
Using HP2XX
A HP-GL Converter

Edition 1.0.2, for HP2XX version 3.1.x
April 1993

by Heinz W. Werntges

heinz@convex.rz.uni-duesseldorf.de

Using HP2XX, Revision : 1.0.2

TEXinfo 2.89

Copyright c© 1992, 1993 Heinz W. Werntges

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the accompanying file named COPYING which contains

the “GNU General Public License” is included exactly as in the original, and provided that the

entire resulting derived work is distributed under the terms of a permission notice identical to this

one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, except that the abovementioned file COPYING

containing the “GNU General Public License” may be included in a translation approved by the

Free Software Foundation instead of in the original English.

Chapter 1: Introduction 1

1 Introduction

The hp2xx program is a versatile tool to convert vector-oriented graphics data given in Hewlett-

Packard’s HP-GL plotter language into a variety of popular both vector- and raster-oriented graph-

ics formats.

The various supported output formats include Encapsulated PostScript (EPS), PCX, IMG, and

several formats intended to facilitate the generation of graphics within TEX documents. In addition,

hp2xx output is printable on the HP Laserjet/Deskjet printer series, and it may be used as a HP-GL

previewer on many platforms, e.g. X11 and DOS (VGA).

hp2xx first converts all HP-GL data into pure vectors and buffers them internally. It then

converts these vectors into a specified output format (vector modes), or rasterizes them (raster

modes) on an internal bitmap. In raster modes, hp2xx then translates the bitmap into the output

format.

1.1 Invoking hp2xx

The format of the hp2xx command is:

hp2xx [options] [input-file(s)]

It follows the UNIX System V tradition of a filter, i. e., options begin with ‘-’, followed by a

single letter and an optional parameter. Options must appear immediately behind the program

name and before the input file name(s) (if specified). If no input file is given, hp2xx reads from

stdin. In addition to this traditional option handling, hp2xx also supports GNU-style long options

and option/non-option permutation (see 〈undefined〉 [Appendix B], page 〈undefined〉). However,

throughout this manual all examples will only display short options.

hp2xx writes to the output file whose name can be specified by option ‘-f’. Without option

‘-f’, hp2xx generates output file names from the input names and the selected mode (see option

‘-m’). hp2xx writes to stdout if you supply a dash as output file name like in ‘-f-’.

2 HP2XX, A HP-GL Converter

1.2 hp2xx for the impatient

This section is intended to give those of you a quick-start who are quite familiar with traditional

UNIX-style programs and with HP-GL and other graphics formats. The following examples will

give you a good idea of hp2xx’s functionality. See 〈undefined〉 [Appendix B], page 〈undefined〉 for

further details.

hp2xx foo.hp

Preview of HP-GL graphics in file ‘foo.hp’. The picture will fit into a square of 200 mm width,

assuming that your output device (screen) features 75 DPI resolution (default).

hp2xx -q -d86 -h160 -w220 foo.hp bar.hp

Multiple-file preview. Option ‘-q’ puts hp2xx into "quiet" mode. The picture will fit into a

rectangle of 220 mm width and 160 mm height, assuming a 86 DPI resolution of the output device

(screen).

hp2xx -t -c12340567 -p12230412 foo.hp

Preview, size according to original HP-GL data (as on a plotter), with different pen colors and

sizes. Color and width according to:

Pen # : Color code / Size (pixel)

1 : 1 (black) / 1
2 : 2 (red) / 2
3 : 3 (green) / 2
4 : 4 (blue) / 3
5 : 0 (background) / 0
6 : 5 (cyan) / 4
7 : 6 (magenta) / 1
8 : 7 (yellow) / 2

hp2xx -m eps -l a.log -h100 -w150 -p542 foo.hp bar.hp

Chapter 1: Introduction 3

Encapsulated Postscript mode. Files ‘foo.eps’ and ‘bar.eps’ will be created. The diagnostic

output will be written into ‘a.log’, so hp2xx works quietly. Both EPS pictures will fit into a

rectangle of size 150 x 200 mm. The size (width) of pen 1: 0.5 mm, pen 2: 0.4 mm, pen 3: 0.2

mm, pen 4 ... pen 8: 0.1 mm.

unix% cat foo.hp | hp2xx -m pcl -o30 -O50 -i -F -f- | lpr -P ljet

In this generic UNIX example, hp2xx reads HP-GL code from stdin, converts it to HP-PCL

which is suitable for direct output on any HP Laserjet printer, and pipes the output via stdout

into the appropriate printer queue. Option ‘-f-’ forces hp2xx to write to stdout instead of a file,

‘-i’ initializes the printer before the output, ‘-F’ sends a FormFeed at the end of output. There

will be (additional) 30 mm left and 50 mm top margins. 75 DPI are assumed per default.

hp2xx -m pcx -f foo3.pcx -d300 -h80 -w150 -r90 -P2:4 foo.hp

PCX mode. Output goes into file ‘foo3.pcx’. A limiting rectangle of 150 x 80 mm at 300 DPI

is assumed. The picture will be rotated by 90 degrees. Only pages 2 to 4 of the multi-page HP-GL

source is used (each occurrence of HP-GL code PG; increments the internal page counter).

4 HP2XX, A HP-GL Converter

Chapter 2: Basics 5

2 Basics

This chapter provides you with almost anything you’ll need for successful hp2xx applications.

You’ll probably soon operate hp2xx by solely consulting the option summary (see 〈undefined〉

[Appendix B], page 〈undefined〉) or just by calling hp2xx without any parameters to obtain its

built-in option summary.

2.1 Modes of hp2xx

The mode switch ‘-m string’ tells hp2xx about the mode it should use to generate output, i.e.,

the desired output format. hp2xx can run in three different groups of modes: Generating vector

graphics, raster graphics, or "preview mode", i.e., displaying the graphics. Preview is the default;

see 〈undefined〉 [Appendix B], page 〈undefined〉 for a list of all modes.

