
VNC

Thomas the Richter

VNC ii

COLLABORATORS

TITLE :

VNC

ACTION NAME DATE SIGNATURE

WRITTEN BY Thomas the Richter January 18, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

VNC iii

Contents

1 VNC 1

1.1 ViNCEd Guide . 1

1.2 Licence and copyright agreement . 2

1.3 The User’s Guide . 2

1.4 The SetVNC Tool . 3

1.5 The Programmer’s Manual . 3

1.6 My address . 4

1.7 Book references . 4

1.8 Overview: What is ViNCEd about? And why this strange name? . 5

1.9 How to install ViNCEd . 5

1.10 The Keyboard - how to type? . 7

1.11 Non standard keys . 12

1.12 The Yank buffer . 12

1.13 The notation of keyboard sequences in this manual . 12

1.14 What is a word? . 13

1.15 What is a component? . 13

1.16 The Break functions of ViNCEd . 13

1.17 What is a keyboard function? . 14

1.18 Binding a keyboard function? . 14

1.19 Gadgets in the Window . 14

1.20 The Window Buffers . 15

1.21 The ViNCEd Menu . 15

1.22 The Project Menu . 16

1.23 The Edit Menu . 17

1.24 The Macros Menu . 18

1.25 The Settings Menu . 18

1.26 Overwrite Mode . 18

1.27 NumPad for Cursor . 19

1.28 Block Operations . 19

1.29 Macros and Buttons . 19

VNC iv

1.30 The Window Path . 20

1.31 The name of the ViNCEd handler . 22

1.32 ConMan W Argument . 22

1.33 ConMan S Argument . 22

1.34 ConMan B Argument . 22

1.35 LeftEdge Argument . 22

1.36 TopEdge Argument . 22

1.37 Width Argument . 23

1.38 Height Argument . 23

1.39 COLS Argument . 23

1.40 ROWS Argument . 23

1.41 WAIT Argument . 23

1.42 AUTO Argument . 23

1.43 CLOSE Argument . 24

1.44 NOCLOSE Argument . 24

1.45 SMART Argument . 24

1.46 SIMPLE Argument . 24

1.47 INACTIVE Argument . 24

1.48 BACKDROP Argument . 24

1.49 BACK Argument . 24

1.50 NOBORDER Argument . 25

1.51 SIZE Argument . 25

1.52 NOSIZE Argument . 25

1.53 DRAG Argument . 25

1.54 NODRAG Argument . 25

1.55 DEPTH Argument . 25

1.56 NODEPTH Argument . 25

1.57 NOMENU Argument . 25

1.58 MENU Argument . 26

1.59 NOPROPX Argument . 26

1.60 NOPROPY Argument . 26

1.61 PROPX Argument . 26

1.62 PROPY Argument . 26

1.63 FALLBACK Argument . 26

1.64 NOFALLBACK Argument . 26

1.65 OLDLOOK Argument . 26

1.66 CHUNKY Argument . 27

1.67 PLANAR Argument . 27

1.68 SHELL Argument . 27

VNC v

1.69 NOSHELL Argument . 27

1.70 BUTTONS Argument . 27

1.71 NOBUTTONS Argument . 27

1.72 ICONIFY Argument . 27

1.73 NOICONIFY Option . 28

1.74 ICONIFIED Option . 28

1.75 ANSI Argument . 28

1.76 NOANSI Argument . 28

1.77 WINDOW Argument . 28

1.78 FONT Argument . 29

1.79 KEEP Argument . 29

1.80 SCREEN Argument . 29

1.81 ALT Argument . 30

1.82 STITLE Argument . 30

1.83 SDEPTH Argument . 30

1.84 SFONT Argument . 30

1.85 NOTITLEBAR Argument . 31

1.86 TITLEBAR Argument . 31

1.87 MONITORID Argument . 31

1.88 MONITOR Argument . 31

1.89 PLAIN Argument . 32

1.90 PREFS Argument . 32

1.91 ConMan style single character options . 32

1.92 The Window Title . 33

1.93 The Shell Mode . 34

1.94 Icon drop in the Shell mode . 35

1.95 TAB expansion in the Shell mode . 35

1.96 All TAB expansion settings at once . 38

1.97 Why does that match commands? . 38

1.98 Why does this match commands that start with rex? . 39

1.99 How to change the command search directory? . 39

1.100How to exclude directories? . 39

1.101How to exclude assignments? . 40

1.102How to exclude icon files? . 40

1.103Side mark: Inserting spaces . 40

1.104How to avoid the refinement? . 40

1.105What about a requester if not unique? . 40

1.106About info files and requesters . 41

1.107How to use standard requesters? . 41

VNC vi

1.108How to turn off the Double-Tab requester? . 41

1.109What is a refinement? . 41

1.110What is a template? . 41

1.111The magic Ctrl Z key in the Shell mode . 42

1.112The command history . 43

1.113All history settings at once . 44

1.114The scripts contained in this package . 45

1.115Details about Job Control . 46

1.116Compatibility notes . 47

1.117Compatibility notes for the experts . 49

1.118List of all Keyboard Functions . 49

1.119Cursor Left (Keyboard Function) . 51

1.120Cursor Right (Keyboard Function) . 51

1.121Cursor Up keyboard (Keyboard Function) . 51

1.122Cursor Down keyboard (Keyboard Function) . 51

1.123History Up (Keyboard Function) . 51

1.124History Down (Keyboard Function) . 52

1.125Search Partial Upwards (Keyboard Function) . 52

1.126Search Partial Downwards (Keyboard Function) . 52

1.127Search History Upwards (Keyboard Function) . 52

1.128Search History Downwards (Keyboard Function) . 52

1.129Half Screen Left (Keyboard Function) . 52

1.130Half Screen Right (Keyboard Function) . 52

1.131Half Screen Up (Keyboard Function) . 52

1.132Half Screen Down (Keyboard Function) . 53

1.133To Left Border (Keyboard Function) . 53

1.134To Right Border (Keyboard Function) . 53

1.135To Top of Screen (Keyboard Function) . 53

1.136To Bottom of Screen (Keyboard Function) . 53

1.137Prev Word (Keyboard Function) . 53

1.138Next Word (Keyboard Function) . 53

1.139Prev Component (Keyboard Function) . 53

1.140Next Component (Keyboard Function) . 53

1.141Home (Keyboard Function) . 54

1.142End (Keyboard Function) . 54

1.143Scroll Up (Keyboard Function) . 54

1.144Scroll Down (Keyboard Function) . 54

1.145Scroll Half Screen Up (Keyboard Function) . 54

1.146Scroll Half Screen Down (Keyboard Function) . 54

VNC vii

1.147Send Inputs (Keyboard Function) . 55

1.148Split Line (Keyboard Function) . 55

1.149Insert ˆJ (Keyboard Function) . 55

1.150Send Complete Line (Keyboard Function) . 55

1.151Line Feed (Keyboard Function) . 55

1.152TAB Forwards (Keyboard Function) . 56

1.153TAB Backwards (Keyboard Function) . 56

1.154Expand Path (Keyboard Function) . 56

1.155Expand Backwards (Keyboard Function) . 56

1.156Expand Short (Keyboard Function) . 56

1.157Expand Short Bkwds (Keyboard Function) . 56

1.158Expand Devices (Keyboard Function) . 57

1.159Expand Devs Bkwds (Keyboard Function) . 57

1.160Expand Dirs (Keyboard Function) . 57

1.161Expand Dirs Bkwds (Keyboard Function) . 57

1.162Expand Icons (Keyboard Function) . 57

1.163Expand Icons Bkwds (Keyboard Function) . 58

1.164Expand Alt (Keyboard Function) . 58

1.165Expand Alt Bkwds (Keyboard Function) . 58

1.166Send ˆC (Keyboard Function) . 58

1.167Send ˆD (Keyboard Function) . 58

1.168Send ˆE (Keyboard Function) . 58

1.169Send ˆF (Keyboard Function) . 59

1.170Send ˆC to All (Keyboard Function) . 59

1.171Send ˆD to All (Keyboard Function) . 59

1.172Send ˆE to All (Keyboard Function) . 59

1.173Send ˆF to All (Keyboard Function) . 59

1.174Delete Forwards (Keyboard Function) . 59

1.175Delete Backwards (Keyboard Function) . 60

1.176Delete Full Line (Keyboard Function) . 60

1.177Cut Full Line (Keyboard Function) . 60

1.178Delete Inputs (Keyboard Function) . 60

1.179Cut Inputs (Keyboard Function) . 60

1.180Delete Word Fwds (Keyboard Function) . 60

1.181Cut Words Fwds (Keyboard Function) . 60

1.182Delete Word Bkwds (Keyboard Function) . 60

1.183Cut Word Bkwds (Keyboard Function) . 60

1.184Delete Component Fwds (Keyboard Function) . 61

1.185Cut Component Fwds (Keyboard Function) . 61

VNC viii

1.186Delete Component Bkwds (Keyboard Function) . 61

1.187Cut Component Bkwds (Keyboard Function) . 61

1.188Delete End of Line (Keyboard Function) . 61

1.189Cut End of Line (Keyboard Function) . 61

1.190Delete Start of Line (Keyboard Function) . 61

1.191Cut Start of Line (Keyboard Function) . 61

1.192Delete End of Display (Keyboard Function) . 61

1.193Form Feed (Keyboard Function) . 61

1.194Clear Screen (Keyboard Function) . 62

1.195Cut (Keyboard Function) . 62

1.196Copy (Keyboard Function) . 62

1.197Paste (Keyboard Function) . 62

1.198Hide (Keyboard Function) . 62

1.199Select All (Keyboard Function) . 62

1.200Copy Quiet (Keyboard Function) . 62

1.201Reset (Keyboard Function) . 62

1.202Full Reset (Keyboard Function) . 62

1.203Iconify (Keyboard Function) . 62

1.204Toggle ESC (Keyboard Function) . 63

1.205Toggle NumLock (Keyboard Function) . 63

1.206Toggle Overwrite (Keyboard Function) . 63

1.207Suspend (Keyboard Function) . 63

1.208Resume (Keyboard Function) . 63

1.209Abort Expansion (Keyboard Function) . 63

1.210Scroll to Cursor (Keyboard Function) . 63

1.211Rewind History (Keyboard Function) . 63

1.212Yank (Keyboard Function) . 63

1.213Generate EOF (Keyboard Function) . 64

1.214Display Beep (Keyboard Function) . 64

1.215Toggle Pause (Keyboard Function) . 64

1.216Help (Keyboard Function) . 64

1.217Fork New Shell (Keyboard Function) . 64

1.218Insert CSI (Keyboard Function) . 64

1.219Insert ESC (Keyboard Function) . 64

1.220The graphical Interface of SetVNC . 64

1.221The control pages of SetVNC . 65

1.222Shell and Workbench Operation of SetVNC . 65

1.223Workbench ToolTypes of the SetVNC program . 66

1.224Shell Arguments of the SetVNC program . 66

VNC ix

1.225Job Control related arguments of SetVNC . 68

1.226SetVNC Buffer I/O functions . 68

1.227The Format of the Preferences File . 69

1.228The About Pages . 73

1.229The Macros Page 1 and 2 . 73

1.230The Macros Page 3 . 74

1.231The Keyboard Page 1 . 74

1.232The Keyboard Page 2 . 75

1.233The Edit Page 1 . 76

1.234The Edit Page 2 . 76

1.235The Edit Page 3 . 76

1.236The Edit Page 4 . 76

1.237The Shell Page 1 . 77

1.238The Shell Page 2 . 77

1.239The Shell Page 3 . 77

1.240The Shell Page 4 . 77

1.241The Shell Page 5 . 77

1.242The Shell Page 6 . 78

1.243The Shell Page 7 . 78

1.244The Window Page 1 . 78

1.245The Window Page 2 . 79

1.246The Window Page 3 . 80

1.247The Timing Page 1 . 80

1.248The System Page 1 . 80

1.249The System Page 2 . 81

1.250The System Page 3 . 81

1.251The System Page 4 . 82

1.252QUIET (SetVNC argument) . 83

1.253MOUNT/K (OVERRIDE/S AS) (SetVNC argument) . 83

1.254HELP/S (SetVNC argument) . 83

1.255BACKGROUND/S (SetVNC argument) . 83

1.256FOREGROUND/K (OTHER/S CLI/N) . 84

1.257FREEPOINTER/S (SetVNC argument) . 84

1.258SETCONSOLE/S . 84

1.259LOAD/K (PREFS/S GLOBAL/S WINDOW/S DEFAULT/S LAST/S FROM) (SetVNC Argument) 85

1.260PREFS/S (SetVNC argument) . 85

1.261PUT/K (SCREEN HISTORY) (SetVNC argument) . 85

1.262GET/K (SCREEN HISTORY) (SetVNC argument) . 86

1.263RESET/S (SetVNC argument) . 86

VNC x

1.264MONITOR/A (SetVNC argument) . 86

1.265MODIFY/S (SetVNC argument) . 86

1.266SAVE/K (NOICONS/S PREFS/S GLOBAL/S WINDOW/S TO) (SetVNC argument) 86

1.267IFVNC/S (SetVNC argument) . 87

1.268Rebuild Delay/REBUILDDELAY (Prefs Flag) . 87

1.269Unrestricted Cursor Movement/DOSCURSOR (Prefs Flag) . 87

1.270Standard CR Insertion at Start of Line/CRINSERT (Prefs Flag) . 87

1.271Overwrite Mode/OVERWRITE (Prefs Flag) . 88

1.272History Buffer Wraps Around/WRAP (Prefs Flag) . 88

1.273Call Macro to Close Window/SMARTCLOSE (Prefs Flag) . 88

1.274Don’t send EOF until everybody waits/CLOSEQUEUE (Prefs Flag) . 88

1.275Don’t Write Printed Text into Clipboard/CUTUSER (Prefs Flag) . 88

1.276Word wrap workaround/NCURSESFIX (Prefs Flags) . 88

1.277Use Shell Mode by Default/SHELLMODE (Prefs Flag) . 89

1.278Auto Indent Mode/AUTOINDENT (Prefs Flag) . 89

1.279Don’t Add Close Gadget by Default/NODEFAULTCLOSE (Prefs Flag) . 89

1.280Implicit Copy after Text Marking/AUTOCOPY (Prefs Flag) . 89

1.281Prevent Accidental Window Closing/SAFERCLOSE (Prefs Flag) . 89

1.282Don’t Add Iconify Gadget by Default/FORBIDICONIFY (Prefs Flag) . 89

1.283Disable Middle Mouse Button/DISABLEMMB (Prefs Flag) . 89

1.284Enable Close Requester/CLOSEREQ (Prefs Flag) . 90

1.285Keep Bottom of Window Adjusted/SCROLLTOBOTTOM (Prefs Flag) . 90

1.286Inhibit Horiz. Scrolling by DOS Output/NOPRINTSCROLL (Prefs Flag) . 90

1.287Line Break at Right Border/SMALLDISPLAY (Prefs Flag) . 90

1.288Destructive DEL and BS/DOSERASE (Prefs Flag) . 90

1.289Notify DOS About Paste/AUTOPASTE (Prefs Flag) . 90

1.290DISABLESCROLL (Prefs Flag) . 91

1.291DISABLEWRAP (Prefs Flag) . 91

1.292Insertion Mode for DOS Output/DOSINSERT (Prefs Flag) . 91

1.293VT-220 Compatibility Mode/VTMODE (Prefs Flag) . 91

1.294ROWLOCK (Prefs Flag) . 92

1.295Underline Cursor/UNDERLINE (Prefs Flag) . 92

1.296Blinking Cursor/BLINKING (Prefs Flag) . 92

1.297XTerm/CON: Cursor Mode/XTERMCURSOR (Prefs Flag) . 92

1.298Disable BS at Start of Line/NOBSSTART (Prefs Flag) . 92

1.299ANSI Colors as Default/ANSIMODE (Prefs Flag) . 92

1.300Inverse ANSI Coloring/ANSIREVERSE (Prefs Flag) . 92

1.301Numeric keypad cursor control/NUMPADMODE (Prefs Flag) . 93

1.302Extended Colors Instead of Bold/BOLDEXTCOLORS (Pref Flag) . 93

VNC xi

1.303No Insertion Into Border/SHORTSCREENINSERT (Prefs Flag) . 93

1.304Don’t scroll into the border (Prefs Flag) . 93

1.305Invisible Type Ahead/TYPEAHEAD (Prefs Flag) . 93

1.306Disable Horizontal Scroller/DISABLEPROPX (Prefs Flag) . 93

1.307Disable Horizontal Scroller/DISABLEPROPY (Prefs Flag) . 94

1.308Enable Scrollers in RAW Mode/RAWSCROLLERS (Prefs Flag) . 94

1.309Rigid XTerm Cursor/RIGIDCURSOR (Prefs Flag) . 94

1.310Keep Duplicates in the History/KEEPDOUBLES (Prefs Flag) . 94

1.311Do not Place File Requester/DONTPLACEREQUESTER (Prefs Flag) . 94

1.312History lines/BUFFERSIZE (Prefs Setting) . 94

1.313Upper display size/UPPERSIZE (Prefs Setting) . 94

1.314Lower display size/LOWERSIZE (Prefs Setting) . 95

1.315Cached directories/CACHESIZE (Prefs Setting) . 95

1.316Vertical scroll threshold/SCROLLTIME (Prefs Setting) . 95

1.317Cursor Blink Speed/BLINKSPEED (Prefs Setting) . 95

1.318Rebuild Delay/REBUILDTIME (Prefs Setting) . 95

1.319Double TAB time interval/DOUBLETABTIME (Prefs Setting) . 96

1.320Monitor/MONITORID (Prefs Setting) . 96

1.321Path Only Qualifier/PATHONLYQU (Prefs Setting) . 96

1.322Name Only Qualifier/NAMEONLYQU (Prefs Setting) . 96

1.323Cursor Color Setup/CURSOR COLOR (Prefs Setting) . 96

1.324Color Setup/COLOR (Prefs Setting) . 97

1.325TAB_FILE_PRI (Prefs Setting) . 97

1.326TAB_EXEC_PRI (Prefs Setting) . 97

1.327TAB_SCRIPT_PRI (Prefs Setting) . 97

1.328TAB_PATH_PRI (Prefs Setting) . 98

1.329TAB_COMMAND_PRI (Prefs Setting) . 98

1.330TAB_RESIDENT_PRI (Prefs Setting) . 98

1.331TAB_INFO_PRI (Prefs Setting) . 98

1.332TAB_DEVICE_PRI (Prefs Setting) . 98

1.333TAB_ASSIGN_PRI (Prefs Setting) . 98

1.334TAB_VOLUME_PRI (Prefs Setting) . 98

1.335TAB_DIRECTORY_PRI (Prefs Setting) . 98

1.336TAB_DOUBLEREQ (Prefs Setting) . 98

1.337TAB_FULLEXPAND (Prefs Setting) . 99

1.338TAB_VNCREQUESTER (Prefs Setting) . 99

1.339TAB_AMBIGREQ (Prefs Setting) . 99

1.340TAB_PARTIALPAT (Prefs Setting) . 99

1.341TAB_INTOCONSOLE (Prefs Setting) . 99

VNC xii

1.342SRT_FILE_PRI (Prefs Setting) . 99

1.343SRT_EXEC_PRI (Prefs Setting) . 99

1.344SRT_SCRIPT_PRI (Prefs Setting) . 99

1.345SRT_PATH_PRI (Prefs Setting) . 99

1.346SRT_COMMAND_PRI (Prefs Setting) . 100

1.347SRT_RESIDENT_PRI (Prefs Setting) . 100

1.348SRT_INFO_PRI (Prefs Setting) . 100

1.349SRT_DEVICE_PRI (Prefs Setting) . 100

1.350SRT_ASSIGN_PRI (Prefs Setting) . 100

1.351SRT_VOLUME_PRI (Prefs Setting) . 100

1.352SRT_DIRECTORY_PRI (Prefs Setting) . 100

1.353SRT_DOUBLEREQ (Prefs Setting) . 100

1.354SRT_FULLEXPAND (Prefs Setting) . 100

1.355SRT_VNCREQUESTER (Prefs Setting) . 101

1.356SRT_AMBIGREQ (Prefs Setting) . 101

1.357SRT_PARTIALPAT (Prefs Setting) . 101

1.358SRT_INTOCONSOLE (Prefs Setting) . 101

1.359DEV_FILE_PRI (Prefs Setting) . 101

1.360DEV_EXEC_PRI (Prefs Setting) . 101

1.361DEV_SCRIPT_PRI (Prefs Setting) . 101

1.362DEV_PATH_PRI (Prefs Setting) . 101

1.363DEV_COMMAND_PRI (Prefs Setting) . 101

1.364DEV_RESIDENT_PRI (Prefs Setting) . 102

1.365DEV_INFO_PRI (Prefs Setting) . 102

1.366DEV_DEVICE_PRI (Prefs Setting) . 102

1.367DEV_ASSIGN_PRI (Prefs Setting) . 102

1.368DEV_VOLUME_PRI (Prefs Setting) . 102

1.369DEV_DIRECTORY_PRI (Prefs Setting) . 102

1.370DEV_DOUBLEREQ (Prefs Setting) . 102

1.371DEV_FULLEXPAND (Prefs Setting) . 102

1.372DEV_VNCREQUESTER (Prefs Setting) . 102

1.373DEV_AMBIGREQ (Prefs Setting) . 103

1.374DEV_PARTIALPAT (Prefs Setting) . 103

1.375DEV_INTOCONSOLE (Prefs Setting) . 103

1.376DIR_FILE_PRI (Prefs Setting) . 103

1.377DIR_EXEC_PRI (Prefs Setting) . 103

1.378DIR_SCRIPT_PRI (Prefs Setting) . 103

1.379DIR_PATH_PRI (Prefs Setting) . 103

1.380DIR_COMMAND_PRI (Prefs Setting) . 103

VNC xiii

1.381DIR_RESIDENT_PRI (Prefs Setting) . 103

1.382DIR_INFO_PRI (Prefs Setting) . 104

1.383DIR_DEVICE_PRI (Prefs Setting) . 104

1.384DIR_ASSIGN_PRI (Prefs Setting) . 104

1.385DIR_VOLUME_PRI (Prefs Setting) . 104

1.386DIR_DIRECTORY_PRI (Prefs Setting) . 104

1.387DIR_DOUBLEREQ (Prefs Setting) . 104

1.388DIR_FULLEXPAND (Prefs Setting) . 104

1.389DIR_VNCREQUESTER (Prefs Setting) . 104

1.390DIR_AMBIGREQ (Prefs Setting) . 105

1.391DIR_PARTIALPAT (Prefs Setting) . 105

1.392DIR_INTOCONSOLE (Prefs Setting) . 105

1.393INF_FILE_PRI (Prefs Setting) . 105

1.394INF_EXEC_PRI (Prefs Setting) . 105

1.395INF_SCRIPT_PRI (Prefs Setting) . 105

1.396INF_PATH_PRI (Prefs Setting) . 105

1.397INF_COMMAND_PRI (Prefs Setting) . 105

1.398INF_RESIDENT_PRI (Prefs Setting) . 105

1.399INF_INFO_PRI (Prefs Setting) . 106

1.400INF_DEVICE_PRI (Prefs Setting) . 106

1.401INF_ASSIGN_PRI (Prefs Setting) . 106

1.402INF_VOLUME_PRI (Prefs Setting) . 106

1.403INF_DIRECTORY_PRI (Prefs Setting) . 106

1.404INF_DOUBLEREQ (Prefs Setting) . 106

1.405INF_FULLEXPAND (Prefs Setting) . 106

1.406INF_VNCREQUESTER (Prefs Setting) . 106

1.407INF_AMBIGREQ (Prefs Setting) . 107

1.408INF_PARTIALPAT (Prefs Setting) . 107

1.409INF_INTOCONSOLE (Prefs Setting) . 107

1.410ALT_FILE_PRI (Prefs Setting) . 107

1.411ALT_EXEC_PRI (Prefs Setting) . 107

1.412ALT_SCRIPT_PRI (Prefs Setting) . 107

1.413ALT_PATH_PRI (Prefs Setting) . 107

1.414ALT_COMMAND_PRI (Prefs Setting) . 107

1.415ALT_RESIDENT_PRI (Prefs Setting) . 107

1.416ALT_INFO_PRI (Prefs Setting) . 108

1.417ALT_DEVICE_PRI (Prefs Setting) . 108

1.418ALT_ASSIGN_PRI (Prefs Setting) . 108

1.419ALT_VOLUME_PRI (Prefs Setting) . 108

VNC xiv

1.420ALT_DIRECTORY_PRI (Prefs Setting) . 108

1.421ALT_DOUBLEREQ (Prefs Setting) . 108

1.422ALT_FULLEXPAND (Prefs Setting) . 108

1.423ALT_VNCREQUESTER (Prefs Setting) . 108

1.424ALT_AMBIGREQ (Prefs Setting) . 109

1.425ALT_PARTIALPAT (Prefs Setting) . 109

1.426ALT_INTOCONSOLE (Prefs Setting) . 109

1.427Left Edge/REQ_LEFTEDGE (Prefs Setting) . 109

1.428Top Edge/REQ_TOPEDGE (Prefs Setting) . 109

1.429Width/REQ_WIDTH (Prefs Setting) . 109

1.430Height/REQ_HEIGHT (Prefs Setting) . 109

1.431MACRO (Prefs Setting) . 109

1.432SYSTEMMACRO (Prefs Setting) . 110

1.433Fork new shell/RUN_NEW_SHELL (Prefs Setting) . 110

1.434Icon Path/ICON_PATH (Prefs Setting) . 111

1.435Icon Title/ICON_TITLE (Prefs Setting) . 111

1.436Quit Program/QUIT_PROGRAM (Prefs Setting) . 111

1.437Font/DEFAULT_FONT (Prefs Setting) . 111

1.438Default path/DEFAULT_PATH (Prefs Setting) . 111

1.439BUTTONMACRO (Prefs Setting) . 112

1.440BUTTONTITLE (Prefs Setting) . 112

1.441File priority (TAB Setting) . 112

1.442Executables priority (TAB Setting) . 112

1.443Scripts priority (TAB Setting) . 112

1.444Path priority, relative (TAB Setting) . 112

1.445Command (C:) priority, relative (TAB Setting) . 113

1.446Residents priority (TAB Setting) . 113

1.447Icon (.info) priority (TAB Setting) . 113

1.448Devices priority (TAB Setting) . 113

1.449Assigns priority (TAB Setting) . 113

1.450Volumes priority (TAB Setting) . 114

1.451Directories priority (TAB Setting) . 114

1.452Double TAB Requester (TAB Setting) . 114

1.453First TAB expands fully (TAB Setting) . 114

1.454Add ViNCEd matches to the requester (TAB Setting) . 114

1.455Requester if expansion is ambiguous (TAB Setting) . 115

1.456Do not match characters behind cursor (TAB Setting) . 115

1.457List expansions on the console (TAB Setting) . 115

1.45805 ENQ . 115

VNC xv

1.45907 BEL . 115

1.46008 BS . 115

1.46109 HT . 115

1.4620A LF . 116

1.4630B VT . 116

1.4640C FF . 116

1.4650D CR . 116

1.4660E SI . 116

1.4670F SO . 116

1.4681B ESC . 116

1.4697F DEL . 116

1.47084 IND . 117

1.47185 NL . 117

1.47288 HST . 117

1.4738D RI . 117

1.4748E SS2 . 117

1.4758F SS3 . 117

1.47690 DCS . 117

1.47796 SPA . 118

1.47897 EPA . 118

1.47998 SOS . 118

1.4809A DECID . 118

1.4819B CSI . 118

1.4829C ST . 118

1.4839D OSC . 118

1.4849E PM . 119

1.4859F APC . 119

1.486ESC 7 . 119

1.487ESC 8 . 119

1.488ESC 9 . 119

1.489ESC D . 119

1.490ESC E . 119

1.491ESC F . 119

1.492ESC H . 120

1.493ESC M . 120

1.494ESC N . 120

1.495ESC O . 120

1.496ESC P . 120

1.497ESC V . 120

VNC xvi

1.498ESC W . 120

1.499ESC X . 120

1.500ESC Z . 121

1.501ESC c . 121

1.502ESC l . 121

1.503ESC m . 121

1.504ESC _ . 121

1.505ESC ˆ . 121

1.506ESC [. 121

1.507ESC \ . 121

1.508ESC] . 122

1.509ESC # 8 . 122

1.510ESC SPC F . 122

1.511ESC SPC G . 122

1.512ESC SPC L . 122

1.513ESC SPC M . 122

1.514ESC SPC N . 122

1.515ESC @ . 122

1.516ESC # 3 . 123

1.517ESC # 4 . 123

1.518ESC # 6 . 123

1.519ESC (. 123

1.520ESC) . 123

1.521ESC * . 123

1.522ESC + . 123

1.523ESC | . 123

1.524ESC } . 124

1.525ESC ~ . 124

1.526ESC n . 124

1.527ESC o . 124

1.528ESC < . 124

1.529ESC = . 124

1.530ESC] 0;strg ST . 124

1.531ESC] 1;strg ST . 124

1.532ESC] 2;strg ST . 125

1.533ESC] 3;strg ST . 125

1.534ESC] 4;strg ST . 125

1.535ESC] 10;strg ST . 125

1.536ESC] 11;strg ST . 125

VNC xvii

1.537ESC] 12;strg ST . 125

1.538ESC] 13;strg ST . 126

1.539ESC] 14;strg ST . 126

1.540ESC] 15;strg ST . 126

1.541ESC] 16;strg ST . 126

1.542ESC] 17;strg ST . 126

1.543ESC] 41;strg ST . 126

1.544ESC] 42;strg ST . 127

1.545ESC] 46;strg ST . 127

1.546ESC] 50;strg ST . 127

1.547CSI n @ . 127

1.548CSI n A . 127

1.549CSI n B . 127

1.550CSI n C . 127

1.551CSI n D . 128

1.552CSI n E . 128

1.553CSI n F . 128

1.554CSI n G . 128

1.555CSI n;n H . 128

1.556CSI n I . 128

1.557CSI n J . 129

1.558CSI n K . 129

1.559CSI n L . 129

1.560CSI n M . 129

1.561CSI n P . 130

1.562CSI n S . 130

1.563CSI n T . 130

1.564CSI reg;r;g;b V . 130

1.565CSI n W . 131

1.566CSI n X . 131

1.567CSI n Y . 131

1.568CSI n Z . 132

1.569CSI n ` . 132

1.570CSI c . 132

1.571CSI n d . 132

1.572CSI n;n f . 132

1.573CSI n g . 133

1.574CSI n h . 133

1.575CSI n l . 136

VNC xviii

1.576CSI n m . 136

1.577CSI n n . 137

1.578CSI n p . 138

1.579CSI n q . 139

1.580CSI n;n r . 139

1.581CSI SPC s . 139

1.582CSI n t . 139

1.583CSI n u . 140

1.584CSI n v . 140

1.585CSI n w . 140

1.586CSI n x . 140

1.587CSI n y . 140

1.588CSI n { . 141

1.589CSI n } . 141

1.590CSI n T . 142

1.591CSI n b . 142

1.592CSI n h . 142

1.593CSI n i . 143

1.594CSI n m . 143

1.595CSI n n . 143

1.596CSI n q . 144

1.597CSI n r . 144

1.598CSI n;n s . 144

1.599CSI n;n;n t . 144

1.600CSI n x . 144

1.601CSI n | . 144

1.602CSI and ESC sequences . 145

1.603List of control characters . 146

1.604Unsupported control characters . 147

1.605List of ESC sequences . 147

1.606Unsupported ESC sequences . 147

1.607List of OSC sequences . 148

1.608Unsupported OSC sequences . 148

1.609List of CSI sequences . 149

1.610Sequences that return results . 149

1.611Unsupported CSI sequences . 150

1.612Sequences you might receive . 150

1.613List of control sequences the keyboard parser sends and receives . 151

1.614ANSI Colors . 154

VNC xix

1.615Mouse Tracking . 156

1.616Console Modes . 157

1.617List of understood DOS packets . 158

1.618What is a ViNCEd owner, please? . 163

1.619List of Gurus thrown by ViNCEd . 164

1.620ViNCEd goodies . 165

1.621Goodies of the SetVNC program . 165

1.622Frequently asked questions . 166

1.623ViNCEd seems sometimes to hang . 166

1.624How do I avoid moving the cursor by the cursor keys? . 166

1.625How to run the TAB expansion with the TAB keys? . 167

1.626How to avoid cursor movements on scrolling? . 167

1.627I don’t want to be able to set the cursor with the mouse . 167

1.628I don’t want to be able to move the cursor into the prompt . 167

1.629ViNCEd messes up my output . 167

1.630The TAB expansion does not work! . 168

1.631SetVNC doesn’t save the preferences. 168

1.632How to setup ViNCEd as a VT-220 terminal? . 168

1.633Is it possible to run a ssh in ViNCEd? . 168

1.634I don’t like the iconification gadget image . 169

1.635For terminal usage, ˆC isn’t sent over the stream. 169

1.636How to turn off the horizontal scroller in the window? . 169

1.637How to avoid that ViNCEd prints text into the right window border? . 169

1.638I can’t invoke the online guide! . 170

1.639I don’t want to keep the icon of the online help . 170

1.640Customizing the iconification icon does not work . 170

1.641The TAB expansion doesn’t match files . 170

1.642Iconification doesn’t work any more . 171

1.643Thank you folks! Credits page . 171

1.644Version information . 173

1.645Future Plans with ViNCEd . 181

1.646Bug notes and reports, how to contact the author . 181

1.647The tbiclass Boopsi Interface . 182

1.648Index . 184

VNC 1 / 188

Chapter 1

VNC

1.1 ViNCEd Guide

___ ___ ___ _____ _______ _ | | |\ | / \ | | | | | * | \ | / -- | | | | | \ | | | _____| | | | | \ | | |____ / | \ / | | \ | | | | | \ / | | \ | | | | | \ / | | \ | \ -- | | | \/
__|__ _|_ \| _____/ |_______| ____/|

Version 3.81 __

ViNCEd - Guide 4.30 ViNCEd 3.81

The Licence: Legal Stuff READ THIS FIRST!

General Overview: What is this about?

Installation

User’s Guide Configuration, SetVNC

All day usage: Keyboard, Configuring ViNCEd: Window Paths, TAB Expansion, The SetVNC program, Shell, Icon Drop, Ctrl-
Z, Macros, Arguments, the GUI, Button & Buttons, Window Title Macros, Macro Setup, Keyboard Con- Scripts, Cmd-History
figuration, Flags, Colors

Programmer’s Guide

For the freak: CSI and ESC Sequences, DOS Packets, Owners, Internas, other Goodies

Frequently Asked Questions: Did you check these?

Version Information Thank You !

Future plans with ViNCEd

Book References

Bug notes and reports, how to contact the author

Index

© Amiga Inc, licence granted by THOR-Software Thomas Richter Rühmkorffstraße 10 A 12209 Berlin

Germany

EMAIL: thor@math.tu-berlin.de (You tried the FAQ, did you?)

WWW: http://www.math.tu-berlin.de/~thor/thor/index.html

__

Trademarks:

"SGI", "IRIX" and "winterm" are trademarks of Silicon Graphics.

VNC 2 / 188

"Amiga", "Commodore" and "CBM" are trademarks of Amiga Intl.

"DEC" and "DECTerm" are trademarks of Digital.

"Tektronix" is a trademark of Tektronix.

Other trademarks may appear in the text without further note and are copyrights of the corresponding companies or copyright
holders.

1.2 Licence and copyright agreement

This License applies to the computer programs known as "ViNCEd", "SetVNC" its documentation, the "SetVNC.guide". The
"Program", below, refers to this program. The term "Guide" refers to the "ViNCEd.guide", i.e. this file.

The guide and the program are NOT FREELY DISTRIBUTABLE. Licence has been granted to Amiga Inc. to include this
program within the distribution of their product "Os 3.9". No part of the program or the guide may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronically, mechanical, photocopying, recording or otherwise
without the prior written permission of the author.

Redistribution of a modified version of the Archive, the Program or the contents of the Archive is prohibited in any way.

Limitations.

THE PROGRAM AND THE GUIDE ARE PROVIDED TO YOU "AS IS," WITHOUT WARRANTY. THERE IS NO WAR-
RANTY FOR THE PROGRAM AND THE GUIDE, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

THE INFORMATION DESCRIBED IN THIS GUIDE MAY CONTAIN ERRORS, AND MAY NOT FUNCTION AS DE-
SCRIBED. ALL INFORMATION IS SUBJECT TO ENHANCEMENT OR UPGRADE FOR ANY REASON, INCLUDING
TO FIX BUGS, ADD FEATURES OR CHANGE PERFORMANCE. AS WITH ALL SOFTWARE UPGRADES, FULL COM-
PATIBILITY, ALTHOUGH A GOAL, CANNOT BE GUARANTEED, AND IS IN FACT UNLIKELY.

IF YOU DO NOT ACCEPT THIS LICENCE, YOU MUST DELETE ALL FILES, INCLUDING THE GUIDE AND THE
PROGRAM, CONTAINED IN THIS ARCHIVE.

1.3 The User’s Guide

All Day Usage - General Information __

Keyboard Functions: How to type ?

Window Gadgets: The buttons, arrows and scrollers around

Block Operations: Mark text, cut and copy it, and reinsert it

The Window Buffers: The inside which keeps the (not only) text

The Menu: The default menu installed by ViNCEd

Macros and Buttons: The helpers for fast and efficient typing

The Window Path: How to open a ViNCEd window ?

The Window Title: The control sequences expanded in the title

The Shell Mode: An introduction

Icon drop in the Shell mode

TAB expansion in the Shell mode

VNC 3 / 188

All TAB expansion settings at once

The magic Ctrl Z key in the Shell mode

The command history

All history settings at once

The scripts contained in this package

Details about the Job control scripts

Compatibility notes

1.4 The SetVNC Tool

Configuration and Customization of ViNCEd __

The graphical Interface of SetVNC

The control pages of SetVNC

Shell and Workbench Operation of SetVNC

Workbench ToolTypes

Shell Arguments

Job Control

Buffer input/output

The Format of the Preferences File

Special Goodies of SetVNC

REMARK: The SetVNC program uses overlays to minimize memory usage and disk loading time. Please DO NOT make it
resident and DO NOT crunch it! Some virus checkers have problems testing overlayed programs. THIS IS NOT A BUG in
SetVNC, but a bug in the virus checkers!

1.5 The Programmer’s Manual

The Programmer’s Manual: The prime source for the real freak

__

CSI and ESC Sequences

List of control characters

List of unsupported control characters

List of ESC sequences

List of unsupported ESC sequences

List of OSC sequences

List of unsupported OSC sequences

List of CSI sequences

List of CSI sequences that return results

List of unsupported CSI sequences

List of sequences you might receive

List of control sequences the keyboard parser sends and receives

VNC 4 / 188

Mouse Tracking information

ANSI colors

List of console operation modes

List of understood DOS packets

List of GURUs thrown by ViNCEd

What is a ViNCEd Owner, please ?

The Format of the Preferences File

The tbiclass Boopsi Interface

Other goodies of ViNCEd

Goodies of the SetVNC program

Compatibility notes for the experts

1.6 My address

Thomas Richter Rühmkorffstraße 10 A 12209 Berlin

Germany

EMAIL: thor@math.tu-berlin.de WWW: http://www.math.tu-berlin.de/~thor/thor/index.html

When sending EMail, make sure that the reply address is valid and your name and address contains only ASCII (7-Bit) characters.
Since we receive by far too much "junk mail", EMail with invalid header or invalid reply address is bounced automatically.
Especially, due to lots of spam received thru "hotmail", this provider has been "banned" by our mail server.

1.7 Book references

For a (not so) complete documentation of all CON: control sequences, read

The Amiga ROM Kernal Reference Manual, Volume Devices. 3rd Edition. Addison-Wesely Publishing Company, Inc. ISBN
0-201-56755-X

For a list of recommended user interfacing methods, read

The Amiga ROM Kernal Reference Manual, Volume User Style Interface Style Guide. 1st Edition. Addison-Wesely Publishing
Company, Inc. ISBN 0-201-57757-7

For a description of the Amiga hardware in general and the keyboard raw key codes in special, read

The Amiga Hardware Reference Manual. 3rd Edition. Addison-Wesely Publishing Company, Inc. ISBN 0-201-56776-8

For a (poor) documentation of AmigaDOS and packet types:

The AmigaDOS Manual, 3rd Edition. Bantam Books (The Bantam Amiga Library) ISBN 0-553-35403-4

For an (excellent) documentation of AmigaDOS and packet types:

The Amiga Guru Book Ralph Babel, Taunusstein

(however, handle this book with some care....)

Additional information about the XTerm and WinTerm control sequences was taken from the manual pages and the documenta-
tion of XTerm and WinTerm.

The XTerm docs can be found on every well installed unix system, since this program is a standard tool. The WinTerm docs can
be found on SGI systems only.

However, the location of these docs may vary from system to system. You usually obtain them by "man xterm" or "man winterm"
- if the documentation is installed.

VNC 5 / 188

1.8 Overview: What is ViNCEd about? And why this strange name?

ViNCEd is a console handler replacement for the console device and the related DOS drivers, CON: and RAW:. So much nothing
new, you say?

There is a difference, a big difference. You’ll notice that as soon as you work with ViNCEd. It’s different, really different -
ViNCEd is a full screen console handler with many additional features.

As for this full screen thing: The whole window contents is kept in memory, so you may use the cursor keys to move upwards on
the screen and may re-execute commands you typed some time ago by pressing the return key again in the input line. Reminds
you on some 8 bit computers? You’re right! But there’s more...

You can cut, copy and paste text to and from the clipboard, as with the standard handler. You may insert text quickly with the
middle mouse button or a replacement sequence, you may ask ViNCEd, too, to copy the text automatically as soon as you marked
it. If you’re used to the Unix XTerm program, you’ll appreciate this feature. But there’s more...

ViNCEd comes with two scrollers, to scroll the window contents left and right, up and down. ViNCEd keeps a limited, but
configurable amount of the input and output for you. Available for re-execution by the return key. The buffer contents can be
saved and reloaded if required, the buffer size can be configured. There’s of course a command history as usual. But there’s
more...

ViNCEd offers "Macros" and "Buttons". These are short keyboard sequences that can be invoked by either a gadget in the window
title, a keystroke or a menu item. Macros can not only replace keyboard sequences - they can also show requesters and expand
wild cards for you. ViNCEd uses also build-in macros for all-day purposes like closing the shell, or calling a configuration
program. But there’s more...

The Shell mode of ViNCEd comes with up to six configurable TAB expansion keys, each of them can be setup individually with
an optional file requester, individual priorities for the files to be searched, and a TAB expansion cache for quick disk access. But
there’s more...

ViNCEd offers a Ctrl-Z key and job control for the standard Amiga shell. That means, in case you wonder, that you can always
invoke a new shell in a ViNCEd window, even if another program blocks the current shell. You can switch back and forth between
the different shells in the programs with two unix like commands "fg" and "bg". But there’s more...

ViNCEd comes with a fully configurable keyboard. If you don’t like the control keys where they are, just use a different set.
Configuration of the keyboard can be done thru a graphical user interface, the SetVNC program. But there’s more...

ViNCEd understands far more control codes than the ordinary console. It offers a VT-220 compatibility mode which might come
handy for terminal programs. A lot of private commands and XTerm commands round up this set. And there is still more...

ViNCEd supports graphics cards and customizable color sets. ViNCEd windows are, unlike the console windows, not restricted
to the first eight pens. It comes with a set of sixteen configurable pens, which can be setup in a way that they match the ANSI
standard. ViNCEd can be made to appear on its own screen, which can be made public, if required. The screen mode for this
screen is under your control, of course. The window font is too. And there is still more...

Ooops, just forgot the most important point... It’s free. Well, at least for the private user - please check the licence agreement .

Oh yes, about this strange name, I forgot to tell you: The first version of ViNCEd appeared years ago (even before 1990, so this
is a very old program, indeed). In lack of a better name, I called it VeryNewCon - as opposed to the NEWCON: developed by
Commodore for the 1.3 Workbench which was the latest clue at this time. VeryNewCon was short VNC: - but since this name is
really boring, I decided to fill in some vowels - and add an "Ed". Well, it’s an editor which runs, apparently, a shell in it. Not just
a console...

1.9 How to install ViNCEd

Installation is easiest with the supplied "Installer" script in the archive. In expert mode, it will ask you about each step and won’t
hurt your system at all. However, in case you have to install by hand, for whatever reason, look at the "InstallVNC" file in the
"S" drawer of the distribution. The following steps are required:

o) open a shell, create a new directory and extract the archive into that directory.

o) copy the "vnc.library" from the "libs" drawer of the distribution to a location where libraries will be found, i.e. "LIBS:".

VNC 6 / 188

o) copy the "SetVNC" program from the "c" drawer of the distribution to a place where it will be found by shell, i.e. somewhere
in the command path.

o) copy the "ViNCEd.guide" to a place where you want to keep it.

o) copy the "SetVNC.info" icon from the "prefs" drawer of the distribution to a place where you keep your preferences. Edit this
icon by the workbench. Adjust the "Default Tool" to the location where you put the SetVNC program. Adjust the "Helppath"
tooltype to the location where you stored the guide.

o) copy part of the localizations in the "Locale/Catalogs" drawer to the LOCALE: drawer of your workbench. No other place
will work!

o) copy the files in the "Devs/Dosdrivers" directory of the distribution to a place where mount icons will be found. This is usually
"DEVS:Dosdrivers" or "Storage/Dosdrivers". "VNC" and "NEWCON" mount ViNCEd as a CON: replacement under the names
"VNC" resp. "NEWCON", "VNR" is a "raw version" of ViNCEd. If you’re using Workbench 2.0, edit the "Devs:MountList" file
and insert the files "DEVS/Mount_VNC" and/or "DEVS/Mount_NEWCON" in the distribution.

o) copy the scripts "fg", "bg", "fork", "history", "More", "SetKeyboard" and "SetFont" in the "S" drawer of this distribution to a
place where shell scripts will be found. Set the "s" bit by hand if it possibly got lost by "lha". Change your path in a way such
that these scripts are found BEFORE the CBM "More", "SetFont" and "SetKeyboard" commands. These scripts replace ugly and
hackish implementations of the CON: related commands.

o) if you want to replace the standard console handler CON: completely by ViNCEd, add the following line to your startup-
sequence or user-startup:

SetVNC quiet mount override as CON:

You may also remove the "ConClip" command in this case.

o) if you want to replace the "Shell" icon, install the ViNCEd shell icon in the distribution. If not, and you don’t want to replace
CON: with ViNCEd completely, edit the "Shell" icon of your system. Adjust or add the following tooltype:

WINDOW=VNC:0/0/-1/-1/AmigaShell/SHELL/CLOSE

o) if you want to keep the vnc.library documentations, read the ReadMe in the "Include" drawer and install it where you want to
keep it.

o) if you’re still working with Os 2.0 or Os 2.1 and want to use the Ctrl-Z function of ViNCEd, copy the NamedConsoleHandler
from the "Extras" directory into the L: directory of your boot partition, and copy the "CONSOLE" icon and mount entry from
the same drawer to DEVS:DosDrivers. DO NOT CHANGE ITS NAME. Make sure this "CONSOLE" is mounted on startup.

o) if you want to patch "More" to allow iconification of windows "More" run in, you should enter the following command:

Extras/SPatch -ot:More -pExtras/More.pch SYS:Utilities/More

Then copy t:More on top of the original "More" program. This requires, however, the original and unmodified 40.3 (Os 3.1)
version of "More".

o) correct a bug in the rexxsyslib.library: Copy the original rexxsyslib.library to a safe place, then go into the directory where
you extracted the archive. Enter the following command:

Extras/SPatch -ot:rexxsyslib.library -pARexx/rexxsyslib.pch LIBS:rexxsyslib.library

Then copy the t:rexxsyslib.library on top of the LIBS:rexxsyslib.library. This fixes an ARexx bug (which is however not related
to ViNCEd).

o) if you want to install the "StringSnip" program: This program improves the behavour of "String gadgets" and makes most
ViNCEd style keyboard commands available in string gadgets, too. Copy the file "Extras/StringSnip" file to a directory where
commands will be found. Then add the following command to your startup-sequence:

StringSnip >NIL: install

o) if you want to use Massimo’s ToolButtonClass - ViNCEd uses this to get an image for its iconification gadget - copy this from
the "Extras" drawer to "SYS:Classes/Images"

o) if you want to install the "UnixDirs3" patch by "Timo Kaikumaa" (thanks, Timo, by letting me include this program here!):
Read the "UnixDirs3" guide in the Extras/UnixDirs3 drawer first. This program modifies certain AmigaDos functions in a
way that make "unix" path conventions available to AmigaDos. Installation is simple, just drag the "UnixDirs3" icon in the

VNC 7 / 188

"Extras/UnixDirs3" directory into your "WBStartup" drawer. Copy the "UnixDirs3" guide to a place where you want to keep it.
Disable other patches that try to improve the AmigaOs in a similar way. I checked most of them and most of them are buggy in
one or another way. "UnixDirs3" has proven to work reliable here. Especially, if you see "SetVNC" crash on loading, it might
be the fault of a broken patch!

o) you are HIGHLY ADVICED to install the "TrueMultiAssigns" program as well. It fixes severals flaws of the AmigaOs
concerning multi-directory-assigns. Without it, TAB expansion in multi assigns might behave a bit strange. If you’re running
other patches that try to fix this as well, DISABLE THEM. I tried various, but none of them worked as reliable as they should.
This patch has been successfully tested with ViNCEd and the rest of the system.

For installation, copy the file "Extras/TrueMultiAssigns" to a location where it is found by the shell, i.e. into the command path.
Then add the following line to your startup-sequence:

TrueMultiAssigns

o) if you want to keep it: Install the "topaz6.font" of this distribution. It replaces the "xen font" which is, unlike what you might
think, a proportional font and does therefore not work with ViNCEd. To do so, go into the directory where you’ve extracted this
archive to and enter the following command:

copy Fonts/topaz6#? to FONTS: all

o) reboot your system. That’s it.

1.10 The Keyboard - how to type?

How to type then? Sounds like a silly question, I guess... However, there’s somewhat more to be said than pressing the "a" key
prints an "a" on the screen, since the keyboard in a ViNCEd window is configurable. This means a lot more than just selecting a
national keyboard as with the Preferences "Locale" editor. It means that you can

Bind Keyboard Functions to Keyboard Keys.

The reason why the "a" key inserts an "a" is now that all standard ViNCEd settings DO NOT bind a function to the "a" key, which
means that the "a" key invokes the default function it was given by the Os - namely to print an "a". As for ViNCEd, you can
easely bind this key to the Cursor Up function . If you really want to....

Here’s, for first, the functions the keyboard keys invoke as long as they are NOT BOUND to any function explicitly. You will
rarely see these functions because even the "Default Keyboard Settings" which are fixed down below in ViNCEd bind at least
some of the keys. However, since this "binding" is done at ViNCEd level, you can change these "default bindings".

The Default Key Binding is Something Different than Unbound Keys.

Here now the list of functions unbound keys invoke: (see also: Keyboard notations)

All white keys on the main keyboard, characters, numbers and the keys on the numeric keypad:

The character that was bound to this key by the keymap of the window. This is usually just the letter that is printed on the key.

The cursor keys:

Moves the cursor in the window in the direction of the arrow.

The function keys:

Invokes the button macros in the title screen.

The Tab key:

Inserts or jumps to the next tabulator stop.

The Shift Tab combination:

Deletes characters up to or jumps to the previous tabulator stop.

The Help key:

Launches the help macro .

The Return key:

VNC 8 / 188

Collects the inputs of the line the cursor is placed in and sends them as inputs to whichever program listens; inserts a new line
below the current. This is just the standard function you expect from the console.

The Backspace key:

This erases the next character to the left of the cursor, if this character has been typed by you. It will stop erasing printed
characters.

The Del key:

This key erases the character under the cursor and scrolls the characters to the right inwards. It won’t delete printed characters
but will only remove input characters.

The combination Shift cursor:

Moves the cursor half the window to the left, right, up or down.

The combination Ctrl a:

Moves the cursor to the start of the user inputs, to the left edge.

The combination Ctrl c:

Sends the break signal (signal 12) to the current process and the background processes. This should abort a running program.

The combination Ctrl d:

Sends the stop signal (signal 13) to the current process and the background processes. This should abort a running shell script.

The combination Ctrl e:

Sends the signal 14 to the current process and the background processes.

The combination Ctrl f:

Sends the signal 15 to the current process and the background processes.

The combination Ctrl h:

Identically to the Backspace key.

The combination Ctrl i:

Identically to the Tab key.

The combination Ctrl j:

Insert a new line under the current line, but does not sent any inputs.

The combination Ctrl k:

Cuts the user inputs starting at the cursor position, and places them in the Yank buffer .

The combination Ctrl l:

Erases the contents of the visible window and the lines below the visible window. This is called the "Line Feed" window.

The combination Ctrl q:

Resumes a with Ctrl s stopped output. This is also known as the "XON" function.

The combination Ctrl m:

Identically to the Return key.

The combination Ctrl r:

Searches the text in front of the cursor position in the command history .

The combination Ctrl s:

Stops the output. This is known as the "XOFF" function.

The combination Ctrl u:

Cuts all user inputs to the left of the cursor position and inserts them into the Yank buffer .

VNC 9 / 188

The combination Ctrl w:

Erases the word to the left of the cursor and places it into the Yank buffer .

The combination Ctrl x:

Cuts the complete user inputs of the current line, and inserts them into the Yank buffer .

The combination Ctrl y:

Inserts the contents of the Yank buffer .

The combination Ctrl z:

Forks the a new shell in the current window. More about the Ctrl-Z function is found at a different location .

The combination Ctrl \:

Invokes either a macro or sends an "End Of File" to the current shell or the program running in the window. The details depend
on a preferences flag .

The next keys are not available on a standard amiga keyboard. However, a replacement keyboard with a properly setup system
keymap definition table may offer these keys. ViNCEd is at least able to handle them correctly. Even though these keys might be
not available for you, you can still bind other keys to the keyboard functions they generate.

Insert:

Toggles between overwrite and insertion mode.

Shift Insert:

Quite the same; toggles between overwriting and insertion.

Page Up:

Moves the cursor upwards half a window.

Shift Page Up:

Scroll the window upwards half its size. Tries not to move the cursor if this is possible.

Page Down:

Moves the cursor downwards half a window.

Shift Page Down:

Scrolls the screen downwards half a window.

Pause/Break:

Pauses the output. If this key is pressed again, the output is resumed.

Shift Pause/Break:

Always re-enables output, similar to Ctrl q.

Home:

Moves the cursor to the beginning of the buffer, to the top, left edge.

End:

Moves the cursor to the end of the buffer, to the right, bottommost position.

Again, as mentioned above, this is just the list of the keyboard functions for "unbound" keys. Even the ViNCEd "Default"
configuration binds some keys for your convenience. However, this keyboard configuration is completely up to you and can be
modified with the SetVNC tool.

Here’s now the list of keyboad bindings in the default configuration. The meaning of the keyboard functions, if not obvious,
can be found elsewhere or by following the links. The qualifier "NumL" means that this keyboard function is only available if
NumLock is active. This does NOT necessarily relate to the numeric keypad, even though in the default configuration only keys
of the numeric keypad make use of this qualifier. Keys on the numeric keypad itself are identified by a "Num" in front of them,

VNC 10 / 188

as for example Num3, which is the key "3" on this pad. The sequence NumL Num3 means hence that the key "3" on the numeric
pad is bound to the following function ONLY IF NumLock is active.

Cursor left: Cursor Left

Cursor right: Cursor Right

Cursor up: Cursor Up

Cursor down: Cursor Down

The binding of these keys could have been avoided because the unbound keys provide the same function.

Alt Cursor Up History Up

Alt Cursor Down: History Down

Ctrl r: Search Partial Upwards

Shift Alt Cursor up: Search History Upwards

Shift Alt Cursor down: Search History Downwards

The next four keyboard bindings are again superfluous:

Shift Cursor left: Half Screen Left

Shift Cursor right: Half Screen Right

Shift Cursor up: Half Screen Up

Shift Cursor down: Half Screen Down

Ctrl Cursor left: To Left Border

Ctrl Cursor right: To Right Border

Ctrl Cursor up: To Top of Screen

Ctrl Cursor down: To Bottom of Screen

Ctrl Cursor left: Prev Word

Ctrl Cursor right: Next Word

Ctrl Alt Cursor left: Prev Component

Ctrl Alt Cursor down: Next Component

Ctrl Alt Cursor up: Scroll Up

Ctrl Alt Cursor down: Scroll Down

Ctrl Shift Alt Cursor up: Scroll Half Screen Up

Ctrl Shift Alt Cursor Down: Scroll Half Screen Down

NumL Num4: Cursor Left

NumL Num6: Cursor Right

NumL Num8: Cursor Up

NumL Num2: Cursor Down

NumL Num9: Half Screen Up

NumL Num3: Half Screen Down

NumL Home3: Home

NumL End: End

Return: Send Inputs

Alt Return: Split Line

VNC 11 / 188

Shift Alt Return: Insert ˆJ

Ctrl Return: Send Complete Line

Shift Return: Line Feed

The next two key bindings are again superfluous because the unbound keys provide the same function:

Tab: TAB Forwards

Shift Tab: TAB Backwards

Ctrl Tab: Expand Path

Ctrl Shift Tab: Expand Backwards

Ctrl LAlt Tab: Expand Short

Ctrl RAlt Tab: Expand Devices

Ctrl Shift RAlt Tab: Expand Devs Bkwds

Ctrl Shift C: Send ˆC

Ctrl Shift D: Send ˆD

Ctrl Shift E: Send ˆE

Ctrl Shift F: Send ˆF

The next six keys bindings are again unnecessary. If you need room in your keyboard definition, you may for example leave the
following four keys undefined without loss of any function.

Ctrl c: Send ˆC to All

Ctrl d: Send ˆD to All

Ctrl e: Send ˆE to All

Ctrl f: Send ˆF to All

Del: Delete Forwards

Backspace: Delete Backwards

Shift Del: Delete Full Line

Alt Del: Delete Inputs

Alt Backspace: Delete Word Bkwds

Ctrl Alt Del: Delete Component Fwds

Ctrl Alt Backspace: Delete Component Bkwds

Shift Alt Del: Delete End of Line

Shift Alt Backspace: Delete Start of Line

The next binding is again not required because the function bound to the key is identical to the function of the unbound key:

Ctrl l: Form Feed

The next nine functions are available in the menu anyways. However, they are bind here because they should work even if no
menu is attached to a ViNCEd window.

RAmiga e: Delete End of Display

RAmiga l: Clear Screen

RAmiga x: Cut

RAmiga c: Copy

RAmiga v: Paste

VNC 12 / 188

RAmiga h: Hide

RAmiga a: Select All

RAmiga r Reset

RAmiga Shift R Full Reset

The next seven bound function are again identical to the function of the unbound keys:

Esc: Toggle ESC

Ctrl s: Suspend

Ctrl q: Resume

Ctrl y: Yank

Ctrl \: Generate EOF

Ctrl z: Fork New Shell

Help: Help

Alt Num[: Toggle NumLock

Alt Num0: Toggle Overwrite

Alt Esc: Insert CSI

Shift Esc: Insert ESC

This is just the default keyboard configuration, there are lots of other keyboard functions available than listed here, check for
details the documentation of the keyboard pages of the SetVNC program.

1.11 Non standard keys

This key is usually not found on the Amiga keypad. However, a non-standard keymap may create the standard ANSI control
sequence that is understood by ViNCEd to invoke the mentioned function.

1.12 The Yank buffer

The "Yank Buffer" is a one line internal ViNCEd character buffer. It is set by various "Cut" commands and can be inserted any
time by the Yank function . The default configuration binds this function to the Ctrl Y keyboard combination.

The contents of this buffer is never placed in the clipboard, it is kept completely ViNCEd internal.

1.13 The notation of keyboard sequences in this manual

All words printed in reverse colors represent single keyboard keys or keyboard combinations. A single key is just represented by
a single character, or a single word - the same text that is printed on this key on your keypad. As for example:

Ctrl:

The "Control" key.

a:

The "a" key.

Keyboard combinations consist of a list of "modifier keys", such as Shift, Alt, Amiga or Ctrl, and an ordinary key. All these keys
have to be pressed AT ONCE. For example:

Ctrl y:

VNC 13 / 188

The "Control" key, pressed together with the "y" key.

And some trickier combinations:

Ctrl Shift Alt Tab:

The "Control", "Shift", "Alternate" and "Tab" key, all to be pressed at once.

A somewhat special qualifier is NumL. Unlike what you might think, this DOES NOT relate to keys on the numeric keypad. It
says that this function is available as long as "NumLock" is active. Unfortunately, there’s no light on the keyboard available to
make the state of this qualifier visible, but ViNCEd keeps it nevertheless. The keyboard function Toggle NumLock is available
to change the state of the NumL qualifier.

The keys on the numeric keypad, however, are identified by a "Num" in front of their name, as for example Num5 for the digit
"5" in the middle of the pad, or Num[for the square bracket in the left top corner.

All the other qualifiers are easier to understand:

Shift: Either the left or the right shift key.

LShift: Only the left shift key.

RShift: Only the right shift key.

Alt: Either the left or the right alternate key.

LAlt: Only the left alternate key.

RAlt: Only the right alternate key.

LAmiga: The left amiga key. This is the Commodore key on some keyboards.

RAmiga: The right amiga key.

Ctrl: The control key.

1.14 What is a word?

A word is just any sequence of characters that is separated by blank spaces. No quotation marks or other special characters are
parsed. That is, one shell argument may consist of several words in this sense.

1.15 What is a component?

A component is any sequence of characters that is separated by either blank spaces, forward slashes "/" or colons ":". Thus, a
component is almost the same as a path component of an Amiga Dos file name except for the case the file name contains blanks.

Please note that all component relevant keyboard functions are only available in Shell mode . If the Shell mode is disabled, a
component is identically to a word .

1.16 The Break functions of ViNCEd

There’s some difference in philosophy which programs should be "broken" and which not. ViNCEd supports both philosophies,
the "Amiga standard" as well as the "break force" method.

The "Amiga standard" method is to sent the break signals only to "foreground processes", i.e. programs that have been started
directly in the shell. Programs that have been launched with the "Run" command will not receive these signals and can’t be
aborted for this reason by a standard Amiga shell. I regard this as a bit dangerous because I won’t be able to stop operations in
emergency operations. Therefore, the default keyboard configuration, as well as the unbound break keys will use the ViNCEd
"break force" method which sends the signal bits to both, the foreground and the background processes.

However, you don’t need to join my opinion and can bind the break keys to the "standard Amiga" functions which operate a bit
more restrictive.

VNC 14 / 188

1.17 What is a keyboard function?

A keyboard function is an "action" ViNCEd can perform in its window which is invoked whenever a certain key is pressed. The
simplest example of a keyboard function is the Cursor Right function. Whenever it is invoked, the cursor is moved one position
to the right.

However, there are fairly more complicated functions than this one: Take the Tab Expansion as another example. It does quite a
lot more than just moving the cursor - it searches directory trees, sorts the found file names and inserts an expansion back into
the window.

Keyboard functions can be bound to keys of the keyboard - that’s what they are used for. However, even the keys that are not
bound to any function at all will perform something, of course, sometimes even functions you may bind to other keys explicitly.
You won’t be able to type anything in the window if they won’t - the standard alpha- numerical keyboard keys perform simply
text insertion.

There is also a list of available keyboard functions in this guide.

1.18 Binding a keyboard function?

"Binding" means to tell ViNCEd that a certain key should invoke a certain keyboard function . This "binding" is done by the
preference editor that comes with ViNCEd, namely SetVNC , or the Keyboard pages of this program, to be precise.

All the details how to setup a custom keyboard can be found there, more about the keyboard in general is in the keyboard section
.

