the contents screen for the TRB.HLP file:
IfThenElse(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')", 
"JumpContents(`TRB.HLP')")



InsertItem
This macro inserts a menu item at a given position on an existing menu. The menu can be 
either one you create with the InsertMenu macro or one of the standard WinHelp menus.

Syntax
InsertItem("menu-id", "item-id", "item-name", "macro", position)

Parameters
Argument Definition
menu-id Either a standard WinHelp menu name or the name used in the InsertMenu 

macro to create the menu. Standard menu names are mnu_file (File menu), 
mnu_edit (Edit menu), mnu_bookmark (Bookmark menu), and mnu_helpon
(Help menu). The menu identifier must appear in quotation marks. The new 
item is inserted into this menu.

item-id Name that WinHelp uses internally to identify the menu item. The item 
identifier must appear in quotation marks. Use this name in the DisableItem 
or DeleteItem macro if you want to remove or disable the item, or change the
operations that the item performs in certain topics.

item-name Name WinHelp displays on the menu for the item. This name is case-sensitive 
and must appear in quotation marks. Within the quotation marks, place an 
ampersand (&) before the character used for the item's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. 
The macro must appear in quotation marks. Multiple macros in a string must 
be separated by semicolons (;).

position An integer specifying the position in the menu where the new item will appear.
Position 0 is the first or topmost position in the menu.

Example
The following macro inserts a menu item labeled "Tools" as the third item on a menu that 
has an identifier "mnu_books":
InsertItem("mnu_books", "mnu_tools", "&Tools", "JI(`tools.hlp', 
`first_topic')", 3)
Selecting the menu item causes a jump to a topic with the context string "first_topic" in the
TOOLS.HLP file.

Comments
WinHelp ignores this macro if it is run in a secondary window.
Make sure that the keyboard access keys you assign to menu items are unique. If you 
assign a key that conflicts with other menu access keys, WinHelp displays the error 
message "Unable to add item" and ignores the macro.



InsertMenu
This macro adds a new menu to the WinHelp menu bar.

Syntax
InsertMenu("menu-id", "menu-name", menu-position)

Parameters
Argument Definition
menu-id Name that WinHelp uses internally to identify the menu. The menu identifier

must appear in quotation marks. Use this identifier in the AppendItem 
macro to add commands to the menu.

menu-name Name for the menu that WinHelp displays on the menu bar. This name is 
case-sensitive and must appear in quotation marks. Within the quotation 
marks, place an ampersand (&) before the character used for the menu's 
keyboard access key.

menu-position Number telling WinHelp which position on the menu bar the new menu 
name will have. Positions are numbered from left to right, with position 0 
being the leftmost menu.

Example
The following macro adds a menu named "Utilities" to WinHelp:
InsertMenu("menu_util", "&Utilities", 3)
The label "Utilities" appears as the fourth menu on the WinHelp menu bar. The user presses
"ALT+U" to display the menu and its commands.

Comments
WinHelp ignores this macro if it is run in a secondary window.
Make sure that the keyboard access keys you assign to menus are unique. If you assign a 
key that conflicts with other menu access keys, WinHelp displays the error message 
"Unable to add menu" and ignores the macro.



IsMark
This macro determines whether a marker set by the SaveMark macro exists. It is used as a
parameter to the conditional macros IfThen and IfThenElse.

Syntax
IsMark("marker-text")

Parameters
Argument Definition
marker-text Marker text tested by the IsMark macro. The IsMark macro returns a True 

value if the mark exists and a False value if it does not. The marker text must 
appear in quotation marks.

Example
The following macro jumps to the topic with the context string "man_mem" if a marker 
named "Managing Memory" has been set by the SaveMark macro:
IfThen(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')")

Comments
The Not macro can be used to reverse the results of the IsMark macro.



JumpContents
This macro jumps to the contents topic of a specified Help file. The contents topic is 
indicated by the CONTENTS option entry in the [OPTIONS] section of the .HPJ file.

Syntax
JumpContents("filename")

Parameters
Argument Definition
filename The name of the destination file for the jump. The file name must appear in 

quotation marks. If WinHelp cannot find this file, it displays an error message 
and does not perform the jump.

Example
The following macro jumps to the contents topic of the PROGMAN.HLP file:
JumpContents("PROGMAN.HLP")

Comments
If the CONTENTS option is not specified, WinHelp jumps to the first topic in the Help file.
WinHelp ignores this macro if it is run in a secondary window.



JumpContext (JC)
This macro jumps to a topic identified by a context number. The context is identified by an 
entry in the [MAP] section of the .HPJ file.

Syntax
JumpContext("filename", context number)
JC("filename", context number)

Parameters
Argument Definition
filename The name of the destination file for the jump. The file name must appear in 

quotation marks. If WinHelp cannot find this file, it displays an error 
message and does not perform the jump.

context numberContext number of the topic in the destination file. The context number 
must be mapped in the destination Help file's [MAP] section. If the context 
number does not exist or cannot be found in the [MAP] section, WinHelp 
jumps to the contents topic or the first topic in the file instead, and displays
an error message. (For more information about context numbers, see 
"Creating Context Numbers" in the Help Compiler Guide,Chapter 2, 
"Planning the Help System.")

Example
The following macro jumps to the topic mapped to the context number 801 in the 
PROGMAN.HLP file:
JumpContext("PROGMAN.HLP", 801)



JumpHelpOn
This macro jumps to the contents topic of the Using Help file. The Using Help file is either 
the default WINHELP.HLP file or the Help file designated by the SetHelpOnFile macro in 
the [CONFIG] section of the .HPJ file. (For more information, see the SetHelpOnFile macro 
later in this section.)