2.2 Sizing your output

NOTE: The basic unit length within hp2xx is mm (millimeter). This unit is always assumed

except where noted otherwise.

In contrast to a real HP-GL plotter, hp2xx lets you decide freely about the size of the picture.

While preserving the picture’s aspect ratio, hp2xx will fit the picture into a window of width w and

height h. By default, w = h = 200 (mm). Set these basic sizes using options ‘-w w ’ and ‘-h h’.

Sometimes you’ll want to change the aspect factor of a picture, e.g., to spread out a square

picture into landscape. Option ‘-a af ’ is used for this. af > 1 increases x/y ratio, 0 < af < 1

decreases x/y.

Example: Let’s assume your picture covers a native coordinate range of 100...900 plotter units

in x direction and 200...600 in y direction. Thus, its width is double its height. Using defaults,

hp2xx will create a picture of size 200 x 100 mm, while options ‘-w 100 -h 40’ will lead to a picture

of size 80 x 40 mm, and ‘-w 100 -h 40 -a 0.5’ results in a 40 x 40 mm picture.

Alternatively, ignore explicit size control and rely on the true HP-GL coordinates (and therefore:

sizes) of the given input file(s). Flag ‘-t’ inhibits ‘-a -h -w’ and lets hp2xx use true HP-GL sizes,

based on the assumption that 1 HP unit = 1/40 mm.

6 HP2XX, A HP-GL Converter

Some modes of hp2xx support page offsets, i.e., left and upper margins added to the picture,

probably in addition to some hard margins margins which cannot be avoided. Currently, these

modes are eps, pcl, and pre. The left margin (offset) is modified with option ‘-o off left’, while the

upper margin can be controlled via ‘-O off upper’. off left and off upper are specified in mm.

2.3 Pen sizes and colors

Imagine a plotter with a pen carousel, e.g., like the model HP7550A. The carousel carries a

(small) number of pens. Their colors and tip thicknesses (sizes) are selected by a human operator,

while the plotter only receives commands like "Now use pen number 5". If you don’t provide a

pen, the plotter will move and “draw” without this pen if its number is selected.

hp2xx emulates a carousel of up to 8 pens of various colors and sizes. By default, all pens are

present, have foreground color (typically black), and their tip thicknessess are one unit (here: 1/10

mm for vector modes, 1 pixel for raster modes).

Pen colors and sizes are represented by digits to allow for a compact option list. There are 8

colors including background (usually white). See 〈undefined〉 [Appendix B], page 〈undefined〉 for a

list of all colors. E.g., color 3 is green, and color 7 means yellow. Permitted pen sizes are 0 ... 9

units. WARNING: In raster modes, all pen sizes larger than 4 units (pixels) will be clipped to 4

units!

Options ‘-c c-string’ and ‘-s s-string’ tell hp2xx about the pens to be placed in the carousel.

c-string and s-string are strings of 1 to 8 digits, corresponding to special choices of pen 1 to 8.

Defaults are c-string = s-string = ‘11111111’. If you specify less than 8 pens, the remaining pens

keep their defaults.

Examples:

hp2xx -p13 foo.hp

Show a preview of ‘foo.hp’, drawing all lines with pen #2 three pixels wide instead of default

1 pixel, which applies to all other pens.

hp2xx -c12740 -p12230412 foo.hp

Chapter 2: Basics 7

Here, pen #5 is “removed”. Pens #1 and #7 keep their default sizes, all others are set to vaious

sizes. Pen #2 is red, #3 is yellow, and #4 is blue, while all other pens keep ‘foreground’ color,

e.g., black.

2.4 Selecting a page

There is a HP-GL command named ‘PG;’ which amounts to a FormFeed. Thus, there are multi-

page HP-GL sources. While hp2xx was designed for just one output picture per input file, there is

a simple way to cope also with multi-page sources:

hp2xx keeps track of the number of encountered ‘PG;’ commands. All code up to the next (if

any) ‘PG;’ command is considered a single page. Pages are counted, starting at 1. You can ask

hp2xx to ignore all HP-GL commands other than on page n with option ‘-P n’, effectively filtering

out any one-page graphics. Sometimes, converting a whole page range makes sense, too. Therefore,

hp2xx also accepts page ranges via ‘-P n1:n2’. The default is ‘-P 0’ which selects all pages.

WARNING: Some HP-GL sources may start with a ‘PG;’ so the first page of your graphics may

be 2 instead of 1. Look for the number of encountered pages in the diagnostic output if you miss

the expected page! If the detected coordinate range shows unreasonable numbers like 1e10, you’ll

be probably looking at an empty page.

2.5 Vector formats

All HP-GL graphics are decomposed by hp2xx into elementary move and draw commands.

Selecting a vector mode essentially defines the conversion rules of such commands into specific

formats.

The most popular and versatile vector format currently is Encapsulated PostScript (EPS). (In

fact, it’s much more than just a vector graphics format, but hp2xx uses only EPS’s line drawing

features.) Many programs allow importation of EPS files, and PostScript gives excellent printing

results, so ‘-m eps’ is highly recommended.

Currently, all other supported vector formats represent various compromises to persuade TEX

or LaTEX into the generation of graphics. See 〈undefined〉 [TeX formats], page 〈undefined〉, if you

are specially interested in TEX.

8 HP2XX, A HP-GL Converter

2.6 Raster formats

Raster graphics are probably the most widely used graphics by now. Many publishing programs

accept rasterized graphics. It’s likely you’ll use hp2xx primarily in some raster mode.

In addition to vector modes, all raster modes need the desired resolution of an assumed under-

lying pixel grid to plot on, i. e., the number of pixels per unit length within that grid. A traditional

measure is the number of “dots per inch” (DPI). hp2xx makes an exception from its usual unit

length mm and lets you specify the traditional DPI values. Option ‘-d num’ affects both x and y

direction, num being the DPI value (an integer). if ‘-D num y ’ is also specified, num y will override

the num DPI value, but only for the y direction.