1.19 Gadgets in the Window

A standard ViNCEd window comes with five sets of "gadgets", i.e. clickable areas in the window frame. For the first, there are
the system standard gadgets used to move and place the window, to resize it, to "depth arrange" it and to close it. I guess I need
not to say how they work, but I should say that you can specify which system gadgets should be added when a ViNCEd window
is opened. This is done thru options placed in the window path and is described in detail elsewhere. Even defaults can be setup
thru the SetVNC preference editor.

A non-standard gadget is the iconify gadget in the top edge of the window, to the left of the "depth arrange" gadgets. If pressed,
it will turn the window into an "icon" that is placed on the workbench - which is sometimes useful if you want ViNCEd to get
"out of the way". All output can continue, even if the window is "iconified". This gadget can be turned on or off by default as
well, again by SetVNC .

However, there’s something that needs to be said about iconification: Certain programs put the window in a state where it cannot
get iconified anymore. There is not much I can do about it except providing "workarounds". The most common problem is
the program "more"; a replacement script that fixes this feature has been put into your S: directory as part of the installation
procedure, and this script should be used as replacement. For details, consider reading the compatibility section.

If iconification cannot be performed, ViNCEd will make the window as small as possible and will move it back behind all other
windows.

Left to the iconify gadget are the buttons , at least some can be put there if you don’t see any. What these gadgets do is that they
invoke a macro as soon as they get pressed, i.e. they are convenient keyboard shortcuts. You may, for example, configure the
buttons to "type" the "list" command for you, to see the directory by a press of a button.

To the right and at the bottom of the window are two "scrollers", including a pair of "arrow gadgets". Guess what, they scroll
the contents of the window to the left and right, as well as upwards and downwards. As all other gadgets, they can be turned on
individually, either with the window path or by providing a default by the SetVNC program, in the third window page .

In case you don’t like the shape of the ViNCEd custom gadgets: There is a well-defined interface to replace these gadgets with
custom images, which is for example used by the "VisualPrefs" program.

VNC 15 / 188

1.20 The Window Buffers

A window buffer is simply the part of ViNCEd that holds the text. Text you’ve typed and text you see on the screen. Unlike what
you might think, there are actually four buffers worth mentioning, not only one.

The first two are easiest to understand, the "upper" and the "lower" display buffer. Both keep the text printed and typed to the
window. Whereas the lower buffer is responsible for the text starting at the top edge of the window, the upper buffer keeps all
lines "scrolled off" the window - this kind of buffer is also known as "review" buffer, because it allows you to "review" what
happened some time ago and was simply scrolled out of the window. Both buffers have a limited size and can only hold a limited
amount of lines. As soon as they overflow, the topmost or the bottommost line of the upper resp. the lower buffer are removed to
make room for more lines.

This is, if the upper or review buffer is full and the window is scrolled upwards, the topmost line of the lower display buffer is
moved to the review buffer, and the topmost = oldest line of the review buffer gets lost. Quite the same happens if the window is
scrolled downwards and the lower display buffer cannot hold more lines.

The size of both buffers can be configured either by the settings menu , or with the SetVNC program , the first window page to
be precise.

Both buffers hold a bit more than just the plain text. Together with the text, certain "attributes" are kept. They include not only
the color and style of the text, i.e. whether the characters are black or blue, italic or bold, but also an attribute that tells ViNCEd
whether you typed the text yourself or the text was printed by program. The first kind of text can be re-entered by simply placing
the cursor at the line containing the desired input and by pressing the return key. The second kind is "usually" ignored by the
return key.

Why this? Simply because you don’t want to enter the shell "prompt" as a command, won’t you?

The display buffer can also be loaded from or saved to the file, that is done either by the project menu or by the SetVNC program
using the GET and PUT arguments.

Text within the display buffers can be marked by "dragging" with the mouse, i.e. place the mouse pointer at the beginning of the
area to be marked, then press the left button, then open a text region by moving the mouse while holding the button. The text
within the region will appear in reverse color. It can be copied to or cut out to the clipboard for later use. Details are found in the
Edit Menu section and in the block section .

The third buffer is called the history . It keeps your inputs, too, but in a different way. The text in the display buffers is mixed
input and output, with all the formatting and style information needed, whereas the history keeps simply your inputs, no style
data, no formatting information. It cannot be "scrolled" into the window or made visible like the two display buffers before, but
is nevertheless useful. Special keyboard functions are available that reprint a line from the history and let you edit it again, or
that search for a specific line in the history. It’s discussed in detail in the history section.

As for the display buffers, it has a limited size which can be setup with the settings menu or with the first window page of the
SetVNC program. It can also saved to or loaded from a file, again with the project menu or with SetVNC , using the GET or
PUT shell arguments . There is also a script available that will dump the history to the screen.

The fourth buffer is the "directory cache" of ViNCEd. It keeps the contents of directories searched with the Tab Expansion . It
has also a limited size, which is counted in directories to be cached, but it can be setup only with the second window page of the
SetVNC preference editor.

1.21 The ViNCEd Menu

Unless you provided certain options in the window path of the ViNCEd window, or another program installed a custom menu,
ViNCEd windows will come with a default menu attached to them:

The Project menu

The Edit menu

The Macros menu

The Settings menu

VNC 16 / 188

1.22 The Project Menu

The project menu is used to open a new ViNCEd window, to load and save the various buffer of ViNCEd, to run the settings
editor, the online-help and other various arrangements of the window itself.

New Window

Invokes the "New Window" macro to open a new ViNCEd window. This macro can be setup on the third system page of the
SetVNC preferences editor .

Open...

Loads the display buffer from a file.

Open History...

Loads the command history from a file.

Save As...

Saves the display buffer to a file. The file will be a plain text file with certain enclosed ANSI CSI sequences that encode the
required formatting information.

Save History...

Saves the command history to a plain ASCII text file.

Expand Window

Will resize and reposition the window such that it appears as the topmost window with the maximal possible size, possibly
leaving out the screen drag bar.

Shrink Window

Minimizes the window to the least possible size and places it behind all other windows.

Next Screen to Front

Identical to the standard LAmiga m keyboard short cut, this menu item will bring the next available screen to front.

Iconify

Identical to the "Iconification" gadget in the window, this iconifies the window.

Jump to Next Screen

Re-opens the window on the next available public screen.

Help...

Invokes the "Get Help" macro to present the online manual, i.e. this guide. The specific macro can be setup on the third system
page of the SetVNC program.

Settings...

Invokes the "Edit Settings" macro to run the SetVNC program. The macro can be setup on the forth system page .

About ViNCEd

Presents the version information and the author of the localization.

Close Window

Invokes the "Quit Shell" or "Quit Program" macro , whichever applies, or sends an "End of File" if the requested macro is empty.
Both macros can be setup on the third system page . This menu item is identical to the Generate EOF keyboard function .

VNC 17 / 188

1.23 The Edit Menu

The Edit menu provides functions to cut, copy and paste blocks of text to and from the clipboard, functions to search in the
command history and functions to clear or reset the window.

Cut

Removes a marked region from the window and places it into the clipboard.

Copy

Copies the marked region into the clipboard and un-mark, i.e. "hide", the region.

ViNCEd can be told to run this operation automatically - without hiding the block - as soon as you release the mouse button
when opening a region. This is a bit special for the Amiga, but rather common on Unix (X11) machines.

The "Implicit copy after text marking" flag, how it’s called, can be found on the second edit page of the SetVNC program.

There is a second flag that changes the operation of "Copy" and "Cut" operations, namely which part of the text should go into
the clipboard: Only your input, or all text, even output. (For details about the difference check the buffer section.)

This flag is called "Don’t write printed text into clipboard" and can be found on the same page .

Hide

Remove the block mark , i.e. un-highlite the text.

Paste

Insert the contents of the clipboard as if it was typed in by you. That might be a bit dangerous because anything what’s left in the
clipboard is interpreted as commands by the shell or any other program receiving input from the ViNCEd window. A "delete #?
force all" in the clipboard could be quite desasterous!

A similar operation can be performed without the menu; If you own a three-button mouse, you may insert the clipboard contest
with the middle mouse button. It will first place the cursor at the position pointed to by the mouse, and then perform the same
operation as "Paste" above.

Using the middle mouse button as "Paste" replacement is, too, not very Amiga like; the feature has been adapted from the Unix
world as well.

If you do not want to leave the middle mouse button for this "Paste" operation, you may disable it on the second edit page of the
preferences editor .

If you do not own a three button mouse, there is a replacement sequence: Hold the Ctrl key and press the left mouse button. This
replacement works even if the use of the middle mouse button has been disabled.

Clear Window

Erases the lower display buffer and requests a new shell prompt at the first line of the window. This is identical to the Clear
Screen keyboard function .

Erase to End of Window

Removes all text behind and below the cursor position. Quite the same operation is performed by the Delete End of Display
keyboard function .

Reset Terminal

Resets the terminals. The lower display buffer will be cleared, the window style flags and colors will be requested from the
globally active settings and the text styles will be reset.

If you press the Shift key while selecting this item, the reset will be a full reset. Additional to the actions taken above above, the
command history and the upper display buffer will be erased as well.

The unshifted variant is identically to the keyboard function Reset , the shifted full version is the function Full Reset .

Search Forwards

Search the history in "upwards" direction. This is identically to the Search History Upwards keyboard function .

Search Backwards

Search the history in the "downwards" direction. Identical to the Search History Downwards keyboard function .

VNC 18 / 188

1.24 The Macros Menu

The macros menu provides items to invoke macros , as well as to define them and to place them into this menu. A macro, for
short, is a shortcut for a longer keyboard sequence you could have typed in as well. For example, a macro could type in the letters
l i s t Return to show the contents of the current directory with the press of a button.

More details about macros can be found in the macro section .

The macros menu consists first of the macros itself, with the keyboard equivalences RAmiga 0 to RAmiga 9. Selecting any
of these items will just run the macro that is shown in the menu. In the case the macro is too long to fit in, only the first few
characters will be shown there, followed by an ellipsis "...".

The first item, however, allows you to define macros: First, type the keyboard macro anywhere on the screen, wherever you like.
For the example above, you had to type "list".

Then use the mouse pointer and mark the macro body in a block . If you want to include a final Return character as well, mark
the line end together with the macro text, i.e. drag the mouse over the end of the line; ViNCEd will now show a dotted half block
at the end of the line which indicated that the line end is part of the block.

As soon as you’ve captured the macro in a block , select the macro you want to replace FROM THE FIRST "Cut Macro" sub-
menu. ViNCEd will now remove the macro text from the screen and insert it into the menu at the desired position. By the way:
This sub menu will not be available unless you really marked a block, of course...

The marked line end will appear there as "\r", which is the ViNCEd way of saying that the Return key should be pressed. More
about these "macro control sequences" can be found in the macro section .

1.25 The Settings Menu

As you might have guessed, this menu covers some frequently used settings of ViNCEd. There are far too many possible settings
to fit in this menu, all of them can be selected with the SetVNC program , so I had to make an decision and made only the most
frequently used available in this menu.

The first three items in this menu are used to set the size of the various buffers ViNCEd provides, namely the size of the command
history in lines, the size of the lower display buffer in lines and the size of the upper review buffer , also given in lines. To set
any of these sizes, type in the desired buffer size, wherever you like, capture it in a block and select the appropriate item.

The following items toggle-select various flags ViNCEd offers, please follow the links:

Dos Cursor Mode

Overwrite Mode

Wrap Around Buffer

Smart Close

Safer Close

Cut Inputs Only

Rebuild Delay

Auto Copy

NumPad for Cursor

1.26 Overwrite Mode

If this menu item is checked, the overwrite mode is active. This means that text you type overwrites the text that is already in the
window, it is not inserted as usual. The TAB Forwards keyboard function behaves then a bit different, too. Instead of inserting
as many spaces as required to place the cursor at the next tabulator stop, the cursor gets just moved. Quite the same happens to
TAB Backwards .

There is also a keyboard function that toggles this flag; it is called Toggle Overwrite and is bound in the default setting to Alt
Num0.

VNC 19 / 188

1.27 NumPad for Cursor

If the "NumPad for Cursor" menu item is checked, ViNCEd will set the "NumLock" qualifier. This qualifier changes the behavour
of certain keys in the keyboard, quite similar to the Caps Lock key with the exception that there is unfortunately no light to indicate
its state.

In the default keyboard setting, this flag will turn the numbers on the numeric keypad into cursor key equivalents, i.e. they can
be used to move the cursor around.

This menu item is functional identically to the Toggle NumLock keyboard function ; it is bound to the keyboard combination
Alt Num[in the default keyboard configuration.

1.28 Block Operations

A "block" is, in ViNCEd terms, a "marked" or "hilited" area of text. With the help of the edit menu , certain operations can be
performed with the text in the block. It can be copied to the clipboard and by this made available to other programs, it can be cut
out, and the clipboard contents can be re-inserted back into the window.

The text in the "block" is printed with reverse colors, but the block may contain something more "not so obvious", the "marked
line end". It will be shown as a checkered box at the end of a line, of about half the size of the cursor. The marked line end is a
special character you are not able to see except for its function and when it’s marked. It keeps lines "apart" and marks the end of
a line on the display. This is somehow the printed equivalent of the Return key on the keyboard - not a letter, but still something
important. If the text block is later on re-inserted from the clipboard, this marked line end is substitutes precisely by a press to
the Return key.

To mark a block, first move the mouse pointer to the beginning of the desired block, probably use the scrollers to make the desired
part of the display buffer visible, then hold the left mouse button. While holding the mouse button, move the mouse to the end of
the desired block, then release it. This is referred to as "dragging". If the block is too large to fit on one window, move the mouse
pointer to the edges of the window to make ViNCEd scrolling the contents.

If you’re marking more than one line, the "ends" of the lines in between will become marked automatically. However, if the
line end of a single line should be marked, the mouse pointer must be moved behind the line explicitly until the checkered box
appears.

More about the clipboard functions is in the edit menu sections .

Just as a side remark: ViNCEd DOES NOT require the ConClip program. If you’re working exclusively with ViNCEd, you may
remove this program from your startup-sequence.

1.29 Macros and Buttons

Macros and buttons are used for quite the same: They replace lengthy keyboard sequences. The only way in which they differ is
how they are defined and how they are "invoked". "Invoking" means that the "contents" of the macro and the button - which is
plain ASCII text - is put into the keyboard input buffer, as if you had typed this text yourself. Because not all keys are represented
by a printable ASCII character, certain "control sequences" are available that expand into these keys - more on that below.

Macros are defined by either the macros menu by cutting them directly from the text, or by the preferences editor, SetVNC , on
the Macros pages. Macros are made available thru the macros menu and the keyboard shortcuts RAmiga 0 to RAmiga 9.

Unlike macros, which consist only of their "macro body", the buttons contain an additional string, the "button title". This button
title will appear in the title of the ViNCEd window and should be as short as possible, to leave room for many buttons. Buttons
are invoked by their gadgets in the window title, and can be defined exclusively thru the SetVNC program, at the third macro
page . Like macros, buttons have keyboard shortcuts - the function keys on the keyboard. The F1 key invokes the rightmost
button, F2 the next button to the left and so on.

Now for the special characters in the macro body. This string is "almost" a C string with the standard C syntax for special control
characters.

VNC 20 / 188

A plain ASCII character is hereby represented by itself, special characters are "escaped" with the backslash "\" and an ordinary
character - this sequence expands then into a control character. The backslash must be, therefore, escaped with another backslash.
Here’s the list:

\t: The TAB character, ASCII 09 \b: The Backspace character, ASCII 08 \r: The CR character, ASCII 0D. This is the code send
by the Return key. This sequence MUST be used to include a press to Return in the macro body. \n: The LF character, ASCII
0A. Do not mix this with \r. \a: The BEL character, ASCII 07 \f: The FF character, ASCII 0C \\: The backslash itself. \" The
double quote \’ The single quote \[The opening square bracket \] The closing square bracket.

Additionally, there is a way to insert a character by its ASCII value: Type the backslash \, followed by the ASCII value, followed
by a dot (.). The ASCII value can be either given as a decimal number, or, if preceded by $ or 0x, as a hexadecimal value, with §
as octal and with % as binary number. The # marks the number as decimal explicitly. Several examples follow:

\155. The CSI character 9B in decimal \0x9b. same in hex, \$9b. again in hex, but slightly different notation \§233. and in octal

Please note the "." at the end of the number. This makes some difference, as for example

\$9B. the CSI character, and \$9.B the ASCII TAB, followed by the character B

is quite different. By using the CSI, all CSI keyboard sequences ViNCEd understands can be inserted into the macro, for example:

\$9B.A move the cursor upwards one line

The complete list of CSI keyboard sequences is simply too long to presented here, it’s described in detail elsewhere .

The single or double quotes must be used to enclose leading or trailing spaces that would be usually ignored:

" " the plane space itself.

The square brackets have a special meaning. Whenever they appear, the string between "[" and "]" is considered an Amiga DOS
file name pattern and a file requester is opened. You’re then allowed to pick a filename the square brackets will expand into. For
example, consider the following macro:

MultiView [#?.jpg]\r Show my favourite pictures!

Whenever this macro is invoked, a file requester will pop open, allowing you to select a picture - or to be precise, a file whose
file name ends with ".jpg". This picture is then shown by "MultiView". Ain’t that great?

1.30 The Window Path

The "window path" is for ViNCEd what’s the file name for an ordinary disk. This path is, for example, used in the "WINDOW"
tooltype of the Shell icon on your workbench and specifies not only that the output of the Shell should go to a console window,
but also a lot of parameters for the window.

ViNCEd knows quite a lot of parameters here, including the standard CON: arguments and all parameters of ConMan. Here’s
the the list:

VNC: [W userwindow/]

[S userscreen/] [B superbitmap/]

leftedge/ topedge/

width/ height/

title [/COLS cols]

[/ROWS rows] [/WAIT]

[/AUTO] [/CLOSE]

[/NOCLOSE] [/SMART]

[/SIMPLE] [/INACTIVE]

[/BACKDROP] [/BACK]

[/NOBORDER] [/SIZE]

VNC 21 / 188

[/NOSIZE] [/DRAG]

[/NODRAG] [/DEPTH]

[/NODEPTH] [/NOMENU]

[/MENU] [/NOPROPX]

[/NOPROPY] [/PROPX]

[/PROPY] [/FALLBACK]

[/NOFALLBACK] [/OLDLOOK]

[/CHUNKY] [/PLANAR]

[/SHELL] [/NOSHELL]

[/BUTTONS] [/NOBUTTONS]

[/ICONIFY] [/NOICONIFY]

[/ICONIFIED] [/ANSI]

[/NOANSI] [/WINDOW window]

[/FONT name.size] [/KEEP]

[/SCREEN pubname] [/ALT leftedge/topedge/width/height]

[/STITLE title] [/SDEPTH depth]

[/SFONT name.size] [/TITLEBAR]

[/NOTITLEBAR] [/MONITORID id]

[/MONITOR name] [/PLAIN]

[/PREFS pathname] [/conmanoptions]

All options in square brackets are, uhm, optional. Quite a lot of choice, don’t you think so? Even some of the non-optional
arguments, like the position arguments "leftedge", "topedge", "width" and "height" can be left blank. ViNCEd picks reasonable
defaults in this case. The only thing that MUST NOT be dropped is the name of the handler , VNC: in the line above. If this is
the only argument given, and only in this case, ViNCEd will get its path from a different location, namely from the "default path"
which can be setup with the SetVNC program on the forth system page . It uses the same syntax except that the leading "VNC:"
- the name of the handler - MUST NOT be given in the preferences.

And finally, another note here about proper "escaping":

If you need to put anywhere in this string a literal forwards slash that should be regarded as character, not as argument separator,
either escape it with a backslash, i.e. write \/, or enclose the complete parameter of the argument in double quotes, as for example

..../SCREEN"My/Screen"... identical to .../SCREENMy\/Screen...

to put the window on a public screen of the (undoubtfully silly) name My/Screen. To insert a literal double quote or a literal
backslash, just escape with a backslash. That is

\\ is the backslash, literally.

\/ is the forwards slash, but only outside of double quotes

\" is the double quote

Finally, if you want to put all this into a shell command line, all double quotes in a double-quoted string must be escaped with an
asterisk again, because the shell parses this string, too. That is, you need to write *" to get a single double quote within a quoted
string in a shell argument. Silly? Guess so... An even sillier (and admittedly ill) example is discussed in the window title section.

VNC 22 / 188

1.31 The name of the ViNCEd handler

The name of the ViNCEd window handler chosen by the installation script is "VNC:", or "CON:" if you choose to replace the
default console handler by ViNCEd; this replacement is done by the SetVNC program which is called in the User-Startup on
startup.

Another possible name is, for backwards compatibility, "NEWCON:".

Please DO NOT mount ViNCEd under different names, the fixed names are required for the tricky internal mounting algorithm;
the problem is here that ViNCEd is both, a library and a handler. Unlike all other handlers, it can be flushed from memory if it is
no longer required.

A third available name is "VNR:". This is reserved by the installer script for the RAW version of ViNCEd.

1.32 ConMan W Argument

This ConMan compatible argument is used to install a ViNCEd handler into an already existing intuition window. The address
of the intuition window structure must be given as a hex number following the ’W’, optionally with a leading ’$’ or ’0x’. The
intuition window will be closed when ViNCEd is done unless the KEEP parameter is given.

This parameter is exclusively reserved for the experts, don’t play with it.

1.33 ConMan S Argument

This ConMan compatible argument selects an already existing intuition screen ViNCEd will open its window on. The screen is
supposed to be a private custom screen and must stay open until ViNCEd closes its window. The address of the custom screen
must be given as a hex number following the ’S’, optionally with a leading ’$’ or ’0x’.

This parameter is exclusively the experts. If you want to open ViNCEd on its own screen, use one of the parameters SDEPTH ,
SFONT , MONITORID , MONITOR , TITLEBAR or NOTITLEBAR .

1.34 ConMan B Argument

This ConMan compatible argument will turn the ViNCEd window into a SuperBitmap window, with a bitmap allocated by the
invoking program. The address of the bitmap must be given as a hex number following the ’B’, optionally with a leading ’$’ or
’0x’. The bitmap structure WILL NOT be released when the window is closed.

This parameter is here just for backwards compatibility, its use is not recommended. Superbitmap windows are usually much
slower than the standard "simple" or "smart" refresh windows ViNCEd uses. Furthermore, leave it to the professionals to play
with this argument.

1.35 LeftEdge Argument

The left edge given in pixels from the left edge of the screen the window will appear on. ViNCEd may try to move or scale the
window to make it fit on the screen, the window may appear for this reason at a slightly different position.

You may drop this argument, ViNCEd will use some reasonable default.

1.36 TopEdge Argument

The top edge of the ViNCEd window to open, counted in pixels from the left edge of the screen. ViNCEd may adjust this value
to make the window fit on the screen.

If you select a top edge of "-1", ViNCEd will adjust the top edge of the window to the bottom edge of the screen drag bar.

If you drop this argument, ViNCEd will choose a reasonable default.

VNC 23 / 188

1.37 Width Argument

The width of the ViNCEd window to open, in pixels. ViNCEd may adjust this value to make the window fit on the screen.

If the width argument is "-1", the window will be made as wide as possible.

If you drop this argument, ViNCEd will select a reasonable default for you.

Please note that there is also the COLS argument which selects the size of the window in characters of the selected window font
instead using the size in pixels.

1.38 Height Argument

The height of the ViNCEd window to open, in pixels. ViNCEd may adjust this value to ake the window fit on the screen.

If the height argument is "-1", the window will be made as wide as possible.

If the argument is dropped, ViNCEd will select a reasonable default for the width.

If you want to specify the height in text characters of the selected font instead in pixels, use the ROWS argument.

1.39 COLS Argument

Specifies the width of a ViNCEd window in columns of text of the selected font that should fit into the window. The number
must follow the COLS argument and can be given in decimal, or hexadecimal with a leading ’$’ or ’0x’.

ViNCEd may adjust this value to make the window fit on the screen.

1.40 ROWS Argument

Specifies the height of the window in rows of text of the selected font that should fit into the window. The number of rows must
follow ROWS, and can be given in decimal or hex, with a leading ’$’ or ’0x’.

ViNCEd may adjust this value to make the window fit on the screen.

1.41 WAIT Argument

If given, ViNCEd will keep its window open even if the last program that used this window closed its stream to ViNCEd. The
window must then be closed by the user explicitly, either by pressing the close gadget or by using the keyboard EOF function ,
which is usually bound to Ctrl \.

1.42 AUTO Argument

If given, ViNCEd will close the window temporary if the user pressed the close gadget and no program is waiting for input. The
window will pop-open again as soon as some program running in this window requests input or prints into the window.

The behavour of ViNCEd if more than one program uses this window can be setup with the Don’t send EOF until everybody
waits flag.

VNC 24 / 188

1.43 CLOSE Argument

If given, ViNCEd will add a close gadget to the window. This is, however, the ViNCEd default since the very first release; there
was always a close gadget...

Anyways, if you don’t like this default, you may turn it off on the third window page of SetVNC .

1.44 NOCLOSE Argument

If given, ViNCEd will not add a close gadget to the window and hence possibly override its default to add one.

The default can be setup on the third window page of SetVNC .

1.45 SMART Argument

If given, ViNCEd will use a "smart refresh" window. This means that the window refresh will be done by the operating system,
not by ViNCEd itself. The resulting window might refresh a bit faster therefore, but will also use more chip memory for the
buffer. The most important advantage of "smart refresh" windows is, however, that the scrolling will be a bit smoother.

The default is SIMPLE .

1.46 SIMPLE Argument

Tells ViNCEd to use a "simple refresh" window. This means that ViNCEd is responsible for reprinting the window contents in
case part of the window gets damaged by overlaying windows. Since ViNCEd is rather fast in printing and this option is less
memory extensive than SMART , this is the default.

1.47 INACTIVE Argument

If given, ViNCEd will not activate this window automatically on open, i.e. the input focus will not change.

1.48 BACKDROP Argument

This argument will turn the window into a backdrop window which sits always behind all other windows and cannot be brought
to front. The main usage of this argument is to make ViNCEd appear on its own screen, without any "visible window" or border.

To make this working, specify the options NOBORDER , NOSIZE , NOPROPX , NOPROPY , NODRAG , NODEPTH and
NOBUTTONS as well, select an empty string as title and adjust the position and the size of the window accordingly. These
options are easely forgotten and therefore bundled in the "meta"-option BACK . With all that selected, use the SDEPTH option
to open a custom screen for ViNCEd.

The result will be a "full screen" ViNCEd which looks like a terminal.

1.49 BACK Argument

This argument will turn the window into a backdrop window which sits always behind all other windows and cannot be brought
to front; it will also suppress the window border and all buttons and sliders in it, as there are the close gadget, the drag gadgets,
the horizontal and vertical sliders and much more. The main usage of this argument is to make ViNCEd appear on its own screen,
without any "visible window" or border.

If you specify the SDEPTH option as well, ViNCEd will open on a custom screen as a "shell screen", almost like a terminal.

VNC 25 / 188

1.50 NOBORDER Argument

If specified, ViNCEd will tell the operating system not to draw a frame around the border. The result will be usually ugly looking
because all the other system gadgets will still be drawn unless you turn them off explicitly. The main use of this option is to make
ViNCEd appear on its own screen without a visible window border. Check the BACKDROP or BACK option for details about
this trick.

1.51 SIZE Argument

If present, ViNCEd will add a sizing gadget to the window. Since this is the default, this argument does usually not much and is
just provided for symmetry.

1.52 NOSIZE Argument

If present, ViNCEd will not add a sizing gadget to the window.

1.53 DRAG Argument

If present, ViNCEd will provide a drag bar for the window, i.e. the window will be movable. This is the default, hence this option
does usually not very much. It is just provided for symmetry.

1.54 NODRAG Argument

If present, ViNCEd will not provide a drag bar for the window, i.e. the window will not be movable. This is seldom useful except
for building windows without any actual border at all. For details, check the BACKDROP documentation.

1.55 DEPTH Argument

If given, ViNCEd will install a depth arrangement gadget in its window, i.e. you may bring this window in front of and behind
other windows. Since this is the default anyways, this argument does usually nothing useful. It is just provided for symmetry.

1.56 NODEPTH Argument

If given, ViNCEd will not install a depth arrangement gadget in its window. This is seldom useful, possibly except for building
a window without any visible frame at all. For details, check the BACKDROP argument.

1.57 NOMENU Argument

If present, ViNCEd will not attach its own menu to the screen. However, most block functions like "Cut", "Copy" and "Paste"
will be still available by their shortcuts, provided you bound these shortcuts to the proper keys.

The default is to add a menu for windows running in the shell mode , and not to add a window to all other windows.

VNC 26 / 188

1.58 MENU Argument

If present, ViNCEd will attach its menu to the window.

The menu will be there anyways provided the window was opened in shell mode , but must be requested explicitly for all other
windows.

1.59 NOPROPX Argument

If this argument is given, ViNCEd will not add the horizontal slider at the bottom of the window.

This slider can be disabled by default as well, check the third window page of the SetVNC program.

1.60 NOPROPY Argument

If this argument is given, ViNCEd will not provide the vertical slider at the right edge of the window.

This slider can be disabled by default as well, check the third window page of the SetVNC program.

1.61 PROPX Argument

If given, ViNCEd will add a horizontal slider to the bottom edge of the window if this slider was disabled on the third window
page of the SetVNC program.

1.62 PROPY Argument

If given, ViNCEd will add a vertical slider to the right edge of the window if this slider was disabled on the third window page
of the SetVNC program.

1.63 FALLBACK Argument

If this argument is given and ViNCEd is told to open on a public screen which is not available, ViNCEd will fall back to the
default public screen.

This is also the default behavour.

1.64 NOFALLBACK Argument

If this argument is present and ViNCEd is told to open on a non-available public screen, it will fail and refuse to open at all.

1.65 OLDLOOK Argument

If given, ViNCEd will color the menus in the old pre-3.0 way, whatever this might be good for.

VNC 27 / 188

1.66 CHUNKY Argument

Tell ViNCEd explicitly not to try to optimize scrolling for native amiga displays. This optimization effort will eventually slow
down the graphics output considerably on gfx boards.

However, ViNCEd will be usually smart enough to detect if a native or a non-native screen is available, so this argument is not
strictly required.

The "chunky" mode can be turned on by default as well, it’s on the first system page of SetVNC .

1.67 PLANAR Argument

Tells ViNCEd that it the window will appear on a native amiga screen and it should try to optimize the scrolling speed. However,
since the PLANAR option is automatically turned off anyways as soon as a "chunky" non-native screen is detected, this option
doesn’t do too much in the current implementation.

The "chunky" mode can be turned on by default as well, it’s on the first system page of SetVNC .

1.68 SHELL Argument

If this is present, the window is opened in shell mode . This has quite a lot of consequences, as turning on the menu, the TAB
expansion and other goodies. More details are found in a separate chapter .

The shell mode can be turned on by default as well, the responsible flag is found on the first shell page .

1.69 NOSHELL Argument

If this is present, the window is not opened in shell mode , but in standard mode. This has quite a lot of consequences, as disabling
the menu unless turned on explicitly with MENU , disabling the TAB expansion and other goodies.

The default state of the Shell mode can be controlled by SetVNC as well, it’s on the first shell page .

1.70 BUTTONS Argument

If given, ViNCEd will add the buttons to the window title and will hence make them available.

This is also the default for windows operating in Shell mode .

1.71 NOBUTTONS Argument

If given, ViNCEd will suppress the button gadgets in the window title.

This is the default for non-shell windows.

1.72 ICONIFY Argument

If given, ViNCEd will add an iconification gadget to the window. If this gadget is pressed, ViNCEd will turn into an icon on the
workbench screen, if possible. Output will resume in this case as usual, except that it won’t be printed, but is just kept internally.

However, there’s a certain quirk with this gadget: Certain programs make it impossible to iconify the window - the window can’t
be closed safely as soon as these programs are run; the most (un)famous example is the "More" command. There is not much I

VNC 28 / 188

can do about it except offering a work-around: The installation procedure should have installed a tiny script in your "S:" drawer
which replaces the standard "more" and should be used instead. If possible, setup your path in a way such that "S:More" is
used instead of the standard more command. If unavoidable, run the command SetVNC FreePointer in the shell -this will allow
iconification in most cases. Details about this problem can be found in the compatibility chapter .

The iconification gadget will be added by default, but if you don’t like the iconification gadget, you may turn it off with the third
window page of SetVNC .

1.73 NOICONIFY Option

If this flag is present in the window path, ViNCEd will not add an iconification gadget to the window. You may also choose to
make this the default, there is a flag on the third window page of the preference editor that will disable the iconification gadget
unless you ask for it explicitly.

For more insight about this gadget, read the notes about the ICONIFY gadget and the gadget section .

1.74 ICONIFIED Option

If given, ViNCEd will open the new gadget already in iconified state, i.e. as an icon on the workbench. All printing will go into
the internal buffers until the icon is double-clicked and hence opened.

There is a tiny problem with this icon, namely that ViNCEd won’t be able to adjust the size of the "virtual window" to the real
screen size (simply because there is no real window), it will try to "guess" how big the window should be. A program that asks
for the window size - this can be done by sending CSI sequences - will therefore receive the size of the window ViNCEd *thinks*
it will get when it is opened. It’s usually quite good at guessing, though, and that’s not a real problem either.

1.75 ANSI Argument

If this argument is present, ViNCEd will use the standard ANSI colors for the text pens in the window instead of simply mapping
the text colors directly to pen numbers. A detailed description of the ANSI colors can be found in a separate section .

You may also choose to use the ANSI coloring by default - check for this the third edit page of SetVNC .

1.76 NOANSI Argument

If NOANSI is present in the window path, ViNCEd will assign the text colors directly to pen numbers, as it always was for the
CON: windows. For details about what ANSI colors are, check the ANSI colors section of this guide.

A flag of the SetVNC program on the third window page controls the default of this flag, i.e. whether ANSI or NOANSI is the
implicit default.

1.77 WINDOW Argument

This argument is similar to the ConMan W argument and allows to attach a ViNCEd handler to an already existing intuition
window. The argument takes an additional parameter, the address of the intuition window structure as a hexadecimal number,
optionally with a leading ’$’ or ’0x’. Decimal numbers with a leading ’#’ to indicate the base are welcome, too. The window
will be closed as soon as ViNCEd is closed. If you want the window to stay open, then specify KEEP as well. ViNCEd will be
"more friendly" to this guest window in this case.

BE WARNED! This option is definitely for the "professional power user" and should not be played with.

VNC 29 / 188

1.78 FONT Argument

This argument takes an additional parameter, namely the name of the font and its size ViNCEd shall use for the text in the
window. The argument is the base name of the font, a dot, NO trailing "font", but instead the size of the font to be used as a
decimal number.

For example, to use the "topaz.font", size 9, use an argument like this:

FONTtopaz.9

Similarly, FONTcourier.13 will use the "courier.font", size 13.

NOTE: This will ONLY set the font for the text within the window. ViNCEd will use the font of the screen it appears in for its
menus and the title bar. If you open ViNCEd on its own screen, use SFONT to set this additional font.

Another NOTE: DO NOT use proportional fonts. They will produce certain graphic artifacts on the window.

A third note: By an unfortune error, the popular XEN font, size 8, is a proportional font. Please use the fixed "XEN" font in this
archive instead.

1.79 KEEP Argument

This argument is only relevant if a ViNCEd handler was installed into an already existing window with the WINDOW or the
ConMan W argument. Hence, this is somewhat for the professional user.

If KEEP is present, ViNCEd will be somewhat nicer to the user window. It will not try to close the window - the user program
has to do that - and will not try to resize it. This is mainly useful if you want to run ViNCEd in a part of your own window your
application created.

1.80 SCREEN Argument

This argument tells ViNCEd that it should open its window on a given public screen; the name of the public screen - not the title!
- must follow as parameter to the SCREEN argument. For example, to open a window on the public screen named "GOLDED.1",
use the argument

SCREENGOLDED.1

If the screen name contains any slashes "/", these must be escaped by a backslash \, or the whole string must be included in
double quotes; if white spaces are included in the name of the public screen, it should be quoted with double quotes, too - as in

SCREEN"My Slash/Screen"

Since the standard amiga shell parses this string, too, the double quotes must be escaped as well as part of a shell command. The
result may look very ugly, as this example shows:

1.SYS:> newshell WINDOW="VNC:////My window/SCREEN*"My Slash/Screen*""

It uses the "*" as (BCPL) escape character for the first string. Urgh.

Hint: The name of the screen in this example is

My Slash/Screen.

If the screen of the given public name does not exist, or is not public, it depends on a possible NOFALLBACK option what
happens. If this option is given, ViNCEd will just fail and refuse to open any window. If the option is NOT given, or a
FALLBACK is present, ViNCEd will open the window on the default public screen instead.

The SCREEN argument serves another purpose if other options, as MONITORID or SDEPTH indicate that ViNCEd shall open
its window on its own screen. If this is the case, ViNCEd will first try to open its window on a public screen of the given name,
and if this fails, will open its own public screen under the same name, with the given options, and open a window on its own
screen.

Hence, this will put a ViNCEd custom screen into a ViNCEd public screen if the name does not conflict with another screen.

VNC 30 / 188

1.81 ALT Argument

The ALT argument takes four numbers as parameters, separated by slashes. They specify the "alternate" window position which
is used if you press the "zoom" gadget.

The arguments are, to be more precise, the "left edge" and "top edge" of the window, given as distances in pixels from the left
and top edge of the screen the window appears on, and the "width" and "height" of the window in pixels - in this order.

1.82 STITLE Argument

The STITLE option takes one parameter, a string. This string is printed in the screen title as long as the ViNCEd window is
active. Except that, it follows the same syntax rules as the standard window title argument.

1.83 SDEPTH Argument

If this option is present, two things happen:

First, ViNCEd is told to open on its own screen. Second, the depth of the screen will be set to the parameter of this argument.
That is,

SDEPTH4

will open ViNCEd on a custom screen which makes 2ˆ4 = 16 colors available.

NOTE: To make this screen a public screen, use the SCREEN argument to provide a name for the public screen.

Other options that make ViNCEd open on its own screen are SFONT , MONITOR , MONITORID , TITLEBAR and NOTITLE-
BAR .

1.84 SFONT Argument

If this argument is present, two things happen:

First, ViNCEd opens its window on its own custom screen. Second, the font for the menus, the title bar and the screen title will
be set to the font given as parameter to this argument.

The font must be given by its base name, a dot, NO "font" extender and the size of the font as decimal number; i.e. an argument
like

FONTtopaz.11/SFONTruby.15

will open ViNCEd on its own screen, will use the "topaz.font" size 11 for the text in the window and the "ruby.font", size 15 for
the menus and the title bars.

If NO additional FONT argument is present, the SFONT will be used for the window contents as well, but in this case only a
fixed width font should be used or ViNCEd will create graphic artifacts. If a FONT is given as well, every font is acceptable as
SFONT, even proportional fonts.

If you want this custom screen to become a public screen, provide a public screen name with the SCREEN argument.

Other options that make ViNCEd open on its own screen are SDEPTH , MONITOR , MONITORID , TITLEBAR and NOTI-
TLEBAR .

VNC 31 / 188

1.85 NOTITLEBAR Argument

If this argument is present, two things happen:

First, ViNCEd opens its window on its private custom screen, second, the title bar of this screen will be shown in behind any
backdrop windows. Since ViNCEd will usually NOT use a backdrop window itself, this won’t change too much anyways and
makes only sense together with the BACKDROP option.

To make this screen a public screen instead of a custom screen, provide the desired public screen name as parameter to the
SCREEN argument.

Other options that make ViNCEd open on its own screen are SFONT , SDEPTH , MONITOR , MONITORID and TITLEBAR .

1.86 TITLEBAR Argument

If this argument is present, two things happen:

First, ViNCEd opens its window on its private custom screen, second, the title bar of this screen will be shown in front of any
backdrop windows. Since ViNCEd will usually NOT use a backdrop window itself, and even more, this is the default for screens
anyhow, this won’t change nothing except putting ViNCEd on its own screen. This argument is simply here for symmetry.

More about what a backdrop window is can be found in the section discussing the BACKDROP option.

To make this screen a public screen instead of a custom screen, provide the desired public screen name as parameter to the
SCREEN argument.

Other options that make ViNCEd open on its own screen are SFONT , SDEPTH , MONITOR , MONITORID and NOTITLEBAR
.

1.87 MONITORID Argument

If this argument is present, ViNCEd is opened on its own custom screen whose "view mode" = "monitor id" is taken from the
hex number following the argument. A leading ’$’ or ’0x’ is permitted here to indicate hex notation explicitly.

Hence, the argument

MONITORID0x19000

will use a NTSC Hi-Res screen.

Useful monitor IDs can be found in the system documentation - it depends on your hardware which IDs are available.

The default monitor ID can be setup with the SetVNC preference editor, on the first window page .

To make this screen a public screen instead of a custom screen, provide the desired public screen name as parameter to the
SCREEN argument.

Other options that make ViNCEd open on its own screen are SFONT , SDEPTH , MONITOR , TITLEBAR and NOTITLEBAR
.

1.88 MONITOR Argument

If this argument is present, ViNCEd is opened on its own custom screen whose "view mode" = "monitor id" is taken from the
name of the monitor following the argument.

Hence, the argument

MONITORNTSC:High Res

will use a NTSC Hi-Res screen, at least for the english language as system selected language.

VNC 32 / 188

Useful monitor IDs can be found for example by browsing the monitor data base with the system preferences editor "Screen-
Mode".

NOTE: Except for private use, I RECOMMEND NOT TO USE this argument. The point is that the monitor names, unlike the
monitor IDs, differ from localization to localization. A program written for the english language will, hence, not work for german
users and vice versa. Keep care and try the MONITORID option whenever possible.

The default monitor ID can be setup with the SetVNC preference editor, on the first window page .

To make this screen a public screen instead of a custom screen, provide the desired public screen name as parameter to the
SCREEN argument.

Other options that make ViNCEd open on its own screen are SFONT , SDEPTH , MONITORID , TITLEBAR and NOTITLEBAR
.

1.89 PLAIN Argument

"Degrades" a ViNCEd window back to a console-like window. All ViNCEd specific extensions in the window frame will be
disabled, namely the scrollers, the arrows, the buttons and the iconfication gadget. The shell mode will be turned off, too.

It does not, though, disable the CLOSE gadget or its preferences.

1.90 PREFS Argument

This argument provides a different source for the window settings than the system global preferences database. If this argument
is used, ViNCEd will read its preferences file - to be written with the SetVNC program and its "SAVE" option - from the file
name given as parameter to this option.

Since the path name of this file may contain slashes - which are interpreted as argument separator, these slashes must be escaped
by a backslash in front of them. For example, to read the preferences from "SYS:Devpac/ViNCEd.macros", use the following
argument:

PREFSSYS:Devpac\/ViNCEd.macros

Things may get even worse if this is used as an argument to a shell command, e.g. for "NewShell". Another level of "escaping"
might be necessary, possibly leading to rather absurd constructions. Keep care!

1.91 ConMan style single character options

The following options are single character options provided mainly for backwards compatibility with the "ConMan" console
handler. These options should go as the last options on the window path (but may go, unfortunately, anywhere in the path, even
though I don’t like this...). Interestingly, some official ARexx commands use them. All of these arguments are "toggle switches",
which means that giving them twice is as good as giving them not at all. All these characters can be combined into a single string
- provided this string does not conflict with any other option as total.

However, I would still not recommend these options. They are mainly provided for compatibility to ARexx and ConMan.

Z Use a "GimmeZeroZero" window. The coordinate origin for drawing in this window is really in the upper left edge of the
window contents and not in the upper left edge of the window border. However, ViNCEd doesn’t care about these offsets
anyways. This makes only sense if you plan to draw in this window. Since this makes re-arrangement of the window slower, this
option should be avoided.

B Use a "BACKDROP" window. Check the BACKDROP option for details.

N Use a "BORDERLESS" window. Again, details are in the section discussing the NOBORDER argument.

R Toggle between SIMPLE and SMART windows, the default is SIMPLE. Details are found by following the links.

D Toggles the depth arrangement gadget on or off. Details are again in the section about the NODEPTH option.

VNC 33 / 188

M Toggles the window drag bar on or off. Details again under the recommended NODRAG argument.

S Toggles the sizing gadget on or off. Details again found in the NOSIZE section.

C Toggles the close gadget on or off. Again, check the CLOSE and NOCLOSE arguments.

A Toggles whether the window should be activated when it is opened. The default is activation. You should use the newer
INACTIVE argument instead.

L A ViNCEd special leftover from releases 1.xx. Toggles the "Luxury switch" on and off. Defaults to on. If off, the window
does not get a menu and no custom gadgets, the "Dos Cursor Mode" will be activated. Highly obsolete and likely to be removed.

O Toggles the menu on or off. Default is on for windows using the Shell mode , off otherwise. MENU and NOMENU are
recommended replacements.

X Toggles the horizontal scroller on and off. Equivalent to NOPROPX resp. PROPX .

Y Toggles the vertical scroller on and off. Equivalent to NOPROPY resp. PROPY .

G Toggles the buttons in the title bar on and off. Equivalent to BUTTONS resp. NOBUTTONS .

1.92 The Window Title

The window title argument of the ViNCEd window path , and the related STITLE argument are, of course, in first place standard
strings. However, this string may contain special control sequences that are expanded as part of the string. You may be able, for
example, to display the size of the window, the name of the current directory or the number of the Shell in the window or the
screen title. The following list presents all characters that have a special meaning in this string:

" Double quotes should be used to escape leading or trailing blank spaces. While this is not strictly required, it is recommended.
It also "brackets" all single forward slashes between the two double quotes, i.e. they are not seen as separators of arguments in
the window path . However, read below for special caveats if the title has to be given as an argument to the AmigaShell.

\ The backslash escapes special characters and interprets them literally.

\" The literal double quote, i.e. the double quote as a character, not as a function.

\/ The literal forward slash. If this character should appear in the window title, it MUST be escaped because it’s usually read as
the argument separator in the window path .

% The command sequence introducer. This character takes a single character as argument. If this sequence is detected, the
percent sign and the character is replaced by something else, see below for the list.

%% The percent sign itself.

And now for the list of the available string substitutions with the percent sign. Two types of replacement strings are available.
The first type works always, for all ViNCEd windows. The second type requires a shell running in this window and will, therefore
require the Shell mode . Further more, these strings are only expanded when the shell is presenting its prompt and is waiting for
your input. It would be simply too dangerous to read the shell internal strings at a different time, they may get changed just in
the moment when ViNCEd is trying to read them and this won’t do good.

Here’s now the first list of "harmless" sequences:

%X or %x The width of the window, in characters.

%Y or %y The height of the window, in characters.

%P The name of the public screen this window was opened on, or the title of the screen if the screen is non-public.

%p The name of the public screen if the screen is public, or the string "Default PubScreen" for the default public screen or
"Private Screen" for a custom, private screen.

%T The default title of the screen.

%t The screen title of the screen.

%L or %l The current state of the "NumLock" qualifier. If set, "NumL" gets printed, four spaces if reset.

%O or %o The state of the "Overwrite" qualifier. If overwriting is enabled, "Ovwr" is inserted.

VNC 34 / 188

%V or %v The current ViNCEd version identifier.

%W The complete window title. This is a useful choice for the screen title only as it copies the window title over to the screen
title.

%w The window title ViNCEd prepared for you. This differs from %W in case some other program hacked the window title
itself, %W would be the title set by the external program, whereas %w is the title ViNCEd would have selected otherwise.

In almost all cases, %T is identical to %t. At least, I haven’t seen a counter example yet.

The next strings expand only in the Shell mode , and only if the shell is printing its prompt on the command line and waiting for
inputs.

%N or %n The CLI number of the shell running in the window.

%S or %s The current directory of the active shell.

%R or %r The result code of the last command.

%E or %e The secondary result code (the error code) of the last command used.

%F A text version of the secondary result code of the last command. If the last command returned successful and the error code
is zero, %F will expand to "no error".

%f Similar to %F except that it expands into the empty string in case the last command did not return an error.

Finally, a remark about using these sequences from the shell. The AmigaShell parses all strings again, in a first step. The
parsed string is then sent to ViNCEd, which parses it a second time. That means for you that you have to escape certain control
sequences twice, once for the shell and at a second level for ViNCEd. The result might look rather complicated and more like a
random line noise than anything useful. For example, the following command

1.SYS:> NEWSHELL "VNC:////*"This is / a *"test*" \\.*""

results in a window with the title

This is / a "test" \

This is because you’ve to escape all double quotes with the BCPL escape character, the "*", again for the shell. All single forward
quotes in the title are enclosed in a pair of double quotes, which are again escaped for the shell with an asterisk. That is, the
forward quote in the string stands for itself. The double quotes around the word "test" must be escaped twice because, for first,
the shell should regard them as literal characters - that is again what the star is used for - and ViNCEd should read them as literal
double quotes, too. That is what the backslash is used for.

Confused? I bet you are...

And finally, I had to type this in an AmigaGuide document which means that the string gets actually parsed THREE TIMES, so
I had to escape all backslashes with another backslash in this manual.... that is, what’s actually printed there in this manual is

1.SYS:> NEWSHELL "VNC:////*"This is / a *"test*" \\\\.*""

where I had to put extra backspaces to make it visible for you right now and.....

***Break

1.Python, Monty:> STOP IT! THAT’S GETTING SILLY.

And, ooops, if you see too many backslashes here you’re either using an old version of the AmigaGuide instead of MultiView,
or it’s time to visit your eye doctor... (-;

***Break

1.Python, Monty:> OUT! ALL OF YOU! OUT! NO MORE BACKSLASHES! OUT!

1.93 The Shell Mode

The power of ViNCEd is the "Shell Mode"; without it, ViNCEd will behave "just as a console handler with a full screen buffer".
If it is enabled, however, ViNCEd will provide additional functions which are especially useful for a shell running in a ViNCEd
window, as there are the TAB Expansion , the icon drop function, the Ctrl-Z function and others. All of them are useful extensions

VNC 35 / 188

the ordinary "Amiga Shell" does, unfortunately, not provide and hence have been implemented in the console handler instead.
Weird....

To enable these features, you’ve to tell ViNCEd explicitly that a shell is running in its window, so to allow it to extract the
information it needs for these functions. To do so, you must provide the SHELL argument in the window path .

If you’re using ViNCEd explicitly as console handler for the shell, you might enable this flag by default, hence, make this
argument superfluous. This is done by the preferences editor , on the first shell page .

However, please note that there is a special danger to use the shell mode in a window no shell is running in. Nothing bad *should
happen* as I implemented certain security precautions, but who knows? This flag should be turned on only and only if you can
make sure that ViNCEd isn’t used for anything but the shell.

More about the shell mode is in these sections:

Icon drop in the Shell mode

TAB expansion in the Shell mode

All TAB expansion settings at once

The magic Ctrl Z key in the Shell mode

1.94 Icon drop in the Shell mode

If the Shell mode is enabled, you may drag icons from the Workbench screen into the ViNCEd window. ViNCEd will, in this
case, insert the file name, the complete path or the directory name of the icon dropped. This is mainly useful if you need to locate
a file deep down in the directory tree, which is already available on the workbench. ViNCEd will type that file name for you,
even including double quotes if the file name contains blank spaces.

If you want ViNCEd to insert something different than the file name, hold special keys from the keyboard while dragging the
icon; the default "qualifiers" selected for you are as follows:

no qualifier : insert the complete path of the icon

Either Alt key : insert only the file name of the icon

Either Shift key : insert only the directory of the icon dropped

However, you may select these "qualifiers" yourself as well if the defaults don’t please you. This works, once again, with the
SetVNC preferences editor, on the sixth Shell page .

1.95 TAB expansion in the Shell mode

TAB expansion is a feature offered by most Unix shells. It is a very convenient feature that avoids typing long and complicated
file names; instead, you just provide a template of the file name and ask ViNCEd for possible "candidates", or "expansions" how
they will be called in what follows. Because this feature is particularly useful for the shell, TAB expansion is only available in
the Shell mode .

The next lines present a tutorial you should work thru if you’re not familiar with ViNCEd’s capabilities. (Really, I mean it!)

In case you’re just looking for the complete set of configurable settings, they are elsewhere .

ViNCEd offers six configurable TAB expansion keyboard functions , each of them as "forwards" and "backwards" moving
function - it will become clear in a minute what this means. Each of these functions can be bound to a keyboard combination of
your choice, and can be configured individually as well.

The default configuration - and that is what is going to be discussed here as an example - uses the Ctrl TAB key for "forwards"
and the Shift Ctrl TAB key for "backwards" expansion. Additional keyboard bindings exist to the other functions, but they work
in a similar manner. Use the SetVNC keyboard pages adjust the key bindings if these defaults do not please you.

What happens now if you press Ctrl TAB?

VNC 36 / 188

In short words, ViNCEd reads the shell argument under the cursor, treads it as an incomplete file name and searches for possible
expansions, in locations setup by your configuration explicitly; these include the current directory, the directories in the shell
"command path", the "C:" assignment, the list of devices and the list of resident commands.

Which of these sources is searched depends on a set of priorities you assigned to them, and on explicit "hints" ViNCEd takes
from the argument to be expanded. As for example, if the argument ends with a colon ":", only the device list will be searched,
regardless of the priorities.

The found matches are sorted by the priority you assigned to the different file types. Found expansions are then inserted into the
argument again, possibly showing a file requester. Once an expansion is complete, you may use the TAB expansion key again to
traverse the list of found matches. The "forwards" function moves in this list in the one, the corresponding "backwards" function
in the opposite direction, showing the completions one after another.

Since quite a lot of settings involve the procedure of the TAB expansion and giving the complete list of settings involved might
be more confusing than helping, I’d like to present this in the form of a tutorial. As soon as more details are required, follow the
links. This tutorial assumes that you’re working with the default settings, in a ViNCEd window with the Shell mode enabled.

Go to the root level of your hard disk and enter the following line in the shell, (without the prompt, obviously...)

1.SYS:> rex

The colored box in this line represents the cursor. Press now the TAB expansion key Ctrl TAB.

The line above tells ViNCEd to search for commands that start with rex . ViNCEd will search therefore the current directory, the
C: assignment and the complete shell path, i.e. the directories which are printed by the "Path" command. This can be changed ,
of course.

On my system, this template will match the "Rexx" directory on the root level of my hard disk, the "RexxMast" program in the
"Systems" folder which is in the command search path , the "REXX:" assignment , and the icon file "rexx.info".

More details on how to adjust what should match and what not can be found by following the links above, they will explain how
to exclude certain matches.

To continue with the example, ViNCEd will answer with the following line:

1.SYS:> Rexx

The template has been refined to "Rexx", but the cursor is placed directly behind the "x", without an additional blank space,
allowing you to continue typing. This means the following:

- ViNCEd found some matches. It would have flashed the screen if it would not.

- All the matches start with the letters "Rexx". That is why ViNCEd was able to present a refinement . If you don’t want a
refinement in that case, you may turn that feature off and ask ViNCEd to insert the first possible match instead.

- However, ViNCEd was not able to find a unique extension, i.e. there is more than one file that matches the template . This
is indicated by placing the cursor directly behind the "x". If a literal "Rexx" would have been the only possible match, a blank
space would have been inserted. * Additionally, you may ask ViNCEd to show a requester in the case more than one match, i.e.
no unique match was found.

Now wait for a second or two, and press Ctrl TAB again. ViNCEd will present now the first match in its full form, the Rexx
directory:

1.SYS:> Rexx/

Since this is a directory, a forwards slash "/" instead of a blank space is inserted behind the name.

You’ve just seen another purpose of the TAB expansion functions: As soon as a list of all matches has been constructed, these
functions are used to view this list "item by item". As for the command history , you may move in this list in two directions
- and that is why all TAB expansion functions come in two kinds: Both kinds use the same settings, but as soon as the list of
matches is constructed, one function moves in "forwards" direction whereas the other moves in backwards direction. For the
default settings, the forwards-moving function is bound to the Ctrl TAB key you’ve just used, its backwards moving counterpart
is Ctrl Shift TAB.

The items on this list are sorted by a "priority" you assign to possible candidates. It’s the purpose of the SetVNC program to
setup these priorities - they can be found on the fifth shell page , one set of priorities for each pair of the six assignable TAB
expansion functions.

VNC 37 / 188

Pressing now Ctrl TAB again shows the next match:

1.SYS:> Rexx.info

It is this time the icon file "Rexx.info". Since this is a file anyhow, a space is behind it, as show above.

If you don’t want to see these files, you may exclude them explicitly , or may at least lower their priority - they will appear then
at a later time behind more important files.

The next match - press Ctrl TAB again - is:

1.SYS:> RexxMast

...the RexxMast program. This program is usually not located at the root level of the system disk, but in the "System" directory.
The reason why it was found anyhow is that you expanded the first argument on the shell line. ViNCEd noticed that and
considered that you may look for a command. Since the Shell looks for commands in the current directory, the C: assign and the
"command path", so does ViNCEd. The "System" directory is in most installations part of the "path".

If you don’t want ViNCEd to search the complete path, you may simply adjust some priorities of the configuration .

Let’s check the next match - press Ctrl TAB again:

1.SYS:> REXX:

It’s this time the REXX: assign. If you don’t want to see assignments: Nothing as simple as this, the answer is again: Adjust the
priorities.

By the way: Didn’t you wonder why "RexxMast.info" wasn’t found? ViNCEd notices that this file CAN’T be a command, and
hence you’re surely not looking for non-commands in the command search path. The reason why "Rexx.info" WAS found, but
"RexxMast.info" not is, that the first file is in the current directory - might be of some interest - whereas the second is not. In the
same spirit as icon files never match outside of the current directory, neither do directories.

Now let’s continue - press again Ctrl TAB.

1.SYS:> REXX:

...and just a flashing display. That’s the end of the list, no more matches have been found. Things behave a little different if the
Wrap Around Buffer in the settings menu was turned on. In this case, ViNCEd will insert a blank line - to indicate that the end
of the buffer was reached. The next Ctrl TAB will re-insert the first match of the list.

We can now go backwards from the end of the list to the beginning with the twin "backwards" function - which is in the default
configuration the Ctrl Shift TAB key. You’ll see

1.SYS:> RexxMast

the "RexxMast" program again.

Use now the backspace key to erase the expansion up to the "Rex" we started with. This will also abort the expansion, as well as
any other key except the TAB expansion functions . Press now Ctrl TAB again to re-run the expansion. As soon as the refined
template shows up, press Ctrl TAB again. This will now show a requester with all the matches found, even including the assigns
and the commands not in the current directory. This is due to some "ViNCEd magic" you may explicitly turn off . However,
dependent on the requester package you’re using - asl or reqtools - you may or may not see any icons, i.e. ".info" files because
they are possibly filtered out .

If you now pick an entry from this requester and click "O.K." in the requester, this entry will be inserted in the ViNCEd window
for you. Using this requester, you may even enter the found directories or assigns and select a file from there.

However, if you don’t like this "double TAB requester" or it’s "in the way", you’re of course free to turn it off .

By the way - the time delay ViNCEd allows to occur between the two TABs to happen within is defined on the Timing page of
SetVNC.

Additionally, you may also ask ViNCEd to preset this requester always after the second TAB, no matter how much time passed
between the first TAB and the second. This is done by setting the Double TAB time interval to zero.

Just a last note: Since there are actually SIX tab expansion functions, each of them in two kinds - forwards and a backwards
function - and each of these functions can be bound to a keyboard key of your choice and configured individually, there’s I hope
a configuration that everyone pleases and a TAB expansion for every situation...

A complete overview of all the TAB expansion settings is available too.

VNC 38 / 188

1.96 All TAB expansion settings at once

Most of the TAB expansion settings are under control of the third , fourth and fifth shell page of the SetVNC program . However,
which key is bound to which of the six keyboard functions that run a TAB expansion is part of the keyboard configuration - setup
with the first and second keyboard page . Some minor options are under control of other flags.

Here the list of available TAB expansion functions on the second keyboard page - as you see each function comes in two kinds -
both use the same settings, but move in opposite directions within the list of found matches.

Expand Path : First function, forwards Expand Backwards : ditto, but backwards Expand Short : Second function, forwards Ex-
pand Short Bkwds : ditto, but backwards Expand Devices : Third function, forwards Expand Devs Bkwds : ditto, but backwards
Expand Dirs : Fourth function, forwards Expand Dirs Bkwds : ditto, but backwards Expand Icons : Fifth function, forwards
Expand Icons Bkwds : ditto, but backwards Expand Alt : Sixth function, forwards Expand Alt Bkwds : ditto, but backwards

The names of the functions are completely arbitrary - you can configure them as you like.

For each of the pairs above, one set of options and priorities is available at the shell pages . The name of the pair currently edited
by these pages is printed directly below the headline, and can be selected by the "« Prev" and "Next »" gadgets near the function
name.

Here’s the list of available options on the third shell page :

Double TAB Requester

First TAB Expands fully Requester if expansion is ambiguous

Add ViNCEd matches to the requester

More related options are on the fourth shell page :

Do not match characters behind cursor

List expansions on the console

Additionally, the double TAB time interval, i.e. the maximal allowable time interval between two TAB presses to pop up the
double TAB requester is found on the Timing page of SetVNC. As a special case, if this time interval is set to zero, the requester
will always pop up after the second TAB.

ViNCEd assigns a priority to each match of the TAB expansion and sorts the list of found matches by priority. The entries of
higher priority are then shown earlier, on top of the list; hence, you need less keyboard presses to reach them. Objects with a
priority of -128 or below aren’t added to the list at all and will be dropped. That means that you may disable certain object classes
completely by assigning them a priority of -128.

The priority settings are on the fifth shell page . They are also six sets of priorities, one for each TAB expansion function.

Files Dirs Icons Devices Assigns Volumes Path C: Dir Resident Scripts Executables

Your priorities get "adjusted" a bit if you search for a directory or a device explicitly, i.e. the template ends either with a forwards
slash "/" or with a colon ":". In this case, all other file types except directories or devices/assigns/volumes are ignored and
the priority of the file type looked for is eventually raised from -128 to -127. This means especially that even if you disabled
directories explicitly, searching for an object ending with "/" will actually match something.

There is actually another flag that has some influence on the TAB expansion , and that’s the "History buffer wraps around" option
on the second shell page . If this option is enabled, the TAB expansion list will "wrap around", too: As soon as one end of the list
is reached, ViNCEd will insert a blank line. If now one of the TAB expansion functions is pressed again to move on, the buffer
"wraps around" and ViNCEd starts to display the first entry from the other end of the buffer.

Finally, you find on the same page the number of directories which are simultaneously kept in the TAB expansion cache.

1.97 Why does that match commands?

ViNCEd knows that you are searching for a command because you’re expanding the first argument on a line, and this argument
is neither a directory nor a device - that is, it’s name does not end with a ":" or a "/". The consequence is that all locations where
commands can be found are considered. That is, the current directory, the "C:" (multi-)assign, all directories in the shell "path",
and the list of resident commands.

This can be changed , of course.

VNC 39 / 188

1.98 Why does this match commands that start with rex?

ViNCEd extracts the command the cursor is placed in and treads this as a so called template . The rules for these templates are
as follows:

All character strings that match the template must begin with the same characters in front of the cursor as in the template, and
must end with the same characters as under and behind the cursor in the template. That is, a possible match must "insert"
characters at the cursor position - remember that if you would type in characters from the keyboard, these would exactly go
between there.

Since the example template starts with "rex", and the cursor is placed behind the "x", all possible matches have to start with "rex".
Since no characters are under or behind the cursor, the end of the match is arbitrary.

Another example would be

1.SYS:> lt

which would match all commands that begin with "l" and end with "t".

To express this even in different words for the experts, the Amiga Dos search pattern is build by the template by inserting a "#?"
right at the cursor position.

1.99 How to change the command search directory?

Which directories are considered for searching commands is part of the configuration of the TAB expansion keyboard function
used for expansion. In our example, the first available keyboard function is relevant since this is the function bound to the Ctrl
TAB key.

To change these settings, open the SetVNC program and go to the fifth shell page . The page will already show the settings for
the first expansion function, all others can be adjusted by pressing the "« Prev" and "Next »" buttons on this page. In total, six
expansion keyboard functions are available.

