
 Visual Basic Knowledge Base Articles
Prepared April 13, 1993

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

THE INFORMATION IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND. MICROSOFT DISCLAIMS ALL WARRANTIES EITHER EXPRESSED OR
IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR ITS SUPPLIERS BE LIABLE FOR
ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL,
LOSS OF BUSINESS PROFITS, OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR
ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES SO THE FORGOING EXCLUSION OR LIMITATION MAY NOT APPLY.

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions
 Keeping the Current Record the Same After Using Refresh

 Copying the Current Database Record Into a Record Variable
 Using a Data Control to Scroll Up and Down in a Recordset
 DDE From Visual Basic to Excel For Windows
 Example of Client/Server DDE Between Visual Basic Applications
 How to Create Scrollable Viewports in Visual Basic
 How to Determine When a Shelled Process has Terminated
 How to Get Windows Master List (Task List) Using Visual Basic
 How to Print a Form or Control using StretchDIBits
 How to Use Windows BitBlt Function From Visual Basic

 How VB Can Determine If a Specific Windows Program Is Running
 LSTRCPY API Call to Receive LPSTR Returned From Other APIs

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access
 ODBC Setup & Connection Issues for Visual Basic Version 3.0

 Keeping the Current Record the Same After Using Refresh
 Copying the Current Database Record Into a Record Variable
 Using a Data Control to Scroll Up and Down in a Recordset

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)
 DDE Example Between Visual Basic and Windows Program Manager

 VB DDE to Excel with Embedded TAB Can Truncate String in Excel
 VB Example of Using DDE LinkExecute to Word for Windows 2.0
 Using DDE Between Visual Basic and Q+E for Windows
 DDE Example Between Visual Basic and Word for Windows
 How to Establish a Network DDE Link Using Visual Basic

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface
 How to Create a Form with no Title Bar in VB for Windows

 How to Move Controls Between Forms in VB for Windows

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)
 How to Create Column and Row Labels in VB Grid Custom Control

 How to Read Flag Property of VB Common Dialog Custom Controls
 How to Use HORZ1.BMP with Professional Toolkit Gauge Control
 How to Use VB Graph Control to Graph Data from Grid Control
 PENCNTRL.VBX: "Requires Microsoft Windows for Pen Computing"
 VB AniButton Control: Cannot Resize if PictDrawMode=Autosize

 VB.EXE "License File for Custom Control Not Found" Explanation
 VB Graph Custom Control: DataReset Property Resets to 0 (Zero)
 VB Graph Control: ThisPoint, ThisSet Reset to 1 at Run Time
 VB Graph Control Displays Maximum of 80 Characters Per Title
 VB Key Status: Autosize Property Affects Height and Width
 VB MCI Control Does Not Support PC Speaker Driver
 VB MCI Control Does Not Support Recording of MIDI Data
 How to Close VB Combo Box with ENTER key
 How to Limit User Input in VB Combo Box with SendMessage API
 DEL Key Behavior Depends on Text Box MultiLine Property
 Determining Number of Lines in VB Text Box; SendMessage API

 Disabling the ENTER Key BEEP in a Visual Basic Text Box
 How to Scroll VB Text Box Programmatically and Specify Lines
 UCase$/LCase$ in Text Box Change Event Inverts Text Property

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing
 VB Can Call Escape API to Specify Number of Copies to Printer

 How to Set Landscape or Portrait for Printer in Windows 3.0
 Using PASSTHROUGH Escape to Send Data Directly to Printer
 Using an Escape to Obtain and Change Paper Size for Printer
 How to Obtain & Change the Paper Bins for the Default Printer

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts
 How to Use More than One Type of Font in Picture Box

 VB Uses Bitmap Fonts when TrueType FontSize is Less than 8

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics
 Overflow Error Plotting Points Far Outside Bounds of Control

 How to Make a Push Button with a Bitmap in Visual Basic
 How to Use FillPolygonRgn API to Fill Shape in Visual Basic

 How to Send an HBITMAP to Windows API Function Calls from VB
 How to Rotate a Bitmap in VB for Windows
 How to Create a Transparent Bitmap Using Visual Basic
 How to Copy Entire Screen into a Picture Box in VB for Windows
 How to Flood Fill (Paint) in VB using ExtFloodFill Windows API

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)
 VB CDK: Example of Subclassing a Visual Basic Form

 Declare Currency Type to Be Double When Returning from DLL
 How to Pass One-Byte Parameters from VB to DLL Routines

 VB "Cannot Find DLL, Insert in Drive A" Using Shell
 VB "Bad DLL Calling Convention" Means Stack Frame Mismatch
 Diagnosing "Error in loading DLL" with LoadLibrary

 Programming Issues

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues
 How to Invoke Search in Windows Help from VB Program

 How to Use Windows WNetAddConnection in Visual Basic
 How to Invoke GetSystemMetrics Windows API Function from VB
 How VB Can Get Windows Status Information via API Calls
 How to Add a Horizontal Scroll Bar to Visual Basic List Box
 How to Create a Flashing Title Bar on a Visual Basic Form
 How to Set Windows System Colors Using API and Visual Basic
 Creating TOPMOST or "Floating" Window in Visual Basic
 Example of How to Read and Write Visual Basic Arrays to Disk
 How to Determine Display State of a VB Form, Modal or Modeless
 How to Determine the Number of VB Applications Running at Once

 How to Kill an Application with System Menu Using Visual Basic
 How to Set Focus to First VB .EXE Instance When Second Invoked
 How to Create a System-Modal Program/Window in Visual Basic
 How to Access Windows Initialization Files Within Visual Basic
 How to Create and Use a Custom Cursor in Visual Basic; Win SDK
 How to Play a Waveform (.WAV) Sound File in Visual Basic
 Visual Basic for Windows Reference Materials

 Miscellaneous

 Visual Basic Knowledge Base Articles

 Frequently Asked Questions

 Data Access

 Dynamic Data Exchange (DDE)

 User Interface

 Controls (Text Boxes, Combo Boxes, Custom Controls)

 Printing

 Fonts

 Graphics

 CDK/DLLs (Control Development Kit/Dynamic Linked Libraries)

 Programming Issues

 Miscellaneous
 F5 in Run Mode with Focus on Main Menu Bar Acts as CTRL+BREAK

 Visual Basic SendKeys Statement Is Case Sensitive
 No New Timer Events During Visual Basic Timer Event Processing
 Scope of Line Labels/Numbers in Visual Basic for Windows
 Sending Keystrokes from Visual Basic to an MS-DOS Application
 Task List Switch to VB Application Fails After ALT+F4 Close
 Example of Sharing a Form Between Projects in VB for Windows
 "Property or Control Not Found" Using Form/Control Data Type
 Avoid Could not execute: SETUP1.EXE 2" Error, Use COMPRESS-r

Keeping the Current Record the Same After Using Refresh
Article ID: Q97181
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

Copying the Current Database Record Into a Record Variable
Article ID: Q97413
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

Using a Data Control to Scroll Up and Down in a Recordset
Article ID: Q97414
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

DDE From Visual Basic to Excel For Windows
Article ID: Q75089
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

Example of Client/Server DDE Between Visual Basic Applications
Article ID: Q74861
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

How to Create Scrollable Viewports in Visual Basic
Article ID: Q71068
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

How to Determine When a Shelled Process has Terminated
Article ID: Q96844
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

How to Get Windows Master List (Task List) Using Visual Basic
Article ID: Q78001
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

How to Print a Form or Control using StretchDIBits
Article ID: Q85978
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

How to Use Windows BitBlt Function From Visual Basic
Article ID: Q71104
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

How VB Can Determine If a Specific Windows Program Is Running
Article ID: Q72918
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

LSTRCPY API Call to Receive LPSTR Returned From Other APIs
Article ID: Q78304
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

ODBC Setup & Connection Issues for Visual Basic Version 3.0
Article ID: Q97415
Summary:
There are four possible problem areas that can contribute to a failure to
connect to a database server when using ODBC and Visual Basic:

 - Having correct .INI file settings.
 - Having the correct DLLs in the right place.
 - Having the server information needed to connect to a server correctly.
 - Meeting the needs of Microsoft and Sybase SQL Servers.

More Information:
The following describes each of the four areas, giving possible errors and
problems that can arise if things are not set up correctly.

INI file settings

There are two .INI files (ODBCINST.INI and ODBC.INI) that must reside in
the Windows directory and must contain correct information about the
installed ODBC drivers and servers.

ODBCINST.INI contains the ODBC driver information needed to register new
servers using the RegisterDataBase() statement in Visual Basic. Here is an
example .INI file for the SQL Server driver that ships with Visual Basic:

 [ODBC Drivers]
 SQL Server=Installed

 [SQL Server]
 Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
 Setup=C:\WINDOWS\SYSTEM\sqlsetup.dll

The [ODBC Drivers] section tells the driver manager the names of the
installed drivers. The [SQL Server] section tells the ODBC driver manager
the names of the dynamic link libraries (DLLs) to use to access data from
a server set up as a SQL Server. The order of the two sections and their
entries is arbitrary.

ODBC.INI contains the data for each installed driver. The driver manager
uses this information to determine which DLL to use to access data from a
particular database backend. Here is an example of a file containing three
data sources all using the SQL Server driver:

 [ODBC Data Sources]
 MySQL=SQL Server
 CorpSQL=SQL Server

 [MySQL]
 Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
 Description=SQL Server on server MySQL
 OemToAnsi=No
 Network=dbnmp3
 Address=\\mysql\pipe\sql\query

 [CorpSQL]

 Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
 Description=SQL Server on server CorpSQL
 OemToAnsi=No
 Network=dbnmp3
 Address=\\corpsql\pipe\sql\query

The first section tells the driver manager which sections appearing below
it define the data source. As you can see, each entry has a value (in this
case, SQL Server) that matches a value from the ODBCINST.INI file.

If the information on a data source is incorrect or missing, you may
get the following error:

 ODBC - SQLConnect failure 'IM002[Microsoft][ODBC DLL] Data source
 not found and no default driver specified'

If the DLL listed on the Driver=... line cannot be found or is corrupt, the
following error may occur:

 ODBC - SQLConnect failure 'IM003[Microsoft][ODBC DLL] Driver
 specified by data source could not be loaded'

ODBC and Driver DLLs

The following DLLs must be on the path or in the Windows system directory
in order for ODBC to be accessible from Visual Basic:

 ODBC.DLL - driver manager
 ODBCINST.DLL - driver setup manager
 VBDB300.DLL - Visual Basic programming layer

If VBDB300.DLL is missing or corrupt, you see the following error in Visual
Basic when you try to run the application:

 ODBC Objects require VBDB300.DLL

If either the ODBC.DLL or ODBCINST.DLL file is missing or corrupt, you see
the following error in Visual Basic when you try to run the application:

 Cannot Find ODBC.DLL, File not Found

The SQL Server driver requires the following files:

 SQLSRVR.DLL - actual driver
 SQLSETUP.DLL - driver setup routines
 DBNMP3.DLL - named pipe routines needed by SQL server

If the SQLSRVR.DLL is missing or corrupt, you see the following error when
calling the OpenDataBase() function with a SQL Server data source:

 ODBC - SQLConnect failure 'IM003[Microsoft][ODBC DLL] Driver
 specified by data source could not be loaded'

If the SQLSETUP.DLL is missing or corrupt, you see the following error when
calling the RegisterDataBase statement with SQL Server as the driver name:

 The configuration DLL (C:\WINDOWS\SYSTEM\SQLSETUP.DLL) for the ODBC

 SQL server driver could not be loaded.

Server Information Needed to Connect to a Data Source

Certain information is needed to connect to a data source using the
OpenDataBase() function. This information is obtainable from the server
administrator in the case of SQL Server. The following is an example of a
call to the OpenDataBase() function to connect to a SQL Server called
CorpSQL as a user named Guest with password set to taco:

 Dim db As DataBase
 Set db = OpenDataBase("corpsql", False, False, "UID=guest;PWD=taco")

If any of this information is missing, an ODBC dialog box appears to give a
user a chance to supply the needed data. If the information is incorrect,
the following error occurs:

 ODBC - SQLConnect failure '28000[Microsoft][ODBC SQL Server Driver]
 [SQL Server] Login failed'

Information Specific to Microsoft and Sybase SQL Servers
--
For Microsoft and Sybase SQL Servers, you need to add stored procedures
to the server itself by running a batch file of SQL statements to make a
Microsoft or Sybase SQL Server ODBC-aware. In other words, before you can
run a Visual Basic ODBC application using the SQL Server driver, you must
first update the ODBC catalog of stored procedures. These procedures are
provided in the INSTCAT.SQL file. The system administrator for the SQL
Server should install the procedures by using the SQL Server Interactive
SQL (ISQL) utility.

If the INSTCAT.SQL file is not processed on the server, the following error
occurs:

 ODBC - SQL Connect Failure
 "08001" [Microsoft ODBC SQL Server Driver]
 'unable to connect to data source'number: 606'

To install the catalog stored procedures by using the INSTCAT.SQL file, run
INSTCAT.SQL from the command line using ISQL. Do not use the SAF utility
provided with SQL Server. Microsoft SAF for MS-DOS and OS/2 is limited to
511 lines of code in a SQL script, and INSTCAT.SQL contains more than 511
lines of code.

Run ISQL from the OS/2 command line using the following syntax. Enter the
two lines as one, single line, and do not include the angle braces <>.

 ISQL /U <sa login name > /n /P <password> /S <SQL server name> /i
 <drive: \path\INSTCAT.SQL > /o <drive:\path\output file name>

 /U The login name for the system administrator.
 /n Eliminates line numbering and prompting for user input.
 /P Password used for the system administrator. This switch is case
 sensitive.
 /S The name of the server to set up.
 /i Provides the drive and fully qualified path for the location of
 INSTCAT.SQL

 /o Provides ISQL with an output file destination for results including
 error listings.

Here's an example (shown here on two lines but actually entered on one):

 ISQL /U sa /n /P squeeze /S BLUEDWARF /i C: \SQL\INSTCAT.SQL /o
 C: \SQL OUTPUT.TXT

Keeping the Current Record the Same After Using Refresh
Article ID: Q97181
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

Copying the Current Database Record Into a Record Variable
Article ID: Q97413
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

Using a Data Control to Scroll Up and Down in a Recordset
Article ID: Q97414
Summary:
This article is in the main Visual Basic Help file (VB.HLP). To view it,
choose Technical Support from the Help menu. Then choose Microsoft
Knowledge Base. Choose this article from the list of articles.

DDE Example Between Visual Basic and Windows Program Manager
Article ID: Q76551
Summary:
This article demonstrates how to send dynamic data exchange (DDE)
interface commands to the Microsoft Windows Program Manager from
Microsoft Visual Basic for Windows using DDE.

The interface commands available through DDE with the Windows Program
Manager are as follows:

 CreateGroup(GroupName,GroupPath)
 ShowGroup(GroupName,ShowCommand)
 AddItem(CommandLine,Name,IconPath,IconIndex,XPos,YPos)
 DeleteGroup(GroupName)
 ExitProgman(bSaveState)

A full explanation of the above commands can be found in Chapter 22,
pages 19-22 of the "Microsoft Windows Software Development Kit Guide
to Programming" version 3.0 manual.

An application can also obtain a list of Windows groups from the
Windows Program Manager by issuing a LinkRequest to the "PROGMAN" item.

More Information:
The following program demonstrates how to use four of the five Windows
Program Manager DDE interface commands and the one DDE request:

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Create the following controls with the given properties on Form1:

 Object Name Caption
 ------ -------- -------

 TextBox Text1
 Button Command1 Make
 Button Command2 Delete
 Button Command3 Request

 (In Visual Basic version 1.0 for Window set the CtlName Property
 for the above objects instead of the Name property.)

3. Add the following code to the Command1_Click event:

Sub Command1_Click ()
 Text1.LinkTopic = "ProgMan|Progman"
 Text1.LinkMode = 2 ' Establish manual link.

 Text1.LinkExecute "[CreateGroup(Test Group)]"
 ' Make a group in Windows Program Manager.

 Text1.LinkExecute "[AddItem(c:\vb\vb.exe, Visual Basic)]"
 ' Add an item to that group.

 Text1.LinkExecute "[ShowGroup(Test Group, 7)]"
 ' Iconize the group and focus to VB application.

 On Error Resume Next ' Disconnecting link with Windows Program
 Text1.LinkMode = 0 ' Manager causes an error in Windows 3.0.
 ' This is a known problem with Windows Program Manager.
End Sub

4. Add the following code to the Command2_Click event:

Sub Command2_Click ()
 Text1.LinkTopic = "ProgMan|Progman"
 Text1.LinkMode = 2 ' Establish manual link.

 Text1.LinkExecute "[DeleteGroup(Test Group)]"
 ' Delete the group and all items within it.

 On Error Resume Next ' Disconnecting link with Windows Program
 Text1.LinkMode = 0 ' Manager causes an error in Windows 3.0.
 ' This is a known problem with Windows Program Manager.
End Sub

5. Add the following code to the Command3_Click event:

Sub Command3_Click ()
 Text1.LinkTopic = "ProgMan|Progman"
 Text1.LinkItem = "PROGMAN"
 Text1.LinkMode = 2 ' Establish manual link.
 Text1.LinkRequest ' Get a list of the groups.

 On Error Resume Next ' Disconnecting link with Windows Program
 Text1.LinkMode = 0 ' Manager causes an error in Windows 3.0.
 ' This is a known problem with Windows Program Manager.
End Sub

5. Press the F5 key to run the program.

6. Choose the Make button, then choose the Delete button. Note the
 result.

7. Choose the Request button. This will put a list of the groups
 in the Windows Program Manager to be placed in the text box. The
 individual items are delimited by a carriage return plus linefeed.

As noted in the Windows Software Development Kit (SDK) manual
mentioned above, the ExitProgman() command will only work if Windows
Program Manager is NOT the shell (the startup program when you start
Windows).

VB DDE to Excel with Embedded TAB Can Truncate String in Excel
Article ID: Q82157
Summary:
If you send strings containing TAB characters in a dynamic data
exchange (DDE) conversation from Microsoft Visual Basic for Windows
to Microsoft Excel, the string may be truncated in Excel if you
specify a specific row and column in the Visual Basic for Windows
LinkItem property. If you do not specify a column in the LinkItem
property but only specify a specific row, your string will be parsed
by Excel, and each TAB will cause the characters following the TAB to
be entered into the following cell in Excel.

More Information:
This behavior occurs when the following is true:

 - A string that you are trying to send to Excel through DDE contains
 an embedded TAB.

 - You set your LinkItem property to a specific Excel cell (both row
 and column, such as R1C1, meaning row 1 column 1).

The attempted conversation will result in a truncated string. For
example, if you pass the following string to Excel

 "The cow jumped" + Chr$(9) + "over the moon"

and if the two conditions above are true, the only thing you will see
on the Excel side is "The cow jumped". The rest of the string will be
lost.

The following code example passes strings to Excel from a list box
with TAB-delimited columns. Run the program twice, and uncomment the
LinkItem line to see the different behavior.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Put a text box on the form (Form1), and change the Name (change
 CtlName in Visual Basic version 1.0 for Windows) property to "ddebox".

3. Put a list box (List1) and a command button (Command1) on Form1.

4. Add the following code to the Form_Load procedure:

Sub Form_Load ()
 Form1.Show
 ' Add items to list box with TABs embedded.
 List1.AddItem "hey" + Chr$(9) + "is"
 List1.AddItem "for" + Chr$(9) + "horses"
End Sub

5. Add the following code to the Command1_Click event procedure:

Sub Command1_Click ()
 Const NONE = 0, COLD = 2 ' Define constants.

 If ddebox.LinkMode = NONE Then
 Z% = Shell("Excel", 4) ' Start Excel.
 ' Set link topic.
 ddebox.LinkTopic = "Excel|Sheet1"
 ddebox.LinkItem = "" ' Set link item.
 ddebox.LinkMode = COLD ' Set link mode.
 End If

 ' Loop through all items in list box:
 For i% = 0 To List1.ListCount - 1
 Row$ = Format$(i% + 1) ' Format row variable.
 ' ddebox.LinkItem = "R"+Row$ ' Take out comment to send entire
 ' string.
 ' Comment next line when uncommenting above line.
 ddebox.LinkItem = "R" + Row$ + "C1" ' This statement truncates
 ' string in Excel.
 ddebox.text = List1.list(i%) ' Assign text box to list box string.
 ddebox.LinkPoke ' Send the string to Excel.
 Next

 ddebox.LinkMode = NONE
End Sub

For best results, make sure Excel is not running before you start the
program. When you start the program, notice the list box has the
strings added to it during the form Load event. If you choose the
command button to initialize the DDE conversation with the program
typed in exactly as shown, the following will appear in Excel:

hey ' This will be in cell A1.
for ' This will be in cell A2.

If you change the assignment statement of the LinkItem of the ddebox
from

 ddebox.LinkItem = "R" + Row$ + "C1"

to

 ddebox.LinkItem = "R"+ Row$

notice that the entire string is passed to Excel with the following
results:

hey is ' These words will be in A1 and B1.
for horses ' These words will be in A2 and B2.

The reason for this behavior is that Excel uses TABs as its delimiter.
You can use this method to send multiple items to Excel, placing them
in their own cells if desired. If that is not the desired result, you
will have to make sure you compensate for the lost parts of the string.

VB Example of Using DDE LinkExecute to Word for Windows 2.0
Article ID: Q82879
Summary:
This article demonstrates how to send a LinkExecute event to Microsoft
Word for Windows from Microsoft Visual Basic for Windows using dynamic
data exchange (DDE).

The commands available through DDE with Word for Windows are as
follows:

 - Any Macro in Word for Windows
 - Any embedded WordBasic command built into Word for Windows

A full explanation of the above commands can be found in Word for
Windows online Help under the topic "WordBasic."

More Information:
The following example program demonstrates how to:

 - Automatically start Word for Windows

 - Automatically send text typed in a Visual Basic for Windows text
 box to the Word for Windows document

 - Print the Word for Windows document to the selected printer.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Create the following controls with the given properties on Form1:

 Object Name Caption
 ------ -------- -------

 TextBox Text1
 Button Command1 Start Word
 Button Command2 Link
 Button Command3 Send Text
 Button Command4 Print

 (In Visual Basic version 1.0 for Windows set the CtlName Property
 for the above objects instead of the Name property.)

3. Add the following code to the Command1_Click event:

Sub Command1_Click ()
 x = Shell("winword.exe", 7) ' Start Word for Windows minimized
 ' without the focus.
 x = DoEvents() ' This gives WinWord time to load.
End Sub

4. Add the following code to the Command2_Click event procedure:

Sub Command2_Click ()

 text1.LinkMode = 0 ' Clears DDE link if it already exists.
 text1.LinkTopic = "WinWord|document1" ' Sets up link with
 ' WINWORD.EXE.
 text1.LinkMode = 2 ' Establish a manual DDE link.
 text1.linktimeout = 60 ' Set the time for a response to 6 seconds.
 ' If a DDETIMEOUT occurs increase the Text1.Linktimeout.
 text1.LinkExecute "[InsertBookmark .Name ="+Chr$(34)+"Foo"+Chr$(34)+"]"
 '(Note that the space is necessary as shown before .Name in the above
 ' LinkExecute statement.)
 text1.LinkItem = "Foo" ' Set link to a bookmark on document.
End Sub

5. Add the following code to the Command3_Click event procedure:

Sub Command3_Click ()
 text1.LinkPoke ' Sends the contents of the text box.
End Sub

6. Add the following code to the Command4_Click event procedure:

Sub Command4_Click ()
 text1.LinkExecute "[FilePrintDefault]" ' Prints the doc with the
 ' default printer settings.
End Sub

7. Press the F5 key to run the program.

6. Choose the Start Word button.

7. Choose the Link button. This will establish a DDE conversation with
 Word's Document1 and create a bookmark called Foo using LinkExecute
 and the embedded InsertBookmark WordBasic command. It will then set
 the LinkItem to this newly created bookmark in Document1.

8. Type some text in the text box and choose the Send Text command
 button to send the contents of the text box to Word for Windows.

9. Choose the Print button to print the document in Word for Windows.

Using DDE Between Visual Basic and Q+E for Windows
Article ID: Q75090
Summary:
This article describes how to initiate a Dynamic Data Exchange (DDE)
conversation between a Microsoft Visual Basic for Windows destination
application and a Pioneer Software Q+E for Windows source application.
(Q+E is a database query tool.)

This article demonstrates how to:

1. Prepare a Q+E database file for active DDE.

2. Initiate a manual DDE link (information updated upon request from the
 destination) between Visual Basic for Windows (the destination) and
 Q+E (the source).

3. Use LinkRequest to update information in Visual Basic for Windows
 (the destination) based on information contained in Q+E (the source).

4. Initiate a automatic DDE link (information updated automatically from
 source to destination) between Visual Basic for Windows (the
 destination) and Q+E (the source).

5. Use LinkPoke to send information from Visual Basic for Windows (the
 destination) to Q+E (the source).

6. Change the LinkMode property between Automatic and Manual.

More Information:
A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data
to the destination at the request of the destination or accepts
information at the request of the destination.

The following steps serve as a example of how to establish a DDE
conversation between Visual Basic for Windows and Q+E.

First, generate a Q+E database file to act as the source.

1. Create a database (.DBF) file (see the Q+E manuals for the
 procedure). For this example, you will use one of the default
 files, ADDR.DBF, that is provided with Microsoft Excel for Windows.

2. If Q+E is already running, exit Q+E. For this example to work
 properly, Q+E must not be loaded and running.

Next, create the destination application in Visual Basic for Windows.

The destination is the application that performs the link operations. It
prompts the source to send information or informs the source that
information is being sent.

1. Start Visual Basic for Windows. Form1 will be created by default.

2. Create the following controls with the following properties on

 Form1:

 Default Name Caption Name
 ------------ ------- -------

 Text1 (not applicable) Text1
 Option1 Manual Link ManualLink
 Option2 Automatic Link AutomaticLink
 Command1 Poke Poke
 Command2 Request Request

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

3. Add the following code to the General Declaration section of Form1:

 Const AUTOMATIC = 1
 Const MANUAL = 2
 Const NONE = 0

 ' Const TRUE = -1 ' In Visual Basic 1.0 for Windows uncomment
 ' Const FALSE = 0 ' these two lines.

4. Add the following code to the Load event procedure of Form1:

Sub Form_Load () ' This procedure will start Q+E and load the
 ' file "ADDR.DBF".
 z% = Shell("C:\EXCEL\QE C:\EXCEL\QE\ADDR.DBF",1)
 z% = DoEvents () ' Process Windows events. This
 ' ensures that Q+E will be
 ' executed before any attempt is
 ' made to perform DDE with it.
 Text1.LinkMode = NONE ' Clears DDE link if it already
 ' exists.
 Text1.LinkTopic = "QE|QUERY1" ' Sets up link with Q+E.
 Text1.LinkItem = "R1C1" ' Set link to first cell on
 ' spreadsheet.
 Text1.LinkMode = MANUAL ' Establish a manual DDE link.
 ManualLink.Value = TRUE
End Sub

5. Add the following code to the Click event procedure of the
 Manual Link button:

Sub ManualLink_Click ()
 Request.Visible = TRUE ' Make request button valid.
 Text1.LinkMode = NONE ' Clear DDE Link.
 Text1.LinkMode = MANUAL ' Reestablish new LinkMode.
End Sub

6. Add the following code to the Click event procedure of the
 AutomaticLink button:

Sub HotLink_Click ()
 Request.Visible = FALSE ' No need for button with automatic link.
 Text1.LinkMode = NONE ' Clear DDE Link.
 Text1.LinkMode = AUTOMATIC ' Reestablish new LinkMode.

End Sub

7. Add the following code to the Click event procedure of the
 Request button:

Sub Request_Click ()
 ' With a manual DDE link this button will be visible and when
 ' selected it will request an update of information from the source
 ' application to the destination application.
 Text1.LinkRequest
End Sub

8. Add the following code to the Click event procedure of the Poke
 button:

Sub Poke_Click ()
 ' With any DDE link this button will be visible and when selected
 ' it will poke information from the destination application to the
 ' source application.
 Text1.LinkPoke
End Sub

You can now run the Visual Basic for Windows destination application
from the Visual Basic for Windows environment (skip to step 4) or you
can save the application and create an .EXE file and run that from
Windows (continue to step 1):

1. From the File menu, save the Form and Project using the name
 CLIENT.

2. From the File menu, choose Make an EXE File, and name it CLIENT.EXE.

3. Exit Visual Basic for Windows.

4. Run the application (from Windows if an .EXE file, or from the Run
 menu if from the Visual Basic for Windows environment). Form1 of
 the destination application will be loaded and Q+E will automatically
 be started with the database file ADDR.DBF loaded.

5. Make sure that the main title bar in Q+E reads "Q + E," NOT
 "Q + E - ADDR.DBF." If the title bar is incorrect, then from the
 Window menu of Q+E, choose Arrange All.

You can now experiment with DDE between Visual Basic for Windows and Q+E
for Windows:

1. Try typing some text in R1C1 (the cell that holds the name "Tyler")
 in the Q+E spreadsheet and then choose the Request button. The text
 will appear in the Visual Basic for Windows text box.

2. Choose the Automatic Link button and then type some more text in
 R1C1 of the Q+E spreadsheet. The text is automatically updated
 in the Visual Basic for Windows text box.

3. Type some text in the text box in the Visual Basic for Windows
 application and choose the Poke button. The text is sent to R1C1 in
 the Q+E spreadsheet.

