
Using HP2XX
A HP-GL Converter

Edition 1.0.2, for HP2XX version 3.1.x
April 1993

by Heinz W. Werntges

heinz@convex.rz.uni-duesseldorf.de
Using HP2XX, Revision : 1.0.2

TEXinfo 2021-02-20.11

Copyright c© 1992, 1993 Heinz W. Werntges

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the accompanying file named COPYING
which contains the “GNU General Public License” is included exactly as in the original,
and provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the abovementioned file
COPYING containing the “GNU General Public License” may be included in a translation
approved by the Free Software Foundation instead of in the original English.

1

1 Introduction

The hp2xx program is a versatile tool to convert vector-oriented graphics data given in
Hewlett-Packard’s HP-GL plotter language into a variety of popular both vector- and raster-
oriented graphics formats.

The various supported output formats include Encapsulated PostScript (EPS), PCX,
IMG, and several formats intended to facilitate the generation of graphics within TEX
documents. In addition, hp2xx output is printable on the HP Laserjet/Deskjet printer
series, and it may be used as a HP-GL previewer on many platforms, e.g. X11 and DOS
(VGA).

hp2xx first converts all HP-GL data into pure vectors and buffers them internally. It
then converts these vectors into a specified output format (vector modes), or rasterizes them
(raster modes) on an internal bitmap. In raster modes, hp2xx then translates the bitmap
into the output format.

1.1 Invoking hp2xx

The format of the hp2xx command is:

hp2xx [options] [input-file(s)]

It follows the UNIX System V tradition of a filter, i. e., options begin with ‘-’, followed
by a single letter and an optional parameter. Options must appear immediately behind
the program name and before the input file name(s) (if specified). If no input file is given,
hp2xx reads from stdin. In addition to this traditional option handling, hp2xx also supports
GNU-style long options and option/non-option permutation (see Appendix B [Appendix B],
page 21). However, throughout this manual all examples will only display short options.

hp2xx writes to the output file whose name can be specified by option ‘-f’. Without
option ‘-f’, hp2xx generates output file names from the input names and the selected mode
(see option ‘-m’). hp2xx writes to stdout if you supply a dash as output file name like in
‘-f-’.

1.2 hp2xx for the impatient

This section is intended to give those of you a quick-start who are quite familiar with tra-
ditional UNIX-style programs and with HP-GL and other graphics formats. The following
examples will give you a good idea of hp2xx’s functionality. See Appendix B [Appendix B],
page 21, for further details.

hp2xx foo.hp

Preview of HP-GL graphics in file foo.hp. The picture will fit into a square of 200 mm
width, assuming that your output device (screen) features 75 DPI resolution (default).

hp2xx -q -d86 -h160 -w220 foo.hp bar.hp

Multiple-file preview. Option ‘-q’ puts hp2xx into "quiet" mode. The picture will fit
into a rectangle of 220 mm width and 160 mm height, assuming a 86 DPI resolution of the
output device (screen).

hp2xx -t -c12340567 -p12230412 foo.hp

2 HP2XX, A HP-GL Converter

Preview, size according to original HP-GL data (as on a plotter), with different pen
colors and sizes. Color and width according to:

Pen # : Color code / Size (pixel)

1 : 1 (black) / 1

2 : 2 (red) / 2

3 : 3 (green) / 2

4 : 4 (blue) / 3

5 : 0 (background) / 0

6 : 5 (cyan) / 4

7 : 6 (magenta) / 1

8 : 7 (yellow) / 2

hp2xx -m eps -l a.log -h100 -w150 -p542 foo.hp bar.hp

Encapsulated Postscript mode. Files foo.eps and bar.eps will be created. The diag-
nostic output will be written into a.log, so hp2xx works quietly. Both EPS pictures will
fit into a rectangle of size 150 x 200 mm. The size (width) of pen 1: 0.5 mm, pen 2: 0.4
mm, pen 3: 0.2 mm, pen 4 ... pen 8: 0.1 mm.

unix% cat foo.hp | hp2xx -m pcl -o30 -O50 -i -F -f- | lpr -P ljet

In this generic UNIX example, hp2xx reads HP-GL code from stdin, converts it to HP-
PCL which is suitable for direct output on any HP Laserjet printer, and pipes the output
via stdout into the appropriate printer queue. Option ‘-f-’ forces hp2xx to write to stdout
instead of a file, ‘-i’ initializes the printer before the output, ‘-F’ sends a FormFeed at the
end of output. There will be (additional) 30 mm left and 50 mm top margins. 75 DPI are
assumed per default.

hp2xx -m pcx -f foo3.pcx -d300 -h80 -w150 -r90 -P2:4 foo.hp

PCX mode. Output goes into file foo3.pcx. A limiting rectangle of 150 x 80 mm at
300 DPI is assumed. The picture will be rotated by 90 degrees. Only pages 2 to 4 of
the multi-page HP-GL source is used (each occurrence of HP-GL code PG; increments the
internal page counter).

3

2 Basics

This chapter provides you with almost anything you’ll need for successful hp2xx applica-
tions. You’ll probably soon operate hp2xx by solely consulting the option summary (see
Appendix B [Appendix B], page 21) or just by calling hp2xx without any parameters to
obtain its built-in option summary.

2.1 Modes of hp2xx

The mode switch ‘-m string’ tells hp2xx about the mode it should use to generate output,
i.e., the desired output format. hp2xx can run in three different groups of modes: Generating
vector graphics, raster graphics, or "preview mode", i.e., displaying the graphics. Preview
is the default; see Appendix B [Appendix B], page 21, for a list of all modes.

2.2 Sizing your output

NOTE: The basic unit length within hp2xx is mm (millimeter). This unit is always assumed
except where noted otherwise.

In contrast to a real HP-GL plotter, hp2xx lets you decide freely about the size of the
picture. While preserving the picture’s aspect ratio, hp2xx will fit the picture into a window
of width w and height h. By default, w = h = 200 (mm). Set these basic sizes using options
‘-w w’ and ‘-h h’.