There are plenty of raster formats on various platforms, much more than hp2xx will ever handle.

The supported raster formats IMG, PBM, PCL, PCX were chosen for their widespread use, their

simplicity, for actual demand, and for accessibility of specifications. If your desired format is not

supported, look for a converter. E.g., the Portable Bitmap (PBM) project offers quite a variety of

such converters.

Please note that the preview mode (which does not create any output file) is a special raster

mode. Instead of going into some output file, the internal bitmap is transferred into display memory.

Therefore, the above considerations apply also to preview mode.

2.7 Printer formats

Currently, there is only one printer format (not counting ‘eps’, which is printable on PostScript

printers): ‘pcl’, which stands for HP PCL Level 3. Essentially it is a raster format, but it comes

with a few restrictions and additional options which correspond to printer properties. It prints on

HP Laserjet and HP Deskjet series printers and compatibles.

The restriction concerns the resolution (DPI) during rasterization. Due to printer hardware

limitations, only ‘-d 75’, ‘-d 100’, ‘-d 150’, and ‘-d 300’ are permitted; option ‘-D’ must not be

used.

There are two flags which may be useful if the output goes directly to a printer: Option ‘-i’

initializes the printer before the output starts, and ‘-F’ sends a FormFeed (ASCII 12) after the

output.

Chapter 2: Basics 9

For the HP Deskjet printer series, there is support of some “special” commands; ‘-S 1’ activates

these. There is a limited support of color modes available, too: For the DJ500C or DJ550C models,

hp2xx can generate both CMY-based and CMYK-based color output (if colors are used: see option

‘-c’). Supply option ‘-S 3’ for CMY color mode, and option ‘-S 4’ for CMYK color mode (for the

DJ550C). Be aware that currently there is no data compression built-in, so that hi-res PCL color

output may amount to quite large data volumes.

2.8 Preview

Preview mode is hp2xx’s default. Its use prior to all other conversions is recommended since it

offers a good impression of your final results. Functionally it is also a raster mode.

Depending on your hardware and operating system platform, hp2xx uses one of a variety of

preview modules. On GUIs, a window containing the graphics will pop up, while on other systems

the whole screen may be used for preview. You can control the position of a preview window via

options ‘-o’ and ‘-O’ in a natural way. In full-screen previews, unused spaces are padded to the

right and bottom with background color.

Since there is no way for hp2xx to predict the actual size and resolution of your preview device,

e.g., screen, you may have to gauge hp2xx’s preview mode (using options ‘-whdD’). For example, if

your device effectively works at 86 DPI and offers an active area of 24 by 18 cm,

hp2xx -d86 -w240 -h180 foo.hp

will make maximum use of your screen area and give you correct sizes. Since a single gauge will

do for all future calls, you’ll probably want to create some one-line batch file for invoking hp2xx in

preview mode, correctly gauged for your screen.

Depending on page offsets and the selected sizes and resolutions, a preview may not fit on your

screen. In that case, some preview modules simply clip the picture; others give a warning but let

you continue (DOS), and others simply terminate — so don’t start too large.

DOS users: Most VGA cards offer high-resolution modes (SVGAs). Unfortunately, there is no

software standard for these modes. hp2xx lets you utilize these modes anyway with just a little

help from you. Tell hp2xx the so-called mode byte of your favorite hi-res mode via option ‘-V

num’. Since hp2xx issues only standard BIOS calls for mode switching, setting of color look-up

table entries, and pixel drawing, chances are good that your VGA card’s hi-res modes will work!

10 HP2XX, A HP-GL Converter

WARNING: You can damage your hardware by specifying inappropriate VGA modes! Generally

you’ll need a monitor which can sync on the horizontal frequency of the selected VGA hi-res mode,

e.g., a multi-scan monitor. In case of doubt, switch off your monitor immediately!!

2.9 Misc. options

hp2xx features an on-line options summary. Invoking hp2xx with option ‘-H’, or with any illegal

option or without any parameter, will display about 2 pages of text. (Note: I’d have preferred

option ‘-h’ for on-line help, but this option is needed by the indispensable height parameter.)

During operation, hp2xx outputs various information about the current HP-GL file and about

hp2xx’s actions. As usual, all this goes to stderr. You can re-direct these diagnostics into a file

even without any help from a UNIX shell by specifying a log file using option ‘-l logfile’, or you

may switch off diagnostics completely with option ‘-q’ (‘quiet’ mode). NOTE: Using both options

as in ‘-q -l logfile’ is of no use as it will result in an empty logfile.

Finally, there is a simple way to rotate whole pictures: Option ‘-r angle’ rotates the picture

counter-clockwise by the supplied angle (given in degrees). E.g.,

hp2xx -r90 foo.hp

will show the picture rotated by 90 degrees, letting vectors originally pointing left-to-right now

point botttom-to-top. This may be handy e.g. for printing in landscape format. NOTE: The

limiting rectangle supplied by ‘-hw’ is not affected by ‘-r’, so in order to obtain e.g. a full-page

landscape picture on an A4 page, issue a command similar to:

hp2xx -m pcl -d 150 -r90 -h270 -w160 landscpe.hp

Chapter 3: Advanced subjects 11

3 Advanced subjects

3.1 The coordinate range

The natural unit of length in HP-GL is 1/40 mm = 0.025 mm, so a typical A4 page covers

roughly 11000 x 7500 natural units. Typically, coordinates in HP-GL commands will be found

in the range 0 ... 12000. hp2xx will tell you the maximum and minimum coordinates (“picture

limits”) it finds in your HP-GL picture for both x and y direction. These values usually roughly

cover this range. Even if your HP-GL source plots in user-specific coordinates (realized via HP-GL

command ‘SC;’ (SCale)), this remains true, since hp2xx internally transforms all points back to

natural coordinates. Whenever the above range is grossly violated, you may suspect corrupted

data, because no real plotter would be able to plot such a file.

