
doc/VMM

doc/VMM ii

COLLABORATORS

TITLE :

doc/VMM

ACTION NAME DATE SIGNATURE

WRITTEN BY January 18, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

doc/VMM iii

Contents

1 doc/VMM 1

1.1 VMM/doc/VMM.guide . 1

1.2 VMM/doc/VMM.guide/COPYRIGHT . 2

1.3 VMM/doc/VMM.guide/INTRODUCTION . 2

1.4 VMM/doc/VMM.guide/INSTALLATION . 3

1.5 VMM/doc/VMM.guide/CHANGES . 4

1.6 VMM/doc/VMM.guide/To_1_1 . 4

1.7 VMM/doc/VMM.guide/To_1_2 . 5

1.8 VMM/doc/VMM.guide/To_1_3 . 5

1.9 VMM/doc/VMM.guide/To_2_0 . 6

1.10 VMM/doc/VMM.guide/To_2_1 . 7

1.11 VMM/doc/VMM.guide/VMMPREFS . 7

1.12 VMM/doc/VMM.guide/Tasks_Gadget . 8

1.13 VMM/doc/VMM.guide/Memory_Settings . 9

1.14 VMM/doc/VMM.guide/MemType_Gadget . 9

1.15 VMM/doc/VMM.guide/MemSize_Gadget . 10

1.16 VMM/doc/VMM.guide/MemFlags_Gadget . 10

1.17 VMM/doc/VMM.guide/SwapMedium_Gadget . 10

1.18 VMM/doc/VMM.guide/FileSize_Gadget . 11

1.19 VMM/doc/VMM.guide/MemPri_Gadget . 11

1.20 VMM/doc/VMM.guide/WriteBuffer_Gadget . 11

1.21 VMM/doc/VMM.guide/Stat_Gadget . 12

1.22 VMM/doc/VMM.guide/Misc_Settings . 12

1.23 VMM/doc/VMM.guide/PROC_DIFFS . 13

1.24 VMM/doc/VMM.guide/PROBLEMS . 13

1.25 VMM/doc/VMM.guide/TROUBLESHOOTING . 13

1.26 VMM/doc/VMM.guide/TECHNICAL_DES . 14

1.27 VMM/doc/VMM.guide/VMM_LIBRARY . 16

1.28 VMM/doc/VMM.guide/EXT_STATS . 16

1.29 VMM/doc/VMM.guide/KNOWN_BUGS . 16

doc/VMM iv

1.30 VMM/doc/VMM.guide/BUG_REPORTING . 17

1.31 VMM/doc/VMM.guide/FUTURE_PLANS . 18

1.32 VMM/doc/VMM.guide/ACKNOWLEDGMENTS . 18

1.33 VMM/doc/VMM.guide/MISCELLANEOUS . 18

doc/VMM 1 / 19

Chapter 1

doc/VMM

1.1 VMM/doc/VMM.guide

VMM
(Virtual Memory Manager for Amigas with 68030 or 68040)

User’s Guide
Version 2.1

$Date: 94/09/23 16:24:01 $
written by Martin Apel

email: apel@gypsy.physik.uni-kl.de

CONTENTS

0.
Copyright
1.

Introduction
2.

Installation
3.

Changes
4.

The preferences window
5.

68030 vs. 68040
6.

Problems
7.

Troubleshooting
8.

Technical description
9.

VMM.library
10.
External statistics
11.
Known bugs
12.
Bug reports
13.

doc/VMM 2 / 19

Future plans
14.
Acknowledgments
15.
Miscellaneous

1.2 VMM/doc/VMM.guide/COPYRIGHT

VMM is freely distributable. If you like to honour my efforts in
developing VMM you can send me a gift, money, a postcard or maybe a
registration of a program you have developed yourself.

IMPORTANT NOTICE: This program is copyrighted by Martin Apel, but can
be freely distributed, provided that the following rules are
respected.

- No change is made to the program nor to the accompanying documentation
- The package is always distributed in its complete form.
- Every form of distribution is allowed and encouraged, but no fee can

be charged for this program except for, possibly, the cost of magnetic
media and/or disk duplication and shipping.

- Inclusion in PD software libraries such as Fish Disks is allowed,
provided the fees charged for these disks are comparable with those
charged by Fred Fish.

- The program cannot be distributed in any commercial product without
the written consent of the author.

By copying, distributing and/or using the program you indicate your
acceptance of the above rules.

1.3 VMM/doc/VMM.guide/INTRODUCTION

1. INTRODUCTION

Even on the A4000 equipped with 6 MB sometimes I longed for more
memory or, as an alternative, for virtual memory. As the 68040
contains an MMU and I was interested in learning how it works, I
decided to write a virtual memory manager for the Amiga myself. It
emulates up to 128 MB in a user selectable amount of physical RAM. In
version 2.1 VMM supports the 68030 and the 68040. Paging can be done
either to a partition , a normal file or to a so-called
pseudo-partition, which combines the speed of a partition with the
flexibility of a file.