Sometimes you’ll want to change the aspect factor of a picture, e.g., to spread out a
square picture into landscape. Option ‘-a af’ is used for this. af > 1 increases x/y ratio, 0
< af < 1 decreases x/y.

Example: Let’s assume your picture covers a native coordinate range of 100...900 plotter
units in x direction and 200...600 in y direction. Thus, its width is double its height. Using
defaults, hp2xx will create a picture of size 200 x 100 mm, while options ‘-w 100 -h 40’ will
lead to a picture of size 80 x 40 mm, and ‘-w 100 -h 40 -a 0.5’ results in a 40 x 40 mm
picture.

Alternatively, ignore explicit size control and rely on the true HP-GL coordinates (and
therefore: sizes) of the given input file(s). Flag ‘-t’ inhibits ‘-a -h -w’ and lets hp2xx use
true HP-GL sizes, based on the assumption that 1 HP unit = 1/40 mm.

Some modes of hp2xx support page offsets, i.e., left and upper margins added to the
picture, probably in addition to some hard margins margins which cannot be avoided.
Currently, these modes are eps, pcl, and pre. The left margin (offset) is modified with
option ‘-o off_left’, while the upper margin can be controlled via ‘-O off_upper’. off left
and off upper are specified in mm.

2.3 Pen sizes and colors

Imagine a plotter with a pen carousel, e.g., like the model HP7550A. The carousel carries
a (small) number of pens. Their colors and tip thicknesses (sizes) are selected by a human
operator, while the plotter only receives commands like "Now use pen number 5". If you
don’t provide a pen, the plotter will move and “draw” without this pen if its number is
selected.

4 HP2XX, A HP-GL Converter

hp2xx emulates a carousel of up to 8 pens of various colors and sizes. By default, all
pens are present, have foreground color (typically black), and their tip thicknessess are one
unit (here: 1/10 mm for vector modes, 1 pixel for raster modes).

Pen colors and sizes are represented by digits to allow for a compact option list. There
are 8 colors including background (usually white). See Appendix B [Appendix B], page 21,
for a list of all colors. E.g., color 3 is green, and color 7 means yellow. Permitted pen sizes
are 0 ... 9 units. WARNING: In raster modes, all pen sizes larger than 4 units (pixels) will
be clipped to 4 units!

Options ‘-c c-string’ and ‘-s s-string’ tell hp2xx about the pens to be placed in the
carousel. c-string and s-string are strings of 1 to 8 digits, corresponding to special choices
of pen 1 to 8. Defaults are c-string = s-string = ‘11111111’. If you specify less than 8 pens,
the remaining pens keep their defaults.

Examples:

hp2xx -p13 foo.hp

Show a preview of ‘foo.hp’, drawing all lines with pen #2 three pixels wide instead of
default 1 pixel, which applies to all other pens.

hp2xx -c12740 -p12230412 foo.hp

Here, pen #5 is “removed”. Pens #1 and #7 keep their default sizes, all others are
set to vaious sizes. Pen #2 is red, #3 is yellow, and #4 is blue, while all other pens keep
‘foreground’ color, e.g., black.

2.4 Selecting a page

There is a HP-GL command named ‘PG;’ which amounts to a FormFeed. Thus, there are
multi-page HP-GL sources. While hp2xx was designed for just one output picture per input
file, there is a simple way to cope also with multi-page sources:

hp2xx keeps track of the number of encountered ‘PG;’ commands. All code up to the
next (if any) ‘PG;’ command is considered a single page. Pages are counted, starting at 1.
You can ask hp2xx to ignore all HP-GL commands other than on page n with option ‘-P n’,
effectively filtering out any one-page graphics. Sometimes, converting a whole page range
makes sense, too. Therefore, hp2xx also accepts page ranges via ‘-P n1:n2’. The default is
‘-P 0’ which selects all pages.

WARNING: Some HP-GL sources may start with a ‘PG;’ so the first page of your graphics
may be 2 instead of 1. Look for the number of encountered pages in the diagnostic output if
you miss the expected page! If the detected coordinate range shows unreasonable numbers
like 1e10, you’ll be probably looking at an empty page.

2.5 Vector formats

All HP-GL graphics are decomposed by hp2xx into elementary move and draw commands.
Selecting a vector mode essentially defines the conversion rules of such commands into
specific formats.

The most popular and versatile vector format currently is Encapsulated PostScript
(EPS). (In fact, it’s much more than just a vector graphics format, but hp2xx uses only
EPS’s line drawing features.) Many programs allow importation of EPS files, and PostScript
gives excellent printing results, so ‘-m eps’ is highly recommended.

Chapter 2: Basics 5

Currently, all other supported vector formats represent various compromises to persuade
TEX or LaTEX into the generation of graphics. See Section 3.7 [TeX formats], page 11, if
you are specially interested in TEX.

2.6 Raster formats

Raster graphics are probably the most widely used graphics by now. Many publishing
programs accept rasterized graphics. It’s likely you’ll use hp2xx primarily in some raster
mode.

In addition to vector modes, all raster modes need the desired resolution of an assumed
underlying pixel grid to plot on, i. e., the number of pixels per unit length within that grid.
A traditional measure is the number of “dots per inch” (DPI). hp2xx makes an exception
from its usual unit length mm and lets you specify the traditional DPI values. Option ‘-d
num’ affects both x and y direction, num being the DPI value (an integer). if ‘-D num_y’ is
also specified, num y will override the num DPI value, but only for the y direction.

There are plenty of raster formats on various platforms, much more than hp2xx will
ever handle. The supported raster formats IMG, PBM, PCL, PCX were chosen for their
widespread use, their simplicity, for actual demand, and for accessibility of specifications.
If your desired format is not supported, look for a converter. E.g., the Portable Bitmap
(PBM) project offers quite a variety of such converters.