If you ever discover a picture limit equalling plus or minus 10^10, your HP-GL probably didn’t

draw anything. Initially, hp2xx’s internal picture limits are set to impossibly large (or small) values,

i. e., +- 10^10, but the first plot command will set them to values found therein, and successive plots

push the limits outward. Example: xmax starts at -10^10, the first plot command may change it to

2536, the next to 3470, the next 20 command fall short, etc. Eventually, xmax assumes the largest

value and stays there. Knowledge about these details may sometimes be crucial (see 〈undefined〉

[Scaling to true size], page 〈undefined〉).

hp2xx uses the picture limits internally for scaling and fitting the data into the supplied limiting

rectangle (see 〈undefined〉 [Sizing your output], page 〈undefined〉). You can also affect the picture

limits yourself for special effects (see 〈undefined〉 [Fixed scaling], page 〈undefined〉).

3.2 Fixed scaling

As noted earlier, hp2xx does not draw to scale, but rather it fits a picture into a given limiting

window. While this is very handy in most applications, it may be undesirable when a series of

pictures must be drawn to the same scale. Unless all pictures possess the same picture limits

(modulo offsets), e.g., because all of them are surrounded by some fixed frame, hp2xx would scale

them all up differently to fit each of them tightly into the limiting window.

There are two simple cures: First, make use of the true size option ‘-t’. If the original HP-GL

sizes do not fit, adjust picture limits to guarantee a constant scaling: Make a preview of all pictures

and note the coordinate ranges hp2xx reports. Then, determine picture limits which cover all of

12 HP2XX, A HP-GL Converter

these individual limits. Finally, run hp2xx to create your desired outputs using options ‘-xXyY’ to

tell hp2xx about the picture limits it should use. If the pictures do not share common offsets, you

may have to correct for offsets manually. Use the preview mode for testing. You’ll get the same

scale as long as the limiting window and (xmax - xmin) and (ymax - ymin) remain constant for all

pictures.

WARNING: hp2xx does not clip lines. If the picture limits which you manually can pre-set

via options ‘-xXyY’ are chosen too narrow, they will be pushed outside just as described in the

last section, resulting in a different scale. Check the coordinate ranges hp2xx reports. The should

match the values supplied by options ‘-xXyY’!

3.3 Scaling to true size

Earlier releases of hp2xx (binaries) did not offer option ‘-t’, which does everything you’ll need

for producing output with exactly the sizes shown on a real plotter. The following paragraph shows

how to manually emulate the working of this option. Though outdated, I left it in the manual as

background material:

Sometimes you might want to create pictures sized exactly as if they were drawn on a real

plotter. There is a little trick which allows you to do so using hp2xx: As notes above, the natural

unit of length in HP-GL is 0.025 mm. Therefore, you can calculate the true picture size from the

picture limits reported by hp2xx. Transform these data into mm and simply specify the limiting

window accordingly! Example: ‘hp2xx truesize.hp’ reports the following coordinate ranges: xmin

= 250, xmax = 5250, ymin = 100, ymax = 3100. Thus, the picture is (xmax - xmin) * 0.025 mm =

125 mm wide and ymax - ymin) * 0.025 mm = 75 mm high, and ‘hp2xx -w125 -h75 truesize.hp’

will draw it in true size.

3.4 Swapping

hp2xx allocates memory for an internal bitmap dynamically. Large pictures, high resolution,

and use of colors may combine to let your computer run out of memory (especially on non-swapping

operating systems like DOS).

In this case, hp2xx swaps the bitmap to disk, slowing down considerably. Redirecting swapping

to a fast disk, preferably a RAM disk, might speed up things. You can replace the default swap file

‘hp2xx.swp’ using ‘-s ‘swapfile’’. NOTE: If for some reason hp2xx is aborted during swapping,

you might have to delete the swap file manually.

Chapter 3: Advanced subjects 13

3.5 Dots and lines

Here are some basics about the generation of dots and lines within hp2xx. I mention them,

because there is something left to be improved here...

Some HP-GL codes cause hp2xx to generate points rather than lines of length zero. There is a

subtle difference between both. Depending on the current output format, special code for points

will be generated, and occasionally, a point will look different from a zero-length line. Use ‘-m epic’

for such an example.

Line thicknesses can vary. Especially for thick lines, the matter of line caps (how lines are ended,

e.g. with a round cap) becomes relevant. hp2xx does not do an elaborate job here. If line caps

matter to you, use ‘-m eps’, edit the resulting Encapulated PostScript file, look for a line with

setlinecap in it (near line 45), and select the line cap of your choice by modifying the PostScript

command setlinecap accordingly. You can also use Metafont (via ‘-m mf’) and replace the picked

pen "pencircle" by some other type. However, both methods are far from convenient.

The internal rasterization done by hp2xx is a simple process and may someday be replaced by

something more efficient: A "draw point" command essentially sets a single pel in the internal

buffer. If line with grows (2 - 4 units), a square of 2 to 4 pels length will be set. Vector drawing

is broken down to point drawing by the Bresenham algorithm. Therefore, there is no notion of

controlled line caps. The shapes of line ends simply result from plotting these squares. In addition,

plotting all those pels is not really effficiently implemented, so if anybody out there looks for a

good place for speeding up hp2xx, this code (located in file ‘picbuf.c’) is a good place to start.

Currently there are no plans by me to introduce different line caps into hp2xx, so waiting for

them will be of no use.

3.6 Unsupported formats

This is just a brief note, not a real manual entry – sorry.

PIC ATARI format, e.g. for the text processor Signum. Try to replace by IMG.

PAC ATARI format, e.g. for the CAD program STAD

DJ_GR DOS previewer, based on DJ Delorie’s gcc port and extender go32. Works fine, but

will be replaced by DOS/OS2 EMX version.