Note that if you do not have the Allow Editing option checked on
the Edit menu in Q+E, you will not be able to change the contents of
the Q+E spreadsheet. This may prevent some DDE operations. For
example, attempting to LinkPoke to Q+E from Visual Basic for Windows
when the Allow Editing option is not chosen will cause the program to
crash and result in a "Foreign application won't perform DDE method or
operation" error message. Attempting to change the contents of the
spreadsheet from Q+E will result in a "Use the allow editing command
before making changes" error message. From the Edit menu of Q+E,
choose Allow Editing to enable this option. When viewed from the Edit
menu, Allow Editing should have a check mark next to it when enabled.

You can also establish DDE between applications at design time. For
more information, see page 356 of the "Microsoft Visual Basic:
Programmer's Guide," version 1.0 or Chapter 20 of the "Microsoft
Visual Basic Programmer's Guide," version 2.0.

DDE Example Between Visual Basic and Word for Windows
Article ID: Q74862
Summary:
This article outlines the steps necessary to initiate dynamic data exchange
(DDE) between a Microsoft Visual Basic application and a Microsoft Word for
Windows (WINWORD.EXE) document at run time.

This article demonstrates how to:

 - Prepare a Word for Windows document for active DDE.
 - Initiate a manual DDE link (information updated upon request from
 the destination) between the Visual Basic application (the
 destination) and the document loaded into Word for Windows (the source).
 - Use LinkRequest to update information in the Visual Basic destination
 based on information contained in the Word for Windows source.
 - Initiate a automatic DDE link (information updated automatically from
 source to destination) between the Visual Basic destination and the
 Word for Windows source.
 - Use LinkPoke to send information from the Visual Basic destination to
 the Word for Windows source.
 - Change the LinkMode property between automatic and manual.

More Information:
A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data
to the destination at the request of the destination or accepts information
at the request of the destination.

Example Showing How to Establish a DDE Conversation

The steps below give an example of how to establish a DDE conversation
between a Visual Basic application and a document loaded into Word for
Windows (WINWORD.EXE).

Step One -- Create the Source Document in Word for Windows
--
1. Start Word for Windows. Document1 is created by default.

2. From the Window menu, choose Arrange All. This removes maximization if
 the document was maximized. Note that the title at the top of the
 WINWORD.EXE main title bar is now:

 Microsoft Word

 instead of:

 Microsoft Word - Document1

3. Press CTRL+SHIFT+END to select to the end of the document.

4. From the Insert menu, choose Bookmark. Under Bookmark Name, type:

 DDE_Link

 Press the ENTER key. This sets a bookmark for the entire document. This

 bookmark functions as the LinkItem in the DDE conversation.

5. From the File menu, choose Save As, and save the document with the
 name SOURCE.DOC.

6. Exit from Word for Windows. For this particular example to function
 correctly, WINWORD.EXE must not be loaded and running.

Step Two -- Create the Destination Application in Visual Basic
--
1. Start Visual Basic. Form1 is created by default.

2. Create the following controls on Form1, giving the controls the
 properties shown in the table:

 Default NameCaption Name
 --
 Text1 (Not applicable) Text1
 Option1 Manual Link ManualLink
 Option2 Automatic Link AutomaticLink
 Command1 Poke Poke
 Command2 Request Request

3. Add the following code to the General Declaration section of Form1:

 Const AUTOMATIC = 1
 Const MANUAL = 2
 Const NONE = 0

4. Add the following code to the Load event procedure of Form1:

 Sub Form_Load ()
 'This procedure starts WINWORD.EXE, loads the document that was
 'created earlier, and prepares for DDE by creating a bookmark to
 'the whole document. This bookmark is necessary because it
 'functions as the LinkItem for the source in the DDE conversation.

 z% = Shell("WinWord Source.Doc",1)

 z% = DoEvents () 'Process Windows events to ensure that
 'WINWORD.EXE is executed before any attempt is
 'made to perform DDE with it.

 Text1.LinkMode = NONE 'Clears DDE link if it exists.
 Text1.LinkTopic = "WinWord|Source" 'Sets up link with WINWORD.EXE.
 Text1.LinkItem = "DDE_Link" 'Set link to bookmark on document.
 Text1.LinkMode = MANUAL 'Establish a manual DDE link.
 ManualLink.Value = TRUE
 End Sub

5. Add the following code to the Click event procedure of the Manual
 Link button:

 Sub ManualLink_Click ()
 Request.Visible = TRUE 'Make request button valid.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = MANUAL 'Reestablish new LinkMode.

 End Sub

6. Add the following code to the Click event procedure of the Automatic
 Link button:

 Sub AutomaticLink_Click ()
 Request.Visible = FALSE 'No need for button with automatic link.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = AUTOMATIC 'Reestablish new LinkMode.
 End Sub

7. Add the following code to the Click event procedure of the Request
 button:

 Sub Request_Click ()
 'With a manual DDE link this button is visible. Clicking this button
 'requests an update of information from the source application to the
 'destination application.
 Text1.LinkRequest
 End Sub

8. Add the following code to the Click event procedure of the Poke button:

 Sub Poke_Click ()
 'With any DDE link, this button is visible. Clicking this button
 'pokes information from the destination application into the source
 'application.
 Text1.LinkPoke
 End Sub

Step Three -- Try it out

Now, you have two choices. You can run the Visual Basic destination
application from the Visual Basic VB.EXE environment by skipping to step 4
below, or you can save the application, create an .EXE file, and run that
from Windows by beginning with step 1 below.

1. From the File menu, choose Save, and save the form and project with
 the name DEST.

2. From the File menu, choose Make EXE File with the name DEST.EXE.

3. Exit from the Visual Basic environment (VB.EXE).

4. Run the application. Run an .EXE file from Windows, or if you're in the
 Visual Basic environment, from the Run menu, choose Start.

 Form1 of the Visual Basic destination application will be loaded, and
 Word for Windows will automatically start and load SOURCE.DOC.

5. Make sure that the main title bar in WINWORD.EXE reads "Microsoft Word,"
 not "Microsoft Word - SOURCE.DOC." If the title bar is not correct,
 choose Arrange All from the Window menu.

Step Four -- Experiment

Experiment with DDE between Visual Basic and Word for Windows:

1. Try typing some text into the document in Word for Windows. Then click
 the Request button. The text appears in the text box.

2. Click the Automatic Link button. Then type some more text into the
 document in Word for Windows. The text is automatically updated in the
 Visual Basic text box.

3. Type some text in the text box in the Visual Basic application. Then
 click the Poke button. The text goes to the Word for Windows document.

Note that if in the WINWORD.EXE document, you delete the total contents of
the bookmark, the bookmark is also deleted. Any attempt to perform DDE with
this WINWORD.EXE session after deleting the bookmark causes this error:

 Foreign applications won't perform DDE method or operation.

If this happens, you must recreate the bookmark in the document in Word for
Windows before performing any further DDE operations.

How to Establish a Network DDE Link Using Visual Basic
Article ID: Q93160
Summary:
This article demonstrates how to establish a network Dynamic Data Exchange
(DDE) link between two computers running Microsoft Windows for Workgroups.

More Information:
Under DDE, a destination (or client) application sends commands through DDE
to the source (or server) application to establish a link. Through DDE, the
source provides data to the destination at the request of the destination
or accepts information at the request of the destination. When you use DDE
with Windows version 3.0 or 3.1 based applications, the source and
destination applications are both located on the same computer.

When you use Network DDE with Windows for Workgroups based applications,
DDE functions exactly the same way as standard DDE except that the source
and destination applications are located on different computers. There are
three steps involved in establishing a network DDE link.

Step One -- Add DDE Share by Calling NDdeShareAdd() Function
--
To establish a network DDE link, you must first establish a network DDE
share for the conversation by calling the API NDdeShareAdd() function
located in the NDDEAPI.DLL file. Here is the Visual Basic declaration:

Declare Function NDdeShareAdd Lib "NDDEAPI.DLL" (Server As Any, ByVal Level
 As Integer, ShareInfo As NDDESHAREINFO, ByVal nSize As Long) As Integer

Enter the entire statement as a single line. The first parameter is always
a 0 and is passed with ByVal 0& from Visual Basic. The second parameter is
always 2. The next parameter is a filled ShareInfo structure (given below).
The last parameter is the size of the ShareInfo structure.

Here is The structure of the NDDESHAREINFO structure:

 Type NDDESHAREINFO
 szShareName As String * MAX_NDDESHARENAME_PLUSONE
 lpszTargetApp As Long 'LPSTR lpszTargetApp
 lpszTargetTopic As Long 'LPSTR lpszTargetTopic
 lpbPassword1 As Long 'LPBYTE lpbPassword1
 cbPassword1 As Long 'DWORD cbPassword1;
 dwPermissions1 As Long 'DWORD dwPermissions1;
 lpbPassword2 As Long 'LPBYTE lpbPassword2;
 cbPassword2 As Long 'DWORD cbPassword2;
 dwPermissions2 As Long 'DWORD dwPermissions2;
 lpszItem As Long 'LPSTR lpszItem;
 cAddItems As Long 'LONG cAddItems;
 lpNDdeShareItemInfo As Long
 End Type

The following table describes each field of the NDDESHAREINFO type:

Field Name Purpose

szShareName Name of the share to add.

lpszTargetApp Pointer to null-terminated string containing the service
 or application name.
lpszTargetTopic Pointer to null-terminated string holding the topic name
lpbPassword1 Pointer to the read-only password -- uppercase, null-
 terminated string. If null, pass null string, not zero.
cbPassword1 Length of read-only password
dwPermissions1 Full access password
cbPassword2 Length of the full access password
dwPermissions2 Permissions allowed by the full access password

Here are the permissions allowed for dwPermissions:

Name Value Function

NDDEACCESS_REQUEST &H1 Allows LinkRequest
NDDEACCESS_ADVISE &H2 Allows LinkAdvise
NDDEACCESS_POKE &H4 Allows LinkPoke
NDDEACCESS_EXECUTE &H8 Allows LinkExecute
NDDEACCESS_START_APP &H10 Starts source application on connect

Here are the possible return values from NDdeShareAdd():

Name Value Meaning

NDDE_NO_ERROR 0 No error.
NDDE_BUF_TOO_SMALL 2 Buffer is too small to hold information.
NDDE_INVALID_APPNAME 13 Application name is not valid.
NDDE_INVALID_ITEMNAME 9 Item name is not valid.
NDDE_INVALID_LEVEL 7 Invalid level; nLevel parameter must be 2.
NDDE_INVALID_PASSWORD 8 Password is not valid.
NDDE_INVALID_SERVER 4 Computer name is not valid; lpszServer
 parameter must be NULL.
NDDE_INVALID_SHARE 5 Share name is not valid.
NDDE_INVALID_TOPIC 10 Topic name is not valid.
NDDE_OUT_OF_MEMORY 12 Not enough memory to complete request.
NDDE_SHARE_ALREADY_EXISTS 15 Existing shares cannot be replaced.

Step Two -- Create DDE source application

The following steps show you how to create a Visual Basic DDE source
and destination application that communicates through a network DDE link.

1. From the DDE source computer, start Visual Basic or if Visual Basic is
 already running, from the File menu, choose New Project (ALT, F, N).
 Form1 is created by default.
2. Change the LinkTopic property of Form1 to VBTopic.
3. If you are running Visual Basic version 2.0 or 3.0 for Windows, change
 the LinkMode property of Form1 to 1 - Source. In Visual Basic version
 1.0, this property is already set to 1 - Server; don't change it.
4. Add a text box (Text1) to Form1.
5. Change the Name property (CTlName in version 1.0) of Text1 to VBItem.
6. Add a timer (Timer1) to Form1.
7. From the File menu, choose New Module (ALT, F, M). Module1 is created.
8. Add the following code to the general declarations section of Module1,
 and enter all lines as a single line even though they may be shown on
 multiple lines for readability:

 ' DDE access options
 Global Const NDDEACCESS_REQUEST = &H1
 Global Const NDDEACCESS_ADVISE = &H2
 Global Const NDDEACCESS_POKE = &H4
 Global Const NDDEACCESS_EXECUTE = &H8
 Global Const NDDEACCESS_START_APP = &H10
 Global Const MAX_NDDESHARENAME_PLUSONE = 65
 Type NDDESHAREINFO
 szShareName As String * MAX_NDDESHARENAME_PLUSONE
 lpszTargetApp As Long 'LPSTR lpszTargetApp
 lpszTargetTopic As Long 'LPSTR lpszTargetTopic
 lpbPassword1 As Long 'LPBYTE lpbPassword1
 cbPassword1 As Long 'DWORD cbPassword1;
 dwPermissions1 As Long 'DWORD dwPermissions1;
 lpbPassword2 As Long 'LPBYTE lpbPassword2;
 cbPassword2 As Long 'DWORD cbPassword2;
 dwPermissions2 As Long 'DWORD dwPermissions2;
 lpszItem As Long 'LPSTR lpszItem;
 cAddItems As Long 'LONG cAddItems;
 lpNDdeShareItemInfo As Long
 End Type
 Declare Function NDdeShareAdd Lib "NDDEAPI.DLL" (Server As Any, ByVal
 Level As Integer, ShareInfo As NDDESHAREINFO,
 ByVal Size As Long As Integer
 Declare Function lstrcpy Lib "KERNEL" (szDest As Any, szSource As Any)
 As Long
 'If using Visual Basic version 1.0, add the following constant declarations
 'Global Const False = 0
 'Global Const True = Not False

9. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim r As Integer
 Dim szShareName As String ' Net DDE share name
 Dim szTargetName As String ' Net DDE target name
 Dim szTopicName As String ' Net DDE source topic name
 Dim szItemName As String
 Dim szReadOnlyPassword As String ' Read-only password Net DDE share
 Dim szFullAccessPassword As String ' Full access password
 Dim ShareInfo As NDDESHAREINFO
 Dim ShareInfoSize As Long
 Dim Result As Integer
 szShareName = "VBDDESource$" + Chr$(0)
 szTargetName = "VBTARGET" + Chr$(0)
 szTopicName = "VBTopic" + Chr$(0)
 szItemName = Chr$(0) 'All items are allowed
 szReadOnlyPassword = Chr$(0) 'No password
 szFullAccessPassword = Chr$(0)
 'Provide the share, target, topic and item names along with passwords
 'that identify the network DDE share
 ShareInfo.szShareName = szShareName
 ShareInfo.lpszTargetApp = lstrcpy(ByVal szTargetName,
 ByVal szTargetName)
 ShareInfo.lpszTargetTopic = lstrcpy(ByVal szTopicName,
 ByVal szTopicName)
 ShareInfo.lpszItem = lstrcpy(ByVal szItemName, ByVal szItemName)

 ShareInfo.cbPassword1 = 0
 ShareInfo.lpbPassword1 = lstrcpy(ByVal szReadOnlyPassword,
 ByVal szReadOnlyPassword)
 ShareInfo.dwPermissions1 = NDDEACCESS_REQUEST Or NDDEACCESS_ADVISE Or
 NDDEACCESS_POKE Or NDDEACCESS_EXECUTE Or NDDEACCESS_START_APP
 ShareInfo.cbPassword2 = 0
 ShareInfo.lpbPassword2 = lstrcpy(ByVal szFullAccessPassword,
 ByVal szFullAccessPassword)
 ShareInfo.dwPermissions2 = NDDEACCESS_REQUEST Or NDDEACCESS_ADVISE Or
 NDDEACCESS_POKE Or NDDEACCESS_EXECUTE Or NDDEACCESS_START_APP
 ShareInfo.lpNDdeShareItemInfo = 15
 Result = NDdeShareAdd(ByVal 0&, 2, ShareInfo, Len(ShareInfo))
 ' Start the timer that will continually update the text box and
 ' the DDE link item with random data.
 timer1.Interval = 1000
 timer1.Enabled = True
 End Sub

10. Add the following code to the Timer1_Timer event procedure:

 Sub Timer1_Timer ()
 ' Display random value 0 - 99 in the text box (DDE source data).
 Randomize Timer
 VBItem.Text = Format$(Rnd * 100, "0")
 End Sub

11. From the File menu, choose Make EXE File...
12. Name the file VBTARGET.EXE and choose OK to create the .EXE file.
13. From the File Manager or Program Manager, run VBTARGET.EXE to display
 a random value in the text box every second.

Step Three -- Create the DDE destination application
--
14. From the DDE destination computer, start Visual Basic or if Visual
 Basic is already running, from the File menu, choose New Project (ALT,
 F, N). Form1 is created by default.
15. Add a text box (Text1) to Form1.
16. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim r As Long
 Dim szComputer As String ' Network server name.
 Dim szTopic As String
 ' Identify the network server where the DDE source application
 ' is running. The following statement assumes the source computer
 ' name is COMPUTER1. Change it to your source computer name.
 szComputer = "\\COMPUTER1"
 ' Identify the DDE share established by the source application
 szTopic = "VBDDESource$"
 Text1.LinkMode = 0
 ' The link topic identifies the computer name and link topic
 ' as established by the DDE source application
 Text1.LinkTopic = szComputer + "\" + "NDDE$" + "|" + szTopic
 Text1.LinkItem = "VBItem" ' Name of text box in DDE source app
 Text1.LinkMode = 1 ' Automatic link.
 End Sub

 'For this program to work, set the szComputer variable (above) to the
 'computer name that holds the DDE source application. Find the computer
 'name in the Network section of Windows for Workgroups Control Panel.

17. From the Run menu, choose Start to run the program.

You should see the same random values generated on the source computer
displayed in the text box of the destination computer. If you receive the
error message "DDE method invoked with no channel open" on the Text1.LinkMode
= 1 statement in Step 16, make sure the szComputer variable is set correctly.

How to Create a Form with no Title Bar in VB for Windows
Article ID: Q83349
Summary:
To create a Microsoft Visual Basic for Windows form with a border but
with no title bar, the Caption property of a form must be set to a
zero-length string; the BorderStyle property must be set to Fixed
Single (1), Sizable (2) or Fixed Double; and the ControlBox, MaxButton
and MinButton properties must be set to False (0). If any text (including
spaces) exists for the Caption property or if the ControlBox, MaxButton,
or MinButton property is set to True, a title bar will appear on the form.
Note that setting the BorderStyle property to None (0) will always
result in a form with no title bar.

More Information:
Even with the ControlBox, MaxButton, and MinButton properties of a
form set to False (0) and the BorderStyle set to Fixed Single (1),
Sizable (2) or Fixed Double (3), the form will still have a title bar
unless the Caption property is set to null. Setting the Caption to
blanks will leave a title bar with no title.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the Properties bar, set the ControlBox, MaxButton, and
 MinButton properties to False.

3. Set the Caption property to at least one space.

4. Press the F5 key to run the program. The form will have a title bar
 without a title.

5. Press CTRL+BREAK to return to design mode.

6. Set the Caption property to a zero-length string (that is, delete
 all characters including spaces).

7. Press the F5 key to run the program. There should be no title bar on
 the form.

You can also have a form with no title bar by setting the BorderStyle
property to None (0).

How to Move Controls Between Forms in VB for Windows
Article ID: Q79884
Summary:
Microsoft Visual Basic for Windows does not support the actual movement
of controls between forms. Attempting to change the parent/child
relationship of a control from one form to another can result in
unpredictable behavior.

However, by creating a control array of the same control type on each
form, and by creating a subroutine or function in a Visual Basic for
Windows module, you can simulate the movement of a control from one form
to another. An example of how to do this is listed below.

More Information:
This example uses the Windows API functions GetFocus and GetParent to
determine the origin of the control dropped onto a form.

The following steps demonstrate how to simulate the movement of
controls between two forms. Note that you can improve this example by
Loading and Unloading the controls as they are needed.

 1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 will be created by default.

 2. From the File menu, choose New Form (press ALT, F, F). Form2 will be
 created.

 3. From the File menu, choose New Module (press ALT, F, M). Module1
 will be created.

 4. Create the following controls for both Form1 and Form2:

 Control Name Property Setting
 ------- ---------- ----------------

 Command button Command1() Index = 0
 Command button Command2 Caption = "Enable Drag"

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

 5. Add the following code to the Module1 (or GLOBAL.BAS in Visual Basic
 version 1.0 for Windows):

' Windows API function declarations.
Declare Function GetFocus Lib "USER" () As Integer
Declare Function GetParent Lib "USER" (ByVal hWnd As Integer) As Integer

 6. Add the following code to the General Declarations section of
 Form1:

 Dim EnableDrag As Integer

 7. Add the following code to the Form_Load event procedure of Form1:

Sub Form_Load ()

 ' Move the form to the left half of the screen.
 Move 0, Top, Screen.Width \ 2
 Form2.Show
 EnableDrag = 0
 Command1(0).Top = 0
 Command1(0).Left = 100

 For i% = 1 To 4 ' Load Control Array.
 Load Command1(i%)
 Command1(i%).Left = Command1(i% - 1).Left
 Command1(i%).Top = Command1(i% - 1).Top + Command1(i% - 1).Height
 Next i%

 For i% = 0 To 4 ' Define Control Properties.
 Command1(i%).Caption = "Button" + Str$(i%)
 Command1(i%).Visible = -1
 Next i%
End Sub

 8. Add the following code to the Command1_Click event procedure of
 Form1:

Sub Command1_Click (Index As Integer)
 Button_Clicked Command1(Index) ' Call Routine in MODULE1.BAS.
End Sub

 9. Add the following code to the Command2_Click event procedure of
 Form1:

Sub Command2_Click ()
 If EnableDrag = 0 Then ' Toggle DragMode.
 EnableDrag = 1
 Command2.Caption = "Disable Drag"
 Else
 EnableDrag = 0
 Command2.Caption = "Enable Drag"
 End If

 For i% = 0 To 4 ' Set DragMode for Controls.
 Command1(i%).DragMode = EnableDrag
 Next i%
End Sub

10. Add the following code to the Form_DragDrop event procedure of
 Form1:

Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
 Source.SetFocus ' Get Parent of Source Control.
 CtrlHnd% = GetFocus()
 Parent% = GetParent(CtrlHnd%)

 If Parent% <> Form1.hWnd Then ' If Parent is other Form.
 Index% = Source.Index
 Command1(Index%).Caption = Source.Caption

 Command1(Index%).Left = Source.Left
 Command1(Index%).Top = Source.Top
 Command1(Index%).Width = Source.Width
 Command1(Index%).Height = Source.Height
 Command1(Index%).Visible = -1
 Source.Visible = 0
 End If
End Sub

11. Add the following code to the General Declarations section of
 Form2:

Dim EnableDrag As Integer

12. Add the following code to the Form_Load event procedure of Form2:

Sub Form_Load ()
 ' Move the form to the right half of the screen.
 Move Screen.Width \ 2, Top, Screen.Width \ 2

 EnableDrag = 0
 Command1(0).Visible = 0
 For i% = 1 To 4 ' Load Control Array.
 Load Command1(i%)
 Command1(i%).Top = Command1(i% - 1).Top + Command1(i% - 1).Height
 Command1(i%).Visible = 0
 Next i%
End Sub

13. Add the following code to the Command1_Click event procedure of
 Form2:

Sub Command1_Click (Index As Integer)
 Button_Clicked Command1(Index)
End Sub

14. Add the following code to the Command2_Click event procedure of
 Form2:

Sub Command2_Click ()
 If EnableDrag = 0 Then
 EnableDrag = 1
 Command2.Caption = "Disable Drag"
 Else
 EnableDrag = 0
 Command2.Caption = "Enable Drag"
 End If

 For i% = 0 To 4
 Command1(i%).DragMode = EnableDrag
 Next i%
End Sub

15. Add the following code to the Form_DragDrop event procedure of
 Form2:

Sub Form_DragDrop (Source As Control, X As Single, Y As Single)

 Source.SetFocus ' Determine Parent of Source.
 CtrlHnd% = GetFocus()
 Parent% = GetParent(CtrlHnd%)
 If Parent% <> Form2.hWnd Then
 Index% = Source.Index
 Command1(Index%).Caption = Source.Caption
 Command1(Index%).Left = Source.Left
 Command1(Index%).Top = Source.Top
 Command1(Index%).Width = Source.Width
 Command1(Index%).Height = Source.Height
 Command1(Index%).Visible = -1
 Source.Visible = 0
 End If
End Sub

16. Add the following code to Module1:

Sub Button_Clicked (Source As Control) ' Generic Click routine.
 MsgBox "Button" + Str$(Source.Index) + " Clicked!!!"
End Sub

17. From the Run menu, choose Start (press ALT, R, S) to run the
 program.

To drag controls from one form to the other, choose the Enable Drag
button. Once this button has been activated on a form, you can drag
any of the command buttons from one form to the other. The drag mode
can be disabled by choosing the Disable Drag button. When drag mode
has been disabled, clicking on any of the command buttons on the form
will cause a message box to be displayed.

How to Create Column and Row Labels in VB Grid Custom Control
Article ID: Q84113
Summary:
The example program below demonstrates how you can display labels in
the top row and left column of the Grid custom control at run time. It
is not possible to assign labels in a grid at design time.

More Information:
The example program below assigns labels to a grid from the Form_Load
event procedure. It puts numbers down the left, labeling the first
non-fixed row as "1". It puts letters across the top, labeling the
first 26 non-fixed columns as "A" through "Z" then subsequent columns
with "AA", "AB", and so on.

Steps to Create Example Program

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX. The Grid tool appears in the Toolbox.

3. Select the Grid tool from the Toolbox, and place a grid (Grid1)
 on Form1.

4. On the Properties bar, set the Grid Cols and Rows properties to 30.

5. Double-click the form to open the Code window. In the Procedure
 box, select Load. Enter the following code:

Sub Form_Load ()
 Dim i As Integer

 ' Make sure grid has at least one fixed column and row.
 If Grid1.FixedCols < 1 Or Grid1.FixedRows < 1 Then
 Stop
 End If

 ' Put letters across top.
 For i = 0 To Grid1.Cols - 2
 Grid1.Col = i + 1
 Grid1.Row = 0
 Grid1.Text = Chr$(i Mod 26 + Asc("A"))
 ' If more than 26 columns, use double letter labels.
 If i + Asc("A") > Asc("Z") Then
 Grid1.Text = Chr$(i \ 26 - 1 + Asc("A")) + Grid1.text
 End If
 Grid1.FixedAlignment(Grid1.Col) = 2 ' Centered.
 Next

 ' Put numbers down left edge.
 For i = 1 To Grid1.Rows - 1
 Grid1.Col = 0

 Grid1.Row = i
 Grid1.Text = Format$(i)
 Next
 Grid1.FixedAlignment(0) = 2 ' Centered.
End Sub

6. Press the F5 key to run the program.

How to Read Flag Property of VB Common Dialog Custom Controls
Article ID: Q84068
Summary:
The Flags property of a Common Dialog control can be read by examining
individual bit values of the Flag property and comparing them with
the predefined constant values in CONSTANT.TXT (or CONST2.TXT for
Visual Basic version 1.0 for Windows). This applies to the following
Visual Basic for Windows Common Dialogs:

 - File Open Dialog
 - File Save Dialog
 - Color Dialog
 - Choose Font Dialog
 - Print Dialog

More Information:
The Flags property can be set at design time or run time.

To set the value of the Flags property, assign it a value. This is
most commonly done using a predefined constant (found in CONSTANT.TXT
or CONST2.TXT). For example, to set the PRINTTOFILE flag on the Print
Dialog box, use the following code:

 CMDialog1.Flags = PD_PRINTTOFILE

To set more than one flag, OR the two flags (the pipe [|] character
acts the same as the OR statement):

 CMDialog1.Flags = PD_PRINTTOFILE | PD_SHOWHELP

The settings of the Flags property can also be changed at run time by
the user making various selections in the dialog box. When a selection
is made, or the status of a check box or option button is changed, the
Flags property reflects this change. You can then read the value of
the Flags property and determine if a specific flag has been set.

For example, in the above sample code, two flags are set in the Flags
property. The value of PD_PRINTTOFILE = &H00000020& and the value of
PD_SHOWHELP = &H00000800&.

The binary equivalent of the two is the following:

 PD_PRINTTOFILE = 00000000000000000000000000100000
 PD_SHOWHELP = 00000000000000000000100000000000

Thus the value:

 Flags = 00000000000000000000100000100000

Note how each flag setting has its own bit setting within the Flags
property.

To determine if a specific flag is set, you only need to AND the flag
with the Flags property. If the result is 0, then the flag is not set;
if the result is the same as the flag value, then the flag is set.

For example:

 Form1.Print (CMDialog1.Flags AND PD_PRINTTOFILE)

The output is decimal 32. Thus, broken down:

 Flags = 00000000000000000000100000100000
 AND
 PD_PRINTTOFILE = 00000000000000000000000000100000

 Result = 00000000000000000000000000100000

Thus, the flag for PRINTTOFILE is one of the flags that are set in the
Flags property:

If (CMDialog1.Flags AND PD_PRINTTOFILE) Then
 ' Code for printing to file goes here.
Else
 ' Code for printing to printer goes here.
End If

How to Use HORZ1.BMP with Professional Toolkit Gauge Control
Article ID: Q81459
Summary:
This article contains a program example of using the Visual Basic for
Windows Gauge custom control (GAUGE.VBX) with the HORZ1.BMP bitmap file.

More Information:
Note: The GAUGE.VBX custom control file can be found in the
\Windows\System subdirectory. The HORZ1.BMP bitmap file can be found
in the \BITMAPS\GUAGE subdirectory that was created during installation.

Example Program

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GAUGE.VBX custom control file. The Gauge tool will appear in the
 toolbox.