Please note that the preview mode (which does not create any output file) is a special
raster mode. Instead of going into some output file, the internal bitmap is transferred into
display memory. Therefore, the above considerations apply also to preview mode.

2.7 Printer formats

Currently, there is only one printer format (not counting ‘eps’, which is printable on Post-
Script printers): ‘pcl’, which stands for HP PCL Level 3. Essentially it is a raster format,
but it comes with a few restrictions and additional options which correspond to printer
properties. It prints on HP Laserjet and HP Deskjet series printers and compatibles.

The restriction concerns the resolution (DPI) during rasterization. Due to printer hard-
ware limitations, only ‘-d 75’, ‘-d 100’, ‘-d 150’, and ‘-d 300’ are permitted; option ‘-D’
must not be used.

There are two flags which may be useful if the output goes directly to a printer: Option
‘-i’ initializes the printer before the output starts, and ‘-F’ sends a FormFeed (ASCII 12)
after the output.

For the HP Deskjet printer series, there is support of some “special” commands; ‘-S 1’
activates these. There is a limited support of color modes available, too: For the DJ500C
or DJ550C models, hp2xx can generate both CMY-based and CMYK-based color output
(if colors are used: see option ‘-c’). Supply option ‘-S 3’ for CMY color mode, and option
‘-S 4’ for CMYK color mode (for the DJ550C). Be aware that currently there is no data
compression built-in, so that hi-res PCL color output may amount to quite large data
volumes.

6 HP2XX, A HP-GL Converter

2.8 Preview

Preview mode is hp2xx’s default. Its use prior to all other conversions is recommended since
it offers a good impression of your final results. Functionally it is also a raster mode.

Depending on your hardware and operating system platform, hp2xx uses one of a variety
of preview modules. On GUIs, a window containing the graphics will pop up, while on other
systems the whole screen may be used for preview. You can control the position of a preview
window via options ‘-o’ and ‘-O’ in a natural way. In full-screen previews, unused spaces
are padded to the right and bottom with background color.

Since there is no way for hp2xx to predict the actual size and resolution of your preview
device, e.g., screen, you may have to gauge hp2xx’s preview mode (using options ‘-whdD’).
For example, if your device effectively works at 86 DPI and offers an active area of 24 by
18 cm,

hp2xx -d86 -w240 -h180 foo.hp

will make maximum use of your screen area and give you correct sizes. Since a single
gauge will do for all future calls, you’ll probably want to create some one-line batch file for
invoking hp2xx in preview mode, correctly gauged for your screen.

Depending on page offsets and the selected sizes and resolutions, a preview may not fit
on your screen. In that case, some preview modules simply clip the picture; others give
a warning but let you continue (DOS), and others simply terminate — so don’t start too
large.

DOS users: Most VGA cards offer high-resolution modes (SVGAs). Unfortunately, there
is no software standard for these modes. hp2xx lets you utilize these modes anyway with
just a little help from you. Tell hp2xx the so-called mode byte of your favorite hi-res mode
via option ‘-V num’. Since hp2xx issues only standard BIOS calls for mode switching, setting
of color look-up table entries, and pixel drawing, chances are good that your VGA card’s
hi-res modes will work!

WARNING: You can damage your hardware by specifying inappropriate VGA modes!
Generally you’ll need a monitor which can sync on the horizontal frequency of the selected
VGA hi-res mode, e.g., a multi-scan monitor. In case of doubt, switch off your monitor
immediately!!

2.9 Misc. options

hp2xx features an on-line options summary. Invoking hp2xx with option ‘-H’, or with any
illegal option or without any parameter, will display about 2 pages of text. (Note: I’d have
preferred option ‘-h’ for on-line help, but this option is needed by the indispensable height
parameter.)

During operation, hp2xx outputs various information about the current HP-GL file and
about hp2xx’s actions. As usual, all this goes to stderr. You can re-direct these diagnostics
into a file even without any help from a UNIX shell by specifying a log file using option ‘-l
logfile’, or you may switch off diagnostics completely with option ‘-q’ (‘quiet’ mode).
NOTE: Using both options as in ‘-q -l logfile’ is of no use as it will result in an empty
logfile.

Finally, there is a simple way to rotate whole pictures: Option ‘-r angle’ rotates the
picture counter-clockwise by the supplied angle (given in degrees). E.g.,

Chapter 2: Basics 7

hp2xx -r90 foo.hp

will show the picture rotated by 90 degrees, letting vectors originally pointing left-to-
right now point botttom-to-top. This may be handy e.g. for printing in landscape format.
NOTE: The limiting rectangle supplied by ‘-hw’ is not affected by ‘-r’, so in order to obtain
e.g. a full-page landscape picture on an A4 page, issue a command similar to:

hp2xx -m pcl -d 150 -r90 -h270 -w160 landscpe.hp

9

3 Advanced subjects

3.1 The coordinate range

The natural unit of length in HP-GL is 1/40 mm = 0.025 mm, so a typical A4 page
covers roughly 11000 x 7500 natural units. Typically, coordinates in HP-GL commands
will be found in the range 0 ... 12000. hp2xx will tell you the maximum and minimum
coordinates (“picture limits”) it finds in your HP-GL picture for both x and y direction.
These values usually roughly cover this range. Even if your HP-GL source plots in user-
specific coordinates (realized via HP-GL command ‘SC;’ (SCale)), this remains true, since
hp2xx internally transforms all points back to natural coordinates. Whenever the above
range is grossly violated, you may suspect corrupted data, because no real plotter would be
able to plot such a file.

