
Microsoft Visual Basic
WPS Utility Technical Notes Other Information

API Reference Contents
Functions
Messages
Data Structures
Standard Properties
Standard Events

Visual Basic Functions
The VBAPI.LIB file provides access to a subset of the functions residing in VB.EXE,
VBRUN100.DLL, VBRUN200.DLL, and VBRUN300.DLL. In Visual C++, custom control
support is provided by either MFC200.LIB or MFC200.DLL. These functions include many of
the same functions used internally to support standard controls.
The VBAPI.LIB file also provides a set of the Basic language support functions that are
useful when creating your own DLL routines. This set of functions supports Basic language
features such as arrays and the Variant data type. Typically, you would not use these
functions in a custom control, unless you were exporting functions that are called directly
from Visual Basic.
Functions that are specific to a version level of Visual Basic are denoted by the version
number inside brackets. For example, version 3.0 is denoted by [3.0].

Visual Basic String
Manipulation

File Input/Output

C String Manipulation Floating-Point
State

Array Access Messages
Binding Support Palette Access
Control Access Picture Structures
Control Model Property Access
Data Conversion Scale Conversions
DDE Management Status Information
Error Handling Variant Access
Event Handling Window Access

Visual Basic Messages
Messages that are passed to custom controls can be divided into three categories:
1. Model messages (for example VBM_GETDEFSIZE, VBM_HELP) are sent when information

about the control's model structure is required. The control handle (HCTL) passed with
these messages is always NULL.

2. Instance messages are sent to an actual instance of the control, and the control handle
passed with these messages is always valid.

3. Notification messages are sent to a control when it has sent a WM_ message to its
parent. These messages have the prefix VBN_.

Important Controls must not dereference the control handle when it is passed with a
model message.
VBAPI.H defines a number of messages that originate with Visual Basic. These messages
are listed below, according to category.
Messages that are specific to a version level of Visual Basic are denoted by the version
number inside brackets. For example, version 3.0 is denoted by [3.0].

General File Input/Output
Binding Support Graphical Control

Support
Clipboard Key Processing
DDE Palette
Design Time Support Property Access
Events

Visual Basic String Manipulation Functions
The following table describes Visual Basic string manipulation functions.
Function Description
VBCreateHlstr Allocate string.
VBCreateTempHlstr    [2.0] Create temporary string.
VBDerefHlstr Get pointer to string data.
VBDerefHlstrLen    [2.0] Get length and pointer to string data.
VBDerefZeroTermHlstr    [2.0] Get pointer to null-terminated string.
VBDestroyHlstr Remove language string.
VBGetHlstr    [2.0] Copy string to buffer.
VBGetHlstrLen Get string length.
VBResizeHlstr    [2.0] Reallocate string.
VBSetHlstr Assign new string data.

C String Manipulation Functions
The following table describes Visual Basic C string manipulation functions.
Function Description
VBCreateHsz Allocate HSZ string.
VBDerefHsz Get pointer to string data.
VBDestroyHsz Remove string.
VBLockHsz Get pointer to data and prevent string from moving.
VBUnlockHsz Unlock string address.

Binding Support Functions
The following table describes the Visual Basic binding support functions.
Function Description
VBGetDataSourceControl Retrieve data control currently bound to.

Control Access Functions
The following table describes Visual Basic control access functions.
Function Description
VBClientToScreen    [2.0] Convert client points to screen coordinates.
VBGetCapture    [2.0] Get mouse capture.
VBGetClientRect    [2.0] Get client coordinates.
VBGetControl    [2.0] Get specified control.
VBGetControlRect    [2.0] Get screen coordinates.
VBGetRectInContainer    [2.0] Get control's container rectangle.
VBInvalidateRect    [2.0] Add rectangle to update region.
VBIsControlEnabled    [2.0] Determine user-input state.
VBIsControlVisible    [2.0] Determine visibility state.
VBMoveControl    [2.0] Change position and size.
VBReleaseCapture    [2.0] Release mouse capture.
VBScreenToClient    [2.0] Convert screen points to client coordinates.
VBSetCapture    [2.0] Set mouse capture.
VBSetControlFlags    [2.0] Specify control characteristics.
VBUpdateControl    [2.0] Update painting of client area.
VBZOrder    [2.0] Change the Z-order.

Control Model Functions
The following table describes Visual Basic control model functions.
Function Description
VBGetControlModel Get model structure.
VBRegisterModel Register a control class.

DDE Management Functions
The following table describes Visual Basic DDE management functions.
Function Description
VBLinkMakeItemName    [2.0] Create item name that contains control array

information.
VBLinkPostAdvise    [2.0] Send update notification.
VBPasteLinkOk    [2.0] Send OK for Paste Link request.

Error Handling Functions
The following table describes the Visual Basic error handling functions.
Function Description
VBSetErrorMessage Set text of next error message.
VBRuntimeError    [2.0] Generate run-time error.

Event Handling Function
The following table describes the Visual Basic event handling function.
Function Description
VBFireEvent Execute event procedure.

File Input/Output Functions
The following table describes Visual Basic file input/output functions.
Function Description
VBReadBasicFile Read data file.
VBReadFormFile Read property value from disk during a load.
VBRelSeekBasicFile Move position in data file a relative distance.
VBRelSeekFormFile Move position in form file a relative distance.
VBSeekBasicFile Move position in data file.
VBSeekFormFile Move position in form file.
VBWriteBasicFile Write to data file.
VBWriteFormFile Write property value to disk during a save.

Floating-Point State Functions
The following table describes Visual Basic floating-point state functions.
Function Description
VBCbSaveFPState    [2.0] Save current floating-point state.
VBRestoreFPState    [2.0] Restore saved floating-point state.

Messages Functions
The following table describes Visual Basic messages functions.
Function Description
VBDefControlProc Default message processing.
VBDerefControl Get pointer to programmer-defined structure.
VBSendControlMsg Send message to a control.
VBSuperControlProc Call superclass directly.

Palette Access Functions
The following table describes Visual Basic palette access functions.
Function Description
VBAllocPicEx    [2.0] Allocate HPIC.
VBGetPicEx    [2.0] Allocate HPIC.
VBPaletteChanged    [2.0] Get palette change state.
VBTranslateColor    [2.0] Convert RGB to palette color.

Picture Structures Functions
The following table describes Visual Basic picture structures functions.
Function Description
VBAllocPic Allocate HPIC structure.
VBFreePic Decrement reference count and delete HPIC if count is zero.
VBGetPic Dereference picture data.
VBPicFromCF Get picture from Clipboard.
VBRefPic Increment reference count.

Property Access Functions
The following table describes Visual Basic property access functions.
Function Description
VBDialogBoxParam Create a pop-up dialog box.
VBGetControlProperty Get property value.
VBSetControlProperty Set property value.

Scale Conversions Functions
The following table describes Visual Basic scale conversions functions.
Function Description
VBXPixelsToTwips Convert X units to twips.
VBXTwipsToPixels Convert X units to pixels.
VBYPixelsToTwips Convert Y units to twips.
VBYTwipsToPixels Convert Y units to pixels.

Status Information Functions
The following table describes Visual Basic status information functions.
Function Description
VBDirtyForm     [2.0] Indicate property change.
VBGetAppTitle Get application title.
VBGetMode Determine whether in design, run, or break mode.
VBGetVersion    [2.0] Get Visual Basic version.

Window Access Functions
The following table describes Visual Basic window access functions.
Function Description
VBGetControlHwnd Get handle to window.
VBGetHInstance Get handle to current instance of Visual Basic.
VBGetHwndControl Get handle to control.
VBRecreateControlHwnd Destroy and recreate window, to enable new window styles.

Array Access Functions
The following table describes Visual Basic window access functions.
Function Description
VBArrayBounds    [2.0] Get upper and lower bounds.
VBArrayElement    [2.0] Get pointer to array element.
VBArrayElemSize    [2.0] Get size of array element.
VBArrayFirstElem    [2.0] Get pointer to first array element.
VBArrayIndexCount    [2.0] Get array indexes.

Data Conversion Function
The following table describes Visual Basic data conversion function.
that are new for Visual Basic version 2.0 are marked by [2.0].
Function Description
VBFormat    [2.0] Format data value.

Variant Access Functions
The following table describes Visual Basic variant access functions.
Function Description
VBCoerceVariant    [2.0] Convert Variant to data type.
VBGetVariantType    [2.0] Get Variant data type.
VBGetVariantValue    [2.0] Get Variant value.
VBSetVariantValue    [2.0] Set Variant value.

Property Access Messages
The following table describes Visual Basic property access messages.
Message Description
VBM_CHECKPROPERTY Check property value.
VBM_GETPROPERTY Get property value.
VBM_GETPROPERTYHSZ Get string to display in Properties window.
VBM_INITPROPPOPUP Determine how value is set in Properties window.
VBM_SETPROPERTY Set property value.

Events Messages
The following table describes Visual Basic events messages.
Message Description
VBM_DRAGDROP Item dropped on control.
VBM_DRAGOVER Item dragged over control.
VBM_FIREEVENT Implement delayed event.
VBM_SELECTED    [2.0] Control selected at design time.

Binding Support Messages
The following table describes Visual Basic binding support messages.
Message Description
VBM_DATA_AVAILABLE     [3.0] Notification of data available from the data control.
VBM_DATA_GET     [3.0] Get data from the data control.
VBM_DATA_METHOD     [3.0] Send request to data control.
VBM_DATA_REQUEST     [3.0] Notification of data requested from the data control.
VBM_DATA_SET     [3.0] Send data to the data control.

Clipboard Messages
The following table describes Visual Basic Clipboard messages.
Message Description
VBM_COPY Copy data from Clipboard.
VBM_PASTE Paste data into Clipboard.
VBM_QPASTEOK Determine if Paste or Paste Link should proceed.

File Input/Output Messages
The following table describes Visual Basic file input/output messages.
Message Description
VBM_LOADPROPERTY Load property from disk.
VBM_LOADTEXTPROPERTY    [2.0] Load properties as text.
VBM_SAVEPROPERTY Save property to disk.
VBM_SAVETEXTPROPERTY    [2.0] Save properties as text.

Key Processing Messages
The following table describes Visual Basic key processing messages.
Message Description
VBM_ISMNEMONIC    [2.0] Mnemonic entered.
VBM_MNEMONIC Respond to mnemonic.
VBM_WANTSPECIALKEY    [2.0] Virtual key entered.

Design Time Support Messages
The following table describes Visual Basic design time support messages.
Message Description
VBM_GETDEFSIZE    [2.0] Get default size.
VBM_PAINTMULTISEL    [2.0] Respond to multiple selection.
VBM_PAINTOUTLINE    [2.0] Respond to moving.

Graphical Control Support Messages
The following table describes Visual Basic graphical control support messages.
Message Description
VBM_HITTEST    [2.0] Return mouse hit status.
VBM_PAINT    [2.0] Repaint graphical control.

Palette Messages
The following table describes Visual Basic palette messages.
Message Description
VBM_GETPALETTE    [2.0] Request for palette.
VBM_PALETTECHANGED    [2.0] Request to select a palette.

DDE Messages
The following table describes Visual Basic DDE messages.
Message Description
VBM_LINKENUMFORMATS    [2.0] Enumerate DDE data formats.
VBM_LINKGETDATA    [2.0] Receive DDE data.
VBM_LINKGETITEMNAME    [2.0] Get DDE item name.
VBM_LINKSETDATA    [2.0] Send DDE data.

General Messages
The following table describes Visual Basic general messages.
Message Description
VBM_CANCELMODE Reset internal state.
VBM_CREATED Creation and loading of a control completed.
VBM_HELP Process help request.
VBM_INITIALIZE HCTL allocated.
VBM_LOADED All controls on form loaded, or control dynamically

loaded.
VBM_METHOD One of control's methods used in a statement.

Technical Notes
You can click on any file to launch Notepad and load that file.
TN001.TXT "Support for DT_OBJECT Properties"

TN002.TXT "Custom Control Version Management"

 Windows Process Status utility
Description
The Windows Process Status utility, WPS.EXE, displays a listing of all running tasks along
with a listing of all modules that are currently loaded into memory. This utility is useful for
monitoring the memory usage of an application with regard to its modules.
In addition, the WPS.EXE utility can be used to force a task to terminate, or to unload a
module that remained in memory due to an application error.

Other Information Sources
All help and text files included with the Standard Edition are also included with the
Professional Edition.

Standard Edition
Help Files
Text Files

Professional Edition
Help Files
Text Files

Note      When Visual Basic is installed, as each Help file is installed, it is listed in
WINHELP.INI, located in your Windows directory.    If you move a Help file to a different
directory, be sure to change the path in WINHELP.INI.    If a Help file does not exist, is not in
your path, or is not in the directory specified in WINHELP.INI, WinHelp displays an
appropriate message.

Standard Edition Help Files
You can click on any help file to go to the main table of contents of that file.    If the file is
not available, an error occurs.
Visual Basic Help Documents Visual Basic for Windows.

SetupWizard Documents the SetupWizard application.    For information about the Setup
Toolkit, search for Setup in the Visual Basic help file.
Data Manager Documents the Data Manager application.
Note      When Visual Basic is installed, as each Help file is installed, it is listed in
WINHELP.INI, located in your Windows directory.    If you move a Help file to a different
directory, be sure to change the path in WINHELP.INI.    If a Help file does not exist, is not in
your path, or is not in the directory specified in WINHELP.INI, WinHelp displays an
appropriate message.

Professional Edition Help Files
In addition to the help files provided with the Standard Edition, these help files are included
with the Professional Edition.    You can click on any help file to go to the main table of
contents of that file.    If the file is not available, an error occurs.
Crystal Reports Documents the Crystal Reports application.

Custom Control Reference Documents each of the cusom controls provided with the
Professional Edition.
Help Compiler Reference Documents the Windows Help application for Help writers and
programmers.
Hotspot Editor Documents the segmented hypergraphic editor for creating hotspots within
graphics for use in authoring Help files.
KnowledgeBase A collection of articles from Microsoft Technical Support with tips, ideas and
solutions.
ODBC Installation Help Documents the installation tools for ODBC.

Oracle ODBC Driver Documents the ODBC driver for Oracle databases.
SQL Server ODBC Driver Documents the ODBC driver for SQL Server databases.
Visual Basic API Reference Documents the Custom Control Development Kit.
Windows 3.1 API for Visual Basic Declarations, structures, and constants for the Windows
API as used in Visual Basic.
Windows 3.1 SDK Help Documents Windows functions as used in the C programming
language.
Note      When Visual Basic is installed, as each Help file is installed, it is listed in
WINHELP.INI, located in your Windows directory.    If you move a Help file to a different
directory, be sure to change the path in WINHELP.INI.    If a Help file does not exist, is not in
your path, or is not in the directory specified in WINHELP.INI, WinHelp displays an
appropriate message.

Standard Edition Text Files
You can click on any of these files to launch Notepad and load the file.
README.TXT Information on last minute changes to Visual Basic, as well as additional

information.
CONSTANT.TXT Global symbolic constants for Visual Basic properties, events, functions and
statements.
DATACONS.TXT Global symbolic constants for the data access features of Visual Basic.
EXTERNAL.TXT Additional README information about connecting to external databases.
PACKING.LST List of all files on the distribution disks provided with Visual Basic.

Professional Edition Text Files
In addition to the text files provided with the Standard Edition, these text files are included
with the Professional Edition.    You can click on any file to launch Notepad and load that file.
If the file is too large for Notepad, you may have to use a different word processor.
BTRIEVE.TXT Supplementary information on importing, exporting, or attaching Btrieve

tables with Visual Basic.
ORACLE.TXT Setup information for the ODBC Oracle driver to run with your ORACLE RDBMS
software.    If you installed ODBC, this file is in your Windows\SYSTEM directory.
PERFORM.TXT Performance tuning tips for Visual Basic version 3.0 and Microsoft Access (TM)
Relational Database System for Windows version 1.1.
SAMPLES.TXT List of applications written in Visual Basic that demonstrate techniques
discussed in the printed documentation.
WIN30API.TXT Global symbolic constants for Windows 3.0 API functions.

WIN31API.TXT Global symbolic constants for Windows 3.1 API functions.
WINMMSYS.TXT Type declarations and global symbolic constants for Windows 3.1
multimedia API functions.

VBAllocPic
See Also Example

Syntax
HPIC VBAllocPic(lppic)
Allocates an internal picture structure from information supplied in a PIC structure. Once
allocated, information about the picture can be accessed by calls to VBGetPic, which
supplies a pointer to a PIC structure.

Note Given a choice, the VBAllocPicEx function is preferred over the VBAllocPic
function.

Parameter Type Description
lppic LPPIC Far pointer to a PIC structure, which is filled with valid data for a

bitmap, icon, or metafile.
Comments
Use of this function is generally necessary only when you use custom processing for
handling a DT_PICTURE property. A DT_PICTURE property should be represented in the
programmer-defined structure as an HPIC data type. A pointer to an HPIC handle should be
supplied when responding to VBM_GETPROPERTY.
If the picture is to be retained, you should call VBRefPic to increment the reference count
from zero. If the reference count is left at zero, Visual Basic deletes the picture as soon as
the control procedure returns. The reference count does not need to be incremented if the
HPIC handle is a temporary handle supplied to support VBM_GETPROPERTY.
Once allocated, the bitmap, icon, or metafile should not be deleted or modified.

Return Value
An HPIC handle to a picture structure.

See Also
VBAllocPicEx
VBFreePic
VBGetPic
VBPicFromCF
VBRefPic

Example
// Create HPIC from HBMP.
pic.picType = PICTYPE_BITMAP;
pic.picData.bmp.hbitmap = hBmp;
hpic = VBAllocPic(&pic);
VBRefPic(hpic); // Increment reference count

VBAllocPicEx [2.0]
See Also Example

Syntax
HPIC VBAllocPicEx(lpPic, usVersion)
This function is almost identical to the VBAllocPic function. The only difference is that the
PIC data structure in Visual Basic version 2.0 contains an hpal member. Refer to
VBAllocPic for more information.
Parameter Type Description
lpPic LPPIC Far pointer to PIC structure.
usVersion USHORT The Visual Basic version.

Comments
If usVersion is greater than or equal to VB200_VERSION, then the hpal member can be used
in the PIC structure.

Return Value
The allocated HPIC handle, or NULL if an error occurs.

See Also
VBAllocPic
VBFreePic
VBGetPic
VBPicFromCF
VBRefPic

Example
// Create HPIC from PIC.
pic.picType = PICTYPE_BITMAP;
pic.picData.bmp.hbitmap = hBmp;
pic.picData.bmp.hpal = hPal;
hpic = VBAllocPicEx(&pic, VB_VERSION);

VBArrayBounds [2.0]
See Also Example

Syntax
LONG VBArrayBounds(hAD, index)
Returns a long integer that contains the lower and upper bounds of a Basic language array.
Parameter Type Description
hAD HAD Handle to array descriptor.
index SHORT The array dimension 1 is the first dimension, 2 is the second

dimension for a two dimensional array, and so on.
Return Value
The low word of the return value is the lower bound of the array dimension; the high word
is the upper bound. If index is not valid or hAD refers to a dynamic array that has been
reinitialized (Erase statement) or never allocated (ReDim statement), AB_INVALIDINDEX is
returned. The hAD value must be passed from Visual Basic as a parameter that is declared
as an array.

See Also
VBArrayIndexCount

Example
// Get all the dimensions of an array.
index = -1;

do {
index++;
lBounds = VBArrayBounds(hAD, index + 1);
usLow[index] = LOBOUND(lBounds);
usHigh[index] = HIBOUND(lBounds);

} while (lBounds != AB_INVALIDINDEX);

// The index variable contains number of indexes in array.
if (index == 0)
// Dynamic array not allocated.

VBArrayElement [2.0]
See Also Example

Syntax
LPVOID VBArrayElement(hAD, cIndex, lpi)
Returns a pointer to the value of a Basic language array element.
Parameter Type Description
hAD HAD Handle to array descriptor.
cIndex SHORT Number of array indexes.
1pi LPSHORT Pointer to an array of indexes.

Comments
If cIndex does not match the actual number of indexes for the array, or any of the indexes
are out of bounds, then the high word (segment) of the return value will be zero, and the
low word (offset) will contain the error code.

Return Value
Returns a pointer to the value of the array element. If the array is a string array, the
function returns an HLSTR value.The hAD value must be passed from Visual Basic as a
parameter that is declared as an array.

See Also
VBArrayElemSize
VBArrayIndexCount

Example
SHORT indexes[2];

indexes[0] = 2;
indexes[1] = 2;

// Get the (2, 2) item of a 2-dimensional array.
lpData = VBArrayElement(hAD, 2, indexes);
if (HIWORD(lpData) == 0)
return (ERR)LOWORD(lpData);    // Return error.

VBArrayElemSize [2.0]
See Also

Syntax
USHORT VBArrayElemSize(hAD)
Returns the size of a single element in a Basic language array.
Parameter Type Description
hAD HAD Handle to array descriptor.

Comment
Can be used with the VBArrayFirstElem function to perform manual array indexing;
adding multiples of the array element size to the offset of the first element in the array
results in the address of the nth element.
This function is not meaningful for arrays of variable-length strings.

Return Value
Returns the size of a single element in the array. The hAD value must be passed from Visual
Basic as a parameter that is declared as an array.

See Also
VBArrayElement
VBArrayFirstElem

VBArrayFirstElem    [2.0]
See Also

Syntax
LPVOID VBArrayFirstElem(hAD)
Returns a pointer to the first element of a Basic language array.
Parameter Type Description
hAD HAD Handle to array descriptor.

Comments
This function is not meaningful for arrays of variable-length strings.

Return Value
Returns a pointer to the first element of the array, except for string arrays, which have no
meaningful return value. The hAD value must be passed from Visual Basic as a parameter
that is declared as an array. If hAD refers to a dynamic array that has been reinitialized
(Erase statement) or never allocated (ReDim statement), NULL is returned.

See Also
VBArrayElement
VBArrayElemSize

VBArrayIndexCount [2.0]
See Also Example

Syntax
SHORT VBArrayIndexCount(hAD)
Returns the number of indexes for a Basic language array.
Parameter Type Description
hAD HAD Handle to array descriptor.

Return Value
Returns a count of the number of indexes for the array. The hAD value must be passed from
Visual Basic as a parameter that is declared as an array. If hAD refers to a dynamic array
that has been reinitialized (Erase statement) or never allocated (ReDim statement), 0 is
returned.

See Also
VBArrayBounds

Example
if ((cIndex = VBArrayIndexCount(hAD)) == 0)
return 0;    // Return error

VBCbSaveFPState [2.0]
See Also

Syntax
USHORT VBCbSaveFPState(lpBuff, cb)
Saves the current floating-point state.
Parameter Type Description
lpBuff LPVOID A far pointer to a buffer that receives the current floating-point

state.
cb USHORT The size of lpBuff, or 0 if you want to return the size required to

hold the current floating-point state.
Comments
Saves the current floating-point state, regardless of whether a floating-point coprocessor or
emulator is used. Use the VBRestoreFPState function to restore the saved floating-point
state.
The VBCbSaveFPState and VBRestoreFPState functions should only be called from
custom controls that implement the VBM_GETPROPERTY message if your code for
processing this message causes your control to yield to another application. Examples of
actions that yield control to other applications are:

Displaying Windows message boxes
Displaying dialog boxes
Executing a DDE action

When Visual Basic sends a VBM_GETPROPERTY message to a custom control, intermediate
floating-point computations may be on the floating-point stack. All applications on the
system share the same floating-point stack. If the code in the custom control handles one
of the messages and yields to another application, the intermediate floating-point
computations on the stack may be destroyed.

Return Value
Returns 0 if the floating-point state is successfully copied to lpBuff. Otherwise, the function
returns the number of bytes needed to store the floating-point state.

See Also
VBRestoreFPState

VBClientToScreen [2.0]
See Also

Syntax
VOID VBClientToScreen(hctl, lpPt)
Converts the given point from client coordinates to screen coordinates. Screen coordinates
are relative to the upper-left corner of the screen.
Parameter Type Description
hctl HCTL Handle to the control.
lpPt LPPOINT Points to a POINT data structure that contains the coordinates to

be converted.
Comments
This function is similar to the Windows API ClientToScreen function, except that the
VBClientToScreen function can be used by graphical controls, whereas the
ClientToScreen function can not.