3. Create the following controls for Form1:

 Control Name Property Setting
 ------- -------- ----------------

 Timer Timer1 Interval = 1
 Gauge Gauge1 Picture = "Horz1.BMP"
 Max = 50
 InnerBottom = 16
 InnerLeft = 38
 InnerRight = 2
 InnerTop = 14
 ForeColor = &HFF&

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

4. Add the following line to the General Declarations section:

 Dim YoYo As Integer

5. Add the following code to the Form_Load event procedure:

Sub Form_Load ()
 Form1.Caption = "YoYo Gauge Demo"
 Gauge1.Value = Gauge1.Min
End Sub

6. Add the following code to the Timer1_Timer event procedure:

Sub Timer1_Timer ()
 If Gauge1.Value = Gauge1.Max Then YoYo = -1
 If Gauge1.Value = Gauge1.Min Then YoYo = 1

 Gauge1.Value = Gauge1.Value + YoYo
End Sub

When run, this program example will alternately fill and empty the
gauge control's fill area, as controlled by the Timer event procedure.

How to Use VB Graph Control to Graph Data from Grid Control
Article ID: Q84063
Summary:
This article contains an example of how to use a Graph custom control
to graph the data contained in a Grid custom control.

In order to use either the Grid or the Graph control, you must add
them to the Toolbox in the Visual Basic for Windows environment (in
VB.EXE). You do this by selecting Add File from the File menu. From
here select the Graph.VBX file, and then repeat the process for Grid.VBX.
Graph.VBX and Grid.VBX should be found in your Windows\System directory.

More Information:
To create the example, do the following:

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (ALT, F, N) if Visual Basic for Windows is already running.
 Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool appears in the
 Toolbox.

3. Repeat step 2 for the GRID.VBX custom control file.

4. Add a Grid control (Grid1), a Graph control (Graph1), and a command
 button (Command1) to Form1.

5. In the Load event for Form1, add the following code:

 Sub Form_Load ()
 ' This Sub will do all the configuration for the Grid.
 ConfigureGrid
 ' This Sub will do all the configuration for the Graph.
 ConfigureGraph
 End Sub

6. Create the following subroutine in the general Declarations section
 of Form1 to make it callable from anywhere in the form:

 Sub ConfigureGrid ()

 ' Set the number of cols and rows for the grid.
 Grid1.Rows = 11
 Grid1.Cols = 4

 ' Set the alignment for the fixed col to centered.
 Grid1.FixedAlignment(0) = 2

 ' Set the alignment for the variable cols to centered.
 Grid1.ColAlignment(1) = 2
 Grid1.ColAlignment(2) = 2
 Grid1.ColAlignment(3) = 2

 Grid1.ScrollBars = 0

 ' Add the row labels.
 Grid1.Col = 0
 For i = 1 To 10
 Grid1.Row = i
 Grid1.Text = Str$(i)
 Next i

 ' Add the Col labels.
 Grid1.Row = 0
 Grid1.Col = 1
 Grid1.Text = "May"
 Grid1.Col = 2
 Grid1.Text = "June"
 Grid1.Col = 3
 Grid1.Text = "July"

 ' Set the starting cell on the Grid.
 Grid1.Row = 1
 Grid1.Col = 1
 End Sub

7. Create the following subroutine in the general Declarations section
 of Form1 to make it callable from anywhere on the form:

 Sub ConfigureGraph ()
 ' Set the Graph to auto increment.
 Graph1.AutoInc = 1
 Graph1.BottomTitle = "Months"
 Graph1.GraphCaption = "Graph Caption"
 ' Set the number of data groupings.
 Graph1.NumPoints = 10
 ' Set the number of data points per group.
 Graph1.NumSets = 3
 End Sub

8. Place the following line of code into the KeyPress event for Grid1:

 Sub Grid1_KeyPress (KeyAscii As Integer)
 ' This adds each keystroke to the data in the current cell.
 Grid1.Text = Grid1.Text + Chr$(KeyAscii)
 End Sub

9. For the Click event of Command1, enter the following code:

 Sub Command1_Click ()
 ' This Sub graphs the data in the Grid using the Graph control.
 ' Set the graph to the first point.
 Graph1.ThisSet = 1
 Graph1.ThisPoint = 1
 ' Load the GraphData array with all the values from the Grid,
 ' in order.
 For i = 1 To 3
 For j = 1 To 10
 Grid1.Row = j
 Grid1.Col = i
 Graph1.GraphData = Val(Grid1.Text)

 Next j
 Next i

 ' This actually graphs the array to the Graph control.
 Graph1.DrawMode = 2
 End Sub

This example will give you a grid with three columns (Months) and 10
rows. After you enter the data into the columns, choose the command
button (with the mouse or keys). The data will be taken from the grid
and graphed as a line graph.

PENCNTRL.VBX: "Requires Microsoft Windows for Pen Computing"
Article ID: Q83800
Summary:
The Microsoft Professional Edition of Microsoft Visual Basic versions
2.0 and 3.0 for Windows, and Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows,
includes a custom control that gives you easy access to writing
applications for Microsoft Windows for Pen Computing. Without Microsoft
Windows for Pen Computing, PENCNTRL.VBX cannot be loaded into the Visual
Basic for Windows programming environment.

If you try to load the PENCNTRL.VBX custom control without having
installed Microsoft Windows for Pen Computing, the process will abort
with the following message box:

 This program requires Microsoft Windows for Pen Computing

More Information:
For more information about Microsoft Windows for Pen Computing, call
Microsoft End User Sales and Service at (800) 426-9400. If calling
from outside the United States, contact your local Microsoft
subsidiary.

VB AniButton Control: Cannot Resize if PictDrawMode=Autosize
Article ID: Q82159
Summary:
Resizing an Animated Button custom control by setting the Width or
Height property at run time will not work if the PictDrawMode property
is set to Autosize (1). This is by design. When the PictDrawMode
property is in autosize mode, the size is determined by the size of
the images loaded, not by the design time setting of Width or Height
nor the run time setting of those values.

More Information:
Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the Files menu, choose Add File. In the Files box, select the
 ANIBUTON.VBX custom control file. The Animated Button tool appears
 in the toolbox.

3. Add the following code to the Form_Load procedure:

Sub Form_Load ()
 Form1.BackColor = &HFFFF00 ' To make the size of the control more
 ' visible.
 AniButton1.Move Form1.Width \ 4, 0, 1600, 1600
 AniButton1.TextPosition = 3 ' Put caption at top for clarity.
End Sub

4. Add the following code to the Form_Click procedure:

 Sub Form_Click ()
 AniButton1.Caption = "This is a very very long caption"
 AniButton1.PictDrawMode = 1 ' Autosize control.
 'AniButton1.PictDrawMode = 0 ' As Defined.
 'AniButton1.PictDrawMode = 2 ' Stretches image to fit.
 End Sub

4. Add the following code to the Form_DoubleClick event:

 Sub Form_DblClick ()
 Print AniButton1.Width
 AniButton1.Width = 400
 Print AniButton1.Width
 Print AniButton1.PictDrawMode
 End Sub

5. Run the project with the PictDrawMode setting of 0 uncommented and
 the other two commented out.

6. Click once to see the effect of changing the mode. Then double-
 click the form to see the changes due to changing the Width
 property. Because the caption is the largest object in an unloaded

 Animated Button, the autosize adjusts to it.

7. Access the Frame property and load a bitmap into the first frame
 and an icon in the second, or vice versa.

8. Repeat steps 5 and 6. Notice that the larger object (the bitmap)
 causes the control to resize to it.

VB.EXE "License File for Custom Control Not Found" Explanation
Article ID: Q81458
Summary:
If you distribute the source code (.FRM) of a program that uses a
custom control, you must also distribute the necessary custom control
files for that control (.VBX, .DLL, and/or .EXE support files).

If a user has not purchased the Professional Edition of Microsoft
Visual Basic versions 2.0 or 3.0 for Windows, or the Microsoft
Professional Toolkit for Microsoft Visual Basic programming system
version 1.0 for Windows, and the user receives a program containing an
.FRM file written with the Professional Edition or Professional Toolkit,
then the Visual Basic for Windows programming environment (VB.EXE) will
not be able to load the program, and will display the following error
message:

 License file for custom control not found. You do not have
 an appropriate license to use this custom control in the
 design environment.

Note that anyone who acquires a program in the form of an executable
(.EXE) file that uses the custom controls from versions 2.0 or 3.0 of
the Professional Edition of Visual Basic for Windows, or from version
1.0 of the Professional Toolkit for Visual Basic for Windows, will be
able to run that program with no error.

More Information:
The licensing file, VB.LIC is installed by the SETUP.EXE program
included in the Professional Edition of Visual Basic for Windows, or
the SETUP.EXE included in the Visual Basic for Windows Professional
Toolkit. This licensing file is installed into the Windows' \SYSTEM
subdirectory. You are NOT allowed to distribute this file with any
application that you develop and distribute.

A custom control's startup code checks to see if this VB.LIC licensing
file exists when the control is loaded into the environment. If the
file does not exist, or is corrupt, the control aborts the loading
process and displays the following Alter message box:

 License file for custom control not found. You do not have
 an appropriate license to use this custom control in the
 design environment.

VB Graph Custom Control: DataReset Property Resets to 0 (Zero)
Article ID: Q84058
Summary:
When you assign a value to the DataReset property of the Graph version
1.2 custom control, the value of DataReset always resets to 0 - None.
This is by design. Although DataReset is listed in the Properties box,
it also has characteristics of a method. A value assigned to DataReset
is transient, which means that it causes a one-time action and then
resets to 0 - None.

More Information:
In Visual Basic for Windows, a property is an attribute of the control
that you can set to define one of the object's characteristics. DataReset
is a property because you can set its value which, depending on that
value, defines one or more of the Graph control's characteristics.
Because it defines a Graph's characteristics by resetting the chosen
property array to its default values, DataReset is found in the
Properties list box.

A method in Visual Basic for Windows behaves similarly to a statement
in that it always acts on an object. DataReset can also be considered
a method because it does perform an action on the graph. Namely, it
resets the chosen property array to its default values. DataReset
performs the assigned action as soon as its value does not equal 0. If
it retained its assigned value, it would continually generate an
endless loop and lock the system. To prevent this from occurring, it is
automatically reset to 0 - None upon the first execution of its call.

The example below demonstrates the behavior of DataReset.

Example

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool will appear in the
 Toolbox.

3. Add a Graph control (Graph1) to Form1.

4. In the Properties list box, select the DataReset property. The
 value that appears in the Settings box will be 0 - None.

5. Change the value of DataReset to a number between 1 and 9. The
 values 1-9 refer to Graph property arrays that can be reset by
 using the DataReset property.

6. Graph1 will update to display the default values in the property
 array you chose in step 5.

7. In the Properties list box, select DataReset. The value of
 DataReset is 0 - None. It did not retain the value from step 5.

VB Graph Control: ThisPoint, ThisSet Reset to 1 at Run Time
Article ID: Q82155
Summary:
The Graph version 1.2 custom control in the Professional Edition of
Microsoft Visual Basic versions 2.0 or 3.0 for Windows, and in the
Microsoft Professional Toolkit for Visual Basic version 1.0 for Windows,
allows you to set the values of the ThisPoint and ThisSet properties at
design time to aid in the development of your graphs. However, when you
run the project, the Graph custom control resets the property values of
ThisPoint and ThisSet to 1.

This behavior is a design feature of the Graph custom control to help
avoid logic errors in your code. If your program requires ThisPoint
and ThisSet to be a value other than 1 upon execution of the project,
you will need to specifically set these property values in the
program's code.

More Information:
The example below demonstrates that ThisPoint and ThisSet are reset to
1 at run time.

Example

1. With Visual Basic for Windows running and Graph loaded, create a form
 (Form1).

2. On Form1 create a graph control (Graph1).

3. Change the following properties:

Control Property Value
------- -------- -----

Command1 Caption Show values
Graph1 Top 2000
Graph1 NumSet 2
Graph1 ThisPoint 2
Graph1 ThisSet 2

4. Add the following code to the Command1 button Click event:

Sub Command1_Click ()
 Form1.Print "Graph1.ThisPoint = "; Graph1.ThisPoint
 Form1.Print "Graph1.ThisSet = "; Graph1.ThisSet
End Sub

5. Press the F5 key to run the program.

When you run the program and click on the Command1 button, the program
will display the current values of Graph1.ThisPoint and
Graph1.ThisSet. These values should have changed from 2 to 1.

VB Graph Control Displays Maximum of 80 Characters Per Title
Article ID: Q81450
Summary:
The Graph custom control has an 80 character maximum limit on all
displayed strings such as labels and legends. However, the combined
length of the actual string may be longer than 80 characters.

More Information:
The Graph custom control can display strings by using several
different properties. For example, the BottomTitle and LeftTitle
properties may be set from the Properties bar in the programming
environment.

The following example sets the BottomTitle property of a Graph to 90
characters:

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool will appear in the
 toolbox.

3. Select the Graph icon on the toolbox and place it on Form1, and
 expand it to the largest size possible.

4. Double-click on the Graph control to open the Code window for the
 Click event.

5. Add the following code to the Click event:

 Graph1.BottomTitle = String$(79, "i") + "*"
 Debug.Print Len(Graph1.BottomTitle)
 Graph1.DrawMode = 2 ' Update Graph.

6. Run the program and click on the graph control. If your Graph is
 expanded to the largest possible size, you should be able to see
 the string of 80 characters.

7. Change the code as follows:

 Graph1.BottomTitle = String$(80, "i") + "*"
 Debug.Print Len(Graph1.BottomTitle)
 Graph1.DrawMode = 2 ' Update Graph.

You should not be able to see the last character, the asterisk (*).

In this example, 80 characters at most will show on the screen even
though you set the BottomTitle property to a larger character string.
The actual BottomTitle property, however, contains more characters.
Whether or not the actual strings are displayed also depends on
other factors, such as the width and height of the control, or the
strings that are placed in the other properties of the control.

VB Key Status: Autosize Property Affects Height and Width
Article ID: Q81952
Summary:
In versions 2.0 or 3.0 of the Professional Edition of Microsoft Visual
Basic for Windows, or in the Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows, the
Key Status control (KEYSTAT.VBX) allows you to show and set the current
status of the CAPS LOCK, NUM LOCK, SCROLL LOCK and INSERT keys. One of
the features of the Key Status control is its ability to size itself
(the Autosize property) to its original dimensions. The property that
affects this feature is Autosize. If Autosize is set to True (the default
setting), the control's Height and Width properties will remain at, or be
reset to its predetermined values. The size of the control cannot be
changed if Autosize is set to True. If the Autosize property is set to
False, the Height and Width properties can be changed to reflect the
desired control size.

Note: Autosize can be set at both design time and run time.

VB MCI Control Does Not Support PC Speaker Driver
Article ID: Q84268
Summary:
The MCI custom does not support playing wave (.WAV) sound files
through a PC speaker driver such as SPEAKER.DRV. The MCI custom
control (and the Windows Media Player application) uses the MCI sound
drivers, which do not support the PC speaker. The Windows default
sounds and the Sound Recorder application are the only way to play
sounds through the SPEAKER.DRV PC speaker driver.

More Information:
The MCI control manages the recording and playback of multimedia files
on Media Control Interface (MCI) devices, such as audio boards, MIDI
sequencers, CD-ROM drives, audio CD players, video disc players, and
videotape recorders and players.

Although the MCI control will not allow you to play .WAV files through
the PC speaker, you can use the Object Linked and Embedding (OLE)
Client custom control provided with the Professional Edition of the
Microsoft Visual Basic for Windows, or with the Microsoft Visual Basic
for Windows Professional Toolkit to create and play a linked Sound
Recorder object from your Visual Basic for Windows program. The
following is an example of this behavior. (Note that you must have the
appropriate Windows sound drivers loaded in order to run this program):

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 OLECLIEN.VBX custom control file. The OLE Client tool appears in
 the Toolbox.

3. Double-click on the OLE Client control on the tool bar to create an
 OLE Client control on your form.

4. Double-click on the form to open the Code window, and enter the
 following code in the Form_Click event:

 OLEClient1.Class = "SoundRec"
 OLEClient1.Protocol = "StdFileEditing"
 OLEClient1.SourceDoc = "C:\windows\chimes.wav" ' Name of .WAV file.
 OLEClient1.SourceItem = "LINK"
 OLEClient1.ServerType = 0 ' Linked object.

 OLEClient1.Action = 1 ' Create object from source file.
 OLEClient1.Action = 7 ' Activate Sound Recorder - plays sound.
 OLEClient1.Action = 10 ' Delete the object.

5. Press the F5 key to run the program.

The specified .WAV file should be played each time you click on the
form.

VB MCI Control Does Not Support Recording of MIDI Data
Article ID: Q84473
Summary:
The Multimedia Device control called MCI (MCI.VBX), consists of a set of
high level, device-independent commands that control audio and visual
peripherals. However, the MCI control cannot record standard MIDI
(Musical Instrument Data Interface) input. This is a limitation of the
MCI control, not of Visual Basic for Windows.

Below is an example of using the MCI control to play back a MIDI file.

More Information:
The MCI custom control can play back MIDI files if you have the
necessary hardware and software installed. Typically, you need a sound
board that supports MIDI and Windows, version 3.1 to use the MCI
control to play back MIDI files. Windows 3.1 or (Windows 3.0 with
Multimedia Extensions version 1.0) supplies MIDI drivers for several
well-known hardware add-on boards that support MIDI.

The following is an example of using the MCI control to play back a
MIDI file called TEST.MID.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MCI.VBX custom control file. The MCI tool appears in the Toolbox.

3. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()
 MMControl1.PlayVisible = -1
 MMControl1.StopVisible = -1
 MMControl1.FileName = "c:\midi\bach.mid"
 MMControl1.Wait = -1
 MMControl1.DeviceType = "sequencer"
 MMControl1.Command = "open"
 End Sub

4. Add the following code to your Form_Unload event procedure:

 Sub Form_Unload (Cancel As Integer)
 MMControl1.Command = "close"
 End Sub

5. Press the F5 key to run the program. Click on the play arrow of the
 MCI control to play the MIDI file.

Note: An MIDI file may play, but may not be audible due to MIDI
configuration issues such as the MIDI channel and instrument.

How to Close VB Combo Box with ENTER key
Article ID: Q84474
Summary:
If you open a combo box and then use the ARROW keys to scroll through
it, pressing the ENTER key will not close the combo box like a mouse
click will. This is normal behavior. The following example
demonstrates how to make a combo box close when the ENTER key is
pressed.

More Information:
The following program makes use of the Windows API SendMessage
function to send the combo box the message to close. This is done only
after the ENTER key is detected in the KeyPress event for the combo
box.

Two Windows API Declare statements must be added to your application.
These can be added either in the GLOBAL.BAS module, or in the general
Declarations section of the form containing the combo box.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add the following two declarations to the global module or the
 General Declarations for Form1:

 Declare Function SendMessage% Lib "user" (ByVal hWnd%, ByVal
 wMsg%, ByVal wParam%, ByVal lParam&)
 Declare Function GetFocus Lib "user" () As Integer

 (Note that the first Declare statement must be on just one line, not
 split across two lines as it is here.)

3. Place a combo box on Form1.

4. Under the KeyPress event for the combo box, place the following
 code:

 If KeyAscii = 13 Then
 Const WM_USER = &h400
 Const CB_SHOWDROPDOWN = WM_USER + 15

 Combo1.SetFocus
 BoxwHND% = GetFocus()
 r& = SendMessage(BoxwHND%, CB_SHOWDROPDOWN, 0, 0)
 KeyAscii = 0
 End If

5. Place a command button on Form1.

6. In the Click event for Command1, place the following code:

 ' This will add some data to the combo box.
 for i =1 to 10
 Combo1.AddItem STR$(i)
 Next i

7. Press the F5 key to run the application.

8. Choose the Command1 button to fill the combo box.

9. Open the combo box with the mouse, and scroll down with the ARROW keys.
 Pressing the ENTER key will close the Combo Box.

How to Limit User Input in VB Combo Box with SendMessage API
Article ID: Q72677
Summary:
You can specify a limit to the amount of text that can be entered into
a combo box by calling SendMessage (a Windows API function) with the
EM_LIMITTEXT constant.

More Information:
The following method can be used to limit the length of a string
entered into a combo box. Check the length of a string inside a
KeyPress event for the control, if the length is over a specified amount,
then the formal argument parameter KeyAscii will be set to zero.

Or, the preferred method of performing this type of functionality is
to use the SendMessage API function call. After you set the focus to
the desired edit control, you must send a message to the window's
message queue that will reset the text limit for the control. The
argument EM_LIMITTEXT, as the second parameter to SendMessage, will
set the desired text limit based on the value specified by the third
arguments. The SendMessage function requires the following parameters
for setting the text limit:

 SendMessage (hWnd%,EM_LIMITTEXT, wParam%, lParam)

 wParam% Specifies the maximum number of bytes that can be
 entered. If the user attempts to enter more characters,
 the edit control beeps and does not accept the characters.
 If the wParam parameter is zero, no limit is imposed on
 the size of the text (until no more memory is available).

 lParam Is not used.

The following steps can be used to implement this method:

1. Create a form called Form1.

2. Add a combo box called Combo1 to Form1.

3. Add the following code to the general declarations section of Form1:

 '*** Note: Each Declare statement must be on just one line:

 Declare Function GetFocus% Lib "user" ()
 Declare Function SendMessage& Lib "user" (ByVal hWnd%,
 ByVal wMsg%,
 ByVal wParam%,
 lp As Any)
 Const WM_USER = &H400
 Const EM_LIMITTEXT = WM_USER + 21

4. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()
 Form1.Show ' Must show form to work on it.
 Combo1.SetFocus ' Set the focus to the list box.

 cbhWnd% = GetFocus() ' Get the handle to the list box.
 TextLimit% = 5 ' Specify the largest string.
 retVal& = SendMessage(cbhWnd%, EM_LIMITTEXT, TextLimit%, 0)
 End Sub

5. Run the program and enter some text into the combo box. You will
 notice that you will only be able to enter a string of five
 characters into the combo box.

DEL Key Behavior Depends on Text Box MultiLine Property
Article ID: Q77737
Summary:
Pressing the DEL key in a multiline text box generates a KeyPress
event for that text box with an ASCII code of 8 for the key. In a
standard text box, no KeyPress event is generated for the DEL key.
This behavior is inherent to Windows and is not specific to
Microsoft Visual Basic for Windows.

More Information:
Steps to Reproduce Problem

1. Place a text box on a form.

2. Set the MultiLine property for the text box to True.

3. Add the following code to the text box KeyPress event:

 Sub Text1_KeyPress (keyAscii as Integer)
 debug.print keyAscii ' This will print the generated ASCII
 ' code to VB's Immediate window.
 End Sub

4. Execute the program and press the DEL key while the focus is on the
 text box. An "8" will be printed in the Immediate window.

If the text box's MultiLine property is set to false, no KeyPress
event occurs and nothing is printed to the Immediate window when you
press the DEL key. This behavior is standard for Windows multiline
text boxes.

Determining Number of Lines in VB Text Box; SendMessage API
Article ID: Q72719
Summary:
To determine the number of lines of text within a text box control,
call the Windows API function SendMessage with EM_GETLINECOUNT(&H40A)
as the wMsg argument.

Calling SendMessage with the following parameters will return the
amount of lines of text within a text box:

 hWd% - Handle to the text box.
 wMsg% - EM_GETLINECOUNT(&H40A)
 wParam% - 0
 lParam% - 0

More information:

For example, to determine the amount of lines within a text box,
perform the following steps:

1. Create a form with a text box and a command button. Change the
 MultiLine property of the text box to TRUE.

2. Declare the API SendMessage function in the global-declarations
 section of your code window (the Declare statement must be
 on just one line):

 Declare Function SendMessage% Lib "user" (ByVal hWd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)

3. In Visual Basic version 1.0 for Windows, you will need to declare
 another API routine to get the handle of the text box. Declare this
 routine also in your global declarations section of your code window.
 The returned value will become the hWd% argument to the SendMessage
 function. For example:

 Declare Function GetFocus% Lib "user" ()

4. Within the click event of your button, add the following code:

 Sub Command1_Click ()
 Const EM_GETLINECOUNT = &H40A ' Defined within Windows SDK
 ' file, WINDOWS.H.

 ' Command button has focus, give focus to text box.
 Text1.SetFocus

 ' For Visual Basic 1.0 for Windows get the handle of the text box.
 ' hWd% = GetFocus()

 ' Print the amount of lines to the immediate window.
 Debug.Print SendMessage(Text1.hWnd, EM_GETLINECOUNT, 0, 0)
 ' For Visual Basic 1.0 for Windows use hWd% instead of Text1.hWnd.
 End Sub

5. Run the program. Add several lines of text to the text box. Click
 the command button to see the number of lines printed out to the
 immediate window.

Disabling the ENTER Key BEEP in a Visual Basic Text Box
Article ID: Q78305
Summary:
In a Microsoft Visual Basic for Windows text box, the ENTER key causes
a warning beep to sound only if the MultiLine property is set to False
(the default) and the Warning Beep option is selected in the Sound
dialog box of the Windows Control panel. To disable the beep, in the
KeyPress event procedure for the text box, set the value of KeyAscii
(which is a parameter passed to KeyPress) equal to zero (0) when the
user presses the ENTER key.

More Information:
Specifically, use an IF statement to trap the ENTER key and the set
KeyAscii to zero (0). Setting the value to zero before the event
procedure ends prevents Windows from detecting that the ENTER key was
pressed and prevents the warning beep. This behavior is by design and
is due to the fact that a non-multiline text box is a Windows default
class of edit box.

Example

The following code will prevent the beep.

' (Set Multiline property to False).

Sub Text1_KeyPress (KeyAscii as Integer)
 If KeyAscii=13 Then
 KeyAscii=0
 End If
End Sub

How to Scroll VB Text Box Programmatically and Specify Lines
Article ID: Q73371
Summary:
By making a call to the Windows API function SendMessage, you can
scroll text a specified number of lines or columns within a Microsoft
Visual Basic for Windows text box. By using SendMessage, you can also
scroll text programmatically, without user interaction. This technique
extends Visual Basic for Windows' scrolling functionality beyond the
built-in statements and methods. The sample program below shows how to
scroll text vertically and horizontally a specified number of lines.

More Information:
Note that Visual Basic for Windows itself does not offer a statement for
scrolling text a specified number of lines vertically or horizontally
within a text box. You can scroll text vertically or horizontally by
actively clicking on the vertical and horizontal scroll bars for the
text box at run time; however, you do not have any control over how
many lines or columns are scrolled for each click of the scroll bar.
Text always scrolls one line or one column per click on the scroll bar.
Furthermore, no built-in Visual Basic for Windows method can scroll
text without user interaction. To work around these limitations, you
can call the Windows API function SendMessage, as explained below.

Example

To scroll the text a specified number of lines within a text box
requires a call to the Windows API function SendMessage using the
constant EM_LINESCROLL. You can invoke the SendMessage function from
Visual Basic for Windows as follows:

r& = SendMessage& (hWd%, EM_LINESCROLL, wParam%, lParam&)

 hWd% The window handle of the text box.
 wParam% Parameter not used.
 lParam& The low-order 2 bytes specify the number of vertical
 lines to scroll. The high-order 2 bytes specify the
 number of horizontal columns to scroll. A positive
 value for lParam& causes text to scroll upward or to the
 left. A negative value causes text to scroll downward or
 to the right.
 r& Indicates the number of lines actually scrolled.

The SendMessage API function requires the window handle (hWd% above)
of the text box. To get the window handle of the text box, you must
first set the focus on the text box using the SetFocus method from
Visual Basic. Once the focus has been set, call the GetFocus API
function to get the window handle for the text box. Below is an
example of how to get the window handle of a text box.

 ' The following appears in the general declarations section of
 ' the form:
 Declare Function GetFocus% Lib "USER" ()

 ' Assume the following appears in the click event procedure of a

 ' command button called Scroll.
 Sub Command_Scroll_Click ()
 OldhWnd% = Screen.ActiveControl.Hwnd
 ' Store the window handle of the control that currently
 ' has the focus.

 ' For Visual Basic 1.0 for Windows use the following line:
 ' OldhWnd% = GetFocus ()

 Text1.SetFocus
 hWd% = GetFocus()
 End Sub

To scroll text horizontally, the text box must have a horizontal
scroll bar, and the width of the text must be wider than the text box
width. Calling SendMessage to scroll text vertically does not require
a vertical scroll bar, but the length of text within the text box
should exceed the text box height.

Below are the steps necessary to create a text box that will scroll
five vertical lines or five horizontal columns each time you click the
command buttons labeled "Vertical" and "Horizontal":

 1. From the File menu, choose New Project (press ALT, F, N).

 2. Double-click on Form1 to bring up the code window.

 3. Add the following API declaration to the General Declarations
 section of Form1. Note that you must put all Declare statements on a
 separate and single line. Also note that SetFocus is aliased as
 PutFocus because there already exists a SetFocus method within Visual
 Basic for Windows.

 Declare Function GetFocus% Lib "user" () ' For Visual Basic 1.0 only.
 Declare Function PutFocus% Lib "user" Alias "SetFocus" (ByVal
 hWd%)
 Declare Function SendMessage& Lib "user" (ByVal hWd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)

 4. Create a text box called Text1 on Form1. Set the MultiLine
 property to True and the ScrollBars property to Horizontal (1).