Syntax
JumpHelpOn()

Parameters
None

Example
The following macro jumps to the contents topic of the designated Using Help file:
JumpHelpOn()

Comments
If WinHelp cannot find the specified Help file, it displays an error message and does not 
perform the jump.



JumpId (JI)
This macro jumps to the topic with the specified context string in the Help file.

Syntax
JumpId("filename", "context-string")
JI("filename", "context-string")

Parameters
Argument Definition
filename Name of the Help file (.HLP) containing the context string. The file name must 

appear in quotation marks. If WinHelp does not find this file, it displays an 
error message and does not perform the jump.

context-string Context string of the topic in the destination file. The context string 
must appear in quotation marks. If the context string does not exist, WinHelp 
jumps to the contents topic for that file instead. 

Example
The following macro jumps to a topic with "second_topic" as its context string in the Help 
file SECOND.HLP:
JumpId("second.hlp", "second_topic")



JumpKeyword (JK)
This macro opens the indicated Help file (.HLP), searches through the K keyword table, and 
displays the first topic containing the keyword specified in the macro.

Syntax
JumpKeyword("filename", "keyword")
JK("filename", "keyword")

Parameters
Argument Definition
filename The name of the .HLP file that contains the desired keyword table. The file 

name must appear in quotation marks. If this file does not exist, WinHelp 
displays an error message and does not perform the jump.

keyword The keyword that the macro searches for. The keyword must appear in 
quotation marks. If WinHelp finds more than one match, it displays the first 
matched topic. If it does not find any matches, it displays a "Not a keyword" 
message and the contents topic of the destination file.

Example
The following macro opens the first topic that has "hands" as an index keyword in the Help 
file CLOCK.HLP:
JumpKeyword("clock.hlp", "hands")



Next
This macro displays the next topic in the browse sequence for the Help file. It has the same 
effect as choosing the >> (forward) Browse button.

Syntax
Next()

Parameters
None

Comments
If the current topic is the last of a browse sequence, this macro does nothing.
WinHelp ignores this macro if it is run in a secondary window.



Not
This macro reverses the True or False result returned by the IsMark macro. It is used 
along with the IsMark macro as a parameter to the conditional macros IfThen and 
IfThenElse.

Syntax
Not(IsMark("marker-text"))

Parameters
Argument Definition
marker-text Marker text tested by the IsMark macro. The Not macro returns a False value

if the mark exists or a True value if it does not. The marker text must appear 
in quotation marks.

Example
The following macro jumps to the topic with context string "Expanded Memory" if a marker 
named "Managing Memory" has not been set by the SaveMark macro:
IfThen(Not(IsMark("Managing Memory")), "JI(`trb.hlp', `Expanded Memory')")



PopupContext (PC)
This macro displays a topic identified by a context number. The context is identified by an 
entry in the [MAP] section of the .HPJ file.

Syntax
PopupContext("filename", context number)
PC("filename", context number)

Parameters
Argument Definition
filename The name of the file that contains the topic to be displayed in the pop-up 

window. The file name must appear in quotation marks. If WinHelp cannot 
find this file, it displays an error message.

context numberContext number of the topic to be displayed in the pop-up window. The 
context number must be mapped in the [MAP] section of the specified Help 
file. If the context number does not exist or cannot be found in the [MAP] 
section, WinHelp displays the contents topic or the first topic in the file 
instead. (For more information about context numbers, see "Mapping 
Context-Sensitive Topics" in the Help Compiler Guide,Chapter 7, "Building 
the Help System.")

Example
The following macro displays in a pop-up window the topic mapped to the context number 
801 in the file PROGMAN.HLP:
PopupContext("progman.hlp", 801)



PopupId (PI)
This macro displays a topic from a specified file in a pop-up window.

Syntax
PopupId("filename", "context-string")
PI("filename", "context-string")

Parameters
Argument Definition
filename The name of the file that contains the pop-up window topic. The file name 

must appear in quotation marks. If this file does not exist, WinHelp displays 
an error message.

context-string Context string of the topic in the destination file. The context string must 
appear in quotation marks. If the requested context string does not exist, 
WinHelp displays the contents topic or the first topic in the file in the pop-up 
window. (For more information, see "Coding Context Strings" in the Help 
Compiler Guide,Chapter 4, "Creating the Topic Files.")

Example
The following macro displays in a pop-up window a topic identified by the context string 
"second_topic" in the file SECOND.HLP:
PopupId("second.hlp", "second_topic")



PositionWindow (PW)
This macro sets the size and position of the main Help window or an existing secondary 
window.

Syntax
PositionWindow(x, y, width, height, window-state,"window-name")
PW(x, y, width, height, window-state, "window-name")

Parameters
Argument Definition
x, y X and Y coordinates of the upper-left window corner. Positions are defined in

terms of WinHelp's 1024-by-1024 coordinate system.
width, height Gives the default width and height of the window. Window sizes, like 

positions, are defined in terms of WinHelp's coordinate system.
window-state Specifies how the window is sized. This parameter is 0 for normal size and 

1 for maximized. If the parameter is 1, WinHelp ignores the x, y, width, and 
height parameters.

window-name The name of the window to position. The name "main" is reserved for the 
primary Help window. For secondary windows, the window name is defined 
in the [WINDOWS] section of the .HPJ file. This name must appear in 
quotation marks.

Example
The following macro positions the secondary window "Samples" in the upper-left corner 
(100, 100) with a width and height of 500 (in WinHelp coordinates):
PositionWindow(100, 100, 500, 500, 0, "Samples")

Comments
If the window to be positioned does not exist, WinHelp ignores the macro.