This page shows now a list of priorities which "weight" all possible matches. As soon as a priority goes below -127, the match is
no longer considered.

As far as the example is concerned, the "Resident", "C: Dir" and "Path" gadget is of importance:

The first gadget is the absolute priority for matches in the resident list. Set this to "-128" to ignore resident commands.

The second gadget is a relative priority that is added to matches found in the "C:" directory. If this is set to "-128", this directory
will be ignored completely, regardless how high the overall priority may grow.

The third gadget is again a relative priority used for matches in the shell path, i.e. all directories printed by the "Path" command
except the current directory and the C: assign. Again, if this is set to "-128", the path will be ignored.

More details about how the priorities are used are described in a different section .

1.100 How to exclude directories?

You can of course setup whether directories should be included in this situation. It’s part of the configuration of the TAB
expansion keyboard function used whether directories should match or not.

In our example, the first available TAB expansion, which is bound to Ctrl TAB, has been used.

To change its settings, open the preferences editor , the SetVNC program and go to the fifth shell page . The white text below the
headline will show now the TAB expansion function to be adjusted, to be controlled with the "« Prev" and "Next »" buttons right
to it. The gadgets below setup the priorities assigned to certain objects. You may change here the entry of the "Dirs:" gadget in
the first row to a lower value, or probably even to -128; objects with a total priority lower than -127 aren’t considered as a valid
match, hence this would exclude directories completely.

More details about how the priorities are used are described in a different section .

VNC 40 / 188

1.101 How to exclude assignments?

It’s part of the ViNCEd configuration which sources are searched to find a match for a given template , or to be precise part of
the configurations of one of the six the keyboard functions used for the TAB expansion. In our example, the first available TAB
function is relevant since this is the function bound to the Ctrl TAB key used in the tutorial .

To change these settings, open the SetVNC program and go to the fifth shell page . The page will already show the settings for
the first expansion function, all others can be adjusted by pressing the "« Prev" and "Next »" buttons on this page. In total, six
expansion keyboard functions are available.

This page shows now a list of priorities which "weight" all possible matches. As soon as a priority goes below -127, the match is
no longer considered.

The priority that is relevant for the assigns is, obviously, the number in the "Assigns" gadget. Set this to -128 to exclude
assignments. Similarly, devices and volume names can be removed as well - by setting their priority to -128 as well.

More details about how the priorities are used are described in a different section .

1.102 How to exclude icon files?

Which files types match a TAB expansion is under control of the ViNCEd configuration, or to be specific, under the configuration
of one of the six TAB expansion functions available. In our example, this is the first function available because that is the function
that is bound to the Ctrl TAB key.

To change its settings, load the SetVNC program and go to the fifth shell page . This will show the priority settings for the first
TAB function already.

To exclude icon files, enter a value of "-128" in the top right "Icons:" gadget on that page - the TAB expansion will ignore all
objects with a priority lower than -127.

More details about how the priorities are used are described in a different section .

1.103 Side mark: Inserting spaces

As an exception, ViNCEd will NOT insert spaces after a successful and unique expansion if the match was either a directory or
an assign. The last letter will be a forwards slash "/" or a colon ":". This is mainly for convenience in all-day use.

1.104 How to avoid the refinement?

In case you don’t want ViNCEd to insert a refined template if more than one possible match was found, you have to adjust the
configuration of the TAB expansion keyboard function used. This would be the first available function in our tutorial which is
bound to Ctrl TAB by default.

To adjust the settings, load the SetVNC program and go to the third shell page . It will already show the flags of the first TAB
expansion function, the others are available by the arrow gadgets "« Prev" and "Next »". In this page, turn on the gadget "First
TAB expands fully".

More details about how the flags settings are described in the third shell page and the fourth shell page .

1.105 What about a requester if not unique?

If you like to see a requester if more than one possible match of your template was found, you have to adjust the configuration
of the TAB expansion keyboard function used. This would be the first available function in the above tutorial which is bound to
Ctrl TAB by default.

VNC 41 / 188

To change the settings, load the SetVNC program and go to the third shell page . It will already show the flags of the first
TAB expansion function, the others are available by the arrow gadgets "« Prev" and "Next »". Turn on the gadget "Requester if
expansion is ambiguous" on this page.

More details about how the flags settings are described in the third shell page and the fourth shell page .

1.106 About info files and requesters

There are two (or three, to be precise) popular requester packages available - the standard "asl" package which came with your
workbench and the "reqtools" replacement which should be patched in by "reqchange" (I don’t recommend RTPatch, though).
The "asl" library shows the "info" files by default, the reqtools patch does not. However, there should be a tiny ".info" button
in each reqtools gadget which allows to include these files as well. The problem is here that all matches found by ViNCEd are
again filtered by the requester package. A sometimes useful, but sometimes annoying side effect.

1.107 How to use standard requesters?

ViNCEd uses a lot of trickery to allow you selecting ALL found matches of a TAB expansion from a file the requester, and even
to enter directories and assigns found in this way. If a file was found twice - because it happens to be in two directories ViNCEd
looked for expansions in - then it will appear twice in this requester. While this might look weird, it is supposed to be a warning
sign to you that it is not clear which version is actually used by the shell.

If you don’t like all this magic, you can switch back to a plain file requester. This will, however, ONLY show the files in the
current directory level, NO assigns, NO devices, no extras.

The corresponding flag is located on the third shell page of the SetVNC program - one flag is available for each of the six TAB
expansion functions. To select the function to modify, use the "« Prev" and "Next »" buttons on top of the page.

1.108 How to turn off the Double-Tab requester?

The Double-Tab requester is invoked by ViNCEd as soon as another TAB expansion keyboard function is used within the double-
click period after the TAB expansion has been completed. If this requester is "in the way" because you prefer keyboard based
working to a graphical interface (I’m faster in typing than in clicking anyhow...), you may disable this requester function.

To do so, open the SetVNC preferences editor, go to the third shell page and select with the "« Prev" and "Next »" gadgets
near the top of the page the TAB function you’d like to adjust. The first flag on this page - "Double TAB requester" - must be
un-checked to disable the requester.

1.109 What is a refinement?

A "refinement" of a template is a template that matches exactly the same entries as the original template, but contains more
characters. Hence, it is the largest possible "partial expansion" of the template given in first place.

ViNCEd will place the cursor within the "refinement" in such a way that again a valid template is constructed. To remove the
ambiguity of this template, or at least to exclude some of the matches, characters have to be inserted right at the cursor position.

1.110 What is a template?

A "template" is a sequence of characters, the cursor placed within this sequence, which is used as a "wild card" to search an entry
either of the ViNCEd command history or of the directories for a TAB expansion . Each object - either an entry of the history or
a candidate for a TAB expansion is compared against this template and either considered as a match, or ignored.

VNC 42 / 188

The rules for matching are quite simple: A candidate must begin with the characters in the template up to the character in front
of the cursor position, and must end with the characters under and behind the cursor position. Hence, a template like

1.SYS:> lst

would match candidates which start with an "l" and end with "st".

To give an intuitive "rule of thumb" for templates: A possible candidate is only allowed to insert characters at the cursor position.
It is not allowed to change any other character already given in the template. This means, especially, that you may always refine
a template by typing some characters at the cursor position.

1.111 The magic Ctrl Z key in the Shell mode

This is a unique feature of ViNCEd which is mostly known from the Unix world; it is only available if the Shell mode is enabled,
and it requires at least Os 3.0 to make it working, or the "NamedConsoleHandler". This handler should be installed as part of the
installer script, and should be mounted in the startup-sequence. It is not required for Os 3.0 or later.

What does this, now? It happened more than once that I was running a program in the shell and then decided that I actually need
to run another one in between. However, since I forgot to use "RUN" to start the first program, the shell in the window was no
longer available as it was "blocked" by the first program already. What I had to do in this situation was to go to the workbench
and open another shell; Unix, however, offers a special key just for that situation: Hit Ctrl z to suspend the currently running
program and make the shell re-available again.

ViNCEd offers "almost" the same feature for the Amiga: If a program is blocking the shell, hit Ctrl z to launch just another shell
in the same window. Output of the first program going into the window while the second shell is working will be "suspended".
ViNCEd will not "mix" both outputs and confuse you; only one of the running shells will be allowed to print in the window.
The additional scripts "fg" and "bg" implement "almost Unix" "job control" commands. Using these commands, you’re able to
control which program is "in foreground" and which are not. Only foreground commands are allowed to print on the screen; and
if a background program tries so, it will be "suspended", i.e. stopped until you put it "in foreground" explicitly.

How about an example? Open a ViNCEd shell - keep care that it is in Shell mode or this magic won’t work. Then enter the
command

1.SYS:> listReturn

and while the output is in progress, hit Ctrl z. What you’ll see looks approximately like the following:

Disk&Debug Dir ---arwed 14-Jun-98 19:19:03 Disk&Debug.info 628 ---arw-d 10-Jan-97 22:00:27 Disk.info 376 ---arw-d 10-
Sep-96 22:16:38

New Shell process 2 2.SYS:> "list" suspended. [ViNCEd output] 2.SYS:>

At the time you pressed Ctrl z, ViNCEd launched a new shell for you, here indicated by the text "New Shell process 2". The
prompt of this new shell is already printed on the line below. However, the "list" command was still running and tried to print
some output. Since the new shell is now "in foreground", the "list" command has been put in background. As soon as it tries to
print something, it is stopped and ViNCEd prints a message for you that this happened in the next line:

"list" suspended. [ViNCEd output]

The prompt of the new shell is then requested again. As soon as you want to see the "list" output, you’ve to put that "to foreground"
again. To do that, you need the "CLI number" of the "list" output; type "status" to see which commands are currently running:

1.SYS:> status Process 1: Loaded as command: list Process 2: Loaded as command: status 10.SYS:>

In our tiny example, the "CLI number 1" is used by the "list" command, and the shell number 2 is running the "status" command
you entered. To put now the "CLI 1" to foreground, type

2.SYS:> fg 1 Expansion Dir ---arwed 30-Apr-98 23:46:36 Expansion.info 632 ---arw-d 04-Sep-96 23:34:48

and the "list" command will resume. Looking at the prompt some lines below reveals that you’re now back in the "CLI 1" and
CLI 2 is in background. However, since nothing is printed by this shell and it’s just sitting there and waiting for your input, it
won’t get suspended. Of course, you may still put it back in foreground with "fg 2":

1.SYS:> fg 2 2.SYS:>

Somewhat more insight for the advanced user about the job control is in a separate section .

VNC 43 / 188

1.112 The command history

The command history is another ViNCEd buffer . Unlike the screen "review buffers", it’s not directly visible on the screen, but
is nevertheless useful. (However, it can be made visible with the history Shell script).

As soon as you entered a command and press Return (or precisely, the Send Inputs keyboard function which is usually bound to
this key), your input enters the command history. With the ViNCEd history functions, this input can be restored later on - which
helps typing longer command lines over and over again. The difference between the history and the review buffer - which can be
used, too, to rerun a command - is that the cursor doesn’t leave the current input line at all.

Besides that, there are keyboard functions to "move" in the command history - very much like moving in the display buffer. Even
better, you may also search for commands in this buffer.

The following is a tutorial about how to work with the history. The list history relevant settings is in a different section

To demonstrate a bit how this works, enter the following commands a the ViNCEd shell:

1.SYS:> list

and press Return to list the current directory. Next, run

1.SYS:> dir

and, for a last time, enter

1.SYS:> list SYS:

The default configuration binds the functions traversing in the history to the Alt Cursor Up and Alt Cursor Down keys - so let’s
try these; press Alt Cursor Up:

1.SYS:> list SYS:

This shows again the last command entered. Pressing this key again reveals

1.SYS:> dir

the command entered previous to that - you just moved "two lines" in the history "upwards". Pressing a third time Alt Cursor Up
shows of course

1.SYS:> list

and pressing it a fourth time shows just a blank line

1.SYS:>

because you’ve just encountered the end of the history. Pressing Alt Cursor Up again reveals nothing new, just again the blank
line. You may ask ViNCEd to "wrap" the history "around" in this case, i.e. to start from the opposite beginning as soon as you
passed the end - instead of just stopping at the end. This is controlled by the History buffer wraps around flag on the second shell
page of the SetVNC preferences editor, or alternatively by the "Wrap Around Buffer" item in the Settings menu .

Try now the backwards moving functions: Alt Cursor Down. As expected:

1.SYS:> list

Erase now this command and enter a new one:

1.SYS:> dir SYS:

This shows, again, the directory. But it will, too, "rewind" the history and append this command at the end of it. If you had
entered the "list SYS:" command again, ViNCEd would have noticed that there is already another "list SYS:" at the end of the
history and won’t keep this duplicate entry - even though the history gets rewinded. As always, there’s a flag in the SetVNC
program which disables this feature and hence allows keeping duplicates; it’s located on the second shell page .

Anyways, pressing Alt Cursor Up now shows the command you just entered

1.SYS:> dir SYS:

again, and using the history movement function again shows

1.SYS:> list SYS:

VNC 44 / 188

the previous one.

Erase now this line, and press Return on the blank line. This will also "rewind" the history - but the blank line won’t enter the
history. Instead of moving now "upwards" in the history, you may also start looking at it "downwards", i.e. scan it in "reverse
order". Just press now Alt Cursor Down, and ViNCEd prompts with

1.SYS:> list

the very first command entered. Thus, if the history is "rewinded", you’re in some sense both at its beginning and its end at
the same time. The first movement selects from which end to start - this might come useful as soon as you want to look for a
command you entered ages ago.

Since erasing the input line and pressing Return each time you want to rewind the history might be a bit unconvenient, there’s a
short-cut for this function. It’s by default bound to the Ctrl b key; this keyboard function is obviously called Rewind History .

By the way, ViNCEd does not keep an infinite amount of lines in the history, it’s by default 128 lines big. The size of the history
can be setup on the first window page of SetVNC or by using the Settings menu attached to the window.

Let’s come to another useful feature of the history - you may search for commands. For first, rewind the history with Ctrl b. Then
enter the following template

1.SYS:> li

and press Amiga B or, alternatively, Shift Alt Cursor Up. Both functions search in the history in the "backwards" or "upwards"
direction for a line matching the template - in this case for commands starting with "li".

The rules how templates for searching are build are described in detail elsewhere , but to give an intuitive rule for how they work:
ViNCEd scans the history buffer and looks for lines that are formed just by inserting characters at the cursor position. Other
modifications are not allowed. Hence, a template like

1.SYS:> lt

would allow ViNCEd to insert characters between the "l" and the "t", but nothing else. Hence, lines starting with "l" and ending
with "t" would match here.

Going back to the tutorial, ViNCEd finds the following line:

1.SYS:> list SYS:

the last available command that starts with "li". To search on, press Shift Alt Cursor Up again or Amiga B, whatever you like.
ViNCEd remembers the last pattern and will resume scanning the history from the last found match. Hence, you’ll see the
following line on the screen:

1.SYS:> list

which is the very first command you entered. Searching on reveals no other matches, it will just flash the screen, obviously (try
it!).

If you’re left at a certain point in the history, you may of course search in the opposite direction as well, towards the "newer"
entries or the "bottom end" of it. This works either with Amiga F or Shift Alt Cursor Down.

This ends the tutorial session - the list of flags that control the history function is listed in a different section .

1.113 All history settings at once

The history is mainly controlled by two flags which are found on the second shell page of SetVNC . The first one,

History buffer wraps around

controls what happens if the end of the history is reached while moving in the history. If this flag is disabled, the history
movement functions will just stop and present a blank line. If the flag is enabled, the history will "wrap around" and show again
the first line of the opposite end of the history buffer. This flag controls, too, the Tab expansion list.

The second flag,

Keep duplicates in the history

VNC 45 / 188

is used to tell ViNCEd what to with "repeated commands". If the command from the "bottom" or "newest" end of the history is
entered again, this command will enter the history only if this flag is checked. If the flag is not checked, ViNCEd will rewind the
history, as usual, but will simply ignore the line as far as the history is concerned.

The size of the history, in lines, is under control of the first window page . It defaults to 128 lines. If the size of the history grows
larger than this, the oldest line is thrown away to make room for the latest one.

Finally, the keys used for the history are setup on the keyboard pages . The following keyboard functions are relevant:

History Up : Moves in the history, towards older entries History Down : Moves in the history, towards newer entries Search
Partial Upwards : Interprets the current input line UP TO the cursor position as template and searches for this template in the
history towards older entries. This function is provided for backwards compatibility with the CON: mode of history searching
which does not use the ViNCEd template mechanism. Search Partial Downwards : Similarly, but in downwards direction. Search
History Upwards : Interprets the complete current input line as template and searches for this template in the history towards the
older lines, as described by the tutorial . Search History Downwards : Ditto, but searches towards newer lines.

1.114 The scripts contained in this package

Seven scripts have been copied by the installation disk to your S: drawer Three of them are part of the job control , and the others
replace standard tools usually found in the C: drawer.

S:fg

is used for job control and calls SetVNC to put a specified CLI to foreground . The argument is the number of the CLI process
that should be put to foreground, as printed by the "status" command.

S:bg

another job control script which sends the current shell to the background using SetVNC . It does not take any arguments.

S:fork

starts a new shell in the current shell window and sends it to foreground. If an argument is supplied, this command with all
remaining arguments is executed in background. Mostly provided as an example how to use named consoles and job control .

REMARK: There’s one quirk about the "fork" command: If you run a program with it, its input and output are set to the new
"background" owner, but its controlling terminal, which is used to open a "*" file, will remain the current stream. Thus opening
"*" from such a process *MIGHT* end in a deadlock situation! This is due to a gap in the RUN command, and some others
in the way how the AmigaDOS executes script files. There’s currently no way to fix this with just a script, so take this as a
demonstration what is possible. A replacement "Run" should be able to fix this

S:SetKeyboard

replaces the C:SetKeyboard command and selects the keyboard for ViNCEd windows. The old C:SetKeyboard still works, but
it is more a "hack" than a stable implementation. The script uses the recommended way thru documented Esc sequences. The
needed argument is the name of the keyboard, e.g.

1.SYS:> SetKeyboard dReturn

selects the german keyboard.

S:SetFont

replaces C:SetFont and selects the terminal font. The old C:SetFont still works, but is like C:SetKeyboard more a hack and
conceptionally not clean. The supplied script uses the documented Esc sequences to do the same job much better and safer.
However, this script does not check for proportional fonts and uses them in the window without warning. As a result, the
display might look very ugly and the input of commands will be confusing with proportional fonts, moreover, some graphical
artifacts may show up. Except that, the arguments are identical to C:SetFont. Maybe somebody wants to write a replacement for
C:SetFont that takes care of ViNCEd? In that case, contact me .

S:More

is a workaround for the CBM "More" page utility. It is assumed that you keep the original More program in the drawer
"SYS:Utilities". If your "more" is located somewhere else, please edit the script!

VNC 46 / 188

The script frees the window pointer after "More" quit, in order to re-establish the iconification .

S:History

dumps the history to the screen or to a file and demonstrates the power of the "PUT" and "GET" arguments of SetVNC .

1.115 Details about Job Control

A new feature introduced with ViNCEd is the so-called "job control". A "job" is just couple of ordinary shell commands that
share an common meaning of "foreground" or "background".

There is only one "foreground" job - which is allowed to receive inputs and to print on the screen, and arbitrary many "back-
ground" jobs. The commands running as part of these jobs neither receive input, nor may print anything to the screen. In case
they try, they just get "suspended", i.e. halted until you bring them to "foreground" manually.

An important part of the "job control" managed by ViNCEd is the Ctrl z function. It aborts the current foreground process, brings
it to background and launches a new shell in foreground. A tutorial about this key can be found in the Ctrl z section.

Three scripts for "job control" have been installed in your "S:" directory as part of the installation process. Let’s check how to
use them:

Open a new shell if not already done. Since you should be able to run commands as usual in this shell, the "job" related to this
shell is in "foreground". We’re now starting a second shell in the same window and put the first shell to background:

1.SYS:> forkReturn

This will print some messy lines on the screen - which are due to the way how the script works - and ends up with a shell prompt
of a different process number:

3.SYS:>

The "CLI number one" is now in "background", the "CLI three" is in foreground and ready for input. We may now explicitly put
the new shell to background and bring the "Cli one" to foreground again. This works with

3.SYS:> bgReturn

the "bg" - short for "background" - command. Since just moving "shells" back and forth doesn’t help too much, let’s try something
useful. Run the "list" command in the first shell

1.SYS:> listReturn

and "suspend" it in the middle of the output by pressing Ctrl z. It will be aborted, put into background and the next available
shell will be brought to foreground:

Devs Dir ---arwed 10-Jul-98 00:10:53 Devs.info 632 ---arw-d 05-Sep-96 21:22:27 3.SYS:> "list" suspended. [ViNCEd output]
3.SYS:>

At first the shell "Cli 3" shows up, and "list" is put to background. However, since "list" still tries to continue its output, it will
get suspended, i.e. halted. The "Cli 3" prompt is now printed again and ready for input.

To resume the "list" program, you’ve to put it back to foreground. That happens either implicitly with the "bg" command by
putting the currently running shell "back", or by using the "fg" command and a "Cli number" explicitly. Since "list" runs in "Cli
1" in our tutorial, let’s try:

3.SYS:> fg 1Return

and the output of "list" resumes. "Cli 3" is now in background again.

By the way: The ViNCEd notion of "foreground" and "background" is not related to the AmigaDos notation of "background
processes". A program launched with "Run" is, in AmigaDos terminology a "background process". However, it is still allowed
to print on the screen since it shares the "job" with the shell it was started with.

Hence,

1.SYS:> run listReturn

VNC 47 / 188

will make no difference from what you’re used to. However, you won’t be able to abort this output by Ctrl z since this program
is no longer run as a part of the current shell. A better and job control compliant way to run "real background processes" is by
using the "fork" command together with an argument. For example,

1.SYS:> fork listReturn

will not only run the "list" command, it will also put it to background. Hence, the next line of output will be

"list" suspended. [ViNCEd output] [CLI 2] 1.SYS:>

to indicate that "list" was suspended because it tried to print on the screen. Commands that do not try to print will be of course
allowed to run on as usual.

To go on, let’s put "list" back in foreground again. Do to so, we need first it’s "Cli number". This is printed by the status
command:

1.SYS:> status Process 1: Loaded as command: status Process 2: Loaded as command: list Process 3: No command loaded

In this example, it’s the "Cli 2" that runs "list". Hence, to resume output, enter

1.SYS:> fg 2Return

and the listing will go on. You will, however, still end up in the "Cli 1"

1.SYS:>

since the "job" that was "forked" to run "list" quits as soon as the command quits. In this case, ViNCEd will select the next
available shell for you and bring it to foreground.

Some additional nodes about the "job control scripts": They use all the SetVNC program for its function, namely "SetVNC
foreground" and "SetVNC background". ViNCEd - or SetVNC to be precise - will NOT allow you to control jobs that have been
launched from a different ViNCEd window than the current one - mainly because of security reasons.

However, there’s one tiny exception: It may happen that you somehow "got stuck" because Ctrl z doesn’t seem to work anymore
and you won’t be able to bring a shell back to foreground, even if there’s one available in that window. This happens for example
if ViNCEd can’t abort a running process safely since there’s currently not enough information about it available. If this happens,
you’ve to open a new shell window, unfortunately. You *may try* to bring the shell running in the other shell window to
foreground with a "brute force" method:

First, find its "Cli number" by running the "status" command. The lines showing

Process 2: No command loaded

are in principle available, even though "status" does NOT say in which window these shells are actually launched. Anyways, to
bring this shell to foreground, even though it is not running in the same window than the window SetVNC will be run from, enter

1.SYS:> SetVNC foreground other 2

The "other" keyword will tell SetVNC to ignore that the "Cli 2" is actually running in a different window and it will try to bring
that to foreground anyways - usually successful.

However, BE WARNED! This operation is not completely safe. It might crash your computer in certain, very delicate situations.

Probably a last word for the experts: The ViNCEd "jobs" are implemented thru so called named consoles - which are part of the
ViNCEd console owner system - which is another ViNCEd speciality. Named consoles are only supported by Os versions 3.0
and 3.1 - which is the reason why this doesn’t work for Os 2.1 or below.

1.116 Compatibility notes

More

Just a couple of bugs in this program. First, it requests a pointer to the intuition window without giving it back. This is common
to all "CON:" programs and will disable iconification and closing of AUTO windows. As a workaround, use the "More" script
, which is part of the ViNCEd distribution. It will free the window pointer afterwards for you. Read also about the FreePointer
command line option of SetVNC . This bug has been fixed in More 45.x and up.

VNC 48 / 188

Second, "more" expects "Close-Window" events without asking for them. I added a fix for that: Whenever a window is switched
to raw mode, the close window event is turned on. Sigh. This bug remains open. There’s really little one can do here without
breaking "more" on native consoles.

A fix for the iconification bug is now available for the 40.3 version of "More" and can be installed optionally. However, I would
recommend using the 45.xx variants of more, they are 100% less hacky.

Ed

Again, the same pointer problem as above. I said this is usual, but not my trouble. Second, "Ed" sends the undocumented CSI
sequence "CSI 1K" which should, according to the VT-220 standard, erase the beginning of a line. Instead, "Ed" expects ViNCEd
to erase the end of the line. Added a workaround for this, "CSI 1K" is now interpreted in the wrong way in CBM compatibility
mode, but works like it should in VT-220 mode. Third, "Ed" leaves a pending Read packet in the stream of ViNCEd. This packet
is now canceled each time a Close Event is send to the owner used by "Ed", together with all other packets pending there. Not
very nice, in fact, but prevents crashes and I can’t think of another solution. Last, to use "Ed" in a ViNCEd window, you should
change the scrolling behavour by some CSI sequences, with "CSI >?18l" "CSI >?19l" and change maybe the block control with
"CSI >?25l". Read more about the control codes in the control code section .

pdksh resp. ksh

This unix korn shell implementation is another program that does not give back the window pointer it receives. Unless other
programs, it asks for the window pointer EACH TIME it displays a prompt - to find out if it is reading from a console, I guess -
making iconification completely impossible, even with a "SetVNC FreePointer". The reason is that after freeing the pointer with
this command, it asks again for a new pointer if the prompt gets displayed, ARGHH! The implementation of this function in
"ixemul" should be really fixed, since there’s currently NO solution for this problem. TAB expansion in "pdksh" windows won’t
work. The reason is the rather strange reading mechanism of the pksh which somehow emulates the timed/nonblocking reads of
unix. Instead of sending a read request to the console, a WaitForChar() style mechanism is used. However, these packets aren’t
accepted by ViNCEd as stable basis for a TAB expansion, as the packet might get answered at a time not fully under control of
ViNCEd - and the CurrentDir() of the waiting process might get lost in between. There’s currently no way to fix this. A private
TAB expansion like in the unix "bash" would be the better and cleaner solution anyways, so I won’t support this bad style.

Z (The Aztec Editor, ancient!)

Well, if you MUST use this editor (maybe you like VI as well... Argh!), here is how: Send "CSI >?18l" "CSI >?19l" to turn off
the ViNCEd scrolling. See also the ViNCEd control sequences .

asm (The lattice assembler, old versions 5.xx)

This program has an illegal control sequence in its title. When printed, ViNCEd inserts 1988 blank lines. This might take a
while, but is not dangerous. The new versions work well.

csh,ZShell,NewShell

Sends an illegal CSI sequence to ViNCEd ("CSI q" instead of "CSI 0q"). I added a workaround for this, but don’t expect this to
work any longer. It looks like this "CSI q" sequence is very popular and seems to be documented somewhere. I have no idea who
had the strange idea to invent this sequence instead of taking the documented one.

Additional, it does a lot of switching between raw mode and cooked mode, which is quite unnecessary, since the editor features
of ViNCEd are superior to that of csh - I advice you to use the "-a" flag. Again, since "csh" reads the window pointer and does
not give it back, ViNCEd can’t iconify this window anymore (different to KingCON, which still allows the user to iconify the
window and, hence, crashes the system). A second problem is, also I haven’t checked that out, that the internal commands of
"csh" are not in the resident list of the DOS (I suppose). For that reason, they can’t get expanded by the TAB key. I advice you
to place some dummy commands in the resident list or in the C: directory.

CenterTitles

Not a real bug, but the window title might look a bit messy for one or two seconds after opening a ViNCEd window with buttons
in it. This messed window title will go away almost immediately and is harmless (and due to a bug in CenterTitles which uses
the wrong draw mode to refresh the title.)

ScreenShell

The output of ViNCEd with that program might look a bit different from how CON: outputs looked like. This is due to the fact
that ViNCEd does not ignore the settings of the screen pens, different from CON: which does not care about the screen pens at
all.

VNC 49 / 188

AFS ("Anti File System")

This is actually not a problem with ViNCEd, but a problem with the ExAll() patch installed by SetPatch 43.6 and later versions,
installed for the V39 ROMs. The SetPatch code adds a workaround for a bug in the DirCache filing system which conflicts with
AFS due to another bug in AFS. (ARGH!) ViNCEd tries to solve this problem by using its own ExAll() routine for these ROM
versions. This is, again, an AFS bug and NOT ViNCEd related.

Vim

As all window editors, it expects window scrolling disabled. Even more, to make the vim build-in block operations work, the
insertion of scrolled lines into the lower display buffer should be disabled. Some advanced versions of vim use the extended
color highlighting feature, which should be enabled to make use of the extended colors of ViNCEd instead of printing these lines
in boldface. The CSI sequences that should be sent as part of the startup process are "CSI >?18l" and "CSI >?19l" to disable
scrolling, "CSI >?14h" to enable the extended colors instead of bold and "CSI >?13l" to disable scrolling of lines into the lower
display buffer. These CSI sequences should actually be part of the vim "termcap" configuration.

XEN.8 font

The XEN.8 font, even though supposed to be a fixed width font, is in fact a proportional font. The container size of some
characters is actually LARGER than the font width - the font is declared to be six pixels wide, but the "f" character has a width of
seven pixels. This might cause some graphical artifacts, but is otherwise harmless. Replace it by the topaz6.8 font in the ViNCEd
archive.

1.117 Compatibility notes for the experts

Some programs don’t follow the compatibility guide lines formulated in the Rom Kernal Reference Manuals . Some of these
problems have been fixed by work-arounds I will remove sometimes.

ViNCEd compatibility guidelines

-Do not send any undocumented CSI sequences. If you want to stay compatible with CON:, send only codes documented in the
Rom Kernal Reference Manuals .

-If you want to find out whether a window belongs to ViNCEd, use the "FindCNWindow()" function of the library. It also
provides a pointer to the intuition window. Call "UnFindCNWindow()" to give this pointer back. If you don’t, the window can’t
be iconified later on.

-Do not expect that the stream is linked to an open intuition window. It might be closed by a iconification request any time. To
make sure THAT a valid intuition window exists, call "FindCNWindow()".

-Do not expect your process is in foreground. Printing from a background process might suspend your program. Read the job
control section and the console owner section for more details.

-Do not expect that you will receive any raw events you haven’t requested, but be prepared that you might even ask for them in
the "cooked" mode.

-Do not expect that the handler will break lines somewhere. Use the control sequences to select the mode you need.

-Do not poke in the console unit you received with ACTION_DISK_INFO. Changes in this structure are ignored by ViNCEd.
In special, do not set the the font in that structure and do not set the keymap, even though this MIGHT work as a part of a
compatibility hack. ViNCEd supports CSI sequences to do that, read control sequence section .

-Do not expect that the startup ID -1 will work. This lesser known feature of the 1.3 console handler was used to attach the
console to a previously opened window, but is no longer supported - neither by the newer CON: handlers nor by ViNCEd. Use
the WINDOW open path argument, or the ConMan style "W" argument.

1.118 List of all Keyboard Functions

Cursor Left (Keyboard Function)

Cursor Right (Keyboard Function) Cursor Up keyboard (Keyboard Function)

VNC 50 / 188

Cursor Down keyboard (Keyboard Function) History Up (Keyboard Function)

History Down (Keyboard Function) Search Partial Upwards (Keyboard Function)

Search Partial Downwards (Keyboard Function) Search History Upwards (Keyboard Function)

Search History Downwards (Keyboard Function) Half Screen Left (Keyboard Function)

Half Screen Right (Keyboard Function) Half Screen Up (Keyboard Function)

Half Screen Down (Keyboard Function) To Left Border (Keyboard Function)

To Right Border (Keyboard Function) To Top of Screen (Keyboard Function)

To Bottom of Screen (Keyboard Function) Prev Word (Keyboard Function)

Next Word (Keyboard Function) Prev Component (Keyboard Function)

Next Component (Keyboard Function) Home (Keyboard Function)

End (Keyboard Function) Scroll Up (Keyboard Function)

Scroll Down (Keyboard Function) Scroll Half Screen Up (Keyboard Function)

Scroll Half Screen Down (Keyboard Function) Send Inputs (Keyboard Function)

Split Line (Keyboard Function) Insert ˆJ (Keyboard Function)

Send Complete Line (Keyboard Function) Line Feed (Keyboard Function)

TAB Forwards (Keyboard Function) TAB Backwards (Keyboard Function)

Expand Path (Keyboard Function) Expand Backwards (Keyboard Function)

Expand Short (Keyboard Function) Expand Short Bkwds (Keyboard Function)

Expand Devices (Keyboard Function) Expand Devs Bkwds (Keyboard Function)

Expand Dirs (Keyboard Function) Expand Dirs Bkwds (Keyboard Function)

Expand Icons (Keyboard Function) Expand Icons Bkwds (Keyboard Function)

Expand Alt (Keyboard Function) Expand Alt Bkwds (Keyboard Function)

Send ˆC (Keyboard Function) Send ˆD (Keyboard Function)

Send ˆE (Keyboard Function) Send ˆF (Keyboard Function)

Send ˆC to All (Keyboard Function) Send ˆD to All (Keyboard Function)

Send ˆE to All (Keyboard Function) Send ˆF to All (Keyboard Function)

Delete Forwards (Keyboard Function) Delete Backwards (Keyboard Function)

Delete Full Line (Keyboard Function) Cut Full Line (Keyboard Function)

Delete Inputs (Keyboard Function) Cut Inputs (Keyboard Function)

Delete Word Fwds (Keyboard Function) Cut Words Fwds (Keyboard Function)

Delete Word Bkwds (Keyboard Function) Cut Word Bkwds (Keyboard Function)

Delete Component Fwds (Keyboard Function) Cut Component Fwds (Keyboard Function)

Delete Component Bkwds (Keyboard Function) Cut Component Bkwds (Keyboard Function)

Delete End of Line (Keyboard Function) Cut End of Line (Keyboard Function)

Delete Start of Line (Keyboard Function) Cut Start of Line (Keyboard Function)

Delete End of Display (Keyboard Function) Form Feed (Keyboard Function)

Clear Screen (Keyboard Function) Cut (Keyboard Function)

Copy (Keyboard Function) Paste (Keyboard Function)

Hide (Keyboard Function) Select All (Keyboard Function)

VNC 51 / 188

Copy Quiet (Keyboard Function) Reset (Keyboard Function)

Full Reset (Keyboard Function) Iconify (Keyboard Function)

Toggle ESC (Keyboard Function) Toggle NumLock (Keyboard Function)

Toggle Overwrite (Keyboard Function) Suspend (Keyboard Function)

Resume (Keyboard Function) Abort Expansion (Keyboard Function)

Scroll to Cursor (Keyboard Function) Rewind History (Keyboard Function)

Yank (Keyboard Function) Generate EOF (Keyboard Function)

Display Beep (Keyboard Function) Toggle Pause (Keyboard Function)

Help (Keyboard Function) Fork New Shell (Keyboard Function)

Insert CSI (Keyboard Function) Insert ESC (Keyboard Function)

1.119 Cursor Left (Keyboard Function)

Moves the cursor one character to the left. If the cursor is directly right to printed output, it will stop if the Don’t scroll into the
border flag on the first editor page of the SetVNC program is set. You may override this flag temporarely by the "DOS Cursor
Mode" in the Settings menu .

1.120 Cursor Right (Keyboard Function)

Moves the cursor one character to the left. If the cursor is directly left to printed output, it will stop if the Don’t scroll into the
border flag on the first editor page of the SetVNC program is set. You may override this flag temporarely by the "DOS Cursor
Mode" in the Settings menu . Moves the cursor one character to the right.

1.121 Cursor Up keyboard (Keyboard Function)

Move the cursor one line upwards on the screen. If the cursor reaches the upper end of the buffer , it either inserts a blank line or
stops. This depends on the Don’t scroll into the border flag on the first editor page of the SetVNC program .

1.122 Cursor Down keyboard (Keyboard Function)

Move the cursor downwards one line on the screen. If you reach the lower end of the display buffer , ViNCEd inserts a blank line
or stops the cursor there. What happens depends on the Don’t scroll into the border flag on the first editor page of the SetVNC
program .

1.123 History Up (Keyboard Function)

Inserts the next available older line of the command history at the current cursor position, and moves the history pointer one line
towards the older end of the history.

If the end of the history is reached, ViNCEd inserts either a blank line or "wraps around" to the start of the history. This depends
on the History buffer wraps around flag on the second shell page of SetVNC .

VNC 52 / 188

1.124 History Down (Keyboard Function)

Inserts the next available newer line of the command history at the current cursor position, and moves the history pointer one line
towards the newer end of the history.

If the start of the history is reached, ViNCEd inserts either a blank line or "wraps around" to the end of the history. This depends
on the History buffer wraps around flag on the second shell page of SetVNC .

1.125 Search Partial Upwards (Keyboard Function)

Takes the user input at the current line up to the cursor position as template to search in the command history starting from the
current history pointer in upwards direction, i.e. towards older lines.

1.126 Search Partial Downwards (Keyboard Function)

Takes the user input at the current line up to the cursor position as template to search in the command history starting from the
current history pointer in downwards direction, i.e. towards newer lines.

1.127 Search History Upwards (Keyboard Function)

Uses the user input at the cursor position as template to search in the command history starting from the history pointer in
upwards direction, i.e. towards older lines.

1.128 Search History Downwards (Keyboard Function)

Uses the user input at the cursor position as template to search in the command history starting from the history pointer in
downwards direction, i.e. towards newer lines.

1.129 Half Screen Left (Keyboard Function)

Moves the cursor either to the left edge of the visible area, or scrolls the window leftwards one half window width if it is already
at the left edge of the window. The cursor stops moving at the right border of printed output, i.e. usually at the prompt of the
shell.

1.130 Half Screen Right (Keyboard Function)

Moves the cursor either to the right edge of the visible area, or scrolls the window rightwards one half window width if it is
already at the right edge.

1.131 Half Screen Up (Keyboard Function)

Moves the cursor either to the top edge of the window, or scrolls the text upwards one half window height if the cursor is already
at the top edge of the window. If the cursor reaches the upper end of the display buffer , ViNCEd inserts either blank lines or
stops there, if the Don’t scroll into the border flag on the first editor page is set.

VNC 53 / 188

1.132 Half Screen Down (Keyboard Function)

Moves the cursor either to the bottom edge of the window, or scrolls the text downwards one half window height if the cursor is
already at the bottom edge of the window. If the cursor reaches the lower end of the display buffer , ViNCEd inserts either blank
lines or stops there, if the Don’t scroll into the border flag on the first editor page is set.

1.133 To Left Border (Keyboard Function)

Moves the cursor leftwards either to the start of the line or at least to the start of the user input data.

1.134 To Right Border (Keyboard Function)

Moves the cursor rightwards to the end of the line.

1.135 To Top of Screen (Keyboard Function)

Moves the cursor to the top of the display buffer .

1.136 To Bottom of Screen (Keyboard Function)

Moves the cursor to the bottom of the display buffer .

1.137 Prev Word (Keyboard Function)

Moves the cursor to the start of the current word or, if the cursor is already at the start of a word, move it to the start of the
previous word.

1.138 Next Word (Keyboard Function)

Moves the cursor to the start of the next word .

1.139 Prev Component (Keyboard Function)

If ViNCEd is in shell mode , this keyboard function moves the cursor to the start of the current component . If the cursor was
already placed there, it gets moved to the start of the previous component .

If ViNCEd is NOT in shell mode, this works identical to the Prev Word keyboard function .

1.140 Next Component (Keyboard Function)

If ViNCEd is in shell mode , this keyboard function moves the cursor to the start of the next component .

If ViNCEd is NOT in shell mode, this works identical to the Next Word keyboard function .

VNC 54 / 188

1.141 Home (Keyboard Function)

Moves the cursor to the leftmost position of the topmost row of the display buffer .

1.142 End (Keyboard Function)

Moves the cursor to the end of the bottommost row of the display buffer .

1.143 Scroll Up (Keyboard Function)

Scrolls the contents of the window downwards one line, hence moves the buffer position upwards. The cursor position is "not
changed"; this means however different things, dependent on whether the XTerm/CON: cursor mode is set or not. If this flag
is not set, the cursor will keep its physical position on the screen and the buffer will scroll under the cursor; that is, the cursor
position relative to the text WILL change, even though the cursor does not move. If the flag IS set, the cursor will move with the
buffer, and hence move physical. However, it will not change its position relative to the buffer.

This flag can be found on the first edit page of the SetVNC program .

1.144 Scroll Down (Keyboard Function)

Scrolls the contents of the window upwards one line, hence moves the buffer position downwards. The cursor position is "not
changed"; this means however different things, dependent on whether the XTerm/CON: cursor mode is set or not. If this flag
is not set, the cursor will keep its physical position on the screen and the buffer will scroll under the cursor; that is, the cursor
position relative to the text WILL change, even though the cursor does not move. If the flag IS set, the cursor will move with the
buffer, and hence move physical. However, it will not change its position relative to the buffer.

This flag can be found on the first edit page of the SetVNC program .

1.145 Scroll Half Screen Up (Keyboard Function)

Scrolls the contents of the window downwards half the window-size downwards, hence moves the buffer position upwards. The
cursor position is "not changed"; this means however different things, dependent on whether the XTerm/CON: cursor mode is
set or not. If this flag is not set, the cursor will keep its physical position on the screen and the buffer will scroll under the cursor;
that is, the cursor position relative to the text WILL change, even though the cursor does not move. If the flag IS set, the cursor
will move with the buffer, and hence move physical. However, it will not change its position relative to the buffer.

This flag can be found on the first edit page of the SetVNC program .

1.146 Scroll Half Screen Down (Keyboard Function)

Scrolls the contents of the window downwards half the window-size upwards, hence moves the buffer position downwards. The
cursor position is "not changed"; this means however different things, dependent on whether the XTerm/CON: cursor mode is
set or not. If this flag is not set, the cursor will keep its physical position on the screen and the buffer will scroll under the cursor;
that is, the cursor position relative to the text WILL change, even though the cursor does not move. If the flag IS set, the cursor
will move with the buffer, and hence move physical. However, it will not change its position relative to the buffer.

This flag can be found on the first edit page of the SetVNC program .

VNC 55 / 188

1.147 Send Inputs (Keyboard Function)

Collects the user inputs from the current cursor line and sends them as to whatever program that wants to receive them, i.e. which
called Read() on a ViNCEd stream. Printed characters as the shell prompt and other output will be ignored and is not being sent.
The user inputs are then appended to the command history . A new blank line is inserted below the current line, and the cursor is
placed at the beginning of the inserted line.

Hence, this implements the usual "Return" key function for a shell.

If the Standard CR insertion at start of line is not checked, this function behaves slightly different at the start of the line. Instead
of inserting a line below the current line, a blank line is inserted ON TOP of the current line. The cursor is then moved to the
lower, old line.

1.148 Split Line (Keyboard Function)

Inserts a new line right under the current line and splits the current line at the cursor position. The characters behind and under the
cursor enter the inserted line, the characters in front of the cursor remain at their position. The cursor is then set to the beginning
of the inserted line. At no point any data is sent to a program, nor is the command history altered in any way.

If the Standard CR insertion at start of line is not checked, this function behaves slightly different at the start of the line. Instead
of inserting a line below the current line, a blank line is inserted ON TOP of the current line. The cursor is then moved to the
lower, old line.

Hence, this implements the "Return" key function of an editor.

1.149 Insert ˆJ (Keyboard Function)

Inserts a Ctrl-J = LF ASCII character at the cursor position. This character will appear as an inverse J on the screen.

Using this command, two or more AmigaDos commands can be put in one line and will be executed sequentially. For example,
the command line

1.SYS:> listJdir

will list the current directory twice, first with the "list" command and a second time with the "dir" command.

1.150 Send Complete Line (Keyboard Function)

Collects the all inputs from the current cursor line and sends them as to whatever program that wants to receive them, i.e. which
called Read() on a ViNCEd stream. This keyboard function will sent all characters on the line, including printed characters, and
will append the complete line "as is" to the command history .

In order not to make this completely useless by sending the shell prompt, this function implements a special "trick": If the cursor
is placed on the same line, behind the position where the last output left it, then only the characters starting from that position up
to the end of the line are sent. If the cursor is moved in front of this position, or to a different line, then ALL characters, including
a possible shell prompt are sent.

This method was already used by the Atari XL operating system and worked well in the 8-bit times, so this will hopefully prove
useful as well.

1.151 Line Feed (Keyboard Function)

Inserts a blank line under the current line and moves the cursor to the start of the blank line. Does not sent any data, it just moves
the cursor, nothing more.

VNC 56 / 188

1.152 TAB Forwards (Keyboard Function)

In insertion mode , this function inserts blank spaces up to the next tabulator stop, and places the cursor at this tabulator stop.

No spaces are inserted in overwrite mode , only the cursor gets moved.

1.153 TAB Backwards (Keyboard Function)

In insertion mode , this function removes characters backwards, starting at the cursor position until the previous tabulator stop is
reached. The cursor is then moved to that position.

Nothing is removed in overwrite mode , only the cursor gets moved.

1.154 Expand Path (Keyboard Function)

The first TAB expansion function in forwards moving direction.

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.155 Expand Backwards (Keyboard Function)

The first TAB expansion function in backwards moving direction.

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.156 Expand Short (Keyboard Function)

The second TAB expansion function in forwards moving direction.

The name of this function indicates that it should be used to run a TAB expansion using a shorter search path, and the default
settings are setup just in this way. However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.157 Expand Short Bkwds (Keyboard Function)

The second TAB expansion function in backwards moving direction.

The name of this function indicates that it should be used to run a TAB expansion using a shorter search path, and the default
settings are setup just in this way. However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

VNC 57 / 188

1.158 Expand Devices (Keyboard Function)

The third TAB expansion function in forwards moving direction.

The name of this function indicates that it should be used to expand a device name, and the default settings are setup just in this
way. However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.159 Expand Devs Bkwds (Keyboard Function)

The third TAB expansion function in backwards moving direction.

The name of this function indicates that it should be used to expand a device name, and the default settings are setup just in this
way. However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.160 Expand Dirs (Keyboard Function)

The fourth TAB expansion function in forwards moving direction.

The name of this function indicates that it should be used to expand a directory name, and the default settings are setup just in
this way. However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.161 Expand Dirs Bkwds (Keyboard Function)

The fourth TAB expansion function in backwards moving direction.

The name of this function indicates that it should be used to expand a directory name, and the default settings are setup just in
this way. However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.162 Expand Icons (Keyboard Function)

The fifth TAB expansion function in forwards moving direction.

The name of this function indicates that it should be used to find icon names, and the default settings are setup just in this way.
However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

VNC 58 / 188

1.163 Expand Icons Bkwds (Keyboard Function)

The fifth TAB expansion function in backwards moving direction.

The name of this function indicates that it should be used to find icon names, and the default settings are setup just in this way.
However, you may use this function for whatever you like simply by changing its settings .

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.164 Expand Alt (Keyboard Function)

The sixth TAB expansion function in forwards moving direction.

This alternate expansion function is reserved for whatever you might need it for - just adjust the settings to whatever pleases you.

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.165 Expand Alt Bkwds (Keyboard Function)

The sixth TAB expansion function in backwards moving direction.

This alternate expansion function is reserved for whatever you might need it for - just adjust the settings to whatever pleases you.

Reads the argument at the cursor position, interprets it as a template and searches for possible expansions. Details about this
process are found in a different section .

1.166 Send ˆC (Keyboard Function)

Sends the break signal 12 to the currently running process. The signal gets NOT transmitted to background processes, such as
processes started with "Run" or processes launched with the "fork" script .

This signal is mainly used to abort a running program.

1.167 Send ˆD (Keyboard Function)

Sends the break signal 13 to the currently running process. The signal gets NOT transmitted to background processes, such as
processes started with "Run" or processes launched with the "fork" script .

This signal is mainly used to abort shell scripts.

1.168 Send ˆE (Keyboard Function)

Sends the break signal 14 to the currently running process. The signal gets NOT transmitted to background processes, such as
processes started with "Run" or processes launched with the "fork" script .

This signal is not widely used in the current AmigaDos.

VNC 59 / 188

1.169 Send ˆF (Keyboard Function)

Sends the break signal 15 to the currently running process. The signal gets NOT transmitted to background processes, such as
processes started with "Run" or processes launched with the "fork" script .

This signal is not widely used in the current AmigaDos.

1.170 Send ˆC to All (Keyboard Function)

Sends the break signal 12 to the currently running process and all processes started with "Run" that share the same owner as the
foreground process. These are usually called "background processes" in the AmigaDos terminology - however, "background"
means something different for the ViNCEd job control mechanism. These "real background" processes are not affected by this
function.

This signal is mainly used to abort a running program.

1.171 Send ˆD to All (Keyboard Function)

Sends the break signal 13 to the currently running process and all processes started with "Run" that share the same owner as the
foreground process. These are usually called "background processes" in the AmigaDos terminology - however, "background"
means something different for the ViNCEd job control mechanism. These "real background" processes are not affected by this
function.

This signal is mainly used to abort shell scripts.

1.172 Send ˆE to All (Keyboard Function)

Sends the break signal 14 to the currently running process and all processes started with "Run" that share the same owner as the
foreground process. These are usually called "background processes" in the AmigaDos terminology - however, "background"
means something different for the ViNCEd job control mechanism. These "real background" processes are not affected by this
function.

This signal is not widely used in the current AmigaDos.

1.173 Send ˆF to All (Keyboard Function)

Sends the break signal 15 to the currently running process and all processes started with "Run" that share the same owner as the
foreground process. These are usually called "background processes" in the AmigaDos terminology - however, "background"
means something different for the ViNCEd job control mechanism. These "real background" processes are not affected by this
function.

This signal is not widely used in the current AmigaDos.

1.174 Delete Forwards (Keyboard Function)

Deletes the character in front of the cursor and scrolls the remaining characters to the left. Thus, this implements the standard
function of the Del key.

VNC 60 / 188

1.175 Delete Backwards (Keyboard Function)

Deletes the character in front of the cursor and scrolls the rest of the line to the left. Thus, this implements the standard function
of the Backspace key.

1.176 Delete Full Line (Keyboard Function)

Removes the current cursor line completely and scrolls the lines below upwards.

1.177 Cut Full Line (Keyboard Function)

Removes the current cursor line completely and places all user inputs of that line in the yank buffer . The lines below the deleted
line are scrolled upwards.

1.178 Delete Inputs (Keyboard Function)

Removes all user inputs from the current cursor line.

1.179 Cut Inputs (Keyboard Function)

Removes all user inputs from the current line and places them in the yank buffer .

1.180 Delete Word Fwds (Keyboard Function)

Deletes all inputs right to and under the cursor in the current word , up to the end of the word and scrolls the remaining characters
inwards.

1.181 Cut Words Fwds (Keyboard Function)

Deletes all inputs under and right to the cursor up to the end of the word the cursor is placed in. The deleted characters are copied
into the Yank buffer and the remaining characters are scrolled leftwards.

1.182 Delete Word Bkwds (Keyboard Function)

Deletes all inputs left of the cursor up to the beginning of the word under the cursor, and scrolls the remaining characters
backwards.

1.183 Cut Word Bkwds (Keyboard Function)

Deletes all inputs left to the cursor up to the beginning of the word the cursor is placed in, copies these characters to the Yank
buffers and scrolls the remaining characters inwards.

VNC 61 / 188

1.184 Delete Component Fwds (Keyboard Function)

Deletes all inputs under and right to the cursor up to the end of the component and scrolls the remaining characters inwards.

1.185 Cut Component Fwds (Keyboard Function)

Removes all inputs right to and under the current cursor position up to the end of the component , copies the characters to the
Yank buffer and scrolls the remaining line inwards.

1.186 Delete Component Bkwds (Keyboard Function)

Deletes all inputs left to the cursor position up to the beginning of the component and scrolls the rest of the line leftwards.

1.187 Cut Component Bkwds (Keyboard Function)

Removes all inputs left to the cursor position up to the beginning of the component under the cursor, copies the deleted characters
to the Yank buffer and scrolls the end of the line back leftwards.

1.188 Delete End of Line (Keyboard Function)

Deletes all inputs right to and under the cursor up to the end of the line.

1.189 Cut End of Line (Keyboard Function)

Removes all inputs right to and under the cursor and copies the removed characters to the Yank buffer.

1.190 Delete Start of Line (Keyboard Function)

Deletes all inputs left to the cursor position and scrolls the remaining line backwards.

1.191 Cut Start of Line (Keyboard Function)

Removes the inputs left of the cursor and copies these characters to the Yank buffer. The remaining line is then scrolled back-
wards.

1.192 Delete End of Display (Keyboard Function)

Deletes all characters at, right to and under the cursor position.

1.193 Form Feed (Keyboard Function)

Clears the complete lower display buffer and places the cursor in the upper left corner of the window. If the window is in RAW
mode , a "Form Feed" character ASCII 0C is send to the receiver.

VNC 62 / 188

1.194 Clear Screen (Keyboard Function)

Erases the complete lower display buffer and places the cursor in the upper left corner of the window. If the window is in Shell
mode and a shell is currently waiting for inputs, the shell prompt is requested again.

1.195 Cut (Keyboard Function)

Removes the currently marked block from the display buffer and copies it to the clipboard.

1.196 Copy (Keyboard Function)

Copies the currently marked block to the clipboard.

1.197 Paste (Keyboard Function)

Inserts the clipboard contents into the input stream as if you’ve typed the clipboard contents yourself with the keyboard.

1.198 Hide (Keyboard Function)

Removes the block mark from all characters in the block , i.e. un-highlights the block.

1.199 Select All (Keyboard Function)

Selects the complete contents of the display buffers and marks them as a block .

1.200 Copy Quiet (Keyboard Function)

Copies the currently marked block to the clipboard, but unlike the Copy function, this does not hide the marked block

1.201 Reset (Keyboard Function)

Erases the lower display buffer and resets the mode flags of the terminal emulation to their preferences values and restores the
colors selected in the preferences setting of the window.

1.202 Full Reset (Keyboard Function)

Erases all display buffers completely, clears the command history and restores the mode flags and the colors of the window to
the selected preference values.

1.203 Iconify (Keyboard Function)

Iconifies the ViNCEd window as if the iconification gadget or the "Iconify" menu item has been selected.

VNC 63 / 188

1.204 Toggle ESC (Keyboard Function)

Toggles the ESC flag on/off. If a control function is found in the input stream with the ESC flag enabled, the CSI sequence of this
control function is inserted literally into the line instead of getting interpreted by the keyboard parser. This is especially useful to
insert control characters into the input stream, as for example as control characters for a string to be printed by "echo".

This function works identically to the ESC key of the Atari 8 bit computers.

1.205 Toggle NumLock (Keyboard Function)

Toggles the keyboard qualifier "NumLock" on/off. Some keyboard functions are only recognized if "NumLock" is enabled. This
is especially useful for the keys of the numeric keypad: These keys could be bound to work as cursor keys if "NumLock" is
enabled.

1.206 Toggle Overwrite (Keyboard Function)

Toggles the overwrite flag on/off. If overwrite is enabled, characters typed on the keyboard will write over the characters already
in the display buffer instead of getting inserted.

1.207 Suspend (Keyboard Function)

Suspends, i.e. stop all output. This is also known as "XOFF" function.

1.208 Resume (Keyboard Function)

Resumes stopped output. This is also known as "XON" function.

1.209 Abort Expansion (Keyboard Function)

Aborts a currently running TAB expansion . This is implicit for most keyboard functions anyhow.

1.210 Scroll to Cursor (Keyboard Function)

In case the cursor has been scrolled out of the window, this function scrolls the window back such that the cursor gets visible
again. This is implicit for most keyboard functions anyhow.

1.211 Rewind History (Keyboard Function)

Removes all user inputs from the current line and rewinds the command history .

1.212 Yank (Keyboard Function)

Inserts the contents of the Yank buffer at the cursor position.

VNC 64 / 188

1.213 Generate EOF (Keyboard Function)

Dependent on the Call macro to close window flag, this selects either one of the two "Close" system macros or sends an "End Of
File" condition to the receiver. This function is invoked by the close gadget of the window, too.

1.214 Display Beep (Keyboard Function)

Beeps the screen. Dependent on the settings of the "Sound" system preferences, this may also cause an audible beep.

1.215 Toggle Pause (Keyboard Function)

This toggles the output on and off; if the function is invoked the first time, output will be stopped. On the second time, output
will resume.

1.216 Help (Keyboard Function)

Invokes the "Help" system macro , or sends the Help CSI sequence if the window is in RAW Mode .

1.217 Fork New Shell (Keyboard Function)

Forks a new shell in the current window, sending the currently running job to background. This is the keyboard function
responsible for the Ctrl-Z feature of ViNCEd.

1.218 Insert CSI (Keyboard Function)

Inserts a literal CSI (ANSI 9B) character into the display buffer. This might be useful as an argument of the "echo" command to
print a control sequence.

1.219 Insert ESC (Keyboard Function)

Inserts a literal ESC (ASCII 1B) character into the display buffer. This might be useful as an argument to the "echo" command
to allow printing of control sequences.

1.220 The graphical Interface of SetVNC

If you load SetVNC without any arguments, with the command "SetVNC Prefs", or by clicking on the "SetVNC" icon in the
"Prefs" drawer, a graphical user interface will be build.

Because the screen is much to small to hold all gadgets necessary to control ViNCEd, the settings is split into several pages ,
grouped by function. Most pages are itself split into a front page and one or more back pages which can be selected by the arrow
gadgets " « " and " » " at the top right edge of each page. Left to these arrow gadgets is the "Help" button which invokes context
sensitive help about the page shown. If these gadgets do NOT work, please check that the path to this guide, which can be found
in the first system page is setup properly. If not, correct it with the string gadget on this page, or locate the guide using a requester
by pressing the gadget left to it.

VNC 65 / 188

Additional to the "Help" gadget, each page has a row of four or three gadgets at the bottom, used to accept or discard the made
changes. The second gadget from the right, labeled "To Window", is not present if the argument "Prefs" was used to invoke
SetVNC as a preferences editor.

Save

Save the changes to a place where they will be loaded each time the system restarts and use the settings for all new windows to
be opened.

WARNING: Pressing this button DOES NOT change the settings of the windows already open. Their settings are under control
of the programs running in them, not of SetVNC!

Use

Use the settings for all new ViNCEd windows, but do not save. The settings will be reset when the system gets rebooted.

WARNING: Typing "Use" WILL NOT change the settings of the windows already open! IT WILL ONLY CHANGE THE
DEFAULTS FOR NEW WINDOWS.

Pressing either "Use" or "Save" will also change the settings in the currently active window, as if "To Window" has been selected
as well.

To Window

Install the settings in the window which was used to invoke SetVNC. This gadget is only present if "SetVNC" was NOT invoked
as a preferences editor, i.e. the PREFS argument was NOT given.

It DOES NOT touch the settings of all other windows nor the settings of windows to be created.

Cancel

Aborts the editor and discards the changes; discards also all shell arguments .

The pages itself are selected with the "card-index" like gadget on top of the window. The page index is found in a different
section .

1.221 The control pages of SetVNC

Here’s the index of the "Pages" of the SetVNC program. More details about how they work can be obtained by following the
links below, some general remarks about them are in the GUI interface section .

The About Page

The first Macros Page The second Macros page The third Macros page

The first Keyboard Page The second Keyboard Page

The first Edit Page The second Edit Page The third Edit Page The fourth Edit Page

The first Shell Page The second Shell Page The third Shell Page The fourth Shell Page The fifth Shell Page The sixth Shell Page
The seventh Shell Page

The first Window Page The second Window Page The third Window Page

The first Timing page

The first System Page The second System Page The third System Page The fourth System Page

1.222 Shell and Workbench Operation of SetVNC

The SetVNC program can be invoked from both the workbench and the shell. In the Shell operation , arguments are given on
the command line, whereas in Workbench operation the ToolTypes of the SetVNC icon are parsed. Invoking SetVNC from the
workbench is usually restricted to setup the global preferences of ViNCEd, whereas you may use SetVNC from the shell to adjust
the ViNCEd settings of the window you invoked SetVNC from "on the fly".

VNC 66 / 188

Besides preferences and settings control, the SetVNC program does even more:

It loads the ViNCEd main library and replaces the standard CON: handler on request, it offers commands for job control and for
loading and saving the various buffers of ViNCEd, as the command history and the review buffer . It loads this guide, too, if help
is requested by pressing the Help key in the shell.

It can also be used to check whether the window SetVNC was invoked from is a ViNCEd window or not and is therefore useful
in various scripts to enable special ViNCEd improvements.

Further details are found by following these links:

Workbench ToolTypes

Shell Arguments

Job Control

Buffer input/output

1.223 Workbench ToolTypes of the SetVNC program

The SetVNC program can also invoked from the workbench, mostly used as a preference editor. It recognizes the following
tooltypes, which can be set in the usual way, by the "Information" item in the workbench menu:

WINDOW=path

Specify the window SetVNC should appear in. This tooltype MUST BE PRESENT, and it MUST be a path to a ViNCEd window.
Details about the path are found in the window path section .

ACTION=args

Specifies the commands that SetVNC should perform. The "args" string is a list of shell arguments . They are passed to SetVNC
as if it was called from the shell. The complete list of shell arguments is in the shell arguments section .

Most useful is the action list "LOAD GLOBAL MODIFY PREFS", which invokes SetVNC as a preferences editor.

HELPPATH=path

Specifies the complete path to this guide. In fact, this is the place where SetVNC looks first to find the guide, aside from a file
"VNCGuide.path" in the ENVARC: drawer. This tooltype, as well as the environment variable gets adjusted if you change the
guide path in the first system page . However, you shouldn’t need to modify the environment variable as well as the tooltype by
hand; it’s setup correctly by the installation script and should be modified exclusively by SetVNC.

1.224 Shell Arguments of the SetVNC program

The power of the SetVNC command is the shell interface. It is possible to change most of the parameters of ViNCEd by this
little program "on line" by using the build-in graphical user interface , or by invoking it from the shell for changing parameters
in a script file. Except for preference adjustment, SetVNC manages, too, certain ViNCEd specific features as reading or writing
the display buffers , or job control related functions.

Just an important note at this place:

Do NOT redirect the output of SetVNC to NIL:. This won’t work. The output stream is needed by SetVNC to identify the
ViNCEd window it is working in. If required, use the QUIET argument below.

The complete list of recognized arguments can be asked for with the command line

1.SYS:> SetVNC ?Return

as usual. The type of the argument is indicated by a forwards slash "/" following the argument:

/S is a switch argument. If present, it enables a certain feature. No parameters are required.

VNC 67 / 188

/K is a key word argument. It takes one or several sub arguments and their parameters to control a specific feature. Most
noticeable are keyword arguments that take either the switches "ON/S" or "OFF/S" as sub arguments. These enable or disable
certain features of ViNCEd, identical to those controlled by the GUI .

/N identifies arguments requiring numeric parameters.

(no slash) identifies arguments taking strings as parameters.