Return Value
None.

See Also
ClientToScreen (in Windows SDK)
VBScreenToClient

VBCoerceVariant [2.0]
See Also Example

Syntax
ERR VBCoerceVariant(lpVar, vtype, lpData)
Copies the value of a Variant to a memory location, coercing it to the specified data type.
Parameter Type Description
lpVar LPVAR Far pointer to Variant.
vtype SHORT The desired data type of the Variant data value.
lpData LPVOID Far pointer to data buffer. Buffer must be large enough to store

value of coerced Variant.
Comments
Refer to the VBGetVariantType function for a list of Variant data types.
If this function returns a string (HLSTR), it may or may not be a temporary string.
Eventually, the string must be freed using a Visual Basic function that frees strings, such as
VBGetHlstr.

Return Value
If vtype is invalid, the function returns 1. For any other errors, the function returns ERR. A
return value of 0 indicates a successful coersion to the given type.

See Also
VBGetHlstr
VBGetVariantType
VBGetVariantValue

Example
ERR err;
LONG i4;

// Coerce Variant to LONG.
err = VBCoerceVariant(lpVar, VT_I4, &i4)
return err; // Return ERR value

VBCreateHlstr
See Also Example

Syntax
HLSTR VBCreateHlstr(pb, cbLen)
Gets a Basic language string from the given data. A Basic language string (HLSTR) is
managed as part of the Visual Basic string space; the Visual Basic user can treat it as an
ordinary string. You must call this function before including a string as a parameter in a call
to VBFireEvent.
Parameter Type Description
pb LPVOID Far pointer to buffer containing the string data. If NULL, the string

is uninitialized.
cbLen USHORT The number of bytes in the string. If set to zero, the pb parameter

is not used.
Comments
The string (HLSTR) must eventually be freed with VBDestroyHlstr.

Return Value
A handle to a Basic language string, or NULL if Visual Basic runs out of memory.

See Also
VBDerefHlstr
VBDestroyHlstr
VBGetHlstrLen
VBSetHlstr

Example
cbCaption = GetWindowText(hwnd, pStrBuf, 20);
params.ClickString = VBCreateHlstr(pStrBuf, cbCaption);

VBCreateHsz
See Also Example

Syntax
HSZ VBCreateHsz(segment, lpszString)
Dynamically allocates a null-terminated string that may be moved around in memory.
Visual Basic keeps track of the string indirectly, through use of a handle, because the actual
address of the data may change. A custom property that contains a string is declared as an
HSZ type, and the corresponding field in the programmer-defined structure should also be
an HSZ type.
Parameter Type Description
segment HANDLE The segment in which to allocate the string.
lpszString LPSTR A pointer to the zero-terminated data to copy into the string.

Comments
When a string property is set, Visual Basic either assigns a new value directly to the HSZ
field (if the PF_fSetData flag is on) or sends a VBM_SETPROPERTY message. If you set the
property yourself, you should call VBDestroyHsz to free the current string data and then
call VBCreateHsz again to allocate space for the new data.
You can dereference the handle (thereby getting a pointer to the string data) by calling
either function VBDerefHsz or VBLockHsz.
The string can be allocated in any segment initialized as a Windows local heap. The
segment can also be the same as that of the control structure (hctl), which indicates that
the controls heap should be used.

Return Value
A handle to the new string, or NULL if memory was not available in the segment requested.

See Also
VBDestroyHsz
VBDerefHsz
VBLockHsz
VBUnlockHsz

Example
hsz = CreateHsz((_segment) hctl, "Visual Basic control.");

VBCreateTempHlstr [2.0]
See Also Example

Syntax
HLSTR VBCreateTempHlstr(pb, cbLen)
Creates a temporary Basic language string from the given data. Temporary strings are
automatically deleted the first time they are used by Visual Basic. The string space in Visual
Basic allows a maximum of 20 temporary strings.
Parameter Type Description
pb LPVOID Far pointer to buffer containing the string data. If NULL, the string

is uninitialized.
cbLen USHORT The number of bytes in pb. If set to zero, pb is not referenced,

and a NULL string is returned.
Comments
Temporary strings are used when you are returning a string to Visual Basic directly as a
function return value or as a placeholder for the intermediate results of an expression.

Important      VBDestroyHlstr must not be called to free a temporary string. Use a Visual
Basic function that deletes temporary strings, such as VBGetHlstr.

Return Value
A handle to a Basic language string. The function returns NULL for a zero-length string. If
the high word of the HLSTR is 1, then the function was not successful, and the low word
contains the error code.

See Also
VBCreateHlstr
VBGetHlstr

Example
hlstr = VBCreateTempHlstr(lpzBuffer, lstrlen(lpBuffer));

if (HIWORD(hlstr) == -1)
return LOWORD(hlstr);      // Return error

VBDefControlProc
See Also Example

Syntax
LONG VBDefControlProc(hctl, hwnd, msg, wp, lp)
Performs default message processing as required for Visual Basic controls; this function is
analagous to the general Windows default processor, DefWindowProc.
Its important for control procedures to call this function for default processing. In particular,
if the control procedure gets a message but does not process the message itself, it must
allow the control to fall through to a call to VBDefControlProc. This function performs all
processing for messages related to standard properties, as well as for other messages sent
by Visual Basic and by Windows.
For a description of all the default processing implemented by VBDefControlProc, see the
descriptions of default action for the individual VBM messages.
Parameter Type Description
hctl HCTL Handle to the control.
hwnd HWND The handle to the controls window.
msg USHORT Integer identifying the message to process.
wp USHORT Word parameter of the message.
lp LONG Long (32-bit) parameter of the message.

Comments
The default control procedure will either process a message completely or pass it along. If
there is a superclass, the window procedure of the superclass gets the message. Otherwise,
the message is sent to the default window procedure.

Return Value
A long integer. The meaning depends on the message which is being processed: see
descriptions of return value for individual messages.

See Also
DefWindowProc (in Windows SDK)
VBSuperControlProc

Example
.
. // Message pre-processing
.
lResult = VBDefControlProc(hctrl, hwnd, msg, wp, lp);
.
. // Message post-processing
.
return lResult;

VBDerefControl
See Also Example

Syntax
LPVOID VBDerefControl(hctl)
Takes a handle to a control structure, and returns a far pointer to the controls programmer-
defined structure, which is the portion of the control structure to which the custom-control
writer has access.
As part of the control structure, the programmer-defined structure is allocated once for
each instance of the control. You can use this structure to store information private to each
instance, including the value of custom properties. In the control model, you indicate the
size of the programmer-defined structure.
Parameter Type Description
hctl HCTL Handle to the control structure.

Comments
Whenever you call a Visual Basic API function, you should call VBDerefControl again if
you need to refer to the programmer-defined structure. Causing an allocation in the control
structures own segment is likely to invalidate this pointer, and many Visual Basic API
functions can cause such an allocation.

Return Value
A far pointer to the programmer-defined structure. This pointer is of type LPVOID, and
needs to be recast to a pointer to the structure youve defined.

See Also
VBGetControlHwnd
VBGetControlModel

Example
PCIRCLE pCircle;

if (hctrl)
pCircle = (PCIRCLE)VBDerefControl(hctrl);

VBDerefHlstr
See Also Example

Syntax
LPSTR VBDerefHlstr(hlstr)
Returns a pointer to the string data of a Basic language string. (See VBCreateHlstr for
more information on this data type.) The pointer returned becomes invalid as soon as the
string is moved in memory; any call to a Visual Basic API function may have that effect. If
this happens, the string must be dereferenced again to be valid.
The length of the string cannot be changed directly. To assign new data to the string or to
change its length, use VBSetHlstr. However, VBDerefHlstr is useful for examining string
contents.
The string data is not null-terminated. Use the VBGetHlstrLen function in conjunction with
VBDerefHlstr to determine the length of the string.
Parameter Type Description
hlstr HLSTR Handle to the Basic language string.

Comments
This function does not free temporary strings.

Return Value
A far pointer to the string data, or NULL if the string is of zero length. If the string has a
length greater than zero, it is not null-terminated and can contain embedded nulls.

See Also
VBCreateHlstr
VBDerefHlstrLen
VBDerefZeroTermHlstr
VBDestroyHlstr
VBGetHlstr
VBGetHlstrLen
VBSetHlstr

Example
lpstr = VBDerefHlstr(params.ClickString);

VBDerefHlstrLen [2.0]
See Also Example

Syntax
LPSTR VBDerefHlstrLen(hlstr, pcbLen)
Returns a pointer to the string data of a Basic language string and the length of the string.
The returned pointer value becomes invalid as soon as the string is moved in memory; any
call to a Visual Basic API function may have that effect. If this happens, the string must be
dereferenced again to be a valid pointer.

Parameter Type Description
hlstr HLSTR Handle to the Basic language string.
pcbLen USHORT FAR * A far pointer to an unsigned integer that contains the length

of the returned string data.
Comments
The function is identical to VBDerefHlstr, with the exception that VBDerefHlstrLen
additionally returns the length of the string data as a parameter.
This function does not free temporary strings.

Return Value
A far pointer to the string data, or NULL if the string is zero length. If the string has a length
greater than zero, it is not null-terminated and can contain embedded nulls.

See Also
VBDerefHlstr
VBDerefZeroTermHlstr
VBGetHlstr

Example
lpstr = VBDerefHlstr(params.ClickString, &usLen);

VBDerefHsz
See Also Example

Syntax
LPSTR VBDerefHsz(hsz)
Returns a pointer to null-terminated string data. The input to the function is an HSZ type,
which is a handle to a null-terminated string managed by Visual Basic. This handle remains
valid even as the string is moved around in memory. However, to manipulate the string
itself, you must first dereference the handle by calling this function.
The pointer returned becomes invalid as soon as the string is moved in memory; any call to
a Visual Basic API function may have that effect. To ensure that the string is not moved, use
VBLockHsz instead.
Parameter Type Description
hsz HSZ Handle to the string.

Return Value
A far pointer to the null-terminated string data.

See Also
VBCreateHsz
VBDestroyHsz
VBLockHsz
VBUnlockHsz

Example
lpstr = VBDerefHsz(hsz);

VBDerefZeroTermHlstr [2.0]
See Also Example

Syntax
LPSTR VBDerefZeroTermHlstr(hlstr)
Returns a pointer to the string data; however, the string is null-terminated.
Parameter Type Description
hlstr HLSTR Handle to the Basic language string.

Comments
The function is identical to VBDerefHlstr, with the exception that
VBDerefZeroTermHlstr returns a null-terminated string. Note that Basic strings can have
embedded null characters, so there may be null characters within the string in addition to
the one at the end.
The pointer returned by this function becomes invalid as soon as the string is moved in
memory. You may use VBDerefHlstr to dereference the string again.
The null termination character is added to the string in Basics string space, and will remain
until a new value is assigned to the string (either in Visual Basic code or with VBSetHlstr).
The addition of the null termination character does not affect the length of the string,
according to VBGetHlstrLen or the Basic Len function.

Return Value
A far pointer to the null-terminated string data, or NULL if an error occurs.

See Also
VBDerefHlstr
VBDerefHlstrLen

Example
lpszData = VBDerefZeroTermHlstr(params.ClickString);

VBDestroyHlstr
See Also Example

Syntax
VOID VBDestroyHlstr(hlstr)
Frees memory allocated for a Basic language string. After this function is called, the handle
no longer references a valid string.
Parameter Type Description
hlstr HLSTR Handle to the Basic language string.

Comments
This function must not be used with temporary strings. Temporary strings are returned by
VBCreateTempHlstr and possibly VBCoerceVariant and VBGetVariantValue. Use
VBGetHlstr to free temporary strings.

See Also
VBCreateHlstr
VBGetHlstr

Example
VBDestroyHlstr(hlstr);

VBDestroyHsz
See Also Example

Syntax
VOID VBDestroyHsz(hsz)
Frees memory allocated for an HSZ string, which is a null-terminated string allocated by
VBCreateHsz and managed by Visual Basic. After this function is called, the handle no
longer references a valid string.
Parameter Type Description
hsz HSZ Handle to the string.

See Also
VBCreateHsz

Example
VBDestroyHsz(hsz);

VBDialogBoxParam
See Also Example

Syntax
int VBDialogBoxParam(hinst, pszTemplateName, lpDialogFunc, lp)
Creates a task-modal dialog box. Being task-modal means that the application developer
can switch to other applications, but cannot switch to other windows within Visual Basic
without first closing the window.
Use this function in place of the Windows DialogBox or DialogBoxParam function to
display a task-modal dialog box. For example, you might want to display a dialog box as the
mechanism for setting a property in the Properties window. In response to the
VBM_INITPROPPOPUP message, you create a window. When sent a WM_SHOWWINDOW
message, the window posts a message to itself that hides itself and creates a dialog box.
(See the sample source code in the CIRC3 directory for clarification.)
Parameter Type Description
hinst HANDLE Handle to the DLL module. This should be the module

handle that was saved in LibMain.
pszTemplateName LPSTR Pointer to a null-terminated string that names the dialog

box template.
lpDialogFunc FARPROC Pointer to the dialog procedure.
lp LONG The long parameter (lParam) to be passed to the dialog

procedure as part of the WM_INITDIALOG message.

See Also
DialogBox (in Windows SDK)
DialogBoxParam (in Windows SDK)
VBM_INITPROPPOPUP

Example
VBDialogBoxParam(hmodDLL, "FlashDlg", DlgProc, 0L);

VBDirtyForm [2.0]
See Also Example

Syntax
VOID VBDirtyForm(hctl)
Updates property values before switching from design mode to run mode within Visual
Basic. This function should be called whenever you alter property data without calling
VBSetControlProperty or receiving a VBM_SETPROPERTY message. If
VBSetControlProperty has been called, or if you change a standard property by calling a
Windows function such as SetWindowText, Visual Basic already knows that a property
value has been changed.
Updates property values before switching from design mode to run mode within Visual
Basic.
Parameter Type Description
hctl HCTLHandle to the control structure.

See Also
VBSetControlProperty

Example
pCircle->FlashColor = tmpColor;
VBDirtyForm(hctl);

VBFireEvent
See Also Example

Syntax
ERR VBFireEvent(hctl, iEvent, lpparams)
Fires the specified event by executing the corresponding event procedure, if it exists. This
function waits for the event procedure to finish executing and then returns.
If execution is broken in the middle of the event procedure for any reason, VBFireEvent
does not return until the user gives a debugging command to finish execution of the event
procedure. Because of the possibility of yielding, VBFireEvent should not be called in
response to certain messages, such as WM_SETFOCUS and WM_KILLFOCUS.
Care should be taken in performing actions after VBFireEvent returns. During execution of
the Visual Basic event procedure, a great many things can happen: the control, its form,
and the segment that contains them may all be removed as a result of Unload statements.
If possible, calling VBFireEvent should be the last thing that the control procedure does
before returning. If you need to perform actions after calling VBFireEvent, check to insure
that the controls window handle is still valid (see Example) before referencing the control
structure.
Parameter Type Description
hctl HCTL Handle to the control structure.
iEvent USHORT Index to the event within the controls event information table.

The first event declared is indexed as 0, the second as 1, and so
on.

lpparams LPVOID A pointer to the argument structure, which contains a far pointer
to each argument in the reverse order in which the arguments
appear. If an argument is a string, the structure contains an
HLSTR field (not a pointer). The structure also contains an extra
pointer to the Index argument, which Visual Basic may or may not
use. Since the Index argument appears first in the event
procedure, if at all, it is placed last in the structure.
This parameter can be NULL if there are no arguments to the
event procedure.

Comments
Your code should allocate space for each pointer in the argument list, and make each
pointer point to meaningful data (except in the case of the Index argument, for which you
only need to allocate space for the pointer). If the event procedure changes the value of an
argument, the data referenced by the far pointer will be updated.
A string must be translated into a Basic language string before being passed to an event
procedure. VBCreateHlstr can be used to create a Basic string. The pointer in the
argument list should then point to the HLSTR handle returned by VBCreateHlstr,
VBGetHlstrLen, and VBDerefHlstr can be used to retrieve the value of the string after
the event procedure finishes.

Return Value
Zero, if no error. Nonzero indicates an error; the control may have been deleted by Visual
Basic statements during event procedure execution.

Note      If an error occurs, you should assume that the control has been destroyed.
Therefore, you should return from the control procedure as soon as possible.

See Also
VBCreateHlstr
VBDerefHlstr
VBDestroyHlstr
VBM_FIREEVENT
VBGetHlstrLen

Example
typedef struct tagPARAMS
{
HLSTR hlstrClick;
LPVOID Index

}
PARAMS;
.
.
.
PARAMS params;
char StrBuf[20];
int cbCaption, err;
LPSTR lpstr;

cbCaption = GetWindowText(hwnd, StrBuf, 20);
params.hlstrClick = VBCreateHlstr(StrBuf, cbCaption);
err = VBFireEvent(hctrl, EVENT_PUSH_CLICK, ¶ms);
if (!err)
{
/* Control is still valid; returned args can be processed.*/

}

VBFormat [2.0]
See Also Example

Syntax
SHORT VBFormat(vtype, lpData, lpszFmt, pb, cb)
Converts a value to a string and formats it according to instructions contained in a format
expression. Refer to the Visual Basic Format$ function for a complete description of format
expressions.
Parameter Type Description
vtype SHORT The data type of the value. The Variant data values are used

(VT_xxx).
lpData LPVOID The value to be formatted.
lpszFmt LPSTR A format expression; must be a null-terminated string.
pb LPVOID Buffer to contain the formatted value.
cb USHORT Size of lpBuff.

Comments
Refer to VBGetVariantType for a list of all the Variant data types that can be used for the
vtype parameter.
If vtype is set to VT_STRING, lpData must be a pointer to an HLSTR. If lpData is a pointer to
a temporary HLSTR, the HLSTR is deleted after being referenced.

Return Value
The number of bytes copied to pb. If the return value is 1, an error occurred.

See Also
VBGetVariantType

Example
char formatted[20];
int i = 6;

VBFormat(VT_I2, &i, ##, formatted, sizeof(formatted));

VBFreePic
See Also Example

Syntax
VOID VBFreePic(hpic)
Decrements the reference count for the picture and deletes the picture structure from
memory if the reference count becomes or was already zero. The reference count is the
number of different properties that use the same image, so VBRefPic or VBFreePic should
be called each time another property uses or deletes the image.
If the internal picture structure is deleted from memory (because the reference count
becomes zero), references to the HPIC handle become invalid.
Parameter Type Description
hpic HPIC Handle to an internal picture structure.

Return Value
None.

See Also
VBAllocPic
VBGetPic
VBPicFromCF
VBRefPic

Example
case WM_DESTROY:
ppix = (PPIX)VBDerefControl(hctl);
VBFreePic(ppix->hpicPicture);
break;

VBGetAppTitle
Example

Syntax
VOID VBGetAppTitle(lpstr, cbMax)
Gets a string containing the title of the current application. This string, which can contain
embedded spaces, is entered by the application developer when using the Make EXE File
command. The application title is displayed by the Windows Task List and by the Program
Manager.
The VBGetAppTitle function copies a null-terminated string to the specified location, but
will in any case not copy more bytes than specified in the cbMax parameter.
Parameter Type Description
lpstr LPSTR Location to which to copy the application title.
cbMax USHORT Maximum number of bytes to copy.

Example
char szBuf[21];

VBGetAppTitle((LPSTR)szBuf, 20);

VBGetCapture [2.0]
See Also Example

Syntax
HCTL VBGetCapture()
Retrieves a handle that identifies the control that has the mouse capture. Mouse capture is
the ability to receive all mouse input and to block other objects from receiving mouse input.
Only one control can have the mouse capture at any given time. If a control does have the
mouse captured, the control receives mouse input whether or not the cursor is within its
borders.

Return Value
The return value identifies the control that has the mouse capture; it is NULL if no control
has the mouse capture.

Note      A NULL return value does not indicate that no window has the mouse captured,
only that if a window does, it does not belong to a control.

See Also
GetCapture (in Windows SDK)

Example
hctl = VBGetCapture();

VBGetClientRect [2.0]
See Also Example

Syntax
VOID VBGetClientRect(hctl, lpRect)
Copies the dimensions of the client area of a control into the structure pointed to by the
lpRect parameter. Since the returned client RECT is in client coordinates (relative to the
upper-left corner of a controls client area), the coordinates of the upper-left corner are (0,
0).
Parameter Type Description
hctl HCTL Handle to the control.
lpRect LPRECT Points to a RECT data structure.

Return Value
None.

See Also
GetClientRect (in Windows SDK)
VBGetControlRect

Example
VBGetClientRect(hctl, &rcControl);

VBGetControl [2.0]
See Also Example

Syntax
HCTL VBGetControl(hctl, gc)
Searches for a handle to a control based on a specified control. The gc value identifies the
relationship between the two controls.
Parameter Type Description
hctl HCTL Handle to the control.
gc WORD Specifies the relationship between the original control and the

returned control. It may be one of the values listed in the
following table.

Value Meaning
GC_FIRSTSIBLING Returns the first sibling control.
GC_LASTSIBLING Returns the last sibling control.
GC_NEXTSIBLING Returns the next sibling control.
GC_PREVSIBLING Returns the previous sibling control.
GC_CHILD Returns the first child control.
GC_CONTAINER Returns controls container, or NULL if none.
GC_FORM Returns controls form.
GC_FIRSTCONTROL Returns first control in enumeration.
GC_NEXTCONTROL Returns next control in enumeration.
GC_FIRSTSELECTED Returns first selected control in enumeration.
GC_NEXTSELECTED Returns next selected control in enumeration.

Comments
When you enumerate controls, be aware of changes to the control. For example, changing
the z-order of a control during enumeration could cause infinite looping.

Return Value
The return value identifies a control. It is NULL if it reaches the end of a controls list of
controls, or if the gc parameter is invalid.

See Also
GetWindow (in Windows SDK)

Example
// Enumerate controls in hctlCurrent's container.
hctl = VBGetControl(hctlCurrent, GC_FIRSTSIBLING);
do {
// Process control
...
hctl = VBGetControl(hctl, GC_NEXTSIBLING);

} while (hctl);

VBGetControlHwnd
See Also Example

Syntax
HWND VBGetControlHwnd(hctl)
Gets the controls window handle (HWND). Since a control procedure is passed both an
HCTL and an HWND value, this function is usually not needed in custom control code.
However, it can be useful when dealing with other controls, and in DLL routines that are
passed an HCTL value.
When a Visual Basic statement passes a control as an argument, a DLL routine receives the
handle to the control structure. The DLL routine may pass this handle to
VBGetControlHwnd to get the controls window handle.
Parameter Type Description
hctl HCTL Handle to the control structure.

Comments
Graphical controls do not have an HWND.

Return Value
The window handle of the control, or NULL if a graphical control.

See Also
VBGetControlModel
VBGetHwndControl

Example
hwnd = VBGetControlHwnd(hctl);

VBGetControlModel
See Also Example

Syntax
LPMODEL VBGetControlModel(hctl)
Gets a pointer to a control model. The control model is the same structure passed to
VBRegisterControl. By examining fields of this structure you can determine how a
controls flags are set, and you also have access to its property and event information
tables.
This function may be useful in DLL routines which are passed a control. (When a Visual
Basic statement passes a control as an argument, the DLL routine receives the handle to
the control structure.)
Parameter Type Description
hctl HCTL Handle to the control structure.

Return Value
A far pointer to the control model.

See Also
VBDerefControl
VBGetControlHwnd

Example
The following function takes a handle for any valid control and a standard property value,
and returns the index of that property if it is supported. Otherwise, it returns 1.
USHORT    GetStdPropIndex(HCTL hctl, PPROPINFO StdProp)
{
MODEL FAR *lpmodel;
PPROPINFO FAR *pPropinfo;
LPSTR lpstrTmp;

lpmodel = VBGetControlModel (hctl);
pPropinfo = (LPVOID)MAKELONG(lpmodel->npproplist,

(_segment)lpmodel);

for (; *pPropinfo; pPropinfo++) {
if (StdProp == *pPropinfo)
return pPropinfo - lpmodel->npproplist;

}

return -1;
}

VBGetControlProperty
See Also Example

Syntax
ERR VBGetControlProperty(hctl, iProp, lpdata)
Retrieves the current setting of a property. The function either reads data from the control
structure or sends a VBM_GETPROPERTY message, depending on how the property is
declared. Visual Basic calls this function before displaying a setting in the Properties
window, and before returning a property value in Visual Basic code.
This function should not be used to process a VBM_GETPROPERTY message for the
indicated property, because that can only result in an infinite loop. Instead, this function is
useful in the following situations: when getting the value of a property from another
control; when you need to know the value of a standard property; and within a DLL routine.
Parameter Type Description
hctl HCTL Handle to the control structure.
iProp USHORT Index of the property within the controls property information

table. The first property is indexed as 0, the second as 1, and so
on.

lpdata LPVOID Pointer to a location to place the data. If the PF_fPropArray flag is
set, this parameter points to a DATASTRUCT structure.