 5. Create a command button called Command1 and change the Caption
 to "Vertical".

 6. Create a another command button called Command2 and change the
 Caption to "Horizontal".

 7. From the General Declarations section of Form1, create a procedure
 to initialize some text in the text box as follows:

 Sub InitializeTextBox ()
 Text1.Text = ""
 For i% = 1 To 50
 Text1.Text = Text1.Text + "This is line " + Str$(i%)

 ' Add 15 words to a line of text.
 For j% = 1 to 10
 Text1.Text = Text1.Text + " Word "+ Str$(j%)
 Next j%

 ' Force a carriage return (CR) and linefeed (LF).
 Text1.Text = Text1.Text + Chr$(13) + Chr$(10)

 x% = DoEvents()
 Next i%
 End Sub

 8. Add the following code to the load event procedure of Form1:

 Sub Form_Load ()
 Call InitializeTextBox
 End Sub

 9. Create the actual scroll procedure within the General Declarations
 section of Form1 as follows:

 ' The following two lines must appear on a single line:
 Function ScrollText& (TextBox As Control, vLines As Integer, hLines
 As Integer)
 Const EM_LINESCROLL = &H406

 ' Place the number of horizontal columns to scroll in the high-
 ' order 2 bytes of Lines&. The vertical lines to scroll is
 ' placed in the low-order 2 bytes.
 Lines& = Clng(&H10000 * hLines) + vLines

 ' Get the window handle of the control that currently has the
 ' focus, Command1 or Command2.
 SavedWnd% = Screen.ActiveControl.Hwnd
 ' For Visual Basic 1.0 use the following line instead of the one
 ' used above.
 ' SavedWnd% = GetFocus%()

 ' Set the focus to the passed control (text control).
 TextBox.SetFocus

 ' For Visual Basic 1.0, get the handle to current focus (text
 ' control).
 ' TextWnd% = GetFocus%()

 ' Scroll the lines.
 Success& = SendMessage(TextBox.HWnd, EM_LINESCROLL, 0, Lines&)
 ' For Visual Basic 1.0 use the following line instead of the one
 ' used above.
 ' Success& = SendMessage(TextWnd%, EM_LINESCROLL, 0, Lines&)

 ' Restore the focus to the original control, Command1 or
 ' Command2.
 r% = PutFocus% (SavedWnd%)

 ' Return the number of lines actually scrolled.

 ScrollText& = Success&

 End Function

10. Add the following code to the click event procedure of Command1
 labeled "Vertical":

 Sub Command1_Click ()
 ' Scroll text 5 vertical lines upward.
 Num& = ScrollText&(Text1, 5, 0)
 End Sub

11. Add the following code to the click event procedure of Command2
 labeled "Horizontal":

 Sub Command2_Click ()
 ' Scroll text 5 horizontal columns to the left.
 Num& = ScrollText&(Text1, 0, 5)
 End Sub

12. Run the program. Click the command buttons to scroll the text five
 lines or columns at a time.

UCase$/LCase$ in Text Box Change Event Inverts Text Property
Article ID: Q84059
Summary:
When using the UCase$ or LCase$ functions in Microsoft Visual Basic
for Windows to capitalize text or make text lower case from within the
change procedure of a text box, you may encounter unexpected results if
the following conditions are true:

 - The text property of the text box is being updated by the UCase$ or
 LCase$ statement.

 - The resulting string created by UCase$ or LCase$ is assigned to the
 text property of the text box.

 - The above statements appear in the Change event procedure of the
 text box.

Every time a key is pressed, the text contents are changed, and the
cursor is placed at the beginning of the line. This causes the
character for your next key press to be inserted at the beginning of
the line rather than the end.

More Information:
When allowing users to enter text into text boxes, it is often
desirable to control whether the user enters all uppercase or all
lowercase letters. To do this, it would seem that putting a UCase$ or
LCase$ statement in a text box Change event would allow you to enter
only uppercase or lowercase letters into the text box. However, each
time you press a key, the Change event fires and the cursor is brought
back to the beginning of the text box as a result of assigning the
Text property a new string.

Steps to Reproduce Behavior

1. Start Visual Basic for Windows or from the File menu, select New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Put a text box (Text1) on Form1 by either double-clicking the text
 box control or single clicking on the text box control and drawing
 it on Form1.

3. Add the following code to the Text1_Change event procedure:

 Sub Text1_Change ()
 text1.text = UCase$(text1.text)
 End Sub

4. Press the F5 key to run the program.

Notice that when you try to type information into the text box that it
is entered in reverse order of what you would expect.

An alternative method of changing all contents of the text box to

capital letters is to change the KeyAscii code of the typed
information in the text box KeyPress event as follows:

Sub Text1_KeyPress (KeyAscii As Integer)

' Check to see if key pressed is a lower case letter.
 If KeyAscii >= 97 And KeyAscii <= 122 Then

 'If it is lowercase, change it to uppercase.
 KeyAscii = KeyAscii - 32

 End If

End Sub

When you run the above code, the letters typed into the text box are
immediately changed to capital letters and are entered correctly as
you type them in.

Another alternative method of changing the contents of the text box to
uppercase letters is to add the following code to the Change event
for the text box:

Sub Text1_Change ()

' Get the current position of the cursor.
 CurrStart = Text1.SelStart

' Change the text to capitals.
 Text1.Text = UCase$(Text1.Text)

' Reset the cursor position.
 Text1.SelStart = CurrStart

End Sub

SelStart sets or returns the starting point of text selected, and
indicates the position of the insertion point if no text is selected.

VB Can Call Escape API to Specify Number of Copies to Printer
Article ID: Q78165
Summary:
You can call the Windows API Escape function to tell the Windows Print
Manager how many copies of a document you want to print.

More Information:
The Windows API constant SETCOPYCOUNT (value 17) can be used as an
argument to the Escape function to specify the number of uncollated
copies of each page for the printer to print.

The arguments for Escape are as follows:

r% = Escape(hDC, SETCOPYCOUNT, Len(Integer), lpNumCopies, lpActualCopies)

Parameter Type/Description
---------- ----------------

hDC hDC. Identifies the device context. Usually
 referenced by Printer.hDC.

lpNumCopies Long pointer to integer (not ByVal). Point to a
 short-integer value that contains the number of
 uncollated copies to print.

lpActualCopies Long pointer to integer (not ByVal). Points to a
 short integer value that will receive the number of
 copies that where printed. This may be less than
 the number requested if the requested number is
 greater than the device's maximum copy count.

The return value specifies the outcome of the escape. It is 1 if the
escape is successful; it is a negative number if the escape is not
successful. If the escape is not supported, the return value is zero.

The following sample will demonstrate how to print three copies of a
line of text to the printer. To recreate this example, create a new
project from the Visual Basic File menu and add a command button.
Paste the following code into the appropriate code sections of your
program:

REM Below is GLOBAL.BAS:

' Note: the following Declare must be on one line:
Declare Function Escape% Lib "GDI" (
 ByVal hDc%,
 ByVal nEsc%,
 ByVal nLen%,
 lpData%,
 lpOut%)

REM Below is the click procedure for a command button on FORM1:

Sub Command1_Click ()
 Const SETCOPYCOUNT = 17

 Printer.Print ""
 x% = Escape(Printer.hDC, SETCOPYCOUNT, Len(I%), 3, actual%)
 Printer.Print " Printing three copies of this"
 Printer.EndDoc
End Sub

How to Set Landscape or Portrait for Printer in Windows 3.0
Article ID: Q80185
Summary:
Some printers support changing the orientation of the paper output to
landscape. With the Windows 3.0 API Escape function, you can change
the settings of the printer to either landscape or portrait.

Below is an example of invoking the Windows 3.0 API Escape function
from Microsoft Visual Basic programming system version 1.0 for
Windows.

Important Note: The Windows API Escape function used below is provided
in Windows 3.0 only for backward compatibility with earlier Microsoft
Windows releases. New applications should use the GDI
DeviceCapabilities and ExtDeviceMode functions instead of the Escape
function shown below.

More Information:
Normally, output for the printer is in portrait mode, where output is
printed horizontally across the narrower dimension of a paper. In
landscape mode, the output is printed horizontally across the longer
dimension of the paper.

You can use the Escape function to change the orientation of the
printer by passing GETSETPAPERORIENT as an argument. When you
initially print text to the printer, Visual Basic will use the
currently selected orientation. Sending the Escape function will not
take effect until you perform a Printer.EndDoc. After you perform a
Printer.EndDoc, output will print in the orientation that you have
selected.

To determine if your printer supports landscape mode, do the
following:

1. From the Windows 3.0 Program Manager, run Control Panel.

2. From the Control Panel, select the Printers icon.

3. From the Printers dialog box, choose the Configure button.

4. The Configure dialog box will contain an option for landscape
 orientation if landscape is supported on your printer.

The example below demonstrates how to change the printer orientation
to landscape. Please note that your printer must support landscape mode
for these commands to have any effect.

Code Example

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. Add a command button (Command1) to Form1.

3. Add the following code to the global module:

GLOBAL.BAS

Type OrientStructure
 Orientation As Long
 Pad As String * 16
End Type
' The following Declare statement must be on a single line:
Declare Function Escape% Lib "GDI" (ByVal hDc%, ByVal nEsc%,
 ByVal nLen%, lpData As OrientStructure, lpOut As Any)

4. Add the following code to the Command1_Click event procedure of the
 Command1 button:

FORM1

Sub Command1_Click ()
 Const PORTRAIT = 1
 Const LANDSCAPE = 2
 Const GETSETPAPERORIENT = 30
 Const NULL = 0&

 Dim Orient As OrientStructure

 '* Start the printer
 Printer.Print ""

 '* Specify the orientation
 Orient.Orientation = LANDSCAPE

 '* Send escape sequence to change orientation
 x% = Escape(Printer.hDC, GETSETPAPERORIENT,
 Len(Orient), Orient, NULL)
 '* The EndDoc will now re-initialize the printer
 Printer.EndDoc

 Printer.Print "Should print in landscape mode"
 Printer.EndDoc
End Sub

Using PASSTHROUGH Escape to Send Data Directly to Printer
Article ID: Q96795
Summary:
By using the Windows API Escape() function, your application can pass data
directly to the printer. If the printer driver supports the PASSTHROUGH
printer escape, you can use the Escape() function and the PASSTHROUGH
printer escape to send native printer language codes to the printer driver.

Printer escapes such as PASSTHROUGH allow applications to access certain
facilities of output devices that are not directly available through the
graphics device interface (GDI). The PASSTHROUGH printer escape allows
the application to send data directly to the printer, bypassing the
standard print-driver code.

More Information:
A printer driver that supports the PASSTHROUGH printer escape does not add
native printer language codes to the data stream sent to the printer, so
you can send data directly to the printer. However, Microsoft recommends
that applications not perform functions that consume printer memory, such
as downloading a font or a macro.

The sample program listed below sends native PCL codes to the printer to
change the page orientation and the paper bin. A Hewlett-Packard LaserJet
is the assumed default printer.

An Important Note

The Windows API Escape() function used below is provided in Windows version
3.0 and later for backward compatibility with earlier versions of Microsoft
Windows. New applications should use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function shown below.
In order to use the ExtDeviceMode() function, you need to create a DLL
because the ExtDeviceMode() function is exported by the printer driver, not
by the Windows GDI. To execute the ExtDeviceMode() function, you need to
obtain a function pointer to it from the current printer driver. Visual
Basic does not support pointers.

Steps to Create Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the general declarations section of Form1:

 ' Enter the entire Declare statement on one, single line.
 Declare Function Escape Lib "Gdi" (ByVal Hdc%, ByVal nEscape%,
 ByVal ncount%, ByVal indata$, ByVal oudata$) As Integer

 Const PASSTHROUGH = 19

 Const RevLandScape = "&l3O" ' PCL command to change Paper
 ' orientation to Reverse Landscape.
 Const Portrait = "&l0O" ' PCL command to change paper
 ' orientation to Portrait.
 Const ManualFeed = "&l3H" ' PCL command to change Paper Bin

 ' to Manual Feed Envelope.
 Const AutoFeed = "&l1H" ' PCL command to change Paper Bin
 ' to Paper Tray AutoFeed
3. Add a list box (List1) to Form1.

4. Add the following code to Form1's Form_Load event procedure:

 Sub Form_Load ()
 List1.AddItem "HP/PCL Reverse Landscape"
 List1.AddItem "HP/PCL Portrait"
 List1.AddItem "HP/PCL Manual Feed Envelope"
 List1.AddItem "HP/PCL Paper Tray Auto Feed"
 End Sub

5. Add the following code to the List1_Click event procedure:

 Sub List1_Click
 Select Case List1.ListIndex
 Case 0:
 PCL_Escape$ = Chr$(27) + RevLandScape
 Case 1:
 PCL_Escape$ = Chr$(27) + Portrait
 Case 2:
 PCL_Escape$ = Chr$(27) + ManualFeed
 Case 3:
 PCL_Escape$ = Chr$(27) + AutoFeed
 End Select

 PCL_Escape$ = Chr$(Len(PCL_Escape$)) + PCL_Escape$ + Chr$(0)

 ' Enter the entire Result% statement on one, single line.
 Result% = Escape%(Printer.hDC, PASSTHROUGH, Len(PCL_Escape$),
 PCL_Escape$, "")

 Select Case Result%
 ' Enter each Case statement on one, single line.
 Case Is < 0: MsgBox "The PASSTHROUGH Escape is not
 supported by this printer driver.", 48
 Case 0: MsgBox "An error occurred sending the escape
 sequence.", 48
 Case Is > 0: MsgBox "Escape Successfully sent.
 Sending test printout to printer."
 Printer.Print "Test case of "; List1.Text
 End Select
 End Sub

6. From the Run menu, choose Start (ALT, R, S) to run the program. List1 is
 filled with four escape sequences to send to the printer.

7. Select any of the options in the list box. A message box appears to
 indicate the success of the operation.

If the printer driver does not support the PASSTHROUGH printer escape, you
must use the DeviceCapabilities() and ExtDevMode() functions instead.

Using an Escape to Obtain and Change Paper Size for Printer
Article ID: Q96796
Summary:
By using the Windows API Escape() function, an application can change the
paper size on the printer and obtain a list of available paper metrics for
the default printer.

To get the list of available paper metrics, pass the ENUMPAPERMETRICS
printer escape constant to the Escape() function. The function will return
either an array containing the paper metrics or the number of paper metrics
available. Note that paper metrics differ from the physical paper sizes in
that paper metrics delineate the actual region that can be printed to,
whereas paper size is the physical size of the paper including the
non-printable regions.

To change the paper size, pass the GETSETPAPERMETRICS printer escape
constant along with the paper metrics to the Escape() function.

More Information:
The example program listed below demonstrates how to use both printer
escape constants (ENUMPAPERMETRICS and GETSETPAPERMETRICS) with the
Windows API Escape() function.

An Important Note

The Windows API Escape() function used below is provided in Windows version
3.0 and later for backward compatibility with earlier versions of Microsoft
Windows. New applications should use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function shown below.
In order to use the ExtDeviceMode() function, you need to create a DLL
because the ExtDeviceMode() function is exported by the printer driver, not
by the Windows GDI. To execute the ExtDeviceMode() function, you need to
obtain a function pointer to it from the current printer driver. Visual
Basic does not support pointers.

Steps to Create Example:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created
 by default.

3. Add the following code to the general declarations section of Module1:

 Type Rect
 Left As Integer
 Top As Integer
 Right As Integer
 Bottom As Integer
 End Type

 ' Enter each Declare as one, single line.
 Declare Function EnumPaperMetricsEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal IntegerSize%, lpMode%,

 lpOutData As Rect)
 Declare Function SetPaperMetricsEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal RectSize%, NewPaper As Rect,
 PrevPaper As Rect)
 Declare Function GetDeviceCaps% Lib "gdi" (ByVal hDC%, ByVal nIndex%)

 Global Const ENUMPAPERMETRICS = 34
 Global Const GETSETPAPERMETRICS = 35
 Global Const LOGPIXELSX = 88 ' Logical pixels/inch in X
 Global Const LOGPIXELSY = 90 ' Logical pixels/inch in Y

4. Add the following code to the General Declarations section of Form1:

 Dim RectArray() As Rect

5. Add a command button (Command1) to Form1.

6. Add a list box (List1) to Form1.

7. Add the following code to the Command1_Click event procedure. For
 readability some lines of code are shown as two lines but must be
 entered as a single line of code.

 Sub Command1_Click ()
 ReDim RectArray(1)
 mode% = 0
 ' Enter the entire Result% statement as one, single line.
 Result% = EnumPaperMetricsEscape(Printer.hDC, ENUMPAPERMETRICS,
 2, mode%, RectArray(0))
 If Result% = 0 Then ' If Result = 0, the call failed
 MsgBox "Printer Driver does not Support EnumPaperMetrics", 48
 Command1.Enabled = False
 Exit Sub
 End If

 ReDim RectArray(Result% - 1) ' Result% contains num paper sizes
 mode% = 1
 ' Enter the entire Result2% statement as one, single line.
 Result2% = EnumPaperMetricsEscape(Printer.hDC, ENUMPAPERMETRICS,
 2, mode%, RectArray(0))
 HorzRatio% = GetDeviceCaps(Printer.hDC, LOGPIXELSX)
 VertRatio% = GetDeviceCaps(Printer.hDC, LOGPIXELSY)

 ' Add Paper Sizes (Listed by actual printing region) in inches
 ' to the list box. Enter each of the PWidth$ and PHeight$ statements
 ' as one, single line.
 For i% = 0 To Result% - 1
 PWidth$ = Format$((RectArray(i%).Right - RectArray(i%).Left)
 / HorzRatio%) + Chr$(34) ' Enter as a single line
 PHeight$ = Format$((RectArray(i%).Bottom - RectArray(i%).Top)
 / VertRatio%) + Chr$(34) ' Enter as a single line
 List1.AddItem PWidth$ + " X " + PHeight$
 Next i%
 End Sub

8. Add the following code to the List1_Click event procedure:

 Sub List1_Click ()
 Dim PrevPaperSize As Rect
 ' Enter the entire Result% statement as one, single line.
 Result% = SetPaperMetricsEscape(Printer.hDC, GETSETPAPERMETRICS,
 Len(PrevPaperSize), RectArray(List1.ListIndex), PrevPaperSize)

 If Result% = 0 Then
 MsgBox "Printer Driver does not support this Escape.", 48
 ElseIf Result% < 0 Then
 MsgBox "Error in calling Escape with GETSETPAPERMETRICS."
 Else
 MsgBox "Paper size successfully changed!"
 End If
 End Sub

9. From the Run menu, choose Start (ALT, R, S) to run the program.

10. Choose the Command1 button to display a list of available paper metrics
 in the List1 box. The paper metrics represent the size of the printable
 regions supported by the printer, not the physical paper sizes.

11. Select one of the paper metrics shown in the List1 box. A message box
 appears indicating whether or not the paper size was successfully
 changed using the paper metrics you selected.

How to Obtain & Change the Paper Bins for the Default Printer
Article ID: Q96797
Summary:
By using the Windows API Escape() function, an application can change the
paper bin on the printer and obtain a list of available paper bins for the
default printer.

To return a list of paper bin names and a list of corresponding of bin
numbers, pass the ENUMPAPERBINS printer escape constant to the Escape()
function. You can use the first list to display the available paper bins
for the user, and use the second list to change the paper bin.

To change the paper bin, pass the GETSETPAPERBINS printer escape constant
along with the bin number to the Escape() function. GETSETPAPERBINS returns
the current bin and the number of bins supported by the default printer.

More Information:
The example code listed below demonstrates how to use both ENUMPAPERBINS
and GETSETPAPERBINS with the Windows API Escape() function.

An Important Note

The Windows API Escape() function used below is provided in Windows version
3.0 and later for backward compatibility with earlier versions of Microsoft
Windows. New applications should use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function shown below.
In order to use the ExtDeviceMode() function, you need to create a DLL
because the ExtDeviceMode() function is exported by the printer driver, not
by the Windows GDI. To execute the ExtDeviceMode() function, you need to
obtain a function pointer to it from the current printer driver. Visual
Basic does not support pointers.

Steps to Create Example:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created
 by default.

3. Add the following code to the general declarations section of Module1:

 Global Const MaxBins = 6
 Type PaperBin ' Used for EnumPaperBins
 BinList(1 To MaxBins) As Integer
 PaperNames(1 To MaxBins) As String * 24
 End Type

 Type BinInfo ' Used for GetSetPaperBins
 CurBinNumber As Integer ' Current Bin
 NumBins As Integer ' Number of bins supported by printer
 Reserved1 As Integer ' Reserved
 Reserved2 As Integer ' Reserved
 Reserved3 As Integer ' Reserved
 Reserved4 As Integer ' Reserved

 End Type
 ' Enter each complete Declare statement on one, single line.
 Declare Function EnumPaperBinEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal nCount%, NumBins%,
 lpOutData As Any)
 Declare Function GetPaperBinEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal nCount%, InBinInfo As Any,
 OutBinInfo As Any)

 Global Const ENUMPAPERBINS = 31
 Global Const GETSETPAPERBINS = 29

4. Add a command button (Command1) to Form1.

5. Add a list box (List1) to Form1.

6. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 Dim InPaperBin As PaperBin
 Dim InBinInfo As BinInfo
 ' Enter each complete result% statement on one, single line.
 result% = GetPaperBinEscape(Printer.hDC, GETSETPAPERBINS, 0,
 ByVal 0&, InBinInfo)
 result% = EnumPaperBinEscape(Printer.hDC, ENUMPAPERBINS, 2,
 MaxBins, InPaperBin)

 List1.Clear
 For I% = 1 To InBinInfo.NumBins ' Fill list1 with available bins
 List1.AddItem InPaperBin.PaperNames(I%)
 List1.ItemData(List1.NewIndex) = InPaperBin.BinList(I%)
 Next I%

 End Sub

7. Add the following code to the List1_Click event procedure:

 Sub List1_Click ()
 Dim InBinInfo As BinInfo
 Dim NewBinInfo As BinInfo

 NewBinInfo.CurBinNumber = List1.ItemData(List1.ListIndex)
 ' Enter the following result% statement on one, single line.
 result% = GetPaperBinEscape(Printer.hDC, GETSETPAPERBINS,
 Len(NewBinInfo), NewBinInfo, PrevBinInfo)

 MsgBox "Sending Sample Output to printer using Bin: " + List1.Text
 Printer.Print "This should of have come from Bin: "; List1.Text
 Printer.EndDoc
 End Sub

8. From the Run menu, choose Start (ALT, R, S) to run the program.

9. Choose the Command1 button to see a list of available paper bins for the
 default printer listed in the List1 box.

10. Select one of the paper bins listed in the List1 box. A message box

 appears to tell you that a sample printout is being sent to the printer
 using the paper bin you selected.

How to Use More than One Type of Font in Picture Box
Article ID: Q81220
Summary:
The text box control in Visual Basic for Windows displays the entire
text box with either the FontUnderline, FontBold, FontItalic, or
FontStrikethru fonts, but with only one font at a time. This behavior
is by design.

However, you may want to display a box with all four fonts at the same
time with separate words displayed in different fonts. Below is an
example of displaying the fonts FontBold, FontItalic, FontStrikethru,
and FontUnderline fonts in a picture box control in Visual Basic for
Windows to work around the limitation in text boxes.

More Information:
The example below is one way of simulating a text box's contents in a
variety of fonts.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Place a picture box on Form1, and double-click on the picture box
 to open the Code window. Add the following code to the Click event.
 Notice that the font properties are a Boolean type (that is,
 -1 = True and 0 = False).

Sub Picture1_Click ()

'** The word "Hello, " will be in FontBold.
 temp$ = "Hello, "
 Picture1.FontBold = -1
 Picture1.FontItalic = 0
 Picture1.FontStrikethru = 0
 Picture1.FontUnderline = 0
 Picture1.Print temp$

'** Need to program the next location to print in FontItalic.
 Picture1.Currentx = 500
 Picture1.Currenty = 0
 Picture1.FontBold = 0
 Picture1.FontItalic = -1
 Picture1.FontStrikethru = 0
 Picture1.FontUnderline = 0
 temp$ = " there!"
 Picture1.Print temp$

'** Need to program location to print in FontStrikethru.
 Picture1.Currentx = 1100
 Picture1.Currenty = 0
 Picture1.FontBold = 0
 Picture1.FontItalic = 0
 Picture1.FontUnderline = 0
 Picture1.FontStrikethru = -1
 temp$ = "This"

 Picture1.Print temp$

'** Need to program location to print in FontUnderline.
 Picture1.Currentx = 0
 Picture1.Currenty = 200
 Picture1.FontBold = 0
 Picture1.FontItalic = 0
 Picture1.FontStrikethru = 0
 Picture1.FontUnderline = -1
 temp$ = "is a test."
 Picture1.Print temp$

End Sub

Notice that the CurrentX and CurrentY properties are used to place the
text at a certain location in the picture box. This example is rather
simple, but its purpose is to give you an idea on how to simulate a
text box in Visual Basic for Windows to be more flexible with a mix of
the different types of fonts available.

VB Uses Bitmap Fonts when TrueType FontSize is Less than 8
Article ID: Q84483
Summary:
The Microsoft Windows version 3.1 operating environment provides you
with TrueType scalable fonts that can be used in Microsoft Visual Basic
for Windows applications. Visual Basic for Windows supports TrueType
fonts for font sizes of 7 or greater depending on the video driver
installed. Smaller fonts are mapped to available bitmap fonts, based
on the fonts available for the video driver installed. There is no way
to force Visual Basic for Windows to use TrueType fonts for font sizes
less than 7. This is not a problem with Visual Basic for Windows, but
rather a function of how Windows manages fonts.

More Information:
Microsoft Windows 3.1 utilizes automatic bitmap font substitution,
which is done to preserve readability at small sizes when they are
displayed. At very small point sizes (4 to 7 points on standard VGA
video resolutions), most Type 2 fonts are substituted with a hand-tuned
bitmap font to preserve readability. This can cause the style of the
font to change. For example, the Times New Roman font shipped with
Windows version 3.1 appears as the Small Fonts font for sizes 4 - 6
and MS Serif for sizes 6.25 - 8.25, rather than its native face it has
at larger sizes.

The program below demonstrates this scenario. The program attempts to
print a message using the Arial font in sizes from 1 to 9. Visual Basic
for Windows uses the font Small Fonts for font sizes less than 7 and
depending on the video driver installed may use Arial for sizes
between 7 and 8.25. Using the standard VGA driver, Arial is used for
fonts sizes greater then 8.25.

Steps to Demonstrate This Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Enter the following code into the Form_Click procedure:

 Sub Form_Click ()
 For i = 1 To 9 Step .25
 FontName = "Arial"
 FontSize = i
 Print Str$(i); Chr$(9); Str$(FontSize); Chr$(9); FontName
 Next i
 End Sub

3. Press the F5 key to run the program, and click anywhere on the form.
 Notice that the Arial TrueType font is used only for font sizes of
 8.25 or larger.

Overflow Error Plotting Points Far Outside Bounds of Control
Article ID: Q81953
Summary:
Visual Basic for Windows may give an Overflow error when you plot
points on a form or picture box if a point's coordinates far exceed
the borders and scale of the form or control. The point at which
overflow occurs depends on the ScaleMode property value and the points
plotted. In the case of ScaleMode = 0 (User Defined Scale), the size
of the form or picture box and the scale chosen are also determinants.

A workaround is to trap the error and use a RESUME NEXT statement to
exit the error handler. The example below contains the necessary code
to trap the Overflow error.

More Information:
Before Visual Basic for Windows can plot a point, it must first
convert the coordinates into their absolute location in twips. If,
after the conversion, one or both coordinates are greater than 32,767
or less than -32,768, an Overflow error is generated. The following
chart lists the ScaleModes, their equivalence in twips, and the values
that will cause a coordinate (z) to overflow:

 Equivalents
ScaleMode in Twips (Tp) Overflow Point (z)
--------- ------------- ------------------

0 (User defined) User defined User defined (see example)
1 (Twips) 1 twip = 1 twip (z < -32768) or (z > 32767)
2 (Point) 1 point = 20 twips (z < -1638) or (z > 1638)
3 (Pixel) System dependent System dependent
4 (Character) x-axis=120 twips/char (x < -273) or (x > 273)
 y-axis=240 twips/char (y < -136) or (y > 136)
5 (Inch) 1 Inch = 1440 twips (z < -22) or (z > 22)
6 (Millimeter) 1 mm = 56.7 twips (z < -577) or (z > 577)
7 (Centimeter) 1 cm = 567 twips (z < -57) or (z > 57)

The example below can be used to determine the value that generates
the Overflow error for ScaleMode 0 or 3.

Example

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add the following controls to Form1:

 Control Name (use CtlName in Visual Basic 1.0 for Windows)
 ------- --

 Text box Text1
 Command button Command1

3. Set the MultiLine property for Text1 to True. With ScaleMode = 0

 only, the overflow value is dependent upon the size of the picture
 box or form. If you are testing the overflow value with ScaleMode =
 0, you must size the form appropriately.

4. Add the following code to the Form1 Form_Load event procedure:

 Sub Form_Load ()
 Command1.Caption = "Find Ranges"

 '* Change ScaleMode to see different results.
 Form1.ScaleMode = 3 ' PIXEL.
 End Sub

5. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 CR$ = Chr$(13) + Chr$(10) ' Carriage return.