Here’s now the list of all shell arguments. Just click on an item to see what this specific argument does:

QUIET/S

MOUNT/K (OVERRIDE/S AS) HELP/S

BACKGROUND/S FOREGROUND/K (OTHER/S CLI/N)

FREEPOINTER/K (ALL/S) SETCONSOLE/S

LOAD/K (PREFS/S GLOBAL/S WINDOW/S DEFAULT/S LAST/S FROM) PREFS/S

PUT/K (SCREEN HISTORY) GET/K (SCREEN HISTORY)

RESET/S DOSCURSOR/K (ON/S OFF/S)

CRINSERT/K (ON/S OFF/S) OVERWRITE/K (ON/S OFF/S)

WRAP/K (ON/S OFF/S) SMARTCLOSE/K (ON/S OFF/S)

SAFERCLOSE/K (ON/S OFF/S) DISABLEPROPX/K (ON/S OFF/S)

DISABLEPROPY/K (ON/S OFF/S) CLOSEREQ/K (ON/S OFF/S)

CLOSEQUEUE/K (ON/S OFF/S) CUTUSER/K (ON/S OFF/S)

REBUILDDELAY/K (ON/S OFF/S) AUTOCOPY/K (ON/S OFF/S)

NUMPADMODE/K (ON/S OFF/S) SCROLLBORDERS/K (ON/S OFF/S)

TYPEAHEAD/K (ON/S OFF/S) BOLDEXTCOLORS/K (ON/S OFF/S)

FORBIDICONIFY/K (ON/S OFF/S) NCURSESFIX/K (ON/S OFF/S)

SHELLMODE/K (ON/S OFF/S) NODEFAULTCLOSE/K (ON/S OFF/S)

NOPRINTSCROLL/K (ON/S OFF/S) SMALLDISPLAY/K (ON/S OFF/S)

DOSERASE/K (ON/S OFF/S) DOSINSERT/K (ON/S OFF/S)

SHORTSCREENINSERT/K (ON/S OFF/S) AUTOPASTE/K (ON/S OFF/S)

DISABLESCROLL/K (ON/S OFF/S) DISABLEWRAP/K (ON/S OFF/S)

XTERMCURSOR/K (ON/S OFF/S) RIGIDCURSOR/K (ON/S OFF/S)

KEEPDOUBLES/K (ON/S OFF/S) SCROLLTOBOTTOM/K (ON/S OFF/S)

RAWSCROLLERS/K (ON/S OFF/S) VTMODE/K (ON/S OFF/S)

ANSIMODE/K (ON/S OFF/S) ANSIREVERSE/K (ON/S OFF/S)

ROWLOCK/K (ON/S OFF/S) UNDERLINE/K (ON/S OFF/S)

BLINKING/K (ON/S OFF/S) DISABLEMMB/K (ON/S OFF/S)

NOBSSTART/K (ON/S OFF/S) DONTPLACEREQUESTER/K (ON/S OFF/S)

BUFFERSIZE/K/N LOWERSIZE/K/N

UPPERSIZE/K/N CACHESIZE/K/N

MONITORID/K/N MONITOR/A

REBUILDTIME/K/N SCROLLTIME/K/N

BLINKSPEED/K/N PATHONLYQU/K/N

NAMEONLYQU/K/N REQ_LEFTEDGE/K/N

REQ_TOPEDGE/K/N REQ_WIDTH/K/N

REQ_HEIGHT/K/N MODIFY/S

SAVE/K (NOICONS/S PREFS/S GLOBAL/S WINDOW/S TO) IFVNC/S

VNC 68 / 188

1.225 Job Control related arguments of SetVNC

The SetVNC program is not only the preferences editor of ViNCEd, it’s, too, responsible for the job control . The following shell
arguments are dedicated for this function:

SetVNC Background

Sends the current foreground job to background.

SetVNC Foreground <cli>

Takes one additional argument, the "Cli number", and sends the job related to this Cli number to foreground. The "Cli number"
can be obtained by the "status" command.

The "Foreground" option is restricted to jobs running in the same ViNCEd window as the window you invoked SetVNC from.
In all other cases, SetVNC will print a warning.

SetVNC Foreground other <cli>

Takes one additional argument, a "Cli number". As the argument before, this sends the job related to the given Cli number to
foreground. However, this command is not restricted to jobs running in the same output window than the SetVNC program, it
may be used to push jobs running in other windows to foreground, by using a "brute force" method. However, the use of the
"other" keyword is discouraged and it should be used only in emergency situations since this operation is not 100% "water proof".
It may crash the computer in (admittedly rare) conditions.

To avoid unnecessary typing, the foreground and background commands have been abbreviated in three scripts , named "fg",
"bg" and "fork" which are more convenient for all-day purpose. For details about them, check the script section .

More details about the job control functions and its implementation, the console owner system , are found by following these
links.

All other shell arguments of SetVNC are in a different section .

1.226 SetVNC Buffer I/O functions

SetVNC is not only the preferences editor of ViNCEd, it can be used, too, to save the ViNCEd internal buffers , as the command
history and the review buffer . The following two shell arguments are reserved for saving and loading the buffer contents as an
ASCII text file:

SetVNC Put History <file>

Takes one additional argument, a file name. This saves the contents of the history to a plain text file. Remember that you may,
too, print the contents as text to the current window by using "*" as a file name.

(Side remark: As for ViNCEd, * is different to CONSOLE: Details are in a different section)

SetVNC Get History <file>

Takes again a file name as additional argument and loads a plain text file as history contents. The old contents of the history is
lost.

SetVNC Put Screen <file>

This command saves the contents of the display buffer to the given file name. The output file will be a text file with embedded
CSI sequences that describe the text rendering options. More details about the CSI sequences used are in the CSI and ESC
sequences overview.

SetVNC Get Screen <file>

Loads the review buffer from the given file. Embedded CSI sequences will be interpreted accordingly, but not the full set of
ViNCEd sequences is available in the load file, mainly for speed reasons. The main purpose of this command is not to display
a file on the screen - use the standard "Type" command for that purpose - but to re-load a previously saved buffer contents, as
created by "SetVNC Put Screen <file>". It will, unlike "Type", also restore all ViNCEd internal text attributes ; for example,
whether the text was typed as user input or printed as output.

This command erases the old buffer contents completely and replaces it with the data from the given file.

All other shell arguments of SetVNC are in a different section .

VNC 69 / 188

1.227 The Format of the Preferences File

The ViNCEd settings are kept in the file ViNCEd.prefs in the ENVARC: and ENV: drawer and are read from that location by the
vnc.library. Whereas it is recommended that this file is only changed by the SetVNC program, you may edit it with an editor of
your choice as well - the file is a plain ASCII file.

The parser of the preferences file ignores all empty lines or lines starting with a semicolon, which are supposed to be comment
lines. ViNCEd inserts some comments itself, just for your convenience - however, they are simply ignored when the file is read
later on. A semicolon may not be put anywhere else except at the start of the line, and it will be recognized as a comment only
in this position. Leading and trailing spaces of all lines will be removed as well - this might be of importance for settings that
require a string as an argument, as the macro settings. In cases where this is required, the macros should be included in double
quotes.

A setting itself consists of the NAME of the option to be set, an equal sign and the value of this option. The order of the options
does not matter, but choosing a different order may slow down the preferences parsing process; the parser is optimized to read
the settings in the same order as it writes it. Invalid or unknown options will be silently ignored, for forwards compatibility to
future versions.

Each option requires an argument of a certain kind - the following argument types are used:

Boolean

A boolean on/off switch. Recommended are "on" and "off" to set this option, even though ViNCEd recognizes some more
phrases.

Integer

An integral number, usually within a restricted interval. Values outside of this interval are ignored. The number should be given
in decimal notation, even though ViNCEd recognizes hex (0x or $) numbers, binary numbers (%) or octal numbers (§) as well
on input.

Hex value

Again an integer, usually without any restriction. The number should be given as hexadecimal number with leading 0x on input,
even though ViNCEd recognizes other number formats as well.

Keyboard qualifier

A keyboard qualifier value. Legal qualifiers are

Ctrl : The Ctrl key Shift : Either Shift key Alt : Either Alt key Amiga : The Right Amiga key

No other qualifiers are allowed here. Especially, left and right Shift and left and right Alt keys are considered as equal.

Color specifier

Used to define ViNCEd internal colors. A color specifier consists of five words, separated by commas.

The first word is either "LOAD" or "NOLOAD" and defines whether the color value defined below is supposed to be loaded into
one of the hardware registers if ViNCEd opens a private screen.

The next word is either "ANSI" or "NOANSI". If "ANSI" is given, this entry defines a standard ANSI color instead of a hardware
register. If both, "ANSI" and "LOAD" are given, the color allocates an ANSI color with a higher priority.

The next three slots represent the red, green and blue components of the color, given as sixteen bit (word sized) fractional values
in hexadecimal notation. The numbers must be given with a leading "0x" to identify them as hex values, even though ViNCEd
may accept other number bases here as well on input. The number 0x0000 is minimal intensity, 0xffff is maximal intensity,
0x7fff is half intensity. The numbers are rounded for the available graphics hardware if required.

String

An ASCII string. Leading and trailing spaces are truncated by the preferences parser, but except that no interpretation is done on
the string itself. Especially, a semicolon in these strings is treaded as a literal semicolon and not as a comment introducer. Other
parts of ViNCEd allow certain strings to be enclosed in double quotes to include spaces, as for example the macro interpreter .
However, this interpretation is not done by the parser itself.

Key

VNC 70 / 188

Defines a keyboard key sequence for definition of the keyboard functions . It consists of one or more qualifiers and the key itself,
to be separated by blank spaces.

The following qualifiers are available:

Ctrl : the Ctrl key Shift : either Shift key Alt : either Alt key LShift : only the Left Shift key RShift : only the Right Shift key
LAlt : only the Left Alt key RAlt : only the Right Alt key LAmiga : the Left Amiga key. This is the "Commodore" key on some
keyboards. RAmiga : the Right Amiga key

As a special rule, "LShift RShift" means "Left OR Right", i.e. is equivalent to "Shift" alone, same goes for the "Alt" keys. For
"Amiga", things are simpler. Presenting both means really you’ve to press both to get the function.

Another special qualifier is

Num : the function is only available with NumLock active.

This does, to stress that again, NOT MEAN that the keyboard key is a key on the numeric keypad. It means ONLY that the
keyboard function is only available if "NumLock" is active.

"NumLock" is a keyboard qualifier similar to the "Caps Lock" qualifier, with the difference that there is no light on the keyboard
to show its state. It is, however, treated exactly in the same way. The keyboard function that toggles this qualifier is, obviously,
called Toggle NumLock and is usually bound to Alt Num[.

The final part of a keyboard key definition is the key itself. This key might be given in three different ways:

- as a hexadecimal number with leading "0x" defining the raw key code of the key to be used. The keyboard raw key codes can
be found in the literature .

- as a string defining one of the special keyboard keys. The following strings are recognized:

Esc : the Escape key F1 to F10 : the function keys Backspace : the Backspace key Del : the Delete key Help : the Help key Tab :
the TAB key Return : the Return key on the main keypad Space : the space bar Enter : the Enter key on the numeric keypad Up :
the Cursor Up key Down : the Cursor Down key Left : the Cursor Left key Right : the Cursor Right key

The next "keywords" identify keys on the numeric pad. Do not confuse this with the "Num" qualifier which has a different
meaning. Please note, too, that there is no space between the "Num" and the key name.

Num[Num] Num/ Num* Num7 Num8 Num9 Num- Num4 Num5 Num6 Num+ Num1 Num2 Num3 Num0 Num.

- and, as the third method, the single character which is printed on all "ordinary" keyboard keys. Such as "a" will identify the
"a"-key. If a key is defined this way, the "Shift" qualifiers are ignored. Instead of using an explicit qualifier definition for "Shift",
the "Shift" qualifier is implicitly defined by the ASCII character in the definition. For example, "a" will match the un-qualified
"a"-key, whereas "A" is the "a" key together with Shift. For the same reason is "1" the un-qualified "1" key, whereas "!" is the "1"
key together with Shift. This special rule holds only for the Shift qualifier, not for Alt or any other modifiers. Thus, to identify
the key "a" with Shift and Alt, you need to type

Alt A

and not

æ or Shift Alt a

There is a tricky difference between the first two and the last method of defining a keyboard function. Whereas the first two
methods identify a key by its raw key code, i.e. relate directly to the position of the key on the keyboard matrix, the last definition
identifies a key by its ASCII value. This ASCII value might, however, depend on the national keyboard. To give an example:
The key with the raw key code 0x15 is the "y" key on american keyboard, but the "z" key on the german keyboard. Thus, when
you define a key by its hex raw key value, this will identify the same physical key on all national keyboards, but this key may
have different functions. Whereas if you define a key in the third way, by its ASCII value, this definition might refer to a different
physical key on different keyboards, but it is guaranteed that this key is always labeled with the same letter, even though its
located at a different position. It is therefore recommend to use the third "ASCII match" method for defining keys except for
functions using the special keys which do not depend on national keyboard definitions.

Now for the list of all available options in the preferences file; by following the links and pressing the "Contents" gadget of the
browser above, you’re brought to the SetVNC page that controls this specific feature:

Name of the option Type

Various flags:

VNC 71 / 188

REBUILDDELAY boolean DOSCURSOR boolean CRINSERT boolean OVERWRITE boolean WRAP boolean SMARTCLOSE
boolean CLOSEQUEUE boolean CUTUSER boolean NCURSESFIX boolean SHELLMODE boolean AUTOINDENT boolean
NODEFAULTCLOSE boolean AUTOCOPY boolean SAFERCLOSE boolean FORBIDICONIFY boolean DISABLEMMB boolean
CLOSEREQ boolean SCROLLTOBOTTOM boolean NOPRINTSCROLL boolean SMALLDISPLAY boolean DOSERASE
boolean AUTOPASTE boolean DISABLESCROLL boolean DISABLEWRAP boolean DOSINSERT boolean VTMODE boolean
ROWLOCK boolean UNDERLINE boolean BLINKING boolean XTERMCURSOR boolean NOBSSTART boolean ANSI-
MODE boolean ANSIREVERSE boolean NUMPADMODE boolean BOLDEXTCOLORS boolean SHORTSCREENINSERT
boolean SCROLLBORDERS boolean TYPEAHEAD boolean DISABLEPROPX boolean DISABLEPROPY boolean RAWSCROLLERS
boolean RIGIDCURSOR boolean KEEPDOUBLES boolean DONTPLACEREQUESTER boolean

Buffer sizes:

BUFFERSIZE integer between 5 and 4096 UPPERSIZE integer between 64 and 4096 LOWERSIZE integer between 128 and
4096 CACHESIZE integer between 1 and 256

Timing values:

DOUBLETABTIME integer between 0 and 2000 REBUILDTIME integer between 25 and 1000 SCROLLTIME integer between
5 and 500 BLINKSPEED integer between 100 and 1000

Miscellaneous:

MONITORID hex value

PATHONLYQU keyboard qualifier NAMEONLYQU keyboard qualifier

Colors:

CURSORCOLOR color specifier

up to sixteen times: COLOR color specifier

TAB expansion settings:

TAB_FILE_PRI integer between -128 and 127 TAB_EXEC_PRI integer between -128 and 127 TAB_SCRIPT_PRI integer be-
tween -128 and 127 TAB_PATH_PRI integer between -128 and 127 TAB_COMMAND_PRI integer between -128 and 127
TAB_RESIDENT_PRI integer between -128 and 127 TAB_INFO_PRI integer between -128 and 127 TAB_DEVICE_PRI in-
teger between -128 and 127 TAB_ASSIGN_PRI integer between -128 and 127 TAB_VOLUME_PRI integer between -128
and 127 TAB_DIRECTORY_PRI integer between -128 and 127 TAB_DOUBLEREQ boolean TAB_FULLEXPAND boolean
TAB_VNCREQUESTER boolean TAB_AMBIGREQ boolean TAB_PARTIALPAT boolean TAB_INTOCONSOLE boolean

TAB expansion settings for the short path:

SRT_FILE_PRI integer between -128 and 127 SRT_EXEC_PRI integer between -128 and 127 SRT_SCRIPT_PRI integer be-
tween -128 and 127 SRT_PATH_PRI integer between -128 and 127 SRT_COMMAND_PRI integer between -128 and 127
SRT_RESIDENT_PRI integer between -128 and 127 SRT_INFO_PRI integer between -128 and 127 SRT_DEVICE_PRI in-
teger between -128 and 127 SRT_ASSIGN_PRI integer between -128 and 127 SRT_VOLUME_PRI integer between -128
and 127 SRT_DIRECTORY_PRI integer between -128 and 127 SRT_DOUBLEREQ boolean SRT_FULLEXPAND boolean
SRT_VNCREQUESTER boolean SRT_AMBIGREQ boolean SRT_PARTIALPAT boolean SRT_INTOCONSOLE boolean

TAB devices expansion settings:

DEV_FILE_PRI integer between -128 and 127 DEV_EXEC_PRI integer between -128 and 127 DEV_SCRIPT_PRI integer
between -128 and 127 DEV_PATH_PRI integer between -128 and 127 DEV_COMMAND_PRI integer between -128 and 127
DEV_RESIDENT_PRI integer between -128 and 127 DEV_INFO_PRI integer between -128 and 127 DEV_DEVICE_PRI in-
teger between -128 and 127 DEV_ASSIGN_PRI integer between -128 and 127 DEV_VOLUME_PRI integer between -128
and 127 DEV_DIRECTORY_PRI integer between -128 and 127 DEV_DOUBLEREQ boolean DEV_FULLEXPAND boolean
DEV_VNCREQUESTER boolean DEV_AMBIGREQ boolean DEV_PARTIALPAT boolean DEV_INTOCONSOLE boolean

TAB directory expansion settings:

DIR_FILE_PRI integer between -128 and 127 DIR_EXEC_PRI integer between -128 and 127 DIR_SCRIPT_PRI integer be-
tween -128 and 127 DIR_PATH_PRI integer between -128 and 127 DIR_COMMAND_PRI integer between -128 and 127
DIR_RESIDENT_PRI integer between -128 and 127 DIR_INFO_PRI integer between -128 and 127 DIR_DEVICE_PRI in-
teger between -128 and 127 DIR_ASSIGN_PRI integer between -128 and 127 DIR_VOLUME_PRI integer between -128
and 127 DIR_DIRECTORY_PRI integer between -128 and 127 DIR_DOUBLEREQ boolean DIR_FULLEXPAND boolean
DIR_VNCREQUESTER boolean DIR_AMBIGREQ boolean DIR_PARTIALPAT boolean DIR_INTOCONSOLE boolean

VNC 72 / 188

TAB icon (.info) expansion settings:

INF_FILE_PRI integer between -128 and 127 INF_EXEC_PRI integer between -128 and 127 INF_SCRIPT_PRI integer be-
tween -128 and 127 INF_PATH_PRI integer between -128 and 127 INF_COMMAND_PRI integer between -128 and 127
INF_RESIDENT_PRI integer between -128 and 127 INF_INFO_PRI integer between -128 and 127 INF_DEVICE_PRI in-
teger between -128 and 127 INF_ASSIGN_PRI integer between -128 and 127 INF_VOLUME_PRI integer between -128
and 127 INF_DIRECTORY_PRI integer between -128 and 127 INF_DOUBLEREQ boolean INF_FULLEXPAND boolean
INF_VNCREQUESTER boolean INF_AMBIGREQ boolean INF_PARTIALPAT boolean INF_INTOCONSOLE boolean

TAB alternate expansion settings:

ALT_FILE_PRI integer between -128 and 127 ALT_EXEC_PRI integer between -128 and 127 ALT_SCRIPT_PRI integer be-
tween -128 and 127 ALT_PATH_PRI integer between -128 and 127 ALT_COMMAND_PRI integer between -128 and 127
ALT_RESIDENT_PRI integer between -128 and 127 ALT_INFO_PRI integer between -128 and 127 ALT_DEVICE_PRI in-
teger between -128 and 127 ALT_ASSIGN_PRI integer between -128 and 127 ALT_VOLUME_PRI integer between -128
and 127 ALT_DIRECTORY_PRI integer between -128 and 127 ALT_DOUBLEREQ boolean ALT_FULLEXPAND boolean
ALT_VNCREQUESTER boolean ALT_AMBIGREQ boolean ALT_PARTIALPAT boolean ALT_INTOCONSOLE boolean

Requester dimensions:

REQ_LEFTEDGE integer between -2048 and 2048 REQ_TOPEDGE integer between -2048 and 2048 REQ_WIDTH integer
between 0 and 2048 REQ_HEIGHT integer between 0 and 2048

Macros: up to ten times:

MACRO string

System macros: up to five times:

SYSTEMMACRO string

Other system strings:

RUN_NEW_SHELL string ICON_PATH string ICON_TITLE string QUIT_PROGRAM string DEFAULT_FONT string DE-
FAULT_PATH string

Buttons: up to ten times:

BUTTONMACRO string BUTTONTITLE string

Keyboard:

CURSOR_LEFT key CURSOR_RIGHT key CURSOR_UP key CURSOR_DOWN key HISTORY_UP key HISTORY_DOWN
key SEARCH_PARTIAL_UPWARDS key SEARCH_PARTIAL_DOWNWARDS key SEARCH_HISTORY_UPWARDS key
SEARCH_HISTORY_DOWNWARDS key HALF_SCREEN_LEFT key HALF_SCREEN_RIGHT key HALF_SCREEN_UP
key HALF_SCREEN_DOWN key SCROLL_UP key SCROLL_DOWN key SCROLL_HALF_SCREEN_UP key SCROLL_HALF_SCREEN_DOWN
key TO_LEFT_BORDER key TO_RIGHT_BORDER key TO_TOP_OF_SCREEN key TO_BOTTOM_OF_SCREEN key PREV_WORD
key NEXT_WORD key PREV_COMPONENT key NEXT_COMPONENT key HOME key END key

SEND_INPUTS key SPLIT_LINE key INSERT_ˆJ key SEND_COMPLETE_LINE key LINE_FEED key

TAB_FORWARDS key TAB_BACKWARDS key

EXPAND_PATH key EXPAND_BACKWARDS key EXPAND_SHORT key EXPAND_SHORT_BKWDS key EXPAND_DEVICES
key EXPAND_DEVS_BKWDS key EXPAND_DIRS key EXPAND_DIRS_BKWDS key EXPAND_ICONS key EXPAND_ICONS_BKWDS
key EXPAND_ALT key EXPAND_ALT_BKWDS key

SEND_ˆC key SEND_ˆD key SEND_ˆE key SEND_ˆF key SEND_ˆC_TO_ALL key SEND_ˆD_TO_ALL key SEND_ˆE_TO_ALL
key SEND_ˆF_TO_ALL key

DELETE_FORWARDS key DELETE_BACKWARDS key DELETE_FULL_LINE key CUT_FULL_LINE key DELETE_INPUTS
key CUT_INPUTS key DELETE_WORD_FWDS key CUT_WORD_FWDS key DELETE_WORD_BKWDS key CUT_WORD_BKWDS
key DELETE_COMPONENT_FWDS key CUT_COMPONENT_FWDS key DELETE_COMPONENT_BKWDS key CUT_COMPONENT_BKWDS
key DELETE_END_OF_LINE key CUT_END_OF_LINE key DELETE_START_OF_LINE key CUT_START_OF_LINE key
DELETE_END_OF_DISPLAY key FORM_FEED key CLEAR_SCREEN key

CUT key COPY key PASTE key HIDE key SELECT_ALL key COPY_QUIET key RESET key FULL_RESET key ICONIFY
key

VNC 73 / 188

TOGGLE_ESC key TOGGLE_NUMLOCK key TOGGLE_OVERWRITE key SUSPEND key RESUME key ABORT_EXPANSION
key SCROLL_TO_CURSOR key REWIND_HISTORY key YANK key GENERATE_EOF key DISPLAY_BEEP key TOG-
GLE_PAUSE key HELP key FORK_NEW_SHELL key INSERT_CSI key INSERT_ESC key

1.228 The About Pages

The about pages....

...presents my logo in the middle. (No, that’s not me, I don’t have the right ears...)

In the bottom, you find

the "About" gadget, that invokes this guide if setup correctly. If not, locate it in the System front page .

To the right of this gadget, two "arrow gadgets « and »". Both will move you to the second "About" page. It looks almost like
the first, except for the middle line of gadgets.

The next line of gadgets are used to re-load previously used preferences into the editor. These are usually four gadgets unless
SetVNC was called with the PREFS argument which tells SetVNC not to modify the local preferences of the window it was
invoked from, but the global preferences used for all windows to be opened.

More functions to load and save the preferences are on the second "About" page.

The meaning of the gadgets on the first page, from left to right is:

Last Saved

Load the last saved preferences, found on your HD in ENVARC:ViNCEd.prefs.

Last Used

Restore the previously used global settings, undo all changes made so far. These settings are automatically loaded by SetVNC if
the PREFS argument was found on the command line .

Window

Re-load the settings from the window which SetVNC invoked from and undo all changes. This gadget is only available if no
PREFS argument was given on the shell command line , and loading the preferences from the window is the default in this case.

Default

Load the "factory defaults" of ViNCEd.

If you moved to the second "About" page, this line contains only two gadgets, namely:

Save to File...

Presents a file requester to select a file to save the currently made preferences to.

Load from File...

This loads the preferences from a given file, again asking with a requester.

The gadgets in the last line are present in each page and described in a different section . They are used to save or install the
changed settings.

1.229 The Macros Page 1 and 2

The purpose of the "Macros Pages" is to define the menu and title bar macros and buttons ViNCEd offers.

The first two macros pages define the macros that appear in the Macros Menu using the keyboard shortcuts Amiga 0 to Amiga 9.

The first page defines the macros 0 to 4, the second number 5 to 9, the arrow gadgets "«" and "»" in the right bottom corner of
the window toggle between the pages.

If you want to change the contents of a macros, just type it in one of the gadgets; the text in front of them tells you the number of
the macro, and thus the key used to invoke it.

To find out more about macros, study the macros section .

VNC 74 / 188

1.230 The Macros Page 3

Similar to the first two Macros Pages , this page is used to define the buttons that appear in the window title of a ViNCEd window.
Except for their different appearance, they work like macros, but require a "button title". It’s this title which appears later on in
the window title, not the macro body itself.

The top two string gadgets are used to adjust the title and the body of it. Just type them here.

Since the number of buttons is not fixed, only one button at a time is shown. Use the "Prev" and "Next" gadgets to edit the
previous or the next button. The last available button will be always cleared for you, left empty to allow the input of an additional
button - provided that the limit of maximal eight buttons is not yet reached.

If you want to remove a button, click the "Remove" gadget on the left side, the "Insert" button beneath let’s you insert a new clear
button BEFORE the button currently seen. Again, provided that the limit of eight buttons is not exceeded.

However, it is NOT legal to leave a button with an empty title. If this happens, SetVNC beeps the screen and you have to enter a
title, or remove the button completely.

If you want to find out more closely how buttons and the related macros work, check the macros section .

1.231 The Keyboard Page 1

The two keyboard pages are used to setup the keyboard configuration of a ViNCEd window. Hence, they are used to setup the
binding of keys to functions .

Using the first page, you select the key to define, the second page selects then the function.

by ASCII value

If this gadget is checked, the key is identified by the ASCII character it generates, not by the raw keymap code. It is rather
essential to understand the difference since besides the ViNCEd keyboard definition, there’s still the keyboard definition of the
Os that maps keys to characters.

To give an example: The keys "y" and "z" are interchanged on the german keyboard. If the english keymap is active and you bind
a function to the "z" key, it depends on this gadget what happens if the keyboard is later on changed to german. If this flag is set,
the function "moves along" with the keyboard keys and is now available thru a different key - namely the former "y" key - which,
however, still produces the same character, "z". If this gadget is not set, the function is bound to the real, physical key, and the
same physical key will generate the same function, regardless of the keyboard definition of the user - even when the meaning of
the keys should change. Thus, the former is some kind of "bind by meaning", whereas the later is "bind by hardware".

It is usually a wise idea to bind "keys by meaning", i.e. to leave this gadget checked. This does, however, work only if the key
to be bound generates a single, alphanumerical character - these are usually all "white" keys on the keyboard. Function keys and
control keys like Return or Backspace can’t be bound this way. However, this doesn’t matter since their meaning is fixed and
does not depend on a national keyboard.

Key

Type here the key you want to define. Remember: Only alphanumerical keys will be accepted in case the "by ASCII value"
gadget on the left hand side is checked. This gadget changes, too, slightly the function of the key definition:

If it is not checked, SetVNC will ignore all qualifiers at the time you type the key. They have to be selected with the gadgets
below.

Almost the same rule holds if the "by ASCII value" gadget is checked, except for the "Shift" qualifier which matters and MUST
be pressed at the time the key is selected by typing it.

Left Shift

If checked, the Left Shift key must be pressed together with the key selected above to invoke the function.

Right Shift

If checked, the Right Shift key must be pressed together with the key selected above to invoke the function.

VNC 75 / 188

If both, left and right Shift are checked, it won’t matter whether the left or the right shift key is pressed along with the key, i.e.
the both gadgets are combined by a logical "or" and there won’t be a difference between "left" and "right shift" at all. If only
one of these two gadgets are checked, then IT DOES matter. In this case, the keyboard function is available if and only if the
corresponding shift key is pressed.

These two gadgets are disabled if the "by ASCII value" gadget above is checked. The "shift" qualifier is then determined by a
different mechanism. It must be pressed along with the key to be defined at the time you type in this key in the "Key" gadget
above.

Left Alt

Selects the Left Alt key as qualifier.

Right Alt

Ditto, but the Right Alternate key.

If both, left and right Alt are selected, this means that the keyboard function to be defined doesn’t care about whether the left
or the right alt key was used to invoke it; thus, these two gadgets are coupled by an "or". If only one of them is checked, the
keyboard function will react only if the corresponding alt key is used - left and right WILL matter.

Left Amiga

This selects the Left Amiga Key as keyboard qualifier. This is the "Commodore" key on some keyboards.

Right Amiga

This selects the Right Amiga Key as qualifier. This qualifier is usually used for menu operations, check if the function you’re
going to define doesn’t conflict with one of the menu keys. The menu will usually take precedence unless no menu is attached to
the ViNCEd window.

If both, left and right Amiga keys are checked, you’ve really to press both keys to invoke the function (which is kind of a hard
trick, or at least unconvenient). The gadgets are combined by "and", not "or".

Ctrl

This selects the Ctrl key as qualifier.

NumL only

The function is only available if the "NumLock" qualifier is active.

This does, to stress that again, NOT MEAN that the keyboard key is a key on the numeric keypad. It means ONLY that the
keyboard function is only available if "NumLock" is active, even though this makes mostly sense for, but is not limited to keys
on the numeric pad.

"NumLock" is a keyboard qualifier similar to the "Caps Lock" qualifier, with the difference that there is no light on the keyboard
to show its state. It is, however, treated exactly in the same way. The keyboard function that toggles this qualifier is, obviously,
called Toggle NumLock and is usually bound to Alt Num[.

As soon as you’ve completely defined the key to bind the keyboard function to, go to the second keyboard page to select this
function.

1.232 The Keyboard Page 2

After selecting a proper key to be defined on the first keyboard page , this page is used to select a function for the key, or to check
the current keyboard definition.

The left hand side of the page is just a big "list view" gadget, to select the functions from. The topmost selection is "(undefined)",
meaning that the key should not be bound to any function and should operate in its "usual" way. Not all function keys need to be
defined explicitly, some do already have meanings by the Os - for example, you need not to bind the Cursor Keys or the Return
key, provided you like the default operations of the keys. Same goes for the Backspace and the Delete keys, as well as some
other "basic" functions which are always available, even at unbound keys; for example, the "Break" keys Ctrl C to Ctrl F are of
this kind.

Thus, you’ll be able to work with ViNCEd even with a broken or corrupt preferences file.

VNC 76 / 188

There’s a complete list of all keyboard functions available, together with the explanations what these functions do and what they
could be used for.

The right hand side of the page contains a box showing the current key binding. Whenever you select a function from the left
hand list, the keys that invoke these functions are shown in the right hand box. In case more than one key is bound to the selected
function, the gadgets "« Prev Key" and "Next Key »" select one binding after another. If the function isn’t bound to any key,
this field is just left blank. Please note that you’ve to use the Keyboard Page 1 to change the binding, you won’t be able to enter
keyboard sequences into this box; moreover, just browsing with these gadgets doesn’t perform any change on the definitions
made so far.

Accept

Don’t forget to press this button to perform the definition, or everything is lost. It will accept your definition and bring you back
to the first keyboard page .

1.233 The Edit Page 1

This is the first edit page, used to define various cursor control related settings. Please follow the links to find out more about
these settings.

Unrestricted cursor movement Don’t scroll into the border

XTerm/CON: cursor mode Rigid XTerm cursor

Numeric keypad cursor control

1.234 The Edit Page 2

This is the second edit page. It is used to setup the cursor shape and properties, and some clipboard and block related settings.
Please follow the links to find out more about these settings.

Underline cursor Blinking cursor

Don’t write printed text into clipboard Implicit copy after text marking

Disable middle mouse button

1.235 The Edit Page 3

The third page controls the ANSI coloring features, and the delete, backspace and overwrite controls. Please follow the links
below to find out more about the various settings

ANSI colors as default Inverse ANSI coloring

Standard CR insertion at start of line Disable BS at start of line

Overwrite mode

1.236 The Edit Page 4

The fourth edit page controls miscellaneous settings, the type ahead buffer and the window alignment on resize. Please follow
the links to find out more about the flags here.

Invisible type ahead Keep bottom of window adjusted

VNC 77 / 188

1.237 The Shell Page 1

The first shell page controls how and when ViNCEd closes its windows, and selects the shell mode. Please follow the links to
find out more about the settings on this page.

Call macro to close window Prevent accidental window closing

Enable close requester Use shell mode by default

Don’t send EOF until everybody waits

1.238 The Shell Page 2

The second shell mode controls the history buffer, the TAB expansion cache and the RAW mode scrollers .

History buffer wraps around

Keep duplicates in the history

Enable scrollers in RAW mode

Cached directories

1.239 The Shell Page 3

The third shell page controls various flags of each of the six pairs of TAB expansion keyboard functions. Which pair is currently
edited is printed directly below the headline of this page and can be selected by the "« Prev" and "Next »" gadgets right to it.

Here’s the list of options on this page; please follow the links to find out more about what these do:

Double TAB Requester First TAB Expands fully

Requester if expansion is ambiguous Add ViNCEd matches to the requester

More about the TAB expansion in general is available in the form of a tutorial , there’s also a list of all TAB related settings
available. Extensions to the settings on this side can be found on the next shell page .

1.240 The Shell Page 4

The fourth shell page presents even more TAB expansion flags for each of the six TAB expansion functions.

Again, the list of flags to be found on this page:

Do not match characters behind cursor

List expansions on the console

More about the TAB expansion in general is available in the form of a tutorial , there’s also a list of all TAB related settings
available. Basic TAB expansion settings can be found on the previous shell page .

1.241 The Shell Page 5

The fifth shell page is used to setup the priority ViNCEd assigns to various objects found on a TAB expansion search. The entries
of higher priority are shown earlier, on top of the TAB expansion list; hence, you need less keyboard presses to reach them.
Objects with a priority of -128 or below aren’t added to the list at all and will be dropped. That means specifically that you may
disable certain object classes completely by assigning them a priority of -128.

VNC 78 / 188

There are six sets of priorities, one for each pair of a TAB expansion keyboard function . Which pair is currently edited is shown
right below the headline of this page, and it can be selected with the "« Prev" and "Next »" gadgets right to this headline.

Here’s now the list of all available priorities; please follow the links to find out more about which objects they control:

Files Dirs Icons Devices Assigns Volumes Path C: Dir Resident Scripts Executables

Your priorities get "adjusted" a bit if you search for a directory or a device explicitly, i.e. the template ends either with a forwards
slash "/" or with a colon ":". In this case, all other file types except directories or devices/assigns/volumes are ignored and
the priority of the file type looked for is eventually raised from -128 to -127. This means especially that even if you disabled
directories explicitly, searching for an object ending with "/" will actually match something.

Please note that most files on an Amiga device will match the "Executables" category, NOT the "Files" category. This is because
the "e" bit of most files, indicating an executable, is usually set.

To find out more about the TAB expansion, consider reading the tutorial or check the list of all available TAB expansion settings.

1.242 The Shell Page 6

The sixth shell page controls the qualifiers of the icon drop feature of ViNCEd.

If you hold one of the keys listed on this page while you’re dropping an icon of the workbench in the ViNCEd window, only the
path or the name of the icon will be inserted.

The left hand gadgets control which keys must be pressed to insert only the name of the icon, the right hand side is used to specify
the keys for inserting the path only.

Please note that ViNCEd does not distinguish between the left and right Shift or Alt key here, each of them will work.

More than one gadget can be checked if you want to enable these functions with pressing more than one key at once. Please avoid
selecting the same qualifier on both sides, or selecting no qualifier at all. This is valid for ViNCEd, but may result in disabling
the regular icon drop feature.

1.243 The Shell Page 7

This page is used to setup the position and the size of the TAB expansion requester.

Please follow the links for details:

Left Edge Top Edge

Width Height

Do not place file requester

This flag must be disabled, or the requester dimensions above will be ignored. This is a workaround against a feature of the
"ReqChange/ReqTools" program that interprets the requester positions in a different way.

1.244 The Window Page 1

The first window page page is used to setup the size of the review and history buffers , and controls the default monitor and the
default font used by ViNCEd.

History lines

Enter here the number of lines kept in the command history which holds all previous commands entered. Using the History Up
and History Down

keyboard functions , these inputs can be again made visible. This must be a number between 5 and 4096.

Upper display size

VNC 79 / 188

Choose the number of lines hold in the upper display buffer . This buffers keeps lines that are scrolled off the top edge window.
You can redisplay them by using the scroller on the right side of the window, or by scrolling into this buffer using the cursor
movement keyboard functions .

As a rule of thumb, the upper display buffer should be half the size of the Lower display buffer, or bigger. The minimal possible
size is 64, the maximal size is 4096 lines. If the upper display buffer overflows, which is usual when scrolling big directory lists,
the topmost line gets lost. So if your listing does not fit, enlarge this buffer.

Lower display size

As you already might have thought, this is the number in the lower display buffer , which keeps the lines scrolled off the lower
edge of the window and the text in the window itself. This buffer should be AT LEAST as big as the number of lines visible in
the biggest possible window, values can range here from 128 to 4096. But I advice you to choose the size of the lower buffer at
least twice the size of the upper buffer, since many lines go in this buffer if you scroll backwards to see the top of the window. If
the buffer is too small, your latest outputs will be lost when scrolling back to the bottom of the text.

Monitor

This gadget is used to setup the default monitor ID when ViNCEd opens its own screen, using some special window path
qualifiers.

The left hand button gives a screen mode requester if available - please select here your preferred monitor for ViNCEd screens.

The string gadget at the right side must be used if no screen requester is available (like for people still using the 1.3 or 2.0
workbench). Hex notation using "0x" or "$" is valid here, but the upper sixteen bits (the monitor ID itself) are ignored if you run
ViNCEd on a 1.3 workbench.

Font

Select here the default font to be used in ViNCEd windows; this is NOT the font used for the menus which is taken from the
screen the ViNCEd window appears on. It’s the font used used for text in the window itself. Pressing the button yields a standard
font requester, please choose a non-proportional font for ViNCEd here.

The string gadget next to the button is useful for setting up the font manually if no font requester is available. Enter here the
name of the font without ".font", followed by a "." and the size as a decimal number. Hence, the string "topaz.8" will select the
topaz font, size eight as the default.

This setting can be overridden by the FONT argument in the window path specified for a ViNCEd stream.

If you leave this gadget empty, the system default font will be used here.

Please note that the screen default font (and hence the font used for the menus) can not be selected with this gadget! This is up
to the screen on which ViNCEd opened its window. The screen font of custom screens is currently not under control of ViNCEd
and can be changed thru the system font preferences only.

If you want to find out how to setup the colors of the ViNCEd custom screens, read the next page , too.

1.245 The Window Page 2

This page is completely dedicated for setting up the colors of ViNCEd custom screens or for the ANSI pens. ViNCEd will open
on a custom screen if some of the arguments in the window path say so; the colors defined on this page will then be loaded into
the hardware. The ANSI colors define, however, which text rendering color is assigned to which screen pen, if this feature is
enabled - which is either done by the third edit page or the ANSI window path argument; unlike the standard console, ViNCEd
text rendering pens are not restricted to the first eight pens in a palette. ANSI colors can then be used even on non-custom
screens: ViNCEd will try to allocate a public pen which matches the desired color most closely. More about ANSI colors is in a
separate section .

ViNCEd holds sixteen color definitions, plus one selectable cursor color. To select the color you’d like to edit, use the "« Prev"
and "Next »" buttons under the color sample. The cursor color is "left to" the color index #0, and is indicated by a "Cc" under
the color sample box.

To edit one color, you have to select first the usage of this color with the two checkmark gadgets near the bottom of the window:

Load register

VNC 80 / 188

Try to load this color into the shown hardware register.

Define ANSI mapping

Don’t define a hardware register, but the default color for the ANSI mode. The color index is in this case not the hardware
register number, but the ANSI pen number. This flag works also for public and workbench screens, but doesn’t load a color
register unless no other matching pen was found.

Since the color setup can be a tricky business, there’s a separate section available just explaining these two flags you should
check.

The sliders

Checking either or both check marks makes the sliders at the left hand side of the page available. They are used to setup the red,
green and blue component of the color. A color box at the right side of the page displays a sample of this color.

REMARK: It might happen that you can’t see a sample of the color beneath the sliders cause all screen colors are allocated by
other programs. In this case SetVNC tries to allocate a hardware sprite to display an additional color. This will yield to a rather
strange behavour of this color box. For example, it might "jump" out of the window when moving the window around, or might
disappear if you activate a different window. This is due to hardware limitations! It might even fail to appear at all, either if no
hardware sprite or no DMA time is available! This might happen with hacked monitor drivers or overscanned screens. Please
note that it is hard enough to display an additional color on a four or eight color workbench! No problems should arise on Gfx
boards cause they offer usually enough free pens that are used in this case instead.

1.246 The Window Page 3

The purpose of this page is to setup the defaults for which gadgets should be added to a VinCEd window. Please follow the links
below to find out more about the flags here:

Don’t add close gadget by default Don’t add iconify gadget by default

Disable horizontal scroller Disable vertical scroller

1.247 The Timing Page 1

The timing of ViNCEd is setup by this page. This is not only the blink speed of the cursor - if you turned that on - but also two
delay rates for refresh and scrolling.

All timings in this page are measured in milliseconds, that is a thousands of a second. The screen of a usual TV is refreshed
every 20 or 17 milliseconds, depending on the system, PAL or NTSC. Values can be entered as the number (in "ms"), or chosen
with the slider right to the gadget.

Please follow the links below to find out more about what these values mean:

Cursor blink speed Vertical scroll threshold

Rebuild delay Double TAB time interval

and finally, there’s one checkmark-gadget that enables ViNCEd "turbo scrolling"; If this gadget is not checked, ViNCEd scrolls
like the usual CON: handler and the timing values above are irrelevant.

Allow delayed window refresh

This check item can be found in the settings menu , too. It is called "Rebuild Delay" there.

1.248 The System Page 1

The first system page controls certain internal settings of ViNCEd you usually shouldn’t mess around, i.e. hands off!. Editing
this, and the other system pages is usually not required, except at installation time probably.

VNC 81 / 188

ViNCEd Guide Path

Enter here the complete path to the ViNCEd.guide that came with the ViNCEd archive (and you are currently reading). The
gadget left to the path name will bring up a file requester, to help you locating the guide.

If you want to make the online guide system working, please make sure that:

o) The path of the guide is correctly setup in this gadget

o) The default tool of the guide itself is setup properly. To change it, locate the guides icon on the workbench, click it
ONCE with the mouse and select "Info" from the workbench’s icon menu. Enter as "Default Tool" in the upcoming window
the COMPLETE PATH of your favorite guide browser; this should be "SYS:Utilities/Multiview" for Workbench 3.0 and up,
"SYS:Utilities/AmigaGuide" for all other systems. "Multiview" comes with version 3.0 and 3.1 of the workbench, the "Ami-
gaGuide" can be found in the AmiNet, for both versions of the OS, 2.0 and 1.3. However, the last one is a bit buggy (I had some
crashes while testing it), and I recommend you to upgrade your system in that case.

Note: If you can’t leave this page, make sure that the path to the guide is setup correctly. ViNCEd will not allow you to specify
an invalid setting here.

The next four gadgets control various functions of ViNCEd; please follow the links to find out what they do:

Word wrap workaround Line break at right border

Inhibit horiz. scrolling by DOS output VT-220 compatibility mode

1.249 The System Page 2

The second system page controls various internal ViNCEd settings you usually do not want to change. Especially, selecting a
flag here might easely cause compatibility problems, so just leave them alone.

To find out what these flags do, just follow the links below:

Destructive DEL and BS Insertion mode for DOS output

Notify DOS about paste Extended colors instead of bold

No insertion into border

1.250 The System Page 3

This page is used to setup various system macros needed by ViNCEd for internal control. They are somewhat similar to the user
macros except that they are not available thru the macros menu in a ViNCEd window.

To find out more about how macros and the closely relied buttons are expanded, and about the special patterns and control
sequences that can be used in them, read the macros section .

Quit shell

This macro is expanded by ViNCEd on a request to close the window if a shell is waiting for input in this window. This is only
done if the Call macro to close window flag in the first shell page is selected, otherwise a "End Of File" condition is generated.
Something like an "EndCLI" command should be placed here. The code $02 which is present in the default setting of this
macro is the rewind history keyboard control sequence and erases the complete line before inserting the macro itself. A more
sophisticated use of this macro would call a shell script which, for example, could erase temporary files created by a compiler
session, and much more.

If you leave this macro empty, an EOF condition will be sent to the shell.

Quit program

This system macro will be expanded if the user presses the close gadget of a ViNCEd window while a program is being executed
in it. It can be used to abort the command by sending a Ctrl-C or to send an EOF condition by leaving it empty.

New window

VNC 82 / 188

This macro gets expanded on selection of the "New Window" item in the project menu . It should bring up a new shell window,
so something like a "NewCLI" command is the best choice. If you use a custom shell, enter here a similar command.

A second use of this macro would be to invoke a new editor window in a compiler session.

Fork new shell

This one is unique because it is not expanded into the keyboard buffer like all the other macros. Instead, it is sent directly to the
shell segment for execution.

The macro, which is part of the job control of ViNCEd is used when a new shell is requested by a press of Ctrl-Z. It should bring
up a new shell in the current window. If you use a custom shell, insert here a command similar to "NewShell WINDOW=*".

REMARKS: Since this macro is executed rather than inserted as key-presses, it must be terminated by a line feed sequence "\n"
(ASCII 0A = 10) instead of a RETURN key press "\r" (ASCII 0D = 13).

The execution of this macro causes usually a re-execution of the S:Shell-Startup sequence. A usual problem with this is that
you have to make this script re-entrant, i.e. stable for re-execution. One of the problems that may arise is the setting of pipe
characters, namely the commands

Set _pchar | Set _mchar ||

Since on the second call, the definition of the pipe characters is interpreted as a pipe itself, this won’t work. Change the lines to
avoid the interpretation of the characters "|" and "||" by the shell:

Set _pchar "|" Set _mchar "||"

Note the double quotes!

Get help

Invoked if the user presses the "Help key" (or, to be precise, the key that generates the Help keyboard function) or selects the
"Help" item of the project menu . This macro should bring up some help related to the current work. By default, the SetVNC
program is invoked to display the ViNCEd help pages, i.e. this guide. See also the command line arguments of SetVNC for
details which arguments to use.

A fine use of this macro would be to bring up the help pages of a compiler.

1.251 The System Page 4

The purpose of this page is to setup various system macros - look-alikes of the usual user macros which are required for internal
operation of ViNCEd which do not appear in the macros menu . It’s also used to define other string resources of ViNCEd. It’s
usually not required to change these settings except at installation time.

Edit settings

A system macro that gets expanded if the user selects the Settings item in the project menu. By default, this brings up the SetVNC
preferences editor to change the settings of the window, but it might be quite useful to bring up a settings editor of a compiler,
for example.

Icon Path

Enter a complete path to an icon (".info" - file) which should pop up if a ViNCEd window gets iconified. The position of the icon
is also relevant, so it is probably a good idea to "UnSnapshot" it before using it for ViNCEd.

A ".info" MUST NOT be appended, that’s done by ViNCEd automatically.

If this string is left black, ViNCEd will use its default icon, a simplified four color shell like window.

Icon title

This string specifies the default title used for the icon, i.e. the name that appears together with the icon on the workbench screen.
If this string is left blank, the window title appears by default. However, a program might choose to setup its own title by the
ESC sequence "ESC] 1; title BEL" that overrides this setting. The same control sequences as in the window title are available in
this string as well, but since the icon title can’t be changed too easely once ViNCEd has been iconified, it will be only expanded
once, namely when the window gets iconified.

VNC 83 / 188

Default path

If ViNCEd was invoked just by the name of the handler and no window path at all, i.e. by using just "VNC:" as device specifier
without additional arguments, this path will be used instead. It must consist of a window path like string except that the device
specification in front of it must not be given, i.e. no leading "VNC:" or "CON:".

Note: Due to a "feature" of the 1.3 Mount command, this is disabled for older Os releases. Opening a window just with the
handler name will (and has to!) fail for these releases.

1.252 QUIET (SetVNC argument)

Suppress verbose output, print only error messages. DO NOT REDIRECT SETVNC OUTPUT TO NIL: SINCE THE OUTPUT
STREAM IS NEEDED TO FIND THE CONTROLLING VINCED WINDOW!

1.253 MOUNT/K (OVERRIDE/S AS) (SetVNC argument)

An argument that comes with additional subarguments. Its general use is to mount the ViNCEd handler explicitly, mostly
to replace a different handler like CON: or RAW: by VNC. Everything else should be done with a standard mount icon in
"Devs:Dosdrivers".

A line like

SetVNC mount override as CON

in your startup-sequence will replace for example the standard CON: handler by ViNCEd. Similarly,

SetVNC mount override as RAW

will replace the RAW: handler by the RAW version of ViNCEd, if you want to do so, too.

At least one sub argument is required for "MOUNT", namely the name of the handler that should be replaced by ViNCEd, as
an argument to the "AS" keyword - which itself may be dropped. However, using only these arguments SetVNC will not try to
replace an already loaded handler.

Since both the CON: and the RAW: handler ARE already loaded when the Os is booting, SetVNC must be called with the
OVERRIDE parameter to unload the already loaded handlers and to replace them by ViNCEd. Therefore, an OVERRIDE almost
always mandatory.

1.254 HELP/S (SetVNC argument)

Using this argument, SetVNC invokes the online help, meaning this guide.

To do so, it first reads the path of the ViNCEd guide from the ENV:VNCGuide.path variable, then checks the "Default Tool" of
the guide file and runs this tool to display the guide.

All these details are usually setup as part of the installation procedure and you should not modify them by hand.

However, in case you move this guide to a different location, you should inform SetVNC about it and correct the internal
information using the first system page .

In case you prefer a different browser for the guide, just use the workbench menu item "Info" on the guide icon and change the
"Default Tool" of this guide. SetVNC will respect this setting for setting the guide.

1.255 BACKGROUND/S (SetVNC argument)

This is part of the job control arguments of SetVNC. It puts the current foreground job into background and makes the next
available job the foreground job.

Details about the job control arguments are in a separate section .

VNC 84 / 188

1.256 FOREGROUND/K (OTHER/S CLI/N)

This is part of the job control arguments of SetVNC. It puts the job associated to the CLI number given for this argument to
foreground , and releases the current job into background.

This works only for jobs running in the ViNCEd window the SetVNC command was invoked from, unless you specified the
"OTHER" parameter of this argument as well. However, "OTHER" should be used in emergency situations only since it is not
completely safe.

Details about the job control arguments are in a separate section .

1.257 FREEPOINTER/S (SetVNC argument)

This argument is a workaround against a design problem of the AmigaDos.

Calling

SetVNC FreePointer

will re-allow iconification and closing of AUTO style windows which might have been disabled by various programs, most
notably the "More" browser. A workaround script has been put into the S: directory by the installation procedure using this
command after running "More".

However, one "SetVNC FreePointer" will un-do the effect of exactly one "More" command (or to be precise, the effect of one
ACTION_DISK_INFO). If you run "More" more than once, you might want to use the even stricter form

SetVNC FreePointer All

which will revert the side effects of ALL "More" commands at once.

There exists a documented method of obtaining information about the "intuition window" associated to a shell window. However,
not each ViNCEd stream has to be attached to a window at all - for example, an AUTO style window which has not been opened
yet, or an iconified ViNCEd window does not have this structure. This means that, as soon as this information is requested, a
window must be opened.

That wouldn’t be a problem by itself, but there is NO documented way of returning this information which means that it is NOT
clear whether this structure is needed any more or not. Since it is quite dangerous to release a resource a program might still
need, but there is no standard way of releasing this resource at all, a ViNCEd stream from which this information was requested
may neither get iconified nor closed in any other way except for shutting down the stream completely.

ViNCEd, however, introduces a way of giving this resource back - check the DosPackets section in case you’re a program author
and going to implement something like this.

This argument uses this documented way of giving the resource back, but does not ensure that it is, indeed, no longer required.
That is, unfortunately, your job. Use it wisely! Calling "SetVNC FreePointer", or even worse, "SetVNC FreePointer All" at a
time WHERE this intuition window structure IS still required, and then iconifying the window will definitely crash the system.
There is, unfortunately, no standard way of finding out whether "FreePointer" is safe or not.

1.258 SETCONSOLE/S

This argument is rarely used, and should be avoided. It is definitely for "experts only". What it does is that it sets the "Console
Task" pointer of the calling shell to the console controlling the output stream of the SetVNC program on invocation.

This effectively changes the owner of the task using this console pointer. However, this is rarely required.

VNC 85 / 188

1.259 LOAD/K (PREFS/S GLOBAL/S WINDOW/S DEFAULT/S LAST/S FROM) (SetVNC
Argument)

This loads the ViNCEd preferences from a specified position, usually to edit them with the SetVNC user interface or to install
them in the window SetVNC was called from. The following parameters are available:

PREFS/S:

Loads the globally active preferences.

GLOBAL/S:

Identically to the keyword "PREFS".

WINDOW/S:

Loads the preferences used in the window SetVNC was invoked from. This is the default location where SetVNC reads the
preferences from if they are required, for example for the GUI, and no other LOAD option was specified.

DEFAULT/S:

Loads the SetVNC "factory default" settings.

LAST/S:

Loads the "Last Saved" preferences, i.e. those that have been saved back to disk. This is not necessarily identical to "GLOBAL",
which represent the settings that have been made active by the "Use" button of the SetVNC GUI alone.

FROM:

An parameter requiring an additional argument, namely the file name of a preferences file previously saved with SetVNC. The
preferences data is then loaded from the given file. The "FROM" argument itself can be dropped if a file name is provided.

1.260 PREFS/S (SetVNC argument)

This switch disables the "To Window" button in the SetVNC user interface and changes the default operation of the LOAD and
SAVE keywords to load or save the global rather than the local window preferences. Thus, it turns SetVNC into a preferences
editor for the global ViNCEd settings rather than for the local settings. Usually not required unless you really want to modify the
global preferences.

This flag is, for example, used by the "SetVNC" icon in the Prefs drawer of your system.

1.261 PUT/K (SCREEN HISTORY) (SetVNC argument)

This keyword saves the review buffer or the command history to a text file.

PUT SCREEN

this takes an additional parameter, namely a file name to save the screen contents as. The output file will be a text file with
some embedded CSI sequences that describe the style and type of the text in the display buffers , as for example whether it was
typed in as input or printed output. This file can be later on reloaded with the GET argument and will be placed into the display
buffer. You could, in principle, simply copy it to the console using either the "type" or "copy" command, but the direct SetVNC
approach is not only faster, but also restores user input as user input, which a simple copy operation is not able to do.

PUT HISTORY

takes an additional parameter, the file name to save the history contents under. The output file will be a plain ASCII file. It can
be restored later on with the GET argument.

This argument is, for example, used by the history shell script to prompt the history contents on the screen.

VNC 86 / 188

1.262 GET/K (SCREEN HISTORY) (SetVNC argument)

This keyword loads the review buffer or the command history from a text file.

GET SCREEN

this takes a file name as an additional parameter, the file to load the review buffer from. The file might include a subset of known
control sequences that describe the style and the type of the text, i.e. whether it was printed or typed input. Note that this attribute
cannot be restored simply by "type"ing or "copy"ing the text file to the screen, but note further that only a small subset of the CSI
sequences usually known are valid here, mostly for speed reasons.

GET HISTORY

loads the command history from a given text file and replaces the currently active history completely.

1.263 RESET/S (SetVNC argument)

If this argument switch is present, SetVNC will reset the terminal emulation on exit, using the "Esc c" escape sequence .

1.264 MONITOR/A (SetVNC argument)

This argument is similar to the MONITORID argument in the sense that it sets the default monitor which ViNCEd should use to
open on its own screen. The difference is that the argument to "MONITOR" must be the name of the monitor as it shows up in
the monitor data base, and not the ID of the monitor.

The monitor database can be browsed, for example, by the "ScreenMode" preference editor.

Be warned: Monitor names depend on the localization, hence do not use this argument in script files that should run on Amigas
localized for a different language.

Examples:

SetVNC Monitor "NTSC:High Res"

sets the default view mode for screens to be used by ViNCEd to NTSC high res. Please note the double quotes required to enclose
the white space of the argument.

1.265 MODIFY/S (SetVNC argument)

This argument must be given to run the graphical preferences editor of SetVNC. This "MODIFY" is implicit if no argument is
given at all, but required to launch the editor in all other cases.

For example, the following line would load the preferences from a file named "foo", and display them in the SetVNC editor:

SetVNC LOAD foo MODIFY

1.266 SAVE/K (NOICONS/S PREFS/S GLOBAL/S WINDOW/S TO) (SetVNC argument)

This argument together with its parameters will save or install the preferences in various destinations. The preferences that will
be saved are either the preferences of the window SetVNC was invoked from, or any other source specified with the LOAD
argument, possibly modified with the preferences editor if the MODIFY switch was used.

NOICONS

This is simply a parameter to "SAVE" to tell SetVNC not to save an icon along with the preferences file.

PREFS

VNC 87 / 188

Saves the preferences at their default location in ENV:ViNCEd.prefs and ENVARC:ViNCEd.prefs and activates them such they
will be used by all windows that will open afterwards. This does not change the configuration of any window already open.
This is identical to what the "Save" button in the preferences editor does except that it does not change the configuration of the
window SetVNC was invoked from.

GLOBAL

Makes the preferences system wide available and saves them to ENV:ViNCEd.prefs, but does not save them permanently to disk.
This command does not change the configuration of windows already open, it is identical to the "Use" button of the preferences
editor except that it does not change the configuration of the active window.

WINDOW

Installs the preferences in the window SetVNC was invoked from. Does not change the configuration of other windows, neither
the currently active configuration nor that on disk.

TO

This parameter takes an additional sub argument, the name of a file to save the preferences in. The settings saved in this file
can be restored later on with the LOAD argument. This parameter does not install the preferences in any window nor are the
preferences made available for other windows. If a file name is present, the keyword "TO" can be omitted completely.

1.267 IFVNC/S (SetVNC argument)

This argument checks whether SetVNC was run from a ViNCEd shell or not. The return code 5 is set if not, otherwise a 0 is
returned. This return code can be used in script files, using a following "if" instruction to check whether the script was run from
a ViNCEd shell.

To give an example how this could be used:

SetVNC IfVNC if WARN echo "Ugly old console running" else echo "Yeah, ViNCEd active" endif

1.268 Rebuild Delay/REBUILDDELAY (Prefs Flag)

If this flag is enabled, ViNCEd is allowed to delay the window refresh to allow faster printing. The output might jump-scroll if
ViNCEd considers that standard scrolling is too slow.

The timing constants for the scrolling are found on the timing page of the SetVNC program .

Vertical scroll threshold sets the minimal tolerated scroll delay. If scrolling is slower than this value, ViNCEd will enable jump
scrolling.

Rebuild Delay sets the jump scroll interval. After detecting a slow output, ViNCEd will delay further output by this time interval,
collecting all incoming data and printing them at once when this delay is over.

1.269 Unrestricted Cursor Movement/DOSCURSOR (Prefs Flag)

If this flag is enabled, all user cursor movement functions will ignore the difference between user input and printed output and
will act as if it sees only user input. The only keyboard function that does still sees a difference is the Send Inputs keyboard
function.

1.270 Standard CR Insertion at Start of Line/CRINSERT (Prefs Flag)

If the Send Inputs keyboard function or a related function is invoked with the cursor placed at the beginning of a line, a blank
line will be inserted above the current line; the standard operation which is used in all other cases inserts a line below the current
line.

If this flag is set, only the standard method will be used, regardless where the cursor is placed.

VNC 88 / 188

1.271 Overwrite Mode/OVERWRITE (Prefs Flag)

If this flag is set, the overwrite mode will be used by default. Your inputs will write on top of already printed outputs instead of
getting inserted.

This mode can be toggled with the Toggle Overwrite as well; it does not change the behavour of printed output, only user inputs
are affected.

1.272 History Buffer Wraps Around/WRAP (Prefs Flag)

If this flag is set, the command history will "wrap around" if its end is reached using the keyboard History Up and History Down
functions.

Additionally, the TAB Expansion list will wrap around, too.

1.273 Call Macro to Close Window/SMARTCLOSE (Prefs Flag)

If this flag is enabled, and the window is in Shell Mode , ViNCEd will invoke a macro to close the current window - which might
for example run the "EndCLI" command. In all other cases, an "End Of File" condition is generated.

Which macro is run depends on which program ViNCEd detects in its window. If it is a standard shell, the Quit Shell macro will
be used, in all other cases the Quit Program . If the according macro is left empty, ViNCEd will also generate an EOF condition.

1.274 Don’t send EOF until everybody waits/CLOSEQUEUE (Prefs Flag)

This is a very technical flag and it is usually not worth playing with it. It changes the behavour of ViNCEd if more than one
process is running in a window with the AUTO window path argument set.

If this flag is unset, and one of the processes waits for inputs, ViNCEd will generate an EOF condition or invoke a macro to shut
down the process.

If this flag is set, ViNCEd will just close the window to wait for the other processes and will only generate the EOF as soon as
all processes wait.

There’s usually not much sense in setting this flag, just leave it alone.

1.275 Don’t Write Printed Text into Clipboard/CUTUSER (Prefs Flag)

If a block is marked with the mouse and later on copied to the clipboard, probably using the edit menu , all characters usually
go into the clipboard, regardless whether they are printed or inputs.

If this flag is set, only user input will be kept; printed characters are ignored. This has the advantage that, when the clipboard is
later on reinserted, the printed output can’t be mis-interpreted as commands.

1.276 Word wrap workaround/NCURSESFIX (Prefs Flags)

This flag changes the implementation of the "word wrap" feature of ViNCEd and might be required to make some software
behaive correctly. It changes slightly the way how ViNCEd handles overlong strings that do not fit into one line in the window.

If turned off, which is the default, ViNCEd will emulate the VT-xxx word wrap style. This is, if the string is exactly as long
as the visual line, the cursor does not yet wrap around to the next line, but gets placed behind the current line in a column that
is no longer visible on the screen. The next character will, however, wrap around immediately and will place the cursor on the

VNC 89 / 188

second column of the next screen. Even though this mode seems to be wierd indeed, because the cursor X position may actually
be larger than the width of a line, this is the correct VT-xxx implementation and is used in the "XTerm" Unix terminal as well.

If turned on, the cursor will wrap around immedately and will get placed in the first column of the next line. This is incorrect,
but might be expected by some programs. The IRIX "winterm" uses this method of word-wrapping. Note that this feature makes
it impossible to print to bottom rightmost character position in the window without scrolling it.

1.277 Use Shell Mode by Default/SHELLMODE (Prefs Flag)

Selects whether ViNCEd should default to Shell Mode even though no SHELL argument is given in the window path . If this
flag is set, the shell mode must be turned off explicitly with NOSHELL .

