
TNGTNG SOFT enterprises proudly presents SOFT enterprises proudly presents

EasyVision 2. 0EasyVision 2. 0
A text mode based user interfaceA text mode based user interface

The easy to use, reliable and powerful C and C++ library of functions,
for the DOS environment.

This manual may be freely distributed in its original form.  Modifications
of any kind are prohibited.

This manual and software are made available without warranties.
TNG SOFT nor the author shall be held liable to the user or any other

person or entity regarding any liability, loss, or damage caused or
alleged to be caused directly or indirectly by this manual or software.

This software is shareware, and must be registered.

This library is the property of the author.
You are granted the rights to use only.

EasyVision is a registered trademark of TNG SOFT.

TNGTNG SOFT : The Next Generation Software SOFT : The Next Generation Software



TABLE OF CONTENT Page 2/100

C H A P T E R   1 : Overview ..................................................7

Why EasyVision? ................................................................................. 7
What is EasyVision? ............................................................................ 8
Current Version .................................................................................... 9
A word about registration ..................................................................... 9
What's Next?...................................................................................... 10
About the Author ................................................................................ 10
User support....................................................................................... 10

C H A P T E R   2 : Getting started.......................................12

Library specifics.................................................................................. 12
Installation .......................................................................................... 13
How to use this library ........................................................................ 13
How to use this document .................................................................. 14

C H A P T E R   3 : Using EasyVision's templates ..............15

MAIN.C............................................................................................... 15
MAIN.CPP.......................................................................................... 15
MODULE.C ........................................................................................ 16
MODULE.CPP.................................................................................... 16
MODULE.H ........................................................................................ 16
MODULE.HPP.................................................................................... 16
STDMACRO.H ................................................................................... 16
PRJMACRO.H.................................................................................... 16
STDTYPE.H ....................................................................................... 16
PRJTYPE.H........................................................................................ 17
PRJMSGS.C ...................................................................................... 17
PRJMSGS.H ...................................................................................... 17
HEADTEST.C..................................................................................... 17
Examples............................................................................................ 17

C H A P T E R   4 : Using EasyVision's functions...............18

Conventions ....................................................................................... 18

C H A P T E R   5 : EasyVision's standard functions..........19

ASSERT............................................................................................. 19
ARG_EXIST ....................................................................................... 20
ARG_IEXIST ...................................................................................... 20
HEAPALLOC...................................................................................... 21
HEAPFREE........................................................................................ 21
TO_UPPER........................................................................................ 22
TO_LOWER....................................................................................... 22

EV 2.0 User's guide TNG SOFT : The Next Generation Software



TABLE OF CONTENT Page 3/100

C H A P T E R   6 : EasyVision's keyboard functions .........23

GETKEY............................................................................................. 23
EXTTOASCII ...................................................................................... 24

C H A P T E R   7 : EasyVision's file functions ...................25

FNEWLINE......................................................................................... 25
FSIZE ................................................................................................. 25
FCOPY............................................................................................... 26

C H A P T E R   8 : EasyVision's screen functions .............27

SCR_TEXTATTR ............................................................................... 27
SCR_VSAVE...................................................................................... 27
SCR_VRESTORE.............................................................................. 28
SCR_CSAVE...................................................................................... 29
SCR_CRESTORE.............................................................................. 29

C H A P T E R   9 : EasyVision's string functions...............31

STR_LEN ........................................................................................... 31
STR_CPY........................................................................................... 31
STR_CMP .......................................................................................... 32
STR_ICMP ......................................................................................... 32
STR_TOUPPER................................................................................. 33
STR_TOLOWER................................................................................ 33
STR_PASTOC ................................................................................... 33
STR_CTOPAS ................................................................................... 34
STR_TRIM ......................................................................................... 34
STR_INVNAMES ............................................................................... 35
STR_CENTER ................................................................................... 35

C H A P T E R   10 : EasyVision's time functions ...............37

TICKTIMER_INSTALL ....................................................................... 37
TICKTIMER_RESET.......................................................................... 37
TICKTIMER_READ............................................................................ 38
DIFFDATE.......................................................................................... 38

C H A P T E R   11 : EasyVision's miscellaneous functions40

ANSICOLOR ...................................................................................... 40

C H A P T E R   11 : Using EasyVision's classes................41

Conventions ....................................................................................... 41

EV 2.0 User's guide TNG SOFT : The Next Generation Software



TABLE OF CONTENT Page 4/100

C H A P T E R   12 : EasyVision's tdesktop class ...............43

TDESKTOP::SETTEXTMODE........................................................... 43
TDESKTOP::GETSIZE....................................................................... 44
TDESKTOP::SETDESKCOLORS ...................................................... 45
TDESKTOP::SETTEXTURE .............................................................. 45
TDESKTOP::SETTITLE ..................................................................... 46
TDESKTOP::OPEN............................................................................ 46
TDESKTOP::CLOSE.......................................................................... 47
TDESKTOP::REFRESH..................................................................... 47

C H A P T E R   13 : EasyVision's tstatusline class ............49

TSTATUSLINE::SETCOLORS........................................................... 49
TSTATUSLINE::DISPLAY.................................................................. 50
TSTATUSLINE::GETMSG ................................................................. 50
TSTATUSLINE::REFRESH................................................................ 51

C H A P T E R   14 : EasyVision's tinput class....................52

TINPUT::MOUSE_INIT ...................................................................... 52
TINPUT::MOUSE_STATUS............................................................... 53
TINPUT::MOUSE_SHOW.................................................................. 53
TINPUT::MOUSE_HIDE..................................................................... 53
TINPUT::MOUSE_LB_DOWN ........................................................... 54
TINPUT::MOUSE_POS...................................................................... 54
TINPUT::GET..................................................................................... 54

C H A P T E R   15 : EasyVision's tmenubar class..............57

TMENUBAR::SETCOLORS ............................................................... 57
TMENUBAR::SETHLPCTX ................................................................ 58
TMENUBAR::ADDMENU ................................................................... 58
TMENUBAR::ADDITEM ..................................................................... 59
TMENUBAR::ITEMSETAVAIL ........................................................... 60
TMENUBAR::THROUGH ................................................................... 61
TMENUBAR::REFRESH .................................................................... 61

C H A P T E R   16 : EasyVision's twindow class ...............62

TWINDOW::WINSETPOS ................................................................. 62
TWINDOW::WINGETROW................................................................ 63
TWINDOW::WINGETCOL ................................................................. 63
TWINDOW::WINSETSIZE................................................................. 64
TWINDOW::WINGETHEIGHT........................................................... 64
TWINDOW::WINGETWIDTH............................................................. 65
TWINDOW::WINSETCOLORS.......................................................... 65
TWINDOW::WINSETTITLE ............................................................... 66
TWINDOW::WINSETHLPCTX........................................................... 66

EV 2.0 User's guide TNG SOFT : The Next Generation Software



TABLE OF CONTENT Page 5/100

TWINDOW::WINOPEN...................................................................... 66
TWINDOW::WINCLOSE.................................................................... 67
TWINDOW::WINCLEAR.................................................................... 68
TWINDOW::WINWRITE .................................................................... 68
TWINDOW::WINTEXT....................................................................... 70
TWINDOW::WINTEXTFILE ............................................................... 71
TWINDOW::WINMOVE ..................................................................... 72
TWINDOW::WINSCROLL.................................................................. 72
TWINDOW::WINONEDGES .............................................................. 73
TWINDOW::WININSIDE.................................................................... 73
TWINDOW::WININPUT ..................................................................... 74
TWINDOW::FIELDSETCOLORS....................................................... 74
TWINDOW::FIELDCREATE .............................................................. 75
TWINDOW::FIELDSETASW.............................................................. 77
TWINDOW::FIELDGETASW ............................................................. 77
TWINDOW::FIELDINPUT .................................................................. 78
TWINDOW::BUTTONSETCOLORS .................................................. 78
TWINDOW::BUTTONCREATE.......................................................... 79
TWINDOW::BUTTONSETAVAIL ....................................................... 80
TWINDOW::BUTTONINPUT.............................................................. 81

A P P E N D I X   A : Keycodes macros ...............................82

A P P E N D I X   B : Color codes and symbolic constants 86

A P P E N D I X   C : Context sensitive help system...........87

What is a context................................................................................ 87
Context numbering ............................................................................. 87
Writing the ASCII help file .................................................................. 88
ASCII help file format ......................................................................... 88
The help compiler............................................................................... 89
The "*.HLP" and "*.HDX" help files .................................................... 89

A P P E N D I X   D : EasyVision's language system ..........91

Language system variables................................................................ 91
ev_helpwindowtitle ............................................................................................... 91
ev_helpwindownohelp.......................................................................................... 91
ev_helpwindowfileerror ........................................................................................ 92
ev_wintextdownbutton ......................................................................................... 92
ev_wintextdown ................................................................................................... 92
ev_wintextquitbutton ............................................................................................ 92
ev_wintextquit ...................................................................................................... 92
ev_filenotfoundtext............................................................................................... 93
ev_filetobig........................................................................................................... 93
ev_windowmove .................................................................................................. 93
ev_statuslinehelp ................................................................................................. 93

EV 2.0 User's guide TNG SOFT : The Next Generation Software



TABLE OF CONTENT Page 6/100

english() and french() functions.......................................................... 93

A P P E N D I X   E : EasyVision's demo program ..............94

Things to remember ........................................................................... 94

A P P E N D I X   F : How to reach the author .....................95

A P P E N D I X   G : Trademarks .........................................96

I N D E X ................................................................................97

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 1 : Overview Page 7/100

C H A P T E R   1 : Overview

Welcome to EasyVision!

This C and C++ library is  a collection of routines for the DOS environment that
were developed while working on different projects.

Because I am big on modularity, I always try to put general purpose code together
in a separate function.  Therefore, after developing an application, I am often left
with many useful functions.  Those can be recycled easily and reduce
development time of other applications.

This package comes in two sections:

1. Day-to-day utility functions, written in C.  They can be used in any
program.

2. Object-oriented C++ classes, providing an easy to use, reliable and
powerful text mode based user interface.

I've decided to make this code available to everyone through this library.  All
those functions were tested thoroughly, and put to work in actual applications.

Why EasyVision?

DOS? Even if the times are to WINDOWS programming, you may be obliged to go with
a text mode application if the computers on which they're supposed to run are
small machines.  However, that doesn't mean that your implementation can't have
a professional look!

Why reinvent the wheel when someone before you created one that works quite
well?

One reason would be that professional programmers like to write all of their
general purpose functions themselves.  They want to know what's inside.  But
sometimes, you just don't have the time to do it, or simply the need for it.

This library will give you access to useful routines that will shorten your
development time and make your code more reliable.  It will effectively free you
from having to write many of the common functions your programs might need.

EasyVision was first created as a need for a text mode based user interface.  After
looking at some shareware and commercial user interface packages, and reading
comments about them from many C and C++ programmers, it was clear that
something was missing.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 1 : Overview Page 8/100

Turbo Vision? When people talked about TURBO VISION from BORLAND, it was their
opinion that it was too difficult to use.  In my own opinion, I think that
TURBO VISION is one of the greatest work of software engineering around.  It is
the most powerful and professional text mode user interface in existence.  It is so
well implemented and thought out that it is the standard in text mode interfaces
that everyone is following, including EasyVision!  (Hope they don't sue me...)
But, it is so big that it is a language in itself, and that's what makes people afraid
of using it!

On the other hand, there are those shareware libraries.  Some of them are
extraordinarily well done, but are still much too big.  I'm thinking about CXL
right now.  Others are too small and too unreliable to develop serious software.

So, what's a C++ programmer's to do?  Maybe just what I did, and write all of his
interface himself.  But what a waste if I'm the only one using it!  Why not make it
available to everyone?  Well, that's what EasyVision is all about!

What is EasyVision?

EasyVision is a collection of short C functions, dealing with the screen, the
keyboard, text strings, etc.

It is also a text mode based, windowed user interface.  It provides a DESKTOP, a
STATUSLINE, a MENUBAR, WINDOWS, CONTEXT SENSITIVE ON-LINE
HELP, MOUSE SUPPORT and much much more...

EasyVision was created with 2 important priorities:

1. It should be EASY to learn and EASY to use.  Provide only the big,
important functions to the user.  Make sure that those functions are
REALLY powerful and produce professional looking results!

This library hasn't been written to provide every function needed to
develop full featured word processors or the likes.  It is there to give you a
strong and reliable skeleton to build your programs on.  It is up to you to
come up with the 'meat'.

2. Those functions should be totally bug free and crash proof.  EasyVision
should validate all parameters to make sure nothing wrong can happen.
Don't rely on the programmer's good will to check out its code for out of
range or non-initialised parameters.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 1 : Overview Page 9/100

Demo programs That was what EasyVision was supposed to be.  Well, EasyVision is still better
than that!  At this point, if you haven't already done so, you should run the
demonstration programs that are in the archives "DEMO1.ZIP" and
"HANOI.ZIP", to see the results of not so many lines of C++ codes that uses the
EasyVision library...

If you find the results interesting, it's up to you to go on.  All functions and classes
are FULLY documented in the following pages.  The source codes of the
demonstration programs are also included (and commented) in the archive.  It
provides you with 'real' examples of how to use this library.

Current Version

The complete history of EasyVision can be found in the "HISTORY.TXT" file,
included in the archive.

A word about registration

EasyVision may be freely distributed, without charge except for the media cost.

EasyVision is made available under the shareware concept.  This means that after
an evaluation period of 30 days, you should register this software with its author.
Furthermore, if you use this software to create your own shareware software,
YOU MUST REGISTER EasyVision.

Registration grants you a life-time license to use this software, and all following
versions or updates.

EasyVision is NOT crippled in any way.  There is absolutely no difference
between the registered or unregistered versions.

To register this software, complete the "REGISTER.TXT" registration form
included in the archive.  Registration is $25 CANADIAN.  You will receive
through 'snail mail' an official registered user certificate with your registration
number.  For 35$ CANADIAN, you'll also receive a bonded true type copy of the
latest version of the manual.

EasyVision and TNG SOFT ENTERPRISES are registered trade marks.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 1 : Overview Page 10/100

What's Next?

Every time I write a general purpose function, and think it could be used in other
project, I will include it in the EasyVision package.  Every now and then, a new
version of this library will be made public.

I will try to improve the functions already there.  There won't be many new
commands.  EasyVision will always remain EASY to use, to leave the
programmer at more important tasks.  However, I welcome your suggestions to
what you think is missing from this package.

I will not accept special demands.  The purpose of this library is to distribute code
that I have in my personal library.

About the Author

My name is Remy Gendron.  I live in Quebec city, Canada.  I'm studying at Laval
University in computer sciences (Informatique de génie).  I've been programming
since I was 14 years old.  I started on a Texas Instrument's TI-57 programmable
calculator!

I then graduated to a Commodore 64.  This machine was a breakthrough in
computer power, ahead of its time.  I've done some BASIC on it, but mostly
assembler.  Great machine to learn on.  The C64 did cost me about as much as you
would spend today on a 486!  Those of you who really did work with this machine
know what could be done with only 64K of memory, when one did put his mind
on it (Remember GEOS?).  I find it incredible that with the computer power we
have today, we don't manage to do something better...

I was then away from computers for a couple of years.  I returned with a real IBM
(AT), then another Commodore (386sx-20), and finally a pieced together (386dx-
40).  I'm looking forward to a 486dx3-99 or maybe a Pentium?

User support

All of EasyVision's functions and classes have already been tested in real
applications.  They should behave as indicated.  Please take time to carefully read
the documentation.  The answers to your questions should be in there.  The demo
programs should also provide a good introduction.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 1 : Overview Page 11/100

I will gladly answer any questions you may have.  I'll also welcome any comments
or suggestions.  I can be reach by netmail/email on FIDONET or INTERNET:

FIDONET REMY GENDRON 1:240/1
INTERNET REMY_GENDRON@f1.n240.z1.fidonet.org

So, that's about it for now!  Have fun and enjoy!