 X = FindValue("X")
 Y = FindValue("Y")

 Text1.Text = "Valid value when..."
 Text1.Text = Text1.Text + CR$ + "-" + Str$(X) + " < X < " + Str$(X)
 Text1.Text = Text1.Text + CR$ + "-" + Str$(Y) + " < Y < " + Str$(Y)
 End Sub

6. Add the following general purpose function to the general
 Declarations section:

 Function FindValue (Which$)
 On Error GoTo rlhandler

 HiValue = 100000
 LoValue = 0
 Errored = FALSE
 ' Do binary select.
 Do
 NewCheck = Value
 If Errored Then
 Value = HiValue - (HiValue - LoValue) \ 2
 Else
 Value = LoValue + (HiValue - LoValue) \ 2
 End If

 If Which$ = "X" Then
 Form1.PSet (Value, 0)
 Else
 Form1.PSet (0, Value)
 End If

 If ErrorNum = 6 Then
 HiValue = Value
 ErrorNum = 0
 Else
 LoValue = Value
 End If
 Loop Until NewCheck = Value

 FindValue = Value

 Exit Function

 rlhandler:
 ' Err = 6 is OverFlow error.
 If Err = 6 Then
 ErrorNum = Err
 Else
 Form1.Print Err
 End If
 Resume Next

End Function

7. In Visual Basic version 1.0 for Windows, add the following to the
 general declarations section of Form1:

 Const FALSE = 0
 Const TRUE = -1

8. From the Run menu, choose Start (or press the F5 key), and click on
 the Command1 button to calculate the point at which the X and Y
 coordinates generate an Overflow error.

When the above Click event is triggered, Visual Basic for Windows will
try to set a point on the form. Past the border, Visual Basic for
Windows is plotting points that exceed the visual scope of the control.
Once the program traps the Overflow error, the text box will display
the valid range of coordinates you can use that will not generate the
Overflow error.

How to Make a Push Button with a Bitmap in Visual Basic
Article ID: Q78478
Summary:
Command buttons in Visual Basic for Windows are limited to a single
line of text and one background color (gray). The 3D command button
shipped in the Professional Editions of Visual Basic version 2.0 and
3.0 for Windows does have the capability of displaying bitmaps within
a command button in Visual Basic for Windows. However, there is no
way to alter the background or border colors to change its appearance.
You can create the look and feel of a command button by using a picture
control and manipulating the DrawMode in conjunction with the Line
method. Using a picture control also allows you to display the
"command button" in any color with multiple lines of caption text.

More Information:
The technique (demonstrated further below) simulates the effect of
pressing a command button by using the Line method with the BF option
(Box Fill) in invert mode each time a MouseUp or MouseDown event
occurs for the picture control. To add multiline text to the "button,"
either print to the picture box or add the text permanently to the
bitmap.

The steps to create a customized "command button" are as follows:

 1. Start Visual Basic for Windows, or choose New Project from the
 File menu (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 will be created by default.

 2. Put a picture control (Picture1) on Form1.

 3. Set the properties for Picture1 as given in the chart below:

 Property Value
 -------- -----

 AutoRedraw True
 AutoSize True
 BorderStyle 0-None
 DrawMode 6-Invert

 4. Assign the Picture property of Picture1 to the bitmap of your
 choice. For example, choose ARW01DN.ICO from the ARROWS
 subdirectory of the ICONS directory shipped with Visual Basic for
 Windows. This is a good example of a bitmap with a three dimensional
 appearance.

 5. Enter the following code in the Picture1_DblClick event procedure
 of Picture1:

 Sub Picture1_DblClick ()
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End Sub

 Note: This code is necessary to avoid getting the bitmap stuck in
 an inverted state because of Mouse messages being processed out of

 order or from piling up due to fast clicking.

 6. Enter the following code in the Picture1_MouseDown event procedure
 of Picture1:

 Sub Picture1_MouseDown (Button As Integer, Shift As Integer, X As
 Single, Y As Single) ' Append to above line
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End Sub

 7. Enter the following code in the Picture1_MouseUp event procedure of
 Picture1:

 Sub Picture1_MouseUp (Button As Integer, Shift As Integer,
 X As Single, Y As Single) ' Append to above line.
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End Sub

 8. Add the following code to the Picture1_KeyUp event procedure for
 Picture1:

 Sub Picture1_KeyUp (KeyCode As Integer, Shift As Integer)
 '* Check to see if the ENTER key was pressed. If so, restore
 '* the picture image.
 If KeyCode = 13 Then
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End If
 End Sub

 9. Add the following code to the Picture1_KeyDown event procedure for
 Picture1:

 Sub Picture1_KeyDown (KeyCode As Integer, Shift As Integer)
 '* Check to see if the ENTER key was pressed. If so, invert
 '* the picture image.
 If KeyCode = 13 Then
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End If
 End Sub

10. From the Run menu, choose Start. Click on the picture box. The
 image of the picture should be inverted while the mouse button is
 down, giving the visual effect of a button press.

How to Use FillPolygonRgn API to Fill Shape in Visual Basic
Article ID: Q81470
Summary:
Microsoft Visual Basic versions 2.0 and later for Windows include the
Shape control which can be used for creating and filling six different
geometric shapes. Alternatively, you can create a polygon region on a
form or picture and fill it with a color, using the CreatePolygonRgn
and FillRgn Windows API calls to draw and fill areas of the screen
with color. Geometric shapes not provided with the Shape control,
such as a triangle, can be created using this method.

More Information:
To draw a polygon on a form or picture control, you can use the
Polygon API call; this will draw the edge of the polygon. You can then
use CreatePolygonRgn to create an area that you can paint and use
FillRgn to fill it with a color. Using these Windows API calls allows
you to pick the points, the number of points, and to choose the color
or brush to fill with.

The API calls used in the following example should be declared in the
general Declarations section of your form. They are as follows:

API Call Description
-------- -----------

CreatePolygonRgn Creates a polygonal region

GetStockObject Retrieves a handle to one of the predefined stock
 pens, brushes, or fonts

FillRgn Fills the region specified by the hRgn parameter
 with the brush specified by the hBrush parameter

Polygon Draws a polygon consisting of two or more points
 connected by lines

Code Example

The following code example shows how to create a black triangle on a
form. To change the program to create other shapes, add points to the
array.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose New Module (press ALT, F, M). Module1 is
 created by default.

3. Add the following code to the general declarations section of
 Module1 (in Visual Basic version 1.0 for Windows, add to Global.Bas):

Type Coord ' This is the type structure for the x and y
 x As Integer ' coordinates for the polygonal region.

 y As Integer
End Type

' All of the following Declare statements must appear on one line.
Declare Function CreatePolygonRgn Lib "gdi"
 (lpPoints As Any, ByVal nCount As Integer,
 ByVal nPolyFillMode As Integer) As Integer

Declare Function Polygon Lib "gdi"
 (ByVal hDC As Integer, lpPoints As Any,
 ByVal nCount As Integer) As Integer

Declare Function FillRgn Lib "gdi"
 (ByVal hDC As Integer, ByVal hRgn As Integer,
 ByVal hBrush As Integer) As Integer

Declare Function GetStockObject Lib "gdi"
 (ByVal nIndex As Integer) As Integer

Global Const ALTERNATE = 1 ' ALTERNATE and WINDING are
Global Const WINDING = 2 ' constants for FillMode.
Global Const BLACKBRUSH = 4' Constant for brush type.

2. Add the following code to the Form_Click event for Form1:

Sub Form_Click ()
 ' Dimension coordinate array.
 ReDim poly(1 To 3) As Coord
 ' Number of vertices in polygon.
 NumCoords% = 3
 ' Set scalemode to pixels to set up points of triangle.
 form1.scalemode = 3
 ' Assign values to points.
 poly(1).x = form1.scalewidth / 2
 poly(1).y = form1.scaleheight / 2
 poly(2).x = form1.scalewidth / 4
 poly(2).y = 3 * form1.scaleheight / 4
 poly(3).x = 3 * form1.scalewidth / 4
 poly(3).y = 3 * form1.scaleheight / 4
 ' Sets background color to red for contrast.
 form1.backcolor = &HFF
 ' Polygon function creates unfilled polygon on screen.
 ' Remark FillRgn statement to see results.
 bool% = Polygon(form1.hdc, poly(1), NumCoords%)
 ' Gets stock black brush.
 hbrush% = GetStockObject(BLACKBRUSH)
 ' Creates region to fill with color.
 hrgn% = CreatePolygonRgn(poly(1), NumCoords%, ALTERNATE)
 ' If the creation of the region was successful then color.
 If hrgn% Then bool% = FillRgn(form1.hdc, hrgn%, hbrush%)
 ' Print out some information.
 Print "FillRgn Return : ";bool%
 Print "HRgn : "; hrgn%
 Print "Hbrush : "; hbrush%

End Sub

3. Run the program.

You should initially see a blank form. Click the form; a red
background with a black triangle on it should be displayed. You can
try different numbers of vertices by adding elements to the poly array
and updating NumCoords. Different colors and brushes can be
substituted as desired.

Note: If you try to fill a region with coordinates beyond the visible
form, the CreatePolygonRgn function call will return a zero, meaning it
was unsuccessful. The FillRgn will not work if the CreatePolygonRgn
function was unsuccessful. All you will see is the outline created by
the Polygon function. You should make certain that the vertices are
all within the viewable form.

How to Send an HBITMAP to Windows API Function Calls from VB
Article ID: Q71260
Summary:
Several Windows API functions require the HBITMAP data type. Visual
Basic for Windows does not have a HBITMAP data type. This article
explains how to send the equivalent Visual Basic for Windows HBITMAP
handle of a picture control to a Windows API function call.

More Information:
The HBITMAP data type represents a 16-bit index to GDIs physical
drawing object. Several Windows API routines need the HBITMAP data
type as an argument. Sending the [picture-control].Picture as an
argument is the equivalent in Visual Basic for Windows.

The code sample below demonstrates how to send HBITMAP to the Windows
API function ModifyMenu:

Declare Function SetMenuItemBitMaps% Lib "user" (ByVal hMenu%,
 ByVal nPos%,
 ByVal wFlag%,
 ByVal BitmapUnChecked%,
 ByVal hBitmapChecked%)

Note: The above Declare statement must be written on just one line.

The SetMenuItemBitMap takes five arguments. The fourth and fifth
arguments are HBITMAP data types.

The following code segment will associate the specified bitmap
Picture1.Picture in place of the default check mark:

X% = SetMenuItemBitMap(hMenu%, menuID%,0,0, Picture1.Picture)

How to Rotate a Bitmap in VB for Windows
Article ID: Q80406
Summary:
This article contains a program example that uses Visual Basic for
Windows statements and functions to rotate a bitmap.

More Information:
Steps to Create Example Program

 1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (ALT, F, N) if Visual Basic for Windows is already running.
 Form1 will be created by default.

 2. Place two picture boxes named Picture1 and Picture2 on Form1.

 3. Set the ScaleMode property of both picture boxes to 3 - Pixel.

 4. Set the AutoSize property of Picture1 to True (-1).

 5. Set the AutoRedraw property of Picture1 and Picture2 to True (-1).

 6. Place a command button named Command1 on Form1.

 7. Enter the following code in the Command1_Click event procedure:

 ' Example of how to call bmp_rotate.
 Sub Command1_Click ()
 Const Pi = 3.14159265359

 For angle = Pi / 6 To 2 * Pi Step Pi / 6
 picture2.Cls
 Call bmp_rotate(picture1, picture2, angle)
 Next
 End Sub

 8. Enter the following code in the general Declarations section:

 ' bmp_rotate(pic1, pic2, theta)
 ' Rotate the image in a picture box.
 ' pic1 is the picture box with the bitmap to rotate
 ' pic2 is the picture box to receive the rotated bitmap
 ' theta is the angle of rotation
 '
 Sub bmp_rotate (pic1 As Control, pic2 As Control, theta!)
 Const Pi = 3.14159265359
 Dim c1x As Integer ' Center of pic1.
 Dim c1y As Integer ' "
 Dim c2x As Integer ' Center of pic2.
 Dim c2y As Integer ' "
 Dim a As Single ' Angle of c2 to p2.
 Dim r As Integer ' Radius from c2 to p2.
 Dim p1x As Integer ' Position on pic1.
 Dim p1y As Integer ' "
 Dim p2x As Integer ' Position on pic2.
 Dim p2y As Integer ' "

 Dim n As Integer ' Max width or height of pic2.

 ' Compute the centers.
 c1x = pic1.scalewidth / 2
 c1y = pic1.scaleheight / 2
 c2x = pic2.scalewidth / 2
 c2y = pic2.scaleheight / 2

 ' Compute the image size.
 n = pic2.scalewidth
 If n < pic2.scaleheight Then n = pic2.scaleheight
 n = n / 2 - 1
 ' For each pixel position on pic2.
 For p2x = 0 To n
 For p2y = 0 To n
 ' Compute polar coordinate of p2.
 If p2x = 0 Then
 a = Pi / 2
 Else
 a = Atn(p2y / p2x)
 End If
 r = Sqr(1& * p2x * p2x + 1& * p2y * p2y)

 ' Compute rotated position of p1.
 p1x = r * Cos(a + theta)
 p1y = r * Sin(a + theta)

 ' Copy pixels, 4 quadrants at once.
 c0& = pic1.Point(c1x + p1x, c1y + p1y)
 c1& = pic1.Point(c1x - p1x, c1y - p1y)
 c2& = pic1.Point(c1x + p1y, c1y - p1x)
 c3& = pic1.Point(c1x - p1y, c1y + p1x)
 If c0& <> -1 Then pic2.PSet (c2x + p2x, c2y + p2y),c0&
 If c1& <> -1 Then pic2.PSet (c2x - p2x, c2y - p2y),c1&
 If c2& <> -1 Then pic2.PSet (c2x + p2y, c2y - p2x),c2&
 If c3& <> -1 Then pic2.PSet (c2x - p2y, c2y + p2x),c3&
 Next
 ' Allow pending Windows messages to be processed.
 t% = DoEvents()
 Next
 End Sub

 9. Assign a bitmap image to the Picture1 Picture property.

10. To start the program, press F5, then click on Command1. The
 program rotates the image of Picture1 by 30 degrees and places the
 rotated image in Picture2. It continues to draw the image rotated
 at successive multiples of 30 degrees until it has rotated the
 picture by 360 degrees.

To save the new bitmap created in Picture2, you can use the following
statement:

 SavePicture Picture2.Image, "filename.bmp"

How to Create a Transparent Bitmap Using Visual Basic
Article ID: Q94961
Summary:
A transparent image shows the background behind it instead of the image
itself. You can use an icon editor such as the IconWorks sample program
provided with Visual Basic to create icons that contain transparent parts.
This article shows you how to make certain parts of a bitmap transparent.

More Information:
Here are the six general steps required to create a transparent bitmap:

1. Store the area, or background, where the bitmap is going to be drawn.
2. Create a monochrome mask of the bitmap that identifies the transparent
 areas of the bitmap by using a white pixel to indicate transparent areas
 and a black pixel to indicate non-transparent areas of the bitmap.
3. Combine the pixels of the monochrome mask with the background bitmap
 using the And binary operator. The area of the background where the
 non-transparent portion of the bitmap will appear is made black.
4. Combine an inverted copy of the monochrome mask (step 2) with the source
 bitmap using the And binary operator. The transparent areas of the
 source bitmap will be made black.
5. Combine the modified background (step 3) with the modified source bitmap
 (step 4) using the Xor binary operator. The background will show through
 the transparent portions of the bitmap.
6. Copy the resulting bitmap to the background

Example Code

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.
2. Add the following controls to Form1 with the associated property values:

 Control Name (or CtlName) Property Settings

 Picture pictSource Picture ="WINDOWS\THATCH.BMP"
 Picture pictDest Picture ="WINDOWS\ARCHES.BMP"
 Command button cmdCopy Caption ="Copy"

3. From the File menu, choose New Module (ALT, F, M). Module1 is created.
4. Add the following code to the cmdCopy_Click event procedure of Form1.
 This code calls the TransparentBlt() function to copy a source bitmap
 to a destination (background) picture control. White (QBColor(15)) areas
 of the bitmap are made transparent against the background bitmap.

 Sub cmdCopy_Click ()
 Call TransparentBlt(pictDest, pictSource.Picture, 10, 10, QBColor(15))
 End Sub

5. Add the following code the general declarations section of Module1. Enter
 each Declare as a single line:

 Type bitmap
 bmType As Integer
 bmWidth As Integer
 bmHeight As Integer

 bmWidthBytes As Integer
 bmPlanes As String * 1
 bmBitsPixel As String * 1
 bmBits As Long
 End Type
 Declare Function BitBlt Lib "GDI" (ByVal srchDC As Integer, ByVal srcX
 As Integer, ByVal srcY As Integer, ByVal srcW As Integer, ByVal srcH
 As Integer, ByVal desthDC As Integer, ByVal destX As Integer, ByVal
 destY As Integer, ByVal op As Long) As Integer
 Declare Function SetBkColor Lib "GDI" (ByVal hDC As Integer, ByVal
 cColor As Long) As Long
 Declare Function CreateCompatibleDC Lib "GDI" (ByVal hDC As Integer)
 As Integer
 Declare Function DeleteDC Lib "GDI" (ByVal hDC As Integer) As Integer
 Declare Function CreateBitmap Lib "GDI" (ByVal nWidth As Integer, ByVal
 nHeight As Integer, ByVal cbPlanes As Integer, ByVal cbBits As
 Integer, lpvBits As Any) As Integer
 Declare Function CreateCompatibleBitmap Lib "GDI" (ByVal hDC As Integer,
 ByVal nWidth As Integer, ByVal nHeight As Integer) As Integer
 Declare Function SelectObject Lib "GDI" (ByVal hDC As Integer, ByVal
 hObject As Integer) As Integer
 Declare Function DeleteObject Lib "GDI" (ByVal hObject As Integer) As
 Integer
 Declare Function GetObject Lib "GDI" (ByVal hObject As Integer, ByVal
 nCount As Integer, bmp As Any) As Integer
 Const SRCCOPY = &HCC0020
 Const SRCAND = &H8800C6
 Const SRCPAINT = &HEE0086
 Const NOTSRCCOPY = &H330008

6. Add the following Sub procedure to the general declarations section of
 Module1. TransparentBlt() accepts six parameters: a destination picture
 control (dest), a source bitmap to become transparent (srcBmp), the X,Y
 coordinates in pixels where you want to place the source bitmap on the
 destination (destX and destY), and the RGB value for the color you want
 to be transparent. TransparentBlt() copies the source bitmap to any X,Y
 location on the background making areas transparent.

 Sub TransparentBlt (dest As Control, ByVal srcBmp As Integer, ByVal
 destX As Integer, ByVal destY As Integer, ByVal TransColor As Long)
 Const PIXEL = 3
 Dim destScale As Integer
 Dim srcDC As Integer 'source bitmap (color)
 Dim saveDC As Integer 'backup copy of source bitmap
 Dim maskDC As Integer 'mask bitmap (monochrome)
 Dim invDC As Integer 'inverse of mask bitmap (monochrome)
 Dim resultDC As Integer 'combination of source bitmap & background
 Dim bmp As bitmap 'description of the source bitmap
 Dim hResultBmp As Integer 'Bitmap combination of source & background
 Dim hSaveBmp As Integer 'Bitmap stores backup copy of source bitmap
 Dim hMaskBmp As Integer 'Bitmap stores mask (monochrome)
 Dim hInvBmp As Integer 'Bitmap holds inverse of mask (monochrome)
 Dim hPrevBmp As Integer 'Bitmap holds previous bitmap selected in DC
 Dim hSrcPrevBmp As Integer 'Holds previous bitmap in source DC
 Dim hSavePrevBmp As Integer 'Holds previous bitmap in saved DC
 Dim hDestPrevBmp As Integer 'Holds previous bitmap in destination DC
 Dim hMaskPrevBmp As Integer 'Holds previous bitmap in the mask DC

 Dim hInvPrevBmp As Integer 'Holds previous bitmap in inverted mask DC
 Dim OrigColor As Long 'Holds original background color from source DC
 Dim Success As Integer 'Stores result of call to Windows API
 If TypeOf dest Is PictureBox Then 'Ensure objects are picture boxes
 destScale = dest.ScaleMode 'Store ScaleMode to restore later
 dest.ScaleMode = PIXEL 'Set ScaleMode to pixels for Windows GDI
 'Retrieve bitmap to get width (bmp.bmWidth) & height (bmp.bmHeight)
 Success = GetObject(srcBmp, Len(bmp), bmp)
 srcDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 saveDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 maskDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 invDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 resultDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 'Create monochrome bitmaps for the mask-related bitmaps:
 hMaskBmp = CreateBitmap(bmp.bmWidth, bmp.bmHeight, 1, 1, ByVal 0&)
 hInvBmp = CreateBitmap(bmp.bmWidth, bmp.bmHeight, 1, 1, ByVal 0&)
 'Create color bitmaps for final result & stored copy of source
 hResultBmp = CreateCompatibleBitmap(dest.hDC, bmp.bmWidth,
 bmp.bmHeight)
 hSaveBmp = CreateCompatibleBitmap(dest.hDC, bmp.bmWidth,
 bmp.bmHeight)
 hSrcPrevBmp = SelectObject(srcDC, srcBmp) 'Select bitmap in DC
 hSavePrevBmp = SelectObject(saveDC, hSaveBmp) 'Select bitmap in DC
 hMaskPrevBmp = SelectObject(maskDC, hMaskBmp) 'Select bitmap in DC
 hInvPrevBmp = SelectObject(invDC, hInvBmp) 'Select bitmap in DC
 hDestPrevBmp = SelectObject(resultDC, hResultBmp) 'Select bitmap
 Success = BitBlt(saveDC, 0, 0, bmp.bmWidth, bmp.bmHeight, srcDC,
 0, 0, SRCCOPY) 'Make backup of source bitmap to restore later
 'Create mask: set background color of source to transparent color.
 OrigColor = SetBkColor(srcDC, TransColor)
 Success = BitBlt(maskDC, 0, 0, bmp.bmWidth, bmp.bmHeight, srcDC,
 0, 0, SRCCOPY)
 TransColor = SetBkColor(srcDC, OrigColor)
 'Create inverse of mask to AND w/ source & combine w/ background.
 Success = BitBlt(invDC, 0, 0, bmp.bmWidth, bmp.bmHeight, maskDC,
 0, 0, NOTSRCCOPY)
 'Copy background bitmap to result & create final transparent bitmap
 Success = BitBlt(resultDC, 0, 0, bmp.bmWidth, bmp.bmHeight,
 dest.hDC, destX, destY, SRCCOPY)
 'AND mask bitmap w/ result DC to punch hole in the background by
 'painting black area for non-transparent portion of source bitmap.
 Success = BitBlt(resultDC, 0, 0, bmp.bmWidth, bmp.bmHeight,
 maskDC, 0, 0, SRCAND)
 'AND inverse mask w/ source bitmap to turn off bits associated
 'with transparent area of source bitmap by making it black.
 Success = BitBlt(srcDC, 0, 0, bmp.bmWidth, bmp.bmHeight, invDC,
 0, 0, SRCAND)
 'XOR result w/ source bitmap to make background show through.
 Success = BitBlt(resultDC, 0, 0, bmp.bmWidth, bmp.bmHeight,
 srcDC, 0, 0, SRCPAINT)
 Success = BitBlt(dest.hDC, destX, destY, bmp.bmWidth, bmp.bmHeight,
 resultDC, 0, 0, SRCCOPY) 'Display transparent bitmap on backgrnd
 Success = BitBlt(srcDC, 0, 0, bmp.bmWidth, bmp.bmHeight, saveDC,
 0, 0, SRCCOPY) 'Restore backup of bitmap.
 hPrevBmp = SelectObject(srcDC, hSrcPrevBmp) 'Select orig object
 hPrevBmp = SelectObject(saveDC, hSavePrevBmp) 'Select orig object
 hPrevBmp = SelectObject(resultDC, hDestPrevBmp) 'Select orig object

 hPrevBmp = SelectObject(maskDC, hMaskPrevBmp) 'Select orig object
 hPrevBmp = SelectObject(invDC, hInvPrevBmp) 'Select orig object
 Success = DeleteObject(hSaveBmp) 'Deallocate system resources.
 Success = DeleteObject(hMaskBmp) 'Deallocate system resources.
 Success = DeleteObject(hInvBmp) 'Deallocate system resources.
 Success = DeleteObject(hResultBmp) 'Deallocate system resources.
 Success = DeleteDC(srcDC) 'Deallocate system resources.
 Success = DeleteDC(saveDC) 'Deallocate system resources.
 Success = DeleteDC(invDC) 'Deallocate system resources.
 Success = DeleteDC(maskDC) 'Deallocate system resources.
 Success = DeleteDC(resultDC) 'Deallocate system resources.
 dest.ScaleMode = destScale 'Restore ScaleMode of destination.
 End If
 End Sub

7. From the Run menu, choose Start (ALT, R, S) to run the program.
8. Click the Copy button. The thatched pattern in the first picture is
 copied onto the second picture (an image of arches) making the arches
 show through areas of the previously white thatched pattern.

How to Copy Entire Screen into a Picture Box in VB for Windows
Article ID: Q80670
Summary:
Using the Windows API call BitBlt, you can capture the entire
Microsoft Windows screen and place the image into a Microsoft Visual
Basic for Windows picture box. You first get the handle to the desktop,
then use the desktop window handle to get the handle to the desktop's
device context (hDC), and finally use the Windows API call BitBlt to
copy the screen into the Picture property of a Visual Basic for
Windows picture box control.

More Information:
Example

1. Start Visual Basic for Windows (VB.EXE). Form1 is created by default.

2. Create a picture box (Picture1) on Form1.

3. Set the following properties:

 Control Property Value
 ------- -------- -----

 Picture1 AutoRedraw True
 Picture1 Visible False

4. Add the following code:

Global.Bas

Type lrect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type
Declare Function GetDesktopWindow Lib "user" () As Integer
Declare Function GetDC Lib "user" (ByVal hWnd%) As Integer

' Note: The following Declare should be on one line:
Declare Function BitBlt Lib "GDI" (ByVal hDestDC%,
 ByVal X%,
 ByVal Y%,
 ByVal nWidth%,
 ByVal nHeight%,
 ByVal hSrcDC%,
 ByVal XSrc%,
 ByVal YSrc%,
 ByVal dwRop&
) As Integer

' Note: The following Declare should be on one line:
Declare Function ReleaseDC Lib "User"(ByVal hWnd As Integer,

 ByVal hDC As Integer
) As Integer

Declare Sub GetWindowRect Lib "User" (ByVal hWnd%, lpRect As lrect)
Global Const True = -1
Global Const False = 0
Global TwipsPerPixel As Single

Form1

Sub Form_Click ()
 Call GrabScreen
End Sub

Sub GrabScreen ()

 Dim winSize As lrect

 ' Assign information of the source bitmap.
 ' Note that BitBlt requires coordinates in pixels.
 hwndSrc% = GetDesktopWindow()
 hSrcDC% = GetDC(hwndSrc%)
 XSrc% = 0: YSrc% = 0
 Call GetWindowRect(hwndSrc%, winSize)
 nWidth% = winSize.right ' Units in pixels.
 nHeight% = winSize.bottom ' Units in pixels.

 ' Assign informate of the destination bitmap.
 hDestDC% = Form1.Picture1.hDC
 x% = 0: Y% = 0

 ' Set global variable TwipsPerPixel and use to set
 ' picture box to same size as screen being grabbed.
 ' If picture box not the same size as picture being
 ' BitBlt'ed to it, it will chop off all that does not
 ' fit in the picture box.
 GetTwipsPerPixel
 Form1.Picture1.Top = 0
 Form1.Picture1.Left = 0
 Form1.Picture1.Width = (nWidth% + 1) * TwipsPerPixel
 Form1.Picture1.Height = (nHeight% + 1) * TwipsPerPixel

 ' Assign the value of the constant SRCOPYY to the Raster operation.
 dwRop& = &HCC0020

 ' Note function call must be on one line:
 Suc% = BitBlt(hDestDC%, x%, Y%, nWidth%, nHeight%,
 hSrcDC%, XSrc%, YSrc%, dwRop&)

 ' Release the DeskTopWindow's hDC to Windows.
 ' Windows may hang if this is not done.
 Dmy% = ReleaseDC(hwndSrc%, hSrcDC%)

 'Make the picture box visible.
 Form1.Picture1.Visible = True
End Sub

Sub GetTwipsPerPixel ()
 ' Set a global variable with the Twips to Pixel ratio.
 Form1.ScaleMode = 3
 NumPix = Form1.ScaleHeight
 Form1.ScaleMode = 1
 TwipsPerPixel = Form1.ScaleHeight / NumPix
End Sub

5. Run the program and click on the form.

6. With the mouse, change the size of the form to see more of the
 picture box. With a little work, you can use this as a "screen
 saver" program.

How to Flood Fill (Paint) in VB using ExtFloodFill Windows API
Article ID: Q71103
Summary:
You can fill an area on a window in Visual Basic through a Windows API
function call. Depending on the type of fill to be performed, you can
use the ExtFloodFill function to achieve the desired effect. This
feature is similar to the paint feature found in painting programs.

This information applies to Microsoft Visual Basic programming system
version 1.0 for Windows.

More Information:
The Windows API ExtFloodFill function call fills an area of the
display surface with the current brush, as shown in the example below.

Code Example

From the VB.EXE Code menu, choose View Code, and enter the following
code (on just one line) for Form1 (using [general] from the Object box
and [declarations] from the Procedure box):

Declare Function ExtFloodFill Lib "GDI" (ByVal hdc%, ByVal i%,
 ByVal i%, ByVal w&, ByVal i%) As Integer

To demonstrate several fill examples, create a picture box called
Picture1. Set the following properties:

AutoSize = TRUE ' Scale picture to size of imported picture.
FillColor = &HFF00FF ' This will be the selected fill color.
FillStyle = Solid ' Necessary to create a fill pattern.
Picture = Chess.bmp ' This should be in your Windows directory.