1.278 Auto Indent Mode/AUTOINDENT (Prefs Flag)

If this flag is set, the Send Inputs keyboard function and related functions won’t place the cursor in the first row of a new line,
but will however insert as many spaces as needed to align the input to the characters in the line above.

This mode is incompatible to shell usage, don’t set it unless you know what you’re doing.

1.279 Don’t Add Close Gadget by Default/NODEFAULTCLOSE (Prefs Flag)

If this flag is set, ViNCEd will not add a close gadget by default, but requires the CLOSE window path argument to do so.

If this flag is not set, a close gadget will be added to all ViNCEd windows unless it is turned off with NOCLOSE .

1.280 Implicit Copy after Text Marking/AUTOCOPY (Prefs Flag)

If this flag is selected, ViNCEd will copy the marked block immediately after you release the mouse button and won’t wait for
the Copy function. This makes ViNCEd sort of compatible to the "XTerm" unix program.

1.281 Prevent Accidental Window Closing/SAFERCLOSE (Prefs Flag)

If this flag is set, ViNCEd runs in the Shell Mode and more than one process uses the window to be closed, ViNCEd will disable
the close gadget which will only shut down one process in this window at a time.

Additionally, a close requester may be enabled.

1.282 Don’t Add Iconify Gadget by Default/FORBIDICONIFY (Prefs Flag)

If set, ViNCEd will not add an iconification gadget to the window unless you ask for it explicitly using the ICONIFY argument
of the window path .

If this flag is not set, ViNCEd will usually provide an iconification gadget; you’ve to use the NOICONIFY option to disable it
explicitly in this case.

1.283 Disable Middle Mouse Button/DISABLEMMB (Prefs Flag)

If selected, ViNCEd will disable the function of the middle mouse button to insert the text in the clipboard at the location pointed
to by the mouse. It will be available for other applications again.

However, even with the disabled middle mouse button, the replacement sequence Ctrl LeftMouse will still function.

VNC 90 / 188

1.284 Enable Close Requester/CLOSEREQ (Prefs Flag)

If this flag is enabled, and the Prevent Accidental Window Closing is enabled, too, ViNCEd will open a safety requester as soon
as you try to close a window with more than one process running in it.

This might prevent certain surprises when shutting down the shell in a window which is needed by other processes as well.

1.285 Keep Bottom of Window Adjusted/SCROLLTOBOTTOM (Prefs Flag)

If a ViNCEd window gets enlarged, ViNCEd will usually insert blank spaces at the bottom of the window to avoid moving the
cursor. If this flag is set, however, the text will be scrolled downwards to align it to the bottom border.

1.286 Inhibit Horiz. Scrolling by DOS Output/NOPRINTSCROLL (Prefs Flag)

If this flag is set, ViNCEd will not scroll the display horizontally if the cursor gets out of range by printing characters. The
window will be scrolled "in place" as soon as you start typing.

This mode might be very confusing since the cursor might become invisible from time to time. However, it avoids unnecessary
flicker when printing over sized lines.

This flag is also controlable by the CSI sequences CSI >?18l and CSI >?18h.

1.287 Line Break at Right Border/SMALLDISPLAY (Prefs Flag)

If this flag is enabled, the output will be split at the right border of the window, not at the right end of the logical ViNCEd line
(which is approximately 240 characters long).

This splitting is permanent, ViNCEd does not reformat paragraphs if the window gets resized, nor does it reformat the output in
any way. This behavour is also compatible to what XTerm does.

This flag is also available in the form of a CSI sequence , namely CSI >?19l and CSI >?19h.

1.288 Destructive DEL and BS/DOSERASE (Prefs Flag)

If this flag is set, the control characters DEL 0x7f (delete) and BS 0x08 (backspace) are enabled and destructive, i.e. will remove
characters from the screen.

If the flag is disabled, the BS sequence will move the cursor backwards, but won’t erase characters. The DEL sequence will print
a "smear" character and won’t be regarded as control sequence. Most programs won’t expect this when printing a backspace
control sequence, so I advice you not to turn on this option.

The CSI sequences CSI >?24h and CSI >?24l can be used to set this flag "on line".

If this flag is set, you should set the Insertion mode for DOS output as well.

Warning: This flag is incompatible for shell usage. Don’t set it unless you know what you’re doing.

1.289 Notify DOS About Paste/AUTOPASTE (Prefs Flag)

If this flag is set, the Paste menu item will not insert the clipboard contents, but will instead sent the CSI sequence CSI 0 v. It is
then up to the listening program to handle the clipboard insertion by itself. However, regardless of this flag, Cut, Copy and all
the remaining block operations will work as normal, but the middle mouse button is also affected, since it inserts the clipboard,
too.

VNC 91 / 188

This flag is incompatible to shell usage, don’t set it unless you know what you’re doing.

However, a program might choose to disable temporary the automatic paste by ViNCEd. This is done by the CSI sequence "CSI
>?25l". Use "CSI >?25h" to turn this on.

REMARKS: The paste behavour of ViNCEd does NOT change if a window is in raw mode instead of cooked mode , like for the
standard console handler.

There is a second flag related to the one presented above, which can’t be set by default because it is even more restrictive. If you
send the CSI sequence "CSI >?27h" to ViNCEd, all the block operations, including Cut and Copy and the selection of blocks
must be done by you. Special CSI sequences will be send to indicate a Cut or Copy request, and the block marking is totally your
own business, i.e. you have to listen to the mouse movement and -keys. Send a "CSI >?27l" to restore the normal operation.

The command line option "AUTOPASTE" is the same flag, but reversed. "Off" means that ViNCEd DOES NOT insert the
clipboard automatically.

Just as a side remark: ViNCEd does not require the "ConClip" program. If you run ViNCEd to replace CON: completely, you
may remove "ConClip" from your startup-sequence.

1.290 DISABLESCROLL (Prefs Flag)

If this flag is set to "on", ViNCEd will disable the window scrolling if the bottom border is reached. This preferences flag
functions identically to the CSI >1l and CSI >1h control sequences .

This flag is incompatible to shell usage. Don’t set it unless you know what you’re doing.

1.291 DISABLEWRAP (Prefs Flag)

If this flag is set to "on", ViNCEd will disable automatic line break at the right edge of a line. This is either the right window
border if the SMALLDISPLAY flag is set, or the end of the logical line - which is approximately 240 characters long. This flag
functions identically to the CSI sequences CSI ?7l and CSI ?7h.

This flag is incompatible to shell usage. Don’t set it unless you know what you’re doing.

1.292 Insertion Mode for DOS Output/DOSINSERT (Prefs Flag)

If this flag is enabled, printed characters will get inserted into the already existent output instead of overwriting them. This flag
DOES NOT change the keyboard insertion or overwrite mode, which is controlled by a different flag .

Most software does not expect insertion mode, so leave this flag off if you don’t have a good reason not to do.

The CSI sequences CSI 4l and CSI 4h will clear and set this flag "on line".

If this flag is set, you should also set the Destructive DEL and BS flag.

This flag is incompatible to shell usage. Don’t set it unless you know what you’re doing.

1.293 VT-220 Compatibility Mode/VTMODE (Prefs Flag)

If this flag is set, ViNCEd will run a VT-220 terminal emulation instead of the usual CON: emulation; the meaning of some
control sequences will therefore change.

This flag is incompatible to shell usage; don’t set it unless you know what you’re doing.

The CSI sequence CSI >?2h will also enable this emulation, CSI >?2l will disable it.

VNC 92 / 188

1.294 ROWLOCK (Prefs Flag)

If this flag is enabled, ViNCEd won’t allow the user to leave the current input line by any means. Even Return won’t leave the
current input line, the vertical cursor movement functions are disabled completely, and some other functions get restricted, too.
The main use of this flag is to provide a mechanism to use ViNCEd as a terminal for a "mask input" such that the user can’t
overwrite the mask.

This flag is also available in the form of the CSI >?3h CSI sequence , CSI >?3l will disable it again.

This flag is definitely NOT for shell usage. Don’t touch it unless you know what you’re doing.

1.295 Underline Cursor/UNDERLINE (Prefs Flag)

If this flag is set, ViNCEd will use an underline cursor instead of the standard block cursor.

This flag is also available by the CSI sequence CSI >?4h. CSI >?4l will restore the standard cursor shape.

1.296 Blinking Cursor/BLINKING (Prefs Flag)

If this flag is set, ViNCEd will blink the cursor. The cursor blink speed can be setup on the timing page of SetVNC .

This flag can be set by the CSI sequence CSI >?6h as well.

1.297 XTerm/CON: Cursor Mode/XTERMCURSOR (Prefs Flag)

If this flag is enabled, ViNCEd won’t move the cursor if the window contents are scrolled with the slider gadgets . Instead, the
cursor will be scrolled out of the window. The window will "snap back" as soon as you press another key.

This flag can be set with the CSI sequence CSI >?30h as well.

1.298 Disable BS at Start of Line/NOBSSTART (Prefs Flag)

By setting this flag, you may disable the backspace keyboard function (or, to be fully correct, the "Delete Backwards" function)
at the beginning of a line - where it would usually erase the current line and join it to the previous line.

1.299 ANSI Colors as Default/ANSIMODE (Prefs Flag)

If this flag is enabled, ViNCEd will use the ANSI coloring scheme by default, as if ANSI was given in the window path; the
window path argument NOANSI must be given explicitly to use the standard CON: coloring again.

1.300 Inverse ANSI Coloring/ANSIREVERSE (Prefs Flag)

This flag will swap the ANSI colors 0 and 7, i.e. black and white. Hence, the default ANSI coloring will be black text on white
background instead of white text on black background.

If the ANSI mode is not enabled, this flag will do nothing.

VNC 93 / 188

1.301 Numeric keypad cursor control/NUMPADMODE (Prefs Flag)

This flags sets the "NumLock" keyboard qualifier by default and makes therefore certain keyboard functions available; these are
usually cursor movement functions on the numeric keypad.

The "NumLock" qualifier is a keyboard qualifier much like "CapsLock", except there is no LED available to display its state. It
can be toggled "by hand", too, by binding the "Toggle NumLock" keyboard function to an appropriate key - this is Alt Num[in
the default configuration.

1.302 Extended Colors Instead of Bold/BOLDEXTCOLORS (Pref Flag)

If this flag is set, ViNCEd will interpret the "Bold" text style in a different way. Instead of printing bold characters in boldface,
ViNCEd will shift to the extended color map and use the colors 8 to 15 instead of the colors 0 to 7 for the text. The "blinking"
attribute will, in a similar way, shift the colors of the text container by eight to use the extended color set - instead of getting
ignored; the current ViNCEd version does not yet support "blinking" characters, but already keeps the "blinking" attribute.

1.303 No Insertion Into Border/SHORTSCREENINSERT (Prefs Flag)

If enabled, this flag changes the operation of the CSI L and CSI M control sequences slightly; instead of inserting and removing
lines from the complete lower display buffer , these sequences will ignore lines beyond the bottom window edge complete and
will leave them alone.

This flag is mainly a compatibility kludge for programs that can’t handle with the complete ViNCEd review buffer, as for example
"vim".

1.304 Don’t scroll into the border (Prefs Flag)

If this flag is enabled, you won’t be able to extend the review buffer by scrolling into blank unoccupied areas. The cursor will
just stop at the upper or lower end of the review buffer .

This flag affects horizontal cursor movement as well: If the flag is set, the cursor is no longer allowed to enter printed text output
by left or right movement, it will stop in front of printed text. Consequently, if the cursor ends up in the middle of printed text,
you won’t be able to move it at all any more. To override this flag, you should temporarely select the DOS Cursor Mode mode
from the Settings Menu by pressing Amiga D.

This flag won’t affect output, only user cursor movements are restricted.

1.305 Invisible Type Ahead/TYPEAHEAD (Prefs Flag)

If this flag is enabled and there is currently no program waiting for your input, the inputs will be kept invisible in an internal
buffer and will be printed as soon as they are requested.

Note: Not all characters are kept in this type ahead buffer, some are "immediate", as for example the keyboard functions Suspend
and Send ˆC which have to work all the time for obvious reasons.

1.306 Disable Horizontal Scroller/DISABLEPROPX (Prefs Flag)

This flag disables adding the horizontal scroller to ViNCEd windows unless the window path argument PROPX re-enables it
explicitly again.

VNC 94 / 188

1.307 Disable Horizontal Scroller/DISABLEPROPY (Prefs Flag)

This flag disables adding the vertical scroller to ViNCEd windows; to get a vertical scroller then, it must be requested explicitly
with the window path argument PROPX .

1.308 Enable Scrollers in RAW Mode/RAWSCROLLERS (Prefs Flag)

If the window is switched to the RAW console mode (also called the "unprocessed" or "non-canonical" mode which disables the
ViNCEd editor functions), all scrolling is usually forbidden; this includes that the horizontal and vertical scrollers will be ghosted
and are no longer available. Another side effect is that you won’t be able to scroll the window contents implicitly my marking a
block and moving the mouse pointer to the edge of the window.

If this flag is enabled, the scrollers will stay available in all console modes; block marking will also work as usual, including
scrolling the window contents if necessary.

1.309 Rigid XTerm Cursor/RIGIDCURSOR (Prefs Flag)

If this flag is set, you won’t be able to set the text cursor by "clicking" at a new position with the mouse pointer. This flag restricts
therefore the XTerm mode even more and makes all cursor movement impossible, except using the keyboard.

If you even don’t want to move the cursor by the keyboard, then change the keyboard definition to change the keyboard functions
bound to the cursor keys.

1.310 Keep Duplicates in the History/KEEPDOUBLES (Prefs Flag)

If you enter a command, ViNCEd will rewind the command history and add your command line to the end of it, except this
command line is already present at the end; Hence, ViNCEd will not keep duplicate entries, i.e. repeated commands, in its
history.

However, by setting this flag, ViNCEd can be told to keep even these lines, regardless whether it is an repeated command or not.

1.311 Do not Place File Requester/DONTPLACEREQUESTER (Prefs Flag)

If this flag is set, ViNCEd does not attempt to place the TAB expansion file requester using the position information on the
seventh shell page of the SetVNC program. Instead, placement is left to the requester package.

This is mainly a compatibility kludge for the "reqchange" packet which interprets the requester coordinates of the ASL tags as a
position relative to the parent window instead using absolute coordinates.

1.312 History lines/BUFFERSIZE (Prefs Setting)

This is the size of the command history in lines, and integer value between 5 and 4096.

1.313 Upper display size/UPPERSIZE (Prefs Setting)

The number of lines kept in the upper review buffer that are scrolled out of the top edge of the window. If more lines are scrolled
into that window than the buffer can hold, the upmost line is deleted.

The contents of this buffer is not visible, but it holds lines that can be scrolled back into the window, for example using the
scroller gadgets .

This buffer must be between 64 and 4096 lines large.

VNC 95 / 188

1.314 Lower display size/LOWERSIZE (Prefs Setting)

The number of lines kept in the lower display buffer . This includes the lines kept in the window itself, and the lines scrolled
out of the lower edge of the window; this happens for example if the window contents is scrolled downwards to make the upper
review buffer visible.

If more lines are scrolled into this window, the bottommost line of this buffer is deleted.

This buffer size must lie between 128 and 4096 lines; it should be at least as large as the maximal possible window size in lines,
plus the size of the upper display buffer .

1.315 Cached directories/CACHESIZE (Prefs Setting)

This is the size of the TAB expansion cache, in directories. If the buffer overflows during an expansion, the latest directory visited
while expanding will be flushed.

The TAB expansion cache must be one to 256 directories large.

1.316 Vertical scroll threshold/SCROLLTIME (Prefs Setting)

This setting controls the delayed window refresh feature of ViNCEd, if enabled. If the graphics output, for example scrolling, is
too slow, ViNCEd does not attempt to output text immediately but keeps it in an incoming buffer.

This setting specifies what "too slow graphics output" means in detail. If text can’t get printed by a faster rate than this, given in
milliseconds (thousands of a second),is delayed and will be printed when there is enough time or at least after the rebuild delay .

Admissible values range from 5 (things are really in a hurry, MOVE ON!) to 500 (let’s take things easy). If you have a slow
processor (like the MC68000) or slow graphics (many colors), be a bit more tolerant and increase this value!

REMEMBER: "Slow" for a MC68060 is something different than for a MC68000!

1.317 Cursor Blink Speed/BLINKSPEED (Prefs Setting)

This selects the blink speed of the cursor, if this feature is enabled.

Values are given in milliseconds (thousands of a second) and range from 100 (very annoying flickering) to 1000 (boredom).

1.318 Rebuild Delay/REBUILDTIME (Prefs Setting)

After text output has been delayed by an enabled REBUILDDELAY flag, either because it is slower than the speed specified by
the vertical scroll threshold , or a horizontal scroll is necessary, this is the time in milliseconds (thousands of a second) ViNCEd
buffers all incoming text and suppresses output. The complete text is printed when the time entered in this field is over. The
timing of the scrollers on the edges of the window is controlled by this value, too, because scroller refresh is relatively slow.

Use values from 25 (no remarkable delay) to 1000 (quite a lot of time passes until refresh), but remember:

If you choose a large value here, a lot of text might get printed, and it might get scrolled out of the window before you see it!

Also, I advise you to select AT LEAST twice the value of the Vertical scroll threshold , or timing might get a mess: Delaying the
output using these settings won’t speed up anything considerably.

VNC 96 / 188

1.319 Double TAB time interval/DOUBLETABTIME (Prefs Setting)

The purpose of this setting is to fine-tune the interval between two consequeutive TAB (or rather Expand keyboard function
presses to pop open the double TAB requester. If more than the indicated amount of microseconds passed from the last TAB to
the current TAB press, ViNCEd will cycle thru the TAB expansion list manually instead; if, however, the delay between the two
expansions is smaller, the file requester will pop up if this feature is enabled .

The value zero has here a special meaning: If the delay interval is set to zero, ViNCEd will always pop up the requester and will
never allow cycling thru the TAB expansion list.

1.320 Monitor/MONITORID (Prefs Setting)

Selects the default monitor ID when ViNCEd opens its own screen, controlled by other fields of the window path , i.e. the
hardware details of the screen where the window should appear on.

The SetVNC program offers, too, a screen mode requester for convenience to setup this value, on the first window page .
However, Os 2.1 or better is required for this requester.

Hex notation using "0x" or "$" is valid here, or should be even preferred, but the upper sixteen bits (the "monitor ID" itself) are
ignored if you run ViNCEd on a 1.3 workbench.

1.321 Path Only Qualifier/PATHONLYQU (Prefs Setting)

This is the setup for the "path only" keyboard qualifier of the icon drop function of ViNCEd. If you hold the qualifiers given here,
ViNCEd will only insert the path of the object dropped on its window.

Note: The icon drop function will not distinguish between the left and right qualifier keys, e.g. left and right shift will work alike.
It will require the shell mode , too.

1.322 Name Only Qualifier/NAMEONLYQU (Prefs Setting)

This is the setup for the "name only" keyboard qualifier of the icon drop function of ViNCEd. If you hold the qualifiers given
here, ViNCEd will only insert the name of the object dropped on its window and won’t insert the complete path of the icon.

Note: The icon drop function will not distinguish between the left and right qualifier keys, e.g. left and right shift will work alike.
It will require the shell mode , too.

1.323 Cursor Color Setup/CURSOR COLOR (Prefs Setting)

ViNCEd can be told to use a cursor of a specific color instead just inverting the color on the screen. For that, load the SetVNC
program and go to the second window page . The "« Prev" and "Next »" buttons at the bottom of the window select the color
register to adjust, with the cursor color being the "previous" color of color register 0, i.e. click again on the "« Prev" gadget when
the text above says that color 0 is currently shown.

To activate the colored cursor, enable the "Load register" checkmark and select your preferred color with the sliders above.

The "Define ANSI mapping" gadget below has a strange meaning for the cursor color - since there is actually no ANSI rule what
the cursor color should be. If you activate this gadget as well, ViNCEd will allocate the color for the cursor with a higher priority
which is especially useful on screens offering few free pens.

In the preferences file the cursor color is specified with the keyword "CURSORCOLOR"; this keyword takes five arguments,
separated by commas, reflecting the state of the "Load register" and "Define ANSI mapping" gadgets, as well as the states of the
scrollers defining the color.

The first argument is either LOAD or NOLOAD, the second ANSI or NOANSI. These are the checkmark gadget states. The
remaining three arguments specify the cursor color red, green and blue components, respectively, as sixteen bit fractions in hex
notations; i.e. 0x0000 is minimal intensity, 0xffff is maximal intensity and 0x7fff is, for example, half intensity.

VNC 97 / 188

1.324 Color Setup/COLOR (Prefs Setting)

This defines one of the sixteen ViNCEd colors; the color to be defined can be selected with the "« Prev" and "Next »" gadgets on
the second window page of SetVNC , they decrease or increase the color index shown above on the page; the color "previous" to
color 0 is, by the way, the cursor color .

A color register can either specify a hardware register that should be loaded by ViNCEd with a specific color if ViNCEd opens
on its own screen, or defines the color of one of the ANSI registers if that feature is used.

To load a hardware register, check the "Load Register" gadget on the left side of the page; this will make sense only if ViNCEd
opens on its own screen because ViNCEd won’t load any hardware register just for a window.

Remember, however, that the first four pens are usually reserved for the system to draw the gadget and window artworks, hence
loading these registers might result in weird looking imaginary and probably the loss of the "3D style"; to compensate, select a
dark color for the register #1, and a light color for register #2.

Note: Even non-reserved colors will be used by ViNCEd, it just doesn’t load the hardware register on startup. However, WHICH
colors will appear in the non-ANSI coloring mode is then up to the system and on the system wide "Palette" defaults. You may
even load the hardware registers explicitly with the "CSI V" control sequence "on line", but the registers defined by the ViNCEd
preferences will be reloaded on a reset sequence Esc c.

To define an ANSI color that overrides the ANSI color defaults , check the second "Define ANSI mapping" gadget. ViNCEd will
then try to allocate a shared pen for rendering characters of the ANSI pen value defined; this will work even for windows opened
on a public screen, but makes obviously only sense if the "ANSI" coloring is enabled - either by defining this as a default , or by
specifying the "ANSI" argument as part of the window path .

However, if only few free pens are available on that screen, ViNCEd may fail to allocate all required pens and the colors may or
may not look like what you expect.

It makes sense to set both flags. ViNCEd tries in this case first to arbitrate the selected hardware register to load the desired color
for the ANSI pen of the same index. If this register is not available, ViNCEd tries to allocate a shared pen for the color, but with
a higher precision than with only the ANSI flag selected.

The CSI V sequence does, for example, reserve ANSI colors by setting both flags.

The preferences file defines the sixteen color registers using the "COLOR" keyword; the register loaded is implicit in the order
in which these keywords appear - the first "COLOR" keyword loads register #0, the next register #1, etc. Each keyword takes
five arguments, to be separated by commas. The first two arguments reflect the state of the two checkmark gadgets discussed
above, and are either LOAD/NOLOAD or ANSI/NOANSI respectively. The next three arguments represent the red, green and
blue components of the color to be loaded, as sixteen bit fractional values in hexadecimal notation, i.e. 0x0000 is the lowest
possible intensity, 0xffff is full intensity.

1.325 TAB_FILE_PRI (Prefs Setting)

The expansion priority for ordinary files of the first TAB expansion

keyboard function .

1.326 TAB_EXEC_PRI (Prefs Setting)

The expansion priority for executables of the first TAB expansion

keyboard function .

1.327 TAB_SCRIPT_PRI (Prefs Setting)

The expansion priority for script files of the first TAB expansion

keyboard function .

VNC 98 / 188

1.328 TAB_PATH_PRI (Prefs Setting)

The relative expansion priority for files in the command path of the first TAB expansion keyboard function .

1.329 TAB_COMMAND_PRI (Prefs Setting)

The relative expansion priority for files in the C: directory of the first TAB expansion keyboard function .

1.330 TAB_RESIDENT_PRI (Prefs Setting)

The expansion priority for files in the shell resident list of the first TAB expansion keyboard function .

1.331 TAB_INFO_PRI (Prefs Setting)

The expansion priority for icon (.info) files of the first TAB expansion keyboard function .

1.332 TAB_DEVICE_PRI (Prefs Setting)

The expansion priority for devices of the first TAB expansion

keyboard function .

1.333 TAB_ASSIGN_PRI (Prefs Setting)

The expansion priority for assigns of the first TAB expansion

keyboard function .

1.334 TAB_VOLUME_PRI (Prefs Setting)

The expansion priority for volume of the first TAB expansion

keyboard function .

1.335 TAB_DIRECTORY_PRI (Prefs Setting)

The expansion priority for directories of the first TAB expansion

keyboard function .

1.336 TAB_DOUBLEREQ (Prefs Setting)

The Double TAB Requester flag of the first TAB expansion

keyboard function .

VNC 99 / 188

1.337 TAB_FULLEXPAND (Prefs Setting)

The Expand Fully flag of the first TAB expansion

keyboard function .

1.338 TAB_VNCREQUESTER (Prefs Setting)

The Add ViNCEd matches flag of the first TAB expansion

keyboard function .

1.339 TAB_AMBIGREQ (Prefs Setting)

The Requester if ambiguous flag of the first TAB expansion

keyboard function .

1.340 TAB_PARTIALPAT (Prefs Setting)

The Do not match characters behind cursor flag of the first TAB expansion keyboard function

1.341 TAB_INTOCONSOLE (Prefs Setting)

The List expansions on the console flag of the first TAB expansion keyboard function

1.342 SRT_FILE_PRI (Prefs Setting)

The expansion priority for ordinary files of the second TAB expansion

keyboard function .

1.343 SRT_EXEC_PRI (Prefs Setting)

The expansion priority for executables of the second TAB expansion

keyboard function .

1.344 SRT_SCRIPT_PRI (Prefs Setting)

The expansion priority for script files of the second TAB expansion

keyboard function .

1.345 SRT_PATH_PRI (Prefs Setting)

The relative expansion priority for files in the command path of the second TAB expansion keyboard function .

VNC 100 / 188

1.346 SRT_COMMAND_PRI (Prefs Setting)

The relative expansion priority for files in the C: directory of the second TAB expansion keyboard function .

1.347 SRT_RESIDENT_PRI (Prefs Setting)

The expansion priority for files in the shell resident list of the second TAB expansion keyboard function .

1.348 SRT_INFO_PRI (Prefs Setting)

The expansion priority for icon (.info) files of the second TAB expansion keyboard function .

1.349 SRT_DEVICE_PRI (Prefs Setting)

The expansion priority for devices of the second TAB expansion

keyboard function .

1.350 SRT_ASSIGN_PRI (Prefs Setting)

The expansion priority for assigns of the second TAB expansion

keyboard function .

1.351 SRT_VOLUME_PRI (Prefs Setting)

The expansion priority for volume of the second TAB expansion

keyboard function .

1.352 SRT_DIRECTORY_PRI (Prefs Setting)

The expansion priority for directories of the second TAB expansion

keyboard function .

1.353 SRT_DOUBLEREQ (Prefs Setting)

The Double TAB Requester flag of the second TAB expansion

keyboard function .

1.354 SRT_FULLEXPAND (Prefs Setting)

The Expand Fully flag of the second TAB expansion

keyboard function .

VNC 101 / 188

1.355 SRT_VNCREQUESTER (Prefs Setting)

The Add ViNCEd matches flag of the second TAB expansion

keyboard function .

1.356 SRT_AMBIGREQ (Prefs Setting)

The Requester if ambiguous flag of the second TAB expansion

keyboard function .

1.357 SRT_PARTIALPAT (Prefs Setting)

The Do not match characters behind cursor flag of the second TAB expansion keyboard function

1.358 SRT_INTOCONSOLE (Prefs Setting)

The List expansions on the console flag of the second TAB expansion keyboard function

1.359 DEV_FILE_PRI (Prefs Setting)

The expansion priority for ordinary files of the third TAB expansion

keyboard function .

1.360 DEV_EXEC_PRI (Prefs Setting)

The expansion priority for executables of the third TAB expansion

keyboard function .

1.361 DEV_SCRIPT_PRI (Prefs Setting)

The expansion priority for script files of the third TAB expansion

keyboard function .

1.362 DEV_PATH_PRI (Prefs Setting)

The relative expansion priority for files in the command path of the third TAB expansion keyboard function .

1.363 DEV_COMMAND_PRI (Prefs Setting)

The relative expansion priority for files in the C: directory of the third TAB expansion keyboard function .

VNC 102 / 188

1.364 DEV_RESIDENT_PRI (Prefs Setting)

The expansion priority for files in the shell resident list of the third TAB expansion keyboard function .

1.365 DEV_INFO_PRI (Prefs Setting)

The expansion priority for icon (.info) files of the third TAB expansion keyboard function .

1.366 DEV_DEVICE_PRI (Prefs Setting)

The expansion priority for devices of the third TAB expansion

keyboard function .

1.367 DEV_ASSIGN_PRI (Prefs Setting)

The expansion priority for assigns of the third TAB expansion

keyboard function .

1.368 DEV_VOLUME_PRI (Prefs Setting)

The expansion priority for volume of the third TAB expansion

keyboard function .

1.369 DEV_DIRECTORY_PRI (Prefs Setting)

The expansion priority for directories of the third TAB expansion

keyboard function .

1.370 DEV_DOUBLEREQ (Prefs Setting)

The Double TAB Requester flag of the third TAB expansion

keyboard function .

1.371 DEV_FULLEXPAND (Prefs Setting)

The Expand Fully flag of the third TAB expansion

keyboard function .

1.372 DEV_VNCREQUESTER (Prefs Setting)

The Add ViNCEd matches flag of the third TAB expansion

keyboard function .

VNC 103 / 188

1.373 DEV_AMBIGREQ (Prefs Setting)

The Requester if ambiguous flag of the third TAB expansion

keyboard function .

1.374 DEV_PARTIALPAT (Prefs Setting)

The Do not match characters behind cursor flag of the third TAB expansion keyboard function

1.375 DEV_INTOCONSOLE (Prefs Setting)

The List expansions on the console flag of the third TAB expansion keyboard function

1.376 DIR_FILE_PRI (Prefs Setting)

The expansion priority for ordinary files of the fourth TAB expansion

keyboard function .

1.377 DIR_EXEC_PRI (Prefs Setting)

The expansion priority for executables of the fourth TAB expansion

keyboard function .

1.378 DIR_SCRIPT_PRI (Prefs Setting)

The expansion priority for script files of the fourth TAB expansion

keyboard function .

1.379 DIR_PATH_PRI (Prefs Setting)

The relative expansion priority for files in the command path of the fourth TAB expansion keyboard function .

1.380 DIR_COMMAND_PRI (Prefs Setting)

The relative expansion priority for files in the C: directory of the fourth TAB expansion keyboard function .

1.381 DIR_RESIDENT_PRI (Prefs Setting)

The expansion priority for files in the shell resident list of the fourth TAB expansion keyboard function .

VNC 104 / 188

1.382 DIR_INFO_PRI (Prefs Setting)

The expansion priority for icon (.info) files of the fourth TAB expansion keyboard function .

1.383 DIR_DEVICE_PRI (Prefs Setting)

The expansion priority for devices of the fourth TAB expansion

keyboard function .

1.384 DIR_ASSIGN_PRI (Prefs Setting)

The expansion priority for assigns of the fourth TAB expansion

keyboard function .

1.385 DIR_VOLUME_PRI (Prefs Setting)

The expansion priority for volume of the fourth TAB expansion

keyboard function .

1.386 DIR_DIRECTORY_PRI (Prefs Setting)

The expansion priority for directories of the fourth TAB expansion

keyboard function .

1.387 DIR_DOUBLEREQ (Prefs Setting)

The Double TAB Requester flag of the fourth TAB expansion

keyboard function .

1.388 DIR_FULLEXPAND (Prefs Setting)

The Expand Fully flag of the fourth TAB expansion

keyboard function .

1.389 DIR_VNCREQUESTER (Prefs Setting)

The Add ViNCEd matches flag of the fourth TAB expansion

keyboard function .

VNC 105 / 188

1.390 DIR_AMBIGREQ (Prefs Setting)

The Requester if ambiguous flag of the fourth TAB expansion

keyboard function .

1.391 DIR_PARTIALPAT (Prefs Setting)

The Do not match characters behind cursor flag of the fourth TAB expansion keyboard function

1.392 DIR_INTOCONSOLE (Prefs Setting)

The List expansions on the console flag of the fourth TAB expansion keyboard function

1.393 INF_FILE_PRI (Prefs Setting)

The expansion priority for ordinary files of the fifth TAB expansion

keyboard function .

1.394 INF_EXEC_PRI (Prefs Setting)

The expansion priority for executables of the fifth TAB expansion

keyboard function .

1.395 INF_SCRIPT_PRI (Prefs Setting)

The expansion priority for script files of the fifth TAB expansion

keyboard function .

1.396 INF_PATH_PRI (Prefs Setting)

The relative expansion priority for files in the command path of the fifth TAB expansion keyboard function .

1.397 INF_COMMAND_PRI (Prefs Setting)

The relative expansion priority for files in the C: directory of the fifth TAB expansion keyboard function .

1.398 INF_RESIDENT_PRI (Prefs Setting)

The expansion priority for files in the shell resident list of the fifth TAB expansion keyboard function .

VNC 106 / 188

1.399 INF_INFO_PRI (Prefs Setting)

The expansion priority for icon (.info) files of the fifth TAB expansion keyboard function .

1.400 INF_DEVICE_PRI (Prefs Setting)

The expansion priority for devices of the fifth TAB expansion

keyboard function .

1.401 INF_ASSIGN_PRI (Prefs Setting)

The expansion priority for assigns of the fifth TAB expansion

keyboard function .

1.402 INF_VOLUME_PRI (Prefs Setting)

The expansion priority for volume of the fifth TAB expansion

keyboard function .

1.403 INF_DIRECTORY_PRI (Prefs Setting)

The expansion priority for directories of the fifth TAB expansion

keyboard function .

1.404 INF_DOUBLEREQ (Prefs Setting)

The Double TAB Requester flag of the fifth TAB expansion

keyboard function .

1.405 INF_FULLEXPAND (Prefs Setting)

The Expand Fully flag of the fifth TAB expansion

keyboard function .

1.406 INF_VNCREQUESTER (Prefs Setting)

The Add ViNCEd matches flag of the fifth TAB expansion

keyboard function .

VNC 107 / 188

1.407 INF_AMBIGREQ (Prefs Setting)

The Requester if ambiguous flag of the fifth TAB expansion

keyboard function .

1.408 INF_PARTIALPAT (Prefs Setting)

The Do not match characters behind cursor flag of the fifth TAB expansion keyboard function

1.409 INF_INTOCONSOLE (Prefs Setting)

The List expansions on the console flag of the fifth TAB expansion keyboard function

1.410 ALT_FILE_PRI (Prefs Setting)

The expansion priority for ordinary files of the sixth TAB expansion

keyboard function .

1.411 ALT_EXEC_PRI (Prefs Setting)

The expansion priority for executables of the sixth TAB expansion

keyboard function .

1.412 ALT_SCRIPT_PRI (Prefs Setting)

The expansion priority for script files of the sixth TAB expansion

keyboard function .

1.413 ALT_PATH_PRI (Prefs Setting)

The relative expansion priority for files in the command path of the sixth TAB expansion keyboard function .

1.414 ALT_COMMAND_PRI (Prefs Setting)

The relative expansion priority for files in the C: directory of the sixth TAB expansion keyboard function .

1.415 ALT_RESIDENT_PRI (Prefs Setting)

The expansion priority for files in the shell resident list of the sixth TAB expansion keyboard function .

VNC 108 / 188

1.416 ALT_INFO_PRI (Prefs Setting)

The expansion priority for icon (.info) files of the sixth TAB expansion keyboard function .

1.417 ALT_DEVICE_PRI (Prefs Setting)

The expansion priority for devices of the sixth TAB expansion

keyboard function .

1.418 ALT_ASSIGN_PRI (Prefs Setting)

The expansion priority for assigns of the sixth TAB expansion

keyboard function .

1.419 ALT_VOLUME_PRI (Prefs Setting)

The expansion priority for volume of the sixth TAB expansion

keyboard function .

1.420 ALT_DIRECTORY_PRI (Prefs Setting)

The expansion priority for directories of the sixth TAB expansion

keyboard function .

1.421 ALT_DOUBLEREQ (Prefs Setting)

The Double TAB Requester flag of the sixth TAB expansion

keyboard function .

1.422 ALT_FULLEXPAND (Prefs Setting)

The Expand Fully flag of the sixth TAB expansion

keyboard function .

1.423 ALT_VNCREQUESTER (Prefs Setting)

The Add ViNCEd matches flag of the sixth TAB expansion

keyboard function .

VNC 109 / 188

1.424 ALT_AMBIGREQ (Prefs Setting)

The Requester if ambiguous flag of the sixth TAB expansion

keyboard function .

1.425 ALT_PARTIALPAT (Prefs Setting)

The Do not match characters behind cursor flag of the sixth TAB expansion keyboard function

1.426 ALT_INTOCONSOLE (Prefs Setting)

The List expansions on the console flag of the sixth TAB expansion keyboard function

1.427 Left Edge/REQ_LEFTEDGE (Prefs Setting)

This defines the position of the "left edge" of the TAB expansion requester relative to the left edge of the window; it must be an
integer between -2048 and 2048 (let’s hope video hardware technology doesn’t evolve too quickly...).

This setting is only used if the Do not place file requester is NOT set; the only reason why this can be turned off is to work around
a rather strange interpretation of requester coordinates of the reqtools library.

1.428 Top Edge/REQ_TOPEDGE (Prefs Setting)

This defines the position of the "top edge" of the TAB expansion requester relative to the top edge of the ViNCEd window.

This setting is only used if the Do not place file requester is NOT set; the only reason why this can be turned off is to work around
a rather strange interpretation of requester coordinates of the reqtools library.

1.429 Width/REQ_WIDTH (Prefs Setting)

This defines the width of the TAB expansion requester in pixels; it must be an integer between 0 and 2048.

If the width is zero, or "too small", ViNCEd will pick default values here.

1.430 Height/REQ_HEIGHT (Prefs Setting)

This defines the height of the TAB expansion requester in pixels; it must be an integer between 0 and 2048.

If the height is zero, or "too small", ViNCEd will pick default values here.

1.431 MACRO (Prefs Setting)

This keyword defines the body text of a macro. The macros are just assigned by order, the first MACRO keyword defines the first
macro, and so on, up to ten macro definitions are allowed.

The macro body, hence the argument of this keyword, is just a plain string, including possibly special control sequences to be
inserted by the macro.

VNC 110 / 188

Note especially that the semicolon ";" may not be used as a comment introducer on these lines, it will be part of the macro body
if specified. Note, too, that leading and trailing spaces of the macro body will be removed, too. To avoid stripping of spaces,
include the macro body in double quotes.

For details, check the macros section .

1.432 SYSTEMMACRO (Prefs Setting)

These macros define the five internal system macros ViNCEd uses.

The macro body, hence the argument of this keyword, is just a plain string, including possibly special control sequences to be
inserted by the macro.

Note especially that the semicolon ";" may not be used as a comment introducer on these lines, it will be part of the macro body
if specified. Note, too, that leading and trailing spaces of the macro body will be removed, too. To avoid stripping of spaces,
include the macro body in double quotes.

For details, check the macros section .

The meaning of the system macros and the times of invocation are:

First system macro: Quit shell

This defines the command that is used to close a shell window, if any. It must be enabled with the Call macro to close window
flag. If this flag is disabled, an "End Of File" condition will be generated. It should call "EndCLI", or another script that shuts
down the shell.

This macro is not used if a program is running in the window. ViNCEd uses the Quit program macro in that case.

Second system macro: New window

This is the macro invoked if the "New Window" item of the project menu gets selected. This macro should open another ViNCEd
window.

Third system macro: Get help

This macro gets invoked if you select "Help..." from the project menu . It runs by default the SetVNC program to load and
display this guide.

Fourth system macro: Edit settings

Invoked if you select the "Settings..." item of the project menu . This runs again SetVNC , but without arguments.

Fifth system macro: Run editor

This macro is not yet used. It is reserved to turn the ViNCEd window into an editor and should be invoked if an "Edit..." item in
the project menu gets selected. This is, however, not yet implemented.

1.433 Fork new shell/RUN_NEW_SHELL (Prefs Setting)

This is strictly speaking not a macro, at least it is used quite differently. The contents of this macro do not get inserted into the
keyboard buffer, the macro body is, instead, executed directly as a command.

This command is run whenever the Ctrl-Z keyboard function is requested to fork a new shell in the current window, and no free
shell is available. It should run a new shell by using the "NewShell" command, in the same window.

Because this macro is used in a different way, the interpretation of the control sequences is slightly different, even though they
are passed thru the same parser as for macros .

For the ordinary macros, "\r" is the press of the Return key, but since this string is passed directly to the operating system for
execution, a "\n" must be used to mark the end of this command and to start the execution.

It should be set to "NewCLI WINDOW=*\n" for almost all reasons, except when a custom shell should be run instead.

If leading or trailing spaces are desired - for whatever reasons - the double quotes are required since they avoid "trimming" of
the command; they are superfluous in all other cases.

VNC 111 / 188

1.434 Icon Path/ICON_PATH (Prefs Setting)

This is a string that contains the complete path of an icon - a ".info file" - that should be used as "iconification" for a ViNCEd
window. If this path is left empty, ViNCEd will present its default icon.

A ".info" MUST NOT be appended, that’s done by ViNCEd automatically.

Note (for nick-pickers): Due to the way how ViNCEd parses the prefs file, leading or trailing spaces are not allowed in this file
name. Who wants to do that anyways? (-;

1.435 Icon Title/ICON_TITLE (Prefs Setting)

This string is used as underline title of the icon presented for an iconified ViNCEd window. If this string is empty, no the window
title will be used instead.

Exactly like the window title, this string might contain control characters using the percent sign "%" which are expanded by
ViNCEd at the time the window gets iconified.

Unlike the window title, however, the current Os does not allow to adapt the icon title in case the contents of the control characters
change.

This setting might be overridden by a program sending the "ESC] 1;title BEL" escape sequence .

1.436 Quit Program/QUIT_PROGRAM (Prefs Setting)

This defines a system macro that is invoked whenever a ViNCEd window should be closed with an active and running program
in it. It replaces the Quit shell in that case.

However, ViNCEd must be told to use macros to close the window - which is done by the Call macro to close window flag. If
this flag is not set, ViNCEd will ignore this macro and will just send an "End of File" condition. This will happen, too, if this
macro is left blank.

1.437 Font/DEFAULT_FONT (Prefs Setting)

Here you define the default font for ViNCEd windows - only for the windows contents, not for the menu and the screen title -
which is used if no font is specified in the window path .

The font specification must be given by the base name of the font without ".font", i.e. "topaz", a dot, and the requested size.
Hence, to use the topaz font, size 9 as default font, specify

topaz.9

here.

This font MUST be a fixed-width (non-proportional) font, or the graphics output will look messy.

It might be somewhat simpler to use the font requester of the SetVNC program on the first window page , just press the "Font"
gadget on that page.

Note: The XEN font is NOT a fixed width font. Try the "topaz6.8" of the author included in the distribution.

1.438 Default path/DEFAULT_PATH (Prefs Setting)

This string is used as window path if no path was specified when opening a ViNCEd window, i.e. just the blank handler name
like "VNC:" was used. The handler name itself MUST NOT be specified in this string.

Except that, it is interpreted and handled just in the same way as a path specified in the traditional way.

Note: Due to a "feature" of the 1.3 Mount command, this is disabled for older Os releases. Opening a window just with the
handler name will (and has to!) fail for these releases.

VNC 112 / 188

1.439 BUTTONMACRO (Prefs Setting)

This keyword defines the macro body for the ViNCEd title bar buttons. Each button definition must consist of a pair of a
BUTTONMACRO and a following BUTTONTITLE keyword; up to ten buttons may be defined, they will be put into the
window title bar, from left to right, as many buttons as room is available.

1.440 BUTTONTITLE (Prefs Setting)

This keyword defines the title of a ViNCEd button , to appear in the ViNCEd title bar. This definition MUST follow a BUTTON-
MACRO keyword which has already setup the body of the macro to be defined; up to ten buttons can be defined.

They will be installed into the window title in their order of appearance, from left to right, as many as possible.

1.441 File priority (TAB Setting)

The priority assigned to "ordinary files". These are files that have neither the "e" bit nor the "s" bit set, i.e. are neither scripts nor
executables. Since the "e" bit is set by default in the Amiga system, very few files will actually match this category.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.442 Executables priority (TAB Setting)

The priority assigned to files with the "e" (executable) bit set. Note that most Amiga files fall into this category and not into Files
since this flag is set by default by the AmigaOs.

If both the "s" and the "e" bit is set, the file is a script , not an executable.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.443 Scripts priority (TAB Setting)

The priority assigned to files with the "s" (script) bit set, hence shell scripts, and mostly ARexx interpreter files. If both, the "s"
and the "e" bit are set, the file is supposed to be a script, not an executable .

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.444 Path priority, relative (TAB Setting)

This is a relative priority added to the priority to all files found in the command search path of the shell, except for the current
directory and the C: assign. ViNCEd will search in the path only if you’re expanding the first argument of a shell line - namely,
the command. Neither directories nor icons found in the path match. If this is set to -128, the command search path is not
searched at all, and if the overall priority of a file falls below -128, it is not added to the expansion list.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

VNC 113 / 188

1.445 Command (C:) priority, relative (TAB Setting)

The relative priority of files found in the C: assign. This priority is added as a modifier to the priority of objects found in the C:
directory if the first argument of a command line is expanded. If a different argument gets expanded, the C: directory is excluded
automatically. Additionally, neither icons nor directories in C: match anything, they get just ignored. If you don’t want ViNCEd
to search C:, even for the first argument, then set this to -128. If the overall priority of a file falls below -128, it is not added to
the expansion list.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.446 Residents priority (TAB Setting)

The priority for commands found in the shell internal list of resident commands. This list is only searched if the first argument
of a command line is to be expanded and left alone else. If this priority is set to -128, the resident list is never searched.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.447 Icon (.info) priority (TAB Setting)

The priority of the ".info" files that contain the workbench icons. To get rid of them completely, assign them a priority of -128.

Note, too, that icons will not be found in any other directory than the current directory, even if the first argument gets expanded,
and even if the C: directory and the path is included in the search path.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.448 Devices priority (TAB Setting)

The priority of DOS device drivers such as "df0:", "ser:" or "VNC:". If you don’t want to see device drivers in your expansion
list, set this to -128.

Note that this DOES NOT include assigns or volumes .

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.449 Assigns priority (TAB Setting)

The priority of assigns such as "DEVS:" or "LIBS:". If you don’t want to see assigns in your expansion list, set this to -128.

Note that this DOES NOT include devices or volumes .

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

VNC 114 / 188

1.450 Volumes priority (TAB Setting)

The priority of volume names such as "Work:" or "Empty:", e.g. names of disks, but not the name of the drive. If you don’t want
to see volume names in your expansion list, set this to -128.

Note that this DOES NOT include assigns or devices .

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.451 Directories priority (TAB Setting)

The priority assigned to ordinary directories. If you don’t want to see directories in your TAB expansion, set this to -128.
However, directories will still match if the search pattern ends explicitly with a forwards slash "/", regardless of this priority.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this priority?

1.452 Double TAB Requester (TAB Setting)

If this item is checked, the Double TAB requester is enabled. This requester is presented whenever you press TAB a second time
after completion of the directory search, within a selectable time. This time interval is under control of the timinig page . As a
special case, if this time interval is set to zero, the requester will always pop up after the second TAB.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this flag?

1.453 First TAB expands fully (TAB Setting)

If checked, ViNCEd will not try to present a refinement in case more than one matching file was found on a TAB expansion.
Instead, the first match found will be inserted immediately.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this flag?

1.454 Add ViNCEd matches to the requester (TAB Setting)

If disabled, a standard file requester showing the current directory will be used. If enabled, only matching files will be shown
in this requester, but INCLUDING matches from the resident list, the device list and even matches found in other directories, if
available.

This requester might look a bit strange sometimes since it may contain double entries. This is, however, normal if, for example,
a file was found twice in two different directories, or was found in the command directory and in the list of resident commands.
You should be alarmed if that happens because it is not quite clear which copy of the file will be executed by the shell.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this flag?

VNC 115 / 188

1.455 Requester if expansion is ambiguous (TAB Setting)

If this item is enabled, ViNCEd will open its file requester in case more than one possible match for your TAB expansion template
was found.

To the TAB expansion tutorial To the TAB expansion settings overview

Where to adjust this flag?

1.456 Do not match characters behind cursor (TAB Setting)

Controls how ViNCEd should construct its TAB match pattern. If this flag is turned off, which is the default, ViNCEd will look
for possible expansions that start with the characters in front of the cursor position and that end with the characters behind and
under the cursor position. Hence, possible expansions can be generated by "typing at the cursor position".

If this flag is enabled, ViNCEd uses a different mechanism. The search pattern is truncated at the cursor position, hence characters
behind and under the cursor do not contribute by restricting the search further. If a match has been found, these additional
characters are either turned into an argument of the match by separating them by a blank space from the former search pattern,
or are concatenated to the match if the match is a directory or a device.

1.457 List expansions on the console (TAB Setting)

This flag will disable any kind of requester and will instead print the possible matches of a TAB expansion in the form of a list
on the console. As for the requester, this list is sorted by the priority of the matches found. Top priority elements go first.

1.458 05 ENQ

07 :(C) ENQ (enquire)

Returns the terminal type as string to the receiver. This is always "ViNCEd".

1.459 07 BEL

07 :(C) BEL (bell)

Flashes the screen.

1.460 08 BS

08 :(C) BS (backspace)

Moves the cursor backwards. Usually non-destructive, but this can be changed with CSI >?24h .

1.461 09 HT

09 :(C) HT (horizontal tabulator)

Moves the cursor to the next tabulator stop, can be toggled to inserting spaces up to the next TAB stop with CSI 4h .

VNC 116 / 188

1.462 0A LF

0A :(C) LF (line feed)

Move the cursor to the next line. Scrolling can be disabled with CSI >1h .

1.463 0B VT

0B :(C) VT (vertical tabulator)

Move the cursor upwards one line.

1.464 0C FF

0C :(C) FF (form feed)

Clear screen and set cursor to origin. If in the commodore mode , and the cursor is not in the border, clear only the scroll region.

1.465 0D CR

0D :(C) CR (carriage return)

Move the cursor to the start of the current line.

1.466 0E SI

0E :(C) SI (shift in)

Set implicitly bit 7 of all printed characters.

1.467 0F SO

0F :(C) SO (shift out)

Revert the result of SI and leave bit 7 of the printed characters alone.

1.468 1B ESC

1B :(C) ESC (escape)

Escape sequence introducer, see List of ESC sequence .

1.469 7F DEL

7F :(C)(V) DEL (delete)

A checkered box (a smear character), but can be turned into the forward deleting control character by CSI >?24h .

VNC 117 / 188

1.470 84 IND

84 :(C) IND (index)

Works like LF , but does not place cursor at start of line.

1.471 85 NL

85 :(C) NL (new line)

Equivalent to LF followed by CR .

1.472 88 HST

88 :(C) HST (horizontal tabulator set)

Create a tabulator stop at the current cursor position.

1.473 8D RI

8D :(C) RI (reverse index)

Move the cursor one line upwards, identical to VT .

1.474 8E SS2

8E :(2) SS2 (shift sequence 2)

Move to international character table G2. Unsupported

Standard LATIN-1-ANSI has only the character sets G0 and G1, and ViNCEd does only support eight bit characters of G0 and
G1.

1.475 8F SS3

8F :(2) SS3 (shift sequence 3)

Move to international character table G3. Unsupported

Standard LATIN-1-ANSI has only the character sets G0 and G1, and ViNCEd does only support eight bit characters of G0 and
G1.

1.476 90 DCS

90 :(2) DCS (download character set)

Start downloading a character set. Unsupported

ViNCEd does not support the fixed character matrix of VT-xxx terminals and especially no download-able character sets.

The control sequence is recognized, and its contents is ignored. DCS is terminated by ST .

VNC 118 / 188

1.477 96 SPA

96 :(2) SPA (start guarded area)

Mark the beginning of a guarded area. Unsupported

1.478 97 EPA

97 :(2) EPA (end guarded area)

Mark the end of a guarded area. Unsupported

1.479 98 SOS

98 :(2) SOS (start of string)

Terminated by ST , otherwise unsupported.

1.480 9A DECID

9A :(D) DECID (DEC terminal ID)

This is the eight bit equivalent of ESC Z which is an obsolete form of CSI c , VT-52 status request. Replied by "CSI ?60c" ("this
is a VT-220 terminal")

1.481 9B CSI

9B :(C) CSI (control sequence introducer)

Often used below for more complex sequences, see list of CSI sequences .

This sequence has the seven bit equivalent ESC [.

1.482 9C ST

9C :(C) ST (string terminator)

Equivalent to ESC \ , this terminates a OSC sequence.

1.483 9D OSC

9D :(C) OSC (operating system controls)

Another type of control sequence that takes full strings as argument. See list of OSC sequences . Terminated by ST (VT-xxx) or
BEL (XTerm) or LF (ViNCEd). ViNCEd accepts all all three standards.

This sequence has the seven bit equivalent ESC] .

VNC 119 / 188

1.484 9E PM

9E :(2) PM

Unsupported.

Privacy message. The control sequence is recognized, and its contents is ignored. PM is terminated by ST .

1.485 9F APC

9F :(2) APC (application program command)

Unsupported

The control sequence is recognized, and its contents is ignored. APC is terminated by ST .

1.486 ESC 7

ESC 7 :(D)

Safeback cursor, colors and style.

1.487 ESC 8

ESC 8 :(D)

Restore colors, style and cursor position.

1.488 ESC 9

ESC 9 :(V)

Restore colors, style, cursor and background color.

1.489 ESC D

ESC D :(C)

The seven bit equivalent of IND , moves the cursor down one line.

1.490 ESC E

ESC E :(C)

The seven bit equivalent of NL , equivalent to a line feed LF and CR at once.

1.491 ESC F

ESC F :(D)

Cursor to lower left corner of screen. This is mainly intended as a work around for some HP terminals and therefore unsupported.

VNC 120 / 188

1.492 ESC H

ESC H :(C)

The seven bit equivalent of HST , sets a tabulator stop at the current cursor position.

1.493 ESC M

ESC M :(C)

The seven bit equivalent of RI , moves the cursor up one line.

1.494 ESC N

ESC N :(2)

The seven bit equivalent of SS2 . Unsupported

1.495 ESC O

ESC O :(2)

The seven bit equivalent of SS3 . Unsupported

1.496 ESC P

ESC P :(2)

The seven bit equivalent of DCS , the downloadable character set introducer. Terminated by ST . Unsupported

1.497 ESC V

ESC V :(2)

Seven bit equivalent of SPA . Unsupported

1.498 ESC W

ESC W :(2)

Seven bit equivalent of EPA . Unsupported

1.499 ESC X

ESC X :(2)

Seven bit equivalent of SOS . Unsupported

VNC 121 / 188

1.500 ESC Z

ESC Z :(D)

Obsolete form of CSI c , VT-52 status request. Replied by "CSI ?60c" ("this is a VT-220 terminal")

1.501 ESC c

ESC c :(C)

Global reset, clear (lower) screen. Reset colors and rendering styles to to default, resets TAB stops, select character table G0 and
much more.

1.502 ESC l

ESC l :(2)

Memory lock. Lock all lines above the cursor. Not implemented, therefore unsupported.

1.503 ESC m

ESC m :(2)

Memory unlock. Reverts ESC l . Not implemented, therefore unsupported.

1.504 ESC _

ESC _ :(2)

The seven bit equivalent of APC , the application program command character. Terminated by ST . Unsupported

1.505 ESC ˆ

ESC ˆ :(2)

The seven bit equivalent of PM , the privacy message introducer. Terminated by ST . Unsupported

1.506 ESC [

ESC [:(C)

The seven bit equivalent of CSI , the control sequence introducer.

1.507 ESC \

ESC \ :(2)

The seven bit equivalent of ST , the string terminator for OSC sequences .

VNC 122 / 188

1.508 ESC]

ESC] :(2)

The seven bit equivalent of OSC , the operating system controls character. Used for introducing the "XTerm" sequences and
terminated by either BEL , LF or ST .

1.509 ESC # 8

ESC # 8 :(D)

DEC screen alignment test, fills window with E’s. Used for testing but not particular useful otherwise.

1.510 ESC SPC F

ESC SPC F :(2)

Switch to seven bit mode. ViNCEd will output seven bit control sequences now and will ignore the MSB.

1.511 ESC SPC G

ESC SPC G :(2)

Switch back to eight bit mode. ViNCEd will sent 8 bit control characters. This is the default.

1.512 ESC SPC L

ESC SPC L :(2)

Set ANSI conformance level 1 (vt100, 7-bit controls). This is currently ignored by ViNCEd except that it enters the seven bit
compatibility mode.

1.513 ESC SPC M

ESC SPC M :(2)

Set ANSI conformance level 2 (vt200). This is currently ignored by ViNCEd except that it enters the eight bit mode.

1.514 ESC SPC N

ESC SPC N :(2)

Set ANSI conformance level 3 (vt300). This is currently ignored by ViNCEd except that it enters the eight bit mode.

1.515 ESC @

ESC @ :(2)

Insert the next control character directly. This sequence is not understood by the ViNCEd terminal emulator, but only by the CSI
parser of the SetVNC buffer IO module , don’t send this to ViNCEd itself.

VNC 123 / 188

1.516 ESC # 3

ESC # 3 :(D)

Upper half of double height and double width characters. The font is left to the system and not scalable, therefore unsupported.

1.517 ESC # 4

ESC # 4 :(D)

Lower half of double height and double width characters. The font is left to the system and not scalable, therefore unsupported.

1.518 ESC # 6

ESC # 6 :(D)

Double width characters in the current line. The font is left to the system and not scalable, therefore unsupported.

1.519 ESC (

ESC (:(2)

Select G0 character set with next character. As for ViNCEd, the G0 set is fixed to plain ASCII and part of the locale and the font,
therefore UNSUPPORTED.

1.520 ESC)

ESC) :(2)

Select G1 character set with next character. As for ViNCEd, the G1 set is fixed to ECMA 94 Latin 1 and part of the locale and
the font, therefore unsupported.

1.521 ESC *

ESC * :(2)

Select G2 character set with next character. As ViNCEd and the Amiga do not support the G2 character set, this is unsupported.

1.522 ESC +

ESC + :(2)

Select G3 character set with next character. As ViNCEd and the Amiga do not support the G3 character set, this is unsupported.

1.523 ESC |

ESC | :(2)

Select G3 set as GR (LS3R). unsupported.

VNC 124 / 188

1.524 ESC }

ESC } :(2)

Select G2 set as GR (LS2R). unsupported.

1.525 ESC ~

ESC ~ :(2)

Select G1 set as GR (LS1R) unsupported.

1.526 ESC n

ESC n :(2)

Permanent shift to the G2 character set. There is no G2 character set in the Amiga, hence unsupported.

1.527 ESC o

ESC o :(2)

Permanent shift to the G3 character set. There is no G3 character set in the Amiga, hence unsupported.

1.528 ESC <

ESC < :(2)

Enter VT-52 emulation mode. ViNCEd doesn’t implement a VT-52 emulation, therefore unsupported.

1.529 ESC =

ESC = :(2)

Keypad mode enable. ViNCEd doesn’t implement the keypad mode, therefore unsupported.

1.530 ESC] 0;strg ST

ESC] 0;strg ST :(X)

Set the icon name and window title to the provided string.

1.531 ESC] 1;strg ST

ESC] 1;strg ST :(X)

Set the icon name to the provided string.

VNC 125 / 188

1.532 ESC] 2;strg ST

ESC] 2;strg ST :(X)

Set the window title alone to the provided string.

Note: If the icon title is empty, ViNCEd will use the window title as icon title as well.

1.533 ESC] 3;strg ST

ESC] 3;strg ST :(V)

Set screen title. To make this working, the window must have been opened with a screen title, i.e. an STITLE option. Set the
window title alone to the provided string.

This sequence is incompatible to XTerm which expects here to set an X-property on the top-level window, something that could
be compared to the screen of the Amiga.

1.534 ESC] 4;strg ST

ESC] 4;strg ST :(V)

For ViNCEd, this is identical to ESC] 0;strg ST .

This sequence is incompatible to XTerm which expects here to set a color to a given named color.

1.535 ESC] 10;strg ST

ESC] 10;strg ST :(X)

Change color names starting with text foreground to the color "strg", given as a list of one or more color names or RGB specifi-
cations, separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.536 ESC] 11;strg ST

ESC] 11;strg ST :(X)

Change color names starting with text background to the color "strg", given as a list of one or more color names or RGB
specifications, separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.537 ESC] 12;strg ST

ESC] 12;strg ST :(X)

Change color names starting with text cursor to the color "strg", given as a list of one or more color names or RGB specifications,
separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

VNC 126 / 188

1.538 ESC] 13;strg ST

ESC] 13;strg ST :(X)

Change color names starting with mouse foreground to the color "strg", given as a list of one or more color names or RGB
specifications, separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.539 ESC] 14;strg ST

ESC] 14;strg ST :(X)

Change color names starting with mouse background to the color "strg", given as a list of one or more color names or RGB
specifications, separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.540 ESC] 15;strg ST

ESC] 10;strg ST :(X)

Change color names starting with Tek foreground to the color "strg", given as a list of one or more color names or RGB specifi-
cations, separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.541 ESC] 16;strg ST

ESC] 16;strg ST :(X)

Change color names starting with Tek background to the color "strg", given as a list of one or more color names or RGB
specifications, separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.542 ESC] 17;strg ST

ESC] 17;strg ST :(X)

Change color names starting with highlight to the color "strg", given as a list of one or more color names or RGB specifications,
separated by semicolon, up to eight.

Unsupported, but something similar is available thru CSI V .

1.543 ESC] 41;strg ST

ESC] 41;strg ST :(V)

Set user inputs. This command inserts its string argument into the keyboard buffer as if it was typed by the user. Should be used
with great care since this might easely lead to confusions. Might not be activated in all console modes to avoid security holes.

VNC 127 / 188

1.544 ESC] 42;strg ST

ESC] 42;strg ST :(V)

Set keymap. ViNCEd checks either the keymap.resource or "DEVS:Keymaps" for the desired keymap. Hence the command

echo "*E]42;d"

selects the german keyboard.

1.545 ESC] 46;strg ST

ESC] 46;strg ST :(X)

Change log file to "strg".

Unsupported, due to limitations set by the dos library ViNCEd can’t support log files currently. Besides, I don’t like Big Brother.

1.546 ESC] 50;strg ST

ESC] 50;strg ST :(V)

Change the window font. The font is given as "name.size", the appendix "font" must be dropped. As an example,

echo "E*]50;topaz.8"

selects the topaz font in size eight.

This is not quite compatible to the XTerm which expects fonts in different formats not suitable for the Amiga.

1.547 CSI n @

CSI n @ :(2)

Insert n spaces at the cursor position.

1.548 CSI n A

CSI n A :(C)

Move cursor n lines up. In the VT-220 mode , you’re able to leave the scrolling region with this command, in the Commodore
mode this scrolls if the cursor reaches the border of the scroll region.

1.549 CSI n B

CSI n B :(C)

Move cursor n lines down. In the VT-220 mode , you’re able to leave the scrolling region with this command, in the Commodore
mode this scrolls if the cursor reaches the border of the scroll region.

1.550 CSI n C

CSI n C :(C)

Move cursor n characters forwards. Unlike formulated in the VT-220 standard, n may be zero or negative and moves in that case
the cursor in the opposite direction or doesn’t move it at all. This feature is not available in VT-220 mode .

VNC 128 / 188

1.551 CSI n D

CSI n D :(C)

Move cursor n characters backwards. Unlike formulated in the VT-220 standard, n may be zero or negative and moves in that
case the cursor in the opposite direction or doesn’t move it at all. This feature is not available in VT-220 mode .