Prev
This macro displays the previous topic in the browse sequence for the Help file. It has the 
same effect as choosing the << (backward) Browse button .

Syntax
Prev()

Parameters
None

Comments
If the currently displayed topic is the first topic of a browse sequence, this macro does 
nothing.
WinHelp ignores this macro if it is run in a secondary window.



Print
This macro sends the currently displayed topic to the printer.

Syntax
Print()

Parameters
None

Comments
This macro should be used only to print topics in windows other than the main Help 
window. For example, it can be used to print topics displayed in secondary windows, 
provided the user doesn't have a dialog box open at the time of printing.
Use of this macro in secondary windows is discouraged.



PrinterSetup
This macro displays the Print Setup dialog box (same as the Print Setup command on the 
File menu).

Syntax
PrinterSetup()

Parameters
None

Comments
Use of this macro in secondary windows is discouraged.



RegisterRoutine (RR)
This macro registers a function within a DLL as a Help macro. Registered functions can be 
used in macro hot spots or footnotes within topic files, or in the [CONFIG] section of the .HPJ
file, just as standard Help macros are used.

Syntax
RegisterRoutine("DLL-name", "function-name", "format-spec")
RR("DLL-name", "function-name", "format-spec")

Parameters
Argument Definition
DLL-name The file name of the DLL being called. The file name must appear in 

quotation marks. If WinHelp cannot find the DLL, it displays an error 
message and does not perform the call.

function-name The name of the function to be executed in the designated DLL. The 
function name must appear in quotation marks.

format-spec A string specifying the formats of parameters passed to the function. The 
format string must appear in quotation marks. Characters in the string 
represent C parameter types: "u" for unsigned short, "U" for unsigned 
long, "i" for short int, "I" for long int, "s" for string (near char *), "S" for 
string (far char *), or "v" for void. WinHelp automatically makes sure these
formats match the parameter types specified in the function prototype.

Example
The following DLL call registers a routine "RetString" in the DLL named HELPLIB.DLL. 
RetString takes arguments of types far char *, short int, and unsigned long.
RegisterRoutine("HELPLIB", "RetString", "S=iU")



SaveMark
This macro saves the location of the currently displayed topic and file and associates a text 
marker with that location. The GotoMark macro can then be used to jump to this location.

Syntax
SaveMark("marker-text")

Parameters
Argument Definition
marker-text Text used to identify the topic location. The marker text must appear in 

quotation marks, and it must be unique. If the same text is used for more than 
one marker, WinHelp recognizes only the most recently entered marker.

Example
The following macro saves the marker "Managing Memory" in the current topic in the 
Troubleshooting Help file:
SaveMark("Managing Memory")

Comments
In addition to GotoMark, WinHelp offers the following other macros for use with text 
markers:

DeleteMark removes any defined marker.
IsMark tests whether a given marker has been set in the Help file. Not negates the 

result of this test.
IfThen and IfThenElse run one or more Help macros if a given marker has been set.

These use the IsMark (and optional Not) macro to test whether the marker is set.
Text markers are not saved if the user exits and then restarts WinHelp.



Search
This macro displays the dialog box for the Search button, which allows users to search for 
topics using keywords defined in K footnotes. It has the same effect as choosing the Search
button.

Syntax
Search()

Parameters
None

Comments
WinHelp ignores this macro if it is run in a secondary window.



SetContents
This macro designates a specific topic as the contents topic within the Help file.

Syntax
SetContents("filename", context number)

Parameters
Argument Definition
filename The name of the Help file that contains the desired contents topic. The file 

name must appear in quotation marks. If WinHelp cannot find the file, it 
displays an error message and does not perform the jump.

context numberContext number of the topic in the specified file. The context number must 
be mapped in the [MAP] section of the destination Help file. If the context 
number does not exist or cannot be found in the [MAP] section, WinHelp 
displays an error message.

Example
The following macro sets the topic mapped to the context number 801 in the 
PROGMAN.HLP file as the contents topic:
SetContents("PROGMAN.HLP", 801)
After running this macro, pressing the Contents button causes a jump to the specified topic.



SetHelpOnFile
This macro designates the specific Help file that replaces WINHELP.HLP, the default Using 
Help file in the Windows environment.

Syntax
SetHelpOnFile("filename")

Parameters
Argument Definition
filename The name of the replacement Using Help file. The file name must appear in 

quotation marks. If WinHelp cannot find this file, it displays an error message.
Example
The following macro sets the Using Help file as MYHELP.HLP:
SetHelpOnFile("myhelp.hlp")

Comments
If this macro appears within a topic in the Help file, the replacement file is set after 
execution of the macro. If this macro appears in the [CONFIG] section of the .HPJ file, the 
replacement file is set when the Help file is opened.