Remy Gendron
author of EasyVision

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 2 : Getting started Page 12/100

C H A P T E R   2 : Getting started

Installing and using the EasyVision library is very simple.

Library specifics

EasyVision's functions are for the DOS environment.  They try, but do not always
follow the ANSI standard.

This software was developed under BORLAND C++ 3.1.

è TURBO VISION's application framework was NOT used in any way to create
EasyVision, nor any other 3rd party libraries.  It was built from scratch over a
period of two years.

Memory model The code was compiled under the 'large' memory model.  All prototypes were
declared as 'far' functions and all pointers were explicitly declared 'huge'.  This
will provide full compatibility when linking to most memory model sizes.  You
should consult your compiler documentation about interfacing with different
memory models.

If you should require that the library be compiled in a different memory model,
just get in touch with me.  We'll arrange something, if you're a registered user of
course!

Pointers Unless you REALLY know what you are doing, you should always use 'huge'
pointers.  'far' pointers can cause wrap around and comparison problems because
they're not normalized.  All of EasyVision's functions use 'huge' pointers.

Video The video output is done through direct screen writes.  This makes for incredibly
fast outputs.  Going through the BIOS is just to slow.  However, under
multitaskers like DESKview, who often work in text mode, screen bleeds can
occur if the application is running in the background.  Use the virtualising options
when running under DESKview.

Header files All header files use conditional compilation to prevent redeclaration errors at
compile time.  So, if you're not sure if a header was previously included (possibly
by another header file), feel free to include it again.

è They also provide for C++ compilation, using a conditional 'extern "C"' keyword.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 2 : Getting started Page 13/100

Installation

Unpack the archive in a temporary directory.  If you haven't done so, you should
really print all the USER'S GUIDE for easier reading.  It as been formatted to
print at 60 lines per pages.  And why not take a look at the header files.

Put all header files "*.H" and "*.HPP" into an INCLUDE directory.  Just to be
sure you won't overwrite existing header files, you should make a separate include
directory, then include it in the INCLUDE path of your compilator.

Then put the EasyVision library "EVISION.LIB" into one of your LIBRARY
directories.

How to use this library

To use a library function or class, just include its header file in your source code.
YOU MUST NOT write a prototype yourself based on the prototypes written in
this manual.  The real prototypes may have additional information in them.  So,
for example:

#include <stdio.h> /* A standard header file */
#include "stdfcts.h" /* An EasyVision header file */

void main (void)
{
   ...

/* Here you can use the desired functions */
   ...
   return ;
}

You then have to link all your modules, including the "EVISION.LIB" library.
You do that by including "EVISION.LIB" in your project.  That's all there is to it!

è If you get errors, that's probably because you compiled your sources in C and
included C++ modules.  Another source of errors would be if you tried to linked
different memory models.  Remember the EasyVision was compiled under the
'large' memory model.

Validation All arguments to functions are FULLY validated.  An EasyVision function will
never let you get away if it is called incorrectly.  If something is wrong, the
program is stopped and a plain English error message tells you what went wrong,
where and why!  In the function descriptions, when it says that you SHOULD
NOT or CANNOT do something, it means that if you do it, you'll get an error
message.  Your program will not crash!

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 2 : Getting started Page 14/100

How to use this document

The following conventions are used in this document:

è All of EasyVision's functions and methods were declared of type 'far'.

The following symbols are used in the text:

'' Regular C and C++ keywords

{} EasyVision's keywords

<> Arguments to functions

è Important remarks (that you MUST read)

"" Filenames

CAPS Keyboard keys

Related functions are grouped together in the same module.  A chapter is devoted
to each module.

At the end, reference information can be found in appendixes.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 3 : Using EasyVision's templates Page 15/100

C H A P T E R   3 : Using EasyVision's templates

EasyVision provides you with some starting templates for your programs.
Templates are important facilities.  They bring consistency and productivity in
your programming style.

If you already have your own style and templates, stick with them.  The included
templates are for new programmers, or those of you who are still searching for a
better way.

Of course, those are just suggestions.  For instance, the usage and placement of
parenthesis, currently generate many hot debates.  Some will follow the
'professional' style and open a block this way:

while (condition) {
   statements ;
   statements ;
}

While others (and I), do it this way:

while (condition)
{
   statement ;
   statement ;
}

Choose your own style!  The following files are therefore included for your
convenience.

MAIN.C

Template for your main source file.  This is the only file with a 'main' function
declaration.  I'd go further by suggesting that ONLY the 'main' function be
included.  As a rule, your 'main' should only call other functions in your other
modules.  It should be as short and as well documented as possible.

MAIN.CPP

C++ version of MAIN.C.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 3 : Using EasyVision's templates Page 16/100

MODULE.C

Template for your secondary modules' code files.  You could, for example, put all
video related functions in a "VIDEO.C" file.

MODULE.CPP

C++ version of MODULE.C.

MODULE.H

Template for your secondary modules' header files.

MODULE.HPP

C++ version of MODULE.H.

STDMACRO.H

Template for your standard macro definitions.  Put in this file your standard
macros that can be used with many different projects.

è This file contains declarations for {TRUE} and {FALSE} and for all the keyboard
keys (II_* macros).

PRJMACRO.H

Template for macros particular to your current project.  Put in this file, macros
that will be needed by many modules.  You should place macros specific to a
module in the module's macro declarations section.

STDTYPE.H

Template for your standard type definitions.  Put in this file your standard
typedefs that can be used with many different projects.

è This file contains declarations for the {bool}, {byte}, {word} and {dword} types.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 3 : Using EasyVision's templates Page 17/100

PRJTYPE.H

Template for typedefs particular to your current project.  Put in this file, typedefs
that will be needed by many modules.  You should place typedefs specific to a
module in the module's typedef declarations section.

PRJMSGS.C

Template for your global output messages.  When your program outputs
something to the user, put it here as a global variable.  Then, reference this
variable everywhere in your program when you want to output this message.  This
will allow easy conversion of your program from one language to another.

I suggest that all global message variables begin with 'msg_'.  For example,
msg_fileselect.

PRJMSGS.H

Template to put 'extern' references to your global message variables.  For
example:

extern char huge *msg_fileselect.

HEADTEST.C

Template to test your header files. Often, they will compile correctly because
some other files were included before your header.  This could cause problems if
you intend to use this header file elsewhere, or make them available to other
programmers.  Your header files should always compile alone by themselves.
Test them with this file.

Examples

Templates promote consistency and free you from tedious tasks.  Also, having
something to start with, you won't as often be afflicted by the 'blank page'
syndrome!

Take a look at the demo programs to get a feel at project management.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 4 : Using EasyVision's functions Page 18/100

C H A P T E R   4 : Using EasyVision's functions

There are two types of functions in the EasyVision library.  Functions available in
the standard libraries, and new functions.

Because I like to compile in the 'large' memory model, all functions have been
written to be of type 'far'.  They will also accept 'huge' pointers without the need
for a typecast.  Those functions don't call the standard run-time library.  They
were entirely rewritten.  There is no overhead and they are fully optimized.

New functions have been written because they weren't available in the standard
libraries.

Conventions

è Some conventions have been adopted for the function names.  Related functions
will have the same name prefix.  For instance, all string functions will begin by
{str_}.

è Function declarations can use types like {bool}, {byte}, {word} and {dword}.
See the file STDTYPE.H for a description of those types.

A function's description uses the following format:

Summary Short description of this function's behavior.

Syntax #include "header.h"

ReturnType FonctionName
(
   <param>,
   <param>
) ;

è YOU MUST NEVER WRITE A PROTOTYPE FOR A FUNCTION
YOURSELF.  ALWAYS USE THE PROPER HEADER FILES.  THEY HAVE
ADDITIONAL INFORMATION IN THEM!

Remarks Parameters and usage are described here when needed.

Return The returned value of the function is explained here.

Example Examples of various calls to this function.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 5 : EasyVision's standard functions Page 19/100

C H A P T E R   5 : EasyVision's standard functions

The declarations for EasyVision's standard functions are contained in the
"STDFCTS.H" header file.

Those are the truly general and often used functions that will be required by most
of your modules.

ASSERT

Summary This function will ASSERTain that a <condition> is {TRUE}.  If it is, it will
return immediately with no effect, and minimum overhead.

If the condition is {FALSE}, the program will be terminated in an orderly fashion.
{assert} will clear the screen, display an error message for at least five seconds,
and terminate the program with a call to 'exit'.  This closes all open files, releases
any memory allocated on the heap and exits to DOS.

Syntax #include "stdfcts.h"

void far assert /* Validates an assertion */
(
   bool             condition, /* FALSE=terminates */
   char       huge *fctname, /* Current function */
   const char huge *errortext, /* Error message */
   int              exitcode /* Errorlevel */
) ;

Remarks If <condition> evaluates to {FALSE}, the program will be terminated and
<fctname> will be displayed.  You should set <fctname> to the currently
executing function.  This will help find the location of the error.

The error message <errortext> will be displayed.  This can be a string literal, or
you can use predefined error messages.  These are available from the global
variable msg_stderr[].  This is an array of pointers, and here are the messages:

1. "Not enough memory to create an array on the heap."
2. "Not enough memory to create a struct on the heap."
3. "Not enough memory to allocate the requested amount of bytes."
4. "Out of memory."
5. "File not found."
6. "Path not found."
7. "File access denied."
8. "Input/Output error."
9. "Unrecoverable fatal error."

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 5 : EasyVision's standard functions Page 20/100

{assert} will then return to DOS with an errorlevel of <exitcode>.

è Before calling 'exit', {assert} will set the global variable {assert_err} to {TRUE}.
This will allow classes' destructors to know the state of the program when they
were called.  At any other time, {assert_err} is {FALSE}.

Return None.

Example
assert (nbrecord>0,"datasearch","No data",1);
assert (ptr != NULL,"dataprocess",msg_stderr[3],1) ;

ARG_EXIST

Summary This function will check if an argument is present on the command line.  Check is
case sensitive.

Syntax #include "stdfcts.h"

int far arg_exist /* Checks for argument */
(
   char huge *string /* Argument to search for */
) ;

Remarks The search for the argument is case sensitive.

Return If the command line argument <string> exists, its index in the command line
argument array will be returned.  If the argument does not exist, the function will
return 0.  See the '_argv' keyword of your compiler for details on accessing
command line arguments.

Example
if (arg_exist ("q")) sound = FALSE ;

ARG_IEXIST

Summary This function will check if an argument is present on the command line.  Check is
case insensitive.

Syntax #include "stdfcts.h"

int far arg_iexist /* Checks argument */
(
   char huge *string /* Argument to search for */
) ;

Remarks The search for the argument is case insensitive.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 5 : EasyVision's standard functions Page 21/100

Return If the command line argument <string> exists, its index in the command line
argument array will be returned.  If the argument does not exist, the function will
return 0.  See the '_argv' keyword of your compiler for details on accessing
command line arguments.

Example
if (arg_iexist ("bios")) directvideo = FALSE ;

HEAPALLOC

Summary {heapalloc} replaces 'farmalloc'.

Syntax #include "stdfcts.h"

void huge * far heapalloc /* Allocates far heap */
(
   dword nbytes /* Asks for a block <nbytes> long */
) ;

Remarks Allocates <nbytes> bytes on the far heap.  {dword} is an 'unsigned long int' and is
declared in "STDTYPE.H".

Return This function returns a 'huge' pointer.  Be sure the pointer variable, who will
receive the pointer to the allocated memory,  is of type 'huge' also.

Example
char huge *ptr ;
ptr = heapalloc (sizeof (object)) ;

HEAPFREE

Summary {heapfree} replaces 'farfree'.

Syntax #include "stdfcts.h"

void far heapfree /* Deallocates heap */
(
   void huge *block /* Ptr to block to free */
) ;

Remarks The only difference from 'farfree' is that this function offers the convenience of
accepting a 'huge' pointer as an argument.

Return None.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 5 : EasyVision's standard functions Page 22/100

Example
char huge *ptr ;
ptr = heapalloc (sizeof (object)) ; // Allocates memory
heapfree (ptr) ; // Frees memory
ptr = NULL ; // Always a good idea

TO_UPPER

Summary {to_upper} replaces 'toupper'.

Syntax #include "stdfcts.h"

int far to_upper /* Converts to uppercase */
(
   int ch /* Character to be converted */
) ;

Remarks The standard library 'toupper' function has a problem when you pass an 'int' to it.
It considers only the LSB and could wrongly make the conversion.

Return An 'int'.  The converted letter if it was necessary.

Example
command = to_upper (command) ;

TO_LOWER

Summary {to_lower} replaces 'tolower'.

Syntax #include "stdfcts.h"

int far to_lower /* Converts to lowercase */
(
   int ch /* Character to be converted */
) ;

Remarks The standard library 'tolower' function has a problem when you pass an 'int' to it.
It considers only the LSB and could wrongly make the conversion.

Return An 'int'.  The converted letter if it was necessary.

Example

command = to_lower (command) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 6 : EasyVision's keyboard functions Page 23/100

C H A P T E R   6 : EasyVision's keyboard functions

The declarations for EasyVision's keyboard functions are contained in the
"KEYBFCTS.H" header file.

GETKEY

Summary This is a replacement for the familiar 'getch' function.

Syntax #include "keybfcts.h"

int far getkey /* Reads a key from keyboard */
(
   int  filter, /* Filter (0 = all keys) */
   bool buffer /* TRUE: Read from keyb buffer */
) ;

Remarks One of 'getch' weakness is its inability to deal with the way extended keys are
internally represented.  Those are the keys that don't have an ASCII code
associated with them.  For example, the function, arrow and editing keys all return
an extended keycode.

This new {getkey} function will deal with these extended keys by adding 256 to
the extended keycode.  Appendix A lists all the extended keycodes currently
available on an extended keyboard.

You MUST specify a <filter> to be used by the {getkey} function.  A filter of 0
will allow any key to be read and returned by the function.  You can also provide
the ASCII or extended keycode (remember to add 256 to the real code) of the only
key allowed to be returned by the function.  This provides an easy way to WAIT
FOR a specific key.  The function will then return with that keycode, only when
that key has been pressed.

è If you set <buffer> to {FALSE}, {getkey} will flush the keyboard buffer before
reading a key.  Otherwise, it will read from the buffer if keys have been previously
pressed.

è Beware of NEVER setting <filter> to an impossible key entry, or you will be
trapped by the {getkey} function!

Return If a normal key was pressed, the returned value is an 'int' representing the ASCII
code of that key.  (1-255)

If an extended key was pressed, the returned value is an 'int' representing the
extended keycode plus 256.  (256-396)

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 6 : EasyVision's keyboard functions Page 24/100

Example
getkey (0) ;
getkey (13) ; /* Wait for the ENTER key */

EXTTOASCII

Summary Converts an ALT-(letter or digit) key combination to its equivalent, single letter or
digit.

Syntax #include "keybfcts.h"

int far exttoascii /* Converts 'ALT-letter|digit' */
(
   int code /* Code to be converted */
) ;

Remarks <code> is the value as returned by the {getkey} function.  For example, {II_A_A}
(Alt-A) is returned by {getkey} as 286.  Given 286, {exttoascii} will then return
65, the ASCII code for the letter 'A'.

Return The ASCII code of the letter or digit in the ALT-key combination.  If <code> is
not an ALT-(letter or digit) combination, <code> is returned unchanged.

è If the value returned by this function is of a letter, the letter will always be
promoted to uppercase.

Example
in = getkey (0,FALSE) ;
in = exttoascii (in) ; /* Checks for Alt-key combi */

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 7 : EasyVision's file functions Page 25/100

C H A P T E R   7 : EasyVision's file functions

Example The declarations for EasyVision's file functions are contained in the
"FILEFCTS.H" header file.