If you ever discover a picture limit equalling plus or minus 10^10, your HP-GL probably
didn’t draw anything. Initially, hp2xx’s internal picture limits are set to impossibly large
(or small) values, i. e., +- 10^10, but the first plot command will set them to values found
therein, and successive plots push the limits outward. Example: xmax starts at -10^10,
the first plot command may change it to 2536, the next to 3470, the next 20 command fall
short, etc. Eventually, xmax assumes the largest value and stays there. Knowledge about
these details may sometimes be crucial (see Section 3.3 [Scaling to true size], page 10).

hp2xx uses the picture limits internally for scaling and fitting the data into the supplied
limiting rectangle (see Section 2.2 [Sizing your output], page 3). You can also affect the
picture limits yourself for special effects (see Section 3.2 [Fixed scaling], page 9).

3.2 Fixed scaling

As noted earlier, hp2xx does not draw to scale, but rather it fits a picture into a given
limiting window. While this is very handy in most applications, it may be undesirable
when a series of pictures must be drawn to the same scale. Unless all pictures possess the
same picture limits (modulo offsets), e.g., because all of them are surrounded by some fixed
frame, hp2xx would scale them all up differently to fit each of them tightly into the limiting
window.

There are two simple cures: First, make use of the true size option ‘-t’. If the original
HP-GL sizes do not fit, adjust picture limits to guarantee a constant scaling: Make a preview
of all pictures and note the coordinate ranges hp2xx reports. Then, determine picture limits
which cover all of these individual limits. Finally, run hp2xx to create your desired outputs
using options ‘-xXyY’ to tell hp2xx about the picture limits it should use. If the pictures do
not share common offsets, you may have to correct for offsets manually. Use the preview
mode for testing. You’ll get the same scale as long as the limiting window and (xmax -
xmin) and (ymax - ymin) remain constant for all pictures.

WARNING: hp2xx does not clip lines. If the picture limits which you manually can pre-
set via options ‘-xXyY’ are chosen too narrow, they will be pushed outside just as described
in the last section, resulting in a different scale. Check the coordinate ranges hp2xx reports.
The should match the values supplied by options ‘-xXyY’!

10 HP2XX, A HP-GL Converter

3.3 Scaling to true size

Earlier releases of hp2xx (binaries) did not offer option ‘-t’, which does everything you’ll
need for producing output with exactly the sizes shown on a real plotter. The following
paragraph shows how to manually emulate the working of this option. Though outdated, I
left it in the manual as background material:

Sometimes you might want to create pictures sized exactly as if they were drawn on a
real plotter. There is a little trick which allows you to do so using hp2xx: As notes above,
the natural unit of length in HP-GL is 0.025 mm. Therefore, you can calculate the true
picture size from the picture limits reported by hp2xx. Transform these data into mm and
simply specify the limiting window accordingly! Example: ‘hp2xx truesize.hp’ reports
the following coordinate ranges: xmin = 250, xmax = 5250, ymin = 100, ymax = 3100.
Thus, the picture is (xmax - xmin) * 0.025 mm = 125 mm wide and ymax - ymin) * 0.025
mm = 75 mm high, and ‘hp2xx -w125 -h75 truesize.hp’ will draw it in true size.

3.4 Swapping

hp2xx allocates memory for an internal bitmap dynamically. Large pictures, high resolution,
and use of colors may combine to let your computer run out of memory (especially on non-
swapping operating systems like DOS).

In this case, hp2xx swaps the bitmap to disk, slowing down considerably. Redirecting
swapping to a fast disk, preferably a RAM disk, might speed up things. You can replace
the default swap file hp2xx.swp using ‘-s swapfile’. NOTE: If for some reason hp2xx is
aborted during swapping, you might have to delete the swap file manually.

3.5 Dots and lines

Here are some basics about the generation of dots and lines within hp2xx. I mention them,
because there is something left to be improved here...

Some HP-GL codes cause hp2xx to generate points rather than lines of length zero. There
is a subtle difference between both. Depending on the current output format, special code
for points will be generated, and occasionally, a point will look different from a zero-length
line. Use ‘-m epic’ for such an example.

Line thicknesses can vary. Especially for thick lines, the matter of line caps (how lines
are ended, e.g. with a round cap) becomes relevant. hp2xx does not do an elaborate job
here. If line caps matter to you, use ‘-m eps’, edit the resulting Encapulated PostScript file,
look for a line with setlinecap in it (near line 45), and select the line cap of your choice
by modifying the PostScript command setlinecap accordingly. You can also use Metafont
(via ‘-m mf’) and replace the picked pen "pencircle" by some other type. However, both
methods are far from convenient.

The internal rasterization done by hp2xx is a simple process and may someday be re-
placed by something more efficient: A "draw point" command essentially sets a single pel in
the internal buffer. If line with grows (2 - 4 units), a square of 2 to 4 pels length will be set.
Vector drawing is broken down to point drawing by the Bresenham algorithm. Therefore,
there is no notion of controlled line caps. The shapes of line ends simply result from plotting
these squares. In addition, plotting all those pels is not really effficiently implemented, so

Chapter 3: Advanced subjects 11

if anybody out there looks for a good place for speeding up hp2xx, this code (located in file
picbuf.c) is a good place to start.

Currently there are no plans by me to introduce different line caps into hp2xx, so waiting
for them will be of no use.

3.6 Unsupported formats

This is just a brief note, not a real manual entry – sorry.

PIC ATARI format, e.g. for the text processor Signum. Try to replace by IMG.

PAC ATARI format, e.g. for the CAD program STAD

DJ_GR DOS previewer, based on DJ Delorie’s gcc port and extender go32. Works fine,
but will be replaced by DOS/OS2 EMX version.

OS2 Full-screen OS/2 2.x and DOS previewer. I don’t yet have the right development
system, so this code is still missing. However, it *will* be supported as soon as
possible!

PM OS/2 2.0 PM previewer. Working, but without redirection of messages to stderr
into a second window.

3.7 TEX formats

TEX was designed for typesetting, not for handling graphics. Putting graphics directly into
TEX therefore is always somewhat clumsy. hp2xx offers four different compromises to do
that, and much better, though more indirect ways.