Create a push button in a location that will not be overlapped by
Picture1. Within the Click event, create the following code:

Sub Command1_Click ()
 ' Make sure that the FillStyle is not transparent.
 ' crColor& specifies the color for the boundary.
 Const FLOODFILLBORDER = 0 ' Fill until crColor& color encountered.
 Const FLOODFILLSURFACE = 1 ' Fill surface until crColor& color not
 ' encountered.
 X% = 1
 Y% = 1
 crColor& = RGB(0, 0, 0)
 wFillType% = FLOODFILLSURFACE
 Suc% = ExtFloodFill(picture1.hDC, X%, Y%, crColor&, wFillType%)
End Sub

When you click on the push button, the black background will change to
the FillColor. The fill area is defined by the color specified by
crColor&. Filling continues outward from (X%,Y%) as long as the color
is encountered.

Now change the related code to represent the following:

 crColor& = RGB(255, 0, 0) 'Color to look for.
 wFillType% = FLOODFILLBORDER
 Suc% = ExtFloodFill(picture1.hDC, X%, Y%, crColor&, wFillType%)

Executing the push button will now fill the area until crColor& is
encountered. In the first example, the fill was performed while the
color was encountered; in the second example, the fill was performed
while the color was NOT encountered. In the last example, everything
is changed except the "floating pawn".

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," by Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

VB CDK: Example of Subclassing a Visual Basic Form
Article ID: Q83806
Summary:
The subclass procedure is a message filter that performs non-default
processing for a few key messages, and passes other messages to a
control's default window procedure using CallWindowProc. The
CallWindowProc function passes a message to Windows, which in turn
sends the message to the target window procedure. The target window
procedure cannot be called directly by the subclass procedure because
the target procedure is exported.

More Information:
The following code example demonstrates how to subclass a form using
the Microsoft Visual Basic for Windows Custom Control Development Kit
(CDK).

This example is developed using the CIRCLE.C source file from the
CIRCLE1 project supplied with the CDK package. Only the file(s) that
have changed from this project are included, and it is assumed that
you have the additional CDK files.

 //=================== CIRCLE1 ==============================
 // CIRCLE.C
 // An example of subclassing a Visual Basic for Windows Form
 //==

#define NOCOMM
#include <windows.h>

#include <vbapi.h>
#include "circle.h"

// Declare the subclass procedure.
LONG FAR PASCAL _export SbClsProc(HWND,USHORT,USHORT,LONG);

// Far pointer to the default procedure.
FARPROC lpfnOldProc = (FARPROC) NULL ;

// Get the controls parent handle(form1).
HWND hParent ;

//--
// Circle Control Procedure
//--
LONG FAR PASCAL _export CircleCtlProc (HCTL hctl, HWND hwnd,
 USHORT msg, USHORT wp, LONG lp)
{
 LONG lResult ;
 switch (msg)
 {
 case WM_CREATE:
 switch (VBGetMode())
 {
 // This will only be processed during run mode.
 case MODE_RUN:

 {
 hParent = GetParent (hwnd) ;
 // Get the address instance to normal proc.
 lpfnOldProc = (FARPROC) GetWindowLong
 (hParent, GWL_WNDPROC) ;
 // Reset the address instance to the new proc.
 SetWindowLong (hParent,
 GWL_WNDPROC, (LONG) SbClsProc) ;
 }
 break ;
 }
 break ;
 }
 // Call the default VB for Windows proc.
 lResult = VBDefControlProc(hctl, hwnd, msg, wp, lp);
 return lResult;

}

LONG FAR PASCAL _export SbClsProc (HWND hwnd, USHORT msg,
 USHORT wp, LONG lp)
{
 switch (msg)
 {
 case WM_SIZE:
 {
 // Place size event here for example...
 }
 break;
 case WM_DESTROY:
 SetWindowLong (hwnd, GWL_WNDPROC,
 (LONG) lpfnOldProc) ;
 break ;
 }
 // Call CircleCtlProc to process any other messages.
 return (CallWindowProc(lpfnOldProc, hwnd, msg, wp, lp));
}

;===
;Circle.def - module definition file for CIRCLE3.VBX control
;===
LIBRARY CIRCLE
EXETYPE WINDOWS
DESCRIPTION 'Visual Basic Circle Custom Control'

CODE MOVEABLE
DATA MOVEABLE SINGLE

HEAPSIZE 1024

EXPORTS
 WEP @1 RESIDENTNAME
 SbClsProc @2
;--

Declare Currency Type to Be Double When Returning from DLL
Article ID: Q72274
Summary:
When using Microsoft Visual Basic for Windows, if you want to pass a
parameter to a dynamic link library (DLL) routine, or receive a
function return value of type Currency from a DLL routine written in
Microsoft C, the parameter or function returned should be declared as a
"double" in the C routine.

Note that C does not support the Basic Currency data type, and
although specifying the parameter as type "double" in C will allow it
to be passed correctly, you will have to write your own C routines to
manipulate the data in the Currency variable.

More Information:
When creating a DLL function that either receives or returns a
Currency data type, it may be useful to include the following
declaration:

 typedef double currency;

Based on this typedef, a sample DLL routine to return a currency value
might be declared as follows:

 currency FAR pascal foo(...);

How to Pass One-Byte Parameters from VB to DLL Routines
Article ID: Q71106
Summary:
Calling some routines in dynamic link libraries (DLLs) requires BYTE
parameters in the argument list. Visual Basic for Windows possesses
no BYTE data type as defined in other languages such as C, which can
create DLLs. To pass a BYTE value correctly to an external FUNCTION
(in a DLL), which requires a BYTE data type, you must pass an integer
data type for the BYTE parameter.

More Information:
Visual BASIC for Windows has the ability to call external code in the
form of dynamic link libraries (DLLs). Some of these libraries require
BYTE parameters in the argument list. An example of this is located in
the KEYBOARD.DRV FUNCTION as defined below:

 FUNCTION GetTempFileName (BYTE cDrive,
 LPSTR lpPrefix,
 WORD wUnique,
 LPSTR lpTempFileName)

GetTempFileName is documented on page 4-217 of the "Microsoft Windows
3.0 Software Development Kit, Reference - Volume 1." In Visual Basic
for Windows, declare the FUNCTION on one line in the main module of
your code:

 DECLARE FUNCTION GetTempFileName LIB "keyboard.drv"
 (BYVAL A%, BYVAL B$, BYVAL C%, BYVAL D$)

Because the architecture of the 80x86 stack is segmented into word
boundaries, the smallest type pushed onto the stack will be a word.
Therefore, both the BYTE and the integer will be pushed onto the stack
in the same manner, and require the same amount of memory. This is the
reason you can use an integer data type for a BYTE data type in these
types of procedure calls.

VB "Cannot Find DLL, Insert in Drive A" Using Shell
Article ID: Q80404
Summary:
When a Visual Basic for Windows application shells to a Microsoft
Windows application that expects to find a dynamic link library (DLL)
in its own directory, Visual Basic for Windows may generate the
following error message and fail to start the application:

 Cannot Find <DLL NAME>, Please Insert in Drive A

This error occurs because the application being shelled to expects to
find the DLL in the current directory, the MS-DOS path, or the Windows
directory. Shelling to an application in code does not change the
current directory, even if you specify the path to the application in
the Shell statement.

One solution is to use Visual Basic for Windows' ChDir statement to
change the current directory to the directory containing the DLL
before attempting to shell to the application. An alternative solution
is to copy the DLL to the Windows directory, or include the path where
the DLL is located in the MS-DOS path.

More Information:
The following is a pseudocode example that shows how to use the ChDir
statement to make the application's directory the current directory. The
C:\APPS directory and the .EXE name MYAPP.EXE are arbitrary names
selected to represent the location of the application being shelled to
and an .EXE name, respectively.

 Sub Form_Click ()
 ChDir "c:\Apps" ' The name of the directory containing
 ' the needed DLL.
 x% = Shell("c:\Apps\MyApp.EXE", 1)
 End Sub

Note: If the application is on a different drive, use the ChDrive
statement first to change drives before using the ChDir statement.

VB "Bad DLL Calling Convention" Means Stack Frame Mismatch
Article ID: Q85108
Summary:
When you call a dynamic link library (DLL) function from Visual Basic
for Windows, the "Bad DLL Calling Convention" error is often caused by
incorrectly omitting or including the ByVal keyword from the Declare
statement or the Call statement. The ByVal keyword affects the size of
data placed on the stack. Visual Basic for Windows checks the change
in the position of the stack pointer to detect this error.

When Visual Basic for Windows generates the run time error "Bad DLL
Calling Convention," the most common cause when calling API functions
is omitting the ByVal keyword from the Declaration of the external
function or from the call itself. It can also occur due to including
the ByVal keyword when the function is expecting a 4 byte pointer to
the parameter instead of the value itself. This changes the size
(number of bytes) of the values placed on the stack, and upon return
from the DLL, Visual Basic for Windows detects the change in the
position of the stack frame and generates the error.

More Information:
There are two calling conventions, or inter-language protocols: the
Pascal/Basic/FORTRAN calling convention, and the C calling convention.
Visual Basic for Windows uses the Pascal calling convention, as do the
Microsoft Window API functions and other Microsoft Basic language
products. Under the Pascal convention, it is the responsibility of the
called procedure to adjust or clean the stack. (In addition, parameters
are pushed onto the stack in order from the leftmost parameter to the
rightmost.) Because the DLL function is responsible for adjusting the
stack based on the type and number of parameters it expects, Visual
Basic for Windows checks the position of the stack pointer upon return
from the function. If the called routine has adjusted the stack to an
unexpected position, then Visual Basic for Windows generates a "Bad
DLL Calling Convention" error. Visual Basic for Windows assumes a
stack position discrepancy because the DLL function uses the C calling
convention. With the C calling convention, the calling program is
responsible for adjusting the stack immediately after the called
routine returns control.

Steps to Reproduce Behavior

Create a simple DLL using Microsoft Quick C for Windows or any
compiler capable of creating Windows DLLs. The following example is in
C and written for Quick C for Windows:

Stacking.C

#include <windows.h>
long far pascal typecheck (long a, float b, short far *c, char far *buff)
{
short retcode;
a = a * 3;
retcode = MessageBox(NULL, "I am in the DLL", "BOX", MB_OK);

return (a);
}

Stacking.DEF

LIBRARY STACKING
EXETYPE WINDOWS
STUB 'winstub.exe'
STACKSIZE 5120
HEAPSIZE 1024
DATA PRELOAD MOVEABLE SINGLE ; ADD THESE TWO LINES
CODE PRELOAD MOVEABLE DISCARDABLE ; TO AVOID WARNINGS.
EXPORTS
 typecheck @1
 WEP @2

Add the following code to the general Declarations module in a Visual
Basic for Windows form:

Declare Function typecheck Lib "d\stacking.dll" (ByVal a As Long,
 ByVal b As Single, c As Integer, ByVal s As String) As Long

Note: The above declaration must be placed on one line.

In the Form_Click event:
Sub Form_Click ()
Dim a As Long ' Explicitly type the variables.
Dim b As Single
Dim c As Integer
Dim s As String
a = 3 ' Initialize the variables.
b = 4.5
c = 6
s = "Hello there! We've been waiting for you!"
Print typecheck(a, b, c, s)
End Sub

Running the program as written above will not generate the error. Now
add the ByVal keyword before the variable named c in the Visual Basic
for Windows Declaration. Run the program. Note that the MessageBox
function pops a box first, and then the error box pops up indicating
that Visual Basic for Windows checks the stack upon return to see if
it has been correctly adjusted. Because the DLL expected a 4-byte
pointer and received a 2-byte value, the stack has not adjusted back
to the initial frame.

As another test, first remove the ByVal keyword before the variable
'c' that you added in the previous test. Declare the parameter 'a As
Any' instead of As Long. Change the type of the variable 'a' in the
Form_Click to Integer. Run the program again. Using As Any turns off
type checking by Visual Basic for Windows. Because the program passed
an integer ByVal instead of the long that the DLL expected, the stack
frame is off and the error is generated.

Reference(s):

"Microsoft BASIC 7.0: Programmer's Guide" for versions 7.0 and 7.1,
pages 423-426

Diagnosing "Error in loading DLL" with LoadLibrary
Article ID: Q90753
Summary:
The error "Error in loading DLL" (code 48) occurs when you call a
dynamic-link library (DLL) procedure and the file specified in the
procedure's Declare statement cannot be loaded. You can use the Microsoft
Windows API function LoadLibrary to find out more specific information
about why a DLL fails to load.

More Information:
The API function LoadLibrary loads a DLL and returns either a handle or
an error code. If the return value is less than 32, it indicates one of
the errors listed below. A return value greater than or equal to 32
indicates success and you should call the FreeLibrary function to unload
the library.

LoadLibrary Error Codes

 0 System was out of memory, executable file was corrupt, or
 relocations were invalid.

 2 File was not found.

 3 Path was not found.

 5 Attempt was made to dynamically link to a task, or there was a
 sharing or network-protection error.

 6 Library required separate data segments for each task.

 8 There was insufficient memory to start the application.

10 Windows version was incorrect.

11 Executable file was invalid. Either it was not a Windows
 application or there was an error in the .EXE image.

12 Application was designed for a different operating system.

13 Application was designed for MS-DOS 4.0.

14 Type of executable file was unknown.

15 Attempt was made to load a real-mode application (developed for
 an earlier version of Windows).

16 Attempt was made to load a second instance of an executable file
 containing multiple data segments that were not marked read-only.

19 Attempt was made to load a compressed executable file. The file
 must be decompressed before it can be loaded.

20 Dynamic-link library (DLL) file was invalid. One of the DLLs
 required to run this application was corrupt.

21 Application requires Microsoft Windows 32-bit extensions.

Steps to Create Example Program

The following program demonstrates how to call LoadLibrary to load a
library and display a resulting error code.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Enter the following code into the general declarations section:

 Declare Function LoadLibrary Lib "kernel" (ByVal f$) As Integer
 Declare Sub FreeLibrary Lib "Kernel" (ByVal h As Integer)

3. Enter the following code into the Form Click event handler:

 Sub Form_Click ()
 Dim hInst As Integer
 ' Enter the name of your DLL file inside the quotes below.
 ' The file WIN.COM is not a valid DLL and demonstrates an error.
 hInst = LoadLibrary("win.com")
 If hInst > 32 Then
 MsgBox "LoadLibrary success"
 FreeLibrary (hInst)
 Else
 MsgBox "LoadLibrary error " + Format$(hInst)
 End If
 End Sub

4. Press the F5 key to run the program, then click on Form1. The program
 displays the error code returned from LoadLibrary. Look up this
 error code in the list of errors above to find an explanation.

How to Invoke Search in Windows Help from VB Program
Article ID: Q86771
Summary:
You can invoke the Search feature of the Windows Help engine from a
Visual Basic program. To do this, call the Windows API function
WinHelp and pass the constant HELP_PARTIALKEY (&H105) as the wCommand
parameter and any string that is a NON-valid topic as the dwData
parameter.

More Information:
Steps to Reproduce Behavior

1. Run Visual Basic, or from the File menu choose New Project (Press
 ALT, F, N) if Visual Basic is already running. Form1 will be
 created by default.

2. In GLOBAL.BAS, add the following code:

 Global Const HELP_PARTIALKEY = &H105

 Declare Function WinHelp Lib "User"(ByVal hWnd As Integer,
 ByVal lpHelpFile As String,
 ByVal wCommand As Integer,
 ByVal dwData As Any) As Integer
 ' Note: the declaration needs to be all on one line.

3. In the Form1 Click event procedure, add the following code:

 Sub Form_Click ()
 DummyVal$ = " "
 Temp% = WinHelp(Form1.hWnd,
 "c:\Windows\winhelp.hlp",
 HELP_PARTIALKEY,
 DummyVal$)
 ' Note: The function call must be all on one line.
 End Sub

4. Press F5 to run this example, then click on the form.

How to Use Windows WNetAddConnection in Visual Basic
Article ID: Q94679
Summary:
Windows version 3.1 provides a new API Call, WNetAddConnection, which will
redirect a local device to a shared resource or network server.

WNetAddConnection requires the name of the local device, the name of the
network resource, and the password necessary to use that resource.

This article explains in detail the arguments and potential error messages
for the Windows version 3.1 WNetAddConnection function call.

More Information:
To use WNetAddConnection within a Visual Basic application, declare the
WNetAddConnection function in the General Declarations Section of your code
window. (In Visual Basic version 1.0 you can also put the declaration in
the Global Module.) Declare the function as follows:

 Declare Function WnetAddConnection% Lib "user" (ByVal lpszNetPath As Any,
 ByVal lpszPassword As Any,
 ByVal lpszLocalName As Any)

Here are definitions for the formal parameters:

 Formal Parameter Definition

 lpszNetPath Points to a null-terminated string specifying the
 shared device or remote server.

 lpszPassword Points to a null-terminated string specifying the
 network password for the given device or server.

 lpszLocalName Points to a null-terminated string specifying the
 local drive or device to be redirected. All
 lpszLocalName strings (such as LPT1) are case
 independent. Only the drive names A through Z
 and device names LPT1 through LPT3 are used.

Below are the possible return values as defined on page 990 of the
Microsoft Windows version 3.1 Programmer's Reference:

 Value (Hex Value) Meaning

 WN_SUCCESS (&H0) Function was successful.
 WN_NOT_SUPPORTED (&H1) Function was not supported.
 WN_OUT_OF_MEMORY (&HB) System was out of memory.
 WN_NET_ERROR (&H2) An error occurred on the network.
 WN_BAD_POINTER (&H4) Pointer was invalid.
 WN_BAD_NETNAME (&H32) Network resource name was invalid.
 WN_BAD_LOCALNAME (&H33) Local device name was invalid.
 WN_BAD_PASSWORD (&H6) Password was invalid.
 WN_ACCESS_DENIED (&H7) A security violation occurred.
 WN_ALREADY_CONNECTED (&H34) Local device was already connected
 to a remote resource.

Below is an example of how to redirect a local device to a network
resource:

1. Start Visual Basic (VB.EXE). Form1 is created by default.

2. Create the following controls with the indicated properties on
 Form1:

 Default Name Caption CtlName

 Text1 (Not applicable) NetPath
 Text2 (Not applicable) Password
 Command1 &Connect Connect
 Drive1 (Not applicable) Drive1

3. Add the following code to the general declaration section of Form1. Note
 that the Declare Function statement appears as four lines for
 readability, but you should enter it as a single line:

 Declare Function WnetAddConnection% Lib "user"
 (ByVal lpszNetPath as Any,
 ByVal lpszPassword as Any,
 ByVal lpszLocalName as Any) ' Put entire Declare on a single line.

 Const WN_Success = &H0
 Const WN_Not_Supported = &H1
 Const WN_Net_Error = &H2
 Const WN_Bad_Pointer = &H4
 Const WN_Bad_NetName = &H32
 Const WN_Bad_Password = &H6
 Const WN_Bad_Localname = &H33
 Const WN_Access_Denied = &H7
 Const WN_Out_Of_Memory = &HB
 Const WN_Already_Connected = &H34

 If you're using Visual Basic version 1.0, add the following to the general
 declarations also:

 Const True = -1
 Const False = 0

4. Add the following code to the procedure Connect_Click:

 Sub Connect_Click ()

 ServerText$ = UCase$(NetPath.Text) + Chr$(0) ' Network resource name
 PasswordText$ = Password.Text + Chr$(0) ' Password for the resource
 driveletter$ = "N:" + Chr$(0) ' Substitute your own drive letter

 Succeed% = WnetAddConnection(ServerText$, PasswordText$, driveletter$)

 If IsSuccess(Succeed%, msg$) = True Then ' Call Function to parse
 ' potential error messages.
 Drive1.Refresh
 NetPath.Text = "" ' Reset the contents following connection
 Else
 MsgBox msg$

 End If

 End Sub

5. Create a Sub within the (Declarations) section of the Code window and
 add the following code:

 Function IsSuccess% (ReturnCode%, ErrMsg$)

 If ReturnCode% = WN_Success Then
 IsSuccess% = True
 Else
 IsSuccess% = False
 Select Case ReturnCode%

 Case WN_Success:
 Drive1.Refresh
 Case WN_Not_Supported:
 msg$ = "Function is not supported."
 Case Wn_Out_Of_Memory:
 msg$ = "Out of Memory."
 Case WN_Net_Error:
 msg$ = "An error occurred on the network."
 Case WN_Bad_Pointer:
 msg$ = "The Pointer was Invalid."
 Case WN_Bad_NetName:
 msg$ = "Invalid Network Resource Name."
 Case WN_Bad_Password:
 msg$ = "The Password was Invalid."
 Case WN_Bad_Localname:
 msg$ = "The local device name was invalid."
 Case WN_Access_Denied:
 msg$ = "A security violation occurred."
 Case WN_Already_Connected:
 msg$ = "The local device was connected to a remote resource."
 Case Else:
 msg$ = "Unrecognized Error " + Str$(ReturnCode%) + "."

 End Select
 End If

 End Function

6. Run the program. Type in the name of a network resource in the edit box
 and press the Connect button. The drive box will be updated with the
 new resource if the call was successful.

How to Invoke GetSystemMetrics Windows API Function from VB
Article ID: Q77061
Summary:
The Windows API GetSystemMetrics function can return useful
information about the Windows system. GetSystemMetrics can be called
directly from Visual Basic for Windows or from the custom Control
Development Kit (CDK) to get system metrics for a particular display
adapter, retrieve information about the Windows debug mode, or
retrieve information about a mouse configuration.

The Visual Basic for Windows CDK is shipped as part of the
Professional Edition of Microsoft Visual Basic versions 2.0 or 3.0.
for Windows.

More Information:
The Windows GetSystemMetrics function call retrieves information
about the system metrics. The system metrics are the widths and
heights of various display elements of the particular window display.
The GetSystemMetrics function can also return flags that indicate
whether the current Windows version is a debugging version, whether a
mouse is present, or whether the meaning of the left and right mouse
button has been changed. System metrics depend on the system display,
and may vary from display to display.

The Visual Basic for Windows declaration for GetSystemMetrics is:

 Declare Function GetSystemMetrics% Lib "user" (ByVal nIndex%)

The value nIndex% specifies the system measurement to be retrieved.
All measurements are in pixels.

The value returned from the GetSystemMetrics% function specifies the
system metrics.

Below is a sample call to determine if the present version of Windows
is a debugging version:

 ScaleMode = 3 ' Select pixel.
 Print "Debugging version : ; GetSystemMetrics(SM_DEBUG).

The constants and meaning for nIndex% are as follows:

 Constant Name(Value) Description
 -------------------- -----------

 SM_CXSCREEN(0)........Width of screen
 SM_CYSCREEN(1)........Height of screen
 SM_CXFRAME(32)........Width of window frame that can be sized
 SM_CYFRAME(33)........Height of window frame that can be sized
 SM_CXVSCROLL(2).......Width of arrow bitmap on vertical scroll bar
 SM_CYVSCROL(20).......Height of arrow bitmap on vertical scroll bar
 SM_CXHSCROLL(21)......Width of arrow bitmap on horizontal scroll bar
 SM_CYHSCROLL(3).......Height of arrow bitmap on horizontal scroll
 bar
 SM_CYCAPTION(4).......Height of caption

 SM_CXBORDER(5)........Width of window frame that cannot be sized
 SM_CYBORDER(6)........Height of window frame that cannot be sized
 SM_CXDLGFRAME(7)......Width of frame when window has WS_DLGFRAME
 style
 SM_CYDLGFRAME(8)......Height of frame when window has WS_DLGFRAME
 style
 SM_CXHTHUMB(10).......Width of thumb on horizontal scroll bar
 SM_CYHTHUMB(9)........Height of thumb on horizontal scroll bar
 SM_CXICON(11).........Width of icon
 SM_CYICON(12).........Height of icon
 SM_CXCURSOR(13).......Width of cursor
 SM_CYCURSOR(14).......Height of cursor
 SM_CYMENU(15).........Height of single-line menu
 SM_CXFULLSCREEN(16)...Width of window client area for full-screen
 window
 SM_CYFULLSCREEN(17)...Height of window client area for full-screen
 window (height - caption)
 SM_CYKANJIWINDOW(18)..Height of Kanji window
 SM_CXMINTRACK(34).....Minimum tracking width of window
 SM_CYMINTRACK(35).....Minimum tracking height of window
 SM_CXMIN(28)..........Minimum width of window
 SM_CYMIN(29)..........Minimum width of window
 SM_CXSIZE(30).........Width of bitmaps contained in the title bar
 SM_CYSIZE(31).........Height of bitmaps contained in the title bar
 SM_MOUSEPRESENT(19)...Mouse present
 SM_DEBUG(22)..........Nonzero if Windows debug version

How VB Can Get Windows Status Information via API Calls
Article ID: Q84556
Summary:
The Visual Basic for Windows program example below demonstrates how
you can obtain system status information similar to the information
displayed in the Windows Program Manager About box. The example
program displays the following information using the Windows API
function(s) indicated:

 - The Windows version number with GetVersion

 - The kind of CPU (80286, 80386, or 80486) and whether a math
 coprocessor is present with GetWinFlags

 - Whether Windows is running in enhanced mode or standard mode with
 GetWinFlags

 - The amount of free memory with GetFreeSpace and GlobalCompact

 - The percentage of free system resources with SystemHeapInfo

Note: The API function SystemHeapInfo is new to Windows version 3.1
and is not available in Windows, version 3.0. All other API functions
listed above are available in both Windows versions 3.0 or 3.1.

More Information:
Steps to Create Example Program

1. Run Visual Basic for Windows, or if Visual Basic for Windows is
 already running, choose New Project from the File menu (press ALT,
 F, N). Form1 will be created by default.

2. From the File menu, choose Add Module (press ALT, F, M). Module 1
 is created by default (In Visual Basic version 1.0 for Windows,
 this step is unnecessary).

3. Enter the following code into the general declarations section of a
 code module (In Visual Basic version 1.0 for Windows, place the
 following in the Global module):

' Constants for GetWinFlags.
Global Const WF_CPU286 = &H2
Global Const WF_CPU386 = &H4
Global Const WF_CPU486 = &H8
Global Const WF_80x87 = &H400
Global Const WF_STANDARD = &H10
Global Const WF_ENHANCED = &H20

' Type for SystemHeapInfo.
Type SYSHEAPINFO
 dwSize As Long
 wUserFreePercent As Integer
 wGDIFreePercent As Integer
 hUserSegment As Integer

 hGDISegment As Integer
End Type

Declare Function GetVersion Lib "Kernel" () As Integer
Declare Function GetWinFlags Lib "Kernel" () As Long
Declare Function GetFreeSpace Lib "Kernel" (ByVal wFlags As Integer)
 As Long
Declare Function GlobalCompact Lib "Kernel" (ByVal dwMinFree As Long)
 As Long
Declare Function SystemHeapInfo Lib "toolhelp.dll" (shi As
 SYSHEAPINFO) As Integer
' Each Declare statement above must appear on a single line.

4. Enter the following code into the Form_Load procedure of Form1:

Sub Form_Load ()
 Dim msg As String ' Status information.
 Dim nl As String ' New-line.
 nl = Chr$(13) + Chr$(10) ' New-line.

 Show
 mp% = MousePointer
 MousePointer = 11 ' Hourglass.

 ' Get operating system version.
 ver% = GetVersion()
 ver_major$ = Format$(ver% And &HFF)
 ver_minor$ = Format$(ver% \ &H100, "00")
 msg = msg + "Microsoft Windows version "
 msg = msg + ver_major$ + "." + ver_minor$ + nl

 ' Get CPU kind and operating mode.
 msg = msg + "CPU: "
 status& = GetWinFlags()
 If status& And WF_CPU286 Then msg = msg + "80286"
 If status& And WF_CPU386 Then msg = msg + "80386"
 If status& And WF_CPU486 Then msg = msg + "80486"
 If status& And WF_80x87 Then msg = msg + " with 80x87"
 msg = msg + nl
 msg = msg + "Mode: "
 If status& And WF_STANDARD Then msg = msg + "Standard" + nl
 If status& And WF_ENHANCED Then msg = msg + "Enhanced" + nl

 ' Get free memory.
 memory& = GetFreeSpace(0)
 msg = msg + "Memory free: "
 msg = msg + Format$(memory& \ 1024, "###,###,###") + "K" + nl
 memory& = GlobalCompact(&HFFFFFFFF)
 msg = msg + "Largest free block: "
 msg = msg + Format$(memory& \ 1024, "###,###,###") + "K" + nl

 ' Get free system resources.
 ' The API SystemHeapInfo became available in Windows version 3.1.
 msg = msg + "System resources: "
 If ver% >= &H310 Then
 Dim shi As SYSHEAPINFO
 shi.dwSize = Len(shi)

 If SystemHeapInfo(shi) Then
 If shi.wUserFreePercent < shi.wGDIFreePercent Then
 msg = msg + Format$(shi.wUserFreePercent) + "%"
 Else
 msg = msg + Format$(shi.wGDIFreePercent) + "%"
 End If
 End If
 Else
 msg = msg + "n/a"
 End If

 MsgBox msg, 0, "About " + Caption
 MousePointer = mp%
End Sub

5. Press the F5 key to run the program.

How to Add a Horizontal Scroll Bar to Visual Basic List Box
Article ID: Q80190
Summary:
The normal list box that comes with Visual Basic for Windows does not
have a horizontal scroll bar. This can be a problem when the item in a
list box extends past the boundaries of the list box. To add a horizontal
scroll bar to the control, you can call the Windows API SendMessage
function with the LB_SETHORIZONTALEXTENT (WM_USER + 21) constant.

More Information:
To add a horizontal scroll bar to a list box, perform a SendMessage
function call with the LB_SETHORIZONTALEXTENT constant.

This message sets the width in pixels by which a list box can scroll
horizontally. If the size of the list box is smaller than this value,
the horizontal scroll bar will horizontally scroll items in the list
box. If the list box is large as or larger than this value, the
horizontal scroll bar is disabled.