FNEWLINE

Summary Goes to start of next line in a text file.

Syntax #include "filefcts.h"

int far fnewline /* Goes to next line */
(
   FILE *f /* Ptr to opened stream */
) ;

Remarks The end of a text line is marked by the character '\n'.

Return If the start of a new line was found, '\n' is returned.  If 'EOF' (end of file) was
reach before a new line, 'EOF' is returned.

Example
error = fnewline (text) ;

FSIZE

Summary Returns size of a file in bytes, as displayed from a directory listing.

Syntax #include "filefcts.h"

dword far fsize /* Returns file size in bytes */
(
   FILE *f /* Ptr to opened stream */
) ;

Remarks In a text file, the new line character is in fact two bytes long.  DOS stores '\n' as a
combination of '\n' and '\r'.  So, the length of a text file will not match the number
of characters read with 'fgetc'.

Return {fsize} returns the size of the file in bytes as a {dword}.  {dword} is defined in
"STDTYPE.H" as an 'unsigned long int'.

Example
size = fsize (text) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 7 : EasyVision's file functions Page 26/100

FCOPY

Summary Copies a file.

Syntax #include "filefcts.h"

int far fcopy /* Copies a disk file */
(
   char huge *srcpath, /* Path to source file */
   char huge *destpath, /* Path to destination file */
   bool      verify /* TRUE: Verify ON */
) ;

Remarks <srcpath> is copied to <destpath>.  Paths are expressed in the form
[d:][path]filename.ext.

è No wildcards are allowed.

If <verify> is set to {TRUE}, the two files will then be reread and compared.
This is different from DOS's 'verify', who doesn't reread the files, and is therefore
a little slower.

Return If the copy was successful and error free, {fcopy} returns 0.  On error, 1 is
returned.

Example
error =fcopy ("autoexec.bat","autoexec.bak",TRUE) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 8 : EasyVision's screen functions Page 27/100

C H A P T E R   8 : EasyVision's screen functions

The declarations for EasyVision's screen functions are contained in the
"SCRFCTS.H" header file.

SCR_TEXTATTR

Summary This function will set the background and foreground colors used for video
outputs by the "CONIO.H" module.  It will support bright background colors.

Syntax #include "scrfcts.h"

void far scr_textattr /* Sets colors of outputs */
(
   int back, /* Background color */
   int fore /* Foreground color */
) ;

Remarks The normal 'textbackground' function does not allow bright background colors.
{scr_textattr} will do so.

è {tdesktop::settextmode] allows you to turn on the ability to use bright background
colors.  When this is so, all sixteen possible colors can be used when you have to
specify a background color anywhere in EasyVision.  Therefore, all changes of
colors should be done with calls to {scr_textattr}.

You will now be able to have 'BLACK' text on a (really) 'WHITE' background.

Return None.

Example
scr_textattr (WHITE,BLACK) ;

SCR_VSAVE

Summary This function will save the current screen and video attributes in a 'text_info'
structure.  It has exactly the same effects as a call to 'gettextinfo'.  The difference
is that it can also save the actual screen content.

Syntax #include "scrfcts.h"

void far scr_vsave /* Saves all video informations */
(
   struct text_info huge *ti, /* Ptr to text_info */
   char huge*huge *savedscr /* Ptr to ptr */
) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 8 : EasyVision's screen functions Page 28/100

Remarks All members of the 'text_info' structure <ti> are filled with this function.
<savedscr> is a huge pointer to a huge char pointer.  If this argument is provided,
the screen content will also be saved to a buffer in the heap, and the huge pointer
to char will be set to point to this buffer.  If you don't want to save the screen area,
set <savedscr> to 'NULL'.

è The cursor's attributes are saved, but will not be restored by {scr_vrestore}.  You
must use the {scr_csave} and {scr_crestore}.

Return None.

Example
struct text_info ti ;
char huge *scrbfr ;
scr_vsave (&ti,&scrbfr) ;

SCR_VRESTORE

Summary This function will restore the screen video mode and the text window size from a
'text_info' structure.  It can also restore the screen content if it was saved by a
previous call to {scr_vsave}.

Syntax #include "scrfcts.h"

void far scr_vrestore /* Restores video info */
(
   struct text_info huge *ti, /* Ptr to text_info */
   char huge*huge *savedscr /* Ptr to ptr */
) ;

Remarks The 'text_info' structure must have been previously filled with {scr_vsave}.  The
same is true for the previous screen content.

è If the screen area was not previously saved, set <savedscr> to 'NULL'.

The memory will be deallocated when the screen content is restored, so you can't
restore it more than once.

Return None.

Example
scr_vrestore (&ti,&scrbfr) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 8 : EasyVision's screen functions Page 29/100

SCR_CSAVE

Summary This function will save all cursor attributes, INCLUDING THE CURSOR TYPE
(shape), in a {cur_info} structure.  Those attributes are:  colors, x pos, y pos and
cursor shape.

Syntax #include "scrfcts.h"

void far scr_csave /* Saves all cursor attributes */
(
   struct cur_info huge *ci /* Ptr to cur_info */
) ;

Remarks The {cur_info} structure is as follows, and is defined in "SCRFCTS.H".

struct cur_info
{
   byte attribute ; /* Cursor colors */
   byte curx ; /* Cursor X position */
   byte cury ; /* Cursor Y position */
   word curtype ; /* Cursor type */
} ;

Return None.

Example
struct cur_info ci ;
scr_csave (&ci) ;

SCR_CRESTORE

Summary This function will restore all cursor attributes, INCLUDING THE CURSOR
TYPE (shape), from a {cur_info} structure.

Syntax #include "scrfcts.h"

void far scr_crestore /* Restores cursor attributes */
(
   struct cur_info huge *ci /* Ptr to cur_info */
) ;

Remarks The cursor's attributes must have been previously saved with {scr_csave}.

Return None.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 8 : EasyVision's screen functions Page 30/100

Example
struct cur_info ci ;
scr_csave (&ci) ;
scr_crestore (&ci) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 9 : EasyVision's string functions Page 31/100

C H A P T E R   9 : EasyVision's string functions

The declarations for EasyVision's string functions are contained in the
"STRFCTS.H" header file.

STR_LEN

Erreur! Entrée de glossaire non définie. Summary This is a 'huge' version of 'strlen

Syntax #include "strfcts.h"

size_t far str_len /* Returns the length of a string */
(
   char huge *string /* Huge ptr to a string */
) ;

Remarks The only difference with 'strlen' is that this function offers the convenience of
accepting a 'huge' pointer as argument.

Return The length of the string.  The type 'size_t' is defined in "STDIO.H" as an 'unsigned
int'.

Example
length = str_len (text) ;

STR_CPY

Erreur! Entrée de glossaire non définie. Summary This is a 'huge' version of 'strcpy

Syntax #include "strfcts.h"

char huge * far str_cpy /* Copies a string */
(
   char huge *dest, /* Destination array */
   char huge *src /* Source string */
) ;

Remarks The only difference from 'strcpy' is that this function offers the convenience of
accepting 'huge' pointers as arguments.

Return A 'huge' pointer to the destination string.

Example
char huge *string ;
string = heapalloc (20) ;
str_cpy (string,"Hello there !") ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 9 : EasyVision's string functions Page 32/100

STR_CMP

Erreur! Entrée de glossaire non définie. Summary This is a 'huge' version of 'strcmp

Syntax #include "strfcts.h"

int far str_cmp /* Compares one string to another */
(
   char huge *string1, /* First string */
   char huge *string2 /* Second string */
) ;

Remarks The only difference from 'strcmp' is that this function offers the convenience of
accepting 'huge' pointers as arguments.

Return {str_cmp} returns a value that is :

< 0, if <string1> is less than <string2>
= 0, if <string1> is the same as <string2>
> 0, if <string1> is greater than <string2>

Example
if (str_cmp (name[i],name[i+1]) > 0)
{
   /* Invert string (bubble sort) */
}

STR_ICMP

Erreur! Entrée de glossaire non définie. Summary This is a 'huge' version of 'stricmp

Syntax #include "strfcts.h"

int far str_icmp /* Case insensitive compares */
(
   char huge *string1, /* First string */
   char huge *string2 /* Second string */
) ;

Remarks The only difference from 'stricmp' is that this function offers the convenience of
accepting 'huge' pointers as arguments.

Return {str_icmp} returns a value that is :

< 0, if <string1> is less than <string2>
= 0, if <string1> is the same as <string2>
> 0, if <string1> is greater than <string2>

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 9 : EasyVision's string functions Page 33/100

Example
if (str_icmp (name[i],name[i+1]) > 0)
{
   /* Invert string (bubble sort) */
}

STR_TOUPPER

Erreur! Entrée de glossaire non définie. Summary This function transposes a string to uppercase

Syntax #include "strfcts.h"

void far str_toupper /* Sets string to upper case */
(
   char huge *string /* Huge ptr to a string */
) ;

Remarks None.

Return None.

Example
str_toupper (name) ;

STR_TOLOWER

Erreur! Entrée de glossaire non définie. Summary This function transposes a string to lowercase.

Syntax #include "strfcts.h"

void far str_tolower /* Sets string to lower case */
(
   char huge *string /* Huge ptr to a string */
) ;

Remarks None.

Return None.

Example
str_tolower (name) ;

STR_PASTOC

Erreur! Entrée de glossaire non définie. Summary This function translates a string from PASCAL's to C's

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 9 : EasyVision's string functions Page 34/100

Syntax #include "strfcts.h"

void far str_pastoc /* Converts a string to c */
(
   char huge *string /* Ptr to string */
) ;

Remarks All characters in the string will be shifted left 1 space and a '\0' will be appended
at the end of the string.

This is useful is you're reading records written in PASCAL format.

Return None.

Example
str_pastoc (name) ;

STR_CTOPAS

Erreur! Entrée de glossaire non définie. Summary This function translates a string from C's to PASCAL's internal format.

Syntax #include "strfcts.h"

void far str_ctopas /* Converts a string to pascal */
(
   char huge *string /* Ptr to string */
) ;

Remarks All characters in the string will be shifted right 1 space, overwriting the
terminating '\0'.  The length of the string will then be put in the first byte of the
array.

è The string MUST be 255 or fewer characters long.

This is useful is you're reading records written in PASCAL'S format, converted
them to C'S with {str_pastoc}, then reconverting to PASCAL's before writing to
disk.

Return None.

Example
str_ctopas (name) ;

STR_TRIM

Erreur! Entrée de glossaire non définie. Summary This function removes leading and trailing spaces from a string

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 9 : EasyVision's string functions Page 35/100

Syntax #include "strfcts.h"

void far str_trim /* Normalises string */
(
   char huge *string /* Ptr to string */
) ;

Remarks Useful when normalising an input.

Return None.

Example
str_trim (name) ;

STR_INVNAMES

Erreur! Entrée de glossaire non définie. Summary This function inverts first and last names in a name string

Syntax #include "strfcts.h"

void far str_invnames /* Inverts string */
(
   char huge *string /* Ptr to string */
) ;

Remarks A name string is composed of 1 or more clusters of characters.  Clusters are
packets separated from each other by 1 or more spaces.

{str_invnames} will take the first cluster and move it to the end of the string.

This could be useful if you're doing a sort by last names then first names, but your
name strings are in the form first then last.

Return None.

Example
str_invnames (name) ;
"Remy"                becomes "Remy"
"Remy Gendron"        becomes "Gendron Remy"
"Remy J. Gendron"     becomes "J. Gendron Remy"
"This is some string" becomes "is some string This"

STR_CENTER

Summary This function centers a string within a given area.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 9 : EasyVision's string functions Page 36/100

Syntax #include "strfcts.h"

char huge * far str_center /* Centers a string */
(
   char huge *string, /* Ptr to string */
   int       area_length /* Length of area */
) ;

Remarks The original <string> is not modified.  The new string will be padded with blanks,
if necessary, to be centered in <area_length>.

The function will discard the part of the string that is longer than 255 characters.

Return This function will create a new string, and return a ptr to a static string defined in
the string module.

è You MUST not try to free this string.

Example
printf (str_center ("Center of the screen",80)) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 10 : EasyVision's time functions Page 37/100

C H A P T E R   10 : EasyVision's time functions

The declarations for EasyVision's time functions are contained in the
"TIMEFCTS.H" header file.

TICKTIMER_INSTALL

Summary This function installs or removes a tick counter.

Syntax #include "timefcts.h"

void far ticktimer_install (void) ; /* Installs timer */

Remarks Ticks are PC's clock units.  They are 1/18 second long.  The ticktimer routines
will allow you to count those ticks.

The first call to {ticktimer_install} will install an interrupt, whose purpose is to
count ticks.  A second call to the {ticktimer_install} will remove the interrupt.

Return None.

Example
ticktimer_install () ;

TICKTIMER_RESET

Summary This function resets the tick count to zero.

Syntax #include "timefcts.h"

void far ticktimer_reset (void) ; /* Resets counter */

Remarks After installation of the interrupt, the tick count is undefined.  You must reset the
count before using the {ticktimer_read} function.  Also, you can reset the count to
zero anytime you like.

è Using this function will introduce a random delay of up to 1/18 second.  The
function will wait for the beginning of the next tick before returning.  This will
warranty that tick #1 will really be 1 tick long.

Return None.

Example
ticktimer_reset () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 10 : EasyVision's time functions Page 38/100

TICKTIMER_READ

Summary This function returns the current tick count.

Syntax #include "timefcts.h"

dword far ticktimer_read (void) ; /* Returns count */

Remarks After installation of the interrupt, the tick count is undefined.  You must reset the
count before using the {ticktimer_read} function.  Using this function does not
reset the counter.

Return The number of ticks since {ticktimer_reset} was last used.  {ticktimer_read}
returns a {dword}.  {dword} is defined in "STDTYPE.H" as an 'unsigned long
int'.

Example
dword count ;
ticktimer_install () ; /* Installs timer */
ticktimer_reset () ; /* Resets timer to 0 */
function (argument) ; /* Calls your function */
count = ticktimer_read () ; /* Gets tick count */
ticktimer_install () ; /* De-installs timer */

DIFFDATE

Summary Calculates absolute number of days between two dates.

Syntax #include "timefcts.h"

dword far diffdate /* Number of days between dates */
(
   int day1, /* 1st date: day  (1-31) */
   int month1, /* 1st date: month (1-12) */
   int year1, /* 1st date: year (xxxx) */
   int day2, /* 2nd date: day  (1-31) */
   int month2, /* 2nd date: month (1-12) */
   int year2 /* 2nd date: year (xxxx) */
) ;

Remarks day1/day2     : Days of date 1 and 2. (1-31)
month1/month2 : Months of date 1 and 2. (1-12)
year1/year2   : Years of date 1 and 2. (1583 and after)

Return The absolute number of days between the 2 dates.  {diffdate} returns a {dword}.
{dword} is defined in "STDTYPE.H" as an 'unsigned long int'.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 10 : EasyVision's time functions Page 39/100

Example
dword count ;
count = diffdate (userday, usermonth, useryear,
                  todayday, todaymonth, todayyear) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 11 : EasyVision's miscellaneous functions Page 40/100

C H A P T E R   11 : EasyVision's miscellaneous functions

The declarations for EasyVision's miscellaneous functions are contained in the
"MISCFCTS.H" header file.

ANSICOLOR

Summary Converts normal background and foreground color codes to color codes for ANSI
escape sequences.

Syntax #include "miscfcts.h"

void far ansicolor /* Converts color codes to ANSI */
(
   int      fore, /* Fore and back colors */
   int      back,
   int huge *ansbold, /* ESC sequence */
   int huge *ansfore,
   int huge *ansback
) ;

Remarks fore, back : Standard screen colors.
*ansbold   : Ptr to int to return bold value.
*ansfore   : Ptr to int to return fore value.
*ansback   : Ptr to int to return back value.