‘-m mf’ generates Metafont source code. Run Metafont and gftopk, and you’ll end up
with a special pk font containing the single letter Z which represents your picture. Placing
this Z somewhere in your document using standard TEX commands draws your picture
there.

If you want to avoid fiddling with additional programs and fonts, if you work with LaTEX,
and if you do not need high-quality plots, the macros within epic.sty may help you. ‘-m
tex’ causes hp2xx to generate appropriate TEX source code which you can ‘\input{}’ into
LaTEX sources.

For emTEX users, there are yet another two way: ‘-m em’ creates TEX code containing
many commands like ‘\special{em:...}’ for line drawing. The line drawing task will
therefore be handled not by TEX itself but by the emTEX drivers which can handle arbi-
trary line slopes etc. Similarly, ‘-m cad’ produces code based on the same principle, but
compatible with program TEXcad.exe, which is distributed as a part of emTEX, and which
offers editing and drawing features for the desired HP-GL figure(s).

Please note that all methods for generation of graphics within TEX are compromises
which usually work only for simple graphics. You’ll probably prefer using external methods
like including EPS vector graphics files with Tom Rokicki’s dvips driver, or PCX files via
the emTEX drivers, or you’ll generate special fonts with convenient programs like F. Sowa’s
bm2font. hp2xx can help you in all of these cases. The following table shows the pros and
cons of the various approaches (all are based on PD software):

Internal methods (all allowing DVI previewing of graphs):

12 HP2XX, A HP-GL Converter

via Metafont
+: Machine-independent; fully compatible with TEX
-: Slow; capacity problems with Metafont / gftopk / some DVI drivers

if used with large and/or complex graphics

via epic.sty

+: Machine-independent; single-step, native LaTEX approach; PD software
-: Slow; requires LaTEX; low-quality lines; just one line thickness;

complex graphs may exceed TEX capacity

via emTEX’s \special{em:...}
+: No TEX capacity problem; good line quality; single-step procedure;

rasterization on demand, giving optimal resolution
-: Slows down drivers; driver capacity may be exceeded; emTEX required

External methods:

via PCX file inclusion:
+: Easy and fast; DVI preview of graphics
-: Requires emTEX drivers (only available on DOS and OS/2)

via special fonts:
+: Easy, fast, and trouble-free font generation via bm2font;

DVI preview of graphics (!); portable
-: Many files for fonts etc.; confusing for novices

via EPS:
+: High-quality results; easy; no burden for TEX or drivers
-: No DVI preview; PostScript printer (or, e.g., GhostScript) required;

PostScript previewing is slower than DVI previewing.

13

4 Installation and modification notes

4.1 Installation procedure

Please note: The following description is very brief and assumes that you are familiar with
installation of PD software in general.

4.1.1 Installing an executable version

This is simple! If you find a collection of pre-compiled versions of hp2xx, obtain the file
read.me and read it to find out the name of the file which fits to your system. Obtain it,
rename it to something like hp2xx or hp2xx.exe, and place it somewhere on your search
path – that’s it.

There are exceptions, though. AMIGA users should consult their special distribution
package and follow directions there. DOS users will find a ZIP package containing files in
addition to hp2xx.exe. For details, read the accompanying descriptions.

Actually, I anticipate a phasing-out of binaries support as soon as the sources become
available. Consequently, future releases of this manual will elaborate on the following sub-
section instead of this one.

4.1.2 Source-level installation

NOTE: Source level installation is in beta state: At this writing, the hp2xx sources are
about to be released, and there have only few different installations been done. Currently,
installation depends too much on manual work yet. Here is a description how to proceed:

After unbundling all sources, go to subdirectory ./makes. Select a makefile most closely
resembling your system’s needs from the samples given, copy it to ./sources/makefile,
adapt it manually (if necessary), and run make all. If everything is set correctly, this results
directly in a valid executable file which you may install at any convenient place on your
search path.

There are two types of makefile adaptation: First, let’s assume there is a makefile tem-
plate available for your system. You then have the option to add a few unsupported modes.
Do so by un-commenting the appropriate lines near the beginning of the makefile, and by
commenting out the corresponding standard lines.

The second type of course applies to systems with special needs which are not yet covered
by any makefile template. Currently, you are on your own when it comes to supplying
alternate paths, renaming or adding system libraries and alike. Most probably you might
have to tell the makefile where to look for the X11 stuff.

Note: Don’t feel alarmed if your makefile seems to neglect many source files. Any single
installation will make use of only one previewer (two on SUNs with activated SunView
support), and there are platform-dependent sources for some output formats which are not
always used.

4.2 Adding your own formats

First, study Chapter 1 [Introduction], page 1, for the outline of the modular structure and
general operation of hp2xx.

14 HP2XX, A HP-GL Converter

Let’s assume you want to support TIFF format. The probably easiest way of adding
new formats is by modifying copies of existing files. Since TIFF is a raster format, a good
starting point would be to_pcx.c. (Files to_mf.c or to_eps.c should be considered in case
of a vector format, and to_vga.c or to_x11.c in case of a new previewer.) Copy it to a file
to_tiff.c and edit the latter. The old code is pretty much self-explanatory. Essentially,
the output file is opened, initializations are performed, and the internal bitmap is converted
into the target format (here, TIFF) scanline-by-scanline. There is just one routine called
from other modules (originally named PicBuf_to_PCX. Rename it to e.g. PicBuf_to_TIFF
) and adapt the conversion code.

Once you’ve done that, the rest (integration of the new format into the package) is
easy: First, edit hp2xx.h and add a prototype line for PicBuf_to_TIFF in analogy to e.g.,
PicBuf_to_PCX. Edit the makefiles and add to_tiff.c to the list of sources and e.g.
to_tiff.o to the list of objects. Now you are ready for compilation tests (but not for
linking yet).