What does virtual memory mean ?

In a virtual memory environment the processor needs to be able to
translate each address it operates on into a physical address. This
translation is carried out in hardware by the memory management unit

doc/VMM 3 / 19

(MMU) for each memory access. Physical memory is split into page
frames of equal size, VMM uses either 4 or 8 KB. It is possible for a
page to be resident in memory or to be swapped out to harddisk.
Whenever the processor tries to access a page that is swapped out, a
pagefault occurs. VMM suspends the task causing the pagefault,
fetches the corresponding page from disk and installs it somewhere in
physical memory. When the page is in physical memory the task is
allowed to resume. This process is carried out transparently, i.e.
the task causing the pagefault has no knowledge of what happened. The
only visible thing is that memory access time for that access has
increased significantly. For further information how virtual memory
works in general, see one of the following books:

Operating systems - Design and implementation
Andrew Tanenbaum
Prentice Hall

Operating system concepts
Silberschatz, Galvin
Addison Wesley

How does VMM achieve virtual memory management on the Amiga ?

Unfortunately the Amiga operating system has not been written to
support virtual memory, so this program is kind of a hack. I tried to
keep everything as system-friendly as possible, but there are certain
situations when VMM might crash the system. This is not VMM’s fault,
but the thoughtlessness of the Amiga’s developers regarding virtual
memory.
VMM installs a standard memory list in ExecBase, so virtual memory
will be handled just like other memory. VM is allocated only when the
MEMF_PUBLIC flag in the allocation is not set. Otherwise system data
such as task control blocks and IORequests might be paged out, which
would lead to failure. Code can NOT be put into virtual memory,
because the DOS loader always requests memory with MEMF_PUBLIC flag
set. From V1.3 this mechanism has been extended to make non-behaving
programs work together with VMM.

1.4 VMM/doc/VMM.guide/INSTALLATION

2. INSTALLATION

VMM requires at least OS2.0 to run. There are two ways to install VMM
on your system. There’s an installer script provided which does all
the necessary setup for you. Simply click on the icon from Workbench
and it will guide you through the installation step by step. If you
don’t like to use the installer script, you can install VMM manually.
You have to execute the following steps to do this:
There are two versions of the main program, one for a pagesize of 4 KB
and one for 8 KB. You have to decide, which pagesize you want to use
for paging. Generally a pagesize of 4 KB would be appropriate, but
there might be cases (e.g. on some ’040 cards for the A2000), which
only work with 8K pages due to the MMU setup of special processor
cards. If there’s an MMU table already installed, you have to use the

doc/VMM 4 / 19

size used by that table. Otherwise the system will probably crash.
Use the "ShowPageSize" program to find out which pagesize is possible
for your system. When you have chosen which one to use, copy the
corresponding executable into the L: directory and rename it to
"VMM-Handler". Put VMM somewhere into your path or into WBStartup.
The developer files can be copied whereever you like or where your
compiler expects them.
The first time you use VMM, you have to specify the parameters used
for paging. This is done by simply clicking onto VMM’s icon from
Workbench or by starting VMM from the CLI. A sample configuration
file "VMM.prefs" is provided which you can use as a starting
configuration (paging device has still to be entered).
After you have set up your initial environment you may change the
tooltypes of VMM to "CX_POPUP=NO" to prevent VMM from displaying its
window on startup. During runtime you can always invoke the window by
either pressing VMM’s hotkey (default: ralt rshift v) or by starting
VMM a second time.
The following parameters can be specified when starting VMM. They can
be entered from the CLI or as tooltypes from Workbench.

CX_POPUP=YES|NO
CX_PRIORITY=<n>
CX_POPKEY=<hotkey definition>
QUIT This makes VMM quit if it is running

1.5 VMM/doc/VMM.guide/CHANGES

3. CHANGES

Changes from V1.0 to V1.1

Changes from V1.1 to V1.2

Changes from V1.2 to V1.3

Changes from V1.3 to V2.0

Changes from V2.0 to V2.1

1.6 VMM/doc/VMM.guide/To_1_1

There were quite a few changes / enhancements implemented since the
release of V1.0.

- There was a bug, which caused VMM to page to the wrong disk on
systems with hard disks with unit numbers other than zero.

- A dynamic memory allocation policy for page-frames is now
implemented. This causes VMM to allocate a new page-frame on each

doc/VMM 5 / 19

pagefault if possible, thus reducing disk access. When memory is
needed for other purposes, VMM will free its buffers and return
memory to the public memory pool.

- Paging to a disk file is implemented now. Unfortunately it is quite
slow due to the overhead of the AmigaDOS filing system.

- VMM should now run on all machines with a genuine 68040 processor
without problems. It installs its own MMU table if necessary.