To interpret ANSI escape sequences, the ANSI.SYS driver (or its equivalent)
must be loaded.

Return None.

Example
int bold, fore, back ;
ansicolor (LIGHTGREEN,BLACK,&bold,&fore,&back) ;
printf ("\x1b[%d;%d;%dm",bold,fore,back) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 11 : Using EasyVision's classes Page 41/100

C H A P T E R   11 : Using EasyVision's classes

The EasyVision library has five classes.  They provide a desktop, a statusline, a
menubar, windows, user inputs and mouse support.  Those classes are fully
described in the following pages.

è All classes interact with one another.  Don't try to use only one of them.  You
must work with EasyVision as it was meant to be used.

Every method is declared as 'far' and when they take pointers as parameters, those
pointers are of type 'huge'.

Conventions

Conventions have been adopted for the methods' names.  Related methods will
have the same name prefix.  For example, all window related functions begin by
{win_}.

è Methods declarations can use types like {bool}, {byte}, {word} and {dword}.
See the file "STDTYPE.H" for a description of those types.

è Parameters to C++ functions can have default values.  If you don't supply a value,
the default value will be used.  However, rules apply to this usage of default
parameters.  Refer to your C++ documentations for an explanation of those rules.

A classe's description uses the following format:

First, the description of the class itself, its behavior, how it is related to the other
classes and the interface.  Then, each member function of the class is presented as
in the following:

Summary Short description of this function's behavior.

Syntax #include "header.h"

ReturnType FunctionName
(
   <param>,
   <param>
) ;

è YOU MUST NEVER WRITE YOURSELF A PROTOTYPE FOR A
FUNCTION.  ALWAYS USE THE PROPER HEADER FILES.  THEY HAVE
ADDITIONAL INFORMATION IN THEM!

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 11 : Using EasyVision's classes Page 42/100

è C++ functions' header provide for optional arguments.  IF YOU WANT TO
INCLUDE AN OPTIONAL PARAMETER, ALL PARAMETERS BEFORE
THAT ONE MUST BE INCLUDED AS WELL.  Refer to your compiler's
documentation.

Remarks Parameters and usage are described here when needed.

Return The returned value of the method is explained here.

Example Examples of various calls to this method.

Using classes is quite easy!

Windows For the {twindow} class, you firsts declare a pointer to this class.  Then you
instantiate (create) an object of this type with the operator 'new'.  Now you can
call the classe's member functions with the '->' operator.  When you're finished,
you free the memory taken by this class instance with 'delete'.

The others For the other classes, {tdesktop}, {tstatusline}, {tmenubar} and {tinput}, you can
only have one instance of each.  To make it easier, they all have been instantiated.
You don't need to create them.  You just use them right away.  You access their
member functions with the '.' operator.

Many examples are available in the source codes of the EasyVision's demo
programs.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 12 : EasyVision's tdesktop class Page 43/100

C H A P T E R   12 : EasyVision's tdesktop class

The {tdesktop} class is the first one to be used in a program that uses the
EasyVision user interface.  This class is responsible for the background on which
the statusline, the menubar and windows will be displayed.

This class will save the screen content before the program was executed, initialise
the video screen to the video mode of your choice, and display the desktop.  You
will also call this class at the end of your program to restore the previous video
mode, restore the previous screen and reset default colors and cursor position.

è An instance has already been globally declared and is called desktop.  Only one
instance of {tdesktop} can be used in a program.  As a result, you will never
declare and create another instance.

è The desktop allows your programs to use bright background colors.

The desktop has built in default values.  Only one call is required to do the work.
The desktop will autosize itself to the screen.  However, if you would like to
change those default behaviors, other functions are provided to do so.

On the following pages, you will find each of its member functions.

Examples of using the desktop object are given in the source codes of the
EasyVision's demo programs.

TDESKTOP::SETTEXTMODE

Summary Sets the textmode in which {open} will draw the desktop.  Also sets the
availability of bright background colors.

Syntax #include "tdesktop.hpp"

void far tdesktop::settextmode // Sets textmode
(
   int  mode=C80, // Textmode code number
   bool brightbackground=FALSE // True = bright colors
) ;

Remarks This has no effect on the current textmode.  It will only take effect when {open} is
called.  This call is optional.  If it is not made before a call to {open}, textmode
C80 (3, color 80 columns) is assumed and bright background colors will not be
used.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 12 : EasyVision's tdesktop class Page 44/100

Symbolic Value Text mode

LASTMODE -1 Previous text mode
BW40 0 Black and white, 40 cols
C40 1 Color, 40 columns
BW80 2 Black and white, 80 cols
C80 3 Color, 80 columns
MONO 7 Monochrome, 80 columns
C4350 64 EGA 43-line, VGA 50-line

To use the symbolic constants, "CONIO.H" must be included.

è By setting <brightbackground> to {TRUE}, you will then be able to use all 16
colors for the background.  As a drawback, blinking characters won't be available.

Return None.

Example
desktop.settextmode (C4350,TRUE) ;

TDESKTOP::GETSIZE

Summary Returns desktop's current size.

Syntax #include "tdesktop.hpp"

void far tdesktop::getsize // Returns desktop's size
(
   int huge *height, // Ptrs to ints to return size
   int huge *width
) ;

Remarks The size returned in <height> and <width> is the ACTUAL desktop's size.  If you
changed the video mode with {settextmode}, but haven't called {open} yet, the
new size won't be returned.

è When other parts of your program need to know the actual desktop's size, they
should use this function instead of 'gettextinfo'.

Return None.

Example
int screenheight ;
int screenwidth ;
desktop.getsize (&screenheight,&screenwidth) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 12 : EasyVision's tdesktop class Page 45/100

TDESKTOP::SETDESKCOLORS

Summary Sets the colors in which {open} or {refresh} will draw the desktop.  Also selects
the clock's colors.

Syntax #include "tdesktop.hpp"

void far tdesktop::setdeskcolors // Desktop's colors
(
   int back=LIGHTGRAY, // Desktop's background color
   int fore=BLUE, // Desktop's foreground color
   int clockback=RED, // Clock's color
   int clockfore=WHITE
) ;

Remarks This has no effect on the current colors.  It will only be used when {open} or
{refresh} will be called.  This call is optional.  If {setdeskcolors} is not called
before a call to {open}, 'BLUE' on 'LIGHTGRAY' is assumed for the desktop and
'WHITE' on 'RED' for the clock.  See appendix B for a list of available colors,
color codes and symbolic constants.

è The desktop displays an interrupt driven clock in the upper right corner.

Return None.

Example
desktop.setdeskcolors (BLACK,LIGHTGRAY,BLUE,WHITE) ;

TDESKTOP::SETTEXTURE

Summary Sets the character with which {open} or {refresh} will draw the desktop.

Syntax #include "tdesktop.hpp"

void far tdesktop::settexture // Set's desktop texture
(
   char asciicode=#176 // ASCII code to use
) ;

Remarks You must provide the character used to draw the desktop, in the form of its ASCII
code.  Only ASCII codes greater or equal to 32 are accepted.  This has no effect
on the current screen.  It will only be used when {open} or {refresh} will be
called.  This call is optional.  If {settexture} is not called before a call to {open},
ASCII code 176 is assumed.

Return None.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 12 : EasyVision's tdesktop class Page 46/100

Example
desktop.settexture (' ') ; // Plain desktop

TDESKTOP::SETTITLE

Summary Sets the title, and title colors displayed at the very top line of the desktop.

Syntax #include "tdesktop.hpp"

void far tdesktop::settitle // Sets desktop's title
(
   char huge *text=NULL, // Desktop's title
   int  back=EV_DEF, // Title's background color
   int  fore=EV_DEF // Title's foreground color
) ;

Remarks The title's colors are optional.  If they are not provided, the desktop's colors will
be used.  This is used only if you do not intend to have a menubar, or if you will
have something displayed before the menubar is created.  This has no effect on the
current desktop.  It will only be used when {open} or {refresh} will be called.

This call is optional.  If {settitle} is not called before a call to {open}, no title will
be displayed.  To reset a previously defined title, don't use any argument.  You can
give a <text> pointer argument that points to a text of any length, but only the part
of the title that will fit on the titlebar will be displayed.  So don't worry about the
length of your title...

Return None.

Example
desktop.settitle ("EasyVision 2.0",RED,BLACK) ;

TDESKTOP::OPEN

Summary Opens the desktop.

Syntax #include "tdesktop.hpp"

void far tdesktop::open () ; // Opens desktop

Remarks This will save the screen before the program was started, initialise the video
screen and then display the desktop according to the default values, or those set by
the previous functions.  This call is NOT optional.

è You cannot reopen an already opened desktop.  You must use the {refresh}
function for that action, or first close it.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 12 : EasyVision's tdesktop class Page 47/100

If the desktop as been closed, it can then be re-opened.  This could be done for
instance if you were to shell to DOS or to another program.

Return None.

Example
desktop.open () ;

TDESKTOP::CLOSE

Summary Closes the desktop.

Syntax #include "tdesktop.hpp"

void far tdesktop::close () ; // Restores screen

Remarks This will restore the video screen as it was before the desktop was opened.  This
call is NOT optional.  You must first {close} the desktop with this function if you
want to re-open it.

è {close} does not reset any of the desktop settings.  You can easily re-open it after
a shell to DOS for example.

Return None.

Example
desktop.close () ;

TDESKTOP::REFRESH

Summary The desktop has a {refresh} function that will redraw the screen.  Using this
function can be DANGEROUS...

Syntax #include "tdesktop.hpp"

void far tdesktop::refresh () ; // Redraws desktop

Remarks The refresh function will use the current values for colors, texture, etc...  not the
values when it was opened.  This means that you can change the desktop colors
for instance, and then {refresh} it.

è IN EASYVISION, WINDOWS CANNOT BE REFRESHED.  YOU MUST
MAKE ABSOLUTELY CERTAIN THAT THIS FUNCTION IS NOT AND
CANNOT BE CALLED WHEN WINDOWS ARE OPENED, OR YOU WILL
BE IN BIG TROUBLE.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 12 : EasyVision's tdesktop class Page 48/100

Return None.

Example
desktop.refresh () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 13 : EasyVision's tstatusline class Page 49/100

C H A P T E R   13 : EasyVision's tstatusline class

The {tstatusline} class allows your program to easily display information on the
last line of the screen.

è An instance has already been globally declared and is called statusline.  Only one
instance of {tstatusline} can be used in a program.  As a result, you will never
declare and create another instance.

The statusline has built in default values.  Only one call is required to do the work.
The statusline will autosize itself to the screen.  However, if you would like to
change those default behaviors, other functions are provided to do so.

You can manually use the statusline by calling its {display} member function.
Most of the time however, you won't.  Each time you create an object in
EasyVision, let it be a window, a button or an input field, you assign a short text
to it.  When this object is selected, this text will be automatically displayed on the
statusline.

On the following pages, you will find each of its member functions.

Examples of using the statusline object are given in the source codes of the
EasyVision's demo programs.

TSTATUSLINE::SETCOLORS

Summary Sets the background, foreground and highlight colors used by the {display}
member function, when writing to the statusline.

Syntax #include "tstatusline.hpp"

void far tstatusline::setcolors // Sets colors
(
   int back=LIGHTGRAY, // Background color
   int fore=BLACK, // Foreground color
   int high=RED // Highlight color
) ;

Remarks All arguments are optional.  If they are not provided, <back> defaults to
'LIGHTGRAY', <fore> to 'BLACK' and <high> to 'RED'.  You can use color
macros if "CONIO.H" is included.  Appendix B gives a description of available
color codes and macros.

The statusline is not modified by a call to this function.  The changes to the colors
will be made at the next call to {display}.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 13 : EasyVision's tstatusline class Page 50/100

Return None.

Example
statusline.setcolors (RED,BLACK,YELLOW) ;

TSTATUSLINE::DISPLAY

Summary Displays a message on the statusline.

Syntax #include "tstatusline.hpp"

void far tstatusline::display // Displays message
(
   char huge *text=NULL // Text to be displayed
) ;

Remarks The <text> argument can point to a message of any length, including the '~'
characters.  The message will be truncated to fit on the message area, which length
is 68 characters.  There is no need to clear the statusline before using this
function.  You can toggle between normal foreground statusline color and the
highlight color with the special character '~' (tilde).  To clear the statusline, call
this function with no argument.

Return None.

Example
statusline.display ("Welcome to ~EasyVision~") ;
statusline.display () ; // Clears statusline

TSTATUSLINE::GETMSG

Summary Returns last displayed message.

Syntax #include "tstatusline.hpp"

char huge* far tstatusline::getmsg () ; // Last message

Remarks Lets say you have a function that will modify the statusline.  You could save its
current content before modifying it, then restore it at the function's end.

Return None.

Example
char lastmsg ;
lastmsg = statusline.getmsg () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 13 : EasyVision's tstatusline class Page 51/100

TSTATUSLINE::REFRESH

Summary The statusline object has a {refresh} function that will redraw it on the screen.

Syntax #include "tstatusline.hpp"

void far tstatusline::refresh () ; // Redraws

Remarks {refresh} will redisplay the last message.

è The refresh function will use the current color values.  This means that you can
change the statusline's colors and then, {refresh} it with the new colors.

Return None.

Example
statusline.refresh () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 14 : EasyVision's tinput class Page 52/100

C H A P T E R   14 : EasyVision's tinput class

The {tinput} class is designed to process input information.  It provides mouse
support and gives your programs context sensitive help.

è An instance has already been globally declared and is called input.  Only one
instance of {tinput} can be used in a program.  As a result, you will never declare
and create another instance.

The {tinput} class has built in default values.  However, if you would like to
change those default behaviors, you can easily do so.

On the following pages, you will find each of {tinput}'s member functions.

Examples of using the input object are given in the source codes of the
EasyVision's demo programs.

TINPUT::MOUSE_INIT

Summary This function will look for a mouse driver and initialise it.  Initially, the mouse
will be hidden.

Syntax #include "tinput.hpp" ;

void far tinput::mouse_init () ; // Initialises mouse

Remarks This function is called as part of the initialisation routines, before your program
starts.  You should never have to call it yourself.

è Remember that the mouse's cursor should ALWAYS be off when you make
changes to the screen.  Many older driver would leave garbage on the screen if
you did updates while the cursor is ON.  Anyway, the only time the mouse's
cursor should be on is when you do user inputs.  The {get} function will take care
of all this and if you're doing things right, your only inputs will come from {get}.

If no mouse is found, calling the other mouse functions won't produce any result.

Return None.

Example
input.mouse_init () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 14 : EasyVision's tinput class Page 53/100

TINPUT::MOUSE_STATUS

Summary Returns current mouse's state.

Syntax #include "tinput.hpp" ;

int far tinput::mouse_status () ; // Mouse's status

Remarks None.

Return Tree values can be returned:
0: No mouse's driver or mouse was found.
1: A mouse is present and the cursor is on the screen.
2: A mouse is present and the cursor is hidden.

Example
if (input.mouse_status () == 0)
   printf ("A mouse is necessary for this program") ;

TINPUT::MOUSE_SHOW

Summary Turns the mouse's cursor on.

Syntax #include "tinput.hpp" ;

void far tinput::mouse_show () ; // Shows cursor

Remarks If a mouse wasn't found, this function doesn't have any effect.

Return None.

Example
input.mouse_show () ;

TINPUT::MOUSE_HIDE

Summary Turns the mouse's cursor off.

Syntax #include "tinput.hpp"

void far tinput::mouse_hide () ; // Hides cursor

Remarks If a mouse wasn't found, this function doesn't have any effect.