Then, change the main file hp2xx.c at various places: Near the beginning of the file, add
XX_TIFF, to the hp2xx_mode typedef, and a line like XX_TIFF, "tiff", to the ModeList
struct below. Please note the alphabetical order of these lists. Never put anything behind
the termination code XX_TERM! At the end of the file, add a case statement to the switch
list in analogy to e.g. the PCX entry.

You may also want to add a line to the on-line help to announce the new format, and
change the release number and date. Look for functions Send_ID and usage_msg at the
first quarter of file hp2xx.c!

Now a make all will produce code containing the new format. If your format turns out
to work nicely and seems to be of general interest, please consider contributing it to the
hp2xx project.

4.3 Future improvements

The following table lists miscellaneous desirable features for future releases:

Box and sector drawing / filling
Other, more rarely used HP-GL commands
Color support in UIS and PBM
Improved color support in X11 and PCX
PCL: Data compression for DJ500, DJ500C, DJ550;
Loadable fonts, e.g. Hershey fonts, or: more built-in fonts
Full-screen previewer for OS/2
Easy installation on various platforms, e.g. via a configure script

4.4 Font coding

This section is intended for those few users who might care to improve the built-in character
set of hp2xx.

HP-GL plotters feature built-in fonts with both fixed and variable-width characters.
There are commands for font selection and quick switching between two pre-selected fonts,
and there is also a way for users to download own character definitions.

Chapter 4: Installation and modification notes 15

hp2xx currently features just one character set (set 0). Therefore, all HP-GL commands
dealing with font selection etc. have not been implemented.

If you plan to modify this character set or to add more, you need an understanding
of how characters are drawn by hp2xx. The source file charset.h contains a comment
explaining this procedure. Below you find a (modified) copy of this:

This file defines a standard character set by elementary
"draw" & "move" commands. The format is a very compact one from
the old days where every byte was still appreciated.

A font or character set is an array of strings. Each character is
addressed by its ASCII code.

A character is a (NULL-terminated) string of bytes. Each byte
codes for a draw or move action according to the code below:

Bit: 7 6 5 4 3 2 1 0

p x x x y y y y

p: Plot flag. If set, "draw to" new point, else "move to" it.
xxx: 3-bit unsigned integer (0...7). X coordinate of new point.
yyyy: 4-bit unsigned integer (0..15). Y coordinate of new point.

The baseline is y = 4 instead of y = 0, so characters with parts
below it can be drawn properly. Function "code to ucoord" transforms
these coordinates into actual user coordinates.

Example: code for character ’L’: "\032\224\324" translates to:
moveto(1,10); drawto(1,4); drawto(5,4);

From the example you can conclude that the font below essentially is
defined on a 5x7 grid:

0 1 2 3 4 5 6 7

15 - - - - - - - - - : unused

14 - - - - - - - - # : always used

13 - - - - - - - - o : sometimes used

12 - - - - - - - -

11 - - - - - - - -

10 o # # # # # - -

9 o # # # # # - -

8 o # # # # # - -

7 o # # # # # - -

6 o # # # # # - -

5 o # # # # # - -

4 o # # # # # - -

3 o o o o o o - -

16 HP2XX, A HP-GL Converter

2 o o o o o o - -

1 o o o o o o - -

0 o o o o o o - -

17

Appendix A Known HP-GL commands

hp2xx emulates a subset of the Hewlett-Packard 7550A plotter. The following manual was
used as reference for command definitions: [1] HP 7550A Interfacing and Programming
Manual.

Not all commands are supported. Among the non-supported commands are those which
do not really apply to a software emulator, like:

commands affecting the communication between plotter and host computer,
commands for changing the behaviour of a real plotter, like plotting speed etc.,
commands for the control of plotter memory allocation,
commands causing various plotter display outputs.

Other non-supported commands would be desirable, but were left out due to their in-
herent complexity (or just because nobody pushed me, :-)). Among those are:

commands for font (character set) management. Since there is only one font
built into hp2xx, there is no point in providing font switching etc.

windowing/clipping and rotation
polygon and box filling commands

Programmers intending to add more HP-GL features should take care to implement
the less-than-obvious side effects of existing commands on the new features, too (and vice
versa). E. g., line types (LT;) affect most but not all drawing commands: While the ER;

command (edge rectangle relative) uses the current line type, its couterpart EA; (edge
rectangle absolute) always draws solid lines. However, both PR; and PA; use the current
line type! In addition, new features may need initializations by the already supported codes
IN; or DF;, so these may have to be expanded. So carefully consult [1] prior to adding new
HP-GL commands.

The remainder of this section lists all HP-GL commands given on pages 1-2 to 1-4 of [1]
and marks them as either

(.) not applicable,
(-) ignored, or
(+) supported.

The label “supported” is used when I think the command is fully supported in the
context of the already implemented commands. In general, you should have absolutely no
problem with this class of commands.

Though there still are unsupported commands, this does not mean that you might have
trouble using hp2xx. Nowadays, most HP-GL files are machine-generated, e.g. by CAD
or DTP programs. These tend to make use of just a simple subset of HP-GL. To my
experience, chances are high that hp2xx will give you the picture you want!