14 HP2XX, A HP-GL Converter

OS2 Full-screen OS/2 2.x and DOS previewer. I don’t yet have the right development

system, so this code is still missing. However, it *will* be supported as soon as possible!

PM OS/2 2.0 PM previewer. Working, but without redirection of messages to stderr into

a second window.

3.7 TEX formats

TEX was designed for typesetting, not for handling graphics. Putting graphics directly into TEX

therefore is always somewhat clumsy. hp2xx offers four different compromises to do that, and much

better, though more indirect ways.

‘-m mf’ generates Metafont source code. Run Metafont and gftopk, and you’ll end up with

a special pk font containing the single letter Z which represents your picture. Placing this Z

somewhere in your document using standard TEX commands draws your picture there.

If you want to avoid fiddling with additional programs and fonts, if you work with LaTEX, and

if you do not need high-quality plots, the macros within epic.sty may help you. ‘-m tex’ causes

hp2xx to generate appropriate TEX source code which you can ‘\input{}’ into LaTEX sources.

For emTEX users, there are yet another two way: ‘-m em’ creates TEX code containing many com-

mands like ‘\special{em:...}’ for line drawing. The line drawing task will therefore be handled

not by TEX itself but by the emTEX drivers which can handle arbitrary line slopes etc. Similarly,

‘-m cad’ produces code based on the same principle, but compatible with program ‘TEXcad.exe’,

which is distributed as a part of emTEX, and which offers editing and drawing features for the

desired HP-GL figure(s).

Please note that all methods for generation of graphics within TEX are compromises which

usually work only for simple graphics. You’ll probably prefer using external methods like including

EPS vector graphics files with Tom Rokicki’s dvips driver, or PCX files via the emTEX drivers, or

you’ll generate special fonts with convenient programs like F. Sowa’s bm2font. hp2xx can help you

in all of these cases. The following table shows the pros and cons of the various approaches (all are

based on PD software):

Internal methods (all allowing DVI previewing of graphs):

via Metafont
+: Machine-independent; fully compatible with TEX
-: Slow; capacity problems with Metafont / gftopk / some DVI drivers

if used with large and/or complex graphics

Chapter 3: Advanced subjects 15

via epic.sty
+: Machine-independent; single-step, native LaTEX approach; PD software
-: Slow; requires LaTEX; low-quality lines; just one line thickness;

complex graphs may exceed TEX capacity

via emTEX’s \special{em:...}
+: No TEX capacity problem; good line quality; single-step procedure;

rasterization on demand, giving optimal resolution
-: Slows down drivers; driver capacity may be exceeded; emTEX required

External methods:

via PCX file inclusion:
+: Easy and fast; DVI preview of graphics
-: Requires emTEX drivers (only available on DOS and OS/2)

via special fonts:
+: Easy, fast, and trouble-free font generation via bm2font;

DVI preview of graphics (!); portable
-: Many files for fonts etc.; confusing for novices

via EPS:
+: High-quality results; easy; no burden for TEX or drivers
-: No DVI preview; PostScript printer (or, e.g., GhostScript) required;

PostScript previewing is slower than DVI previewing.

16 HP2XX, A HP-GL Converter

Chapter 4: Installation and modification notes 17

4 Installation andmodification notes

4.1 Installation procedure

Please note: The following description is very brief and assumes that you are familiar with

installation of PD software in general.

4.1.1 Installing an executable version

This is simple! If you find a collection of pre-compiled versions of hp2xx, obtain the file ‘read.me’

and read it to find out the name of the file which fits to your system. Obtain it, rename it to

something like ‘hp2xx’ or ‘hp2xx.exe’, and place it somewhere on your search path – that’s it.

There are exceptions, though. AMIGA users should consult their special distribution package

and follow directions there. DOS users will find a ZIP package containing files in addition to

‘hp2xx.exe’. For details, read the accompanying descriptions.

Actually, I anticipate a phasing-out of binaries support as soon as the sources become available.

Consequently, future releases of this manual will elaborate on the following subsection instead of

this one.

4.1.2 Source-level installation

NOTE: Source level installation is in beta state: At this writing, the hp2xx sources are about

to be released, and there have only few different installations been done. Currently, installation

depends too much on manual work yet. Here is a description how to proceed:

After unbundling all sources, go to subdirectory ‘./makes’. Select a makefile most closely

resembling your system’s needs from the samples given, copy it to ‘./sources/makefile’, adapt

it manually (if necessary), and run make all. If everything is set correctly, this results directly in

a valid executable file which you may install at any convenient place on your search path.

There are two types of makefile adaptation: First, let’s assume there is a makefile template

available for your system. You then have the option to add a few unsupported modes. Do so by

18 HP2XX, A HP-GL Converter

un-commenting the appropriate lines near the beginning of the makefile, and by commenting out

the corresponding standard lines.

The second type of course applies to systems with special needs which are not yet covered by

any makefile template. Currently, you are on your own when it comes to supplying alternate paths,

renaming or adding system libraries and alike. Most probably you might have to tell the makefile

where to look for the X11 stuff.

Note: Don’t feel alarmed if your makefile seems to neglect many source files. Any single instal-

lation will make use of only one previewer (two on SUNs with activated SunView support), and

there are platform-dependent sources for some output formats which are not always used.

4.2 Adding your own formats

First, study 〈undefined〉 [Introduction], page 〈undefined〉 for the outline of the modular structure

and general operation of hp2xx.

Let’s assume you want to support TIFF format. The probably easiest way of adding new formats

is by modifying copies of existing files. Since TIFF is a raster format, a good starting point would

be ‘to_pcx.c’. (Files ‘to_mf.c’ or ‘to_eps.c’ should be considered in case of a vector format,

and ‘to_vga.c’ or ‘to_x11.c’ in case of a new previewer.) Copy it to a file ‘to_tiff.c’ and edit

the latter. The old code is pretty much self-explanatory. Essentially, the output file is opened,

initializations are performed, and the internal bitmap is converted into the target format (here,

TIFF) scanline-by-scanline. There is just one routine called from other modules (originally named

PicBuf_to_PCX. Rename it to e.g. PicBuf_to_TIFF) and adapt the conversion code.