Return None.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 14 : EasyVision's tinput class Page 54/100

Example
input.mouse_hide () ;

TINPUT::MOUSE_LB_DOWN

Summary Tells if mouse's left button is currently pressed.

Syntax #include "tinput.hpp" ;

bool far tinput::mouse_lb_down () ; // Tells if down

Remarks None.

Return {TRUE} if mouse's left button is currently down.  {FALSE} otherwise.

Example
if (input.mouse_lb_down ())
   do_something () ;

TINPUT::MOUSE_POS

Summary Returns mouse's screen position.

Syntax #include "tinput.hpp" ;

void far tinput::mouse_pos // Gets mouse's position
(
   int huge *row, // To return row position
   int huge *col // To return col position
) ;

Remarks If a mouse wasn't found, the returned values are not changed.

Return <row> returns the cursor's row position, 1 being the top row.  <col> returns the
cursor's column position, 1 being the leftmost column.

Example
int row, col ;
input.mouse_pos (&row,&col) ;

TINPUT::GET

Summary Gets a user input, be it a keyboard or a mouse event.  Provides automatic context
sensitive help and mouse support during input.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 14 : EasyVision's tinput class Page 55/100

Syntax #include "tinput.hpp" ;

int far tinput::get // Gets a keyb or mouse input
(
   input_info huge *ii=NULL, // Ptr to input_info
   int             filter=0, // Valid key codes
   int             hlpctx=EV_NOHLPCTX, // Context
   bool            buffer=FALSE // Use buffer?
) ;

Remarks This function is at the heart of EasyVision's input facilities.

è One important concept is that an EasyVision's input is ALWAYS stored in an
{input_info} structure.  This structure is as follows:

struct input_info
{
   int  key_code ; // ASCII code of last character
   bool key_lshift ; // TRUE if left shift key pressed
   bool key_rshift ; // TRUE if right shift key pressed
   bool key_lctrl ; // TRUE if left ctrl key pressed
   bool key_rctrl ; // TRUE if right ctrl key pressed
   bool key_lalt ; // TRUE if left alt key pressed
   bool key_ralt ; // TRUE if right alt key pressed
   int  mouse_row ; // Row position of mouse's cursor
   int  mouse_col ; // Col position of mouse's cursor
}

One of 'getch' weaknesses is its inability to deal with the way extended keys are
internally represented.  Those are the keys that don't have an ASCII code
associated with them.  For example, the function, arrow and editing keys all return
an extended keycode.

{tinput::get} will deal with these extended keys by adding 256 to the extended
keycode.  Appendix A lists all the extended keycodes currently available on an
extended keyboard and their associated macros.  Always use the macros instead of
the real code.

The first parameter <ii> is a pointer to an {input_info} structure.  Information is
returned in this structure.  You can set <ii> to a NULL pointer or call {tinput::get}
without any parameter.

You then specify a <filter> to be used by {tinput::get}.  A <filter> of 0 will allow
any key to be read and returned by the function.  You can also provide the ASCII
or extended keycode (remember to add 256 to the real extended code or better yet,
use the {II_*} macro) of the only key allowed to be returned by the function.  This
provides an easy way to WAIT FOR a specific key.  The function will then return
with that keycode, only when that key has been pressed.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 14 : EasyVision's tinput class Page 56/100

è Beware of NEVER setting <filter> to an impossible key entry, or you will be
trapped by the {get} function!

Next, you give the current context number <hlpctx> for this input.  If the user
presses F1, the right mouse's button or the on screen HELP button, the associated
help screen for this context will be displayed.  If you don't want to use the help
system or if there isn't any help for the current context, set <hlpctx> to
{EV_NOHLPCTX}.

See appendix C to learn how to build an help file and activate the help facilities.

è If you set <buffer> to {FALSE}, {tinput::get} will flush the keyboard buffer
before reading a key.  If set to {TRUE}, it will read from the keyboard and mouse
buffers if keys have been previously pressed.  By default, <buffer> is set to
{FALSE}.

Return If a normal key was pressed, the returned value is an 'int' representing the ASCII
code of that key (1-255).

If an extended key was pressed, the returned value is an 'int' representing the
extended keycode plus 256 (256-396).  See appendix A for a list of keyboard key
macros.

If the mouse was pressed, the macro {EV_MOUSE} is returned.

The returned value is identical to the {key_code} field in the {input_info}
structure.

{input_info}'s fields {mouse_row} and {mouse_col} will hold the cursor's
coordinates at the moment the left button was pressed.  They are undefined if the
input wasn't a mouse event.

The other fields of the {input_info} structure hold the states of the shift, control
and alt keys at the time of the input.

Example
input_info ii ;
if (input.get (&ii) == EV_MOUSE)
{
   // Process mouse input
}
else
{
   // Process keyboard input
}

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 15 : EasyVision's tmenubar class Page 57/100

C H A P T E R   15 : EasyVision's tmenubar class

The {tmenubar} class provides a menubar on the first line of the screen, with pull
down menus and selection cursor.

A menubar acts as a filter.  You make the user inputs go {through} the menubar.
If the input is the keyboard event {II_F10} (F10), or an ALT-key corresponding to
a menu hotkey, the menubar is activated.  Otherwise, the input returns unchanged.

Items created in the menus are assigned return values.  When the user selects an
item, his input is changed to this return value and returned from the menubar.

è Keep in mind that all inputs going {through} and returned from the menubar are
{input_info} structures.  Refer to the chapter on the {tinput} class.

è An instance has already been globally declared and is called menubar.  Only one
instance of {tmenubar} can be used in a program.  As a result, you will never
declare and create another instance.

The {tmenubar} class has built in default values.  However, if you would like to
change those default behaviors, you can easily do so.

On the following pages, you will find each of {tmenubar}'s member functions.

Examples of using the menubar object are given in the source codes of the
EasyVision's demo programs.

TMENUBAR::SETCOLORS

Summary Sets the background, foreground, highlight and cursor colors used by the menubar.

Syntax #include "tmenubar.hpp"

void far tmenubar::setcolors // Sets menubar colors
(
   int back=LIGHTGRAY, // Background color
   int fore=BLACK, // Foreground color
   int high=RED, // Highlight color
   int cursor=GREEN // Cursor color
) ;

Remarks You can use color macros if "CONIO.H" is included.  Appendix B gives a
description of available color codes and macros.

If you don't make a call to this function, the previously mentioned default values
are assumed.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 15 : EasyVision's tmenubar class Page 58/100

è When a menu has been created, it is thereafter illegal to change the already
selected colors.  Furthermore, the color 'DARKGRAY' is unavailable.  It is
reserved for offline menu items.

Return None.

Example
menubar.setcolors (BLUE,WHITE,RED,MAGENTA) ;

TMENUBAR::SETHLPCTX

Summary Sets the menubar's default help context number.

Syntax #include "tmenubar.hpp"

void far tmenubar::sethlpctx // Sets default context
(
   int hlpctx=EV_NOHLPCTX // Help context number
) ;

Remarks When created, each menu on the menubar and each item in a menu is given its
own context number.  If, however, a menu or an item is not given a number and
help is requested while this menu or item is highlighted, the menubar default
context number will be passed to the help routines.

Return None.

Example
menubar.sethlpctx (1000) ;

TMENUBAR::ADDMENU

Summary Adds a menu to the menubar.

Syntax #include "tmenubar.hpp"

void far tmenubar::addmenu // Creates a new menu
(
   char huge *name, // Menu's name
   int       hotkey, // Menu's hotkey
   char huge *sltext=NULL, // Statusline text
   int       hlpctx=EV_NOHLPCTX // Help context number
) ;

Remarks <name> is the name of the menu created.  It can be of any length, but must fit on
the menubar.  The first two characters of the menubar are left blank, and the last
10 are reserved for the clock.  Two spaces will be inserted between each menu.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 15 : EasyVision's tmenubar class Page 59/100

There can be as many menus on the menubar as will fit.  Just don't make the
names too long.

The <hotkey> is the key that will activate the menu.  It must be a letter (A-Z) or a
digit (0-9), case insensitive.  If the letter is present in the menu name, it will be
highlighted.  Two menus cannot have the same hotkey.

<sltext> is a short help text that will be displayed on the statusline when this
menu is selected.  It can be of any length.

<hlpctx> is the context number corresponding to this menu.  The text associated
to this context will be displayed if the user asks for help.  If you set this argument
to {EV_NOHLPCTX}, this menu won't have a help context of its own.  Instead,
the default menubar context will be use (see tmenubar::sethlpctx).  See appendix 3
to learn about the help facilities.

Return None.

Example
menubar.addmenu ("Files",'F',"Opens a new file",100) ;

TMENUBAR::ADDITEM

Summary Adds an item to the last created menu.

Syntax #include "tmenubar.hpp"

void far tmenubar::additem // Adds an item
(
   char huge *text=NULL, // Item's text
   int        hotkey=II_NUL, // Item's hotkey
   int        returnval=II_NUL, // Return value
   char huge *sltext=NULL, // Statusline text
   int        hlpctx=EV_NOHLPCTX // Help context number
) ;

Remarks <text> is the text displayed for this menu entry.  It can be of any length.  The
menu will autosize itself to accommodate the widest item.

There can be as many items in a menu as there is space on the screen.  That is
always 4 fewer than the total number of screen rows.

The <hotkey> is the key that will activate the item.  It must be a letter (A-Z) or a
digit (0-9), case insensitive.  If the hotkey is present in the item's text, it will be
highlighted.  Two items cannot have the same hotkey.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 15 : EasyVision's tmenubar class Page 60/100

If this item is selected, the user input will be change to <returnval> while in the
{through} function.  For example, if {II_A_X} (ALT-X) exits the program, you
would set the QUIT item in the FILE menu to return the value {II_A_X} (Alt-X).
It's a good idea to display those shortcuts in the item's text.

è This return value must be greater than 255.  It cannot be {II_F10} (F10) or any of
the arrows' keycodes (II_ARROW_*).

<sltext> is a short help text that will be displayed on the statusline when this item
is selected.  It can be of any length.

<hlpctx> is the context number corresponding to this item.  The text associated to
this context will be displayed if the user asks for help.  If you set this argument to
{EV_NOHLPCTX}, this menu won't have a help context of its own.  Instead, the
default menubar context will be use (see tmenubar::sethlpctx).  See appendix 3 to
learn about the help facilities.

è If {additem} is called with no arguments, it will insert a separator in the menu.

Return None.

Example
menubar.additem ("Open F3",'O',II_F3,"Open file",103) ;

TMENUBAR::ITEMSETAVAIL

Summary Sets availability of a menu item to {TRUE} or {FALSE}.

Syntax #include "tmenubar.hpp"

void far tmenubar::itemsetavail // Sets availability
(
   int  menuhotkey, // Hotkey of menu
   int  itemhotkey, // Hotkey of menu item
   bool state // TRUE: available  FALSE: Not
) ;

Remarks You must provide the <menuhotkey> of the menu in which the item exists, and
the <itemhotkey> of the item itself.  Setting a menu item to {TRUE} will make it
available, to {FALSE} not available.

è When a menu item is created, it is available by default.

Return None.

Example
menubar.itemsetavail ('F','O',FALSE) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 15 : EasyVision's tmenubar class Page 61/100

TMENUBAR::THROUGH

Summary Makes an input go through the menubar.

Syntax #include "tmenubar.hpp"

input_info far tmenubar::through // Activates menubar
(
   input_info ii // Input to go through
) ;

Remarks If <ii> contains the keyboard event {II_F10} (F10), the menubar is activated, but
no menus are opened.  If <ii> is a menu hotkey, this menu is opened.

Return If <ii> is not {II_F10} or a menu hotkey, {through} returns <ii> unchanged.  If
the menubar is activated, then if the user enters {II_ESC} (Esc), {through} returns
with {II_NUL} in the {key_code} field of the {input_info} structure.  Otherwise
it returns with the return value of the menu item selected.

Example
input_info command ;
command = menubar.through (input.get (&command)) ;

TMENUBAR::REFRESH

Summary The menubar object has a {refresh} function that will redraw it on the screen.

Syntax #include "tmenubar.hpp"

void far tmenubar::refresh () ; // Redraws the menubar

Remarks You will most likely never call this function.  You should call the desktop's own
{refresh} function, who will then call this one.

Return None.

Example menubar.refresh () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 62/100

C H A P T E R   16 : EasyVision's twindow class

The {twindow} class provides to your program powerful window facilities.
Windows are where all your program's screen inputs and outputs will take place.

The {twindow} class comes with many member functions.  They allow for
manipulating the window position, size and attributes.  Text can be easily written
to the window.  Input fields will give you formatted and secured user inputs.  Push
buttons will provide options selection.  All these and many more features.

The {twindow} class has built in default values.  However, if you would like to
change those default behaviors, you can easily do so.

è Contrary to the other classes, instances of the {twindow} class have NOT been
declare.  You can use as many instances of {twindow} as you like.  As a result,
you will have to declare and create your own instances.  First, you declare a
pointer to a twindow object (twindow huge *win).  Then you allocated memory
for it (win = new twindow).  The object has been initialised with default values
and is now ready to be used.

è You can open simultaneously as many windows as you like.  When you open a
window, what was under it is saved to be restored when you'll close it.

è EasyVision doesn't keep track of the way windows overlap.  It doesn't know if a
window is over or under another one. Therefore, a window should NEVER be
closed if another window covers part of it.  Always close the ones that are in the
foreground first.

è You CANNOT work with a window if it is under another one.  If you do, the
integrity of the desktop will be compromised.

On the following pages, you will find each of {twindow}'s member functions.

Examples of using window objects are given in the source codes of the
EasyVision's demo programs.

TWINDOW::WINSETPOS

Summary Sets position of the next window to be opened.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 63/100

Syntax #include "twindow.hpp"

void far twindow::winsetpos // Sets window's position
(
   int  row, // Top left corner's row
   int  col, // Top left corner's col
   bool movable=EV_MAYBE // TRUE: Can be moved
) ;

Remarks <row> and <col> are the topleft corner of the next window TO BE OPENED.
The first and last lines of the desktop are reserved for the menubar and statusline.
You can't have part of the window off the screen.  Therefore, this function will
validate all coordinates and change them to get a valid window position.

è If you set the size of the window before setting its position, this size will be taken
into account to calculate the valid range of the <row> and <col> arguments.

è You CANNOT use this function once the window has been opened.  Use the
{winmove} function instead.

Return None.

Example
win->winsetpos (10,12) ; // Topleft corner at 10,12

TWINDOW::WINGETROW

Summary Returns row position of its topleft corner.

Syntax #include "twindow.hpp"

int far twindow::wingetrow () ; // Returns row pos

Remarks The top left corner of the screen is (1,1).  But row one is unavailable because it is
taken by the menubar.

Return Row position of window.

Example
row = win->wingetrow () ;

TWINDOW::WINGETCOL

Summary Returns window's column position of its topleft corner.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 64/100

Syntax #include "twindow.hpp"

int far twindow::wingetcol () ; // Returns col pos

Remarks The top left corner of the screen is (1,1).

Return Column position of window.

Example
col = win->wingetcol () ;

TWINDOW::WINSETSIZE

Summary Sets size of next window to be opened.

Syntax #include "twindow.hpp"

void far twindow::winsetsize // Sets window's size
(
   int height=MAXINT, // Window's height including frames
   int width=MAXINT // Window's width including frames
) ;

Remarks <height> and <width> represent the size of the window, frames included.  The
first and last lines of the desktop are reserved for the menubar and statusline.
Also, you can't have part of the window off the screen.

è This function will validate the asked size and change it to get a valid window size.
The position that was set with {winsetpos} will be taken into account.

è You CANNOT change the size of a window once it has been opened.

Return None.

Example
win->winsetsize (10,60) ; // 10 rows by 60 cols

TWINDOW::WINGETHEIGHT

Summary Returns window's height in lines.