HP-GL|s n| Description & Remarks

Cmd | i |

=====|===|==

AA |+ | Arc Absolute

AF |+ | [same as PG]

AH |+ | [same as PG]

AP | .| Automatic pen operations

18 HP2XX, A HP-GL Converter

AR |+ | Arc Relative

AS | .| Acceleration select

-----|---|--

BF | - | Buffer Plot

BL |+ | Buffer Label

-----|---|--

CA | - | Designate alternate character set

CC | - | Character Chord angle

CI |+ | Circle

CM | - | Character selection mode

CP |+ | Character plot

CS | - | Designate standard character set

CT | - | Chord tolerance

CV | - | Curved line generator

-----|---|--

DC | .| Digitize clear

DF |+ | Default

DI |+ | Absolute direction

DL | - | Define downloadable character

DP | .| Digitize point

DR |+ | Relative direction

DS | - | Designate character into slot

DT |+ | Define label terminator

-----|---|--

EA | - | Edge rectangle absolute

EP | - | Edge polygon

ER | - | Edge rectangle relative

ES |+ | Extra space

EW | - | Edge wedge

-----|---|--

FP | - | Fill polygon

FS | .| Force select

FT | - | Fill type

-----|---|--

GC | .| Group count

GM | .| Graphics memory

-----|---|--

IM | - | Input mask

IN |+ | Initialize

IP |+ | Input P1 and P2

IV | - | Invoke character slot

IW | - | Input window

-----|---|--

KY | .| Define key

-----|---|--

LB |+ | Label

LO |+ | Label origin

Appendix A: Known HP-GL commands 19

LT |+ | Line type

-----|---|--

NR | .| Not ready (unload page)

-----|---|--

OA | .| Output actual position and pen status

OC | .| Output commanded position and pen status

OD | .| Output digitized point and pen status

OE | - | Output error

OF | - | Output factors

OG | .| Output group count

OH | - | Output hard-clip limits

OI | .| Output identification

OK | .| Output key

OL | - | Output label length

OO | .| Output options

OP |+ | Output P1 and P2

OS | - | Output status

OT | .| Output carousel type

OW | - | Output window

-----|---|--

PA |+ | Plot absolute

PB |+ | Print buffered label

PD |+ | Pen down

PG |+ | Page feed

PR |+ | Plot relative

PT | - | Pen thickness

PU |+ | Pen up

-----|---|--

RA | - | Fill reactangle absolute

RO | - | Rotate coordinate system [use option -r instead!]

RP | - | Replot

RR | - | Fill reactangle relative

-----|---|--

SA | - | Select alternate character set

SC |+ | Scale

SI |+ | Absolute character size

SL |+ | Character slant

SM |+ | Symbol mode

SP |+ | Select pen

SR |+ | Relative character size

SS | - | Select standard character set

-----|---|--

TL |+ | Tick length

-----|---|--

UC |+ | User-defined character

UF | - | User-defined fill type

-----|---|--

20 HP2XX, A HP-GL Converter

VS | .| Velocity select

-----|---|--

WD |+ | Write to display

WG | - | Fill wedge

-----|---|--

XT |+ | X-Tick

-----|---|--

YT |+ | Y-Tick

21

Appendix B Option summary

In the following, options are grouped into subjects and are listed alphabetically within each
subject. Both long options and short (one-letter) options are listed, where short options
appear in parentheses. Except for the +DPI option, there is a one-to-one correspondence
between long and short options. You may use either long or short options. Mixing long and
short options is acceptable.

Option parameter names suggest the expected data type, e. g., ‘--rotate (-r) float’
means that option ‘--rotate’ or its corresponding short form ‘-r’ expect a parameter of
type ‘float’.

B.1 General options

‘--pencolors (-c) string’
Pen color(s), a string of 1 to 8 digits. Valid digits: 0...7 (0=Background or off,
1=Foreground, 2=Red, 3=Green, 4=Blue, 5=Cyan, 6=Magenta, 7=Yellow).
Default: ‘11111111’

‘--outfile (-f) string’
Name of output file. If omitted, hp2xx generates the name from the input file
name and the current mode string. ‘-f-’ causes hp2xx to write to stdout.
Default: none.

‘--logfile (-l) string’
Name of log file. If given, diagnostics go into this file, else to stderr. Remark:
‘-q’ inhibits all diagnostics!

‘--mode (-m) string’
Mode string. Valid: string =

‘cad’ (TEXcad-compatible line generation using \special{em:...}),
‘em’ (more efficient line drawing with E. Mattes’s TEX \special{em:...}),
‘eps’ (Encapsulated PostScript),
‘img’ (e.g., GEM’s Image format),
‘mf’ (Metafont source),
‘pbm’ (Portable Bitmap),
‘pcl’ (HP-PCL Level 3),
‘pcx’ (Paintbrush format),
‘pre’ (Preview mode; no output!),
‘tex’ (line drawing with TEX / epic macros)

Occasionally available (unsupported) modes:

‘ilbm’ (e.g., for AMIGA: ILBM/IFF format),
‘pac’ (e.g., for ATARI/STAD),
‘pic’ (e.g., for ATARI/Signum).

Default: ‘pre’.

‘--pensize (-p) string’
Pensize(s), a string of 1 to 8 digits. Valid digits: 0...9 (unit = 1/10 mm) for
vector modes, 0...4 (unit = pixel) for raster modes. Default: ‘11111111’

22 HP2XX, A HP-GL Converter

‘--pages (-P) int[:[int]]’
Select HP-GL page int or a page range. Valid: int integer and >= 0. Default:
int = 0 (all pages).

‘--quiet (-q)’
Quiet mode (no diagnostic output).

‘--rotation (-r) float’
Rotation angle [deg]. E.g., ‘-r90’ gives landscape. Default: 0.0

‘--swapfile (-s) string’
Name of swap file. Default: string = ‘hp2xx.swp’.

B.2 Size controls

‘--aspectfactor (-a) float’
Aspect factor. Valid: float > 0.0. Use float > 1.0 for landscape and float < 1.0
for portrait deformations. Default: float = 1.0

‘--height (-h) float’
(Upper limit of) height of picture in mm. Default: float=200.0

‘--width (-w) float’
(Upper limit of) width of picture in mm. Default: float=200.0

‘--x0 (-x) float’
Pre-set left limit of HP-GL coordinate range to float (rarely used).

‘--x1 (-X) float’
Pre-set right limit of HP-GL coordinate range to float (rarely used).

‘--y0 (-y) float’
Pre-set lower limit of HP-GL coordinate range to float (rarely used).

‘--y1 (-Y) float’
Pre-set upper limit of HP-GL coordinate range to float (rarely used).