Once you’ve done that, the rest (integration of the new format into the package) is easy: First,

edit ‘hp2xx.h’ and add a prototype line for PicBuf_to_TIFF in analogy to e.g., PicBuf_to_PCX.

Edit the ‘makefile’s and add to_tiff.c to the list of sources and e.g. to_tiff.o to the list of

objects. Now you are ready for compilation tests (but not for linking yet).

Then, change the main file ‘hp2xx.c’ at various places: Near the beginning of the file, add

‘XX_TIFF, ’ to the hp2xx_mode typedef, and a line like ‘XX_TIFF, "tiff", ’ to the ModeList struct

below. Please note the alphabetical order of these lists. Never put anything behind the termination

code XX_TERM! At the end of the file, add a case statement to the switch list in analogy to e.g.

the PCX entry.

Chapter 4: Installation and modification notes 19

You may also want to add a line to the on-line help to announce the new format, and change

the release number and date. Look for functions Send_ID and usage_msg at the first quarter of file

‘hp2xx.c’!

Now a make all will produce code containing the new format. If your format turns out to work

nicely and seems to be of general interest, please consider contributing it to the hp2xx project.

4.3 Future improvements

The following table lists miscellaneous desirable features for future releases:

Box and sector drawing / filling
Other, more rarely used HP-GL commands
Color support in UIS and PBM
Improved color support in X11 and PCX
PCL: Data compression for DJ500, DJ500C, DJ550;
Loadable fonts, e.g. Hershey fonts, or: more built-in fonts
Full-screen previewer for OS/2
Easy installation on various platforms, e.g. via a configure script

4.4 Font coding

This section is intended for those few users who might care to improve the built-in character set

of hp2xx.

HP-GL plotters feature built-in fonts with both fixed and variable-width characters. There are

commands for font selection and quick switching between two pre-selected fonts, and there is also

a way for users to download own character definitions.

hp2xx currently features just one character set (set 0). Therefore, all HP-GL commands dealing

with font selection etc. have not been implemented.

If you plan to modify this character set or to add more, you need an understanding of how

characters are drawn by hp2xx. The source file ‘charset.h’ contains a comment explaining this

procedure. Below you find a (modified) copy of this:

This file defines a standard character set by elementary

20 HP2XX, A HP-GL Converter

"draw" & "move" commands. The format is a very compact one from
the old days where every byte was still appreciated.

A font or character set is an array of strings. Each character is
addressed by its ASCII code.

A character is a (NULL-terminated) string of bytes. Each byte
codes for a draw or move action according to the code below:

Bit: 7 6 5 4 3 2 1 0
p x x x y y y y

p: Plot flag. If set, "draw to" new point, else "move to" it.
xxx: 3-bit unsigned integer (0...7). X coordinate of new point.
yyyy: 4-bit unsigned integer (0..15). Y coordinate of new point.

The baseline is y = 4 instead of y = 0, so characters with parts
below it can be drawn properly. Function "code to ucoord" transforms
these coordinates into actual user coordinates.

Example: code for character ’L’: "\032\224\324" translates to:
moveto(1,10); drawto(1,4); drawto(5,4);

From the example you can conclude that the font below essentially is
defined on a 5x7 grid:

0 1 2 3 4 5 6 7
15 - - - - - - - - - : unused
14 - - - - - - - - # : always used
13 - - - - - - - - o : sometimes used
12 - - - - - - - -
11 - - - - - - - -
10 o # # # # # - -
9 o # # # # # - -
8 o # # # # # - -
7 o # # # # # - -
6 o # # # # # - -
5 o # # # # # - -
4 o # # # # # - -
3 o o o o o o - -
2 o o o o o o - -
1 o o o o o o - -
0 o o o o o o - -

Appendix A: Known HP-GL commands 21

AppendixA KnownHP-GL commands

hp2xx emulates a subset of the Hewlett-Packard 7550A plotter. The following manual was used

as reference for command definitions: [1] HP 7550A Interfacing and Programming Manual.

Not all commands are supported. Among the non-supported commands are those which do not

really apply to a software emulator, like:

commands affecting the communication between plotter and host computer,
commands for changing the behaviour of a real plotter, like plotting speed etc.,
commands for the control of plotter memory allocation,
commands causing various plotter display outputs.

Other non-supported commands would be desirable, but were left out due to their inherent

complexity (or just because nobody pushed me, :-)). Among those are:

commands for font (character set) management. Since there is only one font
built into hp2xx, there is no point in providing font switching etc.

windowing/clipping and rotation
polygon and box filling commands

Programmers intending to add more HP-GL features should take care to implement the less-

than-obvious side effects of existing commands on the new features, too (and vice versa). E. g., line

types (LT;) affect most but not all drawing commands: While the ER; command (edge rectangle

relative) uses the current line type, its couterpart EA; (edge rectangle absolute) always draws solid

lines. However, both PR; and PA; use the current line type! In addition, new features may need

initializations by the already supported codes IN; or DF;, so these may have to be expanded. So

carefully consult [1] prior to adding new HP-GL commands.

The remainder of this section lists all HP-GL commands given on pages 1-2 to 1-4 of [1] and

marks them as either

(.) not applicable,
(-) ignored, or
(+) supported.

22 HP2XX, A HP-GL Converter

The label “supported” is used when I think the command is fully supported in the context of

the already implemented commands. In general, you should have absolutely no problem with this

class of commands.

Though there still are unsupported commands, this does not mean that you might have trouble

using hp2xx. Nowadays, most HP-GL files are machine-generated, e.g. by CAD or DTP programs.

These tend to make use of just a simple subset of HP-GL. To my experience, chances are high that

hp2xx will give you the picture you want!