Comments
If the property is a string property, lpdata must point to an HSZ variable or field. The
function VBGetControlProperty creates an HSZ string and assigns the handle to the
location pointed to by lpdata. This string is intended to be temporary, so it is the callers
responsibility to free memory by calling VBDestroyHsz after using the string.
In the case of X, Y coordinate types, the function converts from twips to the scale of the
controls container, as the value is retrieved. In the case of DT_BOOL types, nonzero values
are converted to 1.
If the property is a picture property (type DT_PICTURE), the function creates an HPIC handle
and assigns it to the lpdata location. The picture has a reference count of zero and does not
need to be explicitly freed.
If the property is an enumerated property (type DT_ENUM), then lpData points to a BYTE.

Return Value
Zero, if no error, or an error code.

See Also
VBCreateHsz
VBDestroyHsz
VBM_GETPROPERTY
VBSetControlProperty

Example
VBGetControlProperty(hctl, IPROP_CNTR_BACKCOLOR, &colorTemp);
VBGetControlProperty(hctl, IPROP_PUSH_CAPTION, &hsz);

VBGetControlRect [2.0]
See Also

Syntax
VOID VBGetControlRect(hctl, lpRect)
Copies the dimensions of the bounding rectangle of the specified control into the structure
pointed to by the lpRect parameter. The dimensions are given in screen coordinates,
relative to the upper-left corner of the display screen.
Parameter Type Description
hctl HCTL Handle to the control.
lpRect LPRECT Points to a RECT data structure that contains the screen

coordinates of the upper-left and lower-right corners of the
control.

Comments
This function is similar to the Windows API GetWindowRect function, except that the
VBGetControlRect function can be used by graphical controls, whereas GetWindowRect
cannot.

Return Value
None.

See Also
GetWindowRect (in Windows SDK)
VBGetClientRect
VBGetRectInContainer

VBGetDataSourceControl [3.0]

Syntax
HCTL VBGetDataSourceControl(hctl, bIsRegistered)
Retrieves the hctl of the data control that the control is currently bound to.
Parameter Type Description
hctl HCTL Handle to the control.
bIsRegistered BOOL Specifies whether the bound control has completed all its binding

initialization with the data control.
Comments
In most cases, a bound control responds to data binding messages in which one of the
arguments is a pointer to a DATAACCESS structure. This structure contains the hctl of the
data control. In cases where this structure is not available, you need to call the
VBGetDataSourceControl function to return the hctl of the data control.

Note      The hctl of the data control can change while the program runs. This means that
you should always call this function right before you reference the data control, rather than
using a saved copy of the hctl.

Return Value
Hctl of data control, or NULL if the bound control is not currently bound to a data control.

VBGetHInstance
Example

Syntax
HANDLE VBGetHInstance(VOID)
Gets the instance handle for the currently executing .EXE file. In the development
environment, this file is VB.EXE. When a stand-alone executable is being run, this file is the
application itself.
The instance handle is necessary for some Windows calls, including CreateWindow,
RegisterClass, and UnregisterClass.

Return Value
An instance handle for the executable file.

Example
class.hInstance = VBGetHInstance();

VBGetHlstr [2.0]
See Also Example

Syntax
USHORT VBGetHlstr(hlstr, pb, cbLen)
Copies the string data from the given source string to the destination buffer. The string is
null-terminated in the buffer. If the length of the source string is greater than cbLen, the
source string is truncated to fit in the destination buffer.
Parameter Type Description
hlstr HLSTR Handle to the source Basic language string.
pb LPVOID Far pointer to the destination buffer containing the copied null-

terminated string.
cbLen USHORT The maximum number of bytes to copy to pb. If set to zero, pb is

not referenced.
Comments
Basic language strings can contain embedded null characters.
If hlstr is a temporary Basic string (created by VBCreateTempHlstr), the string is deleted
after it is copied to the destination buffer. To simply delete a temporary string, call
VBGetHlstr with pb set to NULL and cbLen set to 0. To delete a string that is not a
temporary string, use VBDestroyHlstr.

Return Value
An unsigned integer value that contains the actual number of characters copied into pb.
The terminating null character is not included in cbLen.

See Also
VBCreateHlstr
VBDerefHlstr
VBDestroyHlstr
VBGetHlstrLen

Example
cbCount = VBGetHlstr(hlstr, &cBuffer, sizeof (Buffer) - 1);

VBGetHlstrLen
See Also Example

Syntax
USHORT VBGetHlstrLen(hlstr)
Gets the length of a Visual Basic language string. (Use VBGetHlstr to copy the string.)
Parameter Type Description
hlstr HLSTR Handle to the Basic language string.

Comments
This function does not free temporary strings.

Return Value
The length of the string in bytes.

See Also
VBCreateHlstr
VBDerefHlstr
VBFireEvent
VBGetHlstr

Example
lpstr[VBGetHlstrLen(params.ClickString) - 1] = '\0';
SetWindowText(hwnd, lpstr);

VBGetHwndControl
See Also Example

Syntax
HCTL VBGetHwndControl(hwnd)
Gets the handle to a control structure (HCTL), given the window handle (HWND) of that
control. The control structure contains a good deal of information that the window structure
does not, including the value of properties. Though the window handle is necessary for
many Windows API calls, the handle to the control structure is necessary for many calls to
the Visual Basic API.
Parameter Type Description
hwnd HWND Window handle of a Visual Basic control.

Return Value
The handle of the control, or NULL if the window handle is invalid or not associated with a
Visual Basic control.

See Also
VBGetControlHwnd

Example
hctl = VBGetHwndControl(hwnd);

VBGetMode
See Also Example

Syntax
MODE VBGetMode(VOID)
Indicates the current mode    run, design, or break. When the control is used within the
development environment, Visual Basic can be in any of the three modes. When the control
is used within a stand-alone executable, Visual Basic is always in run mode.
Calling this function is useful when you want to alter behavior depending on the mode. For
example, a control such as the timer should be visible in design mode even though it is not
visible in run mode. The code that responds to VBM_CREATED can call this function to
decide whether or not to display the control.

Return Value
One of the following enumerated constants: MODE_DESIGN, MODE_RUN, or MODE_BREAK.

See Also
VBM_CREATED

Example
The following code causes a control to be shown in design mode, but not break mode or run
mode (the Visual Basic 2.0 flag, MODEL_fInvisAtRun now provides this functionality). The
code responds to the VBM_CREATED message by testing the mode and returning
immediately if Visual Basic is not in design mode. (Note that MODEL_fLoadMsg must be set
to receive this message.) This prevents the default message processor from showing the
control, which it normally does in response to VBM_CREATED.
case VBM_CREATED:
if (VBGetMode() != MODE_DESIGN)
return 0L;

VBGetPIC
See Also Example

Syntax
HPIC VBGetPic(hpic, lppic)
Gets information from an internal picture structure and fills a PIC structure with this
information. Calling this function allows you to use data referenced by a valid HPIC handle.

Note      Given a choice, the VBGetPicEx function is preferred over the VBGetPic function.

Parameter Type Description
hpic HPIC Handle to an internal picture structure.
lppic LPPIC Far pointer to a PIC structure to receive the information.

Comments
Conversion of data between PIC and HPIC data types is necessary. Although Visual Basic
keeps track of picture data with a handle (HPIC), you have direct access only to the PIC
type. Thus, when setting a DT_PICTURE property, Visual Basic supplies an HPIC; you need
to call VBGetPic to dereference the data.
This function does not initialize the hpal member of the PIC structure. Use the VBGetPicEx
function for this.

Return Value
The HPIC that was passed to the function.

See Also
VBAllocPicVBRefPic
VBFreePic
VBPicFromCF

Example
VBGetPic(hpic, &pic);
switch (pic.picType) {
case PICTYPE_BITMAP:
GetObject(pic.picData.bmp.hbitmap, sizeof(BITMAP),

(LPSTR)&bmp);
hdcMem = CreateCompatibleDC(hdc);
SelectObject(hdcMem, pic.picData.bmp.hbitmap);
GetClientRect(hwnd, &rect);
StretchBlt(hdc, 0, 0, rect.right, rect.bottom, hdcMem, 0,
ú 0, bmp.bmWidth, bmp.bmHeight, SRCCOPY);
DeleteDC(hdcMem);
break;

...
}

VBGetPicEx [2.0]
See Also Example

Syntax
HPIC VBGetPicEx(hPic, lpPic, usVersion)
This function is almost identical to the VBGetPic function. The only difference is that the
PIC data structure in Visual Basic version 2.0 contains an hpal member, and this function
correctly fills in the hpal member. Refer to VBGetPic for more information.
Parameter Type Description
hPic HPIC Handle to an internal picture structure.
lpPic LPPIC Far pointer to PIC structure.
usVersion USHORT The Visual Basic version.

Return Value
The allocated HPIC handle, or NULL if an error occurs.

See Also
VBAllocPicEx
VBFreePic
VBPicFromCF
VBRefPic

Example
VBGetPicEx(hPic, &pic, VB_VERSION);

switch (pic.picType) {
case PICTYPE_BITMAP:
// Get HBMP and HPAL from PIC.
hBmp = pic.picData.bmp.hbitmap;
hPal = pic.picData.bmp.hpal;

... }

VBGetRectInContainer [2.0]
See Also Example

Syntax
VOID VBGetRectInContainer(hctl, lpRect)
Copies the dimensions of the bounding rectangle of the specified control into the structure
pointed to by the lpRect parameter. The dimensions are given in the coordinates of the
controls container, relative to the upper-left corner of the display screen.
Parameter Type Description
hctl HCTL Handle to the control.
lpPt LPRECT Points to a RECT data structure that contains the screen

coordinates of the upper-left and lower-right corners of the
controls container.

Return Value
None.

See Also
VBGetControlRect

Example
VBGetRectInContainer(hctl, &rcControl);

VBGetVariantType [2.0]
See Also Example

Syntax
SHORT VBGetVariantType(lpVar)
Returns the Variant data type for the given Variant.
Parameter Type Description
lpVar LPVAR Far pointer to Variant.

Comments
The function can fail if the Variant is not valid, or if the Variant references an object that is
unable to get its value.

Return Value
If the function fails, it returns 1. Otherwise, the function returns the Variant data type for
lpVar.
Return value Meaning
VT_EMPTY Empty
VT_NULL Null
VT_I2 Integer
VT_I4 Long
VT_R4 Single
VT_R8 Double
VT_CURRENCY Currency
VT_DATE Date
VT_STRING String

See Also
VBCoerceVariant
VBGetVariantValue
VBSetVariantValue

Example
switch (VBGetVariantType(lpVar)) {
case VT_I2:
{
int i2;

if (VBGetVariantValue(lpVar, &i2) != -1)
{
// Integer processing
}

break;
...}

VBGetVariantValue [2.0]
See Also

Syntax
SHORT VBGetVariantValue(lpVar, lpVal)
Gets the value of the given Variant.
Parameter Type Description
lpVar LPVAR Far pointer to Variant.
lpVal LPVOID Far pointer to data buffer. Buffer must be large enough to store

the Variants value.
Comments
If the data type of the Variant is known (by calling VBGetVariantType first), lpVal need
only point to a buffer large enough for the data type. Otherwise, lpVal should point to a
data structure that is a union, 8 bytes in size, of all the types that you want to handle.
The function can fail if the Variant is not valid, or if the Variant references an object that is
unable to get its value.

Return Value
The function returns 1 if it fails. Otherwise, the function returns the Variant data type for
lpVar.

See Also
VBCoerceVariant
VBGetVariantType
VBSetVariantValue

VBGetVersion [2.0]
See Also

Syntax
SHORT VBGetVersion()
Returns the version level of the host environment.

Note      The function returns the correct value (VB100_VERSION) for Visual Basic version
1.0 (VBRUN100.DLL), even though VBGetVersion is a new function for Visual Basic version
2.0.

Return Value
The version level.
Value Meaning
VB100_VERSION Visual Basic version 1.0
VB200_VERSION Visual Basic version 2.0

See Also
VBGetControlModel

VBInvalidateRect [2.0]
See Also

Syntax
VOID VBInvalidateRect(hctl, lpRect, bErase)
Adds a rectangle to the update region of the controls window. The update region represents
the client area of the window that must be redrawn. For graphical controls, the rectangle is
added to the update region of the controls container.
Parameter Type Description
hctl HCTL Handle to the control.
lpRect LPRECT Points to a RECT structure that contains the rectangle to be

added to the update region in client coordinates. If the lpRect
parameter is NULL, the entire client area is added to the update
region.

fErase BOOL Specifies whether the background within the update region is to
be erased when the update region is processed. It this parameter
is TRUE, the background is erased when the BeginPaint function
is called. If this parameter is FALSE, the background remains
unchanged.

Comments

If the fErase parameter is TRUE for any part of the update region, the background is erased
in the entire region, not just in the given part.

The value of lpRect is always in the controls client coordinate system.
Return Value
None.

See Also
InvalidateRect (in Windows SDK)
VBUpdateControl

VBIsControlEnabled [2.0]
See Also

Syntax
BOOL VBIsControlEnabled(hctl)
Determines whether the given control is enabled for mouse and keyboard input.
Parameter Type Description
hctl HCTL Handle to the control.

Return Value
The return value is nonzero if the control is enabled. Otherwise, it is zero.

See Also
IsWindowEnabled (in Windows SDK)

VBIsControlVisible [2.0]
See Also

Syntax
BOOL VBIsControlVisible(hctl)
Determines the visibility state of the given control.
Parameter Type Description
hctl HCTL Handle to the control.

Return Value
The return value is nonzero if the specified control is visible on the screen. The return value
is zero if the control or any of its containers are not visible. The return value may be
nonzero even if the window is totally obscured by other windows.

See Also
IsWindowVisible (in Windows SDK)

VBLinkMakeItemName [2.0]

Syntax
VOID VBLinkMakeItemName(hctl, lpszBuff)
Returns the name of the control with any control array information appended to it.
Parameter Type Description
hctl HCTL Handle to the control.
lpszBuff LPSZ Buffer that receives control name and any control array

information.
Comments
The control array index is appended to the name passed in lpszBuf. For example, if lpszBuff
contains foo and hctl is an element of a control array whose index is 3, then
VBLinkMakeItemName returns the string foo(3). If hctl is not an element of a control
array, the function returns foo. The lpszBuff parameter should be at least
MAXLINKITEMNAME in length.

Return Value
None.

VBLinkPostAdvise [2.0]
See Also

Syntax
ERR LinkPostAdvise(hctl)
Sends notification to the DDE client that the linked data has been changed by the DDE
server (custom control).
Parameter Type Description
hctl HCTL Handle to the control.

Comments
The control should call the VBLinkPostAdvise function each time the linked data has
changed. This allows the DDE client to get the most recent copy of the linked data.
If there is no DDE link, the function does nothing.

Return Value
ERR value.

See Also
VBPasteLinkOk

VBLockHsz
See Also Example

Syntax
LPSTR VBLockHsz (hsz)
Locks the position of an HSZ string maintained by Visual Basic, so that it cannot be moved
in memory, and returns a far pointer to the null-terminated string data.
Any time you need to pass the address of a string to a Visual Basic API function, you should
use VBLockHsz to dereference the string. The VBDerefHsz function also can be used to
dereference the string handle, but it does not lock the strings address as does VBLockHsz.
If you dont lock the string, it is liable to be moved in memory before the address is used in
the Visual Basic API function, thus causing that function to get invalid data.
After you are done using the string data, make sure you unlock the string by calling
VBUnlockHsz.
Parameter Type Description
hsz HSZ Handle to the string.

Return Value
A far pointer to the null-terminated string.

See Also
VBCreateHsz
VBDerefHsz
VBUnlockHsz

Example
lpstr = VBLockHsz(hsz);
cbStr = lstrlen(lpstr);
hlstr = VBCreateHlstr(lpstr, cbStr);
VBUnlockHsz(hsz);

VBMoveControl [2.0]
See Also

Syntax
VOID VBMoveControl(hctl, lpRect, fRepaint)
Changes the position and dimensions of a control. The position and dimensions values are
relative to the upper-left corner of the client area of the controls container.
Parameter Type Description
hctl HCTL Handle to the control.
lpRect LPRECT New bounding coordinates of control.
fRepaint BOOL Specifies whether the window is to be repainted.

Comments
If the fRepaint parameter is FALSE, no repainting of any kind occurs. When this parameter
is FALSE, the application must explicitly invalidate or redraw any parts of the control.
This function is similar to the Windows API MoveWindow and SetWindowPos functions,
except that the VBMoveControl function can be used by graphical controls, whereas the
Windows functions cannot.

Return Value
None.

See Also
MoveWindow (in Windows SDK)
SetWindowPos (in Windows SDK)

VBPaletteChanged [2.0]
See Also

Syntax
VOID VBPaletteChanged(hctl)
Notifies Visual Basic that its palette has changed, thereby updating the current system
palette.
Parameter Type Description
hctl HCTL Handle to the control.

Comments
The VBPaletteChanged function causes Visual Basic to asynchronously reconstruct the
system palette for the top-level window containing the control, ultimately resulting in
VBM_PALETTECHANGED messages sent to palette-aware controls enumerated in z-order.
This function has no effect if the control is not descended from the active window.

Return Value
None.

See Also
VBSet Control Flags

VBPasteLinkOk [2.0]
See Also

Syntax
BOOL VBPasteLinkOk(phTriplet, hctl)
This function is a design-time only function. This function should be called only when a
custom control receives a VBM_QPASTEOK message with wp = PT_PASTELINK, and the
control is interested in becoming a client in a DDE conversation.
Parameter Type Description
phTripletl HANDLE FAR * Pointer to a global memory handle or NULL.
hctl HCTL Handle to the control.

Comments
The phTriplet parameter is optional, and the control can pass NULL if it does not want a
string returned.
If phTriplet is a pointer to a handle, the DDE server allocates a null-terminated string that
contains the DDE triplet of application, topic, and item name. For example, excel!sheet1!
r1c1 is a possible DDE triplet for Microsoft Excel. The control is responsible for freeing the
returned handle.

Return Value
TRUE indicates link request was accepted; FALSE indicates link was terminated.

See Also
VBLinkPostAdvise

VBPicFromCF
See Also Example

Syntax
ERR VBPicFromCF(lphpic, hData, wFormat)
Allocates an internal picture structure from the given Clipboard data handle and Clipboard
format, and supplies a handle to the picture that was allocated.
The following Clipboard formats are supported: bitmap, metafile, palette, and device-
independent bitmap (DIB).
Parameter Type Description
lphpic HPIC FAR * Pointer to an HPIC data type; where the handle of the picture

allocated should be copied.
hData HANDLE Handle to the Clipboard data.
wFormat WORD Integer representing Clipboard format. Accepted values include

CF_BITMAP, CF_METAFILEPICT, CF_DIB, and CF_PALETTE. Icons are
not supported with this operation.

Comments
If the wFormat parameter is CF_PALETTE, the VBPicFromCF function additionally creates a
1x1 pixel bitmap and stores the handle in the PIC structure.

Return Value
Zero, if successful, or an error code.

See Also
VBAllocPic
VBFreePic
VBGetPic
VBRefPic

Example
if (OpenClipboard(hwnd)) {
hData = GetClipboardData(CF_BITMAP);
err = VBPicFromCF(&hpic, hData, CF_BITMAP);
CloseClipboard();

}

VBReadBasicFile
See Also Example

Syntax
ERR VBReadBasicFile(usFileNo, pb, cb)
Reads data from a file previously opened by the application developer. Regardless of how
the file was opened, VBReadBasicFile reads data as raw bytes, performing no
translations.
With the usFileNo parameter, you must supply the same number used by the application
developer in an Open # statement. To get this number, you should establish a property, an
argument to a function call, or another mechanism, so that the user can communicate the
file number to be used.
Parameter Type Description
usFileNo USHORT The integer specified by the application developer in a file Open

statement.
pb LPVOID Pointer to location which is to receive data read from the file.
cb WORD Number of bytes to transfer.

Return Value
Zero, if successful, or an error code.

See Also
VBRelSeekBasicFile
VBSeekBasicFile
VBWriteBasicFile

Example
char pStrBuf[256];

err = VBReadBasicFile(fileNo, (LPVOID)pStrBuf, 255);

VBReadFormFile
See Also

Syntax
ERR VBReadFormFile(hformfile, pb, cb)
Reads data from a form file. Use this function to load a single property from a form file
during a form load. This function is needed only when the PF_fSaveMsg flag is set.
When a form is loaded from disk, every property of every control is initialized. For each
property, Visual Basic either reads data from the disk directly (if the PF_fSaveData flag is
set) or sends a VBM_LOADPROPERTY message (if the PF_SaveMsg flag is set). In the latter
case, it is the controls responsibility to read data from the file by using VBReadFormFile.
The VBM_LOADPROPERTY message provides an HFORMFILE value. This is a handle to a
structure that contains information on the file being loaded, including current position
within the file. Passing this handle to VBReadFormFile enables Visual Basic to correctly
read properties from a file previously saved with VBWriteFormFile.
Parameter Type Description
hformfile HFORMFILEHandle to the form file.
pb LPVOID Pointer to the buffer into which to copy

the data read.
cb WORD Number of bytes to read.

Comments
Whether you need to use this function depends entirely on whether you set the
PF_fSaveMsg flag in the property information table. Most of the time, you shouldnt set this
flag, because Visual Basic knows how to read and write all the standard data types to disk.
Setting this flag is useful in any of the following situations: the property contains
information not limited to a simple type; you want to save a group of related properties
together; or the data is more efficiently stored in some intermediate format that the user
does not see.
You generally dont need to set the PF_fSaveMsg flag to support saving and loading of a
picture property, because Visual Basic automates this for you if the property is declared as
type DT_PICTURE.

Return Value
Zero, if successful, or an error code.

See Also
VBRelSeekFormFile
VBSeekFormFile
VBWriteFormFile
VBM_LOADPROPERTY

VBRecreateControlHwnd
Example

Syntax
ERR VBRecreateControlHwnd(hctl)
Destroys the window associated with the control and recreates it. In the process, this
function saves and restores both font information and standard properties stored only in
the window and which would otherwise be erased when the window is destroyed (this
includes the Enabled, TabIndex, TabStop, and Visible properties).

Note      The VBRecreateControlHwnd function should not be use for container controls,
that is, controls that set the MODEL_fChildrenOk flag.
This function is useful for changing pre-HWND properties after the window structure has
already been created, because some window styles cannot be altered without destroying
the window. The VBRecreateControlHwnd function is provided to make this operation
easier. Alternatives to calling this function include not reflecting changes to these
properties at design time and specifying that the properties are read-only at run time.
As always, window styles affected by properties should be adjusted in response to the
WM_NCCREATE message.
Parameter Type Description
hctl HCTL Handle to a control structure.

Comments
Any custom properties that are stored only as part of the window state (and not explicitly
stored in the programmer-defined structure) need to be saved and restored when you call
the function VBRecreateControlHwnd. The VBGetControlProperty and
VBSetControlProperty functions are useful for this purpose.
Use of the VBRecreateControlHwnd function can affect responses to other messages.
When the window is being destroyed and recreated in response to this function, you may
want to suppress actions taken in response to WM_NCDESTROY and WM_NCCREATE.
(WM_NCDESTROY code typically frees handles; WM_NCCREATE code typically sets
properties to default values.) You can react appropriately by setting a flag variable in your
code and then checking this variable when responding to these messages.

Return Value
Zero, if successful, or an error code.