‘--truesize (-t)’
Ignore options ‘-a -h -w’ (aspect factor, height, width). Size information will
come from the HP-GL intrinsic data. WARNING: Avoid using option ‘-r’
(rotate) as it works on top of HP-GL and thus will distort the detected HP-GL
sizes.

B.3 Raster format controls

‘--DPI (-d) int’
Set x resolution to int dots per inch (DPI). If not overridden by ‘-D’, sets also
y resolution to int DPI. Valid: int integer and > 0. Default: int = 75.

‘--DPI_x (-d) int’
Same as ‘--DPI’

‘--DPI_y (-D) int’
Set y resolution to int DPI. int integer and > 0. Default: int = 75.

Appendix B: Option summary 23

B.4 PCL specifics

‘--PCL_formfeed (-F)’
Send a FormFeed after graphics data. Default: No FormFeed.

‘--PCL_init (-i)’
Pre-initialize printer. Default: No pre-init

‘--PCL_Deskjet (-S) int’
Use (Deskjet) Special commands. int = 0 deactivates this option, int = 1
enables b/w mode, int = 3 is intended for DJ500C (CMY) color support, int
= 4 supports DJ550C (CMYK mode).

‘--DPI_x (-d) int’
Set x resolution (see above): Valid here: int = 75, 100, 150, 300

‘--DPI_y (-D) int’
Set y resolution (see above). Invalid here!

B.5 Margins

(Apply to modes ‘eps’, ‘pcl’, ‘pre’ ONLY)

‘--xoffset (-o) float’
X offset of picture (left margin) in mm. Valid: float >= 0.0, default: float=0.0

‘--yoffset (-O) float’
Y offset of picture (upper margin) in mm. Valid: float >= 0.0, default:
float=0.0

B.6 Preview (DOS/PC’s only)

‘--VGAmodebyte (-V) int’
VGA mode byte (decimal). Default: int = 18. WARNING: Setting inappro-
priate VGA modes may damage your hardware, especially your monitor!

B.7 Help

‘--help (-H)’
(or calling hp2xx without any arguments) Show on-line help.

25

Appendix C

C.1 Acknowledgement

While hp2xx was available as binaries on several platforms, many people contributed to
this project by supplying me with valuable suggestions and reports. Many thanks to all
of them! It is my pleasure to especially thank the following people for their outstanding
contributions:

Nelson Beebe

help with the new generic makefile (easier configuration) clean selection mech-
anism for reviewer suggested

Elisabeth Dregger-Cappel

network and host resources for hp2xx distribution

Joern Eggers

New ATARI format "cs" for CS-TeX; bug fixes for arcs / circles

Roland Emmerich

DOS betatests and suggestions; showit

Jonathan M. Gillian

DOS betatests and suggestions

Claus H. Langhans

AMIGA portation; pbm, ilbm formats

Norbert Meyer

ATARI portation; img, pic, pac formats; first ATARI previewer

Michael Schmitz

many VAX & MACH tests

Michael Schoene

X11 stuff; many tests

Andreas Schwab

Improved ATARI previewer

Friedhelm Sowa

many DOS tests and suggestions for cooperation of hp2xx with TEX figure
generation

Gerhard Steger

VAX tests; access to MicroVAX platforms

Horst Szillat

OS/2 support & help

A. Treindl

code for UC support

26 HP2XX, A HP-GL Converter

C.2 Copyright notice

Copyright (c) 1991 - 1993 Heinz W. Werntges
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that
the above copyright notice and this paragraph are duplicated in all such forms
and that any documentation, advertising materials, and other materials related
to such distribution and use acknowledge that the software was developed
by the abovementioned author(s).

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

i

Table of Contents

1 Introduction . 1
1.1 Invoking hp2xx . 1
1.2 hp2xx for the impatient . 1

2 Basics . 3
2.1 Modes of hp2xx . 3
2.2 Sizing your output . 3
2.3 Pen sizes and colors . 3
2.4 Selecting a page . 4
2.5 Vector formats . 4
2.6 Raster formats . 5
2.7 Printer formats . 5
2.8 Preview . 6
2.9 Misc. options . 6

3 Advanced subjects . 9
3.1 The coordinate range . 9
3.2 Fixed scaling . 9
3.3 Scaling to true size . 10
3.4 Swapping . 10
3.5 Dots and lines . 10
3.6 Unsupported formats . 11
3.7 TEX formats . 11

4 Installation and modification notes 13
4.1 Installation procedure . 13

4.1.1 Installing an executable version . 13
4.1.2 Source-level installation . 13

4.2 Adding your own formats . 13
4.3 Future improvements . 14
4.4 Font coding . 14

Appendix A Known HP-GL commands 17

Appendix B Option summary 21
B.1 General options . 21
B.2 Size controls . 22
B.3 Raster format controls . 22
B.4 PCL specifics . 23
B.5 Margins . 23
B.6 Preview (DOS/PC’s only) . 23
B.7 Help . 23

ii

Appendix C . 25
C.1 Acknowledgement . 25
C.2 Copyright notice . 26

	1 Introduction
	Invoking hp2xx
	hp2xx for the impatient

	2 Basics
	Modes of hp2xx
	Sizing your output
	Pen sizes and colors
	Selecting a page
	Vector formats
	Raster formats
	Printer formats
	Preview
	Misc. options

	3 Advanced subjects
	The coordinate range
	Fixed scaling
	Scaling to true size
	Swapping
	Dots and lines
	Unsupported formats
	TeX formats

	4 Installation and modification notes
	Installation procedure
	Installing an executable version
	Source-level installation

	Adding your own formats
	Future improvements
	Font coding

	A Known HP-GL commands
	B Option summary
	General options
	Size controls
	Raster format controls
	PCL specifics
	Margins
	Preview (DOS/PC's only)
	Help

	C
	Acknowledgement
	Copyright notice