- The statistics window is font-sensitive now and gives more
information about the paging process. Additionally a new program
"VMMStat" is included, so you don’t have to keep the statistics
window open all the time.

- Up to 64 MB are now available for virtual memory.

- Two different program versions for pagesizes of 4 and 8 KB are
available now.

- Disk access time is reduced by minimizing head motion of the paging
device.

1.7 VMM/doc/VMM.guide/To_1_2

- In V1.1 tasks were forbidden to allocate VM from a forbidden section
for security reasons. This has been changed back to the
behaviour of V1.0 because of problems with AdPro.

- A small program "ShowPageSize" has been added to determine which
pagesize is possible on your system.

- Fixed a bug which caused strange errors when using a page-file with
its path longer than 20 characters, or paging to a partition with
the partition name longer than 20 characters. The path of the
page-file can now be up to 80 characters, the name of the paging
partition up to 40 characters.

- Maximum VM size has been increased to 128 MB as requested.

- A special library for giving VM only to dedicated programs has been
added. It includes functions such as AllocVMem , FreeVMem and
AvailVMem. See vmm_lib.doc for details.

1.8 VMM/doc/VMM.guide/To_1_3

- FreeMem now marks the freed pages as empty resulting in less paging
on freeing memory. Unfortunately this breaks tools such as MungWall
which writes to memory it hasn’t allocated.

- Fixed a bug which caused strange behaviour during disk IO using
multiple units sharing the same device. This was probably

doc/VMM 6 / 19

responsible for some strange misbehaviours when rendering text and
icons.

- The statistics window is now "zoomable" to only the title bar
indicating the amount of free VM. Position and initial status of
the statistics window are configurable in VMMPrefs.

- The preferences are now changeable while VMM is running. All
parameters except the paging device/file, the page-file size and the
position of the statistics window will be immediately changed by
VMM.

- An advanced section for memory allocation has been added to
VMMPrefs. You can now determine the minimum size for VM allocations
for PUBLIC and non-PUBLIC requests separately.

- Reduced VMM’s usage of signals on behalf of other tasks. There were
problems with tasks that had all their signals already allocated.

- The Wait function had to be patched in order to avoid problems with
tasks which have a stack in VM.

- You can now exit VMM even if there’s VM still allocated. In this
case VMM will try to page in all this memory and set up the MMU
tables accordingly, after which it will quit.

- Now writes out modified pages before it needs to, resulting in
better average pagefault service times.

- Added a reset handler which inhibits a reset until paging currently
going on has finished. This prevents the validate procedure after
reset if you are paging to a file.

- Fixed a bug which caused VMM to hang when writing the first page to
DMA-driven harddisks.

- Some minor changes and cleanups.

1.9 VMM/doc/VMM.guide/To_2_0

- VMM runs on the 68030. Consequently VMM40 has been renamed to VMM.

- Implemented so-called pseudo-partition, which look like a file but
can be accessed with the speed of a partition.

- VMM is a commodity in V2.0 using a hotkey to display its GUI.
Consequently the setup of V2.0 has changed a bit. VMM40 has been
moved to L:VMM-Handler and VMM40Prefs is now simply called VMM. The
VMM: assign and the StartVMM program have become obsolete.

- Hopefully fixed bugs having to do with paging to DMA devices
(Patched CachePreDMA and CachePostDMA)

- The GUI has changed a bit to make room for some additionally needed
gadgets.

doc/VMM 7 / 19

- VMM now patches Workbench’s title bar to include the amount of free
VM. There’s a configuration button to enable or disable this feature.

- Better exit handling if there’s still VM allocated.

- Miscellaneous minor changes and bug fixes

1.10 VMM/doc/VMM.guide/To_2_1

- AvailMem now returns amount of free public memory if task is not
permitted to use virtual memory.

- Fixed a bug in the startup code which caused VMM to crash if the
preferences file wasn’t found. Now a requester is displayed.

- Fixed a bug in the Installer script which caused the default
configuration file not to be copied.

- Implemented a write buffer to write multiple pages to disk.
Although this involves copying the pages to the buffer it generally
results in a quite noticeable speed improvement.

- Deleted the memory option for paging to the largest available chunk
since no-one ever seems to use it.

- Paging to a file is speeded up significantly by using additional
buffers for the filesystem. FFS and OFS are very inefficient on
seeking on long files. VMM installs as many buffers as are needed
to keep the file list blocks of the paging file in memory. Other
file systems such as the MSDOS filesystem don’t need this.

- FreeMem now marks the freed pages as unused instead of invalid.
Previously subsequent accesses to that range of memory resulted in a
page-fault without any disk access but the overhead for page-fault
handling.

- Corrected font calculation for statistics window.

- Improved error handling.