Example
The following example recreates the window for a modified list control. The code saves the
ListIndex property (which is part of the state of the window and is not stored elsewhere)
and then restores it after the window is recreated.
VBGetControlProperty(hctl, IPROP_MYLIST_LISTINDEX, &iListIndex);
fRecreating = TRUE;
VBRecreateControlHwnd(hctl);
fRecreating = FALSE;
VBSetControlProperty(hctl, IPROP_MYLIST_LISTINDEX, (LONG)iListIndex);

VBRefPic
See Also Example

Syntax
HPIC VBRefPic(hpic)
Increments the reference count for an HPIC handle, indicating that another property is
using the image referred to by HPIC. Properly updating the reference count (by calling
VBRefPic and VBFreePic as needed) is important, because the picture structure is deleted
from memory as soon as the reference count reaches zero.
Parameter Type Description
hpic HPIC Handle to an internal picture structure.

Comments
You need to call VBRefPic to update the reference count when you set PF_fSetMsg flag
without setting the PF_fSetData flag.
You do not need to call VBRefPic when you set the PF_fSetData flag of a DT_PICTURE
property unless the picture data is used in more than one place.

Return Value
The HPIC handle that was passed to the function.

See Also
VBAllocPic
VBFreePic
VBGetPic
VBPicFromCF

Example
VBGetPic (VBRefPic(hpic), &pic);

VBRegisterModel
Example

Syntax
BOOL VBRegisterModel(hmodDLL, lpmodel)
Registers a new control type. This action enables Visual Basic to support instances of the
control, and (if the development environment is running) it expands the Toolbox, displaying
an icon for the new control type.
This function should be called only in the Visual Basic entry point, VBINITCC, which Visual
Basic calls while loading the custom control file.
Parameter Type Description
hmodDLL HANDLE Handle to the DLL module (in the case of custom controls, the

DLL module is the .VBX file).
lpmodel LPMODEL Pointer to the control MODEL structure.

Comments
The hmodDLL parameter can be obtained in the DLL entry point called by Windows. Once
this value is obtained, it should be saved in a static variable, so that it can then be used in
the VBRegisterModel call in VBINITCC.

Return Value
TRUE, if registering the control was succesful; FALSE otherwise. (Failure to register a control
may indicate that a control type with the same class name was already registered.)

Example
The following source lines from CIRC3.C illustrate how a control can register two different
models, depending on the version of the host.
BOOL FAR PASCAL _export VBINITCC(USHORT usVersion, BOOL fRuntime)
{
...
// Register control(s).
if (usVersion < VB_VERSION)
return VBRegisterModel(hmodDLL, &modelCircle_Vb1);

else
return VBRegisterModel(hmodDLL, &modelCircle);

}

VBReleaseCapture [2.0]
See Also

Syntax
VOID VBReleaseCapture(VOID)
Releases the mouse capture and restores normal input processing to the control that
captured the mouse. This function should be called afterVBSetCapture, when the control
no longer needs all mouse input.

Return Value
None.

See Also
VBGetCapture
VBSetCapture
ReleaseCapture (in Windows SDK)

VBRelSeekBasicFile [3.0]
See Also

Syntax
LONG VBRelSeekBasicFile(usFileNo, offset)
Moves the current position within a data file forward or backward by the indicated distance.
This function is the same as VBSeekBasicFile, except that the position given is relative to
the current file position.
When using this function, make sure that you never seek past the end or before the
beginning of a file.
Parameter Type Description
usFileNo USHORT The integer specified by the application developer in a file Open

statement.
offset LONG Distance to move forward in the file, measured in bytes. Negative

value moves file position backward.
Comments
Refer to the VBReadBasicFile and VBWriteBasicFile functions for more information on
data files and how to get file numbers for them.

Return Value
The new offset.

See Also
VBReadBasicFile
VBSeekBasicFile
VBWriteBasicFile

VBRelSeekFormFile
See Also

Syntax
LONG VBRelSeekFormFile(hformfile, offset)
Moves the current position within a form file forward or backward by the indicated distance.
This function is the same as VBSeekFormFile, except that the position given is relative to
the current file position.
When using this function, make sure that you never seek past the end or before the
beginning of a file.
Parameter Type Description
hformfile HFORMFILE Handle to form file.
offset LONG Distance to move forward in the file, measured in bytes.

Negative value moves file position backward.
Comments
Refer to the VBReadFormFile and VBWriteFormFile functions for more information on
form files and how to get handles to them.

Return Value
The new offset.

See Also
VBReadFormFile
VBSeek FormFile
VBWriteFormFile

VBResizeHlstr [2.0]
See Also

Syntax
ERR VBResizeHlstr(hlstr, newCbLen)
Reallocates the size of the given string to the new size. The string must already exist.
Parameter Type Description
hlstr HLSTR Handle to the source Basic language string.
newCbLen USHORT The new size for the string. The size must be between 0 and

65534.
Comments
If the string is lengthened, all existing string data is preserved, and the contents of the
lengthened portions is undefined    it is not initialized to zero. You should also assume that
the string has moved in memory, and use VBDerefHlstr to retrieve the string value.

Return Value
The return value is 0 if successful, and ERR if not successful.

See Also
VBCreateHlstr
VBDestroyHlstr
VBDerefHlstr
VBGetHlstrLen
VBSetHlstr

VBRestoreFPState [2.0]
See Also

Syntax
VOID VBRestoreFPState(lpBuff)
Restores the saved floating-point state. Use the VBCbSaveFPState function to retrieve
the current floating-point state.
Parameter Type Description
lpBuf LPVOID A far pointer to a buffer that contains the current floating-point

state.
Comments
Refer to the VBCbSaveFPState function for a more detailed description about floating-
point states.

Return Value
None.

See Also
VBCbSaveFPState

VBRuntimeError [2.0]
See Also

Syntax
VOID VBRuntimeError(err)
Generates a run-time error in Basic code. Execution does not return to the procedure that
calls this function.
Parameter Type Description
err ERR Basic run-time error code.

Warning      Do not use this function when processing messages in the control procedure. It
is strictly for use by exported DLL functions that are called directly from Visual Basic code.

Return Value
None.

See Also
VBSetErrorMessage

VBScreenToClient [2.0]
See Also

Syntax
VOID VBScreenToClient(hctl, lpPt)
Converts the given point from screen coordinates to client coordinates. The new
coordinates are relative to the upper-left corner of the given controls client area.
Parameter Type Description
hctl HCTL Handle to the control.
lpPt LPPOINT Points to a POINT data structure that contains the coordinates to

be converted.
Return Value
None.

See Also
VBClientToScreen

VBSeekBasicFile [3.0]
See Also

Syntax
LONG VBSeekBasicFile(usFileNo, offset)
Moves the current position within a data file. When using this function, make sure that you
never seek past the end or before the beginning of a file.
Parameter Type Description
usFileNo USHORT The integer specified by the application developer in a file Open

statement.
offset LONG Position to move to within the file, measured in bytes from

beginning of the file.
Comments
Refer to the VBReadBasicFile and VBWriteBasicFile functions for more information on
data files and how to get file numbers to them.

Return Value
The new offset.

See Also
VBReadBasicFile
VBRelSeekBasicFile
VBWriteBasicFile

VBSeekFormFile
See Also

Syntax
LONG VBSeekFormFile(hformfile, offset)
Moves the current position within a form file. When using this function, make sure that you
never seek past the end or before the beginning of a file.
Parameter Type Description
hformfile HFORMFILEHandle to form file.
offset LONG Position to move to within the file, measured in bytes from

beginning of the file.
Comments
Refer to the VBReadFormFile and VBWriteFormFile functions for more information on
form files and how to get handles to them.

Return Value
The new offset.

See Also
VBReadFormFile
VBRelSeekFormFile
VBWriteFormFile

VBSendControlMsg

Syntax
LONG VBSendControlMsg(hctl, msg, wp, lp)
Sends a message to another control. This function is similar to the Windows SendMessage
function. However, when you want to send a message to a control, it is better to use
VBSendControlMsg than SendMessage, because the former works even if the control is
not yet fully loaded.
When you send a message directly to a control by using SendMessage and the controls
window handle, Visual Basic intercepts the message and then passes it along to the control
procedure. Calling VBSendControlMsg accomplishes the same result, but is slightly more
efficient.
Parameter Type Description
hctl HCTL Handle to the control structure.
msg USHORT Integer identifying the message to process.
wp USHORT Word parameter of the message.
lp LONG Long (32-bit) parameter of the message.

Return Value
A long integer. The meaning depends on the message that is being processed. See
descriptions of return value for individual messages.

VBSetCapture [2.0]
See Also Example

Syntax
VOID VBSetCapture(hctl)
Sets the mouse capture to the control. Mouse capture is the ability to receive all mouse
input and to block other objects from receiving mouse input. Only one control can have the
mouse capture at any given time. If a control has the mouse captured, the control receives
mouse input whether or not the cursor is within its borders.
Parameter Type Description
hctl HCTL Handle to the control structure.

Comments
Use VBReleaseCapture when the control no longer needs to have the mouse captured.

Return Value
None.

See Also
VBGetCapture
VBReleaseCapture
SetCapture (in Windows SDK)

Example
VBSetCapture(hctl);
.
. // Mouse processing
.
VBReleaseCapture();

VBSetControlFlags [2.0]
See Also Example

Syntax
ULONG VBSetControlFlags(hctl, mask, value)
Sets and returns the particular characteristics of a control.
Parameter Type Description
hctl HCTL Handle to the control.
mask ULONG Identifies which bits to modify. For a description of the mask

values, see the following table.
value ULONG Identifies the new value for all the CTLFLG_ values, regardless of

the mask value.
Value Meaning
CTLFLG_BOUNDDATASET [3.0] Used as a semaphore when setting

CTLFLG_DATACHANGED.
CTLFLG_DATACHANGED [3.0] Determines if the data in the bound control has

changed since the last time the data was retrieved
from the data control.

CTLFLG_GRAPHICALOPAQUE Determines if the graphical control paints every pixel
of its rectangular extent.

CTLFLG_GRAPHICALTRANSLUCENT Determines if the graphical control manipulates pixels
in a bit-wise manner.

CTLFLG_HASPALETTE Determines if the control owns a palette.
CTLFLG_USESPALETTE Determines if the control is palette-aware.

Comments
Here is additional information about each of the flags:
CTLFLAG_BOUNDDATASET [3.0]

Used as a semaphore to indicate that any setting of the DataChanged property or
CTLFLG_DATACHANGED flag to TRUE is ignored until the semaphore is cleared. This may
be necessary to avoid side-effects in which new data retrieved from the data control is
set in the bound control, thereby causing the DataChanged property to be set to TRUE.
Typically, only data explicitly changed by the user should cause the DataChanged
property to be set to TRUE.
The CIRC3 sample uses the CTLFLG_BOUNDDATASET flag to prevent the DataChanged
property from being changed when new data is set in the control:

VBSetControlFlags(hctl, CTLFLG_DATACHANGED, 0L);
VBSetControlFlags(hctl, CTLFLG_BOUNDDATASET, CTLFLG_BOUNDDATASET);
err = VBSetControlProperty(lpda->hctlBound, IPROP_CIRCLE_CAPTION,

lData);
VBSetControlFlags(hctl, CTLFLG_BOUNDDATASET, 0L);

If setting the Caption property triggered an event procedure and the users event
procedure set the DataChanged property, setting the DataChanged property would be
ignored until the semaphore (CTL_BOUNDDATASET) was cleared.

CTLFLAG_DATACHANGED [3.0]
Indicates that the data value in the bound control has changed since the last time the
value was retrieved from the data control. This flag, along with the
CTLFLG_BOUNDDATASET flag, is actually the internal representation of the DataChanged
property.
If the user explicitly changes a bound property, the CTLFLG_DATACHANGED flag should
be set. The CIRC3 sample illustrates this when the Caption property is changed by the

user:
case VBM_SETPROPERTY:
switch (wp) {
case IPROP_CIRCLE_CAPTION:
VBSetControlFlags(hctl, CTLFLG_DATACHANGED,

CTLFLG_DATACHANGED);

CTLFLAG_GRAPHICALOPAQUE
Applies only to graphical controls    this flag is ignored by nongraphical controls. This flag
indicates that the control paints every pixel of its rectangular extent, meaning that this
control does not behave as a transparent or translucent object.
Setting this flag, clears the CTLFLAG_GRAPHICALTRANSLUCENT flag.

CTLFLAG_GRAPHICALTRANSLUCENT
Applies only to graphical controls    this flag is ignored by nongraphical controls. This flag
is set by default and indicates whether the control manipulates pixels in a bit-wise
manner when it performs a drawing operation.
If this flag is cleared, then each pixel value within the bounding rectangle of the control
must either be determined by the control or remain unchanged. Any drawing operation
in which the control combines the pixels with a pattern requires that this flag remain set.
Note that drawing icons requires that this flag be set, since icons can have inverse
screen patterns.
Setting this flag clears the CTLFLAG_GRAPHICALOPAQUE flag.
Drawing operations performed during a VBM_PAINT message may require the
CTLFLAG_GRAPHICALTRANSLUCENT flag to be set, depending on the drawing mode.
(Refer to the Windows API SetROP2 function for more information on setting drawing
modes.)

Drawing mode CTLFLAG_GRAPHICALTRANSLUCENT
R2_NOT TRUE
R2_MERGEPENNOT TRUE
R2_MASKPENNOT TRUE
R2_MERGENOTPEN TRUE
R2_MASKNOTPEN TRUE
R2_MERGEPEN TRUE
R2_NOTMERGEPEN TRUE
R2_MASKPEN TRUE
R2_NOTMASKPEN TRUE
R2_XORPEN TRUE
R2_NOTXORPEN TRUE
R2_BLACK FALSE
R2_WHITE FALSE
R2_NOP FALSE
R2_COPYPEN FALSE
R2_NOTCOPYPEN FALSE

Similarly, when you use the Windows API BitBlt function, you may need the
CTLFLAG_GRAPHICALTRANSLUCENT flag to be set, depending on the raster op code.

Raster op code CTLFLAG_GRAPHICALTRANSLUCENT
DSTINVERT TRUE
MERGEPAINT TRUE
NOTSRCERASE TRUE

PATINVERT TRUE
PATPAINT TRUE
SRCAND TRUE
SRCERASE TRUE
SRCINVERT TRUE
SRCPAINT TRUE
BLACKNESS FALSE
MERGECOPY FALSE
NOTSRCCOPY FALSE
PATCOPY FALSE
SRCCOPY FALSE
WHITENESS FALSE
CTLFLAG_HASPALETTE

Indicates whether the control has a palette. Changing this flag from FALSE to TRUE, TRUE
to FALSE, or TRUE to TRUE generates a call to VBPaletteChanged.
The VBSetControlFlags function ignores this flag if the display environment doesnt
support a palette.

CTLFLAG_USESPALETTE
Indicates whether the control uses a palette. Refer to the VBTranslateColor function for
more information on how color values are mapped to palette colors. Setting this flag
does not generate an action.
The VBSetControlFlags function ignores this flag if the display environment doesnt
support a palette.

Return Value
The current or new setting of the controls flags.

See Also
VBPaletteChanged

Example
Here are some examples of how to use the VBSetControlFlags function:

Set a control to be palette-aware:
VBSetControlFlags(hCtl, CTLFLG_USESPALETTE, CTLFLG_USESPALETTE);

1. Remove the palette-aware setting from a control:
VBSetControlFlags(hCtl, CTLFLG_USESPALETTE, 0L);

2. Retrieve the current setting only:
ulFlags = VBSetControlFlags(hCtl, 0L, 0L);

VBSetControlProperty
See Also Example

Syntax
ERR VBSetControlProperty(hctl, iProp, Data)
Sets the value of a property. Depending on the setting of the propertys flags, this function
may do any of the following: send a VBM_CHECKPROPERTY message; transfer data to the
control structure; or send a VBM_SETPROPERTY message. Visual Basic calls this function
after a setting is entered in the Properties window and after a setting is assigned in code.
This function should not be used to process these messages for the indicated property,
because that results in an infinite loop. Use this function to: set the value of a property
from another control; to set the value of a standard property; and to set the value of a
property from within a DLL routine.
Parameter Type Description
hctl HCTL Handle to the control structure.
iProp USHORT Index of the property within the controls property information

table. The first property is indexed as 0, the second as 1, and so
on.

Data LONG Data to store in the property. Although the data may have a type
other than long integer, it must be placed in a 4-byte field and
then passed as a long integer. If the PF_fPropArray flag is set, this
parameter points to a DATASTRUCT structure.

Comments
To ensure that data is not altered when recast as a type Long, take the address of the data,
cast that address to a pointer to a type Long, and then use indirection to obtain the original
data. The first example below demonstrates this technique. Doing this is especially
important with a floating-point number, because the format of the data completely changes
if you use an ordinary (LONG) cast.
In the case of DT_BOOL types and X, Y coordinate types, the function converts the data if
necessary. For X, Y coordinate types, the function assumes that units are expressed in the
scale of the controls container. Then the scales are converted to twips. For DT_BOOL types,
nonzero values are converted to 1.
In the case of string data, the Data argument takes a far pointer to a
null-terminated string.
If the property has type DT_ENUM (enumerated), cast the data to type Long. Note that the
high word is entirely ignored, but that the high byte of the lower word must be set to zero
or Visual Basic reports an error. This check is done because Visual Basic does not support a
1-byte type; therefore, enumerated types are treated as integers but tested to see if they
are less than 256.

Return Value
Zero, if no error, or an error code.

See Also
VBGetControlProperty
VBM_CHECKPROPERTY
VBM_SETPROPERTY

Example
VBSetControlProperty(hctrl, IPROP_MYCTL_ANGLE, *(LPLONG)&MyRealNumber);
VBSetControlProperty(hctl, IPROP_MYCTL_CAPTION,
(LONG)(LPSTR)"New Caption.");

VBSetErrorMessage
Example

Syntax
ERR VBSetErrorMessage(errnum, lpszString)
Sets the text of an error message, just before you return the error code. The error can
either be an error defined by Visual Basic or a programmer-defined errror message. The
latter should be in the range 20,000 to 29,999. Visual Basic specifically reserves this range
for use by custom control writers and Visual Basic programmers. Use of other numbers is
liable to conflict with current or future software.
When you set the text of a Visual Basic error message, the text you specify replaces the
placeholder in the error message string, if any. When you set the text of a programmer-
defined error message, the text you specify supplies the entire error message string.
For a list of trappable error messages defined by Visual Basic, see Visual Basic online Help.
For more information on how the application developer can trap errors, see Chapter 10,
Handling Run-Time Errors, in the Visual Basic Programmers Guide.
Parameter Type Description
errnum ERR Integer specifying a trappable error message.
lpszString LPSTR Pointer to the string to be displayed.

Comments
If youre not setting error-message text, you dont need to call VBSetErrorMessage. If you
do need to set error-message text (either a placeholder or the whole string, as described
above), make sure you call VBSetErrorMessage every time you return that error to Visual
Basic.

Return Value
The first argument, which is the error number set.

Example
#define ERR_NEGVALUE 20000
...
    case VBM_SETPROPERTY:
        switch (wp) {
            case IPROP_MYCTL_MYPROP:
                if (lp < 0)
                    return VBSetErrorMessage(ERR_NEGVALUE,
                        "Negative setting not allowed for this property.");

VBSetHlstr
See Also Example

Syntax
ERR VBSetHlstr(phlstr, pb, cbLen)
Assigns a new string value to an existing Basic language string (HLSTR). The new string
data can be shorter or longer than the existing string. Because the language string is
managed as part of the Visual Basic string space, it is automatically moved around in
memory as needed.
The first argument is not an HLSTR handle, but a pointer to the handle.
HLSTR handles in Basic user-defined types are initialized to 0. If such a field (an HLSTR field
set to zero) is passed to VBSetHlstr, the function automatically assigns a new HLSTR
handle to the field. Note that this works only with HLSTR handles that are part of a Basic
user-defined type. In most cases, the handle itself will not be changed, only the string data.
Parameter Type Description
phlstr HLSTR far *Pointer to an HLSTR (a memory location that stores a handle to

a Basic language string).
pb LPVOID Pointer to the string data to assign to the Basic language string. If

this pointer is NULL, then the string is uninitialized and the
existing data is not preserved.

cbLen USHORT Length of the new string in bytes. If this argument is 0, the the pb
argument is ignored. If this argument is 1, then pb is assumed to
be an HLSTR.

Comments
This function can assign one string to another by setting cbLen to 1 and pb to the HLSTR of
the source string. If the source HLSTR is a temporary string, it is freed afterwards.

Return Value
Zero, if successful, or an error code.

See Also
VBCreateHlstr
VBDerefHlstr
VBGetHlstrLen

Example
The following examples illustrate different ways of using VBSetHlstr to set a Basic
language string:
VBSetHlstr(&hlstr, NULL, 0); // Set string to empty string.

VBSetHlstr(&hlstr, NULL, 10);// Reserve 10 characters.
wsprintf(VBDerefHlstr(hlstr), "%9d", outputVal);

// Copy string.
VBSetHlstr(&hlstr, "Test String", strlen("Test String"));
VBSetHlstr(&hlstr, hlstr2, -1); // Copy hlstr2 to hlstr.

VBSetVariantValue [2.0]
See Also

Syntax
SHORT VBSetVariantValue(lpVar, vtype, lpData)
Sets a Variant to a given data value based on the given Variant data type.
Parameter Type Description
lpVar LPVAR Far pointer to Variant.
vtype SHORT Variant data type.
lpData LPVOID Far pointer to buffer, containing data of type vtype.

Comments
Refer to the VBGetVariantType function for a list of Variant data types.
If vtype is VT_STRING, then the lpData is a pointer to an HLSTR, not the HLSTR itself.
If lpData points to an HLSTR that is a temporary string, the string is freed afterwards.

Return Value
If vtype is invalid, the function returns 1. For any other errors, the function returns ERR. A
return value of 0 indicates success.

See Also
VBCoerceVariant
VBGetVariantType
VBGetVariantValue

VBSuperControlProc
See Also

Syntax
LONG VBSuperControlProc(hctl, msg, wp, lp)
Invokes the Windows procedure (WndProc) of the controls superclass, if any. Otherwise, it
invokes DefWndProc. The superclass of a control is specified in the control model.
This function takes a control handle, looks up the corresponding window handle, and
passes the window handle as part of the message.
Although VBDefControlProc usually forwards messages to the superclass, the function
VBSuperControlProc is a more direct means. VBSuperControlproc bypasses the Visual
Basic default processing and the message is guaranteed to reach the superclass.
Parameter Type Description
hctl HCTL Handle to a control.
msg USHORT Integer identifying the message to process.
wp USHORT Word parameter of the message.
lp LONG Long (32-bit) parameter of the message.

Return Value
A long integer. The meaning depends on the message which is being processed: see
descriptions of return value for individual messages.

See Also
VBDefControlProc

VBTranslateColor [2.0]
See Also

Syntax
COLOR VBTranslateColor(hctl, clr)
Converts a Visual Basic-encoded color to an RGB color value for the control.
Parameter Type Description
hctl HCTL Handle to the control. If NULL, color translation uses

GetSysColor only.
clr COLOR RGB color value.

Comments
If the high-order bit of the clr parameter is set, the low-order word of clr is converted into
an RGB color value using the Windows API GetSysColor function. If hctl is NULL, this is the
only color translation performed.
If the control is palette-aware, then Visual Basic converts the RGB color value to a palette-
relative RGB value. A control is palette-aware if it uses a palette (CTLFLG_USESPALETTE set)
and has a palette (CTLFLG_HASPALETTE set). A graphical control is palette-aware if it uses a
palette and either the control or its container has a palette.

Return Value
The return value is an RGB color value.

See Also
VBSetControlFlags

VBUnlockHsz
See Also Example

Syntax
VOID VBUnlockHsz(hsz)
Unlocks the position of an HSZ string. This enables Visual Basic to move the string around
in memory, so that any pointer to the string data becomes invalid. The handle to the string,
however, remains valid even though the data moves.
Though this function causes the address of the data to be invalid, it should be called as
soon as you are done referring to the data, so that Visual Basic can efficiently manage
memory. When you need to refer to the string data again, use VBLockHsz or VBDerefHsz
to dereference the handle and get the address.
Parameter Type Description
hsz HSZ Handle to the string.