Syntax #include "twindow.hpp"

int far twindow::wingetheight () ; // Returns height

Remarks The top and bottom frames are included in the height.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 65/100

Return The height of the window.

Example
heigth = win->wingetheight () ;

TWINDOW::WINGETWIDTH

Summary Returns window's width in columns.

Syntax #include "twindow.hpp"

int far twindow::wingetwidth () ; // Returns width

Remarks The left and right frames are included in the width.

Return The width of the window.

Example
width = win->wingetwidth () ;

TWINDOW::WINSETCOLORS

Summary Sets the background and foreground colors of a window.

Syntax #include "twindow.hpp"

void far twindow::winsetcolors // Sets window's colors
(
   int back=LIGHTGRAY, // Window's background color
   int fore=WHITE // Window's foreground color
) ;

Remarks These are the colors used to draw the window.  Those colors will be used by other
functions when the color arguments are optional.  <back> and <fore> are optional,
and will default to 'LIGHTGRAY' and 'WHITE' respectively.

è You CANNOT change the default colors of a window once it has been opened.

è Bright background colors are available.  See tdesktop's {settextmode}.

Return None.

Example
win->winsetcolors (BLUE,WHITE) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 66/100

TWINDOW::WINSETTITLE

Summary Sets the title displayed on the top frame of a window.

Syntax #include "twindow.hpp"

void far twindow::winsettitle // Sets window's title
(
   char huge *title // Ptr to window's title
) ;

Remarks <title> can point to a title of any length, and only the portion that will fit on the
top frame will be displayed.  If you don't give a title before opening a window, no
title will be displayed.

è You CAN'T set a title after a window has been opened.

Return None.

Example
win->winsettitle ("Open file") ;

TWINDOW::WINSETHLPCTX

Summary Sets the default help context for this window.  If input fields or push buttons don't
have a context of their own, they'll use this default.

Syntax #include "twindow.hpp"

void far twindow::winsethlpctx // Sets context's number
(
   int hlpctx=EV_NOHLPCTX // Help context's number
) ;

Remarks See appendix 3 for a description of the help system.

Return None.

Example
win->winsethlpctx (100) ;

TWINDOW::WINOPEN

Summary Opens a window.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 67/100

Syntax #include "twindow.hpp"

void far twindow::winopen () ; // Opens window

Remarks The window is opened with default attributes, or the ones set by the previous
functions.  You CANNOT open an already opened window.

Default attributes for a window are:

Position is (row=2, col=1).
Size is (height=3, width=6).
Colors are 'WHITE' on 'LIGHTGRAY'.
The cursor is on line 1.

Return None.

Example
win->winopen () ;

TWINDOW::WINCLOSE

Summary Closes a window.

Syntax #include "twindow.hpp"

void far twindow::winclose () ; // Closes window

Remarks You CANNOT close an already closed window.  When you close a window, all
its attributes are reset to their default values as if you had just declared this object.
Your previous settings like size and colors aren't in effect anymore.

All memory taken by the window is released.  What was under this window when
it was opened is restored.

è You should NEVER close a window that has part of itself hidden under another
window.  Always close the ones in the foreground first.  This is your
responsibility!  EasyVision doesn't know your window's layer position and won't
tell you if something goes wrong.

Return None.

Example
win->winclose () ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 68/100

TWINDOW::WINCLEAR

Summary Clears part or all the window content.

Syntax #include "twindow.hpp"

void far twindow::winclear // Clears an area in window
(
   int left=1, // Top left corner
   int top=1,
   int right=MAXINT // Bottom right corner
   int bottom=MAXINT
) ;

Remarks The window must be opened to call this function.  All arguments are validated
and if incorrect, changed to fall within valid window coordinates.

All arguments are optional.  Calling this function with no arguments will clear the
entire window.

è Beware that this function will also clear buttons and input fields, BUT NOT
REMOVE THEM.  This will make them invisible, until you use them again.  It is
your responsibility to make sure you don't erase something important!

Return None.

Example
win->winclear (1,1,999,3) ; // Erases first 3 lines

TWINDOW::WINWRITE

Summary Writes text to the window.  Many format options are available.

Syntax #include "twindow.hpp"

void far twindow::winwrite // Writes text to window
(
   char huge *text, // Ptr to text to be written
   int  row=EV_DEF, // Text's position in window
   int  col=1,
   int  format=0, // Justification
   int  fore=EV_DEF, // Text's color
   int  back=EV_DEF
) ;

Remarks The window must be opened.  The <text> argument can point to a text string of
any length, but only the first 132 characters will be considered.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 69/100

è This function will only print on 1 line of the window.  If the string is longer than
an entire line, only what will fit will be printed.  NO LINE WRAPPING WILL
OCCUR with this function!

All arguments are optional, except for <text>.

<text> : Pointer to the text to be printed.

<row> : The {winwrite} function keeps track of the last line printed to, with an
internal cursor.  After each {winwrite}, the cursor is positioned on the next line.

When you use <row>, it tells where the text is to be printed.  Row 1 is the first
line under the top frame.

This argument is optional.  If it is not given, or if you use the macro {EV_DEF},
{winwrite} will use it's internal cursor position.  Text will be printed on the cursor
line, and the cursor will move to the next line.

è If you DON'T give the <row> argument and write to the last window line, all the
window will be scrolled up 1 line.  YOU MUST MAKE SURE YOU DON'T
HAVE ANY BUTTONS OR INPUT FIELDS.  THEY WILL BE SCROLLED UP
ALSO AND THE WINDOW'S INTEGRITY WILL HAVE BEEN
COMPROMISED!

è If you give the <row> argument, you can then write to the last line and no
scrolling will occur.  The window cursor will stay on the last line.

<col> : Column where text will start.  This argument is optional.  If it is not given,
it will default to 1.

<format> : Determines how the text string is justified.

0 : No justification.  <col> is used.
1 : Left justified.  <col> has no effect.
2 : Centered.  <col> has no effect.
3 : Right justified.  <col> has no effect.

This argument is optional.  If it is not given, it will default to 0.

<fore> : Foreground color used.  This argument is optional.  If it is not given, or if
you use the macro {EV_DEF}, it will default to the window's foreground color.

<back> : Background color used.  This argument is optional.  If it is not given, or
if you use the macro {EV_DEF}, it will default to the window's background color.

Return None.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 70/100

Example
// Writes to current line, left justified, current

// window's colors, and moves cursor to next line
win->winwrite ("Hello") ;

// Writes to current line, centered, current window's
// colors, and move cursor to next line.  Even if

// <col> is 1, it has no effect.
win->winwrite ("Hello",EV_DEF,1,2) ;

// Writes to specific line, specific column,
// specific colors

win->winwrite ("Hello",5,10,0,YELLOW,RED) ;

TWINDOW::WINTEXT

Summary Displays a text array in current window with word wrapping and 'Ok/Esc'
prompts.

Syntax #include "twindow.hpp"

void far twindow::wintext // Text with wrapping
(
   char huge *textptr, // Ptr to text to be displayed
   int       fore=EV_DEF, // Normal foreground color
   int       high=YELLOW // Text's highlight color
) ;

Remarks The window must be opened to call this function.

<textptr> : This points to the text to be displayed.  This text can be of any length.

This text is an array of characters that need not be formatted in any way.  This
function will display the array with word wrapping at the window's right edge.

Any extra spaces will be removed from the text, leaving only one space between
each word.  Any leading spaces to a line will also be removed.  If you want to
begin a line with spaces, or separate some words with more than one space, you
must use the underscore (_) character.

You can highlight your text by surrounding characters with the tilde (~) character.

The array can be of any length.

An 'Ok' prompt will be created to allow the user to see the remaining text if it
couldn't all fit in the window.

An 'Esc' prompt will be created to allow the user to stop viewing text at his
convenience.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 71/100

è When you use this function, make sure the window is totally empty.  Everything
that was in the window is erased when you call this function.

<fore> : Foreground color used.  This argument is optional.  If it is not given, or if
you use the macro {EV_DEF}, the default foreground color of the window will be
used.

<high> : Highlight color used.  This argument is optional.  If it is not given, the
color YELLOW will be used for highlights.

Return None.

Example
win->wintext (instructions) ;

TWINDOW::WINTEXTFILE

Summary Displays a text file from disk in current window with word wrapping and 'Ok/Esc'
prompts.

Syntax #include "twindow.hpp"

void far twindow::wintextfile // Displays a text file
(
   char huge *path, // Path to file
   int       fore=EV_DEF, // Foreground color to use
   int       high=YELLOW // Highlight color to use
) ;

Remarks This function acts exactly the same as {wintext}.  The only difference is that it
gets it's input text from a disk file.

<path> : Complete path to disk file.  If the file cannot be found, the string "File
not found" is displayed instead.  This string is pointed to by the system variable
ev_filenotfoundtext.

<fore> : Foreground color used.  This argument is optional.  If it is not given, or if
you use the macro {EV_DEF}, the default foreground color of the window will be
used.

<high> : Highlight color used.  This argument is optional.  If it is not given, the
color YELLOW will be used for highlights.

Return None.

Example
win->wintextfile ("C:\\autoexec.bat") ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 72/100

TWINDOW::WINMOVE

Summary Moves the windows to a new location.

Syntax #include "twindow.hpp"

void far twindow::winmove // Moves window to new position
(
   int row, // Topleft corner's new position
   int col
) ;

Remarks The window must be opened.  <row> and <col> are the new position of the topleft
corner of the window.  The first and last lines of the desktop are reserved for the
menubar and statusline and you can't have part of the window off the screen.
Therefore, this function will validate all coordinates and change them to get a
valid window position.

Return None.

Example
win->winmove (10,12) ;

TWINDOW::WINSCROLL

Summary Moves window in 1 of 4 directions.

Syntax #include "twindow.hpp"

void far twindow::winscroll // Moves window 1 space only
(
   char direction // U: up  D: down  L: left  R: right
) ;

Remarks The entire window will be moved, IF POSSIBLE, one character in the requested
direction.  The name can be a little confusing.  It is not the window content that is
scrolled.  It's the entire window.

The argument is a character, case insensitive:

U: Up,  D: Down,  L: Left,  R: Right.

Return None.

Example
win->winscroll ('U') ; // Move window up one line

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 73/100

TWINDOW::WINONEDGES

Summary Checks if position is on window's edges.

Syntax #include "twindow.hpp"

bool far twindow::winonedges // Checks if on for edges
(
   int      row, // Position
   int      col,
   int huge *offsetrow=NULL, // Offset to top left corner
   int huge *offsetcol=NULL
) ;

Remarks It will return {TRUE} if this position is on one of this window's edges.  This
function can also return the offset of the row and col positions to the upper left
most corner of the window.  If you don't want the offsets, set the return variables
to 'NULL'.

Return {TRUE} if the position is on one of the edges.

Example
int off_row, off_col ;
if (win->winonedges (10,23,&off_row,&off_col))
   DoSomething () ;

TWINDOW::WININSIDE

Summary Checks if a position is in the window.

Syntax #include "twindow.hpp"

bool far twindow::wininside // Checks if in window
(
   int      row, // Position
   int      col,
   int huge *offsetrow=NULL, // Offset to top left corner
   int huge *offsetcol=NULL
) ;

Remarks It will return {TRUE} if this position is inside the window.  The frames are NOT
considered inside.  This function can also return the offset of the row and col
positions to the upper left most corner of the window.  If you don't want the
offsets, set the return variables to 'NULL'.

Return {TRUE} if the position is inside window's edges.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 74/100

Example
int off_row, off_col ;
if (win->wininside (10,23,&off_row,&off_col))
   DoSomething () ;

TWINDOW::WININPUT

Summary Makes window alive, allowing inputs to be made in multiple input fields and push
buttons selected.

Syntax #include "twindow.hpp"

input_info far twindow::wininput // Gets input
(
   input_info ii // input_info struct
) ;

Remarks The user will be able to move between input fields and buttons with {II_TAB}
(Tab) and {II_S_TAB} (Shift Tab).  He will be able to move the window, if
allowed, by dragging it by one of its edges.

è You should refrain from using the {fieldinput} and {buttoninput} functions.  Use
this one instead.

Return If there are no input fields and no push buttons, the {input_info} structure is
returned unchanged.

If no push buttons were created, but at least an input field, {wininput} will return
with {II_CR} (Enter) or {II_ESC} (Esc).  {II_CR} means the user confirmed the
inputs by pressing ENTER.  {II_ESC} means the user aborted the input by
pressing ESC.

If buttons were created, {wininput} will return with the identification value of the
button pushed.

Example
userinput = win->wininput (ii) ;

TWINDOW::FIELDSETCOLORS

Summary Sets the colors used in the next input field to be created.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 75/100

Syntax #include "twindow.hpp"

void far twindow::fieldsetcolors // Fields' colors
(
   int back=BLUE, // Fields' background color
   int foreon=WHITE, // Foreground color when active
   int foreoff=LIGHTCYAN // Color when inactive
) ;

Remarks <back> : Background color used.  This argument is optional.  If it is not given,
'BLUE' is assumed.  If the macro {EV_DEF} is used, it will default to the window
default background color.

<foreon> : Foreground color used when the field is active.  This argument is
optional.  If it is not given, it will default to 'WHITE'.

<foreoff> : Foreground color used when the field is inactive.  This argument is
optional.  If it is not given, it will default to 'DARKGRAY'.

Return None.

Example
win->fieldsetcolors (GREEN,WHITE,WHITE) ;

TWINDOW::FIELDCREATE

Summary Creates a new input field in the window.

Syntax #include "twindow.hpp"

void far twindow::fieldcreate // Creates input field
(
   int       row, // Input field's row
   int       col, // Input field's col
   int       answerlength, // Answers' maximum length
   int       length, // Input field's length in window
   int       ftr, // Input field's filter number (0-4)
   char huge *xtraftr, // Extra chars for filter
   bool      capsflag, // If TRUE, to uppercase
   bool      nullflag, // If TRUE, can enter null str
   char huge *defaultasw, // Default answer
   char huge *sltext, // Statusline text for field
   int       hlpctx // Help context number
) ;

Remarks The window must be opened before calling this function.

Fields have default built in behaviors when a window is first created.  If you don't
call any function to set their attributes, buttons will default to 'WHITE' on 'BLUE'.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 76/100

<row> : Row of input field.

<col> : Column of input field.

<row> and <col> are validated to make sure the input field fits into the window.
If the position is incorrect, it will be automatically changed.

<answerlength> : The maximum length of the input buffer.  The user is allow to
enter a string no longer than this limit.  The upper limit is 32K.  That should be
enough!

<length> : The length of the input field in the window in characters.  The input
field cannot be wider than the window.  The input field cannot be wider than the
answer buffer's length.

<ftr> : An input field will allow only certain characters as input.  <ftr> will
determine what characters are accepted.

0 : All characters are allowed, except control chars.
1 : A-Z and a-z only.  *** Space (32) not allowed ***
2 : 0-9 only.
3 : A-Z, a-z and 0-9 only.
4 : No characters allowed.

<xtraftr> : Include, between quotes, other characters that you want accepted by the
filter.  Often used to include the space char (ASCII 32).

<capsflag> : If set to {TRUE}, all inputs will be converted to CAPS.

<nullflag> : If set to {FALSE}, the user won't be allowed to input an empty string.

<defaultasw> : This is the default answer that will be put in the input field.  This
argument is optional.  If you want the field to be initially empty, set to 'NULL'.

<sltext> : This is a short help text that will be displayed on the status line when
the field is active.  If you don't want a help text to be displayed, set to 'NULL'.

<hlpctx> : The help context number for this field.  If set to {EV_NOHLPCTX},
the field will use the window's default.

Return None.

Example
win->fieldcreate (2, 2, 20, 10, 1, " ", TRUE, FALSE,
"Canada", "Enter country", 205) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 77/100

TWINDOW::FIELDSETASW

Summary Sets a field current content.