Virtual-Key Codes
The following list shows the symbolic constant names, hexadecimal values, and descriptive 
information for Microsoft Windows virtual-key codes. Virtual-key codes are used to assign 
an accelerator key or key combination to a macro (For more information on assigning 
accelerator keys or key combinations, see the AddAccelerator macro earlier in this 
chapter). The codes are listed in numeric order.
Name Value Description
VK_CANCEL 03H Used for control-break processing
+ 05H-07H Undefined
VK_BACK 08H BACKSPACE key
VK_TAB 09H TAB key
+ 0AH-0BH Undefined
VK_CLEAR 0CH CLEAR key
VK_RETURN 0DH RETURN key
VK_SHIFT 10H SHIFT key
VK_CONTROL 11H CTRL key
VK_MENU 12H ALT key
VK_PAUSE 13H PAUSE key
VK_CAPITAL 14H CAPITAL key
+ 15H-19H Reserved for Kanji systems
+ 1AH Undefined
VK_ESCAPE 1BH ESC key
+ 1CH-1FH Reserved for Kanji systems
VK_SPACE 20H SPACEBAR
VK_PRIOR 21H PGUP key
VK_NEXT 22H PGDN key
VK_END 23H END key
VK_HOME 24H HOME key
VK_LEFT 25H LEFT ARROW key
VK_UP 26H UP ARROW key
VK_RIGHT 27H RIGHT ARROW key
VK_DOWN 28H DOWN ARROW key
VK_SELECT 29H SELECT key
+ 2AH OEM specific
VK_EXECUTE 2BH EXECUTE key
VK_SNAPSHOT 2CH PRINT SCREEN key for Windows version 3.0 and later
VK_INSERT 2DH INS key
VK_DELETE 2EH DEL key
VK_HELP 2FH HELP key
VK_0 30H 0 key
VK_1 31H 1 key
VK_2 32H 2 key
VK_3 33H 3 key
VK_4 34H 4 key
VK_5 35H 5 key
VK_6 36H 6 key
VK_7 37H 7 key



VK_8 38H 8 key
VK_9 39H 9 key
+ 3AH-40H Undefined
VK_A 41H A key
VK_B 42H B key
VK_C 43H C key
VK_D 44H D key
VK_E 45H E key
VK_F 46H F key
VK_G 47H G key
VK_H 48H H key
VK_I 49H I key
VK_J 4AH J key
VK_K 4BH K key
VK_L 4CH L key
VK_M 4DH M key
VK_N 4EH N key
VK_O 4FH O key
VK_P 50H P key
VK_Q 51H Q key
VK_R 52H R key
VK_S 53H S key
VK_T 54H T key
VK_U 55H U key
VK_V 56H V key
VK_W 57H W key
VK_X 58H X key
VK_Y 59H Y key
VK_Z 5AH Z key
+ 5BH-5FH Undefined
VK_NUMPAD0 60H Numeric key pad 0 key
VK_NUMPAD1 61H Numeric key pad 1 key
VK_NUMPAD2 62H Numeric key pad 2 key
VK_NUMPAD3 63H Numeric key pad 3 key
VK_NUMPAD4 64H Numeric key pad 4 key
VK_NUMPAD5 65H Numeric key pad 5 key
VK_NUMPAD6 66H Numeric key pad 6 key
VK_NUMPAD7 67H Numeric key pad 7 key
VK_NUMPAD8 68H Numeric key pad 8 key
VK_NUMPAD9 69H Numeric key pad 9 key
VK_MULTIPLY 6AH Multiply key
VK_ADD 6BH Add key
VK_SEPARATER 6CH Separater key
VK_SUBTRACT 6DH Subtract key
VK_DECIMAL 6EH Decimal key
VK_DIVIDE 6FH Divide key
VK_F1 70H F1 key
VK_F2 71H F2 key



VK_F3 72H F3 key
VK_F4 73H F4 key
VK_F5 74H F5 key
VK_F6 75H F6 key
VK_F7 76H F7 key
VK_F8 77H F8 key
VK_F9 78H F9 key
VK_F10 79H F10 key
VK_F11 7AH F11 key
VK_F12 7BH F12 key
VK_F13 7CH F13 key
VK_F14 7DH F14 key
VK_F15 7EH F15 key
VK_F16 7FH F16 key
+ 80H-87H OEM specific
+ 88H-8FH Unassigned
VK_NUMLOCK 90H NUM LOCK key
+ 91H OEM specific
+ 92H-B9H Unassigned
+ BAH-C0H OEM specific
+ C1H-DAH Unassigned
+ DBH-E4H OEM specific
+ E5H Unassigned
+ E6H OEM specific
+ E7H-E8H Unassigned
+ E9H-F5H OEM specific
+ F6H-FEH Unassigned



Interpreting Error Messages
The topic number given with an error message refers to the sequential position of that topic
in the topic file (first topic, second topic, and so on). Remember that topics are separated 
by hard page breaks, even though there is no such thing as a "page" in the Help system.
Messages beginning with the word Error may indicate fatal errors. Fatal errors are always 
reported, since no usable Help file will result from the build. Messages beginning with the 
word Warning are less serious in nature. A build with warnings produces a valid Help file 
that WinHelp can open, but the file may contain operational errors. You specify the amount 
of warning information to be reported by the Help Compiler using the WARNING option.
During processing of the .HPJ file, the Help Compiler ignores lines that contain errors and 
attempts to continue with the build. This means that errors encountered early in a build 
may result in many more errors being reported as the build continues.
Similarly, errors encountered during the processing of the RTF topic files are reported, but if
the errors are not serious, the Help Compiler continues with the build. 

Note One easy way to avoid build errors is to make sure that the Help Compiler can access
all the topic files and graphic files needed to build the Help file.



Warning Message Reporting
You can specify the level of warnings reported by the Help Compiler during the build 
process. Warning messages alert you to conditions that are not serious enough to stop the 
build but that might cause problems in your Help file.
The WARNING option in your .HPJ file sets the amount of warning information that the Help
Compiler displays. You set the warning level under the [OPTIONS] section, using the 
following command:
WARNING = level
The following table describes each of the three possible reporting levels.
Warning level Information reported
1 The build program reports only the most severe warnings.
2 The build program reports severe and less serious warnings.
3 The build program reports all warnings.