The parameters for the SendMessage function are as follows:

SendMessage(hWnd%, LB_SETHORIZONTALEXTENT, wParam%, lParam&)
--

 hWnd% - Handle to the list box
 wParam% - Specifies the number of pixels by which the list
 box can be scrolled
 lParam% - Is not used

To make a program example that will only allow the user to scroll a
specified distance, create a form with the following controls:

 Control Name (use CtlName in Visual Basic 1.0 for Windows)
 ------- --

 Command button Command1
 List box List1

Add the following code in the described locations in your code:

'======== General Declarations for Form1 ==================
Declare Function SendMessage& Lib "user" (
 ByVal hWnd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)
Declare Function GetFocus Lib "User" () as Integer

'======== Form1 =======================
'Note: All commands must appear on only one line.

Sub Command1_Click ()
 Const LB_SETHORIZONTALEXTENT = &H400 + 21
 Const NUL = &O0
 ' wParam is in PIXEL(3).

 ScaleMode = 3

 ' Get the handle.
 List1.SetFocus
 ListHwnd% = GetFocus()

 ' This string will show up initially.
 ListString1$ = "Derek is a great "

 ' You can scroll to see this portion.
 ListString2$ = "little boy "

 ' You cannot scroll to see this string.
 ListString3$ = "but can be a problem sometimes"

 ExtraPixels% = TextWidth(ListString2$)
 BoxWidth% = TextWidth(ListString1$)

 ' Resize the text box.
 List1.Move List1.Left, List1.Top, BoxWidth%

 ' Add the scroll bar.
 X& = SendMessage(ListHwnd%, LB_SETHORIZONTALEXTENT,
 BoxWidth% + ExtraPixels%, NUL)

 ' Add the example string to the list box.
 List1.AddItem ListString1$ + ListString2$ + ListString3$
End Sub

How to Create a Flashing Title Bar on a Visual Basic Form
Article ID: Q71280
Summary:
When calling a Windows API function call, you can create a flashing
window title bar on the present form or any other form for which you
know the handle.

More Information:
Visual Basic for Windows has the ability to flash the title bar on any
other form if you can get the handle to that form. The function
FlashWindow flashes the specified window once. Flashing a window means
changing the appearance of its caption bar, as if the window were
changing from inactive to active status, or vice versa. (An inactive
caption bar changes to an active caption bar; an active caption bar
changes to an inactive caption bar.)

Typically, a window is flashed to inform the user that the window
requires attention when that window does not currently have the input
focus.

The function FlashWindow is defined as

 FlashWindow(hWnd%, bInvert%)

where:

 hWnd% - Identifies the window to be flashed. The window can be
 either open or iconic.
 bInvert% - Specifies whether the window is to be flashed or
 returned to its original state. The window is flashed
 from one state to the other if the bInvert parameter is
 nonzero. If the bInvert parameter is zero, the window
 is returned to its original state (either active or
 inactive).

FlashWindow returns a value that specifies the window's state before
the call to the FlashWindow function. It is nonzero if the window was
active before the call; otherwise, it is zero.

The following section describes how to flash a form while that form
does not have the focus:

1. Create two forms called Form1 and Form2.

2. On Form1, create a timer control and set the Interval Property to
 1000. Also set the Enabled Property to FALSE.

3. Within the general-declarations section of Form1, declare the
 FlashWindow function as follows:

 ' The following Declare statement must appear on one line.
 Declare Function FlashWindow% Lib "user" (ByVal hWnd%,
 ByVal bInvert%)

4. In Visual Basic version 1.0 for Windows, define the following

 constants in the declarations section:

 Const TRUE = -1
 Const FALSE = 0

5. In the Form_Load event procedure, add the following code:

 Sub Form_Load ()
 Form2.Show
 End Sub

6. In the Sub Timer1_Timer () procedure of Form1, add the following
 code:

 Sub Timer1_Timer ()
 Succ% = FlashWindow(Form1.hWnd, 1)
 End Sub

7. In the GotFocus event procedure of Form1, create the following code:

 Sub Form_GotFocus ()
 Timer1.Enabled = False
 End Sub

8. In the Click event for Form2, add the following code:

 Sub Form_Click ()
 Form1.Timer1.Enabled = True
 End Sub

9. Run the program. Form1 will be in the foreground with Form2 in the
 background. Click anywhere on Form2; Form1's Caption Bar will flash
 until you click on Form1.

How to Set Windows System Colors Using API and Visual Basic
Article ID: Q82158
Summary:
This article describes how to use the GetSysColor and SetSysColors API
functions to set the system colors for various parts of the display in
Microsoft Windows. This allows you to change the Windows display
programmatically, instead of using the Windows Control Panel.

More Information:
Windows maintains an internal array of 19 color values that it uses to
paint the different parts of the Windows display. Changing any of
these values will affect all windows for all applications running
under Windows. Note that the SetSysColors routine only changes the
internal system list. This means that any changes made using
SetSysColors will only be valid for the current Windows session. To
make these changes permanent, you need to change the [COLORS] section
of the Windows initialization file, WIN.INI.

To use the GetSysColor and SetSysColors functions within a Visual
Basic for Window application, you must first declare them in the
Declarations section of your Code window.

Declare the Function statement as follows:

Declare Function GetSysColor Lib "User" (ByVal nIndex%) As Long

Declare Sub SetSysColors Lib "User" (ByVal nChanges%,
 lpSysColor%,
 lpColorValues&)

Note: Each Declare statement above must be written on one line.

The parameters are defined as follows:

Parameter Definition
--------- ----------

nIndex% Specifies the display element whose color
 is to be retrieved. See the list below to
 find the index value for the corresponding
 display element.

nChanges% Specifies the number of system colors to
 be changed.

lpSysColor% Identifies the array of integer indexes
 that specify the elements to be changed.

lpColorValues& Identifies the array of long integers that
 contain the new RGB color values for each
 element to be changed.

The following system color indexes are defined using the predefined
constants found in the WINDOWS.H file supplied with the Microsoft
Windows Software Development Kit (SDK). The corresponding value is

the value placed in the lpSysColor% array.

List of System Color Indexes

Windows.H Definition Value Description
-------------------- ----- -----------

COLOR_SCROLLBAR 0 Scroll-bar gray area
COLOR_BACKGROUND 1 Desktop
COLOR_ACTIVECAPTION 2 Active window caption
COLOR_INACTIVECAPTION 3 Inactive window caption
COLOR_MENU 4 Menu background
COLOR_WINDOW 5 Window background
COLOR_WINDOWFRAME 6 Window frame
COLOR_MENUTEXT 7 Text in menus
COLOR_WINDOWTEXT 8 Text in windows
COLOR_CAPTIONTEXT 9 Text in caption, size box,
 scroll bar arrow box
COLOR_ACTIVEBORDER 10 Active window border
COLOR_INACTIVEBORDER 11 Inactive window border
COLOR_APPWORKSPACE 12 Background color of multiple
 document interface (MDI)
 applications
COLOR_HIGHLIGHT 13 Items selected item in a
 control
COLOR_HIGHLIGHTTEXT 14 Text of item selected in a
 control
COLOR_BTNFACE 15 Face shading on push button
COLOR_BTNSHADOW 16 Edge shading on push button
COLOR_GRAYTEXT 17 Grayed (disabled) text. This
 color is set to 0 if the
 current display driver does not
 support a solid gray color.
COLOR_BTNTEXT 18 Text on push buttons

The following is an example of how to set the system colors for
different parts of the Windows display:

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Create the following controls for Form1:

 Control Name Property Setting
 ------- ------- ----------------

 Command button Command1 Caption = "Change all Colors"
 Command button Command2 Caption = "Change selected Colors"

 (In Visual Basic version 1.0 for Windows, set the CtlName
 Property for the above objects instead of the Name property.)

3. Add the following code to the general Declarations section of
 Form1:

 Declare Function GetSysColor Lib "User" (ByVal nIndex%) As Long

 Declare Sub SetSysColors Lib "User" (ByVal nChanges%,
 lpSysColor%,
 lpColorValues&)
 ' Note: The above declaration must be on one line.

 Const COLOR_BACKGROUND = 1
 Const COLOR_ACTIVECAPTION = 2
 Const COLOR_WINDOWFRAME = 6

 Dim SavedColors(18) As Long

4. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()

 ' ** Save current system colors.
 For i% = 0 To 18
 SavedColors(i%) = GetSysColor(i%)
 Next i%

 End Sub

5. Add the following code to the Form_Unload event procedure of Form1:

 Sub Form1_Unload ()

 ' ** Restore system colors.
 ReDim IndexArray(18) As Integer
 For i% = 0 To 18
 IndexArray(i%) = i%
 Next i%
 SetSysColors 19, IndexArray(0), SavedColors(0)

 End Sub

6. Add the following code to the Command1_Click event procedure of
 Form1:

 Sub Command1_Click ()

 ' ** Change all display elements.
 ReDim NewColors(18) As Long
 ReDim IndexArray(18) As Integer
 For i% = 0 to 18
 NewColors(i%) = QBColor(Int(16 * Rnd))
 IndexArray(i%) = i%
 Next i%
 SetSysColors 19, IndexArray(0), NewColors(0)

 End Sub

7. Add the following code to the Command2_Click event procedure of
 Form1:

 Sub Command2_Click ()

 ' ** Change desktop, window frames, and active caption.
 ReDim NewColors(18) As Long
 ReDim IndexArray(18) As Integer
 For i% = 0 to 18
 NewColors(i%) = QBColor(Int(16 * Rnd))
 IndexArray(i%) = i%
 Next i%
 SetSysColors 19, IndexArray(0), NewColors(0)

 End Sub

8. From the Run menu, choose Start, or press the F5 key, to run the
 program.

Choosing the Change All Colors button will cause all the different
parts of the Windows display to be assigned a randomly generated
color. Choosing the Change Selected Elements button will cause only
the desktop, active window caption, and window frames to be assigned a
random color. To restore the original system colors, double-click the
Control-menu box to end the application.

Creating TOPMOST or "Floating" Window in Visual Basic
Article ID: Q84251
Summary:
You can create a "floating" window such as that used for the Microsoft
Windows version 3.1 Clock by using the SetWindowPos Windows API call.

More Information:
A floating (or TOPMOST) window is a window that remains constantly
above all other windows, even when it is not active. Examples of
floating windows are the Find dialog box in WRITE.EXE, and CLOCK.EXE
(when Always on Top is selected from the Control menu).

There are two methods to produce windows that "hover" or "float," one
of which is possible in Visual Basic for Windows. This method is
described below:

Call SetWindowPos, specifying an existing non-topmost window and
HWND_TOPMOST as the value for the second parameter (hwndInsertAfter):

Use the following declarations:

Declare Function SetWindowPos Lib "user" (ByVal h%, ByVal hb%,
 ByVal x%, ByVal y%, ByVal cx%, ByVal cy%, ByVal f%) As Integer
' The above Declare statement must appear on one line.

Global Const SWP_NOMOVE = 2
Global Const SWP_NOSIZE = 1
Global Const FLAGS = SWP_NOMOVE Or SWP_NOSIZE
Global Const HWND_TOPMOST = -1
Global Const HWND_NOTOPMOST = -2

To set the form XXXX to TOPMOST, use the following code:

success% = SetWindowPos (XXXX.hWnd, HWND_TOPMOST, 0, 0, 0, 0, FLAGS)
REM success% <> 0 When Successful

To reset the form XXXX to NON-TOPMOST, use the following code:

success% = SetWindowPos (XXXX.hWnd, HWND_NOTOPMOST, 0, 0, 0, 0, FLAGS)
REM success% <> 0 When Successful

Note: This attribute was introduced in Windows, version 3.1, so
remember to make a GetVersion() API call to determine whether the
application is running under Windows, version 3.1.

Example of How to Read and Write Visual Basic Arrays to Disk
Article ID: Q77317
Summary:
Microsoft Visual Basic for Windows does not provide a command to
read or write an entire array all at once to a disk file. Using Visual
Basic for Windows alone, you must transfer each element of the array
to the disk. However, using two Windows API functions, _lread and
_lwrite, you can save an entire array to disk in one statement with
arrays less then 64K, or you can use _hread and _hwrite for arrays
greater than 64k. The example below demonstrates how to use the
_lread and _lwrite functions with Visual Basic for Windows.

More Information:
The ReadArray and WriteArray functions provided below allow you to
read and write a Visual Basic for Windows array to or from a disk file.
These functions will work with arrays of Integers, Longs, Singles,
Doubles, Currency, and user-defined types, but not with
variable-length strings (as an array or as a member of a user-defined
type) or variants. These functions can work with fixed length strings
when the strings are a member of a user-defined type. Although,
_lread and _lwrite do not handle the huge arrays supported by
Visual Basic versions 2.0 and later for Windows, the _hread and
_hwrite Windows API functions can read and write huge arrays to
and from disk.

The two functions, ReadArray and WriteArray, require two parameters:
the array to be transferred, and the Visual Basic for Windows file
number to be written to or read from. The functions also return the
number of bytes transferred, or -1 when an error occurs with the API
function. The file number is the Visual Basic for Windows file number
of a file that has already been opened with the Open statement, and
will be used in the Visual Basic for Windows Close statement.

The following function examples use a user-defined type named "Mytype".
An example of this type is as follows:

 Type MyType
 Field1 As String * 10
 Field2 As Integer
 Field3 As Long
 Field4 As Single
 Field5 As Double
 Field6 As Currency
 End Type

Declarations of API Functions

DefInt A-Z
' Each Declare statement must appear on one line:
Declare Function fWrite Lib "kernel" Alias "_lwrite" (ByVal hFile,
 lpBuff As Any, ByVal wBytes)
Declare Function fRead Lib "kernel" Alias "_lread" (ByVal hFile,
 lpBuff As Any, ByVal wBytes)

Function: ReadArray

Function ReadArray (An_Array() As MyType, VBFileNumber As Integer) As Long

 Dim ArraySize As Long
 Dim DOSFileHandle As Integer
 Dim ReadFromDisk As Integer

 ArraySize = Abs(UBound(An_Array) - LBound(An_Array)) + 1
 ArraySize = ArraySize * Len(An_Array(LBound(An_Array)))

 If ArraySize > 32767 Then
 ReadFromDisk = ArraySize - 2 ^ 15
 ReadFromDisk = WriteToDisk * -1
 Else
 ReadFromDisk = ArraySize
 End If

 DOSFileHandle = FileAttr(VBFileNumber, 2)
 ApiErr=fRead(DOSFileHandle,An_Array(LBound(An_Array)),ReadFromDisk)

 ReadArray = ApiErr
End Function

Function: WriteArray

Function WriteArray (An_Array() As MyType, VBFileNumber As Integer) As Long

 Dim ArraySize As Long
 Dim DOSFileHandle As Integer
 Dim WriteToDisk As Integer

 ArraySize = UBound(An_Array) - LBound(An_Array) + 1
 ArraySize = ArraySize * Len(An_Array(LBound(An_Array)))

 If ArraySize > 32767 Then
 WriteToDisk = ArraySize - 2 ^ 15
 WriteToDisk = WriteToDisk * -1
 Else
 WriteToDisk = ArraySize
 End If

 DOSFileHandle = FileAttr(VBFileNumber, 2)
 ApiErr=fWrite(DOSFileHandle,An_Array(LBound(An_Array)),WriteToDisk)

 WriteArray = ApiErr
End Function

The following are the function header changes to allow the ReadArray
and WriteArray functions to work with different data types (Integer,
Long, Single, Double, Currency, and user-defined type). Each Function
statement must be on a single line:

Function ReadArray (An_Array() As Integer, VBFileNumber As Integer)
 As Long

Function WriteArray (An_Array() As Integer, VBFileNumber As Integer)
 As Long

Function ReadArray (An_Array() As Long, VBFileNumber As Integer) As
 Long
Function WriteArray (An_Array() As Long, VBFileNumber As Integer) As
 Long

Function ReadArray (An_Array() As Single, VBFileNumber As Integer) As
 Long
Function WriteArray (An_Array() As Single, VBFileNumber As Integer) As
 Long

Function ReadArray (An_Array() As Double, VBFileNumber As Integer) As
 Long
Function WriteArray (An_Array() As Double, VBFileNumber As Integer) As
 Long

Function ReadArray (An_Array() As Currency, VBFileNumber As Integer)
 As Long
Function WriteArray (An_Array() As Currency, VBFileNumber As Integer)
 As Long

How to Determine Display State of a VB Form, Modal or Modeless
Article ID: Q77316
Summary:
The Show method in the Visual Basic for Windows language can display a
form either as modal or modeless. No direct support exists in the
language to determine the display state of the form without maintaining
global variables that contain the display state of the form. However,
the Windows API function GetWindowLong can be used to check the display
state of the form.

More Information:
When Visual Basic for Windows displays a modal form (.Show 1), all other
forms will be modified to contain the Window Style WS_DISABLED. The
Windows API function GetWindowLong can be used to return the Window
Style of another form to check for the WS_DISABLED style.

The following code demonstrates this process:

Add the following to the General Declarations section of Form1 and
Form2:

DefInt A-Z
Global Const GWL_STYLE = (-16)
Global Const WS_DISABLED = &H8000000
Declare Function GetWindowLong& Lib "user" (ByVal hWnd, ByVal nIndex)

Form1.Frm

Sub Form_Click ()
 ' Flip between "Modeless" and "Modal" display states.
 Static ShowStyle
 Unload form2
 form2.Show ShowStyle
 ShowStyle = (ShowStyle + 1) Mod 2
End Sub

Form2.Frm

Sub Form_Paint ()
 ' Get the Window Style for Form1.
 WinStyle& = GetWindowLong(Form1.hWnd, GWL_STYLE)
 If WinStyle& And WS_DISABLED Then
 ' The WS_DISABLED style is set on "FORM1" when "FORM2"
 ' is displayed with the Modal flag (Show 1).
 Print "Modal - Show 1"
 Else
 ' The WS_DISABLED style is not set on "FORM1" when "FORM2"
 ' is displayed with the Modeless flag (Show or Show 0).
 Print "Modeless - Show"
 End If
End Sub

How to Determine the Number of VB Applications Running at Once
Article ID: Q84836
Summary:
To determine the total number of Microsoft Visual Basic for Windows
applications running at any given time, you can use the Microsoft
Windows API functions GetModuleHandle and GetModuleUsage.

More Information:
The following code fragment demonstrates a technique to find the total
number of Visual Basic for Windows applications currently executing by
determining the number of instances of the Visual Basic run-time module
(VBRUN100.DLL) with the Windows API functions GetModuleHandle and
GetModuleUsage. Remember that Visual Basic for Windows itself is not
counted; only applications created with Visual Basic for Windows are
included.

Steps to Create Example Program

1. Start several Visual Basic for Windows applications and leave them
 running.

2. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

3. Enter the following Windows API function declarations into the
 General Declarations section of Form1:

 Declare Function GetModuleUsage% Lib "kernel" (ByVal hModule%)
 Declare Function GetModuleHandle% Lib "kernel" (ByVal FileName$)

4. Place a command button (Command1) on Form1. Double-click that
 button to open the Code window. In the Command1_Click procedure,
 add the following code:

 Sub Command1_Click ()
 msg$ = "Number of executing VB Apps: "

 hModule% = GetModuleHandle("VBRUN300.DLL")
 ' For Visual Basic versions 1.0 and 2.0 for Windows, use
 ' VBRun100.DLL and VBRun2.00.DLL respectively.
 nInstances% = GetModuleUsage(hModule%)

 msg$ = msg$ + Str$(nInstances%)
 MsgBox msg$
 End Sub

5. From the File menu, choose Make EXE File.

6. Press the F5 key to run the file.

7. Click on the command button.

A message box displays the total number of executing Visual Basic

for Windows applications.

Note: This program itself will count as one application.

How to Kill an Application with System Menu Using Visual Basic
Article ID: Q80186
Summary:
Visual Basic for Windows can use the Windows API SendMessage
function to close any active window that has a system menu (referred to
as control box within Visual Basic for Windows) with the Close option.

More Information:
You can use the Windows API SendMessage function to post a
message to any window in the environment as long as the handle to the
window is known. You can use the API FindWindow function to determine
the handle associated with the window the user wants to close.

To create a program to close an occurrence of the Windows version 3.0
Calculator program, do the following:

1. Create a form called Form1.

2. Create two command buttons called Command1 and Command2.

3. Within the Command1 Click event, add the following code:

 Sub Command1_Click()
 X% = Shell("Calc.exe")
 End Sub

4. Within the Command2 Click event, add the following code:

 Sub Command2_Click()
 Const NILL = 0&
 Const WM_SYSCOMMAND = &H112
 Const SC_CLOSE = &HF060

 lpClassName$ = "SciCalc"
 lpCaption$ = "Calculator"

 '* Determine the handle to the Calculator window.
 Handle = FindWindow(lpClassName$, lpCaption$)

 '* Post a message to Calc to end it's existence.
 X& = SendMessage(Handle, WM_SYSCOMMAND, SC_CLOSE, NILL)

 End Sub

5. In the Declarations section, declare the following two API functions:

 '* NOTE: Each Declare statement must appear on one line.
 Declare Function FindWindow% Lib "user" (
 ByVal lpClassName As Any,
 ByVal lpCaption As Any)
 Declare Function SendMessage& Lib "user" (
 ByVal hwnd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam As Long)

6. Run the program. A click on Command1 will bring up an instance of
 the Calculator program. A click on Command2 will close the window.

How to Set Focus to First VB .EXE Instance When Second Invoked
Article ID: Q84585
Summary:
This article describes how to set the focus to the first instance of a
Visual Basic for Windows .EXE application when you attempt to invoke
a second instance of the same application. This feature prevents
multiple copies (instances) of the same program from running in memory.

More Information:
An example of this behavior is shown by the File Manager shipped with
Windows. If the File Manager is already running and you try to start a
second instance of it, the focus is simply shifted to the copy that is
already running so that another occurrence is not started. By using the
following function, you can achieve the same effect in a Visual Basic
for Windows application.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Place a command button (Command1) on Form1. Set the Caption
 property to END. In the Command1_Click event, put the keyword END
 as the only line of code.

3. Put the following declarations in either the global module or the
 general Declarations section of Form1. There are three
 declarations, and each must be on one line.

Declare Function FindWindow% Lib "user" (ByVal lpClassName As Any,
 ByVal lpCaption As Any)
Declare Function ShowWindow% Lib "User" (ByVal Handle As Integer,
 ByVal Cmd As Integer)
Declare Function SFocus% Lib "User" Alias "SetFocus" (ByVal Handle As
 Integer)

4. Put the following code in the Form1.Load event:

 Title$ = "Test Program"
 X% = CheckUnique(Title$)
 If X% = 0 Then
 End
 End If
 Form1.Caption= Title$

5. Create the following general function:

 Function CheckUnique (FormName As String) As Integer
 Dim Handle As Integer
 Handle = FindWindow(0&, FormName)

 If Handle = 0 Then
 ' -1 is a true value.
 CheckUnique = -1

 Else
 X% = ShowWindow(Handle, 1)
 X% = SFocus(Handle)
 ' 0 is a false value.
 CheckUnique = 0
 End If
 End Function

6. From the File menu, choose Make EXE File.

7. Press the F5 key to run the program.

If you try to launch a second occurrence of the program, it will
simply give the focus to the first. If you try to launch a second
occurrence while the first occurrence is minimized, it will restore
the first occurrence and give it the focus. A second occurrence will
not be loaded into Windows.

How to Create a System-Modal Program/Window in Visual Basic
Article ID: Q72674
Summary:
From a Microsoft Visual Basic for Windows program, you can disable the
ability to switch to other Windows programs by calling the Windows API
function SetSysModalWindow.

More Information:
Microsoft Windows is designed so that the user can switch between
applications without terminating one program to run another program.
There may be times when the program needs to take control of the
entire environment and run from only one window, restricting the user
from switching to any other application. An example of this is a
simple security system, or a time-critical application that may need
to go uninterrupted for long periods of time.

Passing the handle to the window through the argument of
SetSysModalWindow will limit the user to that particular window. This
will not allow the user to move to any other applications with the
mouse or use ALT+ESC or CTRL+ESC to bring up the Task Manager. You can
even remove the system menu if you do not want the user to exit
through the ALT+F4 (Close) combination.

All child windows that are created by the system-modal window become
system-modal windows. When the original window becomes active again,
it is system-modal. To end the system-modal state, destroy the
original system-modal window.

Care must be taken when using the SetSysModalWindow API from within
the Visual Basic for Windows programming environment. Pressing
CTRL+BREAK to get to the [break] mode leaves your modal form with no
way to exit unless you restart your system. When using the
SetSysModalWindow within the environment, be sure to exit your
application by destroying the window with either the ALT+F4 in the
system menu, or by some other means from within your running program.

To use the SetSysModalWindow API function, declare the API call in
your global section, as follows:

 Declare Function SetSysModalWindow Lib "User" (ByVal hwnd%) As Integer

At an appropriate place in your code, add the following:

 Success% = SetSysModalWindow(hwnd)

Once this line is executed, your window will be the only window that
can get focus until that window is destroyed.

Note: Because Visual Basic for Windows was not designed with system modal
capabilities in mind, using a MsgBox, InputBox, or Form.Show of
another form from a system modal window will not work correctly. If
you want to show another window from a system modal form, use another
Visual Basic for Windows form and call SetSysModalWindow for this second
form also, so that it becomes the system modal window. When the second
form is unloaded, the original system modal form will again become the

system modal window. Note that because the window(s) shown from a
system modal window must also call SetSysModalWindow, and since
MsgBox/InputBox windows cannot have associated code, you should not
call the MsgBox or InputBox functions from a system modal window.

How to Access Windows Initialization Files Within Visual Basic
Article ID: Q75639
Summary:
There are several Microsoft Windows API functions that can manipulate
information within a Windows initialization file. GetProfileInt,
GetPrivateProfileInt, GetProfileString, and GetPrivateProfileString
allow a Microsoft Visual Basic for Windows program to retrieve
information from a Windows initialization file based on an application
name and key name. WritePrivateProfileString and WriteProfileString are
used to create/update items within Windows initialization files.

More Information:
Windows initialization files contain information that defines your
Windows environment. Examples of Windows initialization files are
WIN.INI and SYSTEM.INI, which are commonly found in the C:\WINDOWS
subdirectory. Microsoft Windows and applications for Microsoft Windows
can use the information stored in these files to configure themselves
to meet your needs and preferences. For a description of initialization
files, review the WIN.INI file that comes with Microsoft Windows.

An initialization file is composed of at least an application name and
a key name. The contents of Windows initialization files have the
following format:

 [Application name]
 keyname=value

There are four API function calls (GetProfileInt, GetPrivateProfileInt,
GetProfileString, and GetPrivateProfileString) that you can use to
retrieve information from these files. The particular function to call
depends on whether you want to obtain string or numerical data.

The GetProfile family of API functions is used when you want to get
information from the standard WIN.INI file that is used by Windows.
The WIN.INI file should be part of your Windows subdirectory
(C:\WINDOWS). The GetPrivateProfile family of API functions is used
to retrieve information from any initialization file that you specify.
The formal arguments accepted by these API functions are described
farther below.

The WriteProfileString and WritePrivateProfileString functions write
information to Windows initialization files. WriteProfileString is
used to modify the Windows initialization file, WIN.INI.
WritePrivateProfileString is used to modify any initialization file
that you specify. These functions search the initialization file for
the key name under the application name. If there is no match, the
function adds to the user profile a new string entry containing the
key name and the key value specified. If the key name is found, it will
replace the key value with the new value specified.

To declare these API functions within your program, include the
following Declare statements in the global module or the General
Declarations section of a Visual Basic for Windows form:

Declare Function GetProfileInt% Lib "Kernel"(ByVal lpAppName$,

 ByVal lpKeyName$, ByVal nDefault%)

Declare Function GetProfileString% Lib "Kernel" (ByVal lpAppName$,
 ByVal lpKeyName$, ByVal lpDefault$, ByVal lpReturnedString$,
 ByVal nSize%)

Declare Function WriteProfileString% Lib "Kernel"(ByVal lpAppName$,
 ByVal lpKeyName$, ByVal lpString$)

Declare Function GetPrivateProfileInt% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal nDefault%,
 ByVal lpFileName$)

Declare Function GetPrivateProfileString% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal lpDefault$,
 ByVal lpReturnedString$, ByVal nSize%, ByVal lpFileName$)

Declare Function WritePrivateProfileString% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal lpString$,
 ByVal lpFileName$)

Note: Each Declare statement must be on a single line.

The formal arguments to these functions are described as follows:

Argument Description
-------- -----------

lpAppName$ Name of a Windows application that appears in the
 initialization file.

lpKeyName$ Key name that appears in the initialization file.

nDefault$ Specifies the default value for the given key if the
 key cannot be found in the initialization file.

lpFileName$ Points to a string that names the initialization
 file. If lpFileName does not contain a path to the
 file, Windows searches for the file in the Windows
 directory.

lpDefault$ Specifies the default value for the given key if the
 key cannot be found in the initialization file.

lpReturnedString$ Specifies the buffer that receives the character
 string.

nSize% Specifies the maximum number of characters (including
 the last null character) to be copied to the buffer.

lpString$ Specifies the string that contains the new key value.

Below are the steps necessary to create a Visual Basic for Windows
sample program that uses GetPrivateProfileString to read from an
initialization file that you create. The program, based on information
in the initialization file you created, shells out to the Calculator
program (CALC.EXE) that comes with Windows. The sample program

demonstrates how to use GetPrivateProfileString to get information
from any initialization file.