See Also
VBLockHsz

Example
lpstr = VBLockHsz;
cbStr = _strlen(lpstr);
hlstr = VBCreateHlstr(lpstr, cbStr);
VBUnlockHsz(hsz);

VBUpdateControl [2.0]
See Also Example

Syntax
VOID VBUpdateControl(hctl)
Updates the client area of the given control by sending a WM_PAINT message to the control
if the update region for the control is not empty. Graphical controls receive a VBM_PAINT
message.
Parameter Type Description
hctl HCTL Handle to the control.

Comments
For nongraphical controls, Windows sends a WM_PAINT message whenever the controls
update region is not empty and there are no other messages in the application queue for
that window.
For graphical controls, the container will be painted, followed by any graphical controls in
the update region. Graphical controls receive a VBM_PAINT message.

Return Value
None.

See Also
UpdateWindow (in Windows SDK)
VBInvalidateRect

Example
// Force repaint of entire control.
VBInvalidateRect(hCtl, NULL, NULL);
VBUpdateControl(hCtl);

VBWriteBasicFile
See Also Example

Syntax
ERR VBWriteBasicFile(usFileNo, pb, cb)
Writes data to a file previously opened by the application developer. Regardless of how the
file was opened, VBWriteBasicFile writes out data as raw bytes, performing no
translations.
With the usFileNo parameter, you must supply the same number used by the application
developer in an Open # statement. To get this number, you should establish a property, an
argument to a function call, or another mechanism, so that the user can communicate the
file number to be used.
Parameter Type Description
usFileNo USHORT The integer specified by the application developer in an Open #

statement.
pb LPVOID Pointer to location of bytes to be written to the file.
cb WORD Number of bytes to transfer.

Return Value
Zero, if successful, or an error code.

See Also
VBReadBasicFile
VBRelSeekBasicFile
VBSeekBasicFile

Example
int cbSum;

err = VBWriteBasicFile(fileNo, (LPVOID)&cbSum, sizeof (cbSum));

VBWriteFormFile
See Also

Syntax
ERR VBWriteFormFile(hformfile, pb, cb)
Writes data to a form file. Each call to this function, which is needed only when the
PF_fSaveMsg flag is set, should be used to store the value of one property as a form is
being saved.
When a form is saved to disk, the value of every property of every control is copied to the
file. For each property, Visual Basic either writes data to the disk directly (if the
PF_fSaveData flag is set) or sends a VBM_SAVEPROPERTY message. In the latter case, it is
the controls responsibility to write data to the file by using VBWriteFormFile.
The VBM_SAVEPROPERTY message provides an HFORMFILE value. This is a handle to a
structure containing information on the file to which data is being written, including current
position within the file. Passing this handle to VBWriteFormFile enables Visual Basic to
correctly write to a file so that VBReadFormFile can read from it later.
Parameter Type Description
hformfile HFORMFILEHandle to the form file.
pb LPVOID Pointer to the buffer from which to read the data. This data is

then written to the file.
cb WORD Number of bytes to write.

Comments
Whether you need to use this function depends entirely on whether you set the
PF_fSaveMsg flag in the property information table. Most of the time, you shouldnt set this
flag, because Visual Basic knows how to read and write all the standard data types to disk.
Setting this flag is useful in any of the following situations: the property contains
information not limited to a simple type; you want to save a group of related properties
together; or the data is most efficiently stored in some intermediate format that the user
does not see.
You generally dont need to set the PF_fSaveMsg flag to support saving and loading of a
picture property, because Visual Basic automates this for you if the property is declared as
type DT_PICTURE.

Return Value
Zero, if successful, or an error code.

See Also
VBReadFormFile
VBRelSeekFormFile
VBSeekFormFile
VBM_SAVEPROPERTY

VBXPixelsToTwips, VBYPixelsToTwips
See Also Example

Syntax
LONG VBXPixelsToTwips(pixels)
LONG VBYPixelsToTwips(pixels)
Converts a measurement in pixels into a measurement in logical twips, in the horizontal (X)
or vertical (Y) direction. See VBXTwipsToPixels for a discussion of pixels and twips.
Parameter Type Description
pixels SHORT A measurement in pixels.

Return Value
The measurement in logical twips.

See Also
VBXTwipsToPixels
VBYTwipsToPixels

Example
CLICKINPARAMS params;
float    VBx, VBy;

VBx = (float)VBXPixelsToTwips(x);
params.X = &VBx;
VBy = (float)VBYPixelsToTwips(y);
params.Y = &VBy;
VBFireEvent(hctl, IEVENT_CIRCLE_CLICKIN, ¶ms);

VBXTwipsToPixels, VBYTwipsToPixels
See Also

Syntax
SHORT VBXTwipsToPixels(twips)
SHORT VBYTwipsToPixels(twips)
Converts a measurement in logical twips into a measurement in pixels, in the horizontal (X)
or vertical (Y) direction.
The ratio between logical twips and pixels varies from one users configuration to the next,
so if you need to convert between the two, you should call this function rather than
assuming a fixed ratio.
A pixel is the smallest unit of resolution on a display device. Windows GDI functions use this
measurement by default. A twip is one-twentieth of a printers point: there are 1,440 twips
to an inch and 567 twips to a centimeter. A logical twip corresponds to a length of one twip
when Visual Basic prints a form, so this measurement is independent of the monitor and
display device. Visual Basic controls use this measurement by default.
Parameter Type Description
twips LONG A measurement in logical twips.

Return Value
The measurement in pixels.

See Also
VBXPixelsToTwips
VBYPixelsToTwips

VBZOrder [2.0]
See Also

Syntax
VOID VBZOrder(hctl, zorder)
Alters the drawing order of the control by putting it at either the top or bottom of the
drawing order.
Parameter Type Description
hctl HCTL Handle to the control.
zorder WORD Alters the drawing order of the control, as described in the

following table.
Value Meaning
ZORDER_BACK Sends the control to the bottom of the drawing order.
ZORDER_FRONT Brings the control to the top of the drawing order.

Comments
Within a container, all graphical controls remain below nongraphical (or windowed)
controls. ZORDER_FRONT applied to a graphical control, brings it to the front of other
graphical controls in that container. Similarly, ZORDER_BACK applied to windowed controls,
moves the control behind other windowed controls, but always above all other graphical
controls.

Return Value
None.

See Also
VBM_METHOD

VBM_CANCELMODE

Indicates that the internal state of the control should be reset. This message is typically sent when Visual
Basic is taking away the mouse capture or moving the focus away from the control.
If the control records information about internal state (for example, if the control procedure has a flag
indicating whether the control has captured the mouse or not), that information should be reset in
response to this message. Otherwise, no response is usually needed. Visual Basic itself handles the
implementation of changing the mouse capture or the focus.
Information about internal state concerns aspects of window operation; this information is normally
distinct from property values.
Parameter Description
wp The window handle of the control that has captured the mouse.
lp Unused.

Default Action
Sends mouse-up messages, followed by a WM_CANCELMODE message, to the window that has
captured the mouse. These messages use button coordinates that are outside of the client area and
should therefore avoid spurious firing of a Click event.
The purpose of sending the mouse-up messages is to force subclassed controls to reset their internal
state. If you are writing a control from scratch, you can safely process this message yourself and then
return.

VBM_CHECKPROPERTY
See Also
Requests that a property value be checked for validity. Visual Basic sends this message immediately
before assigning new data to a property if that property is declared with the PF_fSetCheck flag set. The
response to this message determines whether Visual Basic proceeds with the property assignment.
Parameter Description
wp Index of the property within the controls property information table. The first property is

indexed as 0, the second as 1, and so on.
lp Data to be assigned to the property if the check is successful. See

VBM_SETPROPERTY for details on the data format.

Return Value
Zero, if the property assignment should proceed, or an error code.

Default Action
Tests the data for validity for any standard property that can receive this message. If wp corresponds to
a custom property, do not call VBDefControlProc.

See Also
VBSetControlProperty
VBM_SETPROPERTY

VBM_COPY
See Also
Indicates that the control has just been copied to the Clipboard. Visual Basic sends this message in
design mode, when the user has selected the Copy command from the Edit menu.

If you dont care about copying and pasting data between the control and other applications, you can
ignore this message.

When this message is received, Visual Basic has already handled all the standard processing needed to
copy the control to the Clipboard. This is a special format, supported just for controls, and it includes the
values of all properties. However, this format is recognized only within Visual Basic.

The purpose of this message is to give your code an opportunity to copy some of the controls data to the
Clipboard in other formats, so the data can be recognized by other applications. For example, when you
copy a command button, the control itself is copied to the Clipboard. But in addition, the control
responds to VBM_COPY by copying the Caption to the Clipboard in ordinary text format. This text, in
turn, can be pasted into other applications.

Parameter Description
wp Unused
lp Unused

Comments
The code that responds to this message must open the Clipboard, copy data, and close the Clipboard. It
must not empty the Clipboard. For an example, see VBPicFromCF in Chapter 12, Functions.

Return Value
Zero, if successful, or an error code.

Default Action
Returns zero.

See Also
VBPicFromCF
VBM_PASTE
VBM_QPASTEOK

VBM_CREATED
See Also Example
Indicates that a control has just been created and that all properties have been loaded from disk or
copied. The control may have been created through any number of means: through design-time drawing
on a form; through loading from disk (as part of a form load); or through dynamic run-time creation via
the Visual Basic Load statement.
This message is sent only if the MODEL_fLoadMsg flag is set in the control model. Otherwise, Visual
Basic displays the control directly rather than sending this message first.
Parameter Description
wp Unused
lp Unused

Default Action
Displays the control, which results in WM_PAINT and WM_SIZE messages being sent. If the
MODEL_fInvisAtRun flag is set, the control is displayed in design mode but not in run mode.

See Also
VBGetMode
VBM_INITIALIZE

Example
case VBM_CREATED:
pcircle (PCIRCLE)VBDerefControl(hctl);

// Test for user-defined flag.
if (pcircle->fl & MYMODEL_fAutoSize)
AutosizeMyControl(hctl);

break;

VBM_DATA_AVAILABLE [3.0]
See Also
Sent from the data control to the bound control whenever there is new data available in the current
recordset. For example, if the data control moves to the next record, the VBM_DATA_AVAILABLE
message is sent to all bound controls that are linked to the data control.
The typical response to a VBM_DATA_AVAILABLE message is to send back a VBM_DATA_GET
message to the data control, indicating the specific data value that you want to retrieve. The CIRC3
sample illustrates how to do this.
Parameter Description
wp Unused.
lp A far pointer to a DATAACCESS structure.

Comments
After you set your property using the field value from the data control, you must set the DataChanged
property to False. You can do this by using the VBSetControlFlags functions
CTLFLG_DATACHANGED flag. Refer to Appendix D, Creating a Bound Custom Control, for sample
code that implements the VBM_DATA_AVAILABLE message.
The lp->sAction value indicates what type of action triggered the VBM_DATA_AVAILABLE message. For
example, if the user deletes an item from the current recordset, the lp->sAction value is set to
DATA_DELETE

Note      The VBM_DATA_AVAILABLE message is sent after the action specified by lp->sAction has
completed.

The following table lists all the actions that generate this message:
Action Description
DATA_ADDNEW New record prepared for insertion at the end of the recordset.
DATA_BOOKMARK Bookmark set.
DATA_CLOSE Recordset closed.
DATA_DATAFIELDCHANGED DataField property has changed.
DATA_DELETE Record deleted from recordset.
DATA_FINDFIRST First record located that satisfies the specified criteria    that record is

now the current record.
DATA_FINDLAST Last record located that satisfies the specified criteria    that record is

now the current record.
Action Description
 DATA_FINDNEXT Next record located that satisfies the specified criteria    that record is

now the current record.
DATA_FINDPREV Previous record located that satisfies the specified criteria    that record

is now the current record.
DATA_MOVEFIRST Moved to the first record in the recordset.
DATA_MOVELAST Moved to the last record in the recordset.
DATA_MOVENEXT Moved to the next record in the recordset.
DATA_MOVEPREV Moved to the previous record in the recordset.
DATA_READDATA Bound control updated directly. Equivalent to Data1.UpdateControls.
DATA_REFRESH New recordset created by the data control. Bound control needs to

update all data it has about the recordset.
DATA_ROLLBACK Changes reversed during the current transaction and transaction

ended.
DATA_SAVEDATA Recordset updated directly. Unlike DATA_UPDATE, does not trigger

Validate event. Equivalent to Data1.UpdateRecord.
DATA_UPDATE Recordset updated. Triggers Validate event. Equivalent to

Data1.recordset.Update.

Return Value
Zero, if successful, or an error code.

Default Action
Sends a VBM_DATA_GET to the bound control to retrieve the newly available field value. The field value
then becomes the value of the default property. If the data type of the field value is incompatible with the
data type of the default property, Visual Basic generates a run-time error.
In addition, the default processing changes the DataChanged property to False. If sAction is
DATA_CLOSE, DATA_DELETE, or DATA_UNLOAD, the default processing just clears the DataChanged
property and returns -- it does not attempt to retrieve data.

See Also
VBM_DATA_GET

VBM_DATA_GET [3.0]
See Also
Sent from the bound control to the data control in response to the bound control receiving the
VBM_DATA_AVAILABLE message. This message allows the bound control to retreive field values and
field attributes from the data control. Send this message using the VBSendControlMsg function.
Typically, the bound control fills in the necessary structure members of the DATAACCESS structure:
sAction, usDataType, sDataFieldIndex, hszDataField, and so forth. The data control, in return, fills in the
lData structure member with the desired data value.
This message can also be sent anytime by the bound control to get information from the data control. If
you need to get the hctl of the data control, use the VBGetDataSourceControl function.
Parameter Description
wp Unused.
lp A far pointer to a DATAACCESS structure.

Comments
The lp->sAction value indicates what type of value to retrieve. For example, if you want to retrieve the
current value of a particular field, set lp->sAction to DATA_FIELDVALUE The following table lists all the
values that can be retrieved:
Value Description
DATA_BOF Determines whether current record position is before the first record in the

recordset. Returns a DT_SHORT. Equivalent to Data1.recordset.BOF.
DATA_BOOKMARK Get a bookmark for the recordset according to the lData setting:

DATA_BOOKMARKCURRENT - return bookmark for current record.
DATA_BOOKMARKFIRST - return bookmark for first record.
DATA_BOOKMARKLAST - return bookmark for last record.
DATA_BOOKMARKNEXT - return bookmark for next record relative to

bookmark in hlstrBookMark.
DATA_BOOKMARKPREV - return bookmark for previous record relative to

bookmark in hlstrBookMark.
Returns an HLSTR. Equivalent to Data1.recordset.Bookmark.

DATA_BOOKMARKABLEDetermines whether the recordset supports bookmarks. Returns a
DT_SHORT. Equivalent to Data1.recordset.Bookmarkable.
DATA_EOF Determines whether current record position is after the last record in the recordset.
Returns a DT_SHORT. Equivalent to Data1.recordset.EOF.
DATA_FIELDATTRIBUTES Get attribute for the field. The returned lData value can be 0 or any
combination of the following values:

DB_FIXEDFIELD - value in the field is fixed-length.
DB_AUTOINCRFIELD - value for new records is automatically incremented by the database.
DB_UPDATABLEFIELD - value in the field can be changed.

Returns a DT_LONG. Equivalent to Data1.recordset.Fields(fieldname).Attributes.
DATA_FIELDCHUNK Get a chunk of data as specified by the ulChunkOffset and ulChunkNumBytes
members of the DATAACCESS structure. Returns an HLSTR. Equivalent to
Data1.recordset.Fields(fieldname).GetChunk.
DATA_FIELDNAME Get the field name. Returns an HSZ. Equivalent to
Data1.recordset.Fields(fieldname).Name.
DATA_FIELDPOSITIONReturns the ordinal position of the of the field in the Fields collection. Returns a
DT_SHORT. Equivalent to Data1.recordset.Fields(fieldname).OrdinalPosition.
DATA_FIELDSCOUNT Get the number of fields in the current recordset. Returns a DT_SHORT.
Equivalent to Data1.recordset.Fields.Count.
DATA_FIELDSIZE Get the field size in bytes. Returns a DT_LONG. Equivalent to
Data1.recordset.Fields(fieldname).Size.

Value Description
DATA_FIELDTYPE Get the field data type. The returned lData value is:

VT_DATA_BOOL - True/False
VT_DATA_VAR_BTYE - Byte
VT_DATA_INTEGER - Integer
VT_DATA_LONG - Long
VT_DATA_CURRENCY - Currency
VT_DATA_SINGLE - Single
VT_DATA_DOUBLE - Double
VT_DATA_DATETIME - Date/Time
VT_DATA_TEXT - Text
VT_DATA_BINARY - Long Binary
VT_DATA_MEMO - Memo

The DATA_FIELDTYPE value returns the actual data type of the field as defined by the database. When
you retrieve a field value from the data control, you set usDataType to the data type of the property that
will contain the field value.
Refer to the definition of the Type property in the Visual Basic Language Reference, or online help, for
information on the mapping between VT_DATA data types and Visual Basic data types.
Returns a DT_SHORT. Equivalent to Data1.recordset.Fields(fieldname).Type.
DATA_FIELDVALUEGet the field value. Returns a value that is coerced, if possible, into the data type
specified by usDataType. Equivalent to Data1.recordset.Fields(fieldname).Value.
DATA_LASTMODIFIEDGet the bookmark of the last modified record. Returns an HLSTR. Equivalent to
Data1.recordset.LastModified.
DATA_RECORDCOUNTDetermines the number of records in the recordset. Returns a DT_LONG.
Equivalent to Data1.recordset.RecordCount.
DATA_UPDATABLEDetermines whether the recordset can be updated. Returns a DT_SHORT.
Equivalent to Data1.recordset.Updatable.

Comments
When using the DATA_FIELDVALUE action, a lp->fs value of DA_fNull indicates whether the retrieved
value is a null. For numeric values, this allows you to distinguish between a null value and a 0 value. If
usDataType is DT_HSZ and the field value is null, an HSZ containing a null string is returned in lData.
When using the DATA_BOOKMARK action, the bookmark is returned as an HLSTR in the lp->lData
value. If sending the VBM_DATA_GET message returns an error, test the lp->fs value to determine the
type of error: DA_fBOF indicates the current record is before the first record in the record set; DA_fEOF
indicates the current record is after the last record in the recordset.

Important      Any HLSTR returned in lp->lData is a permanent HLSTR. This means that HLSTRs are
owned by the bound control and must be deallocated when no longer needed.

Return Value
Zero, if successful, or an error code.

See Also
VBGetDataSourceControl
VBSendControlMsg
VBM_DATA_AVAILABLE

VBM_DATA_METHOD [3.0]
See Also
Sent from the bound control to the data control whenever the bound control needs the data control to
perform a desired method, such as moving to the next record in the current recordset. The
VBM_DATA_METHOD is typically used in response to user interaction. For example, you might create a
custom command button that automatically forces the data control to move to the next record. Send this
message using the VBSendControlMsg function.
This message should never be sent in response to a VBM_DATA_AVAILABLE or
VBM_DATA_REQUEST message.
You will need to get the hctl of the data control by using the VBGetDataSourceControl function.
Parameter Description
wp Unused.
lp A far pointer to a DATAACCESS structure.

Comments
The lp->sAction value indicates what type of method you want the data control to perform. For example,
to force the data control to move to the next record, set lp->sAction to MOVENEXT. The following table
lists all the methods that you can perform on the data control:
Method Description
DATA_ADDNEW Prepare a new record to add to the recordset.
DATA_BOOKMARK Move to the bookmark as specified by lp->hlstrBookmark.
DATA_DELETE Delete the current record in the recordset. After deleting a record, you should

move to another record, so that the user is not positioned on an invalid record.
DATA_MOVEFIRST Move to the first record.
DATA_MOVELAST Move to the last record.
DATA_MOVENEXT Move to the next record.
DATA_MOVEPREV Move to the previous record.
The first four data values of the DATAACCESS structure are required for sending the
VBM_DATA_METHOD message: usVersion, sAction, hctlData and hctlBound.

Return Value
Zero, if successful, or an error code.

See Also
VBGetDataSourceControl
VBSendControlMsg

VBM_DATA_REQUEST
See Also
Sent from the data control to the bound control whenever it needs to update the recordset with a value
from the bound control. For example, if you modify the value of the bound property in your control and
the data control moves to the next record, the VBM_DATA_REQUEST message is sent.
The typical response to a VBM_DATA_REQUEST message is to determine if the property value has
changed. If it has, send back a VBM_DATA_SET message to the data control, indicating the specific
data value that you want to set. (The CIRC3 sample illustrates how to use these messages).
Parameter Description
wp Unused.
lp A far pointer to a DATAACCESS structure.

Comments
The lp->sAction value indicates what type of action triggered the VBM_DATA_REQUEST. For example,
if the user refreshes the current recordset, the lp->sAction value is set to DATA_REFRESH.

Note      The VBM_DATA_REQUEST message is sent before the action specified by lp->sAction has
completed.

The following table lists all the actions that generate this message:
Action Description
DATA_ADDNEW Prepares a new record for insertion at the end of the recordset.
DATA_BOOKMARK Sets a bookmark.
DATA_CLOSE Closes a recordset.
DATA_FINDFIRST Locates first record that satisfies the specified criteria and makes that record the

current record.
DATA_FINDLAST Locates last record that satisfies the specified criteria and makes that record the

current record.
DATA_FINDNEXT Locates next record that satisfies the specified criteria and makes that record the

current record.
DATA_FINDPREV Locates previous record that satisfies the specified criteria and makes that

record the current record.
DATA_MOVEFIRST Move to the first record in the recordset.
DATA_MOVELAST Move to the last record in the recordset.
DATA_MOVENEXT Move to the next record in the recordset.
DATA_MOVEPREV Move to the previous record in the recordset.
DATA_REFRESH New recordset created. Bound control needs to update all data values.
DATA_SAVEDATA Updates data control directly. Unlike DATA_UPDATE, does not trigger Validate

event.
DATA_UNLOAD Unload form.
DATA_UPDATE Updates recordset. Triggers Validate event.
The data control relies on the bound control to tell it when a value needs to be updated. This can happen
in two different ways. First, the application can set the bound controls DataChanged property to True to
force an update. Second, the bound control can set the CTLFLG_DATACHANGED flag via the
VBSetControlFlags function in response to the user setting the bound property.
The CIRC3 sample sets the CTLFLG_DATACHANGED whenever the Caption property is changed:
case VBM_SETPROPERTY:
switch (wp) {
case IPROP_CIRCLE_CAPTION:
VBSetControlFlags(hctl, CTLFLG_DATACHANGED,

CTLFLG_DATACHANGED);

                        break;
...

Return Value
Zero, if successful, or an error code.

Default Action
If the DataChanged property is True, sends a VBM_DATA_SET message to the data control, passing
the current value of the default property as the field value to set in the data controls recordset. If the data
type of the default property value is incompatible with the data type of the field in the recordset, Visual
Basic generates a run-time error.

See Also
VBM_DATA_SET

VBM_DATA_SET [3.0]
See Also
Sent from the bound control to the data control in response to the bound control requesting new data
values via the VBM_DATA_REQUEST message. This message allows the bound control to alter the
data values in the recordset. Send this message using the VBSendControlMsg function.
Typically, the bound control fills in the necessary structure members of the DATAACCESS structure:
sAction, usDataType, sDataFieldIndex, hszDataField, and so forth. The lData structure member contains
the with the desired data value to send to the data control.
Parameter Description
wp Unused.
lp A far pointer to a DATAACCESS structure.

Comments
The lp->sAction value indicates whether the lData value is a single data value or part of a sequence of
chunks of data. The following table lists the values that lp->sAction can have:
Value Description
DATA_FIELDVALUE Set the field value. The usDataType member of the DATAACCESS structure

specifies the data type of lData. Equivalent to
Data1.recordset.Fields(fieldname).Value.

DATA_FIELDCHUNK Set the field value using a chunk of data. This requires creating an HLSTR
that contains the data and passing it as the lData value. Equivalent to
Data1.recordset.Fields(fieldname).AppendChunk.

Note      If a temporary HLSTR is passed as the lData value, the data control will deallocate the HLSTR
after processing it.

Return Value
Zero, if successful, or an error code.