Syntax #include "twindow.hpp"

void far twindow::fieldsetasw // Sets default answer
(
   char huge *answer, // Default answer for this field
   int       fieldnb // Field's ID number
) ;

Remarks Even if the content is immediately changed, the field on the screen will be updated
only when it is activated.

<answer> : String to copy in the field.  It can be of any length, but only what will
fit in the answer buffer will be copied.

<fieldnb> : Number of the field to copy to.  Number IDs are given to the field at
their creation, starting with one.

Return None.

Example
win->fieldsetasw ("C:\\UTILS\\",5) ;

TWINDOW::FIELDGETASW

Summary Reads the content of the answer buffer of an input field.

Syntax #include "twindow.hpp"

void far twindow::fieldgetasw // Gets a field's answer
(
   char huge *dest, // Destination to copy answer's to
   int       fieldnb // Field's ID number
) ;

Remarks The answer buffer of field <fieldnb> is copied to <dest>.

è There is no way for the function to know if your destination is big enough to hold
the content of the answer buffer.  YOU MUST MAKE ABSOLUTELY SURE
THAT YOUR DESTINATION IS AS BIG AS THE ANSWER BUFFER PLUS
ONE CHARACTER for the terminating '\n'.

Return None.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 78/100

Example
win->fieldgetasw (&response,3) ;

TWINDOW::FIELDINPUT

Summary Gets user input from one input field.

Syntax #include "twindow.hpp"

input_info far twindow::fieldinput // Activates field
(
   int fieldnb // Field's number, to get input from
) ;

Remarks You must have created at least one input field to use this function.  Fields are
given numbers when they are created.  The first field created is number one.

<fieldnb> : This is the field from which you will make the input.  This field must
exist.

è You should never have to use this function.  You should consider using the
{wininput} function instead.  This is provided to allow for really special cases.

è The user won't be able to move the window.

Return {fieldinput} with return with an {input_info} structure containing the ASCII code
representing how the user terminated the input.  This can be {II_CR}, {II_ESC},
{II_TAB} or {II_S_TAB}.

Example
name = win->fieldinput (1) ;

TWINDOW::BUTTONSETCOLORS

Summary Sets the colors used for all the window's buttons.

Syntax #include "twindow.hpp"

void far twindow::buttonsetcolors // Sets buttons's colors
(
   int back=GREEN, // Button's background color
   int foreon=WHITE, // Foreground color when active
   int foreoff=BLACK, // Foreground color when inactive
   int high=YELLOW // Highlight color (hotkey)
) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 79/100

Remarks All buttons use the same color configuration.  You can't use this function once a
button has been created.

<back> : Background color of all buttons.  This argument is optional and will
default to 'GREEN'.

<foreon> : Foreground color of active buttons.  This argument is optional and will
default to 'WHITE'.

<foreoff> : Foreground color of inactive buttons.  This argument is optional and
will default to 'BLACK'.

<high> : Highlight color of all buttons.  This argument is optional and will default
to 'YELLOW'.

Return None.

Example
win->buttonsetcolors (BLUE,WHITE,BLACK,RED) ;

TWINDOW::BUTTONCREATE

Summary Creates a new button.

Syntax #include "twindow.hpp"

void far twindow::buttoncreate // Creates a button
(
   int       row, // Button's row
   int       col, // Button's col
   char huge *name, // Button's name
   int       buttonkey, // Button's hotkey
   char huge *sltext=NULL, // Button's statusline text
   int       hlpctx=EV_NOHLPCTX // Help context number
) ;

Remarks The window must be opened to use this function.  The window must be big
enough to hold the button.  It must be at least 4 lines high, and 11 columns wide.

You can create as many buttons as you want.  There is no upper limit.

Buttons have default built in values when a window is first created.  You don't
need to call the {buttonsetcolors} function.  If you don't, buttons will default to a
'GREEN' background, 'WHITE' text when active, 'BLACK' text when inactive,
and 'YELLOW' highlight.

è The availability status of a newly created button always defaults to {TRUE}
(available).

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 80/100

The first button created will be considered the default button.  This button will be
activated when you request a {buttoninput} or {wininput}.

<row> : Row position of the new button.

<col> : Column position of the new button.  If <row> and <col> are not valid,
they will be changed to a correct position.

è You must make sure buttons don't overlap.  A button needs an empty line under
and to the right of itself.

<name> : The name to put on the button.  It can be of any length, but only the first
8 characters will be considered.  Names aren't automatically centered on the
buttons.  Center the name manually by inserting leading spaces in the name.

<buttonkey> : This is the ASCII code that will identify a particular button.  Some
rules are to be observed:

If the identification code of the button matches a character in its name, that
character will be highlighted.

{II_TAB} (Tab), {II_S_TAB} (Shift Tab) and {II_ARROW_*} (arrow keys)
codes cannot be used to identify a button.

<sltext> : This is a short help text that will be displayed on the status line when
the button is active.  This argument is optional.  If it is not given, no help text will
be displayed.

<hlpctx> : The help context number for this button.  If set to {EV_NOHLPCTX},
the field will use the window's default.

Return None.

Example
win->buttoncreate (10,2,"  Save",'S',"Save file",153) ;

TWINDOW::BUTTONSETAVAIL

Summary Sets the availability of a button.

Syntax #include "twindow.hpp"

void far twindow::buttonsetavail // Sets availability
(
   int  buttonkey, // Button's hotkey
   bool available=TRUE // TRUE: available
) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



CHAPTER 16 : EasyVision's twindow class Page 81/100

Remarks The button specified MUST exist.

<buttonkey> : The button's hotkey that identifies the one you want to change.

<available> : {TRUE} means this button is available.  {FALSE} means it is not.
When a button is created with {buttoncreate}, its availability status is
automatically set to {TRUE}.

Return None.

Example
win->buttonsetavail ('S',FALSE) ; // Save button OFF

TWINDOW::BUTTONINPUT

Summary Makes user go through the buttons with {II_TAB} (Tab), {II_S_TAB} (Shift Tab)
and {II_ARROW_*} (arrow keys).

Syntax #include "twindow.hpp"

input_info far twindow::buttoninput // Waits for button
(
   input_info userinput, // User's initial input
   bool       first=TRUE // TRUE: Makes 1st alive
) ;

Remarks You must have created at least one button to call this function, and there must be
at least one button available.

<userinput> : The initial user input, as an {input_info} structure.  This could
come from some previous processing.  For instance, the result of an input field.

<first> : Determines which button will first be made active during the input.
{TRUE} means the first created button, {FALSE} means the last.  This argument
is optional and will default to {TRUE}.

è You should never have to use this function.  You should consider using the
{wininput} function instead.  This is provided to allow for really special cases.

è The user won't be able to move the window.

Return The function returns an 'int'.  It is the identification code of the button that was
pushed.

Example
command = win->buttoninput (command) ;

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX A : Keycodes macros Page 82/100

A P P E N D I X   A : Keycodes macros

Extended keycodes are returned when you press a key that doesn't have an
associated ASCII code.  They are represented by stuffing two codes into the
keyboard buffer.  A 0 followed by an extended key keycode in the range 0 through
255.

The EasyVision's {getkey} function and {tinput} class, deal with these codes by
returning values (int) in the range 0 through 511.  The standard ASCII codes are
returned unchanged (Guess why?).  As a convenience, extended keycodes have
256 added to their real value, and are returned as a single number.

Macros, always debuting by {II_}, have been assigned to most of the values listed
here.  Those macros are available in "STDMACRO.H".  You should always use
the macros instead of the actual codes.

Macro Value Comment

II_NUL 0 /* No input at all */

II_MOUSE 256 /* {input_info} = mouse */

II_BS 8 /* Back space */
II_TAB 9 /* Tab */
II_CR 13 /* Carriage return */
II_ESC 27 /* Escape */

II_S_TAB 271 /* Shift-Tab */

II_A_Q 272 /* Alt-Q/W/E/R/T/Y/U/I/O/P */
II_A_W 273
II_A_E 274
II_A_R 275
II_A_T 276
II_A_Y 277
II_A_U 278
II_A_I 279
II_A_O 280
II_A_P 281

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX A : Keycodes macros Page 83/100

II_A_A 286 /* Alt-A/S/D/F/G/H/J/K/L */
II_A_S 287
II_A_D 288
II_A_F 289
II_A_G 290
II_A_H 291
II_A_J 292
II_A_K 293
II_A_L 294

II_A_Z 300 /* Alt-Z/X/C/V/B/N/M */
II_A_X 301
II_A_C 302
II_A_V 303
II_A_B 304
II_A_N 305
II_A_M 306

II_F1 315 /* F1-F10 */
II_F2 316
II_F3 317
II_F4 318
II_F5 319
II_F6 320
II_F7 321
II_F8 322
II_F9 323
II_F10 324
II_F11 389 /* F11 */
II_F12 390 /* F12 */

II_HOME 327 /* Cursor keys */
II_ARROWUP 328
II_PAGEUP 329
II_ARROWLEFT 331
II_ARROWRIGHT 333
II_END 335
II_ARROWDOWN 336
II_PAGEDOWN 337
II_INS 338
II_DEL 339

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX A : Keycodes macros Page 84/100

II_S_F1 340 /* Shift-F1 to Shift-F10 */
II_S_F2 341
II_S_F3 342
II_S_F4 343
II_S_F5 344
II_S_F6 345
II_S_F7 346
II_S_F8 347
II_S_F9 348
II_S_F10 349
II_S_F11 391 /* Shift-F11 */
II_S_F12 392 /* Shift-F12 */

II_C_F1 350 /* Ctrl-F1 to Ctrl-F10 */
II_C_F2 351
II_C_F3 352
II_C_F4 353
II_C_F5 354
II_C_F6 355
II_C_F7 356
II_C_F8 357
II_C_F9 358
II_C_F10 359
II_C_F11 393 /* Ctrl-F11 */
II_C_F12 394 /* Ctrl-F12 */

II_A_F1 360 /* Alt-F1 to Alt-F10 */
II_A_F2 361
II_A_F3 362
II_A_F4 363
II_A_F5 364
II_A_F6 365
II_A_F7 366
II_A_F8 367
II_A_F9 368
II_A_F10 369
II_A_F11 395 /* Alt-F11 */
II_A_F12 396 /* Alt-F12 */

II_C_PRTSCR 370 /* Ctrl-Print Screen */

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX A : Keycodes macros Page 85/100

II_C_ARROWLEFT 371 /* Ctrl- cursor keys */
II_C_ARROWRIGHT 372
II_C_END 373
II_C_PAGEDOWN 374
II_C_HOME 375
II_C_PAGEUP 388

II_A_1 376 /* Alt-1/2/3/4/5/6/7/8/9/0/-/= */
II_A_2 377
II_A_3 378
II_A_4 379
II_A_5 380
II_A_6 381
II_A_7 382
II_A_8 383
II_A_9 384
II_A_0 385
II_A_MINUS 386
II_A_EQUAL 387

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX B : Color codes and symbolic constants Page 86/100

A P P E N D I X   B : Color codes and symbolic constants

When asked for a color argument, you must provide one of the following values.
As an alternative, you can also use special macros, provided "CONIO.H" as been
included.

è Functions that require a background color argument can use bright background
color.  Refer to {tdesktop}'s {settextmode} for more information.

Available background colors:

0  BLACK       8  DARKGRAY
1  BLUE        9  LIGHTBLUE
2  GREEN       10 LIGHTGREEN
3  CYAN        11 LIGHTCYAN
4  RED         12 LIGHTRED
5  MAGENTA     13 LIGHTMAGENTA
6  BROWN       14 YELLOW
7  LIGHTGRAY   15 WHITE

Available foreground colors:

0  BLACK       8  DARKGRAY
1  BLUE        9  LIGHTBLUE
2  GREEN       10 LIGHTGREEN
3  CYAN        11 LIGHTCYAN
4  RED         12 LIGHTRED
5  MAGENTA     13 LIGHTMAGENTA
6  BROWN       14 YELLOW
7  LIGHTGRAY   15 WHITE

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX C : Context sensitive help system Page 87/100

A P P E N D I X   C : Context sensitive help system

EasyVision provides an easy to use context sensitive help system.  If fact, it's so
easy you have nothing to do except write up the help text.

At startup, the static instance of the {tinput} class (input) will look in the directory
of the executable file "*.EXE" for the help files "*.HLP" and "*.HDX".  If those
files are not found or one is missing, the program simply won't use the help
system.  When the user requests help by pressing the F1 function key, a message
indicating that help is not available will be displayed.

If, however, you want your program to use the help system, follow these few
simple steps...

What is a context

Menus in the menubar and items within a menu, each have their own context
number.  Windows, input fields and push buttons also have their own context
number.  They are given when you create those objects.

When one of these objects is active or selected, its context number is in effect.  If
help is requested by the user, the help text associated with this help context
number will be displayed.

These objects provide easy input fonctions.  You can also get inputs from the
{tinput::get} member function.   When you do, you also specify a current help
context.

So, in essence, a context number indicates to the library what the user is currently
doing in the interface or in the program.  The help routines will thereafter be able
to display help relative to the current situation.

Context numbering

You can number your context in any way.  A context number is an integer number
(int).  You should consider,  however, using a logical numbering system.

You could give a menu the context number 100, and give the items within this
menu the numbers 101, 102, 103 and so on...

You would do the same with windows.  A window would have the number 1000.
The input fields would be 1100, 1101, 1102, etc.  The push buttons could be 1200,
1201, 1202, etc.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX C : Context sensitive help system Page 88/100

You choose the numbering system that's right for you.  You'll see in a few
moments that there is an easier way to manage these context numbers.

Writing the ASCII help file

The help file is in plain ASCII.  You can put comments everywhere in the file.
The help compiler "HC.EXE" will consider only the text between the two
keywords delimiters {HLPCTX} and {HLPEND}.

è The help text MUST be saved WITHOUT carriage returns or linefeeds at the end
of the lines.  You put a carriage return only at the end of a paragraph.  If you want
a blank line between paragraphs, put two returns at the end.

I strongly suggest that you write your help file with your favorite word processor
and save the file in its native format.  You'll also save an ASCII copy of it,
without carriage returns at the end of the lines, for the help compiler.

You MUST give the ASCII file the same name as your program's executable
"*.EXE".  For instance, if the program is named "TOTO.EXE", your ASCII help
file must be named "TOTO.*".  The extension is up to you, but I strongly suggest
you use "*.HLT" extensions for the ASCII help file "TOTO.HLT".

ASCII help file format

The ASCII help file uses the following format.

Example:

HLPCTX 123 MENU_EDIT_PASTE
By using the paste command you'll copy the content of the clipboard back onto the
edit page at the cursor's location.
HLPEND

The help compiler will consider only what you put between the {HLPCTX} and
the {HLPEND} keywords.  You can put any comments you want elsewhere.

1. The HLPCTX keyword can be anywhere on the line and is case
insensitive.

2. Next you put the context number.  It must be separated from the
{HLPCTX} keyword by at least one white space character (spaces (32) or
TABS (9)) and ON THE SAME TEXT LINE.

This context number must be a valid string that will evaluate to an integer.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX C : Context sensitive help system Page 89/100

3. After the context number, again separated by at least a white space
character, and ON THE SAME LINE, you'll put the context '#define'
macro.

è The compiler will produce a file with the name of your program
executable and the extension "*.HCM" (Help Context Macros).  You can
then include this file in your source codes and reference easy to remember
macros instead of context number.

This macro is optional.  If not present, you'll be able to reference this
context only by its number.

4. You then start your help text on the next line.  Everything you write, up
but not including the following {HLPEND} keyword, will be considered
by the help compiler as the help text associated with this context number
and macro.