Help Compiler Error Messages
The Help Compiler displays a message when it encounters an error in building the Help file.
Whenever possible, the Help Compiler displays the name of the topic file that contains the 
error, as well as the number used to identify the specific line of the Help Project (.HPJ) file 
or the topic that produced the error. Error message help is organized into the following 
groups:
Message 
numbers

Type of errors Message 
numbers

Type of errors

1019 1536Source file errors 2771 293
2

Other options errors

2010 Project file errors 3011 317
8

Build tag footnote and 
expression errors

2030 2214Syntax errors 3511 365
2

Macro errors

2273 2331General section errors 4011 419
6

Context string errors

2341 2372ALIAS and MAP section 
errors

4211 431
2

Footnote errors

2391 2501WINDOWS section errors 4331 439
3

Topic title errors

2511 2532OPTIONS section errors 4412 445
2

Keyword errors

2550 2570Root option errors 4471 449
2

Build tag errors

2591 2632Font range option errors 4551 Entry macro errors
2651 2672Forcefont errors 4616 481

3
Topic file errors

2691 2752Multikey errors 5035 511
5

Miscellaneous errors

Note You might encounter errors other than the build errors described here. See the 
README.TXT file for more information.



File Errors
The following messages result from problems with the files used to build a Help file.
1019 Project file extension cannot be .HLP or .PH.

You cannot specify a project file with an .HLP or .PH extension. Project files 
must use the .HPJ extension.
Rename the Help project file and then recompile.

1030 File name exceeds limit of 259 characters.
The combined length of the path and file name is more than the MS-DOS limit 
of 259 characters.
Shorten the path and then recompile.

1079 Out of file handles.
The Help Compiler does not have enough available file handles to continue the
build.

1100 Cannot open file filename: permission denied.
You do not have the required file privileges to open the requested file.

1150 Cannot overwrite file filename.
The Help file cannot overwrite the specified file because the file has a read-
only attribute.
Rename the Help project file or change the read-only attribute.

1170 File filename is a directory.
A subdirectory in the Help project root directory has the same name as the 
requested Help file. This is a MS-DOS file error.
Move or rename the subdirectory and then recompile.

1190 Cannot use reserved MS-DOS file filename.
A file has been referred to by a reserved MS-DOS name such as COM1, LPT2, 
or PRN. This is a MS-DOS file error.
Rename the file and then recompile.

1230 File filename not found.
The specified file could not be found or is unreadable. This is a MS-DOS file 
error or an out-of-memory condition.
Check to see if the file exists and also check the amount of available memory.

1292 File filename is not a valid bitmap.
The specified bitmap file could not be found or is not in a recognizable bitmap 
format. This is a MS-DOS file error or an out-of-memory condition.
Check to see if the file exists, and if it does, check its format. If necessary, 
save the file again in your paint or draw program, and then recompile.

1319 Disk full.
The Help file could not be written to disk.
Create more space on the destination disk and then recompile.

1513 Bitmap name filename duplicated.
The [BITMAPS] section contains duplicate bitmap names. The Help Compiler 
uses the first occurrence of the name.
Rename the duplicate bitmap file names and then recompile.

1536 Not enough memory to check and compress bitmap filename.
The specified bitmaps cannot be compressed because of insufficient memory. 
If any of the specified bitmaps are segmented hypergraphics, the context 
strings stored in them are not checked for validity during the build.



Project File Errors
The following messages result from errors in the .HPJ file used to build a Help file.
2010 Include statements nested more than 5 deep.

The #include statement on the specified line has exceeded the maximum of 
five include levels. 
Do not nest #include statements more than 5 deep.



Syntax Errors
The following messages result from syntax errors in the Help project file.
2030 Comment starting at line linenumber of file filename unclosed at end 

of file.
The Help Compiler has unexpectedly come to the end of the Help project file. 
There may be an open comment in the .HPJ file or in an included file.

2050 Invalid #include syntax.
The correct #include syntax is as follows:
#include <filename>
Correct the syntax and then recompile.

2091 Bracket missing from section heading [sectionname].
The right bracket (]) is missing from the specified section heading.
Insert the bracket and then recompile.

2111 Section heading missing.
The section heading on the specified line is not complete. This error is also 
reported if the first entry in the Help project file is not a section heading.

2131 Invalid OPTIONS syntax: option=value' expected.
Check the syntax of the options in the [OPTIONS] section.

2141 Invalid ALIAS syntax: context=context' expected.
Check the syntax of the entries in the [ALIAS] section.

2151 Incomplete line in [sectionname] section.
The entry on the specified line is incomplete.
The Help Compiler skips the line.

2171 Unrecognized text.
There is unrecognizable text following valid text.
The Help Compiler ignores the line.

2191 Section heading [sectionname] unrecognized.
A section heading that is not supported by the Help Compiler has been used.
The Help Compiler ignores the line.

2214 Line in .HPJ file exceeds length limit of 2047 characters.
There is a line in the .HPJ file that exceeds the maximum length of 2047 
characters.



General Section Errors
The following messages result from general errors in the different sections of the Help 
project file.
2273 [OPTIONS] should precede [FILES] and [BITMAPS] for all options to 

take effect.
It is recommended that the [OPTIONS] section be the first section of the .HPJ 
file so that all the options will take effect. Also, if the ERRORLOG option is 
used, it should be the first line in the [OPTIONS] section.

2291 Section sectionname previously defined.
A duplicate section has been found in the Help project file.
The Help Compiler ignores the lines under the duplicated section and 
continues from the next valid section heading.

2305 No valid files in [FILES] section.
The file section is either empty or contains only invalid files.

2322 Context string context_name cannot be used as alias string.
A context string that has been assigned an alias cannot be used later as an 
alias for another context string. That is, you cannot map a = b and then c = a 
in the [ALIAS] section.
The Help Compiler ignores the attempted reassignment on this line.