See Also
VBSendControlMsg
VBM_DATA_REQUEST

VBM_DRAGDROP

Indicates that the control is the target of a drop operation. (A control is sent this message when another
control is dropped on top of it.) Usually, there is no need to respond to this message because the default
action is sufficient.
Parameter Description
wp Unused.
lp A far pointer to a DRAGINFO structure.

Return Value
Zero, if successful, or an error code.

Default Action
The controls DragDrop event is fired if PEVENTINFO_STD_DRAGDROP is listed in the event
information table.

VBM_DRAGOVER

Indicates that the control is the target of a drag-over operation. (A control is sent this message when
another control is dragged over it.) Usually, there is no need to respond to this message because the
default action is sufficient.
Parameter Description
wp Unused.
lp A far pointer to a DRAGINFO structure.

Return Value
Zero, if successful, or an error code.

Default Action
The controls DragOver event is fired if PEVENTINFO_STD_DRAGOVER is listed in the event
information table.

VBM_FIREEVENT
See Also
Indicates that a specified event should be fired now.
In most cases, a control procedure does not need to wait to receive this message before firing an event.
The event can be fired any time an action is recognized. In other cases, you should defer firing an event 
such as a response to WM_SETFOCUS or WM_KILLFOCUS    thats what this message is used for.
Instead of firing the event, the control procedure posts a VBM_FIREEVENT message to itself, giving
other pending messages a chance to be processed. When the VBM_FIREEVENT message is received,
it can proceed with actually firing the event by calling VBFireEvent.
Two standard events that use this mechanism are GotFocus and LostFocus. Deferring either of these
events allows Windows to take care of focus issues before Visual Basic statements are executed.
Parameter Description
wp Index of the event in the controls event information table. The first event is indexed as

0, the second as 1, and so on.
lp Unused, although the code that posts this message can use this parameter to point

to an argument list.

Comments
When a custom event is involved, this message is sent only by a control procedure to itself. The control
procedure can therefore use lp as needed; lp can be used to point to an argument list.

Default Action
Fires the event with no parameters (other than Index when needed).

See Also
VBFireEvent

VBM_GETDEFSIZE [2.0]
Example
Gets default size for a control in pixels. This size is used when a control is created by double-clicking on
a control in the Toolbox window.
Parameter Description
wp Unused.
lp A far pointer to the controls MODEL structure.

Comment
This message is a model message; therefore, the control handle is NULL when the control procedure
receives this message.

Return Value
The exact width and height of the control in pixels. The low word of the return value is the width; the high
word of the return value is the height.

Default Action
Returns a fixed default size for all controls.

Example
case VBM_GETDEFSIZE:
        return (MAKELONG(DEF_WIDGET_WIDTH, DEF_WIDGET_HEIGHT));

VBM_GETPALETTE [2.0]
See Also
Requests a logical palette. This message is only sent to palette-aware controls.
Parameter Description
wp Unused
lp Unused

Return Value
The control should return an HPALETTE representing its desired logical palette. If a control enters a
state where it no longer has a palette, it should clear the CTLFLG_HASPALETTE flag using the
VBSetControlFlags function. This prevents the control from receiving VBM_GETPALETTE messages.

Default Action
Returns NULL.

See Also
VBSetControlFlags
VBM_PALETTECHANGED

VBM_GETPROPERTY
See Also
Requests that the control procedure supply the value of a property. This message will be sent only if the
PF_fGetMsg flag is set in the propertys declaration. Note that if the PF_fGetData flag is set, Visual Basic
reads the property value directly from the control structure.
Any attempt to access a property    including use of the Properties window, accessing the property from a
Visual Basic statement, saving the form to disk, or a call to the VBGetControlProperty function    may
result in this message being sent.
Parameter Description
wp Index of the property within the controls property information table. The first property

is indexed as 0, the second as 1, and so on.
lp Far pointer to the data item. If the PF_fPropArray flag is set, this parameter points to

a DATASTRUCT structure. The VBGetControlProperty function performs any
appropriate conversion after data is returned.

Comments
In the case of HSZ data types, Visual Basic assumes that you are supplying the handle of a temporary
string, so it proceeds to destroy the string and free the memory after the string has been used.
Therefore, use VBCreateHsz to create a new string that can be destroyed after use. By contrast, when
the PF_fGetData flag is set, Visual Basic reads the appropriate HSZ in the programmer-defined
structure and does not free the string space afterward, because it is assumed that the data needs to be
maintained.
This difference between the uses of the PF_fGetMsg and PF_fGetData flags is consistent with the
purpose of the VBM_GETPROPERTY message. This message is appropriate when the property setting
is not maintained in memory, but needs to be determined on the fly.

Return Value
Zero, if successful, or an error code.

Default Action
Supplies the property value for standard properties.

See Also
VBGetControlProperty
VBM_CHECKPROPERTY
VBM_SETPROPERTY

VBM_GETPROPERTYHSZ
See Also
Indicates that a property is about to be displayed in the Properties window. The control procedure should
respond by specifying a text string to display in the Settings box. This message is sent only if the
property declaration includes the PF_fGetHszMsg flag.
Setting the PF_fGetHszMsg flag (and responding to this message) should not be done for most
properties. With simple data types, Visual Basic displays the value in the Properties window as you
would expect. With DT_COLOR values, the value is displayed as a hexadecimal number. With Boolean
values, the constant TRUE or FALSE is displayed. With DT_ENUM (enumerated values), you specify
the list of strings to choose from in the npszEnumList field in the property information table.
Responding to this message is useful when neither the standard data type representations nor an
enumerated list suffices. For example, the Picture property of a picture control displays only general
information    (bitmap), (icon), (none)    rather than a data representation. However, with DT_PICTURE
properties, this action is implemented for you.
Such a string cannot be edited in the Properties window; the user must use a pop-up dialog box to set
the property. The control procedure must respond to the VBM_INITPROPPOPUP message to support
this technique.
Parameter Description
wp Index of the property within the controls property information table. The first property

is indexed as 0, the second as 1, and so on.
lp Pointer to a handle of an HSZ string. You should create an HSZ string and copy the

handle to the location pointed to by lp. Note that Visual Basic destroys the HSZ
strings after HSZ is used.

Return Value
Zero, if successful, or an error code.

Default Action
Processes the message for all standard properties and for custom properties that do not set the
PF_fGetHszMsg flag. For custom properties that do set this flag, the control should return a value in lp.

See Also
VBM_INITPROPPOPUP

VBM_HELP [2.0]

Generated for three different conditions:
Help on currently selected property.
Help on currently selected event.
Help on currently selected control.

Help on Currently Selected Property
When the Property list or the edit box of the Properties window has the focus and the user presses F1,
Visual Basic sends a VBM_HELP message to the control.
Parameter Description
wp The low byte is VBHELP_PROP. The high byte is the index of the property within the

controls property information table. The first property is indexed as 0, the second as
1, and so on.

lp A far pointer to the controls model structure.

Help on Currently Selected Event
When the Procedure box in the Code window has the focus and the user presses F1, Visual Basic
version 2.0 sends a VBM_HELP message to the control.
Parameter Description
wp The low byte is VBHELP_EVT. The high byte is the index of the event within the

controls event information table. The first event is indexed as 0, the second as 1, and
so on.

lp A far pointer to the controls model structure.

Help on Currently Selected Control
When a control is selected on the form, selected in the Controls list of the Properties window, or when
focus is on the controls icon in the Toolbox, pressing F1 sends a VBM_HELP message to the control.
Parameter Description
wp VBHELP_CTL.
lp A far pointer to the controls model structure.

Comments
A custom control typically calls the WinHelp function to display a specified topic in the custom controls
own Help file.

Note      Custom control should not use the control handle passed with this message, since VBM_HELP
is a model message, and thus the control handle is NULL when the control procedure receives this
message.

Default Action
Attempts to find a Help topic based on the specified property, event, or control. If a Help topic is found,
WinHelp displays the topic from the VB.HLP Help file. If a Help topic cannot be found, WinHelp displays
the default for the type of topic:
Topic type Default topic
Property Table of Contents for properties.
Event Table of Contents for events.
Object Table of Contents for objects.

If the custom control contains a property or event that is the same name as a standard property or
event, the custom control must process the VBM_HELP message correctly. Otherwise, WinHelp
displays the standard property or event instead of the custom controls property or event.

VBM_HITTEST [2.0]
Sent to the graphical control any time the mouse is moved over the rectangle that surrounds the graphic.
The custom control must return one of the defined HT_ codes.
Parameter Description
wp Unused.
lp LPHITTEST    Points to the HITTEST data structure that identifies the x- and y-

coordinates of the cursor, and the RECT values of the control. Coordinate values and
RECT values are relative to the parent window.

If desired, the return value may differ when Visual Basic version 2.0 is running in design mode versus
run mode. Typically, only HT_ON and HT_MISS are returned when in run mode, since calculating a hit
or miss is easier, and therefore more efficient. Some controls, for example the standard Visual Basic
Line control, always return HT_MISS in run mode.
In design mode, however, the custom control may return a greater number of messages to aid users
when manipulating and designing forms.

Return Value
One of the following codes should be returned directly from the controls window procedure.
Code Meaning
HT_ON Point lies on the control. Typically reserved for only the perimeter of a polygon or

circle.
HT_SOLID_NEAR Point lies within a few (typically 4) pixels of an area returning HT_ON, and the

point lies in an area which is painted solidly. For example, the interior of a solid
circle.

HT_PATTERN_NEAR Point lies within a few pixels of an area returning HT_ON, but the point lies in an
area which contains a semitransparent hatch pattern. For example, the interior of
a circle containing a FillStyle > 1, and a BackStyle of Transparent.

HT_HOLLOW_NEAR Point lies within a few pixels of an area returning HT_ON, but the point lies in an
unpainted (totally transparent) area. For example, the interior of an unfilled circle.

HT_SOLID Just like HT_SOLID_NEAR, but does not lie within a few pixels of an area
returning HT_ON.

HT_PATTERN Just like HT_PATTERN_NEAR, but does not lie within a few pixels of an area
returning HT_ON.

HT_HOLLOW Just like HT_HOLLOW_NEAR, but does not lie within a few pixels of an area
returning HT_ON.

HT_MISS Point does not lie on, in, or near (a few pixels from) the control.

Default Action
Always returns HT_ON.

VBM_INITIALIZE
See Also Example
Sent after the control structure has been allocated but before anything else is loaded or allocated,
including the window structure. This message is received only if the MODEL_fInitMsg flag is set in the
control model.
This message is useful to respond to if you have pre-HWND properties that you want to initialize.
Parameter Description
wp Unused
lp Unused

See Also
VBM_CREATED

Example
case VBM_INITIALIZE:
lpmyctl = (LPMYCTL)VBDerefControl(hctl);
lpmyctl->borderstyle = 1;
break;

VBM_INITPROPPOPUP
See Also
Sent after a property has been selected in the Properties window. The response to this message
determines how values are displayed and accessed in the Settings box.

Depending on the return value, you can have the property set through direct editing (no special
handling), with a standard drop-down list, or with a pop-up window.

Parameter Description
wp Index of the property within the controls property information table. The first property

is indexed as 0, the second as 1, and so on.
lp Low word: window handle of the list box that Visual Basic supplies. High word:

unused.

Comments
To display a pop-up dialog box, first create a window as described in the table for the Other return value.
When the window gets a WM_SHOWWINDOW message, it should hide itself and then post a message
to itself that, when received, causes it to display the dialog box.

If you create a custom list of properties, you need to set the index item for the list when responding to
this message. For example, you might define a DT_HSZ property array. Heres how you might respond
to the VBM_INITPROPPOPUP message:

SendMessage(LOWORD(lp), LB_ADDSTRING, 0, (LPARAM)(LPSTR)"Canada");
SendMessage(LOWORD(lp), LB_ADDSTRING, 0, (LPARAM)(LPSTR)"Mexico");
SendMessage(LOWORD(lp), LB_ADDSTRING, 0, (LPARAM)(LPSTR)"USA");
err = (ERR)VBGetControlProperty(hctl, IPROP_MYCONTROL_COUNTRY,

&hszCountry);
if (err) return err;

lpCountry = VBLockHsz(hszCountry);
SendMessage(LOWORD(lp), LB_SELECTSTRING, -1, lpCountry);
VBUnlockHsz(hszCountry);
VBDestroyHsz(hszCountry);
return lp;

Return Value
You can either return NULL, the value provided in the lp parameter, or a value identifying your own pop-
up window. In the latter two cases, the text in the Settings box cannot be edited unless the PF_fEditable
flag is set for this property.

Return value Description
NULL No special handling. Visual Basic developer edits value directly in the Settings box,

and no list is provided.
LOWORD(lp) If you return this value supplied in lp, Visual Basic provides a list box and enables the

down arrow to the right of the Settings box. Before returning this value, you should
first have added items to the list by sending LB_ADDSTRING (sorted) or
LB_INSERTSTRING (nonsorted) messages to the list box. Visual Basic ensures that
the item selected is assigned to the property value.

Other You can also supply the handle of a pop-up window you create in response to this
message. Visual Basic displays the window when the developer clicks the arrow to
the right of the Settings box, which displays ellipses (...). The window is responsible
for setting the property value.

Default Action
Creates a custom dialog box for the standard icon and DT_PICTURE properties, uses the list box for
DT_ENUM and DT_BOOL properties, and returns NULL otherwise.

See Also
VBDialogBoxParam
VBM_GETPROPERTYHSZ

VBM_ISMNEMONIC    [2.0]
See Also
The VBM_ISMNEMONIC message is sent to the control when a mnemonic is entered. When ALT+char
is pressed for a character which does not match a menu item or a mnemonic on the form, this message
is sent to all controls on the form, until a control returns TRUE.
Parameter Description
wp ASCII code of character that is the mnemonic.
lp Unused.

Note     VBM_ISMNEMONIC and VBM_WANTSPECIALKEY are dynamic. That is, each time a special
key or a potential mnemonic is pressed, one of these messages is sent. Therefore, a control can
respond differently depending upon its state.

Comments
The VBM_ISMNEMONIC message, paired with the new argument to the VBM_MNEMONIC message,
allows a control to have an arbitrary number of mnemonics.

Return Value
Return TRUE if wp is a mnemonic recognized by this control. Otherwise, return FALSE.

Default Action
If the MODEL_fMnemonic flag is set, then Visual Basic checks the controls Text or Caption property, via
WM_GETTEXT, to determine if it contains an &char pair, returning TRUE if found. Otherwise, FALSE is
returned.

See Also
VBM_MNEMONIC
VBM_WANTSPECIALKEY

VBM_LINKENUMFORMATS    [2.0]
Example
Sent when either the client or the server needs to know the type of DDE data formats that the custom
control can send or receive. The client or server may send this message any number of times in order to
enumerate all the controls data formats.
Parameter Description
wp SUPPLIESDATAFORMAT or ACCEPTSDATAFORMAT.
lp The low word contains the current enumerated format, starting from 0. Each time the

client or server requests additional data format values, the low word of lp is
incremented by one.

Comments
If wp = SUPPLIESDATAFORMAT, then the control enumerates the data formats it supplies for a DDE
conversation. If wp = ACCEPTSDATAFORMAT, then the control enumerates the data formats it accepts.

Return Value
The return value is the data format that can be received or sent. The returned formats should be in order
of preference    the most preferred data format is the first format returned.
Returning NULL stops the enumeration, meaning that you have returned all the data formats that you
support.

Default Action
Returns NULL.

Example
case VBM_ENUMFORMATS:
switch (LOWORD(lp)) {
case 0:
return CF_BITMAP;

case 1:
return CF_METAFILEPICT;

case 2:
return CF_TEXT;

default:
return NULL;

}
break;

VBM_LINKGETDATA    [2.0]
See Also Example
Requests from the control through DDE.

Parameter Description
wp An integer value that corresponds to the format of the data, such as CF_TEXT or

CF_BITMAP.
lp A far pointer to a VBLINKDATA structure that the control fills in. The control must

allocate global memory for the hData field, and set the cb field to the length of data
returned.

Comments
The data placed in lp should be in the format specified by wp.

Return Value
The return value should be one of the following:

Return value Description
LINK_DATA_OK Data successfully placed in lp.
LINK_DATA_OOM Unable to allocate data    out of memory.
LINK_DATA_FORMATBAD Unable to create data in the requested format.

Default Action
Returns LINK_DATA_FORMATBAD.

See Also
VBM_LINKENUMFORMATS
VBM_LINKGETITEMNAME
VBM_LINKSETDATA

Example
case VBM_LINKGETDATA:
{LPSZ lpsz;

if (wp != CF_TEXT)
return LINK_DATA_FORMATBAD;

((LPDDEDATA)lp)->cb =
lstrlen(VBDerefHsz(LpcircDEREF(hctl)->hszCaption)) + 1;

((LPDDEDATA)lp)->hData =
GlobalAlloc(GMEM_DDESHARE | GMEM_MOVEABLE,
((LPDDEDATA)lp)->cb + 1);

if (!((LPDDEDATA)lp)->hData)
return LINK_DATA_OOM; // Out of memory

lpsz = (LPSZ)GlobalLock(((LPDDEDATA)lp)->hData);
lstrcpy(lpsz, VBDerefHsz(LpcircDEREF(hctl)->hszCaption));
GlobalUnlock(((LPDDEDATA)lp)->hData);
return LINK_DATA_OK;}

VBM_LINKGETITEMNAME    [2.0]
See Also

Sent when either the client or the server needs to know the name of the item to which it is linked. In
certain cases, specifying the name of the control as the DDE link topic is not sufficient. For example, if
you wanted to provide a link to a specific cell in a spreadsheet-like control, you would have to specify the
cell coordinates as the DDE link item.

Note      A custom control cannot support multiple links; therefore, only one item name is valid per DDE
conversation.

Parameter Description
wp LINKSRCASK or LINKSRCTELL.
lp A far pointer to a string. If wp = LINKSRCASK, lp contains the DDE item name string.

Return Value
If wp = LINKSRCASK, the control should return TRUE if it wants to use the item name, contained in lp,
in a DDE conversation. Otherwise, the control should return FALSE.
If wp = LINKSRCTELL, the control should copy the DDE item name to lp and return TRUE. The
maximum length of the item name is MAXLINKITEMNAME.

Default Action
If wp = LINKSRCASK, Visual Basic returns the comparison of the DDE item name string and the Name
property string.
If wp = LINKSRCTELL, the Name property of the control is copied to lp. If the control is a control array
element, the index is appended to the control name, such as ctrlName(n).

See Also
VBM_LINKENUMFORMATS
VBM_LINKGETDATA
VBM_LINKSETDATA

VBM_LINKSETDATA    [2.0]
See Also Example
Sent when the control receives data by the control through DDE.

Parameter Description
wp An integer value that corresponds to the format of the data, such as CF_TEXT or

CF_BITMAP.
lp A far pointer to the received VBLINKDATA structure.

Comments
The data placed in lp is in the format specified by wp.

Return Value
The return value should be one of the following:

Return value Description
LINK_DATA_OK Data successfully extracted from lp.
LINK_DATA_OOM Unable to allocate data    out of memory
LINK_DATA_FORMATBAD Unable to use data in the specified format.
LINK_DATA_SETFAILED Any other type of error not specified above.

Default Action
Returns LINK_DATA_FORMATBAD.

See Also
VBM_LINKENUMFORMATS
VBM_LINKGETITEMNAME
VBM_LINKGETDATA

Example
case VBM_LINKSETDATA:
{
ERR err;
LPSZ lpsz;

// Assure that the Clipboard format is of type text.
if (wp != CF_TEXT)
return LINK_DATA_FORMATBAD;

// If this were CF_BITMAP, CF_DIB or CF_METAFILEPICT, hData
// would indicate a block of memory that contained a handle to
// the data, requiring a double dereference.

// Set the linked data as the control's Caption.
lpsz = (LPSZ)GlobalLock(((LPDDEDATA)lp)->hData);
err = VBSetControlProperty(hctl, IPROP_CIRCLE_CAPTION,

(LONG)lpsz);
GlobalUnlock(((LPDDEDATA)lp)->hData);

if (err)
return LINK_DATA_SETFAILED;

return LINK_DATA_OK;
}

VBM_LOADED

Sent to a control after all the controls on a form have been loaded, and after a control has been created
as a dynamic array element with a Load statement at run time.
This message is sent only if the MODEL_fLoadMsg flag is set in the control model.
Parameter Description
wp Unused
lp Unused

Return Value
Zero, if successful, or an error code.

VBM_LOADPROPERTY
See Also
Requests that the value of a property be read from a disk file that is in a binary format. Visual Basic
sends this message during the loading of a form, but only if the property is declared with the
PF_fSaveMsg or PF_fLoadMsgOnly flags set. If only the PF_fSaveData flag is set, Visual Basic does
not send this message; it reads the data from disk directly and then sets the value of the property.
You should respond by using the VBReadFormFile function, which reads data from disk that was
previously saved for that property in response to a VBM_SAVEPROPERTY message.
Parameter Description
wp Index of the property within the controls property information table. The first property

is indexed as 0, the second as 1, and so on.
lp The handle to a form file (HFORMFILE) value to use with the VBReadFormFile

function.

 Comments
See notes on the VBReadFormFile function for a discussion of when the PF_fSaveMsg flag is useful.

Return Value
Zero, if successful, or an error code.

Default Action
Handles loading of standard properties.

See Also
VBReadFormFile
VBM_LOADTEXTPROPERTY
VBM_SAVEPROPERTY

VBM_LOADTEXTPROPERTY    [2.0]
See Also Example
Requests that the value of a property be read from a disk file that is in an ASCII text format. Visual Basic
sends this message during the loading of a form, but only if the property is declared with the
PF_fSaveMsg or PF_fLoadMsgOnly flag set. If the PF_fSaveData flag is set, Visual Basic does not send
this message; it reads the data from disk directly and then sets the value of the property.
Parameter Description
wp Index of the property within the controls property information table. The first property

is indexed as 0, the second as 1, and so on.
lp A far pointer to a null-terminated string that contains the saved data. The format of

the data is defined by the control.

Return Value
Zero, if successful, or an error code.

Default Action
Handles loading of standard properties.

See Also
VBM_SAVETEXTPROPERTY

Example
case VBM_LOADTEXTPROPERTY:
switch (wp) {
case IPROP_CIRCLE_CIRCLESHAPE:
lpcirc = (LPCIRC)VBDerefControl(hctl);
// Retrieve the text value of CircleShape.   
if (!lstrcmpi((LPSTR)lp, "Circle"))
lpcirc->CircleShape = TRUE;

else
lpcirc->CircleShape = FALSE;

...}

VBM_METHOD

Indicates that one of several predefined methods has been used with the control in a Visual Basic
statement. These methods are AddItem, Clear, Drag, LinkSend, Move, Refresh, RemoveItem, and
ZOrder. By responding to this message, you can add support for the AddItem, Clear, and RemoveItem
methods, which are not supported by default. The Drag, LinkSend, Move, Refresh, and ZOrder
methods are supported by default, but you can respond to this message to support any of these in a
customized way.

Note      The standard methods LinkExecute, LinkPoke, LinkRequest, and SetFocus are also
automatically supported for controls. However, no notification is given to the control for these methods
through the VBM_METHOD message.

You can choose to respond to the VBM_METHOD message for as many methods as you want, and
accept default behavior for the rest. If you want to accept the default behavior, however, make sure that
you call VBDefControlProc.

Parameter Description
wp Index of the method:

        METH_ADDITEM
        METH_CLEAR        [2.0]
        METH_DRAG
        METH_LINKSEND        [2.0]
        METH_MOVE
        METH_REMOVEITEM
        METH_REFRESH
        METH_ZORDER        [2.0]

lp A far pointer to an array of long integers containing the method arguments, if any. The
first argument, cArgs, gives the count of arguments including cArgs itself. Thus, if the
arguments were cArgs, hszItem, and index, cArgs would be set to three. The
argument lists are described below.

Comments
The arguments to each method are shown below. All arguments are numeric, except for hszItem, which
is an HSZ handle to a string containing the new item.

Method Argument List
AddItem cArgs, hszItem, index
Clear No arguments: lp = NULL
Drag cArgs [, cmd]
LinkSend No arguments: lp = NULL
Move cArgs, left [, top [, width [, height]]]
Refresh No arguments: lp = NULL
RemoveItem cArgs, index
ZOrder cArgs, position:

    position = 0 (bring to front)
    position = 1 (send to back)

Return Value
Zero, if successful, or an error code.