5. You then put the terminating {HLPEND} keyword, wich is case
insensitive.  However, the preceding spaces will be considered part of the
help text.

Take a look at the included examples that comes with the demo programs.

The help compiler

After your ASCII help file "*.HLT" as been saved, you compile it with
EasyVision's help compiler "HC.EXE".

The command line is :  HC [d:][\path\][filename.ext]

The compiler will parse the file checking for errors.  If everything goes fine, it will
produce two files.  One with the extension "*.HLP", the other with "*.HDX".

The files will have the same name as your program's executable and be located in
the same directory as the "*.HLT" file.  As in our example, "TOTO.HLP" and
"TOTO.HDX".

The "*.HLP" and "*.HDX" help files

The "*.HLP" and "*.HDX" files must be placed in your program's executable
directory.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX C : Context sensitive help system Page 90/100

The "*.HLP" file is the compile help text.  It stays on disk and is accessed as
needed during execution.  The "*.HDX" file is an index to the help file that is
loaded in memory at program startup.  This will provide extremely fast access to
the help file, even if it's on floppy disk.

That's all there is to it!  Your program can enjoy context sensitive help facilities
with minimal work on your part.

Examples of creating and using the help system are given in the EasyVision's
demo programs.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX D : EasyVision's language system variables Page 91/100

A P P E N D I X   D : EasyVision's language system

EasyVision makes it easy to implement language files.

All the prompts and data strings output by your program should be placed in a
separate file as global variables.  You then reference them in the other modules
with 'extern' declarations.  This way, you can have different language versions of
your application without rewriting a single line of code.

EasyVision displays a few default messages.  Those are reference by the following
system variables.  You can change them manually to display appropriate messages
for you country.

Two functions are also provided to switch the interface from french to english
modes.

Language system variables

è All the following system variables are huge pointers to characters.  The are
reference in the header file "EVMSGS.HPP".  You must include this file in every
module that references these variables.

ev_helpwindowtitle

String displayed as the title of the help window.

English : "Help"

French  : "Aide"

ev_helpwindownohelp

String displayed when an object does not have a help context or when the macro
{EV_NOHLPCTX} is passed to {input::get}.

English : "Sorry, but help is not available at this time..."

French   : "Desole, mais aucune aide n'est disponible en ce moment..."

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX D : EasyVision's language system variables Page 92/100

ev_helpwindowfileerror

String displayed when the help system finds an error accessing the help files.

English : "There was a disk error while opening the help file.  If the help files
(*.hlp and *.hdx) are on a floppy disk, make sure it is still in the drive unit."

French   :  "Une erreur de lecture s'est produite en ouvrant le fichier d'aide.  Si les
fichiers d'aide (*.hlp et *.hdx) se trouvent sur disquette, soyez certain qu'elle est
bien dans le lecteur."

ev_wintextdownbutton

In the {twindow::wintext} function and in the help system, string displayed on the
button that will allow seeing the following page.

English : "   Ok"

French  : "   Ok"

ev_wintextdown

In the {twindow::wintext} function and in the help system, string displayed on the
statusline when the button that will allow seeing the following page is selected.

English : "See next page of text"

French  : "Voir la prochaine page de texte"

ev_wintextquitbutton

In the {twindow::wintext} function and in the help system, string displayed on the
button that will stop the display of text.

English : "  Esc"

French  : "  Esc"

ev_wintextquit

In the {twindow::wintext} function and in the help system, string displayed on the
statusline when the button that will allow stopping the following page is selected.

English : "Quit viewing text"

French  : "Termine l'affichage du text"

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX D : EasyVision's language system variables Page 93/100

ev_filenotfoundtext

In the {twindow::wintextfile} function, string displayed when the requested file is
not found.

English : "File not found!"

French  : "Fichier non trouve!"

ev_filetobig

In the {twindow::wintextfile} function, string displayed when the requested file is
to big to be loaded in memory.

English : "Sorry, not enough memory to load this file..."

French   : "Desole, pas assez de memoire pour charger ce fichier..."

ev_windowmove

String displayed when a window is moved by dragging one of its edges.

English : "Drag window while holding mouse's left button"

French   : "Deplacez la fenetre en tenant le boutton gauche de la souris"

ev_statuslinehelp

String displayed in the left part of the statusline, indicating that the user should
press F1 to activate the help system.

English : "Help"

French   : "Help"

english() and french() functions

Two functions will allow you to reset the language system variables to their
default values.

void language_english () ; // English definitions

void language_french () ; // French definitions

language_english () is automatically called at program startup.  To call one of
these functions, "EVMSGS.HPP" must be included.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX E : EasyVision's demo programs Page 94/100

A P P E N D I X   E : EasyVision's demo program

I am a true believer in the motto 'An example will often be simple than its written
explanation'.

I have included two complete demo programs with EasyVision.  They are in the
two archives "DEMO1.ZIP" and "HANOI.ZIP".  The source codes, BC++ project
files and executables are given.

I have tried to use as many functions as possible in these short programs.  They
are fully documented and they illustrate the working relationship between all
those functions and classes.

I really think that 90% of your questions can be answered by going through these
demo programs.  You are invited to try some modifications of your own, and see
the results.

I'll say it again...  You should really print all this documentation for easier reading.
It's also a good idea to print the header files for quick references.

Things to remember

A couple of things are to be remembered from this demo source code.

- You should always use 'huge' POINTERS in your code.  You'll be on the
safe side and avoid many problems.

- You should put all text and prompt strings in a separate resource file.  This
will make it easy to update prompts or make an alternate language file.

- EasyVision won't prevent you from using 'printf' statements.  However,
you should work within EasyVision's boundaries and use the provided
output functions.

- All classes come with built in default values.  Often, only one call is
needed to use them if the defaults are to your likings.

Looking at this demo program, you can see that you can make great looking
software faster than ever.  Take the time to become familiar with EasyVision.
The rewards will be fewer frustrations and more enjoyment out of your
programming.

Have fun!

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX F : How to reach the author Page 95/100

A P P E N D I X   F : How to reach the author

I will gladly answer any questions relating to this software.  I can be reach through
the FidoNet or the Internet.

FidoNet  : 1:240/1 (Make message to Remy Gendron)

InterNet : REMY_GENDRON@F1.N240.Z1.FIDONET.ORG

Phone    : (418) 525-6803 (TNG SOFT's answering machine)

Mail     : Remy Gendron
           2480 ave de Vitre
           Quebec, Quebec, Canada
           G1J 4A6

I can't get back to you on the phone.  Be sure to leave an electronic or
conventional mail address.  I'll get back to you real fast.

Any comments, bug reports or suggestions will be appreciated.

Thank you for considering this software!

Remy Gendron
Author of EasyVision

EV 2.0 User's guide TNG SOFT : The Next Generation Software



APPENDIX G : Trademarks Page 96/100

A P P E N D I X   G : Trademarks

Turbo Vision from Borland.

Borland C++ 3.1 from Borland.

DeskViev from Quarterdeck.

CXL from Mike Smedley.

EV 2.0 User's guide TNG SOFT : The Next Generation Software



INDEX Page 97/100

I N D E X

C

-
C++ default parameter values, 41
classes, 41
clock's colors, 45-> operator, 42
CLOSE, 47

.
colors (appendix B), 45
command line arguments, 20

. operator, 42 conditional compilation, 12

{
consistency, 15
context number, 56
context number (menus), 58

{bool}, 16, 18 context sensitive help, 54
{byte}, 16, 18 Conventions, 41
{dword}, 16, 18 conventions, 14, 18
{FALSE}, 16 cur_info, 29
{TRUE}, 16 cursor attributes, 29
{word}, 16, 18 cursor's coordinates, 56

~
curtype, 29
curx, 29
cury, 29~ (highlight), 70
CXL, 8

A D
ADDITEM, 59

delete, 42ADDMENU, 58
desktop, 43ANSI escape sequences, 40
desktop's size, 44ANSI standard, 12
desktop's title, 46ANSI.SYS driver, 40
DESKview, 12ANSICOLOR, 40
DIFFDATE, 38ARG_EXIST, 20
DISPLAY, 50ARG_IEXIST, 20
driver (mouse), 52ASSERT, 19

E
assert_err, 20
available colors (appendix B), 45

B
Error (System variable), 20
error messages, 13
EV_MOUSE, 56blinking, 44
EV_NOHLPCTX, 56, 59Bright background colors, 65
extended keys, 23, 55bright background colors, 27, 43
extern "C", 12buffer (keyb and mouse), 56
EXTTOASCII, 24button availability, 80

F
button creation, 79
BUTTONCREATE, 79
BUTTONINPUT, 81 F1 (help), 56
BUTTONSETAVAIL, 80 F10, 57, 61
BUTTONSETCOLORS, 78 farfree replacement, 21

farmalloc replacement, 21
FCOPY, 26
FIDONET (author's address), 11

EV 2.0 User's guide TNG SOFT : The Next Generation Software



INDEX Page 98/100

FIELDCREATE, 75 M
FIELDGETASW, 77

manual (true type version), 9FIELDINPUT, 78
Memory model, 12FIELDSETASW, 77
menu (adding a), 58FIELDSETCOLORS, 74
menu (hotkey), 59FILEFCTS.H, 25
menu creation, 58filter, 55
menu hotkeys, 57FNEWLINE, 25
menu item separator, 60FSIZE, 25
menu items (offline), 58function's description, 18
menubar, 57

G
menus, 57
mouse driver, 52
mouse support during input, 54GET, 54
mouse's cursor, 52, 53GETKEY, 23
mouse's left button, 54GETMSG, 50
mouse's position, 54GETSIZE, 44
mouse's right button, 56gettextinfo replacement, 27
MOUSE_HIDE, 53global output messages, 17
MOUSE_INIT, 52

H MOUSE_LB_DOWN, 54
MOUSE_POS, 54

header files compile error, 17 MOUSE_SHOW, 53
HEAPALLOC, 21 MOUSE_STATUS, 53
HEAPFREE, 21, 22 msg_, 17
help, 54 msg_stderr, 19
help file (see appendix C), 56 msg_stderr[], 19
Help text format, 70

N
history, 9
hotkey, 59

name prefix, 18

I new, 42
new line character, 25

input, 52

O
input facilities, 55
input field creation, 75

OPEN, 46input fields colors, 74
optimization, 18input_info, 55, 57
overhead, 18input_info structure, 55

P
instantiation, 42
INTERNET (Author's address), 11
interrupt clock, 45

Parameter validation, 8item's availabitity, 60
PASCAL to C, 33item's context number, 60
Prototypes, 18items (menu), 59
pull down menus, 57ITEMSETAVAIL, 60

RK
redeclaration errors, 12key_code, 55, 56
REFRESH, 47, 51, 61KEYBFCTS.H, 23
registration, 9keycode, 55
Registration fee, 9

L
Remy Gendron (Who is), 10
rules for C++ default arguments, 41

license, 9
Linker errors, 13

EV 2.0 User's guide TNG SOFT : The Next Generation Software



INDEX Page 99/100

S text_info, 27
THROUGH, 61

SCR_CRESTORE, 29 Ticks, 37
SCR_CSAVE, 29 TICKTIMER_INSTALL, 37
SCR_TEXTATTR, 27 TICKTIMER_READ, 38
SCR_VRESTORE, 28 TICKTIMER_RESET, 37
SCR_VSAVE, 27 tilde, 50
screen background texture, 45 TIMEFCTS.H, 37
screen functions, 27 tinput, 52
SCRFCTS.H, 27 TINPUT::GET, 54
sensitive help, 54 TINPUT::MOUSE_HIDE, 53
SETCOLORS, 57 TINPUT::MOUSE_INIT, 52
SETDESKCOLORS, 45 TINPUT::MOUSE_LB_DOWN, 54
SETHLPCTX, 58 TINPUT::MOUSE_POS, 54
SETLEFTCOLORS, 49 TINPUT::MOUSE_SHOW, 53
SETTEXTMODE, 43 TINPUT::MOUSE_STATUS, 53
SETTEXTURE, 45 title (desktop), 46
SETTITLE, 46 tmenubar, 57
shell to DOS, 47 TMENUBAR::ADDITEM, 59
shortcuts key, 60 TMENUBAR::ADDMENU, 58
size of a file, 25 TMENUBAR::ITEMSETAVAIL, 60
size_t, 31 TMENUBAR::SETCOLORS, 57
statusline, 49 TMENUBAR::SETHLPCTX, 58
STR_CENTER, 35 TMENUBAR::THROUGH, 61
STR_CMP, 32 TO_LOWER, 22
STR_CPY, 31 TO_UPPER, 22
STR_ICMP, 32 tstatusline, 49
STR_INVNAMES, 35 TSTATUSLINE::DISPLAY, 50
STR_LEN, 31 TSTATUSLINE::GETMSG, 50
STR_PASTOC, 33 TSTATUSLINE::REFRESH, 51
STR_TOLOWER, 33 TSTATUSLINE::SETLEFTCOLORS, 49
STR_TOUPPER, 33 TURBO VISION, 8, 12
STR_TRIM, 34 twindow, 62
strcmp replacement, 32 TWINDOW::BUTTONCREATE, 79
strcpy replacement, 31 TWINDOW::BUTTONINPUT, 81
stricmp replacement, 32 TWINDOW::BUTTONSETAVAIL, 80
string inversion, 35 TWINDOW::BUTTONSETCOLORS, 78
string normalisation, 34 TWINDOW::FIELDCREATE, 75
string to uppercase, 33 TWINDOW::FIELDGETASW, 77
strlen replacement, 31 TWINDOW::FIELDINPUT, 78
struct cur_info, 29 TWINDOW::FIELDSETASW, 77
struct input_info, 55 TWINDOW::FIELDSETCOLORS, 74

T
TWINDOW::WINCLEAR, 68
TWINDOW::WINCLOSE, 67
TWINDOW::WINGETHEIGHT, 64tdesktop, 43
TWINDOW::WININPUT, 74TDESKTOP::CLOSE, 47
TWINDOW::WININSIDE, 73TDESKTOP::GETSIZE, 44
TWINDOW::WINMOVE, 72TDESKTOP::OPEN, 46
TWINDOW::WINONEDGES, 73TDESKTOP::REFRESH, 47
TWINDOW::WINOPEN, 66TDESKTOP::SETDESKCOLORS, 45
TWINDOW::WINSCROLL, 72TDESKTOP::SETTEXTMODE, 43
TWINDOW::WINSETCOLORS, 65TDESKTOP::SETTEXTURE, 45
TWINDOW::WINSETHLPCTX, 66TDESKTOP::SETTITLE, 46
TWINDOW::WINSETPOS, 62templates, 15
TWINDOW::WINSETTITLE, 66Testing (header files), 17
TWINDOW::WINTEXT, 70text file display, 71

EV 2.0 User's guide TNG SOFT : The Next Generation Software



INDEX Page 100/100

TWINDOW::WINTEXTFILE, 71
TWINDOW::WINWRITE, 68

U
Updates, 10

V
Validation, 13

W
WAIT FOR, 55
WINCLEAR, 68
WINCLOSE, 67
window alive, 74
window dragging, 74
window features, 62
window moving, 72
window screen output, 68
window scrolling, 69
window word wrapping, 70
window's colors, 65
window's height, 64
window's help context, 66
window's internal cursor, 69
window's size, 64
window's title, 66
window's width, 65
Windows, 62
WINGETCOL, 63
WINGETROW, 63
WINGETWIDTH, 65
WININPUT, 74
WININSIDE, 73
WINMOVE, 72
WINONEDGES, 73
WINOPEN, 66
WINSCROLL, 72
WINSETHLPCTX, 66
WINSETSIZE, 64
WINSETTITLE, 66
WINTEXT, 70
WINTEXTFILE, 71
WINWRITE, 68
Word wrapping format, 70

EV 2.0 User's guide TNG SOFT : The Next Generation Software