- Fixed a hard to find bug which could cause spurious crashes on 68030
systems with a 68882. I underestimated the amount of data which is
pushed onto the stack during a context switch if the FPU is busy.

- Added support for external statistics displays. You can now write
your own (possibly graphical) statistics output for VMM.

- Worked around a DOS bug which caused failure to use pseudo-par-
titions on partitions with the same volume and device name.

1.11 VMM/doc/VMM.guide/VMMPREFS

doc/VMM 8 / 19

4. The preferences window

In order to enter all the settings that are needed for VMM to work,
there’s a nice GUI provided with the program. NEVER modify the
configuration file generated by VMM by hand. If this file is not what
it’s supposed to be, VMM may crash or, even worse, use the wrong
partition or the like. You can change the parameters of VMM while it
is running except for a few, where it would be hard and unnecessary
(in my opinion) to change them during runtime.

There are four major parts in the configuration of VMM:

Tasks / Programs

Memory settings

Statistics

Miscellaneous

1.12 VMM/doc/VMM.guide/Tasks_Gadget

Tasks / Programs list:

You can enter task or program names, which should be run either using
VM or not. From V1.3 an advanced section has been added to VMM to
make more detailed prescriptions about VM allocation possible. The
details are explained in the following paragraph. A newly added task
or program is entered with the currently displayed status of the "Use
VM" gadget, i.e. "Use VM", "Don’t use VM" or "Advanced", and can be
modified afterwards. The name you enter can either be a task name,
the name of a load file (without path), or even a normal AmigaDOS
pattern to specify which entity is meant to be run with or without VM.
The default behaviour is always presented first in the list, thus
making the "VM by default" gadget in previous versions obsolete.
There are additional buttons to move entries in the list, so you can
group programs together. However the sequence of programs in this
list does not influence the behaviour of VMM.

The advanced section has been implemented because there are programs
which either always allocate memory with the public flag set or they
allocate memory with the PUBLIC flag unset, where it must be set. To
make these programs run together with VMM, you can tell VMM the
minimum sizes to go into VM with the PUBLIC flag set or unset. If you
enter a value into one of the string gadgets all requests with sizes
larger than the given size will be allocated in VM, e.g. a value of 0
makes all allocations with the corresponding flag settings go into VM.
The special value -1 will tell VMM that no allocation should go into
VM for the corresponding flag setting. This is a bit difficult to
explain, so I hope the following examples will make things clearer.

Example 1: A program allocates all its memory with the PUBLIC flag set

doc/VMM 9 / 19

and thus makes no use of VM.
Solution: Set the "Min public VM allocation" gadget to some value

e.g. 200. You will have to try the actual value. If you
enter 200, all requests smaller than 200 bytes with the
PUBLIC flag set will go into PUBLIC memory, whereas all
larger ones will go into VM. Enter 0 into the "Min
non-public VM allocation" gadget to indicate all
allocations with the PUBLIC flag unset should use VM.

Example 2: A program allocates system structures with the PUBLIC flag
unset leading to crashes with previous versions of VMM.

Solution: Set the "Min non-PUBLIC VM allocation" gadget to e.g. 200
and the "Min PUBLIC VM allocation" gadget to -1. This way
system structures, which are mostly well below 200 bytes,
always go into PUBLIC memory.

The "Use VM" state corresponds to a -1/0 setting of the "Min PUBLIC"/
"Min non-PUBLIC" gadgets. The "Don’t use VM" state corresponds to
a setting of -1/-1.

1.13 VMM/doc/VMM.guide/Memory_Settings

This section determines the paging device and the configuration of
memory used for paging.

Memory allocation

Mem size used for paging

Memory Type

Swap medium

Swap file size

VM Priority

Write buffer

1.14 VMM/doc/VMM.guide/MemType_Gadget

Memory allocation for pageframes:

There are three policies for memory allocation:

- Largest: VMM allocates as much memory as possible on startup.
There are certain problems in using this memory
allocation scheme. I’m thinking about removing this
option in future versions of VMM, because I think

doc/VMM 10 / 19

no-one really uses it. If you’d like this option to
remain in future versions, send me a mail.

- Fixed size: VMM allocates as much memory as given by the memory
size gadget on startup.

- Dynamic: VMM allocates and frees memory for page frames as
required during run-time.

1.15 VMM/doc/VMM.guide/MemSize_Gadget

Memory size:

For the fixed size memory allocation policy you can set the amount of
memory used for page frames.

1.16 VMM/doc/VMM.guide/MemFlags_Gadget

Memory type for pageframes:

This gadget determines the type of memory to be used for paging.
Either FAST, CHIP or ANY can be selected. Normally CHIP memory is
inhibited from being cached; also on the A4000 pageframes lying in
CHIP RAM can’t be cached. However on the A2000 with a 68040 card it
might be possible that pageframes located in CHIP memory are cached,
making it valuable to use CHIP memory as a paging buffer to acquire
more cacheable RAM.