Default Action
In the case of AddItem, RemoveItem, and Clear, the default action is to generate a run-time error,
since these methods are not supported by default. For the other methods, the default action is listed
below.

Method Default action
Drag Initiate drag mode, cancel, or drop the control.
LinkSend Transfer data to client application in DDE conversation.
Move Move (and size) the control as indicated by arguments.
Refresh Invalidate and update window.
ZOrder Change z-order of control: bring to front, send to back.

VBM_MNEMONIC
See Also
Indicates that the control has just received the focus because the user typed an access key, called a
mnemonic key in Windows programming. A mnemonic key corresponds to the letter in the standard
Caption property preceded by an ampersand (&).

Within a dialog box, support of mnemonic keys is handled by the dialog manager. Within a Visual Basic
application, the controls determine how to interpret mnemonic keys.

Visual Basic automatically moves the focus in response to the appropriate control in response to a
mnemonic key. To implement any further action (such as firing the Click event), you need to respond to
this message.

Parameter Description
wp Character that activated mnemonic.
lp Unused.

Note      The wp value is unused in Visual Basic version 1.0 (equal to 0), but set to the mnemonic
character value in Visual Basic version 2.0.

See Also
VBM_ISMNEMONIC
VBM_WANTSPECIALKEY

VBM_PAINT    [2.0]

Sent to graphical controls when Windows makes a request to repaint a portion of the control.

Parameter Description
wp An hDC value that identifies the device context.
lp An LPRECT that points to the RECT data structure that identifies the controls

coordinates.

Comment
The hDC must be restored to its original state    any resources newly selected into the hDC (brushes,
pens, and other objects) must be deselected, and deleted if necessary.

VBM_PAINTMULTISEL    [2.0]

Sent when the control becomes part of a multiple selection. If nondefault behavior is desired, the control
can respond by painting the appropriate gray multiple selection handles around the graphic.
Parameter Description
wp An hDC value that identifies the device context.
lp An LPRECT that points to the RECT data structure identifying the area to paint the

multiple selection handles.

Default Action
Paints eight gray multiple selection handles in the default positions around the control.

VBM_PAINTOUTLINE    [2.0]

Sent when the control is being moved. The control can respond by drawing the XOR representation of
the control. This message is sent in design mode only.
Parameter Description
wp An hDC value that identifies the device context.
lp An LPRECT that points to the RECT data structure identifying the area to paint the

outline.

Comment
When the VBM_PAINTOUTLINE message is sent during the creation of a control, hctl is NULL. When
moving or sizing an existing control, hctl is a valid value.

Default Action
Paints a default gray outline sizing rectangle.

VBM_PALETTECHANGED    [2.0]
See Also
Sent to the control when Windows makes a request to select a logical palette. This message is only sent
to palette-aware controls.
Parameter Description
wp A BOOL value. TRUE if selecting palette for background; FALSE if selecting palette

for foreground.
lp Unused.

Comment
The control should select its palette into its own hDC using wp as the fPalBack parameter to the
Windows API SelectPalette function. The wp value determines foreground or background selection.
The control should select and realize a palette to the foreground only in response to
VBM_PALETTECHANGED when wp is FALSE. All other palette realizations, even for painting, should
be to the background.
The control usually invalidates itself, so the control should defer any painting until it receives the
WM_PAINT message.

Return Value
The control should return TRUE if and only if it realizes a palette, and the Windows API RealizePalette
function returns a nonzero value. Otherwise, return FALSE.

Default Action
Gets the controls palette via VBM_GETPALETTE and realizes the palette, using the controls hDC, and
then invalidates the control.

See Also
VBSetControlFlags
VBM_GETPALETTE

VBM_PASTE
See Also
Notifies the control that it should accept information (or a paste link) contained in the Clipboard.
Receiving this message indicates that the control has previously agreed, in response to a
VBM_QPASTEOK message, to proceed with a paste operation. This message is sent at design time
only.
If a control is present in the Clipboard and the Paste command is chosen, Visual Basic does not send
this message; it simply handles the paste operation itself. This message is sent to the control when data
in some other Clipboard format is available. This includes data prepared by some application outside of
Visual Basic. For example, if the currently selected control is a picture box, it can accept any data in the
standard bitmap format; this data may have been generated by a Paint program.
It is up to the control procedure to decide exactly how to apply the information available in the Clipboard.
Parameter Description
wp PT_PASTE, if the Paste command was chosen, or PT_PASTELINK, if the Paste Link

command was chosen.
lp Unused.

Return Value
Zero, if successful, or an error code.

See Also
VBM_COPY
VBM_QPASTEOK

VBM_QPASTEOK
See Also
Sent when the user opens the Edit menu in design mode. Visual Basic sends this message to ask the
control if it should enable the Paste or Paste Link command. This message is sent at design time only.
If a control is present in the Clipboard and the Paste command is chosen, Visual Basic does not send
this message. Instead, it enables the Paste command directly. The purpose of this message is to see if
the currently selected control accepts data in some other Clipboard format, such as text, bitmap, or
metafile. Your code can respond by using the Windows API IsClipboardFormatAvailable function to
determine if the appropriate type of data is available.
If you dont want your control to be able to paste in data in one of these standard Clipboard formats, you
can ignore this message.

Parameter Description
wp PT_PASTE, if the Paste command should be enabled, or PT_PASTELINK, if the

Paste Link command should be enabled.
lp Unused.

Comments
If you are writing a control that is compatible with Visual Basic version 2.0 and that uses DDE, and the
wp parameter is PT_PASTELINK, you should call the VBPasteLinkOK function. Use the return value of
the function as the return value of this message.

Return Value
TRUE if the control can accept information currently in the Clipboard; FALSE otherwise.

Default Action
Returns FALSE.

See Also
VBPasteLinkOK
VBM_COPY
VBM_PASTE

VBM_SAVEPROPERTY
See Also
Requests that the value of a property be written to disk. Visual Basic sends this message as a form is
being saved, but only if the property is declared with the PF_fSaveMsg flag set. By contrast, if the
PF_fSaveData flag is set, Visual Basic does not send this message; instead, it gets the value of the
property and then writes the data to disk directly.

Parameter Description
wp Index of the property within the property information table. The first property is

indexed as 0, the second as 1, and so on.
lp The handle to a form file (HFORMFILE) to use with the VBReadFormFile function.

Comments
See notes on the VBReadFormFile function for a discussion of when the PF_fSaveMsg flag is useful.

Return Value
Zero, if successful, or an error code.

Default Action
Responds by saving the property value for any property that can receive this message.

See Also
VBWriteFormFile
VBM_LOADPROPERTY
VBM_SAVETEXTPROPERTY

VBM_SAVETEXTPROPERTY    [2.0]
See Also Example
Allows a control to save its property values in an ASCII file format. This message is sent only if the
PF_fSaveMsg flag is set for the property.
Parameter Description
wp Index of the property within the property information table. The first property is

indexed as 0, the second as 1, and so on.
lp A far pointer to an HSZ that contains the text representation of the property.

Comments
The lp parameter is a pointer to a location to receive an HSZ. If you want to respond to this message,
you must first create a new HSZ, which represents the textual representation of the value of the property
indicated by wp. Then you set *lp to the HSZ value:
*(LPSTR)lp = hsz;

After sending this message, Visual Basic checks the value pointed to by the lp parameter. If *(LPSTR)lp
is NULL (meaning the control did not respond to the message), the VBM_SAVEPROPERTY message is
sent. If *(LPSTR)lp is not NULL, then the data is copied to the ASCII file and the
VBM_SAVEPROPERTY message is not sent.

Return Value
Zero, if successful, or error code.

Default Action
Handles saving standard property values.

See Also
VBM_LOADTEXTPROPERTY
VBM_SAVEPROPERTY

Example
case VBM_SAVETEXTPROPERTY:
switch (wp) {
case IPROP_CIRCLE_CIRCLESHAPE:
// Save the value of CircleShape as text.
lpcirc = (LPCIRC)VBDerefControl(hctl);
if (lpcirc->CircleShape)
lpszText = Circle;

else
lpszText = Oval;

hsz = VBCreateHsz((_segment)hctl, lpszText);
if (hsz)
*(LPSTR)lp = hsz;

else
return 7;// Out of memory

return 0;
...}

VBM_SELECTED    [2.0]

Indicates that the user has selected the control at design time. The message is sent before the
Properties window is updated. This allows the control to modify property values, such as the enumerated
strings for a property defined as DT_ENUM.
Parameter Description
wp Specifies whether the property to be displayed in the Properties window can be part

of a multiple selection. Refer to the PF_fNoMultiSelect property flag in Chapter 13.
lp Unused.

VBM_SETPROPERTY
See Also Example
Requests that the control procedure set a property to the value provided. This message is sent only if
the PF_fSetMsg flag is set in the propertys declaration. Note that if the PF_fSetData flag is set instead,
Visual Basic assigns the new property value directly to the control structure. If both flags are set, Visual
Basic first assigns the value to the control structure and then sends this message.
Parameter Description
wp Index of the property in the controls property information table. The first property is

indexed as 0, the second as 1, and so on.
lp Data to copy into the property setting. Format of the data depends on the type.

Because lp is declared as LONG, it should be cast to the correct type before being
used. In the case of floating-point data, this requires that you take the address of lp
and cast it as a pointer to a four-byte floating-point number, then use indirection to
get the data. (See the following example.)
In the case of DT_HSZ properties, lp is a far pointer to null-terminated string data. In
the case of DT_HLSTR properties, lp is a far pointer to an HLSTR, which must be
copied before you use it. In the case of DT_PICTURE properties, lp is an HPIC.
If the PF_fPropArray flag is set, this parameter points to a DATASTRUCT structure.

Comments
Any attempt to set a property    use of the Properties window to set a value, assigning a value to the
property from a Visual Basic statement, loading the form from disk, or a call to the
VBSetControlProperty function    may produce this message.
The VBSetControlProperty function performs any appropriate conversion before data is passed in this
message.

Note      If you allow the default processing to handle the VBM_SETPROPERTY message and the text
that is passed with the WM_SETTEXT message is greater than 256 bytes, VBDefControlProc sets the
256th byte to NULL.

Return Value
Zero, if successful, or an error code.

Default Action
Responds by setting the property value for any standard property that can receive this message.

See Also
VBSetControlProperty
VBM_CHECKPROPERTY
VBM_GETPROPERTY

Example
case VBM_SETPROPERTY:
switch (wp) {
case IPROP_MYCTL_REALAMT:
pmyctl->realAmt = *(float *)&lp;
InvalidateRect(hwnd, NULL, TRUE);
return 0;

...}

VBM_WANTSPECIALKEY    [2.0]
See Also
Sent to the control when a virtual key generates a WM_KEYUP or WM_KEYDOWN message. This
message is sent only for keys which are normally trapped by VB, including: VK_ESCAPE, VK_CANCEL,
VK_EXECUTE, VK_RETURN, VK_TAB, VK_LEFT, VK_RIGHT, VK_UP, VK_DOWN.
Parameter Description
wp Virtual key code.
lp Unused.

Note      VBM_ISMNEMONIC and VBM_WANTSPECIALKEY are dynamic, that is each time a special
key or a potential mnemonic is pressed, one of these messages is sent. Therefore, a control can
respond differently depending upon its state.

Comments
VBM_WANTSPECIALKEY allows controls to trap ENTER, ESC, TAB, and arrow keys when those keys
would normally have some special meaning.

Return Value
Returning TRUE prevents a key from taking normal meaning. For example, returning TRUE for VK_TAB
will prevent the tab key from tabbing the focus away from that control.

Default Action
Returns TRUE if wp is an arrow key and the controls model has MODEL_fArrows set. Otherwise, default
processing returns FALSE.

See Also
VBM_ISMNEMONIC
VBM_MNEMONIC

VBN_    Messages

Visual Basic message Corresponding Windows message
VBN_CHARTOITEM    [2.0] WM_CHARTOITEM
VBN_COMMAND WM_COMMAND
VBN_COMPAREITEM WM_COMPAREITEM
VBN_CTLCOLOR WM_CTLCOLOR
VBN_DELETEITEM WM_DELETEITEM
VBN_DRAWITEM WM_DRAWITEM
VBN_HSCROLL WM_HSCROLL
VBN_MEASUREITEM WM_MEASUREITEM
VBN_PARENTNOTIFY WM_PARENTNOTIFY
VBN_VKEYTOITEM    [2.0] WM_VKEYTOITEM
VBN_VSCROLL WM_VSCROLL

Comments
Each of these messages indicates that the control has sent a corresponding WM_ message to its
parent. Generally, these messages are most useful when you are creating a subclass of an existing
Windows control. A Windows control often sends notification to its parent, and the VBN mechanism
provides a convenient way to handle this behavior.
For example, a button might send a WM_COMMAND message to its parent. Within Visual Basic, the
parent window is actually the controls container; this is typically the form, but it also might be a picture
box or frame. In any case, the default behavior for all forms and controls is to reflect back the message
as a VBN message. So if a control sends a WM_COMMAND message to a parent, it gets back a
VBN_COMMAND message. If a control sends a WM_CTLCOLOR message, it gets back a
VBN_CTLCOLOR message. The control procedure can then process the VBN message as appropriate.
See Chapter 10, Subclassing a Windows Control, for more explanation and examples.

Return Value
Defined by the corresponding Windows message.

Default Action
For VBN_CTLCOLOR, the default control procedure sets the display context and returns a background
brush, according to the values of the standard BackColor and ForeColor properties.

Visual Basic Standard Properties
Visual Basic provides 44 standard properties. Each of these is represented by a constant
that points to a PROPINFO structure for the property. The default processing routine,
VBDefControlProc handles the appropriate message processing for each of these
properties.
Note that all the size and position properties (Left, Top, Width, Height) are written to or read
from disk together when the Left property is saved or loaded. Therefore, make sure you
include Left as a property if you want your control to contain any size or position
information.
Similarly, all the font properties (FontName, FontBold, FontItalic, FontStrike, FontUnder,
FontSize) are written to or read from disk together when the FontName property is saved or
loaded. Therefore, make sure you include FontName as a property if you want your control
to contain any font information.
Properties that are specific to a version level of Visual Basic are denoted by the version
number inside brackets. For example, version 3.0 is denoted by [3.0].

Align    [2.0] FontName LinkTimeout   
[2.0]

BackColor FontSize LinkTopic    [2.0]
BorderStyle (off) FontStrike MousePointer
BorderStyle (on) FontUnder Name    [2.0]
Caption ForeColor None    [2.0]
ClipControls    [2.0] Height Parent
CtlName HelpContextID   

[2.0]
TabIndex

DataChanged   
[3.0]

hWnd TabStop

DataField    [3.0] ImeMode    [2.0] Tag
DataSource    [3.0] Index Text
DragIcon Last    [2.0] Top
DragMode Left TopNoRun    [2.0]
Enabled LeftNoRun    [2.0] Visible
FontBold LinkItem    [2.0] Width
FontItalic LinkMode    [2.0]

Align    [2.0]

PPROPINFO_STD_ALIGN
The Align property, when set to align to top or align to bottom, forces the width of the
control to be the same width as the form's ScaleWidth. The control's position is also aligned
to the top or bottom of the form.
If multiple controls are aligned to the same position on a form, the controls are stacked on
top of each other.
The WM_SIZE and WM_MOVE messages are still sent to the control, but the size and
position of the control cant be changed any changes to the size and position are ignored.

BackColor

PPROPINFO_STD_BACKCOLOR
You must send a WM_CTLCOLOR message to get a brush that contains the background color.

BorderStyle (off)

PPROPINFO_STD_BORDERSTYLEOFF
Assumes the window style defined in the control's MODEL structure does NOT contains the
WS_BORDER flag.

BorderStyle (on)

PROPINFO_STD_BORDERSTYLEON
Assumes the window style defined in the control's MODEL structure contains the
WS_BORDER flag.

Caption

PPROPINFO_STD_CAPTION
Requires that you respond to WM_SETTEXT, WM_GETTEXT, and WM_GETTEXTLENGTH
messages.

ClipControls    [2.0]

PPROPINFO_STD_CLIPCONTROLS
Sets or clears the window style flag WS_CLIPCHILDREN, based on the value of this property
at design-time. This property is valid only for controls that set the MODEL_fChildrenOk flag.

CtlName

PPROPINFO_STD_CTLNAME
This property is required, and should be placed first in the list. Replaced with
PPROPINFO_STD_NAME in Visual Basic version 2.0.

DataChanged    [3.0]

PPROPINFO_STD_DATACHANGED
Indicates that the data in the bound control has been changed by some process other than
getting the data from the current record.

DataField    [3.0]

PPROPINFO_STD_DATAFIELD
Allows your control to bind to a field in a database. This property requires that you
implement the DataSource property.

DataSource    [3.0]

PPROPINFO_STD_DATASOURCE
Allows your control to bind to a specific data control. This is the only property needed to
initiate binding.
This property requires that you add the MODEL_fLoadMsg flag to the controls model
structure.

DragIcon

PPROPINFO_STD_DRAGICON

DragMode

PPROPINFO_STD_DRAGMODE

Enabled

PPROPINFO_STD_ENABLED

FontBold

PPROPINFO_STD_FONTBOLD

FontItalic

PPROPINFO_STD_FONTITALIC

FontName

PPROPINFO_STD_FONTNAME
Requires that you respond to WM_SETFONT and WM_GETFONT messages. Responding to
these messages provides the support necessary for all the font properties.
All font properties are saved and loaded together with FontName.

FontSize

PPROPINFO_STD_FONTSIZE

FontStrike

PPROPINFO_STD_FONTSTRIKE

FontUnder

PPROPINFO_STD_FONTUNDER

ForeColor

PPROPINFO_STD_FORECOLOR
You must send a WM_CTLCOLOR message to use this property.

Height

PPROPINFO_STD_HEIGHT

HelpContextID    [2.0]

PPROPINFO_STD_HELPCONTEXTID
The HelpContextID property is the user-defined help context ID. This context ID corresponds
to a topic in the user's help file.

hWnd

PPROPINFO_STD_HWND
The hWnd property is set to the control's window handle. The property is read only, and not
available at run time.
For graphical controls, this property is not valid.

ImeMode    [2.0]

PPROPINFO_STD_IMEMODE
The ImeMode allows the control to recognize the DBCS mode. If a control is loaded with this
property in the domestic version of the product, it is ignored. This allows you to create one
custom control that runs under non-DBCS (domestic) as well as DBCS (international)
versions.

Index

PPROPINFO_STD_INDEX
This property is required, and should be placed second in the list.

Last    [2.0]

PPROPINFO_STD_LAST
Indicates the maximum value of a standard property (IPROP_STD_property). Therefore, this
property also indicates the lowest value of a standard property (PPROPINFO_STD_property)
in the control's PropertyList array. A value less than PPROPINFO_STD_LAST is a non-
standard property.
This property is not a real property, but only a marker. Use it to test if a property is a
standard or user-defined property. For example:
        usCurrProp = lpmodel->npproplist[i];
        if (usCurrProp < PPROPINFO_STD_LAST) {
            // non-standard property processing
        } else {
            // standard property processing
        }

Left

PPROPINFO_STD_LEFT
Left, Top, Width, and Height are all saved and loaded together with Left.

LeftNoRun    [2.0]

PPROPINFO_STD_LEFTNORUN
Use this property instead of Left for an invisible control.

LinkItem    [2.0]

PPROPINFO_STD_LINKITEM
The LinkItem property corresponds to the ItemName value in standard DDE syntax,
AppName|TopicName|ItemName.

LinkMode    [2.0]

PPROPINFO_STD_LINKMODE
The LinkMode property determines the type of link used for a DDE conversation and
activates the connection.

LinkTimeout    [2.0]

PPROPINFO_STD_LINKTIMEOUT
The LinkTimeout property determines the amount of time a control waits for a response to
a DDE message.

LinkTopic    [2.0]

PPROPINFO_STD_LINKTOPIC
The LinkTopic property determines the application name and topic of a DDE conversation.

MousePointer

PPROPINFO_STD_MOUSEPOINTER

Name    [2.0]

PPROPINFO_STD_NAME
This property is required, and should be placed first in the list. Replaces
PPROPINFO_STD_CTLNAME in Visual Basic version 1.0.

None    [2.0]

PPROPINFO_STD_NONE
The None property allows you to remove a property by replacing it with a placeholder that
does nothing. This allows applications to use different versions of a control.

Parent

PPROPINFO_STD_PARENT
The control's parent. All controls are required to have this property.

TabIndex

PPROPINFO_STD_TABINDEX
Should be supported if MODEL_fFocusOk or MODEL_fMnemonic flag is set.

TabStop

Should be supported if the MODEL_fFocusOk flag is set.

Tag

PPROPINFO_STD_TAG

Text

PPROPINFO_STD_TEXT
This property is the same as Caption, except for the property name.

Top

PPROPINFO_STD_TOP

TopNoRun    [2.0]

PPROPINFO_STD_TOP
Use this property instead of Top for an invisible control.

Visible

PPROPINFO_STD_VISIBLE

Width

PPROPINFO_STD_WIDTH

Data Structures
This chapter provides a summary of each data structure used in custom control code.
Understanding these structures can be useful in writing general DLL routines as well as in
writing custom controls. Features that are specific to a version level of Visual Basic are
denoted by the version number inside brackets. For example, version 3.0 are denoted by
[3.0].
The MODEL Structure
MODEL Flags
The PROPINFO Structure
Property Data Type Flags
Other Property Flags
The EVENTINFO Structure
Argument Type Flags
The PIC Structure
The DATASTRUCT Structure (Property Arrays)
The DRAGINFO Structure
The VBLINKDATA Structure    [2.0]
The MODELINFO Structure    [2.0]
The DATAACCESS Structure    [3.0]

The MODEL Structure

Field name Description
usVersion An unsigned integer specifying the version

of Visual Basic for which the control was
developed. Typically initialized with
VB_VERSION, a constant defined in
VBAPI.H.

fl MODEL flags (listed in the next section).
pctlproc The address of the control procedure.
fsClassStyle The window class styles for the control.

These class styles all have a CS prefix, and
they supplement the class styles in the
superclass, if one exists.

flWndStyle Default window styles for the control.
cbCtlExtra Size of the programmer-defined structure,

if any, to be allocated as part of each
control structure. Set to 0 if there is no
programmer-defined structure.

idBmpPalette Starting resource ID for bitmaps that
provide the control's Toolbox icon. Position
and meaning of the bitmaps are:
idBmpPalette VGA, up position
idBmpPalette+1 VGA, down position
idBmpPalette+3 Monochrome, up
position
idBmpPalette+6 EGA, up position
The down position bitmaps for EGA and
monochrome displays are not required
Visual Basic inverts the up position bitmap
when it is selected.

npszDefCtlName Default control name. Visual Basic uses
this string to assign default values to
Name (CtlName for Visual Basic version
1.0). For example, the first three Circle
controls are named Circ1, Circ2, and Circ3.
Segment assumed is that of the control
model.

npszClassName Visual Basic class name. This name can be
used in a Visual Basic If...TypeOf
statement to recognize the control's type.
The class name is displayed in the Object
box of the Properties window. Segment
assumed is that of the control model.

npszParentClassNameThe class name of the subclassed control,
if any, or NULL if there is no subclassing.
Segment assumed is that of the control
model.

npproplist A near pointer to the properties
information table, which is an array of
pointers to PROPINFO structures. Segment
assumed is that of the control model.

npeventlist A near pointer to the event information
table, which is an array of pointers to
EVENTINFO structures. Segment assumed

is that of the control model.
nDefProp Index of default property in Properties

window.
nDefEvent Index of default event in Code window.
nValueProp    [2.0] Index of property that is the default

property value for the control. Setting this
field    to -1 indicates no default property
value.
If a control is created, with the name
property set to Circle1, and the default
value property is set to Caption, then the
following code:
        Circle1 = "hello"

means
        Circle1.Caption = "hello"

Future versions of the custom control API
may assume that a property with the
name "Value" is the default property. If
your control includes a Value property, it
should be designated as the nValueProp
property. If your control does not include a
Value property, you are free to use any
other property in your model. Any future
version which defaults to using the Value
property will instead use the property that
you designate in the nValueProp field if a
Value property is not defined for the
control

usCtlVersion    [3.0] Indentifies the current version of the
custom control. Refer to Technical Note 2:
Custom Control Version Management,
TN002.TXT, in the CDK directory.