1.552 CSI n E

CSI n E :(C)

Move cursor n lines down, set cursor to the leftmost position. n can be zero or negative in the Commodore mode .

1.553 CSI n F

CSI n F :(2)

Move cursor n lines up, set cursor to the leftmost position. n can be zero or negative in the Commodore mode .

1.554 CSI n G

CSI n G :(2)(V)

Set the cursor column (X position) to n. If n is negative, it specifies an offset from the rightmost window border. Note that
columns are counted from one up. This sequence is identically to CSI n ` .

1.555 CSI n;n H

CSI n;n H :(C)(V)

Move cursor to the specified row and column. n counts from one up (ugly, but true). In the Commodore mode , the cursor cannot
be placed outsite of the scrolling region, and the position is relative to the scrolling region.

As an extension, each numeric argument can be preceded by >?, which moves the cursor to an absolute position ignoring the
scroll region.

The roles between the modified and unmodified version of this sequence are interchanged in the VT-220 mode; the unmodified
version moves the cursor to an absolute position, the modified to a position relative to the scrolling region. This default can be
again overridden and reversed by the sequence CSI ?6h which selects the VT-220 "origin mode".

As an extension to the VT-220 standard, negative values are accepted and specify positions relative to the bottom or right border.

1.556 CSI n I

CSI n I :(C)(2)

Move to the next nth TAB stop. If ommitted, this defaults to one. The argument n is an extension and is allowed to be negative
to move backwards.

VNC 129 / 188

1.557 CSI n J

CSI n J :(C)(2)

Erase in display; n specifies the operation in detail.

n=0 :(C) (default)

Clear starting at cursor position up to the end of the window.

n=1 :(2)

In the CBM compatibility mode, identical to n=0. In the VT-220 mode: Clear from the beginning of the window up to and
inclusive the cursor position, does NOT touch the lines in the upper display region . This is a workaround for a bug in the editor
"Ed". (Which guy at CBM did not read the docs?)

n=2 :(2)

Clear all lower lines , do not move the cursor.

n=3 :(V)

Same as n=1, but works even in CBM mode like the VT-220 control code.

In the Commodore mode , the cleared region depends on whether the cursor is in the scrolling region or in the border. In the later
case, everything is cleared, in the former only the scroll region is affected.

1.558 CSI n K

CSI n K :(C)(2)

Erase in line; n specifies again the operation in detail.

n=0 :(C) (default)

Clear everything under and behind the cursor position up to the end of the line.

n=1 :(2)

In the Commodore compatibility mode, like n=0. This is a workaround for a bug in the system editor "Ed". In the VT-220 mode
clear characters from the start of the line up to and inclusive the cursor position.

n=2 :(2)

Clear the whole line, but do not move the cursor.

n=3 :(V)

Clears characters from the start of the line to the cursor position, like n=1. But this one works even in the commodore mode.

1.559 CSI n L

CSI n L :(C)

Insert n lines. This does usually scroll lines into the lower buffer unless the control flag CSI >?14h is set.

1.560 CSI n M

CSI n M :(C)

Delete n lines. Scrolls in lines in the lower buffer unless CSI >?14h is set. Inserts blank lines at the bottom of the window in this
case.

VNC 130 / 188

1.561 CSI n P

CSI n P :(C)

Delete n characters.

1.562 CSI n S

CSI n S :(C)

Scroll up n lines. In the Commodore mode , this scrolls only the scroll region if the cursor is not in the border. If the flag CSI >?
14h is set, blank lines are scrolled in and the off-window buffers are not affected.

1.563 CSI n T

CSI n T :(C)

Scroll down n lines. In the Commodore mode , this scrolls only the scroll region if the cursor is not in the border. If the flag CSI
>? 14h is set, blank lines are scrolled in and the off-window buffers are not affected.

1.564 CSI reg;r;g;b V

CSI reg;r;g;b V :(V) ViNCEd set color sequence.

CSI ?reg;r;g;b V:(V) ViNCEd set cursor color sequence.

These sequences will change the screen colors of ViNCEd. They work only if the ViNCEd window was opened on its own
screen, as told by the parameters in the window path .

These screen colors can be set by default as well, using the second window page of SetVNC.

Colors defined in the defaults can be reset, i.e. the CSI V can be un-done with the reset control sequence ESC c .

reg is the index of the color register you want to change. Currently, ViNCEd supports only 16 different color registers.

r;g;b

The red, green and blue component of the color to load into "reg". The values are given as 16 bit integers, i.e. 65535 is the
maximum.

If reg is between 16 and 31, the color register reg-16 is affected; thus, reg=16 and reg=0 set both the background color. However,
the red, green and blue components are now given as four bit integers, i.e. 15 is the maximum. This gives a coarser color
specification, but the numbers are somewhat more readable.

If reg is between 32 and 47, this sequence selects a color for the ANSI pen reg-32, hence overriding the ViNCEd defaults; this
works even if no custom screen was opened for this window.

The color itself is given as 16 bit values r;g;b.

To specify four bit ANSI colors, use values for reg between 48 and 63, again selecting the color of the ANSI pen reg-48.

A value between 64 and 95 releases the ANSI pen reg-64. This does NOT mean that some colors are reloaded with system
defaults, it is just the pen that is released; a different program running on the same screen will be allowed to load and change it.

Now for the ViNCEd set cursor color sequence; note the question mark in front of the register number:

reg = ?1 :

Use a colored cursor, use 16 bit color definitions, i.e. 65535 is lightest.

reg = ?17 :

VNC 131 / 188

Use a colored cursor, specify colors in four bit values, i.e. 15 is highest color intensity.

reg = ?33 :

Use a colored cursor, specify 16 bit color values but load the color with a higher precision, i.e. specify a higher priority for the
cursor color. This is useful if you want to load the cursor color register with a definite value even though you’re working on a
screen with very few pens available.

reg = ?49 :

Use a colored cursor, define the color as four bit value, use higher precision.

reg = ?65 :

Use the default "COMPLEMENT" style cursor, free the cursor color. THIS DOES NOT MEAN that the color registers are loaded
with the default screen values you found there before you colored the cursor. This does ONLY mean that ViNCEd releases the
control over the color register back to the operating system and uses the old style cursor instead.

1.565 CSI n W

CSI n W :(C)

Cursor TAB control; details are controlled by the argument n.

n=0 :(C) (Default) Set TAB stop at cursor position

n=2 :(C) Clear TAB stop at cursor position

n=5 :(C) Clear all TAB stops

1.566 CSI n X

CSI n X :(2)

Overwrite the next n characters with blank spaces.

1.567 CSI n Y

CSI n Y :(V)(S)

ViNCEd window manager control. Details depend on n.

This is a replacement for a similar SGI winterm control sequence that does not obey the ANSI rules and hasn’t been implemented
in ViNCEd for that reason. This control sequence performs some intuition related actions:

n = 0 : Activate this window.

n = 1 : Send window to front.

n = 2 : Send window to background.

n = 3 : Send the screen this window resides on to the front.

n = 4 : Send the screen to the background.

n = 5 : Show the screen title.

n = 6 : Hide the screen title.

The values n=5 and n=6 are only working if the window path forced ViNCEd to open its own screen. They make only sense for
BACKDROP like windows and send the screen drag bar behind or in front of a BACKDROP windows. Hence, this action can’t
be seen, usually.

VNC 132 / 188

1.568 CSI n Z

CSI n Z :(C)

Cursor n TABs backwards, n may be negative to move forwards.

1.569 CSI n `

CSI n ` :(2)(V)

Set the cursor column (X position) to n. If n is negative, it specifies an offset from the rightmost window border. Note that
columns are counted from one up. This sequence is identically to CSI n G .

1.570 CSI c

CSI c :(2)

VT-52 status request. Send terminal ID, identically to ESC Z . Replied by CSI ?60c ("this is a VT-220 terminal").

CSI >c :(2)

Send device attributes. Replied by CSI 1 ;vers;rev c ("this is a VT-220 terminal."). vers is the ViNCEd version number, rev is the
ViNCEd revision.

1.571 CSI n d

CSI n d :(2)(V)

Set the cursor row (Y position) to n. If n is negative, it specifies an offset from the bottom window border, or the bottom of the
scroll region. Note that rows are counted from one up.

In the Commodore mode , the cursor cannot be placed outsite of the scrolling region, and the position is relative to the scrolling
region.

As an extension, the argument can be preceded by >?, which moves the cursor to an absolute position ignoring the scroll region.

The roles between the modified and unmodified version of this sequence are interchanged in the VT-220 mode; the unmodified
version moves the cursor to an absolute position, the modified to a position relative to the scrolling region. This default can be
again overridden and reversed by the sequence CSI ?6h which selects the VT-220 "origin mode".

1.572 CSI n;n f

CSI n;n f :(C)(V)

Move cursor to the specified row and column. n counts from one up (ugly, but true). Usually like CSI n;n H , but the details are
again a bit tricky.

In the Commodore mode , CSI n;n f can be used to place the cursor outside of the scrolling region, which is impossible with the
former sequence.

In the VT-220 mode the position is clipped to the scrolling region unless the origin mode CSI ?6h is active.

VNC 133 / 188

1.573 CSI n g

CSI n g :(2)

Tab control, details depend on n:

n=0 :(2) (default) Clear the TAB stop under the cursor.

n=3 :(2) Clear all TAB stops.

n=100 :(S) Reset TAB stops to default.

1.574 CSI n h

CSI n h :(C)(2)(V)(D)

Set mode control flag or flags. Similarly to CSI n l , CSI n v , and CSI n w , more than one flag is allowed here at a time, separate
the flags you want to set by a semicolon ";".

Here the list of legal (known) values. The default is printed in brackets, but for some mode flags, you may change the default
with the SetVNC program as well. Just follow the links to find out how the flag is called and select there "Contents" from the
line of the gadgets above to go to the online help of the SetVNC page that controls the flag.

>?30 :[l](V) XTerm/CON: cursor mode .

If this mode is enabled, the cursor won’t move when you mark blocks or use the scrollers at the edges of the window. Instead, the
window will "pop back" to the original position whenever you type a key or something gets printed. This is the way how XTerm
behaves; the cursor can still be moved explicitly.

>?29 :[l](V) Special key parsing disable.

If set, some keyboard functions of ViNCEd are disabled: History, Break (Ctrl-C thru CTRL-F), Stop (CTRL-S), all TAB expan-
sion functions. Function keys, Quit and "Send Inputs" remain intact. This is useful for writing an editor, where you might even
want to send CSI >?28h as well.

>?28 :[l](V) Send disable.

If set, even the "Send Inputs" function is no longer available, together with "Quit". The close-gadget, however, remains opera-
tional. Do not send this to a shell or you’re lost!

>?27 :[l](V) User block control.

Block operations are not executed, but send as CSI-sequences to the input stream; they must be handled by the serving program
itself by calling the vnc.library. See below for special codes you may receive.

>?26 :[h](V) Raw control. The break keys Ctrl-C to Ctrl-F and the job control key Ctrl-Z, as well as "Xon" Ctrl-Q and "Xoff"
Ctrl-S are disabled in RAW-mode; their ASCII code is just send to the input stream.

If this flag is set to "l", the functions are "executed" by ViNCEd, if set to "h", they are passed to the console output = the program
input stream. This flag is ignored in cooked mode .

Due to a strange "feature" of the RAW: handler, ˆC thru ˆF are always executed AND sent, even if this flag is "h". I don’t know
what this is supposed to be good for, but VNC emulates this behaviour in the CBM compatibility mode. This feature can be
turned off either with CSI >?23l or by enabling the VT-220 emulation.

(Replaces somehow the missing ioctl() call of unix)

>?25 :[h](V) AutoPaste .

If set, ViNCEd automatically loads a block from the clipboard if the user wants to paste text into the window. If disabled, a
request is send to the input stream.

However, marking and copying of text works as usual.

>?24 :[l](V) Erasing BS .

VNC 134 / 188

If set, the control code BS=08 erases characters and does not only move the cursor. Additionally, the control code DEL=7F (127
decimal) works like the keyboard Del-key: It erases forwards and is no longer interpreted as a printable character.

>?23 :[h](V) "RAW break bug emulation".

If set, the break functions ˆC thru ˆF are always executed, regardless of whether the CSI >?26 flag is set or not. In worst case
(and that is what the flag defaults say), the break keys send an ASCII value AND generate a break signal. This workaround can
be disabled either by turning on the VT-220 emulation, or by setting this flag to "l".

>?21 :[l](V) Bottom adjust .

In turned on, keep the last line of the window adjusted to the bottom of the window if the window gets resized. This is the
behavour of the old CON: window. If disabled, ViNCEd will use its default procedure, i.e. to insert blank lines or lines from the
lower buffer.

>?19 :[h](V) Wide window .

Do not wordwrap at the right border of the window, but scroll. ViNCEd does not reformat the text in case the window gets
resized.

>?18 :[h](V) Follow print .

Follow the cursor while printing by scrolling the window to make it visible.

>?16 :[l](V) AutoIndent.

After a "Send Inputs" or a "Split" function , place the cursor under the first non-space of the line above. Useful for editors, useless
for the shell; do not set it.

>?15 :[l](V) SevenBitReports.

If enabled, ViNCEd will report all keyboard sequences and all answer back sequences as if the seven bit mode has been enabled.
This might help some VT-xxx terminals to get the cursor keys right. To be precise, this is a workaround against a bug in some
"termcap" libraries since ESC [and CSI should be considered to be identically. Unfortunately, they are not.

>?14 :[l](V) Extended bold .

If this bit is set, ViNCEd uses the extended pens 8-15 for characters which would usually appear in boldface. Pen 0 is mapped
to pen 8 and so on. The bold attribute controls the mapping of the foreground color, the blinking attribute that of the background
color.

>?13 :[h](V) Buffer scrolling .

If disabled, ViNCEd does not scroll lines into the lower display buffer in case blank lines are inserted into the window. If lines
get removed, only blank lines are inserted into the window if this flag is disabled and the lines below the bottom edge of the
window remain untouched.

>?12 :[l](V) Shell mode .

If set, TAB-expansion and job control (Ctrl-Z) are enabled, as well as some other shell goodies .

>?11 :[l](V) Emacs mode.

This flag is only used in RAW or ENGLISH mode. If it is set, the Alt and Ctrl keys will work slightly different. If an alphanumeric
key is pressed along with Alt, ViNCEd will transmit an ESC character, ASCII 27 = 0x1b along with the key. That is, Alt a
becomes the two character sequence "ESC a". This sequence is interpreted by the Un*x editor "Emacs" as "Meta a" command
sequence. Furthermore, Ctrl and an alphanumeric key is translated to the ASCII code of the key modulo 32, ignoring whatever
the keyboard would have defined for this sequence. This will enable sequences like Ctrl Space which cannot be reached on a
standard keymap.

>?10 :[l](V) Edit buffer.

If set, the size of the review buffer is unlimited (well, except by memory).

>?8 :[l](V) ANSI coloring .

If set, the "set render" sequence CSI m is interpreted strictly and ViNCEd will try to select colors that fit the ANSI standard as
close as possible. Details how to change these colors and what can be done with this mode are in a separate section .

Changing this flag results also in a reset of the rendering colors.

VNC 135 / 188

>?6 :[l](V) Blinking cursor .

Enables the blinking cursor.

>?4 :[l](V) Underscore cursor .

Use an underscore cursor instead of the block cursor.

>?3 :[l](V) Row mode.

If set, the user is not allowed to leave the current line, and ViNCEd is turned into a pure and very strict line editor. Even the
"Send" function DOES NOT leave the current line, unlike what you and the shell expects. This mode is reserved for filling out
"forms" and is not useful for the shell; Beware!.

>?2 :[l](V) VT-220 mode .

If set, ViNCEd interprets control sequences according to the VT-220 standard and not compatible to the original console. This
affects mostly the handling of the scroll region and the interpretation of the cursor placement sequences CSI H,CSI f, CSI S,CSI
T, as well as some other minor interpretational differences.

?1002 :[l](X)(V) XTerm 2 Mouse Tracking

?1000 :[l](X) XTerm Mouse Tracking

?47 :[l](2) Use alternate screen buffer.

If enabled, this sequence exchanges the contents of the current display buffer with the contents of a second background buffer.
The background buffer is Owner dependent, therefore each owner may build its own "screen". This sequence does not set
rendering options or the cursor position.

?46 :[l](2)(D) Enable logging.

If enabled, ViNCEd logs all outputs to the serial port. All printed data is sent over the serial port at 9600 baud, 8 bits, one stop bit.
Alterantively, this data can be logged by using a debugging tool like "Sashimi" or "Sushi". Input data from the user is not logged,
though. Should be used with care for debugging purposes only since it may slow down ViNCEd a lot, especially if Sashimi is
not used.

?25 :[h](2)(D) Display cursor.

If disabled, the cursor is invisible.

?9 :[l](X) X10 Mouse Tracking

?7 :[h](C)(D) Wordwrap.

If disabled, the text is not broken at the chosen border, but the additional characters are lost.

?6 :[l](2) Origin mode.

If enabled, the CSI H sequence will place the cursor relative to the scroll region in the VT-220 emulation. Ignored in the CBM
mode.

?5 :[h](2)(D) Reverse video .

Works only with the ANSI coloring enabled as well. Reverse video will swap the ANSI black and white colors so that the default
is black text on white background. The meaning of the ANSI color pens 0 and 7 is interchanged, but all other colors remain the
same.

?1 :[l](2)(D) Numpad mode .

Use the numeric keypad for cursor control functions.

20 :[h](C) Auto CR.

If set, the line feed control code 0A (=10 decimal) includes the implicit execution of CR, i.e. moves the cursor to the left, too.

4 :[l](2) Insert mode .

If set, printing inserts instead of overwrites. Does not change the handling of user input.

2 :[l](2) Keyboard lock.

If enabled, the keyboard is locked and no inputs are accepted. Do not send this to the shell or you’re lost!

>1 :[h](C) Scroll lock.

If cleared, scrolling is forbidden.

Mouse tracking related "CSI h" / "CSI l" sequences are listed in the Sequences that return results chapter.

VNC 136 / 188

1.575 CSI n l

CSI n l :(C)(2)(V)(D)

Clear mode control flag or flags. Similarly to CSI n h , CSI n v , and CSI n w , more than one flag is allowed here at a time,
separate the flags you want to set by a semicolon ";".

The complete list of all available modes is in the documentation of the CSI h sequence.

1.576 CSI n m

CSI n m :(C)(V)

Rendering control. More than one option can be given, separate them by ";". The restriction to ">" arguments as for the console
device does not hold for ViNCEd, ">n" style arguments may go anywhere.

n=0 :(C) Plain text, default color.

n=1 :(C) Enable bold.

n=2 :(C) Faint (secondary color, usually white)

n=4 :(C) Enable underline.

n=5 :(2) Enable blinking.

This version of ViNCEd does not support blinking text, it just sets the text in bold, like XTerm. This attribute makes a difference
in case the mode CSI >?14h "Extended bold" is set, and selects the extended colors for the character container box.

n=7 :(C) Reversed (exchange character/cell colors).

n=8 :(C) Concealed text.

This is invisible text for passwords, etc. However, the text will be still visible in files saved with the Project Menu . Therefore,
this mode is not really 100% safe.

n=20 :(V) Plain text, default color.

n=21 :(S) Disable bold.

n=22 :(C) Default foreground color, disable bold.

n=23 :(C) Disable italic.

n=24 :(C) Disable underline.

n=25 :(2) Disable blinking.

n=27 :(C) Disable reverse.

n=28 :(C) Concealed off.

n=30..37:(C) Set foreground color to 0..7.

This is either an absolute pen value, or selects an ANSI colors , depending whether the ANSI coloring is active. Same goes for
all color selection sequences below.

n=38 :(V) Set foreground color to 8

n=39 :(C) Reset forground color

Reset foreground color to default or to the value saved with CSI SPC s .

n=51 :(V) Select User input

Special in the sense that this is ignored by ViNCEd itself, but used by SetVNC for buffer outputs written with the PUT argument
. This sequence selects user input text.

n=59..65:(V) Set foreground color to 9..15

VNC 137 / 188

The current ViNCEd version can control up to 16 colors, but not more. Colors 8 to 15 are the "extended" colors. This is either
an absolute pen number or an ANSI color index.

n=40..47:(C) Set background color to 0..7

n=38 :(V) Set background color to 8

n=39 :(C) Reset background color

Reset background color to default or to the value saved with CSI SPC s.

n=71 :(V) Select DOS output.

Again a private SetVNC sequence. Selects printed text in saved buffers.

n=79..85:(V) Set background color to 9..15

n=90..97:(X) Set foreground color to 8..15

n=100..107:(X) Set background color to 8..15

REMARK: If you activated the ANSI rendering scheme with the CSI >?8h sequence, the arguments to CSI m to not specify a
pen number (as with CON:), but a predefined ANSI color.

More rendering-options:

>n :(C) Set fill color.

Selects the background (fill) pen as n, n=0..15. Unlike the clumsy console.device, this might appear anywhere in the control
string.

?n :(V) Set input rendering.

All values of n presented above are valid, but change only the appearance of the user input; the style of printed characters remains
intact.

REMARK: As a special hack, if no argument is given at all, the text rendering is reset to the defaults. DO NOT DEPEND ON
THIS WORKING IN NEWER RELEASES, this is a compatibility hack.

1.577 CSI n n

CSI n n :(C)(V)

Request parameters. The second n is a literal n, not a number.

CSI 6 n :(C)

Send cursor position, relative to scroll region if in Commodore mode, absolute in VT-220 mode.

CSI >?0 n :(V)

Send cursor position, but unlike CSI 6n it is send as a string that can be send back to ViNCEd to restore the cursor position later.
It is relative to the scroll region in Commodore mode, absolute in VT-220 mode if the "origin mode" is disabled.

CSI >?1 n :(V)

Send absolute cursor position. Leads to CSI n;n f in Commodore mode, CSI n;n H in VT-220 mode.

CSI >?2 n :(V)

Send relative cursor position (relative to scroll region), leads to CSI n;n H in Commodore mode, to CSI n;n f to VT-220 mode.

CSI >?3 n :(V)

Send ViNCEd version string. Leads to CSI version;revision V

CSI >?4 n :(V)

Send mode flags. Sends "ESC [" and a sequence of mode flags (xxx h, xxx l) that describe their current settings.

The next sequences are replacement sequences for the XTerm sequence CSI t which conflicts with the similar CBM sequence.

VNC 138 / 188

CSI >?12 n :(V) or, equivalently,

CSI >?14 n :(V) or, even more,

CSI >?16 n :(V)

Send window title as "ESC] l Title ESC \" OSC sequence .

CSI >?13 n :(V)

Send icon title as "ESC] L Title ESC \" OSC sequence . The result string is empty in case the icon title defaults to the window
title.

CSI >?15 n :(V)

Send screen title as "ESC] S Title ESC\" OSC sequence . Note that you may get and set the screen title, but the window must
have been opened with a screen title to make it appear.

CSI >?62 n :(V)

Send window font as "ESC] F Font.Size ESC\" OSC sequence . The suffix ".font" will be replaced by this query sequence by
the font height as decimal encoded number.

You currently cannot query the console keymap because the name of the default keymap is not available in the AmigaOs keyboard
system. Keymaps can be set, only.

CSI 5n :(2)

Terminal status request. Answered by CSI " 0 n ("terminal is fine").

CSI ?15n :(2)(D)

Printer status request. Answered by CSI ?11 n ("printer not ready").

CSI ?25n :(2)(D)

Keyboard status report. Answered by CSI ?21 n ("User definable keys are locked")

CSI ?26n :(2)(D)

Keymap status request. Answered by CSI ?27 ; 0 n ("Keyboard language unknown")

1.578 CSI n p

CSI n p :(C)(2)

Set parameters. Details depend on "n":

CSI "n;m p :(2) Set ANSI conformance level.

n selects the conformance level.

n = 61 VT100

n = 62 VT200

n = 63 VT300

ViNCEd currently ignores the ANSI conformance level.

m selects the bit width. If m is not present, the default 1 is assumed and the seven bit mode is enabled.

n = 0 : 8 bit mode

m = 1 : 7 bit mode (8th bit set to zero) (default)

n = 2 : 8 bit mode

Other variations of this control sequence:

CSI !p :(2) Like ESC c , full reset.

CSI n p :(C) Cursor control, details depend on n.

n=0 : Disable cursor

Everything else, including no argument at all: Enable cursor.

VNC 139 / 188

1.579 CSI n q

CSI n q :(C)(2)

Enquiry parameters. Details depend on "n":

CSI 0 SPC q :(C)

Send window borders, compatible to CON: (SPC is the blank space 0x20 = 32).

CSI SPC q :(C)

Like CSI 0 q, but a hack to make the csh working. You SHOULD NOT DEPEND ON THIS SEQUENCE, it will be removed
sometimes.

CSI >?0 q :(V)

Send window borders, together with the scroll region.

CSI >?1 q :(V)

Send maximal printable domain.

CSI >?2 q :(V)

Send window domain.

CSI >?3 q :(V)

Send window domain without scroll borders.

1.580 CSI n;n r

CSI n;n r :(2)

Set scroll region.

This sets the size of the scroll region. All lines above and below this region are not scrolled, thus, kept where they are. The first
argument is the first line of the scroll region, "1" being the topmost line. The second argument is the last line of the scroll region.
At least two lines must be in the region or it gets disabled. If the VT-220 mode is enabled, the cursor gets set to the left top edge
of the window, or to the first line of the scroll region if the "origin mode" CSI ?6h is active.

1.581 CSI SPC s

CSI SPC s :(C)

Set default rendering (SPC is the blank space, ASCII 32=0x20).

Sending this sequence sets the rendering type and color defaults to the currently active pens and draw style. This default can be
restored later by CSI 0 m , CSI 29 m or CSI 39 m . However, the defaults get lost on a full reset ESC c and are then re-read from
the DrawInfo of the screen ViNCEd displays its window on. If you enabled the ANSI coloring , the default is white text on black
background, as defined by the ANSI standard, unless the reverse video mode CSI ?5h is active.

1.582 CSI n t

CSI n t :(C)

Set page length to n lines.

The remaining part of the window can be used for drawing graphics on yourself and is not touched by ViNCEd. It is, too, not
refreshed on a resize, that’s up to the program drawing in the border.

If the parameter is ommitted, ViNCEd restores the default behaivour and uses the full height for rendering.

This sequence conflicts unfortunately with a similar XTerm sequence.

VNC 140 / 188

1.583 CSI n u

CSI n u :(C)

Set line length to n characters.

The remaining part of the window won’t be touched by ViNCEd and can be used to display graphics.

If the parameter is ommitted, ViNCEd restores the default behaivour and uses the full width for rendering.

1.584 CSI n v

CSI n v :(V)

Saveback modes. Saves back one or more of the mode control bits that can be set with CSI n h and cleared with CSI n l .

For the allowed values of n, see there.

This is sort of DEC control sequence that conflicts with another sequence and is therefore here.

1.585 CSI n w

CSI n w :(V)

Restore modes. Restores one or more of the mode control bits usually set by CSI n h or CSI n l . See there for more information.

This is sort of DEC that conflicts with with another sequence at the same position.

Unfortunately, this sequence conflicts with the DEC "Enable Filter Rectangle" sequence.

1.586 CSI n x

CSI n x :(C)

Set left offset to n pixels.

The area left to this boundary is not touched by ViNCEd and can be used to draw graphics.

If the parameter is ommitted, ViNCEd restores the default behaivour and sets the left according to the window border.

1.587 CSI n y

CSI n y :(C)

Set top offset to n pixels.

The area on top of this boundary is not touched by ViNCEd and can be used to render graphics.

If the parameter is ommitted, ViNCEd restores the default behaivour and sets the top offset according to the window border.

VNC 141 / 188

1.588 CSI n {

CSI n { :(C)

Set Raw Events.

n is a semicolon separated list of input events that should be send to the input stream.

Unlike with CON:, this works in all console modes , even in cooked mode, but if in raw mode, all selected events will be disabled
when switching back to cooked mode. This is again a compatibility hack, to make old programs working. As a second hack, the
window-close input event is always active when switching to raw mode, even if you haven’t requested it. This was done to make
the program "more" working (sigh). If you do not want to receive the window-close event in raw mode, you must explicitly turn
it off.

A third special event is the timing event: while this event never worked in CON: windows (try it !), it works in ViNCEd. Since
your input stream will be trashed with a lot of timing events otherwise, this event gets disabled as soon as you receive a timing
event. You have to re-activate it again, each time. The following events are supported:

n = 2 : Raw mouse input

n = 3 : Private console event (do not use)

n = 4 : Pointer position event

n = 6 : Timer event (works, see above)

n = 7 : Gadget down

n = 8 : Gadget up

n = 9 : Requester activity

n = 10 : Menu pick

n = 11 : Window close

n = 12 : Window resized

n = 13 : Window requires refresh

n = 14 : Preferences changed

n = 15 : Disk removed

n = 16 : Disk inserted

n = 17 : Window activated

n = 18 : Window inactivated

n = 19 : New pointer position (v36)

n = 20 : Menu help (v36)

n = 21 : Window box changed (v36)

For more about the input events, consult the RKRM-Devices and check the list of answer back sequences to find out which type
of input you receive.

1.589 CSI n }

CSI n } :(C)

Reset Raw Events.

n is a semicolon separated list of input events that should be disabled again that have been activated with Csi n { .

VNC 142 / 188

1.590 CSI n T

CSI n T :(X)

Mouse tracking control. Conflicts with the Commodore scrolling command.

unsupported.

1.591 CSI n b

CSI n b :(2)

Repeat the preceding graphic character Ps times.

unsupported.

1.592 CSI n h

CSI n h :(2)

Various unsupported mode flags for CSI h :

n=6 :(S) Lock scroll buffer

n=9 :(S) Visual bell. This is controlled by the sound preferences.

n=12 :(S) Overlay mode or duplex control.

n=?2 :(D) USA characters for G0-G3 set, or VT-52

n=?3 :(D) 132 rows mode. Depends on the size of the window, not under control of ViNCEd.

n=?4 :(D) Smooth scrolling.

n=?8 :(D) Auto repeat. Under control of the preferences.

n=?18 :(D) Send FF after printing.

n=?19 :(D) Print full screen/scroll region.

n=?38 :(D) Tektronix mode. Unsupported by ViNCEd.

n=?40 :(D) Allow 80/132 width switching.

n=?41 :(D) Curses Fix. This is Amiga, not Unix. Should be part of ixemul, not of ViNCEd.

n=?42 :(D) Enable national character set. Not under control of ViNCEd.

n=?44 :(D) Ring bell on window border.

n=?45 :(D) Reverse Wraparound.

n=?66 :(D) Application keypad.

n=?67 :(D) Backarrow key sends delete.

n=?1001:(X) Hilite mouse tracking.

n=?1003:(X) Use All Motion Mouse Tracking.

n=?1010:(X) Scroll to bottom on tty output. Currently not under application control.

n=?1011:(X) Scroll to bottom on key press. Currently not under application control.

n=?1035:(X) Enable special modifiers for Alt and NumLock keys.

n=?1036:(X) Send ESC when Meta modifies a key.

VNC 143 / 188

n=?1037:(X) Send DEL from the editing-keypad Delete key.

n=?1047:(X) Use Alternate Screen Buffer. Identically to n=?47.

n=?1048:(X) Save cursor as in ESC 7

n=?1049:(X) Save cursor as in ESC 7 and use Alternate Screen Buffer, clearing it first.

n=?1051:(X) Set Sun function-key mode.

n=?1052:(X) Set HP function-key mode.

n=?1060:(X) Set legacy keyboard emulation.

n=?1061:(X) Set Sun/PC keyboard emulation of VT220.

1.593 CSI n i

CSI n i :(2)(D)

Media copy. Details depend on n:

n=0 :(2) Print screen (default)

n=4 :(2) Turn off printer controller mode.

n=5 :(2) Turn on printer ctronller mode.

n=?1 :(D) Print line containing cursor.

n=?4 :(D) Turn off autoprint mode.

n=?5 :(D) Turn on autoprint mode.

n=?10 :(D) Print composed display.

n=?11 :(D) Print all pages.

All of them are unsupported.

1.594 CSI n m

CSI n m :(2)

The following special mode flags for the set render sequence are unsupported:

n = 100 : Set foreground and background color to default

CSI 38; 5; n m : Set background color to n.

CSI 48; 5; n m : Set foreground color to n.

1.595 CSI n n

CSI n n :(2)

The second n is a literal lowercase n, with n=100 to 107. Send RGB color codes of the palette entries 0 to 7. Replaced by
something smarter, see CSI V

unsupported.

VNC 144 / 188

1.596 CSI n q

CSI n q :(2)

LED control. This should be done by audio programs, not by ViNCEd.

unsupported.

1.597 CSI n r

CSI n r :(D)

DEC restore parameters. Conflicts with ViNCEd / VT-220 "Set Scroll Region", but functionally replaced by CSI w .

unsupported.

1.598 CSI n;n s

CSI n;n s :(D)(V)(C)

Set horizontal scroll region. The selected number of left and right rows does not get scrolled. This should work someday like a
horizontal counterpart of CSI n;n r , is however quite tricky to implement.

Also:

DEC save parameters. Conflicts with ViNCEd "Set Scroll Region" above, but functionally replaced by CSI v .

unsupported.

1.599 CSI n;n;n t

CSI n;n;n t :(2)

Various window manipulation flags. Conflicts with the CBM set page length command.

unsupported.

1.600 CSI n x

CSI n x :(2)

Request terminal parameters. Conflicts with Commodore’s "set left offset".

unsupported.

1.601 CSI n |

CSI n | :(D)

Request Locator Position, unsupported.

VNC 145 / 188

1.602 CSI and ESC sequences

ViNCEd recognizes a big bunch of control sequences; mostly introduced by a CSI (0x9b = 155) or ESC (0x1b = 27) character,
these do not only change ViNCEd’s internal settings, but do also move the cursor, scroll the window, set the color and font of the
text and adjust the keyboard.

All control sequences of the original console handler are supported, most VT-220 and some unix "XTerm" sequences have been
added to complete the set, even some SGI winterm sequences are present.

The explanation of some concepts, used in the description of the sequences follow:

Commodore Mode:

This is the ViNCEd operating mode which offers most compatibility to the original console handler. ViNCEd interprets all control
sequences in the same way as the original handler, even if they contradict the VT-xxx standards. This is the mode ViNCEd should
operate in if used as window handler for the shell, to avoid compatibility problems with existing programs. Even in this mode,
ViNCEd extensions are available.

VT-220 Mode

This is the ViNCEd extended mode which interprets the control sequences in a way compatible to the VT-220 standard. It is a
quite complete, but not a full VT-220 emulation. ViNCEd does not implement VT-220 sequences that conflict with the standards
of the operating system, i.e. ViNCEd does not implement download-able character sets, neither user definable keymaps except
thru the SetVNC program interface, nor does it come with a build-in VT-52 emulation which I regard as rather useless. However,
it implements some useful extensions to the VT-220 standard found in the unix XTerm and SGI "winterm" programs, as definable
window titles, selectable fonts and definable colors - all thru documented control sequences.

Scroll Region:

While ViNCEd scrolls usually the complete window contents, it is possible to separate several lines at the top and at the bottom
of the window that are not scrolled. You might want to put there some global information, like the cursor position, the date, and
so on, if writing an editor. The way how these lines interact with the control codes is again controlled by mode flags.

The commodore mode makes these lines "invisible" to the usual control codes. However, this is not compatible with the VT-220
definition of some control sequences and the behavour changes in this mode.

Origin Mode:

The cursor movement instructions are relative to the scrolling region in the commodore mode, i.e. the origin of the display is at
the top left edge of the scrolling region. This is usually not the case in the VT-220 emulation except the Origin Mode is enabled,
a standard VT-220 flag.

8 Bit Mode vs. 7 Bit Mode:

Usually, the Amiga uses eight bit wide characters. However, for some terminal purposes the eighth bit is used as a parity bit
and should be ignored for that reason. To reach all ASCII-codes, use in the seven bit mode the ShiftIn and ShiftOut control
codes (0x0E,0x0F) and substitute the control sequence introducer CSI 0x9B (155 decimal) by the sequence ESC [. Additionally,
this substitution is also made by ViNCEd: All answer back control codes that usually come with CSI are now send with ESC [
instead. Your parser code should be smart enough to handle this substitution, too.

Origin of the control sequences:

The origin of the control sequences is indicated by a character in brackets behind the description:

(C)=Commodore or standard TTY (2)=VT-220 enhancements added to ViNCEd (X)=Unix XTerm (S)=SGI winTerm (V)=ViNCEd
(D)=Digital

And now for the list of the control sequences:

List of control characters

Standard TTY control characters in the range 0x00 to 0x1F, including VT-220 shortcuts in the range 0x80 to 0x9f.

List of unsupported control characters

Control characters not supported by ViNCEd.

List of ESC sequences

VNC 146 / 188

Control sequences introduced by ESC 0x1B, including XTerm sequences.

List of unsupported ESC sequences

ESC sequences not supported by ViNCEd.

List of OSC sequences

Control sequences introduced by OSC 0x9D or ESC]

List of unsupported OSC sequences

OSC sequences not supported by ViNCEd.

List of CSI sequences

Control sequences introduced by CSI 0x9B or ESC [

List of CSI sequences that return results

CSI sequences that answer back with another sequence.

List of unsupported CSI sequences

CSI sequences not supported by ViNCEd.

List of sequences you might receive

The list of answer back sequences you may find in the input stream.

List of control sequences the keyboard parser sends and receives

CSI sequences that are sent by the keyboard functions .

Mouse Tracking Information

ESC sequences and details of the ViNCEd mouse tracking function.

1.603 List of control characters

Here is the list of control codes - all codes are given in hex notation:

First the control characters in the C0 set:

05 ENQ 07 BEL

08 BS 09 HT

0A LF 0B VT

0C FF 0D CR

0E SI 0F SO

1B ESC 7F DEL

The control characters C1 in the range 0x80 to 0x9f are convenient shortcuts for more complex sequences:

84 IND

85 NL 88 HST

8D RI 9A DECID

9B CSI 9C ST

9D OSC

VNC 147 / 188

1.604 Unsupported control characters

The following non-printing characters are known by ViNCEd, but will be currently ignored:

8E SS2

8F SS3 90 DCS

96 SPA 97 EPA

98 SOS 9E PM

9F APC

1.605 List of ESC sequences

And now the list of ESC control sequences. Some of the sequences are long forms of eight bit control characters in the C1 set .

ESC is the ASCII-character 0x1B (27 decimal) and SPC is the blank space 0x20 (32 decimal); "n" is a decimal number.

ESC 7

ESC 8 ESC 9

ESC D ESC E

ESC H ESC M

ESC Z ESC c

ESC [ESC \

ESC]

ESC # 8

ESC SPC F ESC SPC G

ESC SPC L ESC SPC M

ESC SPC N

The next ESC sequence is only understood by the CSI parser of the SetVNC buffer IO module , don’t send this to ViNCEd itself:

ESC @

1.606 Unsupported ESC sequences

Again, there are some ignored or unknown ESC sequences. The first group are unsupported seven bit variants of unsupported
eight bit sequences:

ESC P

ESC _ ESC ˆ

ESC N ESC O

ESC V ESC W

ESC X

Some unsupported DEC sequences follow:

ESC # 3

ESC # 4 ESC # 6

Some miscellaneous unsupported sequences:

VNC 148 / 188

ESC F

ESC l ESC m

The following sequences are part of an international character support. This should be done by the locale.library together with
the correct font, and not by ViNCEd itself. They are all ignored.

ESC (s

ESC) s ESC * s

ESC + s

where "s" is a single character from the following table:

s = 0 DEC Special Character and Line Drawing Set s = A United Kingdom (UK) s = B United States (USASCII) s = 4 Dutch s
= C or 5 Finnish s = R French s = Q French Canadian s = K German C = Y Italian C = E or 6 Norwegian/Danish C = Z Spanish
C = H or 7 Swedish C = = Swiss

ESC | ESC }

ESC ~ ESC n

ESC o ESC <

ESC =

1.607 List of OSC sequences

OSC sequences are introduced by "ESC]" or its eight bit equivalent, OSC . Former ViNCEd guides handled them as "XTerm
sequences" as part of the ESC sequence list.

OSC sequences are terminated by ST (ASCII 0x9C) or its seven bit equivalent ESC \ , but the Un*x XTerm program uses BEL
(ASCII 0x07) instead for traditional reasons.

ViNCEd allows LF as third (or forth) possible terminator for convenience.

An OSC sequence takes therefore the form

ESC] n;strg ST

where "ESC]" can be substituted by "OSC", and "ST" can be substituted by "BEL", "LF" or its seven bit equivalent "ESC \".

"n" is a numeric parameter describing the desired function:

ESC] 0;strg ST

ESC] 1;strg ST ESC] 2;strg ST

ESC] 3;strg ST ESC] 4;strg ST

ESC] 41;strg ST ESC] 42;strg ST

ESC] 50;strg ST

1.608 Unsupported OSC sequences

Not all OSC sequences of the XTerm are supported, mainly because they are designed for the "X11" graphics system of Unix
and not for Amiga Intuition.

ESC] 10;strg ST ESC] 11;strg ST

ESC] 12;strg ST ESC] 13;strg ST

ESC] 14;strg ST ESC] 15;strg ST

ESC] 16;strg ST ESC] 17;strg ST

ESC] 46;strg ST

VNC 149 / 188

1.609 List of CSI sequences

The complete set of CSI sequences follow. They are all introduced by the CSI code 0x9B (=155 decimal), which can be replaced
by ESC [. As above, "n" is again a number which can be dropped and defaults to one, unless otherwise stated.

The character code of ESC is 0x1B (decimal 27), SPC is again the white space, 0x20 (decimal 32).

CSI n @

CSI n A CSI n B

CSI n C CSI n D

CSI n E CSI n F

CSI n G CSI n;n H

CSI n I CSI n J

CSI n K CSI n L

CSI n M CSI n P

CSI n S CSI n T

CSI reg;r;g;b V CSI n W

CSI n X CSI n Y

CSI n Z CSI n `

CSI c and CSI >c CSI n d

CSI n;n f CSI n g

CSI n h CSI n l

CSI n m CSI n n (various)

CSI n p (various) CSI n q (various)

CSI n;n r CSI SPC s

CSI n t CSI n u

CSI n v CSI n w

CSI n x CSI n y

CSI n { CSI n }

1.610 Sequences that return results

Some CSI sequences not only set some parameters, they also send back some kind of CSI sequence to inform the user of the
result. For example, you may ask ViNCEd to send the current dimension of the window and much more...

The list of the answer back messages can be found in a separate section .

05 ENQ 9A DECID

ESC Z

CSI c and CSI >c

CSI n h CSI n n (various)

CSI n q (various) CSI n {

VNC 150 / 188

1.611 Unsupported CSI sequences

Unsupported CSI sequences, partially conflicting with Commodore sequences, partially depending on 16 bit characters and other
stuff I do not want to implement, or implement fully:

CSI n T

CSI n b CSI n h

CSI n i CSI n n

CSI n m CSI n q

CSI n r CSI n;n s (various)

CSI n;n;n t CSI n x

CSI n |

All tektronix sequences (not listed here) are also not supported.

1.612 Sequences you might receive

Sequences, you might receive thru your input stream additionally to the keyboard functions send to you in the english mode .

Please note that in 7 bit mode , CSI is replaced by ESC [.

CSI n;n V :(V) Version report. Consists of version and revision in this order.

CSI n;n R :(C) Cursor position. Answer of CSI 6n.

CSI n;n H :(V) Cursor position. Answer of CSI >?0n and others.

CSI n;n f :(V) Cursor position. Answer of CSI >?0n and others.

CSI n;n;n;n r :(C) Window bounds report. Answer to CSI 0q and others. The numbers are the upper left edge position and the
height and width of the requested area.

CSI n SPC v :(C)(V) (SPC is the blank space 20, 32 decimal) Copy/paste report. Received if AutoPaste mode flag CSI >?25 is
disabled or block control is completely under user control by the "user block control" mode flag CSI >? 27.

n=0 :(C) Paste n=1 :(V) Copy n=2 :(V) Cut n=3 :(V) Hide n=4 :(V) Select All n=5 :(V) Copy quiet (copy, but do not hide)

CSI n;n;n;n;n;n;n;n | :(C) Raw Event report. Requested by CSI {. Works also in cooked mode. Parameters are the class, subclass,
the code, the qualifier, the position x and y and the seconds and microseconds of the event. For details, study the RKRMs .

The next ones can be heard only in raw mode :

CSI n ~ :(C) Function keys and other special keys.

n=0..9 :(C) Function keys F1 to F10. n=10..19:(C) Shifted function keys F1 to F10. n=20 :(2) Function key F11 (usually not
available) n=21 :(2) Function key F12 (usually not available) n=30 :(2) Function key F11 with shift. n=31 :(2) Function key F12
with shift.

The next ones look unusual, but are sent by ViNCEd depending on the keymap mapping, even with a standard keyboard:

n=40 :(2) Insert n=41 :(2) Page Up n=42 :(2) Page Down n=43 :(2) Pause/Break n=44 :(2) Home n=45 :(2) End

n=50 :(2) Shifted Insert n=51 :(2) Shifted Page Up n=52 :(2) Shifted Page Down n=53 :(2) Shifted Pause/Break n=54 :(2) Shifted
Home n=55 :(2) Shifted End

CSI A :(C) Cursor up CSI B :(C) Cursor down CSI C :(C) Cursor right CSI D :(C) Cursor left CSI T :(C) Shift cursor up.

CSI S :(C) Shift cursor down. CSI SPC @ :(C) Shift cursor right. (Again, SPC is the blank space) CSI SPC A :(C) Shift cursor
left.

CSI Z :(C) Shift TAB

CSI ?~ :(C) Help

VNC 151 / 188

The next sequences can be received only in medium mode . They identify special ViNCEd features and are sent out if an external
shell should run a TAB expansion and others.

CSI id;len;crs U:(V) Medium mode report. Sends this CSI sequence, and the current input line as pure ASCII of the given length
"len", with the relative cursor position "crs" within this line. If "crs" is one, this identifies the cursor to be at the first character
of the line, and so on. "id" specifies what to do with this line, i.e. an feature usually implemented by ViNCEd, which should be
done now by the user shell:

12 : first Tab expansion 13 : first Tab expansion reverse 22 : second Tab expansion 23 : second Tab expansion reverse 32 :
third Tab expansion 33 : third Tab expansion reverse 42 : fourth Tab expansion 43 : fourth Tab expansion reverse 52 : fifth Tab
expansion 53 : fifth Tab expansion reverse

2 : history upwards 3 : history down 4 : search history upwards 5 : search history downwards 6 : recall history upwards 7 : recall
history downwards 10 : rewind history

Except for these control codes, ViNCEd will also send the code 1A in case the Ctrl-Z function is used in the medium mode
instead of executing it.

Another sequence you can hear in english and medium mode is the line-feed character 0A. It is send whenever a new prompt
must be displayed and the mode flag >?29 is high.

The next sequences are answer back sequences of a VT-220 terminal which can be received by ViNCEd as well, provided the
proper control codes are send to it.

CSI ?60 : "This is a VT-220 terminal". Answer of CSI c and ESC Z. CSI " 0n : "Terminal is fine". Answer of CSI 5n. CSI ?11n
: "Printer not ready". Answer of CSI ?15n. CSI ?21n : "User definable keys are locked". Answer of CSI ?21 n. CSI ?27;0n :
"Keyboard language unknown". Answer of CSI ?26 n. CSI >1;vers;revc: Answer of CSI >c .

1.613 List of control sequences the keyboard parser sends and receives

This is the list of the CSI sequences the keyboard parser knows. You shouldn’t print these sequences since they won’t work if
they are found in the output stream. These control sequences are only useful in two situations:

o) In case you’ve selected the english console mode , these sequences will be send to your input stream and encode the enhanced
keyboard functions of ViNCEd.

o) You send a string to the keyboard parser directly. That can be done either by the ESC] 41; escape sequence , by the vnc.library
function DoAsciiData() or by using the dos packet ACTION_SETLINE. This string will be parsed as if it has been typed in by
the user. These functions are, for example, used by the TAB expansion.

The following definitions are used in the table below:

n a decimal number, represented as an ASCII string. CSI CSI control sequence introducer, hex 9B (decimal 155). Can be
substituted by ESC [. ESC Escape character, hex 1B (decimal 27). SPC ASCII blank space hex 20 (decimal 32).

The character in brackets behind the sequence specifies the origin of this sequence:

(C) Commodore, VT-xxx (2) VT-220 standard (V) ViNCEd extension

The characters in square brackets indicate special properties of this keyboard function:

T does not abort TAB expansion S does not snap back the window position to the cursor I executed immediately in type-ahead
mode H does not clear the history search buffer

...and now for the list of keyboard sequences; some of them have replacement sequences; these are indicated in the line below
the definition. Numeric values, as the ASCII values of control characters, are given in hexadecimal.

CSI n D :(C) Cursor Left Even though this looks like the VT-220 output sequence, it works slightly different. It does not move
the cursor across lines. "n" is the number of positions to move, allowed to be zero or negative.

CSI n C :(C) Cursor Right Ditto.

CSI n A :(C) Cursor Up 8D

CSI n B :(C) Cursor Down 84

VNC 152 / 188

CSI 1 E :(V)[H] History Up

CSI 2 E :(V)[H] History Down 12

CSI 1 F :(V)[H] Search Partial Upwards

CSI 2 F :(V)[H] Search Partial Downwards

CSI 3 E :(V)[H] Search History Upwards

CSI 3 F :(V)[H] Search History Downwards

CSI SPC n @ :(C) Half Screen Left The parameter "n" repeats this command "n" times.

CSI SPC n A :(C) Half Screen Right Ditto.

CSI n T :(C) Half Screen Up The parameter "n" repeats this command "n" times. CSI 41~ :(2) Half Screen Up Identically to
above, but "n" is always one.

CSI n S :(C) Half Screen Down CSI 42~ :(2) Half Screen Down

CSI 6 E :(V) To Left Border 01

CSI 6F :(V) To Right Border 1A

CSI 54~ :(2) To Top of Screen

CSI 55~ :(2) To Bottom of Screen

CSI 4 E :(V) Prev Word

CSI 4 F :(V) Next Word

CSI 5 E :(V) Prev Component

CSI 5 F :(V) Next Component

CSI 44~ :(2) Home

CSI 45~ :(2) End

CSI 7 E :(V)[S] Scroll Up CSI 51~ :(2)[S]

CSI 7 F :(V)[S] Scroll Down CSI 52~ :(2)[S]

CSI 8 E :(V) Scroll Half Screen Up

CSI 8 F :(V) Scroll Half Screen Down

CSI 10 J :(V) Send Inputs 0D

CSI 11 J :(V) Split Line 85

CSI 12 J :(V) Insert ˆJ

CSI 13 J :(V) Line Feed 0A

CSI 20 J :(V) Send Complete Line

CSI n I :(V) TAB Forwards 09 n is again the number of TABs to move. Can be zero or negative.

CSI n Z :(2) TAB Backwards n may be again zero or negative.

CSI 12 W :(V)[T] Expand Path

CSI 13 W :(V)[T] Expand Backwards

CSI 22 W :(V)[T] Expand Short

CSI 23 W :(V)[T] Expand Short Bkwds

CSI 32 W :(V)[T] Expand Devices

CSI 33 W :(V)[T] Expand Devs Bkwds

CSI 42 W :(V)[T] Expand Dirs

VNC 153 / 188

CSI 43 W :(V)[T] Expand Dirs Bkwds

CSI 52 W :(V)[T] Expand Icons

CSI 53 W :(V)[T] Expand Icons Bkwds

CSI 62 W :(V)[T] Expand Alt

CSI 63 W :(V)[T] Expand Alt Bkwds

03 :(C)[TSI] Send ˆC

04 :(C)[TSI] Send ˆD

05 :(C)[TSI] Send ˆE

06 :(C)[TSI] Send ˆF

CSI 13 Y :(V)[TSI] Send ˆC to All

CSI 14 Y :(V)[TSI] Send ˆD to All

CSI 15 Y :(V)[TSI] Send ˆE to All

CSI 16 Y :(V)[TSI] Send ˆF to All

7F :(C) Delete Forwards

08 :(C) Delete Backwards

CSI 2 K :(V) Delete Full Line

CSI 12 K :(V) Cut Full Line

CSI 3 K :(V) Delete Inputs

CSI 13 K :(V) Cut Inputs

CSI 5 K :(V) Delete Word Fwds

CSI 15 K :(V) Cut Word Fwds

CSI 6 K :(V) Delete Word Bkwds 17

CSI 16 K :(V) Cut Word Bkwds

CSI 7 K :(V) Delete Component Fwds

CSI 17 K :(V) Cut Component Fwds

CSI 8 K :(V) Delete Component Bkwds

CSI 18 K :(V) Cut Component Bkwds

CSI 0 K :(2) Delete End of Line

CSI 10 K :(V) Cut End of Line 0B :(C) Cut End of Line

CSI 1 K :(2) Delete Start of Line

CSI 11 K :(V) Cut Start of Line 15 :(C) Cut Start of Line

CSI 9K :(V) Delete End of Display

0C :(C) Form Feed

CSI 20 K :(V) Clear Screen

CSI 2 v :(V) Cut

CSI 1 v :(V)[TS] Copy

CSI 0 v :(C) Paste

CSI 3 v :(V)[TS] Hide

CSI 4 v :(V)[TS] Select All

VNC 154 / 188

CSI 5 v :(V)[TS] Copy Quiet

CSI 18 W :(V) Reset

CSI 28 W :(V) Full Reset

CSI 19 W :(V) Iconify

CSI 30 W :(V)[TS] Toggle Esc

CSI 20 W :(V)[TS] Toggle Numlock

CSI 40~ :(2) Toggle Overwrite

13 :(C)[TSI] Suspend

11 :(C)[TSI] Resume

CSI 14 W :(V)[S] Abort Expansion

CSI 0 E :(V)[T] Scroll to Cursor

02 :(C) Rewind History

19 :(C) Yank

1C :(C) Generate EOF

CSI n~ :(C) Function key "n", or function key "n" shifted. Check the received CSI sequences list for details.

07 :(C) Display Beep

CSI 43~ :(V)[TSI] Toggle Pause

CSI ?~ :(C) Help

CSI 17 Y :(V) Fork New Shell

CSI 21 W :(V) Insert CSI

CSI 31 W :(V) Insert ESC

1.614 ANSI Colors

By using the "set render" CSI sequence , you’re able to specify colors - or more precisely - pen values in which the text has to be
rendered. However, how the arguments of the CSI m sequence are used depends on whether the "ANSI coloring" is enabled or
not.

In the default mode - which is compatible to the old console device - the color numbers mean simply the hardware pen to use to
render the text, whichever color has been loaded into the hardware register.

However, if you select the "ANSI coloring", these arguments specify one of the sixteen pre-definable color values and are not
related to the hardware register used to display this color on the screen. One possibility to choose these colors, which is also the
default, is to use the pre-defined standard "ANSI colors". Additionally, the standard color layout is chosen - to match the ANSI
specifications, namely text in pen 7, white, on background in pen 0, black.

The ANSI coloring is available either as default , or as an option in the open path , or can be selected by an CSI sequence , online.

The following table gives an overview about the ANSI color definitions and how they are activated. The first eight colors are
compatible to the ANSI standard; you may, however, still define them yourself, check the second window page of SetVNC. The
colors 8 to 15 are ViNCEd extensions to the standard.

ANSI Color Activated by for foreground for container for background __

0 black CSI 30 m CSI 40 m CSI >0 m CSI ?30 m CSI 40 m

1 red CSI 31 m CSI 41 m CSI >1 m CSI ?31 m CSI ?41 m

2 green CSI 32 m CSI 42 m CSI >2 m CSI ?32 m CSI ?42 m

VNC 155 / 188

3 yellow CSI 33 m CSI 43 m CSI >3 m CSI ?33 m CSI ?43 m

4 blue CSI 34 m CSI 44 m CSI >4 m CSI ?34 m CSI ?44 m

5 magenta CSI 35 m CSI 45 m CSI >5 m CSI ?35 m CSI ?45 m

6 turquoise CSI 36 m CSI 46 m CSI >6 m CSI ?36 m CSI ?46 m

7 white CSI 37 m CSI 47 m CSI >7 m CSI ?37 m CSI ?47 m

The arguments in the range 30..37 set the foreground color, the range 40..47 is responsible for the background color. The
sequences of the type "CSI > _ m" select the window fill color. The similar control sequences with the additional question mark
"CSI ?_ m" set the color for the user input only.

The following pens are defined for ViNCEd, and are NOT ANSI standard, nor CON: compatible. They work ONLY in ViNCEd
windows:

ViNCEd Color Activated by for foreground for container for background __

8 grey CSI 38 m CSI 48 m CSI >8 m CSI ?38 m CSI 48 m

9 pink CSI 59 m CSI 79 m CSI >9 m CSI ?59 m CSI ?79 m

10 spring green CSI 60 m CSI 80 m CSI >10 m CSI ?60 m CSI ?80 m

11 orange CSI 61 m CSI 81 m CSI >11 m CSI ?61 m CSI ?81 m

12 sky blue CSI 62 m CSI 82 m CSI >12 m CSI ?62 m CSI ?82 m

13 violet CSI 63 m CSI 83 m CSI >13 m CSI ?63 m CSI ?83 m

14 neon green CSI 64 m CSI 84 m CSI >14 m CSI ?64 m CSI ?84 m

15 light gray CSI 65 m CSI 85 m CSI >15 m CSI ?65 m CSI ?85 m

This ANSI coloring works ONLY for Kickstart releases 3.0 (39.xx) and up since the necessary system functions are not available
in earlier releases.

REMARK: You may alter the ANSI color layout, i.e. the colors that ViNCEd chooses for the ANSI pens. This works either with
the private CSI sequence "CSI V" or by using the prefs editor SetVNC , the second "Window" page.

REMEMBER: ViNCEd TRIES its best to find colors that look like the definitions above, but this isn’t always possible. Don’t
expect miracles, on a four color screen screen you’ll only see four different colors, not more! If there isn’t a red color, then...
THAT’s IT.

The ANSI colors are mapped to the most similar looking screen pens, regardless if they look "similar" at all. ANSI "red" might
get mapped into grey if nothing "more red-ish" is available.

ViNCEd uses shared pens for the ANSI coloring, but tries to allocate more pens if no matching color can be found. Remember
that this might be impossible if either the screen has a very low depth or other programs running on the same screen allocated
pens as well.

If you want all ANSI colors, or as much as possible, open ViNCEd on a private or public screen, read the window path section
on how to do this. Then define colors to be used by ViNCEd on this screen, by using the preference editor, again on the 2nd
window page .

ViNCEd might choose not to allocate additional pens for the ANSI colors if "sufficient" matches are found. This depends not only
on if more pens are available, but also on the depth of the screen. ViNCEd is more tolerant on a screen of low depth! For example,
ViNCEd usually won’t allocate ANY ANSI colors on screens of depth three (eight pens) or below, leaving the additional pens
to other purposes. IF you want to use ALL pens as ANSI pens, YOU HAVE TO DEFINE THE COLORS EXPLICITLY, again
with SetVNC .

I would suggest to leave the first four colors alone, and fill in the remaining colors to get a perfect ANSI match. If, for example,
you’re working with the standard CBM workbench layout, a blue, white, grey and black color is already available. Define colors
four and up as the missing colors, namely red, yellow, green, magenta and turquois for a full ANSI set, and additionally light
blue, pink, neon green, spring green, orange, dark green and violet for a full ViNCEd set of colors.

VNC 156 / 188

1.615 Mouse Tracking

ViNCEd 3.70 supports so called "Mouse Tracking" CSI sequences. With these control sequences, you can ask ViNCEd to inform
you - or your program - if the user moves the mouse, or clicks onto a character in the window. These functions are most useful
to implement "block operations" in an editor, or to drive an interactive, character based user interface.

ViNCEd supports X10, XTerm and XTerm-2 mouse tracking plus some minor additions, except for the "Mouse hilite tracking"
which does not fit very well into the intuition user interface rules.

X10 mouse tracking is enabled by CSI?9h and disabled by CSI?9l. If enabled, ViNCEd sends the following six character control
sequence if one of the mouse buttons is pressed:

ESC [M bxy (6 characters)

b encodes the mouse button which was pressed, it is set to SPC (blank space, ASCII 32 = 0x20) for the leftmost button. Other
values are "!" (exclamation mark) for the middle button and "\"" (double quotes) for the right mouse button. Since the right
mouse button is tracked by intuition and the middle mouse button is used for insertion and other ViNCEd internal purposes, only
the left mouse button is currently tracked, all other mouse button presses are not reported.

x is the x coordinate of the character over which the mouse pointer has been pressed. As always for the terminal interface, it
counts from one for the leftmost character to "width" for the rightmost character. Note that this is really a character offset, not
a pixel position! The position is not encoded as a readable decimal ASCII number string, but as a single ASCII character by
adding the absolute position to 32=0x20 (ASCII blank space, SPC) and encoding the result as ASCII character, i.e. "!" = 0x21
means one, "#" is three, etc.

y is the y coordinate of the character over which the mouse has been pressed.

X10 mouse events are not reported in case the mouse button was pushed outside of the printable area of the window, and if the
mouse button is released or the mouse is moved. Furthermore, the mouse position does not include horizontal scrolling, but
encodes the "graphical" offset of the position to the left window border.

Normal XTerm tracking is enabled by CSI?1000h and disabled by CSI?1000l. Unlike the X10 reports, mouse button presses and
releases are sent, but no mouse moves. On such an event, the following 6 character sequence will be generated:

ESC [M bxy (6 characters)

x and y encode again the mouse position by one character ASCII codes in the same way as above, except that x includes now the
horizontal scroll offset such that this is a true character position as it is addressable by CSI H for example.

b is the button and qualifier variable. The low two bits of b encode button information:

Bit 0 and 1: Encode the button push and release. Set to 0 if the left mouse button was pressed 1 if the middle mouse button was
pressed 2 if the right mouse button was pressed 3 if any button was released.

Since ViNCEd and intuition filter the right and middle mouse buttons before mouse tracking can grab them, the values 1 and 2
never show up.

Bit 2: Set if either Shift key was hold down. Bit 3: Set if either Alt key was hold down. On Un*x machines, this encodes the
"Meta" key. Bit 4: Set if the Ctrl key is held down.

Similar to the X10 mouse tracking, only mouse button presses within the text region of the window are recognized. If the mouse
button is released while the pointer is outside of the window or the text area, ViNCEd will truncate the mouse coordinates to the
inner dimensions of the window, and will send the mouse button report in all cases. This was mainly done to be able to drive
a "state machine" such that every mouse button press is guaranteed to be paired by a mouse button release. Mouse movement
reports are not sent.

XTerm hilite tracking CSI?1001h is not supported because it requires a type of interaction of the client program with the console
which does not fit into the intuition input mechanisms and because it could hang the computer in worst case. I don’t see a useful
application for it anyhow.

XTerm-2 mouse tracking is enabled by CSI?1002h and is disabled by CSI?1002l. It is similar to XTerm mouse tracking except
that ViNCEd sends also mouse movement reports in case the mouse button is held down while "dragging" with the mouse pointer.
This makes this kind of mouse tracking perfect for editors with "Cut/Copy" clipboard support and block marking.

On "dragging", the following six-term sequence is sent to the client:

VNC 157 / 188

ESC [M bxy (6 characters)

x, y and b are as above, except that bit 5 of the button qualifier b is set, too, to indicate an active "dragging". Furthermore, this
sequence is only send in case the mouse pointer really moved relative to the last position, to avoid unnecessary overhead and
trashing of the input buffer of the client.

The x and y positions are truncated to the text area bounds in VT-220 mode because this is how XTerm-2 would react. This is
unfortunately inconvenient if "scrolling by dragging" should be supported, i.e. the window contents should be scrolled in case
the mouse pointer leaves the printable window area. Therefore, ViNCEd reacts a bit different if the VT-220 mode is disabled:
Instead of truncating to the inner text dimensions, mouse positions are truncated to an enlarged region which is one character
position wider on the left, right, upper and lower edge. This means that an x position of "0", encoded as ASCII SPC (blank space)
is sent in case the mouse pointer is left to the left edge, or reports "width+1" in case it is beyond the right edge. Just the same
holds for the y coordinate. An editor could use this information to scroll the window contents in the desired direction.