HP-GL|s n| Description & Remarks
Cmd | i |
=====|===|==
AA |+ | Arc Absolute
AF |+ | [same as PG]
AH |+ | [same as PG]
AP | .| Automatic pen operations
AR |+ | Arc Relative
AS	.	Acceleration select
BF | - | Buffer Plot
BL |+ | Buffer Label
-----|---|--
CA | - | Designate alternate character set
CC | - | Character Chord angle
CI |+ | Circle
CM | - | Character selection mode
CP |+ | Character plot
CS | - | Designate standard character set
CT | - | Chord tolerance
CV | - | Curved line generator
-----|---|--
DC | .| Digitize clear
DF |+ | Default
DI |+ | Absolute direction
DL | - | Define downloadable character
DP | .| Digitize point
DR |+ | Relative direction
DS | - | Designate character into slot
DT |+ | Define label terminator
-----|---|--
EA | - | Edge rectangle absolute
EP | - | Edge polygon
ER | - | Edge rectangle relative
ES |+ | Extra space
EW | - | Edge wedge
-----|---|--
FP | - | Fill polygon
FS | .| Force select

Appendix A: Known HP-GL commands 23

FT	-	Fill type
GC | .| Group count
GM | .| Graphics memory
-----|---|--
IM | - | Input mask
IN |+ | Initialize
IP |+ | Input P1 and P2
IV | - | Invoke character slot
IW | - | Input window
-----|---|--
KY | .| Define key
-----|---|--
LB |+ | Label
LO |+ | Label origin
LT |+ | Line type
-----|---|--
NR | .| Not ready (unload page)
-----|---|--
OA | .| Output actual position and pen status
OC | .| Output commanded position and pen status
OD | .| Output digitized point and pen status
OE | - | Output error
OF | - | Output factors
OG | .| Output group count
OH | - | Output hard-clip limits
OI | .| Output identification
OK | .| Output key
OL | - | Output label length
OO | .| Output options
OP |+ | Output P1 and P2
OS | - | Output status
OT | .| Output carousel type
OW | - | Output window
-----|---|--
PA |+ | Plot absolute
PB |+ | Print buffered label
PD |+ | Pen down
PG |+ | Page feed
PR |+ | Plot relative
PT | - | Pen thickness
PU |+ | Pen up
-----|---|--
RA | - | Fill reactangle absolute
RO | - | Rotate coordinate system [use option -r instead!]
RP | - | Replot
RR | - | Fill reactangle relative
-----|---|--
SA | - | Select alternate character set
SC |+ | Scale

24 HP2XX, A HP-GL Converter

SI |+ | Absolute character size
SL |+ | Character slant
SM |+ | Symbol mode
SP |+ | Select pen
SR |+ | Relative character size
SS	-	Select standard character set
TL |+ | Tick length
-----|---|--
UC |+ | User-defined character
UF | - | User-defined fill type
-----|---|--
VS | .| Velocity select
-----|---|--
WD |+ | Write to display
WG | - | Fill wedge
-----|---|--
XT |+ | X-Tick
-----|---|--
YT |+ | Y-Tick

Appendix B: Option summary 25

Appendix B Option summary

In the following, options are grouped into subjects and are listed alphabetically within each

subject. Both long options and short (one-letter) options are listed, where short options appear

in parentheses. Except for the +DPI option, there is a one-to-one correspondence between long

and short options. You may use either long or short options. Mixing long and short options is

acceptable.

Option parameter names suggest the expected data type, e. g., ‘--rotate (-r) float’ means

that option ‘--rotate’ or its corresponding short form ‘-r’ expect a parameter of type ‘float’.

B.1 General options

‘--pencolors (-c) string’

Pen color(s), a string of 1 to 8 digits. Valid digits: 0...7 (0=Background or off,

1=Foreground, 2=Red, 3=Green, 4=Blue, 5=Cyan, 6=Magenta, 7=Yellow). Default:

‘11111111’

‘--outfile (-f) string’

Name of output file. If omitted, hp2xx generates the name from the input file name

and the current mode string. ‘-f-’ causes hp2xx to write to stdout. Default: none.

‘--logfile (-l) string’

Name of log file. If given, diagnostics go into this file, else to stderr. Remark: ‘-q’

inhibits all diagnostics!

‘--mode (-m) string’

Mode string. Valid: string =

‘cad’ (TEXcad-compatible line generation using \special{em:...}),
‘em’ (more efficient line drawing with E. Mattes’s TEX \special{em:...}),
‘eps’ (Encapsulated PostScript),
‘img’ (e.g., GEM’s Image format),
‘mf’ (Metafont source),
‘pbm’ (Portable Bitmap),
‘pcl’ (HP-PCL Level 3),
‘pcx’ (Paintbrush format),
‘pre’ (Preview mode; no output!),
‘tex’ (line drawing with TEX / epic macros)

Occasionally available (unsupported) modes:

‘ilbm’ (e.g., for AMIGA: ILBM/IFF format),
‘pac’ (e.g., for ATARI/STAD),

26 HP2XX, A HP-GL Converter

‘pic’ (e.g., for ATARI/Signum).

Default: ‘pre’.

‘--pensize (-p) string’

Pensize(s), a string of 1 to 8 digits. Valid digits: 0...9 (unit = 1/10 mm) for vector

modes, 0...4 (unit = pixel) for raster modes. Default: ‘11111111’

‘--pages (-P) int[:[int]]’

Select HP-GL page int or a page range. Valid: int integer and >= 0. Default: int = 0

(all pages).

‘--quiet (-q)’

Quiet mode (no diagnostic output).

‘--rotation (-r) float’

Rotation angle [deg]. E.g., ‘-r90’ gives landscape. Default: 0.0

‘--swapfile (-s) string’

Name of swap file. Default: string = ‘hp2xx.swp’.