2331 Context number already used in [MAP] section.
The context number on the specified line in the Help project file was previously
mapped to a different context string.
The Help Compiler ignores the line.



Alias and Map Section Errors
The following messages result from errors in the [ALIAS] or [MAP] sections of the Help 
project file.
2341 Invalid or missing context string.

The specified line is missing a context string before an equal sign.
2351 Invalid context identification number.

The context number on the specified line is empty or contains invalid 
characters.

2362 Context string context_name already assigned an alias.
A context string can only have one alias. That is, you cannot map a = b and 
then a = c in the [ALIAS] section. The specified context string has already been
assigned an alias in the [ALIAS] section.
The Help Compiler ignores the attempted reassignment on this line.

2372 Alias string aliasname already assigned.
You can't alias an alias. An alias string cannot, in turn, be assigned another 
alias. That is, you cannot map a = b and then b = c in the [ALIAS] section.
The Help Compiler ignores the attempted reassignment on this line.



Windows Section Errors
The following messages result from errors in the definitions of the types of secondary 
windows given in the [WINDOWS] section of the Help project file.
2391 Limit of 6 window definitions exceeded.

The maximum number of window definitions is one main window definition and
five secondary window definitions.

2401 Window maximization state must be 0 or 1.
The value of the fMax variable in the window attribute specification in the .HPJ 
file is something other than 0 or 1.
Correct the entry and then recompile.

2411 Invalid syntax in window color.
The correct syntax for the text and background color is:
.mono (rrr, ggg, bbb).endmono.
Correct the syntax and then recompile. For information on setting the window 
color, please see "Defining Window Attributes" in the Help Compiler 
Guide,Chapter 7, "Building the Help Files."

2421 Invalid window position.
The correct syntax to indicate the predefined window position is:
.mono (x, y, DX, dy).endmono.
The Help Compiler ignores this line, and the window does not have a 
predefined position. For more information, please see "Defining Window 
Attributes" in the Help Compiler Guide,Chapter 7, "Building the Help Files."

2431 Missing quote in window caption.
The value of the caption attribute for the window definition in the .HPJ file is 
not enclosed in quotation marks.
Correct the syntax and then recompile.

2441 Window name windowname is too long.
The window name exceeds the maximum length of 8 characters.

2451 Window position value out of range 01023.
One or more of the window position coordinates (X, Y, X + dX, or [Y+dY]) 
exceed the maximum position value of 1023.

2461 Window name missing.
The window specification in the .HPJ file is missing the window name.

2471 Invalid syntax in [WINDOWS] section.
The entry for a main or secondary window is incorrect.
The Help Compiler ignores the window entry.
Check the window entry syntax and then recompile.

2481 Secondary window position required.
The X, Y, dX, and dY entries for the secondary window definitions must be 
specified in the .HPJ file.

2491 Duplicate window name windowname.
There are duplicate window names in the .HPJ file.
Check the uniqueness of each member name and then recompile.

2501 Window caption windowcaption exceeds limit of 50 characters.
The caption for the window exceeds the limit of 50 characters.



Options Section Errors
The following error messages are caused by problems in the [OPTIONS] section of the Help 
project file.
2511 Unrecognized option optionname in [OPTIONS] section.

An option has been used that is not supported by the compiler.
The Help Compiler skips this line.

2532 Option optionname previously defined.
The specified option has been defined on a previous line.
The Help Compiler ignores the attempted redefinition.



ROOT Option Errors
The following error messages are caused by problems with the ROOT option in the 
[OPTIONS] section of the Help project file.
2550 Invalid path pathname in optionname option.

The Help Compiler cannot find the path specified by the ROOT option.
The Help Compiler uses the current working directory.

2570 Path in optionname option exceeds number of characters.
The path specified by the ROOT option exceeds the MS-DOS maximum limit.
The Help Compiler ignores the path and uses the current working directory.



Font Range Option Errors
The following error messages are caused by problems with the MAPFONTSIZE option in 
the [OPTIONS] section of the Help project file.
2591 Invalid MAPFONTSIZE option.

The font range syntax is invalid.
The correct syntax is m[-n]:p.

2612 Maximum of 5 font ranges exceeded.
The maximum number of font ranges that can be specified is five.
The Help Compiler ignores any additional ranges.

2632 Current font range overlaps previously defined range.
A font size range overlaps a previously defined mapping.
The Help Compiler ignores the second mapping.
Adjust one or both of the font ranges to remove any overlaps.



FORCEFONT Option Errors
The following error messages are caused by problems with the FORCEFONT option in the 
[OPTIONS] section of the Help project file.
2651 Font name exceeds limit of 20 characters.

Font names cannot exceed 20 characters.
The Help Compiler ignores this line.

2672 Unrecognized font name fontname in FORCEFONT option.
The Help Compiler has encountered a font name that it does not support.
The Help Compiler ignores the font name and uses the default Helvetica font.



MULTIKEY Option Errors
The following error messages are caused by problems with the MULTIKEY option in the 
[OPTIONS] section of the Help project file.
2691 Invalid MULTIKEY syntax.

The Help Compiler does not recognize the syntax used in a MULTIKEY option. 
The valid syntax is MULTIKEY = char, where char is any capital letter other 
than "K."

2711 Maximum of 5 keyword tables exceeded.
The limit of five keyword tables has been exceeded.
The Help Compiler ignores the additional tables.
Reduce the number of tables and then recompile.

2732 Character already used.
A character used for indicating the keyword table (MULTIKEY = char) was 
previously used.
The Help Compiler ignores the entry.