1.616 Console Modes

For short, ViNCEd has four where the standard terminal has only two.

But I guess I should first give an explanation what is this about:

The standard Amiga Os comes with two "flavours" of window handlers, the "CON:" handler and the "RAW:" handler. Both are
actually handled by the same program and you can therefore convert a "CON:" window into a "RAW:" window and vice versa.
The difference between the two is how they handle input.

In "RAW" mode, each key press is send immediately to the input stream of a waiting program, and none of these key presses is
echoed on the screen. It’s the matter of the program of do that. "RAW" mode has very little to offer, all has to be done by the
external program using the console - read key-press by key-press and decide what to do about it. This mode is, however, very
adapted for running an editor in the console since it gives full control over what is printed on the screen at which time and where.

The "CON" mode is different from that. Usually, no inputs are send to the input stream of a program at all. Instead, the console
lets you edit a line as a whole, including all the nice editor features of ViNCEd like delete characters, insert some, go back in the
history and much more. Then, if you press Return, the collected inputs on one line are send back to the program as a complete
line. The shell uses this mode since it is more convenient to leave all the troublesome editor features for the console and care
only for parsing complete shell lines. This mode is also called the "canonical mode", or the "cooked mode" - because it is "not
raw". The ViNCEd convention for this mode is "well done" for a reason you’ll be able to understand in a second.

ViNCEd has more to offer than just "raw" and "cooked". There’s something in between.

The raw mode:

This works as explained above. All key presses are directly send to the input stream, without any buffering. However, to be
compatible to the standard console, no extended ViNCEd key codes are send back, only standard functions will be available.
Your ViNCEd keyboard definitions won’t be used by this mode. All this, as I said, for compatibility since a program might not
expect some unusual CSI sequences.

The english mode:

This is "almost raw"; it works like the raw mode above, except that all the ViNCEd extended keyboard CSI sequences are
send as well. An extended editor may profit quite a lot from that, as it will be able to receive sequences as "move to the home
position", "toggle overwrite mode", "move to the next word" and so on. An editor using these functions need not to offer a
separate keyboard editor because this is already setup and controlled by ViNCEd.

The medium mode:

This is "almost cooked"; it works like the "cooked" = "well done" mode below, except that ViNCEd does not provide the TAB
expansion , history and job control ; I don’t like the way how these functions are currently implemented because these are features
the shell - and not the shell editor - should provide. In case any of these functions is used, ViNCEd will not perform them, but
will send on a CSI sequence to tell the shell to do so; this sequence will include the complete line you’ve entered so far. It’s the
matter of the shell to extract the right information. Except for that, this mode works like the "well done" mode below.

A future "VinShell" ("Vinchy") might make use of this mode. It offers the flexibility of the "raw mode" and the convenience of
the "well done" mode.

VNC 158 / 188

The well done mode:

This is what was usually called the "cooked mode". (However, you don’t "cook" steaks, they are "well done" in case you haven’t
noticed the origin of the mode names ;-). All user inputs are buffered, the console provides additional functions like the TAB
expansion and Job Control . The way how this is implemented must be called "a hack", but it is the only way to make this
compatible to the standard Amiga Shell. It is fully backwards compatible to the old console "cooked" mode.

For experts: The console modes can be selected with the dos packet "ACTION_SCREEN_MODE". The following mode IDs
have been defined in "vnc/packets.h":

VNC_RAW_MODE

Equals one. The standard "raw" mode. The same value goes for the standard CON: handler as well.

VNC_WELL_DONE_MODE

Is zero. This is the "cooked" or "well done" mode; identical to the identifier for the old CON:-handler.

VNC_ENGLISH_MODE

This is three and identifies the english mode.

VNC_MEDIUM_MODE

This is two and identifies the medium mode.

1.617 List of understood DOS packets

This is the list of packets understood by ViNCEd together with their parameters. More can be found in "vnc/packets.h"

ACTION_WRITE:

dp_Type: 0x57 dp_Arg1: filehandle -> fh_Arg1 dp_Arg2: char * to buffer dp_Arg3: number of characters to print

dp_Res1: number of characters written, or -1 on error dp_Res2: error code

Write characters to the ViNCEd console.

ACTION_READ:

dp_Type: 0x52 dp_Arg1: filehandle -> fh_Arg1 dp_Arg2: char * to buffer dp_Arg3: size of buffer

dp_Res1: number of characters read, could be less than Arg3, is zero if "End of File" is detected, is -1 if an error was detected
dp_Res2: error code

Read characters or complete lines from the ViNCEd console.

ACTION_WAIT_CHAR:

dp_Type: 0x14 dp_Arg1: timeout period in microseconds

dp_Res1: success code; DOSFALSE if no characters present, or DOSTRUE if characters available dp_Res2: error code if
dp_Res1 DOSFALSE number of inputs lines queued if dp_Res2 DOSTRUE This is an ugly hack to make the ARexx Lines()
function working. Do not depend on this.

Wait a specified timeout period for characters to be available in the ViNCEd output buffer. Return DOSFALSE if the output
buffer (hence your input buffer) remains empty. Returns DOSTRUE if characters are available. The number of available lines in
the output buffer will be returned in dp_Res2. However, this is a hack to keep ARexx happy you should not depend on in future
versions. The output buffer of ViNCEd is character oriented, not line oriented.

ACTION_DISK_INFO:

dp_Type: 0x19 dp_Arg1: BPTR struct InfoData. This structure is filled as follows:

id_DiskType either CON\0 or RAW\0 dependent on the console mode. id_VolumeNode the pointer to the intuition window used
by ViNCEd id_InUse the pointer to an struct IORequest opened for the console.device

all other fields are zero.

VNC 159 / 188

dp_Res1: success code, DOSTRUE or DOSFALSE. You NEED to care about DOSFALSE! ViNCEd might be unable to open a
window if the system is too low on memory. dp_Res2: an error code.

BIG BIG WARNING:

THIS PACKET IS A MESS. DO NOT USE THIS PACKET UNLESS YOU CALL ACTION_UNDISK_INFO, too.

This packet will pop-open the window in case it has been closed or iconified because certain programs depend on an correctly
setup pointer in the structure above. Do not use the IO request structure. Sending out read or write requests in ViNCEd won’t do
good. ViNCEd windows are not handled by the console device. The id_DiskType is set to CON\0 (four characters packed into
one long word) for the medium mode or the well done mode . It is set to RAW\0 otherwise.

This packet is a big mess. If you MUST use it, call ACTION_UNDISK_INFO afterwards. If you want to set the keyboard or the
font, DO NOT MESS with this packet. Use the documented ESC codes to set these properties.

ACTION_UNDISK_INFO

dp_Type: 0x201

dp_Res1: DOSTRUE or DOSFALSE dp_Res2: error code

This packet un-does the side effects of ACTION_DISK_INFO. The window will be allowed to closed or iconified after this
packet has been received. Each ACTION_DISK_INFO must be matched by one and exactly one ACTION_UNDISK_INFO.

ACTION_TIMER

dp_Type: 0x1e

Internal use only, do not send this packet type. This is intentionally undocumented.

ACTION_SCREEN_MODE

dp_Type: 0x3e2 dp_Arg1: the screen mode to select

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code in case of failure

This packet selects a different console mode for the stream associated to this packet. The following modes are available:

VNC_RAW_MODE =1 raw mode, unbuffered, single character mode, only CBM control sequences are send VNC_ENGLISH_MODE
=3 english mode, unbuffered, single character mode, extended ViNCEd settings are send as well VNC_MEDIUM_MODE =2
medium mode, line buffered. TAB expansion, history, job control and other functions are no longer executed by ViNCEd, but left
to the shell by sending out CSI sequences . VNC_WELL_DONE_MODE=0 the well done mode, usually known as the "cooked
mode"

ACTION_FINDUPDATE ACTION_FINDINPUT ACTION_FINDOUTPUT

dp_Type: 0x3ec,0x3ed,0x3ee dp_Arg1: BPTR to struct FileHandle dp_Arg2: set this to NULL dp_Arg3: BPTR to a BCPL
string containing the window path .

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

This opens a ViNCEd window. Unlike for the original CON: handler, the window path *must* be given here; the window won’t
be opened just because you called DeviceProc() - that’s different compared to the original handler. The type specified for the
stream won’t matter, all three codes work alike. The following special names are available:

"*" Opens a stream to the owner of the same owner that send this packet. "CONSOLE:" Opens a stream to the NULL owner.
"CONSOLE:name" Opens a stream to a named owner.

None of the two last names sends the given stream to foreground mode, so beware! You need to send ACTION_SET_OWNER
to do that.

ACTION_SEEK (V)

dp_Type: 0x3f0 dp_Arg1: filehandle -> fh_Arg1 dp_Arg2: offset dp_Arg3: seek mode

dp_Res1: absolute file position before seek operation took place or -1 on error dp_Res2: error code

No, that’s not a typo. ViNCEd allows seeking in its output stream. If you seek towards the end, the data that was "sought over"
will not be read and kind of "put back" for later usage. I don’t know if this is useful or not, but using this Seek() operation, it
is possible to determinate the number of characters in the ViNCEd input buffer. At least, this packet is implemented since VNC
1.00.

VNC 160 / 188

ACTION_CHANGE_SIGNAL

dp_Type: 0x3e3 dp_Arg1: filehandle -> fh_Arg1 dp_Arg2: struct MessagePort * dp_Arg3: set this to NULL

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: struct MsgPort * to port used before if dp_Res1 is DOSTRUE, or
error code if DOSFALSE

dp_Arg2 may be set to NULL to read the current port.

This command selects a port - and therefore a task - to send Ctrl-C and the other break signals to. This port must be an
ACTION_SIGNAL type port.

This command is "a nice idea" but not much more; it cannot be implemented strictly. ViNCEd does also have to send the break
signal to the last program that printed on the ViNCEd screen. This is an ugly hack also implemented in the original CON: handler
for pre-2.0 programs. To avoid possible mess, ViNCEd checks the port to break to on every "Break" signal carefully if it is valid,
but still: In case you selected a break-port with this packet and the port is about to disappear, reset the break-port by this packet
to some useful value.

ACTION_NIL

dp_Type: 0x0

This is an internal packet and intentionally undocumented.

ACTION_SETLINE (also known as ACTION_FORCE)

dp_Type: 0x7d1 dp_Arg1: filehandle -> fh_Arg1 dp_Arg2: char * to a buffer dp_Arg3: number of characters

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

This packet sends characters to the ViNCEd internal keyboard buffer as if they have been typed. All ViNCEd keyboard CSI
sequences may be specified here. The LF "line feed" character will be replaced by "CR", the Return key.

This packet IS multithreaded, but there is only one thread per ViNCEd window.

If you want one thread per owner, use the "ESC] 41" ESC sequence which is the recommended method.

ACTION_PUSHLINE (also known as ACTION_STACK)

dp_Type: 0x7d2 dp_Arg1: filehandle -> fh_Type dp_Arg2: char * to a buffer dp_Arg3: number of characters

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

Pushes the buffer data at the end of the ViNCEd output (hence your input) buffer, in LIFO order. This is used for the ARexx
"PUSH" command. However, since the ARexx DoPkt routine is buggy, this works only reliable if the ARexx fix in the ViNCEd
archive has been applied. This bug is NOT ViNCEd related, it happens, too, with the original CON: handler.

ACTION_QUEUELINE (also known as ACTION_QUEUE)

dp_Type: 0x7d3 dp_Arg1: filehandle -> fh_Type dp_Arg2: char * to a buffer dp_Arg3: number of characters

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

Queues the buffer data at the beginning of the ViNCEd output (hence your input) buffer, in FIFO order. This is used for the
Arexx "QUEUE" command. However, since the ARexx DoPkt routine is buggy, this works only reliable if the ARexx fix in the
ViNCEd archive has been applied. This bug is NOT ViNCEd related, it happens, too, with the original CON: handler.

ACTION_EXPANDLINE

dp_Type: 0x7db dp_Arg1: filehandle -> fh_Arg1 dp_Arg2: char * to a buffer dp_Arg3: number of characters

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

This packet sends characters to the ViNCEd internal keyboard buffer as if they have been typed. All ViNCEd keyboard CSI
sequences may be specified here. The LF "line feed" character will be replaced by "CR", the Return key.

This is identically to ACTION_SETLINE except that the TAB expansion is not aborted, even though some "typing is done on
the keyboard".

This packet IS multithreaded, but there is only one thread per ViNCEd window.

If you want one thread per owner, use the "ESC] 41" ESC sequence .

VNC 161 / 188

This function should be used exclusively by an alternative external TAB expansion patched into the vnc.library.

ACTION_CLEARLINE

dp_Type: 0x7dc dp_Arg1: filehandle -> fh_Type

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

Removes all input from the user input line and rewinds the history.

This function uses the same thread as ACTION_SETLINE and ACTION_EXPANDLINE, so handle with care! This aborts, too,
the TAB expansion.

Note: There is little use of this packet since quite the same can be done by inserting ASCII 02, the rewind history keyboard
function, in the keyboard buffer with ACTION_SETLINE. Read the keyboard CSI list for details.

ACTION_SENDID

dp_Type: 0x1f8

dp_Res1: A pointer to the cn_Window structure, the main structure of ViNCEd. See "vnc/window.h". dp_Res2: The size of this
structure.

Request a pointer to the ViNCEd main structure handling the current window; this structure is documented in "vnc/window.h".

Do not modify or read fields from this structure unless you’ve called the vnc.lib LockWindow() function to arbitrate access. This
is the structure that must be passed in register a5 for most vnc.library functions. C authors might prefer to use the link library
SetCNWindow() function.

ACTION_CURRENT_VOLUME

dp_Type: 0x7 dp_Arg1: filehandle -> fh_Arg1

dp_Res1: A BPTR to the struct DeviceList, the handler entry of ViNCEd. dp_Res2: set to NULL

Sending this packet does not make too much sense anyways. This is actually a file system packet that is only implemented for
completeness.

ACTION_DIE

dp_Type: 0x5

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

Shutdown ViNCEd completely, if possible.

This packet tries to cancel this running handler task. However, this is only successful if no streams are open, plus some other
peculiarities. It returns DOSTRUE if "it thinks" the handler could be shutdown. This is not guaranteed, even in that case. If
another packet is still in the input queue at the time this packet was sent, the shutdown request will be canceled, as well as by
some other external occurrences.

ACTION_FLUSH

dp_Type: 0x1b

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

Refreshes the ViNCEd window. Useful if scrolling is delayed and something important must be shown immediately.

This packet returns always DOSTRUE.

ACTION_ABORT

dp_Type: 0x200

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

Aborts all pending packets of the owner this packet was sent from. This makes only sense if the packets were send asyn-
chronously, see below.

ACTION_SET_OWNER

dp_Type: 0x40c dp_Arg1: mode, see below dp_Arg2: char * name

VNC 162 / 188

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

This packet is actually a filing system packet; it is here abused to set the foreground ViNCEd owner .

The "mode" parameter must be zero, the "name" argument points to a C-style string (no BSTR, no BPTR!) of the name of the
owner to be set to foreground. This can be NULL or a pointer to an empty string to select the NULL owner.

This packet is used by the vnc.library calls "Foreground()" and "Background()" for the job control functions.

ACTION_LIST_TO_LOCK

dp_Type: 0x202

This packet is internal use only. Do not send it.

ACTION_EXAMINE_OBJECT

dp_Type: 0x17

This packet is internal use only; it is intentionally undocumented.

ACTION_EXAMINE_NEXT

dp_Type: 0x18

This packet is internal use only; intentionally undocumented.

ACTION_FREE_LOCK

dp_Type: 0xf

Internal use only.

ACTION_COPY_DIR

dp_Type: 0x13

Internal use only.

ACTION_LOCATE_OBJECT

dp_Type: 0x8

Internal use only.

ACTION_IS_FILESYSTEM

dp_Type: 0x403

dp_Res1: DOSFALSE dp_Res2: error code, set to zero.

Check whether ViNCEd is a filing system. Answer is "no".

ACTION_SET_COMMENT

dp_Type: 0x1c dp_Arg1: set to NULL dp_Arg2: set to NULL dp_Arg3: set to NULL dp_Arg4: BPTR to BSTR

dp_Res1: success code, DOSTRUE or DOSFALSE dp_Res2: error code

This sets the window title to the supplied string; this string may contain all control characters found in the window title .

NOTE: This packet is left over from the "ConMan" handler. You should better use the documented Esc sequence "ESC] 2;" to
set the window title.

ACTION_TABHOOK_RETURN

dp_Type: 0x802

Internal use only. Do not send.

ACTION_SEND_CHARLINE

dp_Type: 0x803

Internal use only. Do not send.

VNC 163 / 188

ACTION_GET_DISK_FSSM

dp_Type: 0x1069

dp_Res1: NULL dp_Res2: ERROR_OBJECT_WRONG_TYPE

This packet is used for filing systems and should return the file system startup message. Since ViNCEd is no filing system, this
packet fails.

Other goodies:

ViNCEd supports so called "asynchronous packets". These are packets not delivered by the DoPkt() function, but build by
the vnc.library, put into the input queue of ViNCEd, that return immediately and that you can forget about. The action they
perform is delayed and they get executed whenever ViNCEd has some time. These packets are sent by the vnc.library function
"SendAsyncPacket()". Check the autodocs for details; do not attempt to roll these packets on your own.

Just for completeness:

These packets are identified by setting the bit 31 of dp_Type to 1.

Owner identification:

ViNCEd identifies the owner a packet was sent from by the dp_Port reply port in the DosPacket structure. ViNCEd does not
provide a single port packets are collected from, but one port per owner. That means especially that you do not get the address of
the handler task if you subtract 0x5c from the address of the port, as mentioned in Ralph Babel’s "Guru Book". This is definitely
one of his lesser smart ideas...

The method which should be preferred is to check whether mp_Flags is PA_SIGNAL, then read the "mp_SigTask" field of the
port, which will always point to the handler managing the port.

1.618 What is a ViNCEd owner, please?

What are owners?

Owners are groups of processes sharing the meaning of foreground and background. A set of processes, called one owner, can
be set to background, i.e. set to receive no user input and can’t print to the console, while a second is put to foreground to hear
the users commands. At least one owner is always present: This is the NULL owner, setup once you open a ViNCEd stream.

Owners not only share the foreground/background property, but also one "thread" of the multi-threaded ESC/CSI sequence parser.
ViNCEd cannot be confused by garbled ESC-sequences that come from more than one process. (Yeah, like a real file system this
part of ViNCEd is multi-threated!)

How are "owners" identified?

This is done by another new feature, "named CONSOLE"s. If a program opens a new handle to the current console window,
this is usually done by the file name "*", or "CONSOLE:" under 2.0 and up. The name "*" will open a stream to the owner the
opening process is already part of. "CONSOLE:", however, will identify the NULL owner.

To create a new owner that can be distinguished from the default one, use the named consoles. Open a path like

CONSOLE:name

where "name" is some unique name used to identify your process or process group. If not already created, a new owner will be
constructed by ViNCEd, and your process will be added to this owner. As a default, this new owner is not put into foreground, to
do this use the vnc.library functions "Foreground()" and "Background()". They receive as arguments the stream resulting in the
open call.

Which owner do I get when I open a unnamed console?

This depends on:

1) whether you open your stream with "*" or with "CONSOLE:"

2) The setting of your processes "pr_ConsoleTask"s field.

If you choose the name "CONSOLE:" you get always the NULL owner that is created every time a new ViNCEd window opens
- and that is usually under the control of the shell.

VNC 164 / 188

If you choose the "*" name, the owner belonging to the controlling console of your task is used. If opening a new owner, put
the contents of the file handles "fh_Type" field into "pr_ConsoleTask", and every stream opened with "*" will belong to the new
owner.

The following code segment opens a new file, creates a new owner, puts it into foreground and sets the controlling terminal to
the new owner:

BPTR stream; struct Process *myproc; struct MsgPort *owner;

stream=Open("CONSOLE:myowner",MODE_OLDFILE); if (stream) { myproc=(struct Process *)(FindTask(NULL)); owner=((struct
FileHandle *)(BADDR(stream)))->fh_Type; myproc->pr_ConsoleTask=owner; Foreground(stream); }

Just for the case you missed that: Creating a new owner does not bring this owner in foreground, and printing to that owner
without further preparation will suspend, i.e. halt you process. You have to bring it to foreground FIRST. As a side effect, all
other owners are then in background, and hence even the shell can’t trash your outputs.

Another remark: The message pointer called "owner" in the code above is not really the ViNCEd-Owner structure, but if you
send your packets to that port, they get identified with the right ViNCEd owner.

What actually happens when I press Ctrl-Z?

A new named owner with a unique name is created by opening a named console like above, it is send to foreground, and a new
shell process is forked with the terminal process set to the new stream.

A second remark: This job control is still in a somewhat "experimental phase". ViNCEd tries to do this as safe as possible, and
for that reason it is not possible to interrupt a program with Ctrl-Z if it is in an "unstable phase" of working. The job control
never caused a crash on my system, but it is still a bit picky about the "stability" of the interrupted process. If you have better
ideas how to do this stuff, have a look at the vnc.library, especially the entry point "CtrlZSuspend()". Write better code and patch
the library, if you can!

1.619 List of Gurus thrown by ViNCEd

As every shared library, ViNCEd can produce as a last help, software failures (so called "Guru meditations"). They all start with
the ID

0x1e000000

and above. This might be a bit unusual to a library if you read how these failure codes should be constructed, but it I considered
converting ViNCEd into a device as a replacement for the console.device.

Here’s the list:

0x1e000005 ViNCEd could not find a owner that has to be removed in its hash list. 0x1e000008 The ViNCEd library open
semaphore is damaged.

0x1e01000e The message queue lacks memory. 0x1e010001 No memory for IO structures. 0x1e01000f ViNCEd failed to cre-
ate the VNCClip.supervisor. 0x1e018005 Somebody tried to free memory not under control of the ViNCEd memory manager.
0x1e038002 ViNCEd could not open the graphics.library. 0x1e038003 ViNCEd could not open the layers.library. 0x1e038004
ViNCEd could not open the intuition.library. 0x1e038007 ViNCEd could not open the dos.library. 0x1e138007 The PostRemove()
procedure could not open dos.library. 0x1e038009 ViNCEd could not open the icon.library. 0x1e03800c ViNCEd could not open
the utility.library. 0x1e038014 ViNCEd could not open the gadtools.library. 0x1e038019 ViNCEd could not open the work-
bench.library. 0x1e03801e The handler part of ViNCEd failed to open the vnc.library. 0x1e038204 The ButtonTextClass could
not be created. 0x1e048035 ViNCEd failed to open the input.device. 0x1e048011 ViNCEd failed to open the console.device.
0x1e060001 ViNCEd failed to install its input handlers. 0x1e060002 ViNCEd failed to remove its input handlers. 0x1e060003
Qpkt-failure: ViNCEd send a request to the timer device but received a different one. 0x1e060004 The VNCFiler.supervisor
received a command from a window it does not control. 0x1e060006 The VNCFiler.supervisor received an illegal command.
0x1e060016 The VNCFiler.supervisor received an invalid message. 0x1e060013 Qpkt-failure: FindCNWindow received not
its own message. 0x1e060023 Qpkt-failure: DoAsciiData received not its own message. 0x1e060026 A required TABHook
packet was not available. 0x1e060033 ViNCEd received an invalid ACTION_TabHookReturn packet. 0x1e070000 The VNC-
Clip.supervisor failed to allocate a signal bit. 0x1e070017 The VNCSaver received an illegal command. 0x1e071000 The startup
code of the VNCFiler failed. 0x1e071003 The startup message to the VNCFiler.supervisor was illegal. 0x1e080002 ViNCEd
found an alien gadget in the windows gadget list and removed it accidentally. 0x1e08000f ViNCEd found an illegal free mem of
a dynamical node. 0x9e098204 The ButtonTextClass can’t be closed.

VNC 165 / 188

1.620 ViNCEd goodies

ViNCEd is written as a shared library, the vnc.library, which is open to all users. A ".fd" file and the necessary link libraries
are included. This library contains functions to set and read the preferences of ViNCEd, as well as controlling various ViNCEd
internas as the job control . Other functions are "patchable hooks" - future enhancements might patch in here, as for example a
custom TAB expansion or a custom keyboard parser.

It is quite tricky to write a handler that does not reside in L:, but is a shared library, and as such, is expungable. The vnc.library
automagically mounts itself as NEWCON:, VNR: or VNC: if it gets loaded, and it automatically removes the handler from the
dos device list if the library gets expunged. Thus, ViNCEd is one of the rare handlers that are expunged automatically if the
system memory gets low.

Together with each window comes not only a handler process named by the device name; but, if needed, a process that controls
the tab expansion and the job control, together with all other actions that are needed to interact with the DOS. A usual handler
itself can’t perform DOS-I/O. A second supervisor process is started by the library; the VNCClip.supervisor handles the clipboard
and is a smarter replacement for the usual ConClip, which is no longer needed if work with ViNCEd. As a second job, it is also
responsible for re-loading the preferences and installing them into the window.

Since ViNCEd does all the window handling by itself, all windows are by default simple refresh windows. This slows down
the scrolling if a ViNCEd window is partly obscured. If you are a bit picky about this, you might want to choose the SMART
window path option.

ViNCEd knows a lot more DOS packets than the old CON: handler; you may SEEK and FLUSH inside them, and the (unofficial)
ARexx packets QUEUE and PUSH are supported as well. Most "ConMan" extensions are available as well, except for PIPE
support which should really be implemented thru the PIPE: handler instead.

ViNCEd supports named consoles , which are a part of the unique job control mechanism. All so called "owners" are mostly
independent of each other, may receive different input events , even in "cooked mode". Timer events work as well, unlike with
the CON: handler.

ViNCEd windows can be opened on their own screens by giving special arguments to the window path , making tools like
"ScreenShell" useless. The colors, font and the monitor ID of this screen can be setup by the prefs editor .

ViNCEd supports special control characters in the window and screen title, to display the result codes and some more information
about shells running in ViNCEd windows. Check the title string section for detailed information.

The iconification gadget of ViNCEd is now replaced by an object of a public gadget class called "tbiclass" if a public class of this
name is available. This should make it easier for GUI patch programs like SysIHack or MCP to replace this gadget by a custom
gadget. "VisualPrefs" is the first program that supports this boopsi class and customizes ViNCEds gadgets. For details, check
the "includes" drawer of this distribution. ViNCEd does now, too, support the external "toolbutton.image" class and loads it on
startup.

I regard this as the "cleanest" solution that works without patching any system function at all, so please make use of it (and dump
KingKong...)

ViNCEd uses smart internal memory management functions to avoid fragmentation of your system memory as much as possible.
The memory manager of ViNCEd is "dynamic" in the sense that it does not only use memory pools, but also relocates memory
blocks within these pools if required; therefore, memory blocks will be "moved" thru the memory to reduce fragmentation. Up
to my knowledge, something like this hasn’t been tried before. As you see, this works stable since Version 1.06 of ViNCEd.

1.621 Goodies of the SetVNC program

The complete configuration and support of ViNCEd is done thru one single program, SetVNC . There’s no need to mess your C:
directory with tons of tiny files, one is enough.

SetVNC contains, too, the user interface for the preferences editor; this interface doesn’t use any big external GUI library as
MUI or other horrors (a 200K GUI for a 64K program?). It’s fully font sensitive; it doesn’t even require "gadtools" which is too
unflexible for what is needed. The GUI supports online help, you may always ask for instructions if you got stuck.

Since most of the SetVNC functions aren’t needed all the time, the program is "overlayed", i.e. only the part needed is loaded
into memory. This helps conserving memory and avoids disk trashing, especially on "low end" machines.

VNC 166 / 188

SetVNC offers options to save the screen and history buffers of ViNCEd in a fully system-friendly way, without the requirement
for any hacks.

1.622 Frequently asked questions

This section contains frequently asked questions about ViNCEd. In case of a problem, please study this chapter first; I’m easely
annoyed by answering these questions over and over again. Expect an "angry reply" in case you ask any of these again...

ViNCEd seems sometimes to hang

How do I avoid moving the cursor by the cursor keys? How to run the TAB expansion with the TAB keys?

How to avoid cursor movements on scrolling? I don’t want to be able to set the cursor with the mouse

I don’t want to be able to move the cursor into the prompt ViNCEd messes up my output

The TAB expansion does not work! SetVNC doesn’t save the preferences.

How to setup ViNCEd as a VT-220 terminal? Is it possible to run a ssh in ViNCEd?

I don’t like the iconification gadget image For terminal usage, ˆC isn’t sent over the stream.

How to turn off the horizontal scroller in the window? How to avoid that ViNCEd prints text into the right window border?

I can’t invoke the online guide! I don’t want to keep the icon of the online help

Customizing the iconification icon does not work The TAB expansion doesn’t match files

Iconification doesn’t work any more

1.623 ViNCEd seems sometimes to hang

ViNCEd seems sometimes to "hang" if I press Return.

ViNCEd doesn’t hang, for sure. What most likely happened is that you’ve typed rather fast and haven’t released the "Shift" key
yet when pressing Return. The Shift Return keyboard combination is, however, bound to the "Line Feed" keyboard function .
This function inserts just a line feed but nothing else, it does not send any data to the shell for execution.

Solution:

To avoid this, you could simply remove this keyboard binding with SetVNC, using the keyboard page of the preferences editor.

1.624 How do I avoid moving the cursor by the cursor keys?

How do I avoid moving the cursor by the cursor keys?

ViNCEd is a full screen editor, which means you’re free to move the cursor anywhere you want. Why do you expect that a
shell works different that your editor which uses the same keyboard layout? I’d consider this as an improvement rather than a
drawback, but whatever:

Solution:

Reconfigure the keyboard, using the keyboard page of the preferences editor program, SetVNC . Bind the cursor keys "Up" and
"Down" to the keyboard functions "History Up" and "History Down" and save your changes.

VNC 167 / 188

1.625 How to run the TAB expansion with the TAB keys?

How to run the TAB expansion with the TAB keys?

The default preferences bind the TAB expansion functions to Ctrl TAB, mostly for backwards compatibility to CON: which does
not know any form of TAB expansion . Furthermore, to enable the TAB expansion, the window must be in Shell Mode or any
shell specific extensions won’t be available. This mode can be selected either by the system preferences, on the first shell page ,
or by the SHELL window path argument.

Solution:

Reconfigure the keyboard, using the keyboard page of the preferences editor program, SetVNC . Bind the TAB key to the
keyboard functions "Expand Path". More than one TAB expansion is available, so you might bind other combinations to the
various TAB expansion functions as well.

1.626 How to avoid cursor movements on scrolling?

How do I avoid that the cursor changes its position when I scroll the window?

One of the ViNCEd concepts is to keep the cursor always visible on the screen since you should know where you’re typing. But
whatever:

Solution:

Turn on the "XTerm/CON: cursor mode" flag on the first editor page of the preferences editor SetVNC , then save your changes.

1.627 I don’t want to be able to set the cursor with the mouse

I don’t want to be able to set the cursor position with the mouse keys.

Some folks ask really strange questions, do they? (-: They DO NOT want to be able to do something.... But anyways:

Solution:

Turn on the "XTerm/CON: cursor mode" and the "Rigid XTerm cursor" flags on the first editor page of the preferences editor
SetVNC , then save your changes.

1.628 I don’t want to be able to move the cursor into the prompt

I don’t want to be able to move the cursor into the prompt.

General comment about this one is the same as above . I don’t get it. But since I was nagged to death:

Solution:

Turn on the Don’t scroll into the border flag on the first editor page of the preferences editor SetVNC , then save your changes.

1.629 ViNCEd messes up my output

ViNCEd messes up my output, as for example the dump of the "lha" program and others.

Solution:

Some of the preferences flags ARE NOT compatible to shell usage, these are marked as such in this guide. Do not play with
settings you do not understand, check this guide first. Especially, amongst the flags you shouldn’t set are the following:

"VT-220 compatibility mode" "Destructive DEL and BS" "Insertion mode for DOS output" "Notify DOS about Paste"

All of them are found on the second system page , do not play with these.

VNC 168 / 188

1.630 The TAB expansion does not work!

The TAB expansion does not work!

Solution:

Grumpf! Yes, it does! It might work a bit different to what you expect, however. But this is more or less a matter of the correct
configuration. Did you try the TAB expansion tutorial first?

1.631 SetVNC doesn’t save the preferences.

SetVNC doesn’t save the preferences.

Solution:

Yes, it does. However, it does not change the preferences of the windows already open. It is not possible nor desirable to change
the settings of windows already open since these settings are now under the control of the programs running in these windows.
However, the new settings will be used for all windows opened after the new settings have been saved.

1.632 How to setup ViNCEd as a VT-220 terminal?

How to setup ViNCEd as a VT-220 terminal?

Solution:

The VT-220 flag in the preferences editor alone is not enough. It’s usually required to set some more flags. Here’s my selection:

CSI >?26h to send the ˆC to ˆF keys rather than to execute them.

CSI >?19l to break the lines at the right window edge.

CSI >?15h to enable seven bit answer back messages required by most termcap settings.

CSI >?13l to disable scrolling into the display buffer.

CSI >?2h to enable the VT-220 interpretation of the CSI sequences as well as the emulation of some VT-xxx illnesses.

That’s about it. To enable all at once, the following command could be used:

echo "*E[>?26;>?15;>?2h*E[>?19;>?13l"

For details what all this does, check the list of CSI sequences .

1.633 Is it possible to run a ssh in ViNCEd?

Is it possible to run a "ssh" (secure shell) in ViNCEd?

Solution:

Yes, it is. You need some kind of a "TCP/IP" stack for your Amiga, as for example Miami, the "ixemul" archive release 47.3
or better, including the "ixemul.library" and "ixnet.library", and the "ssh" archive, of course. Make sure all components are
installed correctly, and check whether "ixnet" support is enabled by the "IxPrefs" program. Furthermore, the "ssh" must be in the
command search path. Then place the following script in "S:runssh" which will keep care of the necessary steps:

setenv TERM vt220 stack 204800 echo "*E[>?26;>?15;>?2;>?11h*E[>?19;>?13l" ssh -l <your user name here> -x <name of
the remote machine>

A remote login is now as easy as running this script from the shell.

The "echo" command above sets ViNCEd into strict VT-220 mode and enables furthermore the "Emacs" editor mode which
might come handy.

VNC 169 / 188

1.634 I don’t like the iconification gadget image

I don’t like the iconification gadget image.

Solution:

There’s a documented way to replace it. For example, try the "VisualPrefs" program which will allow you to reconfigure it. The
ViNCEd style is adapted from the unix "Mwm" window manager style I work all the day with, that’s why. This archive comes,
too, with the tool button image, the standalone class for the iconification and related gadgets in the window title. Probably, try to
put the file Extras/toolbutton.image to SYS:Classes/Images.

1.635 For terminal usage, ˆC isn’t sent over the stream.

When using ViNCEd as a terminal driver, Control C is never transmitted to the terminal at the other side.

Solution:

The problem is what to do with a ˆC signal at all. The Amiga standard is to abort programs, even if that program has turned
the console into the "RAW" mode, and not to deliver a ˆC at all. The same problem appears for Unix, but there’s a system
call available that controls the delivery of these special keys, namely ioctl(). The Amiga Os doesn’t support this technique, but
ViNCEd does: The following control sequence will turn off the signalling and will deliver all control characters literally:

CSI >?26h (see the list of CSI sequences)

The following command in the shell will do that for you:

echo "*E[>?26h"

1.636 How to turn off the horizontal scroller in the window?

How to turn off the horizontal scroller in the window?

Solution:

Check the third window page of the SetVNC preferences program.

1.637 How to avoid that ViNCEd prints text into the right window border?

How to avoid that ViNCEd prints text into the right window border?

Solution:

You can tell ViNCEd to break lines at the right window edge, check the first system page of the preferences editor. ViNCEd will
NOT, however, reformat the output in case the window gets resized. This has certain reasons:

First, ViNCEd operates line-oriented, not paragraph-oriented. Breaking a line at the right border breaks it there, and there are
then two lines, not one.

Second, this reformatting algorithm would be tremendously complicated. There is quite a difference between a pure line editor
as CON: and a full screen editor as ViNCEd. I have to consider quite a lot of more cases than CON: which can just re-print its
buffer in this case. The same does not hold for ViNCEd.

There are certain options and CSI sequences that define a scrolling region and address absolute character positions on the screen.
These CSI sequences would be unuseful and their settings would become invalid in case the window gets resized. After all, I
doubt there is a way of reformatting the window input AND staying compatible to the VT-220 standard. I’ve thought quite a lot
about this problem, but the current answer is "No". The current ViNCEd version behaves quite a lot like the unix XTerm, and for
good reasons.

VNC 170 / 188

1.638 I can’t invoke the online guide!

I can’t invoke the online guide!

Solution:

You didn’t use the installer script that setup all variables correctly, or changed your configuration or erased the icon of the guide.
You should check whether:

- The "Get Help" system macro on the third system page is setup correctly. It should say:

"SetVNC Help\r"

- The position of the online guide is setup correctly. You can correct it with the SetVNC program on the first system page , or by
editing the environment variable

ENV:VNCGuide.Path

by hand using an editor of your choice. It contains just the complete path of the guide as text file.

- The icon (".info file") of the ViNCEd guide is available, i.e. a file named "ViNCEd.guide.info".

- The default tool of this icon is setup correctly. Check this by selecting the icon with the mouse, use then the "Info" menu item
from the workbench. The "default tool" should contain the complete path of a program that is able to display "Amiga Guide"
files, for example "Multiview".

SetVNC loads, if requested, this program and runs it to display the online help.

1.639 I don’t want to keep the icon of the online help

I don’t want to keep the icon of the online help.

Solution:

If you erase the icon of the ViNCEd.guide, SetVNC will no longer be able to detect the default tool used to display the guide,
so SetVNC can’t be used to invoke the guide at all. However, since the help itself is requested by the "Get help" system macro
on the third system page of SetVNC , you might want to adjust this macro to load the guide browser directly. For example, you
could enter a command like

"Run >NIL: <NIL: Sys:Utilities/Multiview HELP:ViNCEd.guide >NIL: <NIL:"

to launch MultiView in background.

1.640 Customizing the iconification icon does not work

The icon I specified as iconification of the shell does not work.

Solution:

The icon path given at the fourth system page must be the complete, absolute path to the icon. For example, to use the standard
shell icon, specify:

SYS:System/Shell

1.641 The TAB expansion doesn’t match files

The TAB expansion doesn’t match files if the "Executables" priority is set to -128.

Solution:

ViNCEd regards a file as "Executable" as soon as its "e" protection bit is set. However, this bit is "traditionally" set for most files
in the Amiga filing system, hence most "files" will actually match the "Executables" category and not "Files".

VNC 171 / 188

1.642 Iconification doesn’t work any more

Iconification doesn’t work any more. What’s wrong?

Solution:

You run a program that requested the location of the "intuition window" in which ViNCEd outputs its text, and this program did
not return the information properly. This means, since ViNCEd doesn’t know whether this entity is still required or not, it can’t
close the window to iconify it without risking a crash by the program probably still using it.

The standard CON: handler has, by the way, the same problem: A window opened with the AUTO window path argument looses
this ability as soon as the window is requested from outside.

To be able to iconify the window again, you’ve to release the window pointer manually by running the command SetVNC
FreePointer .

This command un-does the effect of exactly one allocation of the window.

For example, each invokation of the "More" utility must be matched by one and only one call to "SetVNC Freepointer". The
"More" script file supplied in this package does this automatically for you and should be used instead of running "More" directly.

The "ixemul.library" and all programs using "ixemul" are rather worse in this matter. They do not only request the window
pointer once per session, but once per line read from or printed to the window, which means that a huge number of allocations
accumulate. A single "SetVNC FreePointer" is truly not enough to cancel all these, but a SetVNC FreePointer All might do the
job.

To big HOWEVERS:

- First, the "SetVNC FreePointer" command is not completely safe in the sense that there’s no guarantee that really no program is
still using the window pointer when this command is invoked. Running this command in the wrong situation may cause crashes.

- Second, even "SetVNC FreePointer All" won’t help with the ixemul "pdksh" simply because this shell will print its prompt
after having run the command, and will therefore request another window pointer just after you’ve released it. Urgh.

1.643 Thank you folks! Credits page

Special thanks goes to HiSoft for DevPac 2.0 and to the Software - Distillery for the linker BLink.

Thanks to Ernst Besser for continuously testing this proggy over years, and thanks to Oliver Spaniol for lots of useful remarks.

Thanks to Goran Mitrovic for reporting various bugs in 3.17 and some useful remarks. Not all have found their way to ViNCEd
yet, but I’m working on it.

Thanks to Rodja Adolph for his useful remarks about the ViNCEd requesters. Here they are, Rodja. Hope you like them...

Thanks for Albert Bertilsson for the great idea to let ViNCEd create its own screens. This has been added to 3.20, Albert! Thanks
to Christopher Naas for reporting a bug in the SetVNC program, which has been removed in the 3.09 release, and again for an
enforcer hint of 3.20, which has been removed as well. To bad that I don’t have a MMU. What a luck that Christopher is out
there to report the hits... (-;

Special thanks goes to Nick "NLS" Sardelianos. Most of the ideas new to version 3.30 are up to him, and life will be definitely
harder while he’s busy with military service. Thanks a lot, Nick! You considered such a lot of options that I was unable to
complete the 3.30 in time, and even now some are missing, even though the 3.60 is getting very close....

Thanks to Aristotelis Grammatikakis, another guy with a lot of useful ideas.

Thanks to Georgia Pristo, for sending DW and reporting a problem with it - plus more useful remarks.

Thanks to Steve Clark and Miles Willmek for additional ideas new ViNCEd 3.40.

Thanks to all beta testers that helped me to find bugs! It has taken a while to complete the 3.30 release, but has taken even longer
without your work!

Thanks to Christopher Perver, Jochen Koob, Eric "Parsec" Spåre and Bernardo Innocenti for additional ideas for the 3.41 release
and bug reports.

VNC 172 / 188

Thanks again to Bernardo Innocenti for continuously "annoying" me about the scroller gadgets until I finally updated the input
handler. Thanks to Stefan Sommerfeld for some other hints, especially for the gadget refresh. You may now disable paths from
searching - here’s your will, even though I don’t like it. Why don’t people accept new ideas and want still this old KingKong
behavour? Maybe for the same reason why they don’t by PCs... :)

Thanks to Kevin A. Brown for additional ideas I added to the 3.50 release, and to Martin Gierich for his comments, his support
and his fine "PatchWord" debugging tool I used for beta-testing. Thanks to Frederic Steinfels for the idea with the colored cursor
I was finally able to implement.

Thanks goes to Holger Jakob for reporting quite a lot of minor bugs of the 3.50 that are now removed. Special thanks goes to
Timo Kaikumaa for allowing redistribution of his UnixDirs program in the ViNCEd archive.

Thanks again to Bernie (Bernardo) for giving me the hint about the XTerm block marking bug.

Thanks to Marcus Ekelund for reporting a serious bug in the V39 and for the hard work translating ViNCEd to swedish. Cool
job, Marcus!

Thanks to Massimo Tantignone for supporting customized ViNCEd gadgets by his "VisualPrefs" program and for a very helpful
conversation. If you want to know more details about this customization or want to use these gadgets by yourself, consider the
"Boopsis_Readme" file in the "Include" drawer.

Thanks again to Holger Jakob for reporting the AFS problem. I hope the ViNCEd workaround for this AFS bug works now.

Thanks again to Frederic Jacquet and Adam ’DC1’ Polkosnik for reporting (both) the compatibility problem with "FALLBACK".
That’s fixed now in the 3.55.

Thanks to Peter Mattsson for the idea to open the window pre-iconified (so, not to open the window at all.... :-)

I changed the limit of the review buffer from 1024 to 4096 lines, just to please Marc Espie and his buffer requirements.

Thanks to Arto Huusko for ideas and improvements for the window "Maximize" and "Minimize" functions, Amiga+ and Amiga-.
These have been reworked quite a lot.

Thanks to Wez Furlong for testing ViNCEd with the "VIM" editor; quite some bug fixes in the ViNCEd CSI parser and line
manager are due to his tests. Furthermore, using the extended colors instead of bold and one of the scroll modes are due to him.

A really big "thank you" to Walter Doerwald for testing the beta-releases of ViNCEd for quite a while and for detecting lots of
bugs in the early betas. Would have been harder without your help.

Thanks again to Massimo Tantignone for providing the stand-alone toolbutton image class, and for allowing me to distribute it
together with ViNCEd.

Thanks to Andreas Mixich for the "PLAIN" window path argument idea. Implemented! Thanks, too, for detecting a bug in the
TAB expansion routine.

Thanks to Rüdiger Kuhlmann for reporting various bugs of the early 3.6x releases, many VT-xxx incompatibilities I wasn’t aware
of, and other things.

Thanks to Frédéric Delacroix for his french translation and to Damir Arh for his slovenian version of ViNCEd. Further thank
goes to Samppa Rönkä for the finnish translation and the ATO, and Magnus Holmgreen, for organization.

Thanks goes to Grant McDorman for reporting some additional bugs in the VT-220 emulation that have been fixed by now.

The italian translation was written by Francesco Leoni and proof-read by Francesco Mancuso, thank you for your support, folks!

Thanks to Constantinos Nicolakakis for reporting a problem of the 3.68 this is now fixed.

Thanks again to Rüdiger Kuhlmann for reporting various bugs, and for updating the ixemul library to support window iconifica-
tion correctly.

Thanks to Tomasz Wiszkowski for converting the C style header files to AmigaE include files and for providing a polish local-
ization for ViNCEd.

A lot of thanks goes to the Os 3.9 translation teams of the ATO. This project would have been impossible without your work:

The Italian translation team:

Stefano Guidetti, Marco De Vitis, Maurizio Lotauro and Andrea Monni.

as well as the original translation, which was done by

VNC 173 / 188

Francesco Mancuso and Francesco Celli.

The Spanish translation was done by:

Alfredo Soro and Ezequiel Partid (proofreading)

Translation for the Nederlands performed by:

Dirk Harlaar

The Danish translation team:

Niels Bache, Ole Friis and Jacob Laursen.

Finally, thanks to all the beta testers for their time and for reporting bugs (and hitting me for fixing them...).

Sorry to all the folks who reported bugs and I forgot to write your names down. Ooops! You’re still somewhere in my EMail,
but that’s about 50MB of EMail I had to dig thru. Urgh! Uhm, just contact me again so I can add you here.

I do NOT want to thank Commodore for my @#%&!!! computer. (This is my 3rd computer, my 9th mouse, my 3rd fan, my 2nd
SCSI controller, my 3rd disk drive, several memory problems drove me crazy, the expansion port is wrongly designed... Which
idiot designed this crap? When I found out that commodore went out of business, I really ENJOYED it.)

Thomas

1.644 Version information

Now, that’s quite a lot. ViNCEd is an old program, almost as old as ConMan and much older than KingKong!

1.06 First working release. Named VNC "VeryNewCon". Not all control sequences are parsed, some workaround for con-
sole.device. Finished in 1990.

1.12 and less: Many problems with cursor positioning and smart refresh windows.

1.18 Line compressor completely rewritten.

1.24 Workbench 2.04 came out. Problems with scrolling under 2.0, still no block operations.

1.25 First working 2.04, works very safe and stays unchanged for a long time.

1.28 Last 1.xx release.

2.00 Almost everything rewritten. VNC gets now a library instead of a resource.

2.01 Removed massive problems with block operations "Cut" "Copy" "Paste"

2.02 First working 2.0 release. Still somewhat beta (beta than nothing)

2.04 Problems with "Ed" and block operations. Internal Hook

2.05 Converting macros to the menu items did not work.

2.07 Marking of the line end was ugly.

2.08 Removed a lot of 1.xx trash.

2.09 Workaround for console.device bug implemented, Form Feed corrected magic Help key.

2.10 Improved the LibInit procedure with useful alerts (-:

2.11 Removed ScreenToFront bug, new AutoSize SetVNC.

2.12 ConClip OpenCount, smart mount, NOICONS bug removed.

2.13 Menus get the right font, SetVNC keeps track of the title bar, removed again some 1.xx trash.

2.14 Added FindCNWindow(), now used in SetVNC

2.15 Priority of semaphores corrected, menu size adjusted for tiny fonts.

2.16 Added Ctrl+Cursor keys.

VNC 174 / 188

2.17 Menu functions now BOOL instead of void.

2.18 DOS commands now send thru owner instead global port. Lot of updates necessary, removed several bugs (sigh!). Break
and owner handling now more dynamic, workaround for "more" (close event expected without request).

2.19 Again, handling of the close gadget in raw mode updated.

2.20 Removed bug in erasing complete lines and bug in prop gadget procedures.

2.21 Scroller get disabled; added another workaround: If the DOS moves the cursor, user inputs are valid starting from this cursor
position. This simplifies the input of tables, and works somehow like the screen editor of the Atari 800 XL.

2.22 Scroller disabling now much better, again corrected owner handling.

2.23 Lot of problems with owners, gofer does not work (WaitDosPacket is broken). Rewrote owner system, private hash list for
owners. Several days of work. Found bug in rexxsyslib (WaitDosPacket).

2.24 And again owner problems with programs that do not open own streams. Sigh. Corrected read & write. Will this stuff work
now?

2.25 I knew it: Corrected owner handling once again. Should not make problems again, but who knows? Again removed some
obsolete procedures of release 1.xx beta testing.

2.26 Added FilterInput, HandleKeys updated, and Hook procedure. HandleKeys modified for TABHook. OwnerSemaphore
added.

2.27 VNCClip.supervisor added for iff clips. ConClip is now obsolete. Had lot of trouble with the library, found some bugs,
esp. with memory problems. vnc.library modified again, removed another (old?) bug in internal Copy/Paste. TABHook stack
enlarged, VNC needs at least 4000 bytes, esp. if you run it with a debugger.

2.28 Trouble with ActivateWindow under Kick 1.2/1.3. Does not seem to work better due to a bug in the 1.x libs. Again updated
the TABHook to make it working with a NULL lock (Now version 1.01). Forgot to remove option from Makefile, which leaded
to illegal hunk linkage.

2.30 Support for locale.library. Prefs are now loaded by the supervisor, added OldOs flag. Removed bug in KillSuper, and
unnecessary BSS segments. BuildMenuStructs bug removed, can only seen with "MagicMenus". Again problems with the f*cky
owners, removed bug in AClose. When will this sh*t work finally?

2.31 Minimal changes in the lib, new hook for AppWindow. Window size depends now on the text overscan. But completely
rewrote SetVNC (2.11). Help now by AmigaGuide, own localization, TABHook program is now obsolete and integrated into
SetVNC. New feature: VNC is now an AppWindow (icons welcome).

2.32 Added ALT open option, removed bugs in the parsing of double quotes. (Leftover from 1.xx?) VNCNewWindow now own
structure. LibInit and LibRemove remain now in forbidden state, all asynchronous processes are done by the supervisor. Failed
to close timer device. This release works pretty well now.

2.33 Removed minor bug in FindCNWindow. Could return TRUE if window was not a VNC window. Caused a crash of SetVNC
if called thru a AUX: window. Calculation of cursor position wrong due to rounding errors of divisions.

2.34 Concealed mode handling updated - UserType/UserPenPair can’t be controlled from DOS any more - you have to use the
structure, like it should. SetVNC’s TABHook unstands now double quotes and pathes with spaces. Support for directory assigns
added.

2.34/2 No new VNC release, but added the double TAB requester to the TABHook code in SetVNC, which is now in release
2.15.

2.35 Support for NewLook menus of workbench 3.0 added, and removed two tiny bugs. The compatibility workaround to
console.device had an illegal pointer, and another in the main code which only occurred if the blitter was too slow. Added support
for negative width and height in the open path, window flags are now allowed in every position, to make ARexx working. Sort
of dump to place flags there, but want to stay compatible, so this is really not my problem. Rewrote routine to start AmigaGuide,
had trouble with MultiView (needed PROGDIR:). I hate this program, it is very likely to crash, esp. with animations. Removed
another bug in the DOS module: WAIT/AUTO windows that never opened actually got never closed.

2.36 Scrolling got faster, scrolled only used bitplanes like CON: in 3.1. Lucky not too much trouble. Again removed a problem
with window activation under 1.2/1.3 OS.

VNC 175 / 188

2.37 The pattern of the inactive cursor is now static and no longer in the TmpRas. This prevents some misprints while scrolling
of obscured window parts. Updated the edit buffer hack for table entering, parse position gets updated if one erases or adds
characters.

2.38 And again trouble with owners. Action_SetPort refused to accept a port which it could not find a owner for. Starting with
this release, the official owner who opened the window gets this port. Not nice, but what to do? The problem is, that you may
share streams in AmigaOs.

2.39 Internal beta

2.40 Added rebuild delay.

2.41 Trouble with rebuild delay and "more", added scroll delay. Last 2.xx release.

3.00 Finally started working with 3.xx. Rewrote complete parts of code, esp. owner handling. This was too messy anyhow.
Added REAL job control to replace this mess. The TABHook gets now an integral part of the library, called thru a vector. Added
button gadgets, and nice tiny arrows at the scrollers. Added VNCFiler.supervisor, displays requester. Removed multi directory
assign support, this should be part of the DOS and not of every program. Will write a patch later on. The job control thru Ctrl-Z
looks really like a bad hack, but works astonishingly stable.

3.01 Added a lot of CSI sequences I found in XTerm, xwinshell, VT-220 and much more. Still a bug in the TAB expansion, does
not find the right argument in the command line. I really thought I tested this... Added a workaround for a bug in csh, sends an
illegal CSI sequence and expects the right answer...

3.02 Added support for borders. A lot of testing must be done, and all the scrolling procedures must be rewritten.

3.03 Found a bug in one of the line insertion routines. I fix this one now for the 3rd (4th,5th ?) time and it still does not work.
Ugly.

3.10 Thought an iconify gadget could be a neat idea and added it. Lots of work! Found a bug in the shutdown procedure of the
VNCFiler. sigh! Completely rewrote SetVNC, old code was a mess after five years of fixing.

3.12 Again some bugs in iconification. Added Job control to SetVNC, really forgot I had to.

3.13 Help menu item did not work, and SetVNC did not save the guide path. I though this worked, but... Added "fork" script and
the ability to suspend owners, and removed a bug from Foreground and Background lib functions. Forgot to count the NUL.

3.14 Job control in SetVNC updated, using now "other" for hard cases. Probably should add some more options. Foreground
and Background library functions now got flags, too good I hadn’t made this public. Added again two hacks for compatibility
with "Ed". It sends illegal CSI sequences not compatible with VT-220 and XTerm. Removed crashing "Ed", leaves port with
unanswered Read request, I have to flush this manually. Thought I had this trouble once before in one of the 2.xx releases and
removed the patch cause it looks so ugly. Updated testing of foreign menus. I wonder why intuition did not crash?

3.15 Thought with 3.xx the owner handling finally works. Proved again that I was wrong! ARRGHH! Fixing the "Ed"-problem
added another bug. Really silly, but I think THIS TIME I really made it... (hopefully).

3.16 Tiny bug removed from the window closing procedure. Switching the window to RAW: mode canceled the AUTO and
WAIT state completely and made it impossible to close such a window. Removed some bugs in job control: Can’t send ARexx
to background, crashed when disabling a stopped process and some more. Found a bug in a "correction" of a cursor movement
procedure. Sigh. Fixed another bug: Graphic mask was calculated wrong if a single character has to be marked in an empty line.

3.17 TabHook expansions are now sorted by type: Devices prior directories prior files. Thanks, Olli, for the tip! The fix was
quite easy and done in five minutes.

3.18 Fixed a tiny bug in the Prefs correction routine. An empty macro does no longer end the parsing of macros, but is accepted
as a valid entry. Found a tiny bug in the MatchFirst() function and added a workaround. Fixed a bug in the SetVNC program that
might cause a DeadLock on few machines. Replaced the arrow gadgets and scrollers with Boopsi images, if available. ViNCEd
looks now O.K. with the new 3D look. Tested with SysIHack, SysI2,MCP, Urouhack and works. However, no standard iconify
gadget yet. Removed some compatibility hacks for the console.device, since it does not properly ignore unknown command
sequences. Iconify gadget is no longer installed if there’s not enough room in the title bar. Fixed two additional bugs in the Prefs
correction procedure, and removed the creation of a lock to the window on invocation of a macro. Added an additional check in
SetVNC to prevent a crash if a GadgetUp message from a non-SetVNC gadget is received. The prefs flags did not set the gadget
properties correctly on installation of the prefs. Sigh!

3.19 Fixed a lot of bugs in the block operations with borders activated. Looks like I forgot these to update in 3.00! Fixed another
tiny bug in the line compressor code. I added a "have to think about it" mark to it in 3.00, but I never did. Sigh! Added two

VNC 176 / 188

options for file requesters and a lot of support stuff in the dos interface module. Had a lot of trouble to avoid deadlocks between
the VNCFiler and the dos handler and finally found some use of the pr_WaitPkt pointer. Added a new cursor control mode,
XTerm mode, since some users requested it. Removed a bug in the set border routine that might cause a harmless guru - ViNCEd
waits now until intuition resized the window. This works only in 2.00 and up, using a delay for 1.xx. Removed an unnecessary
flicker in this routine as well. Added some options to the menu, and removed some never used. Made the "Smart Close" even
smarter.

3.20 Added support for private screens which can be build on request, and fixed a bug that caused SetVNC to crash if no
vnc.library was present. Fixed one bug in the guide about the WINDOW path argument.

3.21 to 3.23 These have been beta-releases. They were never available thru AmiNet. One enforcer hit while scrolling should
be gone now. The open path argument parsing was a bit buggy and caused compatibility problems with various programs. The
"Next Screen to Front" menu item caused hangs with some additional software. The ConMan "L" option was broken and turned
on the seven bit mode accidentally. The TAB expansion routine was a bit buggy with expansion of an empty string, and expanded
wrongly if the cursor was placed behind the string. The ordering of the "ICONIFY" open path argument was relevant. The
ViNCEd TAB expansion requester did not allow to enter directories. The Boopsi routines were buggy and wasted CPU time.
Cursor position selection with the mouse locked the RAW window emulation. As you see, a lot of bugs have been found.

3.30 The new final release. New stuff added to this and the previous beta releases: Window title control codes, new CSI sequences
, a better ViNCEd expansion requester , better custom screen support by more open path arguments, icon drop qualifiers, default
screen mode and font support. A lot of bugs have been removed that I added to the beta releases. The incompatibilities with DW,
MWM and other programs are gone - I hope completely. A flag was added to search only the most useful part of the path in TAB
expanding file names, plus some other features. Added the "KEEP" path option, updated the dynamic memory manager - faster
and uses less memory now. The guide location is now kept in an environment variable as well.

3.31 Improved the ViNCEd requester once more. There’s now no reason to use the standard requester any more. Added a hack
to allow VirusWorkshop to check the ViNCEd archive without trouble - manual installation is now no longer possible, due to the
encoding of SetVNC. Be warned!

3.32 The BOOPSI scrollers got not updated if the number of visible lines changed. This bug was hidden by another bug in earlier
releases. Sigh.

3.33 Internal beta: Found another bug leftover from 2.xx in the line compressor. The settings menu item "Expand with TAB" did
not work properly. Added the private CSI sequence "CSI SPC s" for CON: compatibility and ANSI colors. Enhanced the window
sizing algorithm to make smaller windows possible. Added asynchronous type-ahead, more flags to control the prop-gadgets,
better scrolling, hard cursor scrolling stop, path keyboard control sequences, more flags for TAB expansion, shrunk the minimal
size of a window and added another check for the window size, updated jump scrolling, changed the order of the buttons. Added
numerical key pad cursor control. Again a lot of work was done!

3.40 Removed an enforcer hit of the 3.33beta2 and one duplicate entry in the library functions. Removed another tiny bug in the
boopsi handling.

3.41 The "ESC c" control sequence reset the ANSI mode to the settings stored in the prefs, not to the mode set in the window
title - removed. The set render command for color nine did not work. Keypad-mode and Alt-movement conflicted. Added CSI
sequences and flags to the prefs to set the ANSI coloring to something different than default. The complete color addressing has
changed a bit. As a side effect, screen colors set with CSI V WILL re-appear if the window gets re-opened after an iconification.
The old 3.40 dropped these colors (unlike what it should do). Fixed another bug with gfx boards: The color of marked blocks was
different at marking and re-printing time, due to the uncertain behavour of the COMPLEMENT drawing mode for gfx boards.
If the screen mode is set to CHUNKY, ViNCEd does no longer try to speedup the block marks with COMPLEMENT drawing,
but reprints them. This might be a bit slower, though. Removed a bug in the raster mask calculation routine that might have
caused graphics trash for marked and scrolled line feeds. Added a flag to keep the bottom of the window always aligned to the
bottommost line in the display buffer. Added a flag to ignore icon ".info" files in the TAB expansion unless you ask for them
explicitly. The TAB-Expansion cursor placement policy changed a bit, I think to the better. Added a flag to exchange Shift+ALT
Del/BS with ALT Del/BS. ViNCEd installs now a no-op backfill layer hook if possible, hence giving a faster and lesser flickering
refresh. Added another "Edit" and "Shell" page to SetVNC to keep the new flags introduced to 3.41. Added the "NumL" key
function.

3.42 Removed a bug in the gadget refresh. Forgot to handle this correctly if the prefs get updated. Inserted additional explicit
gadget refreshes. The ViNCEd input handler reads now mouse move events if enough CPU power is available, resulting in much
smoother scrolling. Fixed a tiny feature of the WaitForChar() function. It did not operate like it should if an EOF signal is
pending. Fixed! The guide contained a bug :) The explanation why TAB expansion in kshells did not work was wrong. Sigh.

VNC 177 / 188

Removed a problem from one of the refresh routines that failed to operate with the no-op backfill hook introduced in 3.41. Added
the "harder soft reset" with the Shift key hold down.

3.43 The CloseScreen routine for public screens was broken - ViNCEd was from time to time unable to close its own public
screen. Added the "Jump to Next Screen" menu item and a flag to disable the C: path searching at all. The TAB expansion flags
parsing was a bit messed up. Everything worked, but the flags had an interpretation different from what the guide said. This is
fixed now. The font loader was buggy - called the ASCII string to binary converter with a wrong argument. Fixed.

3.44 This one was a public beta release. I rewrote the clipboard handling completely, added the colored cursor and the TAB
expansion. Another new feature are the buffer I/O related functions in the project menu.

3.45 Another public beta. Removed quite a lot of bugs of the 3.44, and just another two bugs left over from 3.43: The line
allocation routine had a major problem (urgh!) and the color arbitration logic was somehow messed up.

3.50 Final checks: Added another string to the localization, removed a bug in the sizing of the scrollers (problems with MCP
now fixed). Removed a bug in the 1.3 support procedure. Changed the prefs style saving/loading that seemed to be unclear to
certain people, added another flag to disable ViNCEd’s feature to lock the window on a mouse click. VNC: is now a legal path
except for the antique 1.2 and 1.3 versions of the Os due to a bug that used to be in the Mount command.

3.51 The history search is now case-insensitive, I guess it’s more useful this way. Made also some minor changes in these
routines. Another change is that a wrapped-around in the TAB expansion list inserts now a blank argument, to inform you about
what has happened. Fixed a bug in the XTerm mode support - the arrow gadgets near the scrollbar did not work like they should.
Softlinks are now supported by the TAB expansion logic. Removed a bug in the window deactivation and in the block marking
procedure. ViNCEd tries now to abort a running ExAll() call in the TAB expansion. Removed some mess in the insertion routine
threatment of the marked line end. Removed a bug in the block marking routine that caused sometimes a line to be inserted on
top of the screen. Removed a bug in the color arbitration routine that allowed identical colors for complemented colors. Updated
a part of the TAB expansion routine - it corrects now the case of the device and directory names.