B.2 Size controls

‘--aspectfactor (-a) float’

Aspect factor. Valid: float > 0.0. Use float > 1.0 for landscape and float < 1.0 for

portrait deformations. Default: float = 1.0

‘--height (-h) float’

(Upper limit of) height of picture in mm. Default: float=200.0

‘--width (-w) float’

(Upper limit of) width of picture in mm. Default: float=200.0

‘--x0 (-x) float’

Pre-set left limit of HP-GL coordinate range to float (rarely used).

‘--x1 (-X) float’

Pre-set right limit of HP-GL coordinate range to float (rarely used).

‘--y0 (-y) float’

Pre-set lower limit of HP-GL coordinate range to float (rarely used).

‘--y1 (-Y) float’

Pre-set upper limit of HP-GL coordinate range to float (rarely used).

Appendix B: Option summary 27

‘--truesize (-t)’

Ignore options ‘-a -h -w’ (aspect factor, height, width). Size information will come

from the HP-GL intrinsic data. WARNING: Avoid using option ‘-r’ (rotate) as it

works on top of HP-GL and thus will distort the detected HP-GL sizes.

B.3 Raster format controls

‘--DPI (-d) int’

Set x resolution to int dots per inch (DPI). If not overridden by ‘-D’, sets also y

resolution to int DPI. Valid: int integer and > 0. Default: int = 75.

‘--DPI_x (-d) int’

Same as ‘--DPI’

‘--DPI_y (-D) int’

Set y resolution to int DPI. int integer and > 0. Default: int = 75.

B.4 PCL specifics

‘--PCL_formfeed (-F)’

Send a FormFeed after graphics data. Default: No FormFeed.

‘--PCL_init (-i)’

Pre-initialize printer. Default: No pre-init

‘--PCL_Deskjet (-S) int’

Use (Deskjet) Special commands. int = 0 deactivates this option, int = 1 enables b/w

mode, int = 3 is intended for DJ500C (CMY) color support, int = 4 supports DJ550C

(CMYK mode).

‘--DPI_x (-d) int’

Set x resolution (see above): Valid here: int = 75, 100, 150, 300

‘--DPI_y (-D) int’

Set y resolution (see above). Invalid here!

B.5 Margins

(Apply to modes ‘eps’, ‘pcl’, ‘pre’ ONLY)

28 HP2XX, A HP-GL Converter

‘--xoffset (-o) float’

X offset of picture (left margin) in mm. Valid: float >= 0.0, default: float=0.0

‘--yoffset (-O) float’

Y offset of picture (upper margin) in mm. Valid: float >= 0.0, default: float=0.0

B.6 Preview (DOS/PC’s only)

‘--VGAmodebyte (-V) int’

VGA mode byte (decimal). Default: int = 18. WARNING: Setting inappropriate VGA

modes may damage your hardware, especially your monitor!

B.7 Help

‘--help (-H)’

(or calling hp2xx without any arguments) Show on-line help.

Appendix C: 29

Appendix C

C.1 Acknowledgement

While hp2xx was available as binaries on several platforms, many people contributed to this

project by supplying me with valuable suggestions and reports. Many thanks to all of them! It is

my pleasure to especially thank the following people for their outstanding contributions:

Nelson Beebe

help with the new generic makefile (easier configuration) clean selection mechanism for

reviewer suggested

Elisabeth Dregger-Cappel

network and host resources for hp2xx distribution

Joern Eggers

New ATARI format "cs" for CS-TeX; bug fixes for arcs / circles

Roland Emmerich

DOS betatests and suggestions; showit

Jonathan M. Gillian

DOS betatests and suggestions

Claus H. Langhans

AMIGA portation; pbm, ilbm formats

Norbert Meyer

ATARI portation; img, pic, pac formats; first ATARI previewer

Michael Schmitz

many VAX & MACH tests

Michael Schoene

X11 stuff; many tests

Andreas Schwab

Improved ATARI previewer

Friedhelm Sowa

many DOS tests and suggestions for cooperation of hp2xx with TEX figure generation

Gerhard Steger

VAX tests; access to MicroVAX platforms

30 HP2XX, A HP-GL Converter

Horst Szillat

OS/2 support & help

A. Treindl

code for UC support

C.2 Copyright notice

Copyright (c) 1991 - 1993 Heinz W. Werntges
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that
the above copyright notice and this paragraph are duplicated in all such forms
and that any documentation, advertising materials, and other materials related
to such distribution and use acknowledge that the software was developed
by the abovementioned author(s).

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

i

Table of Contents

1 Introduction . 1

1.1 Invoking hp2xx . 1

1.2 hp2xx for the impatient . 2

2 Basics . 5

2.1 Modes of hp2xx . 5

2.2 Sizing your output . 5

2.3 Pen sizes and colors . 6

2.4 Selecting a page . 7

2.5 Vector formats . 7

2.6 Raster formats . 8

2.7 Printer formats . 8

2.8 Preview . 9

2.9 Misc. options . 10

3 Advanced subjects . 11

3.1 The coordinate range . 11

3.2 Fixed scaling . 11

3.3 Scaling to true size . 12

3.4 Swapping . 12

3.5 Dots and lines . 13

3.6 Unsupported formats . 13

3.7 TEX formats . 14

4 Installation and modification notes 17

4.1 Installation procedure . 17

4.1.1 Installing an executable version . 17

4.1.2 Source-level installation . 17

4.2 Adding your own formats . 18

4.3 Future improvements . 19

4.4 Font coding . 19

Appendix A Known HP-GL commands 21

Appendix B Option summary . 25

B.1 General options . 25

ii HP2XX, A HP-GL Converter

B.2 Size controls . 26

B.3 Raster format controls . 27

B.4 PCL specifics . 27

B.5 Margins . 27

B.6 Preview (DOS/PC’s only) . 28

B.7 Help . 28

Appendix C . 29

C.1 Acknowledgement . 29

C.2 Copyright notice . 30