1.17 VMM/doc/VMM.guide/SwapMedium_Gadget

Swap medium:

There are three possible mediums where to page to:

- Paging to a partition: When clicking on the ’Select’ gadget you
will be asked for the partition you want to use for paging. If you
select a partition for paging for the first time, VMM will ask you
if you really want to overwrite that partition, so you need not
worry about destroying the wrong partition.

- Paging to a file: When clicking on the ’Select’ gadget you will be
asked for a filename used for paging.

- Paging to a so-called pseudo-partition: Pseudo-partitions are files
which use a contiguous block on you harddisk. As such they can be
listed, viewed and deleted just like normal files. VMM creates this
kind of file for you and can access it using device commands
yielding the speed of paging onto a partition while still using a
file. If the file already exists VMM checks its consistency upon
startup so you need not worry about VMM overwriting part of your

doc/VMM 11 / 19

partition.
Pseudo-partitions currently work only on FFS volumes with a
blocksize of 512 bytes. Because pseudo-partitions need contiguous
blocks on your harddisk and FFS stores the root block in the middle
of a partition, a pseudo-partition cannot be larger than half the
size of the volume it resides on.
A sentence of warning has to be spoken here: This is a very
DANGEROUS option. If there is a bug in the code creating and
maintaining the pseudo-partition, VMM has the potential of
destroying your partition. However, I’ve thoroughly tested this
feature and never had any problems with it.

This parameter and the following page file size will not be updated
until the next start of VMM. It would be very hard and unnecessary to
switch page files during runtime.

1.18 VMM/doc/VMM.guide/FileSize_Gadget

Filesize:

This gadget determines the size of the paging file or pseudo
partition.

This parameter and the previous swap medium will not be updated until
the next start of VMM. It would be very hard and unnecessary to
switch page files during runtime.

1.19 VMM/doc/VMM.guide/MemPri_Gadget

VM priority:

Here you can select, when VM will be allocated. Exec searches through
all memory lists in a priority order with normal FAST memory usually
at priority 30, CHIP at -10. So if you want to allocate VM first, you
have to select a value larger than 30; if you want to use normal fast
memory first, but VM before CHIP memory, you have to select a value
between -10 and 30. Dynamic memory allocation works best with VM
priority being the highest in the system. Otherwise all physical
memory will already be taken and VMM has to page all virtual memory
into a small buffer, because it cannot enlarge it anymore.

1.20 VMM/doc/VMM.guide/WriteBuffer_Gadget

Write buffer:

From V2.1 VMM uses a write buffer in order to be able to write out
several pages in one go. This results in a considerable speedup
because it reduces disk seek times and overhead for I/O handling.
With the write buffer gadget the amount of memory dedicated to
buffering pages going out to disk can be determined. Setting this to

doc/VMM 12 / 19

0 disables write buffering. Specifying an amount of 100 to 200 K for
this should suffice for nearly all situations.

1.21 VMM/doc/VMM.guide/Stat_Gadget

Statistics:

Statistics of the paging process can be displayed in a small window or
just in a titlebar. If the titlebar is used, only available VM and
PUBLIC fast memory is displayed. You can switch between the two
displays using the zoom gadget. The display also contains a close
gadget. Clicking on it will cause the statistics window to be closed.
Note that this behaviour is different from previous versions (before
2.0). You can set the position of the window/titlebar and the initial
state.

1.22 VMM/doc/VMM.guide/Misc_Settings

Hotkeys:

There are two additional hotkeys to enable or disable allocation of
virtual memory during runtime. The hotkey descriptions have to follow
the commodities rules for hotkey descriptions. The popup hotkey can
only be specified via commandline or tooltypes (according to
commodities setup).

Minimum VM allocation

To speed up the AllocMem routine which is heavily used by the whole
system, VMM doesn’t allocate VM for requests smaller than the size
given here. This saves AllocMem the overhead of looking into a hash
table to find out if the current task is allowed to use VM. Setting
this to zero will efectively cause VMM to look into its hash table on
every AllocMem. A value of 100 to 200 is reasonable.

Don’t cache Zorro II RAM:

On some Amigas with a 68040 card you have to disable the caching of
RAM in the range of 0 to $00ffffff (Zorro II addressing range).

Show VM in WB title

After receiving many requests to patch the Workbench title bar in
order to reflect the amount of free virtual memory I finally
implemented this. As this patch is a bad hack (patches
SetWindowTitles() and compares the string title to "Amiga Workbench"
or "AmigaOS 3.1") I decided to make it configurable. That’s what this
button is for.

doc/VMM 13 / 19

1.23 VMM/doc/VMM.guide/PROC_DIFFS

5. 68030 VS. 68040

There are certain differences in the 68030 and 68040 implementation.
First, on the 68030 VMM (nearly) always installs its own MMU table.
This is because most 68030 machines either don’t use the MMU at all or
they have it set to a different pagesize. This means that Enforcer
does not work on the 68030 together with VMM. It uses a pagesize of
256 bytes. From V2.1 I have added a small hack which causes the
machine to reload the kickfile after a crash if you are using a
softkicked A3000. This feature is not documented anywhere but has
been proposed by Mike Sinz.