2752 Characters K' and k' cannot be used.
These characters are reserved for Help's normal keyword table.
Choose another character, and then recompile.



Other Options Errors
The following error messages are caused by problems with other options in the [OPTIONS] 
section of the Help project file.
2771 REPORT option must be ON' or OFF'.

The REPORT option must be either True, 1, ON, YES, False, 0, OFF, or NO.
Correct the entry and then recompile.

2811 OLDKEYPHRASE option must be ON' or OFF'.
The OLDKEYPHRASE option must be either True, 1, ON, YES, False, 0, OFF,
or NO.
Correct the entry and then recompile.

2832 COMPRESS option must be OFF', MEDIUM' or HIGH'.
The COMPRESS option must be either 1, YES, ON, True, HIGH, MEDIUM, 0,
NO, OFF, or False.
Correct the entry and then recompile.

2842 OPTCDROM option must be TRUE' or FALSE'.
The OPTCDROM option must be either True or False.
The Help Compiler defaults to False.
Correct the entry and then recompile.

2852 Invalid TITLE option.
The TITLE option defines a string that is empty or contains more than 32 
characters.
The Help Compiler truncates the title.

2872 Invalid LANGUAGE option.
You have specified an ordering that is not supported by the compiler.
The Help Compiler defaults to U.S. sort ordering.

2893 Warning option must be 1, 2, or 3.
The warning reporting level can be set only to 1, 2, or 3.
The Help Compiler defaults to full reporting (level 3).

2911 Invalid icon file filename.
The Help Compiler cannot find the icon file specified in the ICON option, or the
file is not a valid icon file.

2932 Copyright string exceeds limit of 50 characters.
The maximum length of the copyright string in the About box is 50 characters.
The Help Compiler truncates the string.



BUILDTAG Footnote and Expression Errors
The following messages are caused by errors in build-tag footnotes or build expressions in 
the [BUILDTAGS] section of the Help project file.
3011 Maximum of 32 build tags exceeded.

The maximum number of build tags that can be defined is 32.
The Help Compiler ignores the additional tags.

3031 Build tag length exceeds 32 characters.
The build tag on the specified line exceeds the maximum of 32 characters.
The Help Compiler skips this entry.

3051 Build tag tagname contains invalid characters.
Build tags can contain only alphanumeric characters or the underscore (_) 
character.
The Help Compiler skips this line.

3076 [BUILDTAGS] section missing.
The BUILD option declared a conditional build, but there is no [BUILDTAGS] 
section in the Help project file.
The Help Compiler includes all topics in the build.

3096 Build expression too complex.
The build expression has too many expressions ("~", "|" or "&") or is too 
deeply nested.

3116 Invalid build expression.
The syntax used on the specified line of the build expression contains one or 
more logical or syntax errors.

3133 Duplicate build tag in [BUILDTAGS] section.
A build tag in the [BUILDTAGS] section has been repeated unnecessarily.

3152 Build tag tagname not defined in [BUILDTAGS] section.
The specified build tag has been assigned to a topic, but not declared in the 
Help project file.
The Help Compiler ignores the tag for the topic.

3178 Build expression missing from project file.
The topics have build tags, but there is no BUILD = expression in the .HPJ file.
The Help Compiler includes all topics in the build.



Macro Errors
The following messages result from errors in the use of Help macros in footnotes, hot spots,
and the [CONFIG] section of the Help project file.
3511 Macro macrostring exceeds limit of 254 characters.

The macro string exceeds the maximum limit of 254 characters.
3532 Undefined function in macro macroname.

The specified macro is not on the list of macros supported by the compiler, nor
is it specified in the RegisterRoutine().
The Help Compiler nonetheless passes the macro to the .HLP file.

3552 Undefined variable in macro macroname.
The macro contains a variable that is not recognized by the compiler.

3571 Wrong number of parameters to function in macro macroname.
There are too many or too few parameters in the macro.

3591 Syntax error in macro macroname.
The syntax of the macro is invalid.

3611 Function parameter type mismatch in macro macroname.
There is a type mismatch (string or numeric) in the function call.

3631 Bad macro prototype.
The prototype string passed to RegisterRoutine is invalid.

3652 Empty macro string.
The "!" footnote or a hidden text starting with "!" does not contain a macro.



Context String Errors
The following messages are caused by problems with context string footnotes or context 
strings specified in jumps or project file options.
4011 Context string contextname already used.

The specified context string was previously assigned to another topic.
The Help Compiler ignores the latter string, and the topic has no identifier.

4031 Invalid context string contextname.
The context string footnote contains non-alphanumeric characters or is empty.
The Help Compiler does not assign the topic an identifier.

4056 Unresolved context string specified in CONTENTS option.
The Contents topic defined in the Help project file could not be found.
The Help Compiler uses the first topic in the build as the Contents.

4072 Context string exceeds limit of 255 characters.
The context string hidden text cannot exceed 255 characters.
The Help Compiler ignores the string.

4098 Context string(s) in [MAP] section not defined in any topic.
The Help Compiler cannot find a context string listed in the [MAP] section in 
any of the topics in the build.
The Help Compiler ignores the entry.

4113 Unresolved jump or pop-up contextname.
The specified topic contains a context string that identifies a nonexistent topic.
Check the topic for spelling errors in the context string, and also check to see 
if the requested topic is included in the build.

4131 Hash conflict between contextname and contextname.
The hash algorithm has generated the same hash value for both of the listed 
context strings.
Change either of the context strings and then recompile.

4151 Invalid secondary window name windowname.
The window name for the secondary window is "main" or another disallowed 
member name.