MODEL Flags

Flag value Description
MODEL_fArrows Send keyboard messages for arrow keys to the control. If this flag is

off, arrow keys are used to move between controls. See
VBM_WANTSPECIAL_KEY.

MODEL_fChildrenOk Enable the application developer to draw other controls inside of
this control at design time. This lets the control function as a
container of other controls, as can picture boxes and frames.

MODEL_fDesInteract Enable the control to get right-mouse-button messages at design
time: WM_RBUTTONDOWN, WM_RBUTTONDBLCLK,
WM_RBUTTONUP.
By processing these messages at design time, the control
procedure can provide special mechanisms for manipulating the
control and its properties.

MODEL_fFocusOk Enable the control to get the focus at run time.
MODEL_fGraphical    [2.0] Indicate control is a graphical control.
MODEL_fInitMsg Enable the control to get VBM_INITIALIZE messages.
MODEL_fInvisAtRun    [2.0] Specify that the control is invisible at run time. Visual Basic

automatically handles the representation of the control on the form

at design time it uses the same icon that appears in the Toolbox.
MODEL_fLoadMsg Enable the control to get VBM_CREATED and VBM_LOADED

messages. This flag is required for bound controls and DDE-enabled
controls.

MODEL_fMnemonic Respond to the control's mnemonic key (access key) by moving the
focus to the control and sending a VBM_MNEMONIC message. The
control must support WM_GETTEXT and WM_GETTEXTLENGTH
messages, or the standard Caption or Text property in order to set
this flag.

The PROPINFO Structure

Field name Description
npszName The name of the property as it appears in Visual Basic statements and in the

Properties window. This name must conform to Visual Basic variable naming
conventions.

fl Property flags (listed in the next two sections).
offsetData The offset of the field in the programmer-defined structure where the

property value is stored. This field can be ignored only if neither the
PF_fGetData nor the PF_fSetData flag is set for the property.
The OFFSETIN macro, described in Chapter 6 of the Control Development
Guide, "Adding a Custom Property," is useful for initializing this field.

infodata If this field is nonzero, and the data type is DT_BOOL, DT_SHORT, or
DT_ENUM, the field supports packing of data within the programmer-defined
structure. The data must range from 0 to 15, so that it can be packed within
4 bits or fewer. This field can be ignored only if neither the PF_fGetData nor
the PF_fSetData flag is set for the property.
The highest 4 bits of infodata specify a bit mask, which should be binary     
0001, 0011, 0111, or 1111, depending on the size of the bit field. The lowest
4 bits give the shift count, which specifies what bit the field starts in. See
Chapter 11 of the Control Development Guide, "Other Programming Topics,"
for examples.

dataDefault If the PF_fDefVal flag is set, this field should contain the most common value,
so that when the control is saved to disk, the property is skipped if it contains the
dataDefault value. Then, when the control is loaded, the property is set to the dataDefault
value (unless PF_fNoInitDef is also set).
npszEnumList For enumerated properties (DT_ENUM), this field is a pointer to a string
providing list box items for the Properties window. Items are separated by embedded nulls.
Two nulls in a row terminate the string. Setting to NULL indicates no items.
enumMax For enumerated properties (DT_ENUM), this field indicates the maximum

legal value. Setting to 0 turns off automatic validation.

Property Data Type Flags
Only one of the following flags can be selected for each property. The selected flag is then
logically OR'ed with flags listed in the next section.
Flag value Resulting data type of property
DT_BOOL Boolean. This is a short integer, though it can be packed into as little as

1 bit. All incoming and outgoing nonzero values are converted to -1
during a set or get operation.

DT_COLOR A long integer that holds a color value. This value is an RGB value, or
(if the most significant bit is set) the lowest 3 bytes contain a system-
color number defined in WINDOWS.H.
Visual Basic automatically validates numbers input for validity as color
values. The value is displayed in the Properties window using
hexadecimal radix.

DT_ENUM A short integer holding an enumerated value (0 255). Selection of
this data type (as opposed to DT_SHORT) enables the npszEnumList
and enumMax fields, described in the previous section. The data can
be packed into a bit field from 1 to 4 bits wide.

DT_HLSTR    [2.0] String. The string data should be stored as an HLSTR type. DT_HLSTR
property values are string descriptors representing strings of bytes that
can contain embedded NULL characters. This is the principle
advantage over DT_HSZ strings which are terminated by a NULL
character.
HLSTR strings that you allocate must be freed in response to
WM_NCDESTROY.
Refer to Chapter 9 of the Control Development Guide, "Handling
Strings and Fonts," for more details on HLSTR strings.

DT_HSZ String. The string data should be stored as an HSZ type. If the
PF_fSetData flag is set, allocation and freeing of the HSZ string are
handled by Visual Basic.
HSZ strings that you allocate must be freed in response to
WM_NCDESTROY.
Refer to Chapter 9 of the Control Development Guide, "Handling
Strings and Fonts," for more details on HSZ strings.

DT_LONG 32-bit signed integer.
DT_OBJECT Points to an iDispatch interface. Refer to Technical Note 1: Support for

DT_OBJECT Properties, TN001.TXT, in the CDK directory.
DT_PICTURE Picture structure. The picture should be stored as an HPIC handle. If the

PF_fSetData flag is set, Visual Basic allocates HPIC handles as needed.
The HPIC must be freed in response to WM_NCDESTROY.

DT_REAL 4-byte real.
DT_SHORT 16-bit signed integer. The data can be packed into a bit field from 1 to

4 bits wide.
DT_XPOS Long integer expressing an X coordinate. The data for a get or set

operation is expressed in terms of the container's scale. The data gets
converted, if necessary, so that the custom control code uses units
expressed in twips, with the origin (0,0) at the control's upper-left
corner. Similar conversions are performed for the remaining types.

DT_XSIZE Long integer expressing an X size in twips. Origin does not affect size
conversions.

DT_YPOS Long integer expressing a Y coordinate in twips.
DT_YSIZE Long integer expressing a Y size in twips.

Other Property Flags
You can use any number of the following flags in the fl field of the PROPINFO structure.

Important When the PF_fPropArray flag is used, the following flags must also be used:
PF_fSetMsg, PF_fGetMsg, and PF_fNoShow. The PF_fSaveData flag must not be used.

Flag value Description
PF_fDefVal Causes Visual Basic to avoid saving and loading the property to disk

when the value is equal to the dataDefault value in the PROPINFO
structure. This flag affects only loading and saving, not default values
of newly created controls.
During saving, the property value is not written to disk if equal to the
dataDefault value. Then, during loading, if the property was not
saved to disk, it is set to the dataDefault value. (The PF_fNoInitDef
flag alters loading behavior.)

PF_fEditable Enables the application developer to edit text in the Settings box
directly, even if a list box or pop-up window is used. If neither is used,
this flag has no effect.

PF_fGetData Indicates that Visual Basic gets the property value by directly copying
data from the programmer-defined structure. The offsetData and
infoData fields of the PROPINFO table specify exactly where the data
is located within the structure.

PF_fGetHszMsg Causes Visual Basic to send a VBM_GETPROPERTYHSZ message to
the control whenever the property value is to be displayed in the
Properties window. If this flag is not used, then Visual Basic simply
gets the property value and displays it in the Settings box.

PF_fGetMsg Causes Visual Basic to send a VBM_GETPROPERTY message when the
property value is requested. Either this flag or the PF_fGetData flag
should be used.

PF_fLoadMsgOnly    [2.0] Causes Visual Basic to send VBM_LOADPROPERTY messages
when the form is loaded from a file. These messages pass a handle to
file location. It is then the responsibility of the control procedure to
read from disk (using the VBReadFormFile function).
This property is similar to PF_fSaveMsg, except that a
VBM_SAVEPROPERTY messages are not generated. This allows
custom controls to be backward compatible by loading properties in
previous versions that are no longer supported in newer ones.

PF_fLoadDataOnly    [2.0] Causes Visual Basic to load the property from a form file, but
prevents the property from being written back out to the form file.
This property is similar to PF_fSaveData, except that properties are
not written out to the form file. This allows custom controls to be
compatible with Visual Basic version 1.0.

PF_fNoMultiSelect    [2.0] Specifies that any given custom property NOT be displayed in
the Properties window when that control is part of a selected group.
Currently, no properties of type DT_PICTURE are included in a
multiple selection.
However, if PF_fNoMultiSelect is not present, a future version of
Visual Basic may include a given property of type DT_PICTURE in a
multiple selection. If you must guarantee that a property is never
placed in a multiple selection (even if it is DT_PICTURE), then
PF_fNoMultiSelect must be set.

PF_fNoInitDef Prevents Visual Basic from setting the property to the dataDefault
value during loading of the control (though you can still initialize the
property by responding to messages). If PF_fDefVal is not set,
PF_fNoInitDef has no effect.

PF_fNoRuntimeR    [2.0] Indicates that the property is write-only at run time. Any
attempt to read the property generates a runtime error. When
combined with PF_fNoRuntimeW, it indicates that the property is not
available at all at run time (a design-time-only property), and
references to it are flagged as Visual Basic compilation errors.

PF_fNoRuntimeW Indicates that the property is read-only at run time.
PF_fNoShow Prevents the property from appearing in the Properties window.
PF_fPreHwnd Causes the property to be loaded before the control's window

structure is created. A property should be pre-HWND if it affects a
window style. The actual setting of the window style (that is, the style
altered by the pre-HWND property) should be made in response to a
WM_NCCREATE message.

PF_fPropArray Specifies that the property is an array. When this flag is used, you
must use a DATASTRUCT structure to implement all getting and
setting of the property. The PF_fNoShow property must also be set.

PF_fSaveData When the form is being saved to a file, Visual Basic saves the
property value by getting its value and then writing the data to disk
directly. Similarly, Visual Basic loads the property by reading its value
directly from the disk and then setting it.

PF_fSaveMsg Causes Visual Basic to send a VBM_SAVEPROPERTY message to the
control whenever the form is being saved to a file, and a
VBM_LOADPROPERTY message when the form is loaded from a file.
These messages pass a handle to a file. It is then the responsibility of
the control procedure to read or write from disk (using the functions
VBReadFormFile and VBWriteFormFile).

PF_fSetCheck Causes Visual Basic to send a VBM_CHECKPROPERTY message before
it sets the value of the property. This gives the custom control code a
chance to check the validity of the property value.
If the control procedure returns a nonzero error code in response to
this message, Visual Basic reports an error to the user and will not
proceed with setting the property to the new value.

PF_fSetData Indicates that Visual Basic sets the value of the property by placing
data directly in the programmer-defined structure.

PF_fSetMsg Causes Visual Basic to send a VBM_SETPROPERTY message when
setting of the property is attempted. Either this flag or the
PF_fSetData flag should be used. If both are used, then the data is
transferred before the message is sent.

PF_fUpdateOnEdit Causes the property value to be set every time a character is typed
in the Settings box of the Properties window. If this flag is not used,
the property is not set until change is committed.
Typically used for string properties like Caption and Text.

The EVENTINFO Structure

Field name Description
npszName The name of the event as it appears in the Code window.
cParms Number of arguments, not including the Index argument.
cwParms Total number of words represented by the argument list. Since each

argument is based as a 2-byte pointer to the data, this field is always twice
the value of cParms.

npParmTypes A pointer to a BYTE array that lists the type of each argument, in the order
listed in the event procedure header. Each element of this array is an ET
flag that indicates an argument type. For example, a pointer to a BYTE
array is initialized as:

{ET_I2, ET_SD}

npszParmProf A null-terminated string which contains the procedure arguments as they
are to appear in the event procedure header. This string should include
commas to separate arguments, but no parentheses. The Index argument
is not included; Visual Basic takes care of adding that argument when
appropriate. This string must not exceed 180 bytes        for example:

"I As Integer, FirstName As String"

fl This field can contain the EF_fNoUnload flag, or be set to 0. When this flag
is set, it tells Visual Basic not to allow unloading of the current form or any
control on the form, while the corresponding event procedure is being
fired.
The EF_fNoUnload flag is useful for events that must assume that nothing
is unloaded. (The standard Paint event is an example.)

Argument Type Flags

Value Description
ET_I2 16-bit signed integer
ET_I4 32-bit signed integer
ET_R4 4-byte real
ET_R8 8-byte real
ET_CY 8-byte currency
ET_HLSTR String (new name for ET_SD)

The PIC Structure
The PIC structure type is defined in VBAPI.H as follows:
typedef struct tagPIC
{

BYTE picType;
union {

struct {
HBITMAP hbitmap; // Bitmap
HPALETTE hpal; // Accompanying palette

} bmp;
struct {

HANDLE hmeta; // Metafile
int xExt, yExt; // Extent

} wmf;
struct {

HICON hicon; // Icon
} icon;

} picData;
BYTE picReserved[4];

}
PIC;

The use of each field is described below.
Field name Description
picType Enumerated type specifying the format of picture. Can be set to

any of the following:
PICTYPE_NONE
PICTYPE_BITMAP
PICTYPE_METAFILE
PICTYPE_ICON

picData.bmp.hbitmap Handle to a bitmap.
picData.bmp.hpal    [2.0] Handle to a palette.
picData.wmf.hmeta Handle to a metafile.
picData.wmf.xExt Width in twips of the area to contain the picture.
picData.wmf.yExt Height in twips of the area to contain the picture.
picData.icon.hicon Handle to an icon.

The DATASTRUCT Structure (Property Arrays)
The DATASTRUCT data structure type is defined in VBAPI.H as follows:
typedef struct
{

LONG data; // Data for Get and Set
USHORT cindex; // Number of indexes

// (currently always 1)
struct
{

USHORT datatype; // Type of nth index (Always
// DT_SHORT)

LONG data; // Value of nth index
} index [1]; // Currently, only 1-dim

// arrays supported
} DATASTRUCT;

The use of each field is described below. If you call VBSetControlProperty or
VBGetControlProperty to manipulate a property array, you need to first declare a
DATASTRUCT structure and initialize the fields to appropriate values. When you respond to
VBM_SETPROPERTY and VBM_GETPROPERTY, the structure is passed to you and you can
assume that it is already filled with acceptable values. When responding to
VBM_GETPROPERTY, you place the property value in the first field:
Field name Description
data Data to be transferred. In the case of numeric and DT_PICTURE types,

the field is used the same way whether getting or setting the property.
The field contains the actual data to be transferred        or an HPIC
handle, in the case of a DT_PICTURE type. (This field should be
initialized to zero before a call to VBGetControlProperty; the data
returned is placed in this field as a result of the call.)

In the case of strings, the meaning of the field changes between the "get" and the
"set" case. The field should contain an HSZ handle as a result of getting the property value;
it contains a pointer to the null-terminated string data when being used to set a property
value.
cindex The number of indexes. Only one-dimensional property arrays are supported
in this version of Visual Basic, so this field should always contain the value 1.
index[0].datatype The data type of the index, as specified by a DT flag. This field should
always contain DT_SHORT for this version.
index[0].data Index of the element involved in the data transfer.

The DRAGINFO Structure
This structure is passed in the lp parameter of VBM_DRAGOVER and VBM_DRAGDROP
messages. The DRAGINFO data structure type is defined in VBAPI.H as follows:
typedef struct tagDRAGINFO
{

HCTL hctl;
POINT pt;
USHORT state; // Enter, Over, Exit; only used for VBM_DRAGOVER

} DRAGINFO;

Field name Description
hctl Handle to the control structure.
pt A POINT structure containing the mouse coordinates.
state Used with the VBM_DRAGOVER message only: this field is an unsigned integer

indicating the state of the drag. The value of this field can be one of the
following constants:
DRAG_STATE_ENTER
DRAG_STATE_EXIT
DRAG_STATE_OVER

The VBLINKDATA Structure    [2.0]
The VBLINKDATA structure is passed in the lp parameter of VBM_LINKGETDATA and
VBM_LINKSETDATA messages. The VBLINKDATA data structure is defined in VBAPI.H as
follows:
typedef struct tagVBLINKDATA

{
WORD wReserved; // reserved
DWORD cb; // size of data
HANDLE hData; // handle to data
DWORD dwReserved; // reserved
} VBLINKDATA;

typedef VBLINKDATA FAR *LPLINKDATA;

Field name Description
wReserved Reserved.
cb The size of the data in the buffer pointed to by the hData handle.
hData Handle to a global buffer containing the linked data.
dwReserved Reserved.

The MODELINFO Structure    [2.0]
The MODELINFO structure is used by the VBGetModelInfo function. The MODELINFO data
structure is defined in VBAPI.H as follows:
typedef struct tagMODELINFO

{
USHORT usVersion; // VB version used by

// control
LPMODEL FAR *lplpmodel;// pointer to null-

// terminated
} MODELINFO; // list of LPMODELS

typedef MODELINFO FAR *LPMODELINFO;

Field name Description
usVersion An unsigned integer value that represents the Visual Basic version of the

control.
lplpmodel Pointer to null-terminated array of pointers to MODEL structures.

The DATAACCESS Structure    [3.0]
The DATAACCESS structure is used by the Visual Basic set of data binding messages. The
DATAACCESS data structure is defined in VBAPI.H as follows:
typedef struct
{
    USHORT usVersion;          // VB version of structure filled
  // in when structure is created
    SHORT sAction;                // on VBM_DATA_GET/SET specifies
  // what to get/set
  // on VBM_DATA_AVAILABLE/REQUEST
  // tells why
    HCTL hctlData;                // the data control providing    data
    HCTL hctlBound;              // the bound control receiving data
    HSZ hszDataField;          // the name of the field to get
 value of
    SHORT sDataFieldIndex; // the field index used when

// hszDataField is NULL
    HLSTR    hlstrBookMark; // used when getting multirow data
    FSHORT fs; // Bitfield structure
    USHORT usDataType; // the property datatype to convert data to
    LONG     lData; // the data
    ULONG    ulChunkOffset; // the offset to start at for GetChunk
    ULONG    ulChunkNumBytes; // the number of bytes for GetChunk
} DATAACCESS, FAR * LPDATAACCESS;

Field name Description
usVersion An unsigned integer value that represents the Visual Basic version of the

DATAACCESS structure. Whichever control creates the structure fills in this
value.

sAction An integer value that represents the action to perform when the
VBM_DATA_GET or VBM_DATA_SET messages are sent, or the action completed
when the VBM_DATA_AVAILABLE or VBM_DATA_REQUEST messages are
received. You also specify this value when you send the VBM_DATA_METHOD
message.
Refer to the specific message for a description of all sAction values.

hctlData Handle to the data controls control structure. This is the data control that the
bound control references via the DataSource property. Use this value when
responding to a VBM_DATA_AVAILABLE or VBM_DATA_REQUEST message.
However, dont store the hctlData value and attempt to use it later for
processing other messages.

hctlBound Handle to the bound controls control structure.
hszDataField Handle to the name of the field. Set to NULL if referencing the field by

sDataFieldIndex.
sDataFieldIndex An integer value that represents the index of the field. Only used if

hszDataField is NULL.
hlstrBookMark Handle to a bookmark. This is typically used when traversing the records

in a recordset using the VBM_DATA_GET message.
fs Bitfield structure that contains the following flags:

DA_fNull -- set to TRUE if the field value is null. For numeric values, this allows
you differentiate between a 0 value and a null value.
DA_fBOF -- set to TRUE if the current record position is before the first record
in a recordset. When traversing a recordset via the VBM_DATA_GET message
(sAction set to DATA_BOOKMARK), this flag allows you to determine the
beginning of the recordset.
DA_fEOF -- set to TRUE if the current record position is after the last record in
the recordset. When traversing a recordset via the VBM_DATA_GET message
(sAction set to DATA_BOOKMARK), this flag allows you to determine the end of
the recordset.

usDataType Requested data type of the lData value when retrieving a field value from
the data control via VBM_GET_MESSAGE. The data control attempts to coerce
the field value into the request data type if possible.
When sending the lData value to the data control via VBM_SET_MESSAGE,
usDataType represents the actual data type of the value.
The only valid data types for usDataType are property data types (for
example, DT_HSZ).

lData Data value. The value received via VBM_GET_DATA, or the value sent via
VBM_SET_DATA.

ulChunkOffset Unsigned long that represents the offset to use when using
DATA_FIELDCHUNK with the VBM_DATA_GET message.

ulChunkNumBytes Unsigned long that represents the size of the chunk when using
DATA_FIELDCHUNK with the VBM_DATA_GET message.

Standard Events
Visual Basic provides 18 standard events. When you include a standard event in your
custom control code, you need only declare it in the event information table. If you choose,
you can fire the event yourself, but this is normally unnecessary. The default control
procedure, VBDefControlProc fires standard events in response to specific messages.

Note If the standard Click, MouseDown, or MouseUp event is included, the default control
procedure automatically captures or releases the mouse.
Properties that are specific to a version level of Visual Basic are denoted by the version
number inside brackets. For example, version 2.0 is denoted by [2.0].

Click KeyPress MouseUp
DblClick KeyUp LinkClose [2.0]
DragDrop Last [2.0] LinkError [2.0]
DragOver LostFocus LinkNotify [2.0]
GotFocus MouseDown LinkOpen [2.0]
KeyDown MouseMove None [2.0]

Click

PEVENTINFO_STD_CLICK
Fired when the control has captured the mouse, a WM_LBUTTONUP message is received,
and the button is released over the control. The standard MouseDown and MouseUp events
occur before this event.

DblClick

PEVENTINFO_STD_DBLCLICK
Similar to Click, but fired when a WM_LBUTTONDBLCLK message is received.

DragDrop

PEVENTINFO_STD_DRAGDROP
Fired after a VBM_DRAGDROP message is received.

DragOver

PEVENTINFO_STD_DRAGOVER
Fired after a VBM_DRAGOVER message is received.

GotFocus

PEVENTINFO_STD_GOTFOCUS
After receiving a WM_GOTFOCUS message, the default message processor posts a
VBM_FIREEVENT message. This mechanism delays firing of the event until other pending
messages are processed.

KeyDown

PEVENTINFO_STD_KEYDOWN
Fired when a WM_KEYDOWN or a WM_SYSKEYDOWN message is received.

KeyPress

PEVENTINFO_STD_KEYPRESS
Fired when a WM_CHAR message is received.

KeyUp

PEVENTINFO_STD_KEYUP
Fired when either a WM_KEYUP or a WM_SYSKEYUP message is received.

Last    [2.0]

Indicates the maximum value of a standard event (IEVENT_STD_event). Therefore, this
event also indicates the lowest value of a standard event (PEVENTINFO_STD_event) in the
control's EventList array. A value less than PEVENTINFO_STD_LAST is a non-standard event.
This event is not a real event, but only a marker. Use it to test if an event is a standard or
user-defined event. For example:
        usCurrEvent = lpmodel->npeventlist[i];
        if (usCurrEvent < PEVENTINFO_STD_LAST) {
            // non-standard event processing
        } else {
            // standard event processing
        }

LostFocus

PEVENTINFO_STD_LOSTFOCUS
Fired when a WM_LOSTFOCUS message is received. The same delayed-processing
mechanism is used as for GotFocus.

MouseDown

PEVENTINFO_STD_MOUSEDOWN
Fired if any BUTTONDOWN (right, left, or middle button) message is received. The mouse is
captured as a result of this event.

MouseMove

PEVENTINFO_STD_MOUSEMOVE
Fired when a WM_MOUSEMOVE message is received.

MouseUp

PEVENTINFO_STD_MOUSEUP
Fired if any BUTTONDOWN (right, left, or middle button) message is received. The mouse
capture is released as a result of this event.

LinkClose    [2.0]

PEVENTINFO_STD_LINKCLOSE
Fired when a DDE conversation terminates.

LinkError    [2.0]

PEVENTINFO_STD_LINKERROR
Fired when there is an error during a DDE conversation.

LinkNotify    [2.0]

PEVENTINFO_STD_LINKNOTIFY
Fired when you have a DDE notify link and the data in the server has changed.

LinkOpen    [2.0]

PEVENTINFO_STD_LINKOPEN
Fired when a DDE conversation is being initiated.

None    [2.0]

The None event allows you to remove a event by replacing it with a placeholder that does
nothing. This allows applications to use different versions of a control.