1.24 VMM/doc/VMM.guide/PROBLEMS

6. PROBLEMS

Commodore defined the MEMF_PUBLIC flag for the AllocMem function a
long time ago, when no-one knew what this would mean in future. The
result is that either people allocated all their memory with the
MEMF_PUBLIC flag set or they ignored it and never set it at all. The
first way doesn’t hurt VMM, but it prevents the corresponding program
from using virtual memory. The second alternative is worse. There
are a lot of programs, which allocate messages or IORequests on the
stack, which might produce a failure in a virtual memory environment.
Such programs can be forbidden to use virtual memory using the
preferences program, otherwise spurious crashes may result. If you
are considering writing programs which might benefit from virtual
memory, you should read the file "VMProgGuideline" to see what should
be avoided in a virtual memory environment.
Caching programs such as FastCache or PowerCache should be disabled
from using virtual memory (doesn’t make sense to give virtual memory
to a caching program, does it?). The same applies to all programs
that patch the BeginIO vector of the paging device. When using disk
caching programs, the file system tasks probably have to be disabled
from using VM, too.
Programs which use the Access Fault Trap Vector such as Enforcer have
to be run before VMM, otherwise Enforcer will flag all pagefaults as
invalid memory references.

1.25 VMM/doc/VMM.guide/TROUBLESHOOTING

7. TROUBLESHOOTING

Question: Program "X" doesn’t use virtual memory. Why?
Answer: "X" might always allocate memory with the MEMF_PUBLIC flag

set. Use the "advanced" section to enable this program to
use VM.

Question: VMM crashes with my configuration. How do I find out which

doc/VMM 14 / 19

program behaves badly ?
Answer: Set the default allocation to "Don’t use VM" and move the

memory slider to a low position, so there are many
pagefaults, if VMM runs. Then enable virtual memory for
each task in your system one after another. This way you
can see, when the system crashes first. You can disable VM
for the task producing the crashes then.

Question: VMM sometimes hangs when accessing a partition using the
same device as the paging partition. Why?

Answer: You probably have a harddisk using DMA transfers with the
mask parameter for the filesystem set wrong. You have to use
either HDToolbox or edit your mountlist to change the value
of the mask parameter for all partitions on the paging
device. If you don’t know what the mask parameter means,
simply set it to 0xfffffe, limiting transfers to the lower
16 MB. This error should not occur anymore from V2.0. If it
still does, please send me a mail.

Question: My disk-caching program doesn’t work even if disabled from
using VM. Why?

Answer: Some programs patch code executed by other tasks. E.g.
DynamiCache patches the BeginIO vector of cached devices, so
that all memory allocation for cache buffers is done not by
DynamiCache, but by the filesystem task. If this is a
problem, the tasks executing the patched code (here: DH0,
DH1,...) have to be disabled from using VM. For a problem
regarding the copyback cache of PowerCache see section

Known bugs
.

1.26 VMM/doc/VMM.guide/TECHNICAL_DES

8. TECHNICAL DESCRIPTION

VMM consists of three tasks, enabling the statistics window invokes a
fourth. The first one is the VM_Manager, which takes care of deciding
which task is allowed to use VM, initializing everything and so on.
The PageHandler does the paging, when a pagefault has occurred. The
Prepager causes pages to be locked in memory, when IO has to be
carried out to or from VM using the paging device. Most of the effort
has not been invested into getting the paging to run, but to make the
system use VM correctly under all circumstances. Unfortunately
Commodore hasn’t invested much thought into the definition of the
MEMF_PUBLIC flag, so quite a few system functions had to be patched.
I have tried to keep VMM as system-friendly as possible, but I had to
make a few assumptions, which are not documented. The worst one is
that I had to patch the Switch function, which changes a task from
running state into the ready or wait state. This means that VMM might
not run in future versions of the OS, though I don’t think Commodore
will be changing much in such low level code.
Commodore also didn’t state anything about using non-public memory
inside Forbid/Permit or Disable/Enable. Causing a pagefault inside a
forbidden/disabled section is dangerous, because paging results in

doc/VMM 15 / 19

task switching. Memory which should be freed inside such a section is
freed when this section is completed.
Currently the number of faults in progress plus the number of tasks
using VM for their stack must not be more than 20 at any moment.