4171 Cannot use secondary window with pop-up.
The hidden text defining the pop-up identifier contains a secondary window 
name.

4196 Jumps and lookups not verified.
Due to the low memory conditions, the build is continued without the jump 
and keyword validity verification.



Footnote Errors
The following messages are caused by problems with footnotes in topic files.
4211 Footnote text exceeds limit of 1023 characters.

The footnote text cannot exceed the limit of 1023 characters.
The Help Compiler ignores the footnote.

4231 Footnote text missing.
The specified topic contains a footnote that has no characters.

4251 Browse sequence not in first paragraph.
The browse-sequence footnote is not in the first paragraph of the topic.
The Help Compiler ignores the browse sequence.

4272 Empty browse sequence string.
The browse-sequence footnote for the specified topic contains no sequence 
characters.

4292 Missing sequence number.
A browse-sequence number ends in a colon (:) for the specified topic.
Remove the colon, or enter a "minor" sequence number and then recompile.

4312 Browse sequence already defined.
There is already a browse-sequence footnote for the specified topic.
The Help Compiler ignores the latter sequence.



Topic Title Errors
4331 Title not in first paragraph.

The title footnote ($) is not in the first paragraph of the topic.
The topic will not have a topic title string.

4352 Empty title string.
The title footnote for the specified topic contains no characters.
The Help Compiler does not assign the topic a title.

4372 Title defined more than once.
There is more than one title footnote in the specified topic.
The Help Compiler uses the first title string.

4393 Title exceeds limit of 128 characters.
The title for the specified topic exceeds the limit of 128 characters.
The Help Compiler ignores the additional characters.



Keyword Errors
4412 Keyword string exceeds limit of 255 characters.

The keyword string exceeds the maximum limit of 255 characters.
4433 Empty keyword string.

There are no characters in the keyword footnote.
4452 Keyword(s) defined without title.

The topic has a keyword assigned to it, but no title.
The topic will appear as ">>Untitled Topic<<" in the history list and in the 
keyword search dialog.



Build Tag Errors
4471 Build tag footnote not at beginning of topic.

The build tag footnote marker, if used, has to be the first character in the 
topic.

4492 Build tag exceeds limit of 32 characters.
A build tag for the specified topic exceeds the maximum of 32 characters.
The Help Compiler ignores the tag for the topic.



Entry Macro Errors
4551 Entry macro not in first paragraph.

The "!" footnote (for running a macro) is not in the first paragraph of the topic.
The Help Compiler ignores the macro.



Topic File Errors
The following messages result from formatting problems in one or more topic files.
4616 File filename is not a valid RTF topic file.

The specified file is not an RTF file.
Check to make sure that you have saved the topic file as RTF from your word 
processor.

4639 Error in file filename at byte offset 0x%lX.
The specified file contains unrecognized RTF at that byte offset.
This message should not appear if you are using Microsoft Word for Windows, 
Microsoft Word for MS-DOS, or Microsoft Word for the Macintosh..
Check the RTF syntax and then recompile. If you are using Microsoft Word for 
the Macintosh, transfer the file to the PC again, and then recompile.

4649 File filename contains more than 32767 topics.
The maximum number of topics allowed in one RTF file is 32767.

4652 Table formatting too complex.
The Help Compiler encountered a table with borders, shading, or right 
justification.
Remove the unsupported formatting and then recompile.

4662 Side-by-side paragraph formatting not supported.
The side-by-side paragraph formatting is not supported in WinHelp in Windows 
version 3.1.
The Help Compiler ignores the side-by-side text.
If you are using WinHelp in Windows 3.1, use the table feature.

4671 Table contains more than 32 columns.
The maximum number of columns in one table is 32. Some word processors 
may have different limits for the number of columns supported.

4680 Font fontname in file filename not in RTF font table.
A font not defined in the RTF header has been entered into the topic.
The Help Compiler uses the default system font.

4692 Unrecognized graphic format.
The Help Compiler supports only Windows bitmaps and metafiles.
The Help Compiler ignores the graphic.
Make sure that you have not used Macintosh picture formats.

4733 Hidden page break.
The page break was found as a part of the hidden text. A page break 
formatted as hidden text will not separate two topics.

4753 Hidden paragraph.
A paragraph marker was found in the hidden text.
The Help Compiler ignores the paragraph marker.

4763 Hidden carriage return.
A carriage return was found in the hidden text.
The Help Compiler ignores the carriage return.

4774 Paragraph exceeds limit of 64K.
A single paragraph has more than 64K of text or 64K of graphics.

4792 Nonscrolling region defined after scrolling region.
A paragraph that was authored as "keep with next" is not the first paragraph in
the topic.
The Help Compiler ignores the "keep with next" attribute, and the paragraph is
treated as regular text and will be part of the regular topic text.



4813 Nonscrolling region crosses page boundary.
The "keep with next" paragraph formatting crosses a page break boundary.



Miscellaneous Errors
The following messages are caused by conditions such as MS-DOS file errors or out-of-
memory conditions.
5035 File filename not created.

There are no topics to compile, or the build expression is False for all topics.
The Help Compiler does not create a Help file.

5059 Not enough memory to build Help file.
To free up memory, unload any unneeded applications, device drivers, and 
memory-resident programs.

5075 Help Compiler corrupted. Please reinstall HC31.EXE.
The virus checking code has detected a corruption in the Help Compiler.
Reinstall the Help Compiler from the original source disk.

5098 Using old key-phrase table.
Maximum compression can only result by deleting the .PH file before each 
recompilation of the Help topics or by setting the OLDKEYPHRASE option to 
0.

5115 Write failed.
Write to disk failed.
Contact Microsoft Product Support Services.