1. Create an initialization file from a text editor (for example,
 you can use the Notepad program supplied with Windows) and save the
 file under the name of "NET.INI". Type in the following as the
 contents of the initialization file (NET.INI):

 [NetPaths]
 WordProcessor=C:\WINWORD\WINWORD.EXE
 Calculator=C:\WINDOWS\CALC.EXE

 Note: If CALC.EXE is not in the C:\WINDOWS subdirectory (as
 indicated after "Calculator=" above), replace C:\WINDOWS\CALC.EXE
 with the correct path.

2. Save the initialization file (NET.INI) to the root directory of
 your hard drive (such as C:\) and exit the text editor.

3. Start Visual Basic for Windows.

4. Create a form called Form1.

5. Create a push button called Command1.

6. Within the Global Declaration section of Form1, add the following
 Windows API function declarations. Note that the Declare statement
 below must appear on a single line.

 Declare Function GetPrivateProfileString% Lib "kernel"
 (ByVal lpAppName$, ByVal lpKeyName$,ByVal lpDefault$,
 ByVal lpReturnString$,ByVal nSize%, ByVal lpFileName$)

7. Within the (Command1) push button's click event add the following
 code:

Sub Command1_Click ()
 '* If an error occurs during SHELL statement then handle the error.
 On Error GoTo FileError

 '* Compare these to the NET.INI file that you created in step 1
 '* above.
 lpAppName$ = "NetPaths"
 lpKeyName$ = "Calculator"
 lpDefault$ = ""
 lpReturnString$ = Space$(128)
 Size% = Len(lpReturnString$)

 '* This is the path and name the NET.INI file.
 lpFileName$ = "c:\net.ini"

 '* This call will cause the path to CALC.EXE (that is,
 '* C:\WINDOWS\CALC.EXE) to be placed into lpReturnString$. The
 '* return value (assigned to Valid%) represents the number of
 '* characters read into lpReturnString$. Note that the
 '* following assignment must be placed on one line.
 Valid% = GetPrivateProfileString(lpAppName$, lpKeyName$,

 lpDefault$, lpReturnString$,
 Size%, lpFileName$)

 '* Discard the trailing spaces and null character.
 Path$ = Left$(lpReturnString$, Valid%)

 '* Try to run CALC.EXE. If unable to run, FileError is called.
 Succ% = Shell(Path$, 1)
 Exit Sub

FileError:
 MsgBox "Can't find file", 16, "Error lpReturnString"
 Resume Next

End Sub

How to Create and Use a Custom Cursor in Visual Basic; Win SDK
Article ID: Q76666
Summary:
Using a graphics editor, the Microsoft Windows Software Development
Kit (SDK), and the Microsoft C compiler, you can create a dynamic-link
library (DLL) containing mouse cursors that can be used in a Microsoft
Visual Basic for Windows application. By making calls to the Windows API
functions LoadLibrary, LoadCursor, SetClassWord, and GetFocus, you can
display a custom cursor from within a Visual Basic for Windows
application. Below are the steps necessary to a create a custom cursor
and a Visual Basic for Windows application to use this custom cursor.

More Information:
Setting a custom cursor in a Visual Basic for Windows application
requires a call to the Windows API function LoadLibrary to load the
custom DLL containing the cursor resource(s). A call to LoadCursor is
then required to load a single cursor contained in the DLL. The return
value of the LoadCursor function is a handle to the custom cursor.
This handle can be passed as an argument to the API function
SetClassWord with the constant GCW_HCURSOR. SetClassWord also requires
a window handle (hWnd) to the object (form or control) for which the
cursor is to be set. The hWnd of a form is available via the hWnd run-
time method. For example, the statement FWnd = Form1.hWnd will return
the hWnd of Form1 to the variable FWnd. The hWnd of a control can be
obtained by first using the SetFocus method on the control to give it
the input focus and then calling the API function GetFocus. GetFocus
returns the hWnd of the object with the current input focus.

A custom cursor always takes the place of the system cursor. The
MousePointer property of a form or control to receive the custom
cursor must be set to zero (system). Any other value for this property
will result in the selected cursor being displayed, not the custom
cursor.

Because the cursor is defined as part of a window class, any change to
the window class will be reflected across any control or form that
uses that class. For example, if the MousePointer property for two
command buttons is zero (system) and a custom cursor is set for one of
the command buttons, both of the command buttons will receive the
custom cursor. To guarantee a custom cursor for each control requires
that the cursor be set by calling SetClassWord in the MouseMove event
procedure of the control.

Some controls, such as command buttons, do not contain a MouseMove
event procedure. A custom mouse pointer for these types of controls
can be set by initiating a timer event. Within the timer event, calls
to the API functions GetCursorPos and WindowFromPoint can be made to
determine if the mouse is over the control or not. If the
WindowFromPoint API call returns the hWnd of the control, then the
mouse is over the control. A call to SetClassWord can then be made to
set the custom cursor for the control.

Below is an example of using the Windows SDK and C Compiler to create
a DLL containing cursor resources. Further below are the steps
necessary to create a Visual Basic for Windows program to use the cursor

resources.

If you do not have the Windows SDK but have a pre-compiled DLL
containing cursor resources, skip to the steps below outlining how to
create a Visual Basic application to use the custom cursor resources.

 1. Using a graphics editor such as Microsoft Windows SDK Paint program,
 create two cursor images. Save the images separately as CURS1.CUR
 and CURS2.CUR, respectively.

 2. Using any text editor, create a C source file containing the
 minimum amount of code for a Windows DLL. The source code must
 contain the functions LibEntry and WEP (Windows exit procedure).
 Below is an example of the C source file:

 #include <windows.h>
 int _far _pascal LibMain (HANDLE hInstance,
 WORD wDataSeg,
 WORD cbHeapSize,
 LPSTR lpszCmdLine)
 {
 return(1);
 }

 int _far _pascal WEP (int nParameter)
 {
 return(1);
 }

 3. Save the file created in step 2 above as CURSORS.C.

 4. Using any text editor, create a definition file (.DEF) for the
 DLL. Enter the following as the body of the .DEF file:

 LIBRARY CURSORS

 DESCRIPTION 'DLL containing cursor resources'

 EXETYPE WINDOWS

 STUB 'WINSTUB.EXE'

 CODE MOVEABLE DISCARDABLE

 DATA MOVEABLE SINGLE

 HEAPSIZE 0

 EXPORTS
 WEP @1 RESIDENTNAME

 5. Save the file created in step 4 above as CURSORS.DEF.

 6. Using a text editor, create a resource file for the cursors created
 in step 1 above. Enter the following as the body of the .RC file:

 Cursor1 CURSOR CURS1.CUR

 Cursor2 CURSOR CURS2.CUR

 7. Save the file created in step 6 above as CURSORS.RC.

 8. Compile CURSORS.C from the MS-DOS command line as follows:

 CL /AMw /c /Gsw /Os /W2 CURSORS.C

 9. Link the program from the MS-DOS command line as follows (enter the
 following two lines on a single line):

 LINK /NOE /NOD cursors.obj +
 LIBENTRY.OBJ,,,MDLLCEW.LIB+LIBW.LIB,CURSORS.DEF;

 This will create the file CURSORS.EXE.

10. Add the cursor resources created in step 1 above to the .EXE file
 created in step 9 above by invoking the Microsoft Resource
 Compiler (RC.EXE) from the MS-DOS command line as follows:

 RC CURSORS.RC

11. Rename CURSORS.EXE to CURSORS.DLL from the MS-DOS command line as
 follows:

 REN CURSORS.EXE CURSORS.DLL

Below are the steps necessary to create a Visual Basic for Windows
application that uses the cursor resources created in the steps above.

Important

When running the Visual Basic for Windows program created by following
the steps below, it is important to terminate the application from the
system menu, NOT the Run End option from the file menu. When Run End is
chosen from the file menu, the unload event procedure is not executed.
Therefore, the system cursor is not restored and the custom cursor
will remain present at design time. Using Visual Basic version 1.0 for
Windows, avoid terminating the program from the Program Manager
(PROGMAN.EXE) task list. The unload event procedure is also not called
when a program is terminated from the task list in Visual Basic
version 1.0 for Windows.

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 will be created by default.

2. Put a picture control (Picture1) on Form1.

3. Put a command button (Command1) on Form1.

4. Put a timer control (Timer1) on Form1.

5. Enter the following code in the Global Module:

 Type PointType
 x As Integer

 y As Integer
 End Type

6. Enter the following code in the General Declaration section of
 Form1:

 DefInt A-Z
 ' Each of the following Declare statements must appear on one line.
 Declare Function LoadLibrary Lib "kernel" (ByVal LibName$)
 Declare Function LoadCursor Lib "user" (ByVal hInstance, ByVal
 CursorName$)
 Declare Function SetClassWord Lib "user" (ByVal hWnd, ByVal
 nIndex, ByVal NewVal)
 Declare Function DestroyCursor Lib "user" (ByVal Handle)
 Declare Function GetFocus Lib "user" ()
 Declare Function PutFocus Lib "user" Alias "SetFocus" (ByVal hWnd)
 Declare Sub GetCursorPos Lib "user" (p As PointType)
 Declare Function WindowFromPoint Lib "user" (ByVal y, ByVal x)
 Const GCW_HCURSOR = (-12)
 Dim SysCursHandle
 Dim Curs1Handle
 Dim Curs2Handle
 Dim Pic1hWnd
 Dim Command1hWnd
 Dim p As PointType

7. Enter the following code in the Form_Load event procedure of
 Form1:

 Sub Form_Load ()
 Form1.Show
 DLLInstance = LoadLibrary("CURSORS.DLL")
 Curs1Handle = LoadCursor(DLLInstance, "Cursor1")
 Curs2Handle = LoadCursor(DLLInstance, "Cursor2")
 SysCursHandle=SetClassWord(Form1.hWnd,GCW_HCURSOR,Curs2Handle)

 ' Get the current control with the input focus.
 CurrHwnd = GetFocus()

 ' Get the Window handle of Picture1.
 Picture1.SetFocus
 Pic1hWnd = Picuture1.GetFocus()

 ' Get the Window handle of Command1.
 Command1.SetFocus
 Command1hWnd = GetFocus()

 ' Restore the focus to the control with the input focus.
 r = PutFocus(CurrHwnd)
 timer1.interval = 1 ' One millisecond.
 timer1.enabled = -1
 End Sub

8. Enter the following code in the Form_Unload event procedure of
 Form1:

 Sub Form_Unload (Cancel As Integer)

 ' Restore the custom cursors to the system cursor:
 LastCursor =SetClassWord(Form1.hWnd, GCW_HCURSOR, SysCursHandle)
 LastCursor = SetClassWord(Pic1hWnd, GCW_HCURSOR, SysCursHandle)
 LastCursor=SetClassWord(Command1hWnd, GCW_HCURSOR,SysCursHandle)
 ' Delete the cursor resources from memory:
 Success = DestroyCursor(Curs1Handle)
 Success = DestroyCursor(Curs2Handle)
 End Sub

9. Enter the following code in the Timer1_Timer event procedure of
 Timer1:

 Sub Timer1_Timer ()

 ' Get the current (absolute) cursor position.
 Call GetCursorPos(p)

 ' Find out which control the midpoint of the cursor is over.
 ' The cursor is 32 x 32 pixels square. Change the class word
 ' of the control to the appropriate cursor.
 Select Case WindowFromPoint(p.y + 16, p.x + 16)

 Case Form1.hWnd
 ' Each of the following statements must appear on one line.
 LastCursor = SetClassWord(Form1.hWnd, GCW_HCURSOR,
 Curs2Handle)
 LastCursor = SetClassWord(Command1hWnd, GCW_HCURSOR,
 Curs2Handle)
 LastCursor = SetClassWord(Pic1hWnd, GCW_HCURSOR,
 Curs2Handle)

 Case Command1hWnd

 LastCursor = SetClassWord(Form1.hWnd, GCW_HCURSOR,
 Curs1Handle)
 LastCursor = SetClassWord(Command1hWnd, GCW_HCURSOR,
 Curs1Handle)

 Case Pic1hWnd

 LastCursor = SetClassWord(Form1.hWnd, GCW_HCURSOR,
 Curs1Handle)
 LastCursor = SetClassWord(Pic1hWnd%, GCW_HCURSOR,
 Curs1Handle)
 End Select
 End Sub

Run the program. The form should receive the "Cursor2" cursor and the
controls Command1 and Picture1 should receive the "Cursor1" cursor as
the mouse cursor is moved about the form.

How to Play a Waveform (.WAV) Sound File in Visual Basic
Article ID: Q86281
Summary:
You can play a waveform (.WAV) sound file from Microsoft Visual Basic for
Windows by calling the sndPlaySound API function from the MMSYSTEM.DLL
file. In order to be able to call the sndPlaySound API function, you
must be using either Microsoft Windows, version 3.1 or the Microsoft
Multimedia Extensions for Windows, version 3.0. The following information
discusses the sndPlaySound parameters, and includes an example of how to
use this function from Visual Basic for Windows.

More Information:
To use the sndPlaySound API from within a Visual Basic for Windows
application, you must Declare the sndPlaySound function in either the
global module or from within the Declarations section of your Code
window. Declare the function as follows:

Declare Function sndPlaySound Lib "MMSTSTEM.DLL" (ByVal lpszSoundName$
 ByVal wFlags%) As Integer

Note: The above Declare statement must be written on just one line.

The parameters listed above are explained as follows:

 Parameters

 lpszSoundName$

 Specifies the name of the sound to play. The function first
 searches the [sounds] section of the WIN.INI file for an
 entry with the specified name, and plays the associated
 waveform sound file. If no entry by this name exists, then it
 assumes the specified name is the name of a waveform sound
 file. If this parameter is NULL, any currently playing sound
 is stopped.

 wFlags%

 Specifies options for playing the sound using one or more of
 the following flags:

 SND_SYNC
 The sound is played synchronously and the function does
 not return until the sound ends.

 SND_ASYNC
 The sound is played asynchronously and the function
 returns immediately after beginning the sound.

 SND_NODEFAULT
 If the sound cannot be found, the function returns
 silently without playing the default sound.

 SND_LOOP

 The sound will continue to play repeatedly until
 sndPlaySound is called again with the lpszSoundName$
 parameter set to null. You must also specify the
 SND_ASYNC flag to loop sounds.

 SND_NOSTOP
 If a sound is currently playing, the function will
 immediately return False without playing the requested
 sound.

The sndPlaySound function returns True (-1) if the sound is played,
otherwise it returns False (0).

The following code example illustrates how to use the sndPlaySound
API function to play a waveform (.WAV) sound file.

Add the following code to the global module or general Declarations
section of your form:

 ' The following Declare statement must appear on one line.
 Declare Function sndPlaySound Lib "MMSYSTEM.DLL" (ByVal
 lpszSoundName$, ByVal wFlags%) As Integer

 Global Const SND_SYNC = &H0000
 Global Const SND_ASYN = &H0001
 Global Const SND_NODEFAULT = &H0002
 Global Const SND_LOOP = &H0008
 Global Const SND_NOSTOP = &H0010

Add the following line of code to the appropriate function or subroutine
in your application:

 SoundName$ = "c:\windows\tada.wav"
 wFlags% = SND_ASYNC And SND_NODEFAULT
 x% = sndPlaySound(SoundName$,wFlags%)

Note that if a large waveform (.WAV) sound file is specified and the
above call fails to play the file in its entirety, you will need to
adjust the settings on the appropriate sound driver.

Visual Basic for Windows Reference Materials
Article ID: Q12345
Summary:
The following is a list of Microsoft Windows API references:

"Microsoft Windows 3.1 Software Development Kit: Reference Volume 1"

"Microsoft Windows 3.1 Software Development Kit: Reference Volume 2

"Microsoft Windows Programmer's Reference Book and Online Resource"
(Add-on kit number 1-55615-413-5)

"Microsoft Windows Programmer's Reference"

"Microsoft Multimedia Development Kit: Programmer's Reference"
version 1.0

"Programming Windows: the Microsoft Guide to Writing Applications
for Windows 3" by Charles Petzold, Microsoft Press, 1990

WINSDK.HLP file shipped with the Professional Edition of Microsoft
Visual Basic for Windows, version 3.0

F5 in Run Mode with Focus on Main Menu Bar Acts as CTRL+BREAK
Article ID: Q74348
Summary:
A Microsoft Visual Basic for Windows program will break at run time
under the following simultaneous conditions:

1. You run the program in the Visual Basic for Windows development
 environment.

2. The Visual Basic for Windows menu bar has the focus.

3. You press the F5 key.

The program will break when the F5 key is pressed and the Immediate
Window will get the focus. This is not a problem with Visual Basic for
Windows, but rather a design feature.

This information only applies to an application run in the Visual
Basic for Windows development environment, not as an .EXE program.

More Information:
The F5 key acts as the shortcut key for the Visual Basic for
Windows Run menu. Because Start, Continue, and Break all share the same
menu item under the Run menu, F5 acts differently depending upon the
state of execution of a program. It acts as the Run key in the Visual
Basic version 1.0 for Windows environment. It also serves as the Break
key once the application is running and the focus is on the Visual Basic
for Windows menu bar. After execution has been "broken" with the Break
key, the F5 key serves as the Continue key.

To demonstrate the different modes of the F5 key, do the following:

1. Run Visual Basic for Windows.

2. From the File menu, select New Project (press ALT, F, N).

3. Press the F5 key to run the program.

4. Using the mouse, click on the Visual Basic for Windows menu bar.

5. Press the F5 key to break the program. The Immediate window will be
 given the focus after you press the F5 key.

6. Press the F5 key again to continue execution of the program.

Visual Basic SendKeys Statement Is Case Sensitive
Article ID: Q81466
Summary:
The SendKeys statement in Microsoft Visual Basic for Windows is case
sensitive with regards to the keystrokes sent. Sending an uppercase
letter may be interpreted by the receiving application differently
than the lowercase version of a letter.

More Information:
The following line of code sends an ALT+F key combination to the
application that currently has the focus:

 SendKeys "%(F)"

Note that this is different than ALT+f:

 SendKeys "%(f)"

This can be a problem because some applications distinguish between an
uppercase F and lower case f when sent by the SendKeys statement.

For example, Microsoft Word versions 1.0b and earlier for Windows
(WINWORD.EXE) do not distinguish the difference. However, Microsoft
Word version 2.0 for Windows does distinguish the lowercase f sent by
SendKeys.

When SendKeys (from Visual Basic for Windows) sends the ALT+F key
combination, WINWORD.EXE version 2.0 interprets the keystroke as
ALT+Shift+f, at which Word for Windows will simply beep. However,
SendKeys using ALT+f will correctly activate the File menu.

No New Timer Events During Visual Basic Timer Event Processing
Article ID: Q78599
Summary:
Timer controls can be used to automatically generate an event at
predefined intervals. This interval is specified in milliseconds, and
can range from 0 to 65535 inclusive.

Timer event processing will not be interrupted by new timer events.
This is because of the way that Windows notifies an application that a
timer event has occurred. Instead of interrupting the application,
Windows places a WM_TIMER message in its message queue. If there is
already a WM_TIMER message in the queue from the same timer, the new
message will be consolidated with the old one.

After the application has completed processing the current timer
event, it checks its message queue for any new messages. This queue
may have new WM_TIMER messages to process. There is no way to tell if
any WM_TIMER messages have been consolidated.

Scope of Line Labels/Numbers in Visual Basic for Windows
Article ID: Q78335
Summary:
Line labels (and line numbers) do not follow the same scoping rules as
variables and constants in Visual Basic for Windows. Line labels must
be unique within each module and form. However, you can only transfer
control to a line label or line number within the current Sub or
Function.

More Information:
When you attempt to define the same line label twice within a module
or form, you receive the error message "Duplicate label". This message
means that the label is already defined in another procedure within
the current module.

When you use a GOTO or GOSUB statement that names a line label defined
in another procedure, you receive the error message "Label not
defined." This message means that the label is not defined in the
current Sub or Function.

For more information about line labels, see the description of the
GOTO and GOSUB statements in the "Microsoft Visual Basic: Language
Reference" or in the Visual Basic for Windows online Help system.

Sending Keystrokes from Visual Basic to an MS-DOS Application
Article ID: Q77394
Summary:
The "Microsoft Visual Basic: Language Reference" version 1.0 manual
states that the SendKeys function cannot be used to send keystrokes to
a non-Windows application. Listed below is a method that can be used
to work around this limitation.

More Information:
The Microsoft Visual Basic for Windows SendKeys function can send
keystrokes to the currently active window (as if the keystrokes had
been typed at the keyboard). Although it is not possible to send
keystrokes to a non-Windows application with SendKeys directly, you
can place text on the Clipboard and use SendKeys to paste that text
into an MS-DOS application that is running in a window (or minimized
as an icon.)

To run an MS-DOS application in a window, you MUST be running in
Windows 386 enhanced mode. You must also make sure that the MS-DOS
application's PIF file has been set to display the application in a
window rather than full screen. Use the Windows PIF Editor to make
this modification, if necessary.

An example of sending keystrokes to an MS-DOS session running in a
window is given below:

 1. Start a MS-DOS session (running in a window).

 2. Start Visual Basic for Windows.

 3. Enter the following into the general declarations section of the
 form:

 Dim progname As String

 4. Draw two labels on the form. Change the first label's caption to
 "Dos App Title." Change the second label's caption to "Keys to
 send."

 5. Draw two text boxes on the form (next to each of the previously
 drawn labels). Delete the default contents of these text boxes.
 These controls will be used to allow the user to enter the MS-DOS
 application window title and the keystrokes to send to it. Change
 the Name property of these text boxes to "DosTitle" and
 "DosKeys," respectively.

 6. Draw a command button on the form and change its caption to "Send
 keys."

 7. Attach the following code to the command button click procedure:

 progname = "Microsoft Visual Basic"
 clipboard.Clear
 clipboard.SetText DosKeys.Text + Chr$(13) ' Append a <CR>.
 AppActivate DosTitle.Text

 SendKeys "% ep", 1
 AppActivate progname

 If the text that you send is the DIR command or another command that
 takes time, the AppActivate call immediately following the SendKeys
 call will interrupt the processing. The AppActivate call should be
 placed in a timer with the appropriate interval set and the timer
 enabled in the command_click procedure. The timer should be disabled
 before exiting the timer.

 8. Run the program.

 9. Enter the window title of the MS-DOS application into the DosTitle
 text box. The default window title for an MS-DOS session is "DOS."
 If you would like to change the window title of an MS-DOS
 application, you should use the PIF Editor.

10. Enter the keystrokes to send into the DosKeys text box (for
 example, "DIR").

11. Click on the Send Keys command button. The keystrokes will be sent
 to the Clipboard and then pasted into the MS-DOS window.

If this technique is used in a compiled Visual Basic for Windows
program, you should change the progname assignment from "Microsoft
Visual Basic" to the executable file name. Also, if you would like to
see the text being placed onto the Clipboard, you can open the
Windows Clipboard viewer.

Task List Switch to VB Application Fails After ALT+F4 Close
Article ID: Q81469
Summary:
Selecting the Close command from the Control menu (ALT+F4) to quit a
Visual Basic for Windows application will not necessarily unload any
other forms that have been loaded. If other forms have been loaded but
are not visible, the application may still be running under Windows. If
this is the case, the Windows Task List will still contain the name of
the application. Attempting to switch to the application from the
Windows Task List will be unsuccessful.

If you want the application to terminate as a result of unloading a
particular form, place an End statement in the Form_Unload event
procedure for the form, or use the Unload statement to unload all forms
that are loaded. This will cause all forms (visible and invisible) to
be unloaded, and the application to terminate.

More Information:
Even if the form that is closed is the designated startup form in your
application, it will not automatically unload previously loaded forms.
Therefore, the application can in fact still be running and appear in
the Windows Task List. You can terminate the application by selecting
the End Task button in the Windows Task List, but you will not be able
to switch to the task.

Below are the steps necessary to cause an application to terminate
when a particular form is closed from the Control menu (ALT+F4).

With the application loaded in VB.EXE (the Visual Basic for Windows
development environment), do the following:

1. Double-click on the form to open the Code window.

2. Add an End statement to the Form_Unload event procedure for the
 form. For example:

 Sub Form_Unload (Cancel As Integer)

 ' Your code goes here.
 '

 End ' This will unload all forms and terminate the
 ' application.
 End Sub

Adding an End statement to the Unload event procedure of a form will
not cause the Unload event procedures for the other forms to be
called. To cause the Unload event procedures for the other forms to
be called, use the Unload statement to explicitly unload each form.

Example of Sharing a Form Between Projects in VB for Windows
Article ID: Q81222
Summary:
Microsoft Visual Basic for Windows allows you to share forms between
projects. When you make a change to a shared form in one project, that
change will be automatically updated in the other projects that share
the form.

A workaround is also available if you want to change a shared form but
do not want to update the form in other projects.

Further below is an example of how to use this shared form feature in
Visual Basic for Windows, and an example of how to change a shared form
without updating it in shared projects.

More Information:
Below are two examples: the first shows how to update shared forms,
and the second demonstrates how to change a shared form without having
those changes affect the same form in other projects.

Example 1

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add a couple text boxes and command buttons to Form1 by
 double-clicking on the appropriate tools in the toolbox and placing
 the controls at certain locations on the form. From the Properties
 Bar, change the FormName property of Form1 to Test1.

3. From the File menu, choose Save Project As. Save Test1 as TEST1.FRM
 and save the project as TEST1.MAK.

4. Start a new project by choosing New Project from the File menu.

5. From the File menu, choose Add File, and select TEST1.FRM.

6. Once TEST1.FRM is loaded into the project, delete the command
 buttons, and replace them with picture boxes.

7. From the File menu, choose Save Project As. Save the project as
 TEST2.MAK, and save TEST1.FRM with the same name.

8. From the File menu, choose Open Project. In the Files box, select
 TEST1.MAK.

Notice that the form has been updated to include picture boxes and the
command buttons were deleted.

Example 2

(Note that the following steps are very similar to the example above,

but with a change in step 5.)

This example demonstrates how to share forms between projects, but
with the forms being designed differently.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add a couple text boxes and command buttons to Form1 by
 double-clicking on the appropriate tools in the toolbox and placing
 the controls at certain locations on the form. From the Properties
 Bar, change the FormName property of Form1 to Test3.

3. From the File menu, choose Save Project As. Save Test3 as TEST3.FRM
 and save the project as TEST3.MAK.

4. From the File menu, choose New Project.

5. From the File menu, choose Add File. In the Files box, select
 TEST3.FRM. Once the file is loaded, delete the command buttons
 and replace them with picture boxes.

6. From the File menu, choose Save File As, and save the form as
 TEST4.FRM.

7. From the File menu, choose Save Project As, and save the project as
 TEST4.MAK.

8. From the File menu, choose Open Project. In the Files box, select
 TEST3.MAK.

Notice that the form's controls have NOT been updated with picture
boxes.

"Property or Control Not Found" Using Form/Control Data Type
Article ID: Q84383
Summary:
You do not need to prefix a control name with the parent form name
when you are accessing the property of a control from a Sub or
Function to which the control is passed as a parameter. If you use the
syntax

 form.control.property

to access the property of the control, you will get a "Property or
Control not found" error.

More Information:
The full syntax to access a property of a control on a form is as
follows:

 form.control.property

If the control whose property you are accessing is on the form where
the code resides, you do not need to prefix the control name with the
form name. For example, if command button Command1 is on Form1 and you
want to set its Enabled property to False (0) in the event procedure
Command1_Click, you can use the following:

 Command1.Enabled = 0

You can use the same syntax if the statement is in the general
Declarations section of Form1. However, if you want to access the
Enabled property of Command1 on a form other than its parent form, or
from a Sub or Function in a module, you need to use the full syntax
(with the form name).

The property of the control can also be accessed in a module by using
the full syntax. For example, to disable Command1 (which is on Form1)
in MODULE1.BAS, add the following:

 Sub AccessProperty
 Form1.Command1.Enabled = 0
 End Sub

However, if you are passing the control as an argument to a Sub or
Function procedure in a general module, you do not need to use the
full syntax. For example

 Sub AccessProperty (ThisForm as Form, ThisControl as Control)
 ThisForm.ThisControl.Enabled = 0
 End Sub

will give you a "Property or Control 'ThisControl' not found" error.
You only need to pass the control name as an argument to the
procedure. For example:

 Sub AccessProperty (ThisControl as Control)
 ThisControl.Enabled = 0

 End Sub

Avoid Could not execute: SETUP1.EXE 2" Error, Use COMPRESS-r
Article ID: Q93426
Summary:
Files used with the Setup Kit must be either uncompressed or compressed
with the command COMPRESS -r <filename>. The following error can occur if
you use a method other than COMPRESS -r to create a file with an underscore
as the last character:

 Error - Could not execute: SETUP1.EXE 2

However, VER.DLL must be named VER.DL_ on the setup disk and must not be
compressed.

More Information:
The filename listed in the error message above can be different than
SETUP1.EXE if you customized the Setup Kit.

The following two commands both create a file named SETUP1.EX_, but they
are not equivalent:

 COMPRESS -r SETUP1.EXE (correct)
 COMPRESS SETUP1.EXE SETUP1.EX_ (incorrect)

The COMPRESS.EXE option -r compresses a file, replaces the last character
of the filename with an underscore "_", and stores the replaced character
in the compressed file. When the Setup Kit uses VER.DLL to decompress a
file, VER.DLL reads the character from the file and restores the file to
its original name.

If you create a file with an underscore as the last character without
using COMPRESS -r, VER.DLL renames the file by removing the underscore.
For example, SETUP1.EX_ becomes SETUP1.EX.