The VM_Manager process

The VM_Manager starts up all other tasks and initializes most data.
It also handles the quit request by the user. Each time AllocMem is
called, VMM has to decide whether the requesting process is allowed to
use VM. The first time a task/process allocates memory, a message is
sent to the VM_Manager, which decides if usage of VM is permitted.
Subsequent requests by the same task are dispatched quickly using a
hash table. The manager process also handles all messages generated
by pressing a hotkey or using the Exchange program.

The PageHandler task

All paging is handled asynchronously by the page handler. When a
fault occurs, the parameters for such a fault are put into a so-called
trap-struct by the trap-handling code. This structure is then sent to
the pagehandler. The pagehandler chooses a page to be evicted and
possibly writes out a modified page first. The so-called
second-chance algorithm is used for choosing a page to be evicted.
When this process is finished, the required page is read in. When the
read has been successfully completed, the faulting task is signalled
to continue its computation. During IO to the paging device other
tasks are permitted to run and eventually cause other pagefaults,
which are handled immediately.
It will sometimes look as if VMM is paging a lot. To reduce
page-fault service time, VMM tries to write out modified pages before
it really needs to. This reduces the average service-time quite a
bit. Sometimes VMM will write out pages without benefit, because they
are modified later on. Though VMM might use the paging device more
than other VM programs do, this makes programs using VMM running
quicker most of the time.

The Prepager task

In the process of writing VMM I have detected some cases, in which IO
to the paging device is requested, e.g. to another partition living
on the same physical device as the paging partition. As the paging
device itself must never block for a pagefault, this has to be
prevented. All IO to the paging device (except that from the
pagehandler) is examined for usage of virtual memory. If it uses VM,
the corresponding pages are copied to a temporary buffer, the IO is
carried out using that buffer, the pages are copied back if needed and
the process requesting IO is permitted to continue.

The statistics task

The statistics task is only created, if statistics are enabled. Every
second it prints a few lines about usage of virtual memory and the
number of pagefaults occurred so far.

doc/VMM 16 / 19

Patches to system functions

The following Exec functions are patched by VMM: Switch, AddTask,
Wait, AllocMem, FreeMem, AvailMem, CachePreDMA and CachePostDMA. On
68030 system ColdReboot is also patched to restore the original MMU
table before reset.
Additionally the BeginIO function of the paging device is patched.
The Switch, Wait and AddTask functions had to be patched because the
stack may be in virtual memory. To prevent pagefaults while in
supervisor mode (task-switching), the stack is replaced by a temporary
stack large enough to contain all registers pushed onto the stack
during a context switch. When the task is re-launched, the original
stack is used again.

1.27 VMM/doc/VMM.guide/VMM_LIBRARY

9. VMM.LIBRARY

A library has been added to the VMM distribution as requested by some
people. It contains functions for AllocVMem, FreeVMem, AvailVMem,
AllocVVec and FreeVVec. When the library is first loaded, the VMM
pagehandler is automatically installed. Only programs using the
function calls of vmm.library will get virtual memory. If you wish to
use vmm.library and the standard way of getting VM, you have to use
VMM just like before. Currently the pagehandler is not terminated
when the library is expunged. A doc file for the library functions in
Autodoc format is included.

1.28 VMM/doc/VMM.guide/EXT_STATS

10. EXTERNAL STATISTICS

From V2.1 it is possible to write your own statistics display program.
You can add graphical output and additional computations such as
average page fault rate and so on. There’s an include file describing
the message structure you have to send to VMM to acquire status
information. See that include file for further information. If you
write a nice program you can send it to me and I might include it in
the next release.

1.29 VMM/doc/VMM.guide/KNOWN_BUGS

11. KNOWN BUGS

As far as I know there are no major bugs in VMM. However there is one
minor bug which still has to be corrected. If a task is removed via
RemTask from another task and it uses virtual memory for its stack,
the TrapStruct is currently not released. Commodore recommends not to

doc/VMM 17 / 19

call RemTask on another task and it isn’t done very often in real
programs. One possibility is to prevent the task that allocates the
stack for such programs from using virtual memory.

It can happen that VMM cannot startup due to lack of memory. In this
case it should bring up a requester stating this fact. If the
requester cannot be created, there will be no message at all
indicating the reason of failure. This is due to a bug in
EasyRequestArgs, as there is no way to find out if the requester was
successful or not. In future OS versions (if there will be any) this
should produce a recoverable alert.

There’s a strange phenomenon in conjunction with console.device. When
you open a new CLI window, sometimes the cursor remains ghosted
although the window is activated. Activating another window and then
the new console window again will activate the cursor. The ’CON’ task
seems to allocate its stack in VM and that produces the problem. If
you disable ’CON’ from using VM this problems disappears.

There’s a bug in conjunction with the copyback mode of PowerCache. It
causes file contents to be garbled. This is rather a bug in
PowerCache than in VMM. In the current version of PowerCache (37.115)
there’s are two choices: either you have to turn off the copyback
cache of PowerCache or you have to set the mask (in HDToolbox) for all
partitions on the paging device to 0xfffffff (limits accesses to lower
256 MB). I hope this will be fixed in future versions of PowerCache.

If you decide to open the statistics window when VMM is already
running by invoking the GUI with the hotkey it can happen that
VMM_Manager displays an error message saying "Not enough memory".
Despite this fact the statistics window is opened. I didn’t want to
fix this in this release because it requires a rather large change in
the code which I want to be thoroughly tested before release.

I have been reported problems with GVP cards. Though I have done a
lot of debugging for this case I haven’t been able to track this down
yet. The only thing I can say is that VMM works flawlessly on these
cards if the data cache is turned off.

1.30 VMM/doc/VMM.guide/BUG_REPORTING

12. BUG REPORTING

If you wish to report a bug or propose an enhancement to VMM please
use the bug-report form which can be found in this archive. I
frequently cannot answer questions because I don’t know which version
of VMM people are referring to, which hardware they use and so on.
This is the reason the bug-report form is important for me.
You can find my address under

Miscellaneous
.

doc/VMM 18 / 19

1.31 VMM/doc/VMM.guide/FUTURE_PLANS

13. FUTURE PLANS

There are several features I want to include in future versions of
VMM such as:

- Support to use virtual memory for code segments / seglists.
I have done a few experiments in this area and the results seem
quite promising. It is not yet in a state which can be released to
the public and as such will be incorporated in the next release.

- Improve dynamic memory model under low memory conditions

I include a list of working programs and of programs with problems in
this documentation (based on data you send me). Please keep on
sending me your experiences.

1.32 VMM/doc/VMM.guide/ACKNOWLEDGMENTS

14. ACKNOWLEDGMENTS

I would like to thank the following people for ideas, improvements and
beta-testing of VMM (in alphabetical order).

Michael Berg
Torsten Ebeling
Frank Grimm
Robert Kiehne
Jeff Koons
Manfred Matzinger
Barry McConnell
Volker Rudolph (for helping me with the 68030 port)
Torsten Stolpmann
Erno Tuomainen
Juergen Zimmermann

I also want to thank all those people who sent me mail with wishes and
bug reports. Without them VMM wouldn’t work as well as it does.

1.33 VMM/doc/VMM.guide/MISCELLANEOUS

15. MISCELLANEOUS

I would be glad to hear from you, if VMM works on your machine, what
programs have difficulties in running with VMM. If you report a
bug PLEASE use the bug-report form which can be found in this archive.
Because most bugs seem to be very hardware dependent I need your
configuration data to find out what happens.

email: apel@gypsy.physik.uni-kl.de

doc/VMM 19 / 19

snail-mail: Martin Apel
Gerhart-Hauptmann-Str.5
67663 Kaiserslautern
Germany

phone: 0631 / 24257

	doc/VMM
	VMM/doc/VMM.guide
	VMM/doc/VMM.guide/COPYRIGHT
	VMM/doc/VMM.guide/INTRODUCTION
	VMM/doc/VMM.guide/INSTALLATION
	VMM/doc/VMM.guide/CHANGES
	VMM/doc/VMM.guide/To_1_1
	VMM/doc/VMM.guide/To_1_2
	VMM/doc/VMM.guide/To_1_3
	VMM/doc/VMM.guide/To_2_0
	VMM/doc/VMM.guide/To_2_1
	VMM/doc/VMM.guide/VMMPREFS
	VMM/doc/VMM.guide/Tasks_Gadget
	VMM/doc/VMM.guide/Memory_Settings
	VMM/doc/VMM.guide/MemType_Gadget
	VMM/doc/VMM.guide/MemSize_Gadget
	VMM/doc/VMM.guide/MemFlags_Gadget
	VMM/doc/VMM.guide/SwapMedium_Gadget
	VMM/doc/VMM.guide/FileSize_Gadget
	VMM/doc/VMM.guide/MemPri_Gadget
	VMM/doc/VMM.guide/WriteBuffer_Gadget
	VMM/doc/VMM.guide/Stat_Gadget
	VMM/doc/VMM.guide/Misc_Settings
	VMM/doc/VMM.guide/PROC_DIFFS
	VMM/doc/VMM.guide/PROBLEMS
	VMM/doc/VMM.guide/TROUBLESHOOTING
	VMM/doc/VMM.guide/TECHNICAL_DES
	VMM/doc/VMM.guide/VMM_LIBRARY
	VMM/doc/VMM.guide/EXT_STATS
	VMM/doc/VMM.guide/KNOWN_BUGS
	VMM/doc/VMM.guide/BUG_REPORTING
	VMM/doc/VMM.guide/FUTURE_PLANS
	VMM/doc/VMM.guide/ACKNOWLEDGMENTS
	VMM/doc/VMM.guide/MISCELLANEOUS