3.52 Removed a bug in the TAB expansion that refused to work with "/" and ":" directories. Added the "RIGIDCURSOR"
flag. Removed a bug I added by accident to the 3.51 and another refresh related feature. Scrolling while marking the text was
impossible before, fixed.

3.53 Added the duplicates history flag, changed the lock management when dragging blocks. Added forward/backward arrows in
the Prefs editor and the IfVNC shell argument. The window gets now activated if an icon gets dropped on top of it. Changed again
the TAB expansion a bit: If a unique device or directory is found, the double TAB requester will directly go into it. Changed
the full screen refresh a bit, I hope to the better. Should be more effective now. Fixed a bug in the Boopsi-Iconify support -
VisualPrefs works fine now and added even more Boopsi-fication support. Added a workaround for a serious bug in the V39
ExAll/ExAllEnd() routines which supports ExAllEnd() for V37, too! Renamed the "iconifyimageclass" to "tbiclass". Check the
"Boopsis_Readme" in the "Include" directory.

3.54 Updated the ExAll() workaround because it conflicted with a bug in AFS. The replacement code for the buggy V39 ExAll()
ROM code was actually taken from SetPatch, but it turned out that this implementation caused problems with AFS; the reason is
a bug in the AFS Examine() and ExNext() handling - sigh. Thanks, Holger, for reporting. Rewrote the communications routines
between the TABHook and the handler process. The old implementation was a strange mixture of synchronous and asynchronous
message passing that caused a lot of problems. The new implementation is a lot less messy.

3.55 ViNCEd can now be mounted as RAW console handler. A "SetVNC Mount Override as RAW" will work fine now. Mountlist
users might set the "Startup" argument to "1" to get a raw window. Added the "ICONIFIED" window flag. Changed the default
from "NOFALLBACK" to "FALLBACK" to prevent problems with certain programs. Added the "NOFALLBACK" option.
Removed two minor bugs in the window open routine (which is by far too big anyways due to the mess of "optional options"...)
Added another cursor shape that is used when the output is locked, used by ˆS.

3.56 Added the ˆR and ˆB keyboard commands, fixed a bug in the "ViNCEd TAB expansion" requester, added "*" as possible
screen name to refer to the frontmost public screen. Added a kludge to make the ARexx command LINES() working. (Messy,
messy!) The history functions work now a bit different. They don’t longer move the cursor any more. Might be useful for ˆR.

3.57 ViNCEd ignored multiassigns to the command directory C:. ViNCEd locks now the layer to get the window dimen-
sions. The "Close Window" RAW event is no longer included if you open a ViNCEd window in RAW: mode. The AC-
TION_SET_FILE_SIZE packet returns now the proper return value (-1 instead of 0), the mn_ReplyPort field of the packets
send to ViNCEd is no longer trashed. Improved parts of the packet handling code on the way. Added another bunch of packets,
for example AREXX compatible ACTION_DROP. ViNCEd does no longer use fh_Arg2 for identification and leaves that field
blank. ACTION_SET_COMMENT can be used to set the window title now, just like ConMan (Try ’Filenote CONSOLE: "A
nice feature"’). Removed two bugs in the suspend (ˆZ) feature, one minor, one serious... Urgh!

VNC 178 / 188

3.58 Removed another bug in the TAB expansion requester - forgot to save back one register. This might have caused crashes
in certain situations. Changed the format of the version string slightly, to avoid problems. ViNCEd will again install itself as an
AppWindow in public screens, to allow icon drop into the window if started from DOpus.

3.59 Removed a bug in one of the TAB expansion routines that caused a conflict with SnoopDos.

3.59a A release that was never published. It just increased the stack size of the TAB expansion to avoid conflicts with certain
patches.

3.60 Uhoh, writing all changes down would really break this chapter. So, for short: New Features: ASCII preferences, config-
urable keyboard, configurable TAB expansion functions (six or 24, up to how you count), including a set of priorities and flags
for each function. More CSI sequences, more flags. Huh, lots of bug fixes of bugs in the 3.59 version, as for example errors in the
line manager, the character insertion routine, the block marking routine, misinterpretation of some CSI sequences. More options
on the window path, added window default title in the preferences, fixed bugs in the interpretation of printed backspace, added
more control sequences for the window title, the location of the preferences file was changed, bugs in the icon drop routine.
Included a new and reworked guide (this one), included a FAQ, a new index. Most of the nodes have been rewritten, one of the
reasons for the more than half a year of delay.

3.61 Added more support for Massimo’s standalone toolbutton image class. ViNCEd will now try to open the "titlebar.image"
and use this if it is available. This image class will customize ViNCEd’s macro buttons as well as the iconfication gadget in the
title bar. The class itself IS NOT required if you’re running VisualPrefs anyhow. More on how this works in Massimo’s docs.
Added the "PLAIN" window path argument, idea by Andreas Mixich; thanks!

3.62 Fixed a bug in the TAB expansion routine that used the wrong definitions, thanks again to Andreas Mixich. Changed the
Ctrl-C break logic a bit, it looks now like the original CON: method, even though that doesn’t make me happy. Fixed a possible
bug in the SetVNC program that might have crashed if the guide file is shut down. Added "Save To" and "Load From" gadgets
to the new second "About" page of SetVNC.

3.63 All keyboard sequences use now really the seven bit variant ESC [instead of CSI if the seven bit mode is enabled. "Toggle
ESC" does no longer answer the ViNCEd "Toggle ESC" sequence in raw mode, but produces a literal ESC 0x1B in the output
stream. However, in order to simplify the parser of additional programs, the ENGLISH mode will always send complete CSI or
ESC sequences, therefore a program will hear "Toggle ESC", "Insert ESC" or "Insert CSI" keyboard sequences directly in the
ENGLISH mode. ViNCEd does now keep a separate flag whether a line was broken on the right window edge or not and will
not insert a line feed if these lines are copied to the clipboard. The sequences reported for ˆC thru ˆF were incorrect in RAW
mode with the "direct report" flag enabled, fixed. The line wrapping algorithm for VT-xxx was broken. CSI E and CSI F did
not take arguments. Cursor movement ignored scroll lock and word wrap disable. Backspace wrapped around in VT-220 mode.
ICONIFIED open path flag did not work due to a "bug fix" in one of the beta versions. Added a new flag >?15h to restrict
reported sequences to 7 bit modes. Thanks goes for a lot of that to Rüdiger! Great! Updated, too, the SetVNC once again.
This time, the second keyboard page was reworked to be able to browse the keyboard bindings made so far. To see the current
keyboard binding, go to the second page, select a function from the list and use the "« Prev Key" and "Next Key »" gadgets to see
all keyboard sequences bound to the selected function. Incremented the SetVNC version to V41, for consitency with the main
library.

3.64 Fixed only a minor glinch with the scroll lock flag and gadget activation. Thanks to Holger Jackob for digging this out.
Except that, and including the up-to-date locale sources, nothing needs to be changed.

3.65 Directories of MS-DOS type filing systems are no longer cached because CrossDos doesn’t update the volume date correctly.
Included the NamedConsoleHandler which offers a workaround for a feature in the pre-3.0 Os. Ctrl-Z works now for Os 2.x, too,
provided this handler is installed. Added the "BACK" window open path option, lowered the the minimal timing values. Because
again nobody seem to read this guide, the "Raw control" bit CSI >? 26h defaults now to "on", i.e. all control characters are
send literally in RAW mode and are not executed. As an additional hack, ˆC to ˆF execute always in CBM compatibility mode,
indentically to what RAW: does. This *does not* go for VT-220 mode. Added code for a window-restore function, it is however
not yet available in the menu, this will be done in 3.66. Added a special check in the startup code to avoid possible deadlocks in
case ViNCEd is started and ENV: is not yet mounted. The ˆQ and ˆG control sequences were buggy and not sent correctly. ˆQ
sent erraneously a ˆS and ˆG did always ring the bell and never sent any code. Argh! Fixed the documentation, the "send window
reports" sequence is actually "CSI 0 SPC q", not "CSI 0 q". This doesn’t make any difference for ViNCEd, but the console.device
recognizes only the former sequence, not the later. Thanks to Gunther Nikl for reporting. Added the "CSI >?23l" sequence that
disables the emulation of a RAW: bug whose emulation added for completeness in 3.65. Shudder! Included a finnish translation,
thank goes to Samppa Rönkä.

3.66 Added the "Restore Window" menu item. Fixed the broken "Insert CSI" and "Insert ESC" sequences of 3.65. Added the
italian translation by Francesco Leoni and Francesco Mancuso, thank you! Added mouse-wheel support for serial mice, the
wheel scrolls the window up and down.

VNC 179 / 188

3.67 Added the %l and %o window title command to insert the state of the NumLock and Overwrite qualifier. ViNCEd will now
try to adjust its icons correctly if some other program hacked more than the system default icons into its title ("PowerWindows").
The shortcuts of the ViNCEd windows can now be localized. Fixed a bug in the TAB expansion cache handling of multiassigns.
Added a workaround for a bug in VIM.

3.68 ViNCEd will now switch back to the system default font in case it is opened on a screen with a proportional font; this
mimicks the CON: behaiviour. Thanks Raphael! ViNCEd will no longer try to resize a window to make its contents visible. If
the window is too tiny, no output will be shown. This is again identically to the CON: behaivour; however, unlike for CON:,
the cursor movement sequences remain working as ViNCEd emulates a tiny 1x1 window if required. The guru 0x1e080001 is
now obsolete. Fixed a bug in the tool button allocation, used the wrong font for estimating the remaining size of the window
title. Fixed! Added the %w and %W screen title commands. ViNCEd removes now the cursor if a "set border" command is
sent. Since nobody seems to read this guide, ViNCEd drops now a trailing ".info" in the icon name for iconification. Due to an
oversight, the colored cursor and the ANSI colors did not work at the same time. Ouch! The version string in SetVNC wasn’t
correct. Fixed a bug in the character overwrite routine... again! Fixed a hit of SetVNC when inserting more buttons.

3.69 The color of the dots in the default cursor could have been wrong. Fixed! The calculation of the window height in the
window open routine was wrong by as much as one pixel and therefore failed. Re-enabled the automatic resizing of the window
because this makes indeed some sense. Thanks Constantinos! The SetVNC "Load From" and "Save To" functions did not work
as expected, and did not show an error requester in case they failed. Urgh!

3.69.1 The SetVNC color selector did not work on hicolor or true-color screens, fixed. SetVNC allocates a hardware sprite in
case no free pen is available. Unfortunately, the Os sprite allocation function of the V39 graphics library (and propably that
of V40, too) seems to have problems to allocate a hardware sprite in case the intuition mouse pointer is in AGA hires mode.
The result is unpredictable: The Os manages to remap the hires pointer to lores from time to time, of course loosing precision;
sometimes it does not and leaves a corrupt sprite and a hires sprite to SetVNC, unlike desired. There is currently no way of
allocating a sprite in a given mode without causing this problem, so there is unfortunately no fix. To work around this problem,
give the workbench more colors.

3.70 Lots of housekeeping work. Removed all obsolete Os 1.x handling code. The code does no longer try to use arp if the V37
dos.library is not available. I will now use EasyRequester() instead of the obsolete AutoRequest(). Menu construction will use
gadtools routines now. File requester requires asl now and will no longer fall back to arp. ViNCEd requires now V37 boopsis and
will no longer be able to build its own gadgets in case boopsis are not available. A lot of fallback code to V33 releases has been
removed. Finally. As a result of all this work, the library shrunk in size even though new features have been included. Rewrote
the startup code completely. The pre 3.70 code was more adapted to the V33 ramlib mechanism and tried to work around some
ramlib features which are no longer an issue. It therefore might have run into some race conditions that have been removed for
the new code. As a side effect, the "GlobVec" entry of the mount list should be set to -2. (For the experts: Yes, ViNCEd knows
how to handle the race conditions caused by this. Don’t worry...) Added multiple "screen" handling which is owner-specific.
Hence, a ViNCEd window is now able to hold more than just "one buffer". The contents of the ViNCEd "screens" can be
exchanged by a single CSI sequence, as in XTerm. Useful for terminals. (Typically used by programs like "elm" or "emacs")
Added mouse tracking support, mainly for "VIM". ViNCEd is now able to support X10 mouse button messages, XTerm and
XTerm2 mouse tracking commands. XTerm "interactive" mouse tracking is not supported due to some limitations the intuition
world sets. The documentation does not yet cover this feature fully, sorry. Added a keyboard function to iconify the window.
The old SetVNC should already be able to handle this, it is flexible enough. Fixed a tiny bug in the preferences handling; the
default preferences location used to be the old instead of the new location. Fixed a bug in ESCc, reset handling. ESCc did not
reset the cursor rendering CSI0p. Removed the obsolete "CHUNKYPIXEL" preferences flag. ViNCEd was and still is smart
enough to detect chunky screens itself, this flag was in fact never required. Added the "NCURSESFIX" flag to SetVNC and
the preferences structure. This flag controls some messy details of the "word wrap" function and is now pre-selectable by the
preferences function. Updated the ViNCEd guide to include the modifications. Updated the SetVNC localization (german only)
to include the new flags.

3.71 The TAB expansion did not handle BCPL escape sequences correctly. It failed to insert and interpret file and pattern names
containing both blank spaces and double quotes because it forgot to escape the double quotes in the file names. Removed the
"intuition delay" timing value both from the SetVNC program and the vnc.library. This timing value is no longer needed and will
be no longer written to the preferences.

3.72 Fixed a very minor bug in one of the block mark routines which caused a sub-optimal refresh and hence more flicker than
absolutely necessary. It must have been there for years, but did nothing bad at all. CSI H (set cursor) did not truncate the cursor
position correctly, fixed. The CSI sequence parser did not handle embedded control characters correctly. It still doesn’t, but at
least embedded ESC, CAN and SUB characters are respected. Embedded BS does not work, in the same way that it doesn’t for
the native Amiga console. Call it either a compatibility feature, or my lazyness. The TAB expansion will now correctly quote

VNC 180 / 188

file names containing semicolons or greater or less than signs. The minimal window size for "CSI t" was computed incorrectly,
possibly yielding to problems if the window was resized beyond the minimal size afterwards.

3.73 The list of TAB expansions is now alphabetically sorted instead sorted in directory order. A bug in the "SetVNC HELP"
function has been fixed which might have trashed memory due to a lost pointer. Five new "query" CSI sequences of the CSI n
family have been added on request. CSI S and CSI T did not respect the "do not insert into the border" setting, namely the "CSI
>?13l" flag. Fixed. The "ENQ" (ASCII 05) control character is now supported. Handling of "OSC" sequences was debugged and
made more ANSI conformal. The ESC sequences "ESC SPN L", "ESC SPN M" and "ESC SPN N" are now supported. "CSI G"
and "CSI `" (character position absolute) are now supported. "CSI >c" returns now the proper VNC version and revision. "CSI
d" is now supported. "CSI m" (set graphics rendering) supports now the modes 90 and up for the extended 16 color support.
CSI "62;np is now supported correctly. "CSI >?62n" is new and inquiries the active font. "CSI >?64n" reports the screen title,
"CSI >?65n" reports the window position, "CSI >?66n" returns the window size. The documentation of the CSI sequences was
reworked and contains now more unsupported CSI/ESC/OSC sequences. OSC sequences were erraneously listed under "ESC"
sequences. CSI ?47h was erraneously documented as "CSI ?47n", but worked correctly already. Because I was permanently
nagged, the "Don’t scroll into the border" flag now inhibits cursor movement into the prompt and other output as well. Rather
senseless, IMHO.

3.74 Forgot a left-over breakpoint in the 3.73 that caused a crash if no debugger was installed. Yikes! Included a new version
StringSnip that sorts the entries alphabetically. Changing the icon title if the window was in iconified state did not work, fixed.
The window title computation routine is now less picky about the state of the shell when converting %N or %S and similar
arguments. This should avoid unnecessary delays in the window title refresh. Thanks to Tomasz Wiszkowsk for providing the
AmigaE includes and for a polish localization! Added the "Emacs" mode which is enabled by the CSI sequence "CSI >?11h".
This is quite useful if you run a "ssh" in a ViNCEd window. It will "morally speaking" turn the Alt key into the "Meta" key
of Emacs. Setting the left or top rendering border to zero by means of "CSI 0x" or "CSI 0y" did not work. Fixed. ViNCEd
did not respect the extended colors in case the "CSI >?14h" flag was turned on. Extended colors have then been reserved for
bold instead. 3.74 will now swap normal to extended and extended to normal to present bold characters. SetVNC still used the
old "AutoRequest", replaced by "EasyRequestArgs" now. Note that this requires V37 and up, as documented for 3.7x releases.
Found vertical cursor movement in VT-220 mode was somewhat broken. Origin mode made CSI A and CSI B scrolling, which
is wrong, and CSI E, CSI F and Reverse Index never scrolled, even though they should. Fixed.

3.75 I’m using now OpenWindowTagList() instead of OpenWindow(). Maybe MCP is in better mood then not to hack my
window structures. ViNCEd does now no longer insert the dummy gadget into the window border if it really doesn’t have to.
This might help to work around the broken MCP window border hack. This does not mean that this problem won’t bite back
sometimes. There are, in fact, situations where this gadget is required, for example if "NOSIZE" is selected. Then I can’t do
anything against MCP except blaiming it as a blundering hack. If this story continues, I will write an automatic deletion code for
MCP. (-; HA! I replaced the default iconification image by something which looks more what people seem to prefer. This is now
also a pure Boopsi class and a look-alike to Massimos Boopsi class. I hope you appreciate the work. Enhanced the double TAB
handling again (oh no, not yet another feature). First, the double TAB delay time is now selectable and is under control of the
timing page. Second, if this time is set to zero, the TAB requester will always pop up after the second TAB. ViNCEd still allocates
two boopsi images per arrow. The reason is that the sysiclass boopsi comes with a specific tag item to select the raised/recessed
state. I read this as an indicator that not all implementations of the sysiclass can handle raised/recessed states automatically. The
V40 sysiclass should do however. Since this causes no additional drawback, I will keep it like this. SetVNC: If the guide lacks
an icon, the browser defaults now to MultiView. SetVNC does now no longer try to allocate a sprite for showing an additional
color if openend on a non-native screen. Causes only trouble, and there is no hardware sprite anyhow. SetVNC prints now RGB
values as ranges from 0 to 255 similar to the preferences "Palette" tool. Please report whether this is better or worse. SetVNC
allows now adjustment of the double TAB delay time with the special value of zero. Fixed an Enforcer hit in the argument parser.

3.76 ˆJ (insert CSI) did not work very well with the TAB expansion, due to two bugs or oversights in the code. Should be fixed
now, even though the fix was quite tough. The "KeyCursorNRight" primitive did not work as expected in case line break at
the right window border was turned on and the flag "don’t scroll into the border" was turned on simultaneously. This was a
new bug introduced in 42.74. The window open code is now about 100% faster simply by not sending a reset "ESCc" to the
console.device. Changed the menu item "Hide" to "Unmark". Added again new features. Feature number one is that the TAB
expansion can be told now to ignore the data behind the cursor in the sense that this data will not contribute to the pattern. This
improves the usefulness of the TAB expansion by about 1% and required one additional TAB expansion flag and one additional
TAB control page of SetVNC (there are now seven Shell pages) decreasing the useabilty of the configuration by about 20%. It
also means I have to re-organize the guide and have to build a new locale for the new strings. Added another new feature. Due
to common request, the TAB expansion may now list its results on the console instead of using the ASL requester. This can be
found on the fourth shell page as the other new flag. Be warned! This feature was a nightmare to implement and it really breaks
with various issues of good style. First of all, it breaks the input mask of programs which is undesirable. Secondly, it messes with

VNC 181 / 188

data structures of the main task it shouldn’t mess with. It required the introduction of one additional DOS packet and various
long testing. The problem with this feature is that it is rather complex in its nature and possible side effects it may have. SetVNC:
The color selection increments now in steps of one unit instead of steps of 16 units. Included the "Easy Setup" flag. You find it
on the second "About" page. Please check wether the selection of flags is convenient for the beginner.

42.77: Border computation was partially wrong, it did not take the border protection zone into account, leading to partial border
trashing on CSI x. Macro button expansion did not keep track of the keyboard lock correctly and hence might have locked the
output in situations where it should have been unlocked. SetVNC 41.45: The first System page forbid the user to exit if the guide
location was incorrect. Note that this is intentional, but I nevertheless changed the behaivour.

42.78: The window contents re-arrangement on a window resize was partially wrong for some setups. This was due to a register
trashing in one of the low-level routines. *Outch* In case iconficiation is forbidden, the second press on the iconification gadget
will restore the original window position and size.

42.79: The calculation of the iconification image size wasn’t always optimal. It now closely reassembles the same style and size
as the intuition code. SetVNC 41.46: Due to an oversight (a trashed register) "SetVNC Help" could have crashed in case the
guide file came with a ".info".

42.80: The default preferences still listed Amiga-H instead of Amiga-U for "unmark". Similary, the name of the keyboard
function was still wrong. Fixed the wrong layout of the left border of the build-in iconification image. The color choice for the
leftmost line of the "selected" image was wrong. Improved the gagdet layout for bitmaps of depth one, i.e. if only two pens are
available. Removed the old Mwm style iconification image completely. This means that no iconification gadget can be build in
case allocating the new boopsi failed. Added a new feature: Double clicking on a word captures the complete word in a block.
Requires more testing. Added a new CSI sequence. CSI ?46h turns on logging. All printed data will be written over the serial
port at 9600 baud, 8 bit, one stop bit. Alternatively, you may capture this data with Sashimi. SetVNC 41.47: Strange enough, the
argument parser enforcer hit reappeared in 41.45. Fixed again.

42.81: Fixed a crash of the buffer IO module that was caused by a register trash in the IO support routines. The VNC requester
layout routine removes now a terminating LF in the requester body to make the requesters looking a bit more fancy.

Read also the credits section of this guide, to find out who is responsible for reporting the bugs (-;

1.645 Future Plans with ViNCEd

No, the story isn’t over yet. Here’s a collection of future plans with ViNCEd and related:

Plans for 3.80:

- Configurable menus?

- Smooth scrolling?

Plans for 4.00:

- Complete rewrite in C, port to PPC architecture.

- Rework the ViNCEd concept. Start with a VT-220 "widget" (boopsi) for the CSI parser and the editor features. On top of that
a "vinced.device", on top of that a "ViNCEd-Handler", on top of that "Vinchy", the ViNCEd shell.

1.646 Bug notes and reports, how to contact the author

What, do you expect ViNCEd is bug free? Gee, to give you an impression how big this thing is:

The assembler source (!) of ViNCEd and SetVNC is about 2.4 MB in size, not counting the includes, this guide, the Makefiles,
the Agenda, the includes, the autodocs, the fd-files, the installer script and the "Extras". Do you think I’m crazy to write this in
assembly language? Guess you’re right....

How to report me in case of a bug?

Please include the following information:

o) Your name and an address how to contact you. EMail preferred.

VNC 182 / 188

o) The version of ViNCEd you’re using.

o) The version of the Kickstart and Workbench you’re using.

o) Other patches active at that time.

o) How to reproduce the bug.

o) If possible, run the Enforcer. Configure it in a way such that the stack of the crashing/buggy procedure gets dumped, too. The
more lines, the better. This stack dump helps usually quite a lot.

o) Run the SegTracker, and MungWall, and PatchWork; then try to reproduce the bug. Send me the output of all these programs
in case of a crash/bug.

o) Include a copy of the ViNCEd settings active at the time the crash happened. They can be usually found in ENV:ViNCEd.prefs.
It’s a plain ASCII file.

o) In case this crash/bug happened in relation to another program and this program or a demo version of this program is freely
available, include information where to get it.

Ship all these information to my address .

Thanks for your help!

So, here are some features of ViNCEd I haven’t been able to reproduce on my machine and that haven’t been fixed for that reason.
In case you know anything specific about these, please lemme know:

Icon drop support seems to make trouble for some people. If you open a ViNCEd window before the workbench is open, ViNCEd
won’t be able to install its icon drop feature into that window. However, all windows opened AFTER the workbench pops up
should provide icon drop, except the windows already open before. This works fine here on my system, and I haven’t been
able to reproduce the problem. You may re-enable icon drop support by restarting the "TABHook" with the CSI-sequences CSI
>?12l CSI >?12h.

There seems to be a problem with the MudPad math program. This program is no longer available and hence I haven’t been able
to reproduce this bug. However, this problem might be related to the ViNCEd settings. You should not set the Inhibit Horizontal
Scrolling flag when running programs in RAW mode, or should at least enable the Line break at right border as well if you must
use this flag. Not following these rules might cause the cursor leave the viewable part of the window without causing a scroll.

ViNCEd seem to cause crashes if it gets iconified while some output is in progress. Type "dir dh0: all", then iconify the window.
Causes either a mungwall hit, or a crash/hang. Does not happen on my system, tried with various configurations without success.
Analyzed the critical code several times without finding anything suspicious. If anybody knows how to reproduce this, please let
me know. Possibly some strange hack that is active? (Might be related to some old versions of ModePro, should be fixed with
later releases.)

ViNCEd seems to cause a mungwall hit if the window gets iconified on a non- native screen. The mungwall hit is in the intuition
DisposeObject() routine (the precise address depends on the ROM version) which seems to deallocate zero bytes of storage. I
stepped thru the parts of ViNCEd that allocate and release boopsis, without finding anything suspicious and without being able
to reproduce this bug. Probably a CyberGfx problem? Probably the same ModePro bug as above?

ViNCEd seems somehow to interact with the AmiIRC program and ARexx scripts for AmiIRC. Using ViNCEd and AmiIRC
together seems to break some arexx scripts, even though no ViNCEd window has been opened at that time. This problem is still
a mystery for me. I can neither reproduce it, nor have any idea what the reason for this could be. Would be interesting if the
ARexx patch included in the full distribution - which fixes an internal ARexx message queuing problem - can correct this bug.
This might be, too, a timing problem of various "hacked" and critical ARexx scripts.

1.647 The tbiclass Boopsi Interface

ViNCEd uses the system "Boopsis" wherever possible; these can be replaced by a "SysIHack" style program like "VisualPrefs".
However, since not all gadgets required by ViNCEd are available as public gadget classes, an interface has been worked out
together with Massimo Tantignone, the author of VisualPrefs, to allow replacement of the remaining ViNCEd gadgets. This
interface works thru a custom gadget class, named "tbiclass", short for "tool button image class". ViNCEd will first try to allocate
boopsis of this class and falls back to its own gadgets in case this class is not available.

VNC 183 / 188

The "tool button image class" is either provided by a stand-alone boopsi which was written by Massimo Tantignone and is
included with his friendly permission in this distribution, or is installed and maintained by the VisualPrefs program of the same
author. Hence, if you’re running VisualPrefs anyhow, there’s no need to install this image class.

If you want to write a "GUI improver" software....

__

...you should supply a public "Boopsi Classes" called "tbiclass". The class should be a subclass of the ordinary "image" class
and will be allocated by ViNCEd for the iconify gadget and the "title bar" gadgets. The image class should come in at least two
"flavours", determinated with the "SYSIA_Which" tag. This tag is defined in "intuition/imageclass.h".

Details about the iconify image flavour of the "tbiclass"

__

This image subclass is used to render the iconify gadget in ViNCEd and other windows.

You receive the following information thru the standard tag items:

SYSIA_Which with a tag value of 104, defining the "iconify flavour".

o) Width & height of the image to create. These values will be the dimensions of the "depth arrangement" gadgets in the window.
You may well ignore these parameters as long as the specified dimensions differ by the returned dimensions by a reasonable
amount - meaning: screen sized gadgets won’t work, but everything that fits in the titlebar should. ViNCEd tries to adjust its GUI
accordingly to make enough room for your image.

o) The DrawInfo of the screen the window is to be created on. You should use it to choose the correct pens for your image.

ViNCEd will allocate only ONE instance of this boopsi class and use it for both, the regular and the hilited image of the iconify
gadget. Make sure your boopsi class is smart enough to render itself accordingly, you receive all necessary information thru the
standard boopsi "message".

You WILL NOT receive a recessed/raised flag of the image to create. As I said, your boopsi class is expected to be smart enough.

To be compatible to an intuition "feature", ViNCEd expects that the LeftEdge of your returned image is set to "-1", hence, the
image is shifted by one pixel to the left relatively to the gadget. This sounds a bit strange, but intuition treads the standard system
images in quite the same way. The reason for this displacement of the image is to keep the left black image border out of the
sensitive area of the gadget. This dark border appears later on to be the apparent right border of the title bar.

Details about the button flavour of the "tbiclass"

__

This image subclass is used to render the "titlebar buttons" of ViNCEd windows.

You receive the following tags:

SYSIA_Which with a tag value of 106, defining the "button flavour".

o) Width & height of the image to create. You may well ignore the height parameter as long as you make sure your image will be
the same size as the title bar of the window. You ABSOLUTELY MUST obey the width parameter, ViNCEd relies on the correct
value set in the boopsi returned.

o) The DrawInfo of the screen for rendering informations.

You WILL NOT receive a recessed/raised flag for the image to create. As above, ViNCEd expects that your image class is smart
enough to render itself accordingly, all necessary data can be received from intuition.

ViNCEd will allocate only ONE instance of this boopsi per button, and will use it for both, the gadget image and the hilite image
- the pointer goes to the "GadgetRender" and "SelectRender" fields of the gadgets.

Expect that parts of your images will be obscured by text, the contents of the button.

To be compatible with a feature of intuition, ViNCEd expects that the image is shifted to the left by one pixel, i.e. the LeftEdge
entry of the image structure must be set to -1. See above for details.

If you write your own application and need an iconify gadget or a title bar button...

__

VNC 184 / 188

First, provide your own standard gadget imagery. Make sure your program works on a plain system, without any "GUI improver"
software. If you want your gadgets to get standard images, try the following to get a standard iconify gadget:

Allocate a boopsi of the public "tbiclass" class, provide the following tags:

SYSIA_Which with a tag value of 104, defining the "iconify flavour".

o) Width & height, and the DrawInfo of the screen your window is located on.

If this allocation fails, fall back to your own image.

If it works:

Check the width and the height of the returned image. They might be different from your specifications in order to give a "better
look". Adjust your GUI accordingly, make some room for this image. Fill the pointer you received in the "GadgetRender" and
"SelectRender" fields of the gadget structure and specify alternate images as gadget rendering mechanisms. MAKE SURE YOU
ADJUST THE GADGET SIZE to reflect the dimensions of the image!

To be compatible to an intuition feature, the image you receive will be shifted to one pixel to the left. DO NOT ALTER the image
structure you received, it isn’t yours! Move the gadget instead if you need to do so! Read the paragraph above for more details.

If you need a standard button in your title bar:

Allocate a boopsi of the "tbiclass", provide the following tags:

SYSIA_Which with a tag value of 106, defining the "button flavour".

o) Width & height of the button you need. The "width" can be as big as you like, but the height should be the height of the title
bar of the window. If the window is not yet open, specify a reasonable value, it will be adjusted for you. DrawInfo of the screen
your window is located on. THIS TAG is ABSOLUTELY NEEDED!

You receive either NULL if the class isn’t available. Fall back to your own image or border if you get this as result. If you don’t
get NULL, you’re holding one instance of an image-like boopsi. It’s width is guaranteed to be the width you specified, but the
height might differ to adjust the image in the title bar. Set the "GadgetRender" and "SelectRender" fields of an intuition gadget
to this pointer and specify images as regular and selected rendering of the gadget. MAKE SURE YOU ADJUST THE GADGET
HEIGHT to reflect possible changes.

To be compatible with an intuition feature, this image will be shifted leftwards by one pixel. This will move the 3D-look border
of it out of the gadget activation region and is an intuition feature. Please DO NOT adjust the image structure yourself, it isn’t
yours. Move the gadget instead if you have to.

For further questions, contact me .

1.648 Index

A...

Abort Expansion (Keyboard Function) About info files and requesters About Page Add ViNCEd matches to the requester (TAB Set-
ting) Address, my All history settings at once All TAB expansion settings at once ALT Argument ALT_AMBIGREQ (Prefs Set-
ting) ALT_ASSIGN_PRI (Prefs Setting) ALT_COMMAND_PRI (Prefs Setting) ALT_DEVICE_PRI (Prefs Setting) ALT_DIRECTORY_PRI (Prefs Set-
ting) ALT_DOUBLEREQ (Prefs Setting) ALT_EXEC_PRI (Prefs Setting) ALT_FILE_PRI (Prefs Setting) ALT_FULLEXPAND (Prefs Set-
ting) ALT_INFO_PRI (Prefs Setting) ALT_INTOCONSOLE (Prefs Setting) ALT_PARTIALPAT (Prefs Setting) ALT_PATH_PRI (Prefs Set-
ting) ALT_RESIDENT_PRI (Prefs Setting) ALT_SCRIPT_PRI (Prefs Setting) ALT_VNCREQUESTER (Prefs Setting) ALT_VOLUME_PRI (Prefs Set-
ting) ANSI Argument ANSI Colors ANSI Colors as Default/ANSIMODE (Prefs Flag) Assigns priority (TAB Setting) AUTO Ar-
gument Auto Indent Mode/AUTOINDENT (Prefs Flag)

B...

BACK Argument BACKDROP Argument BACKGROUND/S (SetVNC argument) Binding a keyboard function? Blinking Cur-
sor/BLINKING (Prefs Flag) Block Operations Book references Boopsi Interface Break functions of ViNCEd Bug notes and re-
ports, how to contact the author BUTTONMACRO (Prefs Setting) BUTTONS Argument BUTTONTITLE (Prefs Setting)

C...

Cached directories/CACHESIZE (Prefs Setting) Call Macro to Close Window/SMARTCLOSE (Prefs Flag) CHUNKY Argu-
ment Clear Screen (Keyboard Function) CLOSE Argument Ctrl Z key in the Shell mode Color Setup/COLOR (Prefs Setting)

VNC 185 / 188

COLS Argument Command history Command (C:) priority, relative (TAB Setting) Command search directory, how to change?
Compatibility notes Compatibility notes for the experts Component, what is? ConMan B Argument ConMan S Argument Con-
Man style single character options ConMan W Argument Console Modes Control characters Control pages of SetVNC Control
sequences that return results. Control sequences the keyboard parser sends and receives Control sequences you might receive
Copy (Keyboard Function) Copy Quiet (Keyboard Function) CSI and ESC sequences CSI sequences Cursor Blink Speed/BLINKSPEED (Prefs Set-
ting) Cursor Color Setup/CURSOR COLOR (Prefs Setting) Cursor Down keyboard (Keyboard Function) Cursor Left (Key-
board Function) Cursor Right (Keyboard Function) Cursor Up keyboard (Keyboard Function) Cut (Keyboard Function) Cut Com-
ponent Bkwds (Keyboard Function) Cut Component Fwds (Keyboard Function) Cut End of Line (Keyboard Function) Cut Full Line (Key-
board Function) Cut Inputs (Keyboard Function) Cut Start of Line (Keyboard Function) Cut Word Bkwds (Keyboard Function)
Cut Words Fwds (Keyboard Function)

D...

Default path/DEFAULT_PATH (Prefs Setting) Delete Backwards (Keyboard Function) Delete Component Bkwds (Keyboard Func-
tion) Delete Component Fwds (Keyboard Function) Delete End of Display (Keyboard Function) Delete End of Line (Key-
board Function) Delete Forwards (Keyboard Function) Delete Full Line (Keyboard Function) Delete Inputs (Keyboard Function)
Delete Start of Line (Keyboard Function) Delete Word Bkwds (Keyboard Function) Delete Word Fwds (Keyboard Function)
DEPTH Argument Destructive DEL and BS/DOSERASE (Prefs Flag) Details about Job Control Devices priority (TAB Setting)
DEV_AMBIGREQ (Prefs Setting) DEV_ASSIGN_PRI (Prefs Setting) DEV_COMMAND_PRI (Prefs Setting) DEV_DEVICE_PRI (Prefs Set-
ting) DEV_DIRECTORY_PRI (Prefs Setting) DEV_DOUBLEREQ (Prefs Setting) DEV_EXEC_PRI (Prefs Setting) DEV_FILE_PRI (Prefs Set-
ting) DEV_FULLEXPAND (Prefs Setting) DEV_INFO_PRI (Prefs Setting) DEV_INTOCONSOLE (Prefs Setting) DEV_PARTIALPAT
(Prefs Setting) DEV_PATH_PRI (Prefs Setting) DEV_RESIDENT_PRI (Prefs Setting) DEV_SCRIPT_PRI (Prefs Setting) DEV_VNCREQUESTER (Prefs Set-
ting) DEV_VOLUME_PRI (Prefs Setting) Directories priority (TAB Setting) DIR_AMBIGREQ (Prefs Setting) DIR_ASSIGN_PRI (Prefs Set-
ting) DIR_COMMAND_PRI (Prefs Setting) DIR_DEVICE_PRI (Prefs Setting) DIR_DIRECTORY_PRI (Prefs Setting) DIR_DOUBLEREQ (Prefs Set-
ting) DIR_EXEC_PRI (Prefs Setting) DIR_FILE_PRI (Prefs Setting) DIR_FULLEXPAND (Prefs Setting) DIR_INFO_PRI (Prefs Set-
ting) DIR_INTOCONSOLE (Prefs Setting) DIR_PARTIALPAT (Prefs Setting) DIR_PATH_PRI (Prefs Setting) DIR_RESIDENT_PRI (Prefs Set-
ting) DIR_SCRIPT_PRI (Prefs Setting) DIR_VNCREQUESTER (Prefs Setting) DIR_VOLUME_PRI (Prefs Setting) Disable BS at Start of Line/NOB-
SSTART (Prefs Flag) Disable Horizontal Scroller/DISABLEPROPX (Prefs Flag) Disable Horizontal Scroller/DISABLEPROPY (Prefs Flag)
Disable Middle Mouse Button/DISABLEMMB (Prefs Flag) DISABLESCROLL (Prefs Flag) DISABLEWRAP (Prefs Flag) Dis-
play Beep (Keyboard Function) DOS packets list Do not match characters behind cursor (TAB Setting) Do not Place File Re-
quester/DONTPLACEREQUESTER (Prefs Flag) Don’t Add Close Gadget by Default/NODEFAULTCLOSE (Prefs Flag) Don’t Add Iconify Gad-
get by Default/FORBIDICONIFY (Prefs Flag) Don’t scroll into the border (Prefs Flag) Don’t send EOF until everybody wait-
s/CLOSEQUEUE (Prefs Flag) Don’t Write Printed Text into Clipboard/CUTUSER (Prefs Flag) Double-Tab requester, how to
turn off? Double TAB Requester (TAB Setting) Double TAB time interval DRAG Argument

E...

Edit Menu Edit Page 1 Edit Page 2 Edit Page 3 Edit Page 4 Enable Close Requester/CLOSEREQ (Prefs Flag) Enable Scrollers in RAW Mod-
e/RAWSCROLLERS (Prefs Flag) End (Keyboard Function) ESC and CSI sequences ESC sequences Exclude assignments,
how to? Exclude directories, how to? Exclude icon files, how to? Executables priority (TAB Setting) Expand Alt (Key-
board Function) Expand Alt Bkwds (Keyboard Function) Expand Backwards (Keyboard Function) Expand Devices (Key-
board Function) Expand Devs Bkwds (Keyboard Function) Expand Dirs (Keyboard Function) Expand Dirs Bkwds (Keyboard Func-
tion) Expand Icons (Keyboard Function) Expand Icons Bkwds (Keyboard Function) Expand Path (Keyboard Function) Ex-
pand Short (Keyboard Function) Expand Short Bkwds (Keyboard Function) Extended Colors Instead of Bold/BOLDEXTCOL-
ORS (Pref Flag)

F...

FALLBACK Argument File priority (TAB Setting) First TAB expands fully (TAB Setting) FONT Argument Font/DEFAULT_FONT (Prefs Set-
ting) FOREGROUND/K (OTHER/S CLI/N) Fork New Shell (Keyboard Function) Fork new shell/RUN_NEW_SHELL (Prefs Set-
ting) Format of the Preferences File Form Feed (Keyboard Function) FREEPOINTER/K (ALL/S) (SetVNC argument) Fre-
quently asked questions Full Reset (Keyboard Function) Future Plans with ViNCEd

G...

Gadgets in the Window Generate EOF (Keyboard Function) GET/K (SCREEN HISTORY) (SetVNC argument) Goodies of the SetVNC pro-
gram Goodies of ViNCEd Graphical Interface of SetVNC Gurus thrown by ViNCEd

H...

Half Screen Down (Keyboard Function) Half Screen Left (Keyboard Function) Half Screen Right (Keyboard Function) Half Screen Up (Key-
board Function) Height Argument Height/REQ_HEIGHT (Prefs Setting) Help (Keyboard Function) HELP/S (SetVNC argument)

VNC 186 / 188

Hide (Keyboard Function) History Buffer History Buffer Wraps Around/WRAP (Prefs Flag) History Down (Keyboard Function)
History lines/BUFFERSIZE (Prefs Setting) History settings at once History Up (Keyboard Function) Home (Keyboard Function)
How to avoid the refinement? How to change the command search directory? How to exclude assignments? How to exclude di-
rectories? How to exclude icon files? How to install ViNCEd How to turn off the Double-Tab requester? How to use standard re-
questers?

I...

Icon (.info) priority (TAB Setting) Icon drop in the Shell mode Icon Path/ICON_PATH (Prefs Setting) Icon Title/ICON_TITLE (Prefs Set-
ting) ICONIFIED Option ICONIFY Argument Iconify (Keyboard Function) IFVNC/S (SetVNC argument) Implicit Copy af-
ter Text Marking/AUTOCOPY (Prefs Flag) INACTIVE Argument Info files and requesters Inserting spaces Install ViNCEd
INF_AMBIGREQ (Prefs Setting) INF_ASSIGN_PRI (Prefs Setting) INF_COMMAND_PRI (Prefs Setting) INF_DEVICE_PRI (Prefs Set-
ting) INF_DIRECTORY_PRI (Prefs Setting) INF_DOUBLEREQ (Prefs Setting) INF_EXEC_PRI (Prefs Setting) INF_FILE_PRI (Prefs Set-
ting) INF_FULLEXPAND (Prefs Setting) INF_INFO_PRI (Prefs Setting) INF_INTOCONSOLE (Prefs Setting) INF_PARTIALPAT
(Prefs Setting) INF_PATH_PRI (Prefs Setting) INF_RESIDENT_PRI (Prefs Setting) INF_SCRIPT_PRI (Prefs Setting) INF_VNCREQUESTER (Prefs Set-
ting) INF_VOLUME_PRI (Prefs Setting) Inhibit Horiz. Scrolling by DOS Output/NOPRINTSCROLL (Prefs Flag) Insert CSI (Key-
board Function) Insert ESC (Keyboard Function) Insert ˆJ (Keyboard Function) Insertion Mode for DOS Output/DOSINSERT (Prefs Flag)
Inverse ANSI Coloring/ANSIREVERSE (Prefs Flag) Invisible Type Ahead/TYPEAHEAD (Prefs Flag)

J...

Job Control details Job Control related arguments of SetVNC

K...

KEEP Argument Keep Bottom of Window Adjusted/SCROLLTOBOTTOM (Prefs Flag) Keep Duplicates in the History/KEEP-
DOUBLES (Prefs Flag) Keyboard - how to type? Keyboard Functions Keyboard function, what is? Keyboard Page 1 Key-
board Page 2

L...

Left Edge/REQ_LEFTEDGE (Prefs Setting) LeftEdge Argument Licence Line Break at Right Border/SMALLDISPLAY (Prefs Flag)
Line Feed (Keyboard Function) List expansions on the console (TAB Setting) List of all Keyboard Functions List of control char-
acters. List of control sequences the keyboard parser sends and receives List of CSI sequences List of ESC sequences List of OSC
sequences List of Gurus thrown by ViNCEd List of understood DOS packets LOAD/K (PREFS/S GLOBAL/S WINDOW/S DE-
FAULT/S LAST/S FROM) (SetVNC Argument) Lower display size/LOWERSIZE (Prefs Setting)

M...

MACRO (Prefs Setting) Macros and Buttons Macros Menu Macros Page 1 and 2 Macros Page 3 Menu MENU Argument MOD-
IFY/S (SetVNC argument) MONITOR Argument MONITOR/A (SetVNC argument) Monitor/MONITORID (Prefs Setting)
MONITORID Argument MOUNT/K (OVERRIDE/S AS) (SetVNC argument) Mouse Tracking Information My address

N...

Name of the ViNCEd handler Name Only Qualifier/NAMEONLYQU (Prefs Setting) Next Component (Keyboard Function)
Next Word (Keyboard Function) No Insertion Into Border/SHORTSCREENINSERT (Prefs Flag) NOANSI Argument NOBOR-
DER Argument NOBUTTONS Argument NOCLOSE Argument NODEPTH Argument NODRAG Argument NOFALLBACK Ar-
gument NOICONIFY Option NOMENU Argument Non standard keys NOPROPX Argument NOPROPY Argument NOSHELL Ar-
gument NOSIZE Argument Notation of keyboard sequences in this manual Notify DOS About Paste/AUTOPASTE (Prefs Flag)
NOTITLEBAR Argument Numeric keypad cursor control/NUMPADMODE (Prefs Flag) NumPad for Cursor

O...

OLDLOOK Argument OSC Sequences Overview: What is ViNCEd about? And why this strange name? Overwrite Mode
Overwrite Mode/OVERWRITE (Prefs Flag) Owner, what is?

P...

Pages of SetVNC Paste (Keyboard Function) Path Only Qualifier/PATHONLYQU (Prefs Setting) Path priority, relative (TAB Set-
ting) PLAIN Argument PLANAR Argument PREFS Argument PREFS/S (SetVNC argument) Prev Component (Keyboard Func-
tion) Prev Word (Keyboard Function) Prevent Accidental Window Closing/SAFERCLOSE (Prefs Flag) Programmer’s Manual
Project Menu PROPX Argument PROPY Argument PUT/K (SCREEN HISTORY) (SetVNC argument)

Q...

VNC 187 / 188

QUIET (SetVNC argument) Quit Program/QUIT_PROGRAM (Prefs Setting)

R...

Rebuild Delay/REBUILDDELAY (Prefs Flag) Rebuild Delay/REBUILDTIME (Prefs Setting) Requester if expansion is ambigu-
ous (TAB Setting) References Refinement, how to avoid ? Refinement, what is? Reset (Keyboard Function) RESET/S (SetVNC ar-
gument) Residents priority (TAB Setting) Resume (Keyboard Function) Window Buffers Rewind History (Keyboard Function)
Rigid XTerm Cursor/RIGIDCURSOR (Prefs Flag) ROWLOCK (Prefs Flag) ROWS Argument

S...

SAVE/K (NOICONS/S PREFS/S GLOBAL/S WINDOW/S TO) (SetVNC argument) SCREEN Argument Scripts priority (TAB Set-
ting) Scripts contained in this package Scroll Down (Keyboard Function) Scroll Half Screen Down (Keyboard Function) Scroll Half Screen Up (Key-
board Function) Scroll to Cursor (Keyboard Function) Scroll Up (Keyboard Function) SDEPTH Argument Search History Down-
wards (Keyboard Function) Search History Upwards (Keyboard Function) Search Partial Downwards (Keyboard Function)
Search Partial Upwards (Keyboard Function) Select All (Keyboard Function) Send Complete Line (Keyboard Function) Send In-
puts (Keyboard Function) Send ˆC (Keyboard Function) Send ˆC to All (Keyboard Function) Send ˆD (Keyboard Function)
Send ˆD to All (Keyboard Function) Send ˆE (Keyboard Function) Send ˆE to All (Keyboard Function) Send ˆF (Keyboard Func-
tion) Send ˆF to All (Keyboard Function) Sequences that return results. Sequences you might receive Settings Menu SETCON-
SOLE/S SetVNC Buffer I/O functions SetVNC Tool SFONT Argument Shell and Workbench Operation of SetVNC SHELL Ar-
gument Shell Arguments of the SetVNC program Shell Mode Shell Page 1 Shell Page 2 Shell Page 3 Shell Page 4 Shell Page 5
Shell Page 6 Shell Page 7 Side mark: Inserting spaces SIMPLE Argument SIZE Argument SMART Argument Split Line (Key-
board Function) SRT_AMBIGREQ (Prefs Setting) SRT_ASSIGN_PRI (Prefs Setting) SRT_COMMAND_PRI (Prefs Setting)
SRT_DEVICE_PRI (Prefs Setting) SRT_DIRECTORY_PRI (Prefs Setting) SRT_DOUBLEREQ (Prefs Setting) SRT_EXEC_PRI (Prefs Set-
ting) SRT_FILE_PRI (Prefs Setting) SRT_FULLEXPAND (Prefs Setting) SRT_INFO_PRI (Prefs Setting) SRT_INTOCONSOLE
(Prefs Setting) SRT_PARTIALPAT (Prefs Setting) SRT_PATH_PRI (Prefs Setting) SRT_RESIDENT_PRI (Prefs Setting) SRT_SCRIPT_PRI (Prefs Set-
ting) SRT_VNCREQUESTER (Prefs Setting) SRT_VOLUME_PRI (Prefs Setting) Standard CR Insertion at Start of Line/CRIN-
SERT (Prefs Flag) Standard requesters, how to use? STITLE Argument Suspend (Keyboard Function) SYSTEMMACRO (Prefs Set-
ting) System Page 1 System Page 2 System Page 3 System Page 4

T...

TAB expansion settings at once TAB Backwards (Keyboard Function) TAB expansion in the Shell mode TAB Forwards (Key-
board Function) TAB_AMBIGREQ (Prefs Setting) TAB_ASSIGN_PRI (Prefs Setting) TAB_COMMAND_PRI (Prefs Setting)
TAB_DEVICE_PRI (Prefs Setting) TAB_DIRECTORY_PRI (Prefs Setting) TAB_DOUBLEREQ (Prefs Setting) TAB_EXEC_PRI (Prefs Set-
ting) TAB_FILE_PRI (Prefs Setting) TAB_FULLEXPAND (Prefs Setting) TAB_INFO_PRI (Prefs Setting) TAB_INTOCONSOLE
(Prefs Setting) TAB_PARTIALPAT (Prefs Setting) TAB_PATH_PRI (Prefs Setting) TAB_RESIDENT_PRI (Prefs Setting) TAB_SCRIPT_PRI (Prefs Set-
ting) TAB_VNCREQUESTER (Prefs Setting) TAB_VOLUME_PRI (Prefs Setting) tbiclass Boopsi Interface Template, what is?
Thank you folks! Credits page Timing Page 1 THOR-Software Licence TITLEBAR Argument To Bottom of Screen (Key-
board Function) To Left Border (Keyboard Function) To Right Border (Keyboard Function) To Top of Screen (Keyboard Func-
tion) Toggle ESC (Keyboard Function) Toggle NumLock (Keyboard Function) Toggle Overwrite (Keyboard Function) Tog-
gle Pause (Keyboard Function) Top Edge/REQ_TOPEDGE (Prefs Setting) TopEdge Argument Turn off the Double-Tab re-
quester, how to?

U...

Underline Cursor/UNDERLINE (Prefs Flag) Unrestricted Cursor Movement/DOSCURSOR (Prefs Flag) Unsupported con-
trol characters Unsupported CSI sequences Unsupported ESC sequences Unsupported OSC sequences Upper display size/UP-
PERSIZE (Prefs Setting) Use Shell Mode by Default/SHELLMODE (Prefs Flag) User’s Guide

V...

Version information Vertical scroll threshold/SCROLLTIME (Prefs Setting) ViNCEd goodies ViNCEd Guide ViNCEd Menu
ViNCEd owner, what is? Volumes priority (TAB Setting) VT-220 Compatibility Mode/VTMODE (Prefs Flag)

W...

WAIT Argument What about a requester if not unique? Width Argument Width/REQ_WIDTH (Prefs Setting) WINDOW Argu-
ment Window Buffers Window Page 1 Window Page 2 Window Page 3 Window Path Window Title Word, what is? Word wrap
workaround/NCURSESFIX (Prefs Flags) Workbench ToolTypes of the SetVNC program

X...

XTerm/CON: Cursor Mode/XTERMCURSOR (Prefs Flag)

VNC 188 / 188

Y...

Yank buffer Yank (Keyboard Function)

	VNC
	ViNCEd Guide
	Licence and copyright agreement
	The User's Guide
	The SetVNC Tool
	The Programmer's Manual
	My address
	Book references
	Overview: What is ViNCEd about? And why this strange name?
	How to install ViNCEd
	The Keyboard - how to type?
	Non standard keys
	The Yank buffer
	The notation of keyboard sequences in this manual
	What is a word?
	What is a component?
	The Break functions of ViNCEd
	What is a keyboard function?
	Binding a keyboard function?
	Gadgets in the Window
	The Window Buffers
	The ViNCEd Menu
	The Project Menu
	The Edit Menu
	The Macros Menu
	The Settings Menu
	Overwrite Mode
	NumPad for Cursor
	Block Operations
	Macros and Buttons
	The Window Path
	The name of the ViNCEd handler
	ConMan W Argument
	ConMan S Argument
	ConMan B Argument
	LeftEdge Argument
	TopEdge Argument
	Width Argument
	Height Argument
	COLS Argument
	ROWS Argument
	WAIT Argument
	AUTO Argument
	CLOSE Argument
	NOCLOSE Argument
	SMART Argument
	SIMPLE Argument
	INACTIVE Argument
	BACKDROP Argument
	BACK Argument
	NOBORDER Argument
	SIZE Argument
	NOSIZE Argument
	DRAG Argument
	NODRAG Argument
	DEPTH Argument
	NODEPTH Argument
	NOMENU Argument
	MENU Argument
	NOPROPX Argument
	NOPROPY Argument
	PROPX Argument
	PROPY Argument
	FALLBACK Argument
	NOFALLBACK Argument
	OLDLOOK Argument
	CHUNKY Argument
	PLANAR Argument
	SHELL Argument
	NOSHELL Argument
	BUTTONS Argument
	NOBUTTONS Argument
	ICONIFY Argument
	NOICONIFY Option
	ICONIFIED Option
	ANSI Argument
	NOANSI Argument
	WINDOW Argument
	FONT Argument
	KEEP Argument
	SCREEN Argument
	ALT Argument
	STITLE Argument
	SDEPTH Argument
	SFONT Argument
	NOTITLEBAR Argument
	TITLEBAR Argument
	MONITORID Argument
	MONITOR Argument
	PLAIN Argument
	PREFS Argument
	ConMan style single character options
	The Window Title
	The Shell Mode
	Icon drop in the Shell mode
	TAB expansion in the Shell mode
	All TAB expansion settings at once
	Why does that match commands?
	Why does this match commands that start with rex?
	How to change the command search directory?
	How to exclude directories?
	How to exclude assignments?
	How to exclude icon files?
	Side mark: Inserting spaces
	How to avoid the refinement?
	What about a requester if not unique?
	About info files and requesters
	How to use standard requesters?
	How to turn off the Double-Tab requester?
	What is a refinement?
	What is a template?
	The magic Ctrl Z key in the Shell mode
	The command history
	All history settings at once
	The scripts contained in this package
	Details about Job Control
	Compatibility notes
	Compatibility notes for the experts
	List of all Keyboard Functions
	Cursor Left (Keyboard Function)
	Cursor Right (Keyboard Function)
	Cursor Up keyboard (Keyboard Function)
	Cursor Down keyboard (Keyboard Function)
	History Up (Keyboard Function)
	History Down (Keyboard Function)
	Search Partial Upwards (Keyboard Function)
	Search Partial Downwards (Keyboard Function)
	Search History Upwards (Keyboard Function)
	Search History Downwards (Keyboard Function)
	Half Screen Left (Keyboard Function)
	Half Screen Right (Keyboard Function)
	Half Screen Up (Keyboard Function)
	Half Screen Down (Keyboard Function)
	To Left Border (Keyboard Function)
	To Right Border (Keyboard Function)
	To Top of Screen (Keyboard Function)
	To Bottom of Screen (Keyboard Function)
	Prev Word (Keyboard Function)
	Next Word (Keyboard Function)
	Prev Component (Keyboard Function)
	Next Component (Keyboard Function)
	Home (Keyboard Function)
	End (Keyboard Function)
	Scroll Up (Keyboard Function)
	Scroll Down (Keyboard Function)
	Scroll Half Screen Up (Keyboard Function)
	Scroll Half Screen Down (Keyboard Function)
	Send Inputs (Keyboard Function)
	Split Line (Keyboard Function)
	Insert ^J (Keyboard Function)
	Send Complete Line (Keyboard Function)
	Line Feed (Keyboard Function)
	TAB Forwards (Keyboard Function)
	TAB Backwards (Keyboard Function)
	Expand Path (Keyboard Function)
	Expand Backwards (Keyboard Function)
	Expand Short (Keyboard Function)
	Expand Short Bkwds (Keyboard Function)
	Expand Devices (Keyboard Function)
	Expand Devs Bkwds (Keyboard Function)
	Expand Dirs (Keyboard Function)
	Expand Dirs Bkwds (Keyboard Function)
	Expand Icons (Keyboard Function)
	Expand Icons Bkwds (Keyboard Function)
	Expand Alt (Keyboard Function)
	Expand Alt Bkwds (Keyboard Function)
	Send ^C (Keyboard Function)
	Send ^D (Keyboard Function)
	Send ^E (Keyboard Function)
	Send ^F (Keyboard Function)
	Send ^C to All (Keyboard Function)
	Send ^D to All (Keyboard Function)
	Send ^E to All (Keyboard Function)
	Send ^F to All (Keyboard Function)
	Delete Forwards (Keyboard Function)
	Delete Backwards (Keyboard Function)
	Delete Full Line (Keyboard Function)
	Cut Full Line (Keyboard Function)
	Delete Inputs (Keyboard Function)
	Cut Inputs (Keyboard Function)
	Delete Word Fwds (Keyboard Function)
	Cut Words Fwds (Keyboard Function)
	Delete Word Bkwds (Keyboard Function)
	Cut Word Bkwds (Keyboard Function)
	Delete Component Fwds (Keyboard Function)
	Cut Component Fwds (Keyboard Function)
	Delete Component Bkwds (Keyboard Function)
	Cut Component Bkwds (Keyboard Function)
	Delete End of Line (Keyboard Function)
	Cut End of Line (Keyboard Function)
	Delete Start of Line (Keyboard Function)
	Cut Start of Line (Keyboard Function)
	Delete End of Display (Keyboard Function)
	Form Feed (Keyboard Function)
	Clear Screen (Keyboard Function)
	Cut (Keyboard Function)
	Copy (Keyboard Function)
	Paste (Keyboard Function)
	Hide (Keyboard Function)
	Select All (Keyboard Function)
	Copy Quiet (Keyboard Function)
	Reset (Keyboard Function)
	Full Reset (Keyboard Function)
	Iconify (Keyboard Function)
	Toggle ESC (Keyboard Function)
	Toggle NumLock (Keyboard Function)
	Toggle Overwrite (Keyboard Function)
	Suspend (Keyboard Function)
	Resume (Keyboard Function)
	Abort Expansion (Keyboard Function)
	Scroll to Cursor (Keyboard Function)
	Rewind History (Keyboard Function)
	Yank (Keyboard Function)
	Generate EOF (Keyboard Function)
	Display Beep (Keyboard Function)
	Toggle Pause (Keyboard Function)
	Help (Keyboard Function)
	Fork New Shell (Keyboard Function)
	Insert CSI (Keyboard Function)
	Insert ESC (Keyboard Function)
	The graphical Interface of SetVNC
	The control pages of SetVNC
	Shell and Workbench Operation of SetVNC
	Workbench ToolTypes of the SetVNC program
	Shell Arguments of the SetVNC program
	Job Control related arguments of SetVNC
	SetVNC Buffer I/O functions
	The Format of the Preferences File
	The About Pages
	The Macros Page 1 and 2
	The Macros Page 3
	The Keyboard Page 1
	The Keyboard Page 2
	The Edit Page 1
	The Edit Page 2
	The Edit Page 3
	The Edit Page 4
	The Shell Page 1
	The Shell Page 2
	The Shell Page 3
	The Shell Page 4
	The Shell Page 5
	The Shell Page 6
	The Shell Page 7
	The Window Page 1
	The Window Page 2
	The Window Page 3
	The Timing Page 1
	The System Page 1
	The System Page 2
	The System Page 3
	The System Page 4
	QUIET (SetVNC argument)
	MOUNT/K (OVERRIDE/S AS) (SetVNC argument)
	HELP/S (SetVNC argument)
	BACKGROUND/S (SetVNC argument)
	FOREGROUND/K (OTHER/S CLI/N)
	FREEPOINTER/S (SetVNC argument)
	SETCONSOLE/S
	LOAD/K (PREFS/S GLOBAL/S WINDOW/S DEFAULT/S LAST/S FROM) (SetVNC Argument)
	PREFS/S (SetVNC argument)
	PUT/K (SCREEN HISTORY) (SetVNC argument)
	GET/K (SCREEN HISTORY) (SetVNC argument)
	RESET/S (SetVNC argument)
	MONITOR/A (SetVNC argument)
	MODIFY/S (SetVNC argument)
	SAVE/K (NOICONS/S PREFS/S GLOBAL/S WINDOW/S TO) (SetVNC argument)
	IFVNC/S (SetVNC argument)
	Rebuild Delay/REBUILDDELAY (Prefs Flag)
	Unrestricted Cursor Movement/DOSCURSOR (Prefs Flag)
	Standard CR Insertion at Start of Line/CRINSERT (Prefs Flag)
	Overwrite Mode/OVERWRITE (Prefs Flag)
	History Buffer Wraps Around/WRAP (Prefs Flag)
	Call Macro to Close Window/SMARTCLOSE (Prefs Flag)
	Don't send EOF until everybody waits/CLOSEQUEUE (Prefs Flag)
	Don't Write Printed Text into Clipboard/CUTUSER (Prefs Flag)
	Word wrap workaround/NCURSESFIX (Prefs Flags)
	Use Shell Mode by Default/SHELLMODE (Prefs Flag)
	Auto Indent Mode/AUTOINDENT (Prefs Flag)
	Don't Add Close Gadget by Default/NODEFAULTCLOSE (Prefs Flag)
	Implicit Copy after Text Marking/AUTOCOPY (Prefs Flag)
	Prevent Accidental Window Closing/SAFERCLOSE (Prefs Flag)
	Don't Add Iconify Gadget by Default/FORBIDICONIFY (Prefs Flag)
	Disable Middle Mouse Button/DISABLEMMB (Prefs Flag)
	Enable Close Requester/CLOSEREQ (Prefs Flag)
	Keep Bottom of Window Adjusted/SCROLLTOBOTTOM (Prefs Flag)
	Inhibit Horiz. Scrolling by DOS Output/NOPRINTSCROLL (Prefs Flag)
	Line Break at Right Border/SMALLDISPLAY (Prefs Flag)
	Destructive DEL and BS/DOSERASE (Prefs Flag)
	Notify DOS About Paste/AUTOPASTE (Prefs Flag)
	DISABLESCROLL (Prefs Flag)
	DISABLEWRAP (Prefs Flag)
	Insertion Mode for DOS Output/DOSINSERT (Prefs Flag)
	VT-220 Compatibility Mode/VTMODE (Prefs Flag)
	ROWLOCK (Prefs Flag)
	Underline Cursor/UNDERLINE (Prefs Flag)
	Blinking Cursor/BLINKING (Prefs Flag)
	XTerm/CON: Cursor Mode/XTERMCURSOR (Prefs Flag)
	Disable BS at Start of Line/NOBSSTART (Prefs Flag)
	ANSI Colors as Default/ANSIMODE (Prefs Flag)
	Inverse ANSI Coloring/ANSIREVERSE (Prefs Flag)
	Numeric keypad cursor control/NUMPADMODE (Prefs Flag)
	Extended Colors Instead of Bold/BOLDEXTCOLORS (Pref Flag)
	No Insertion Into Border/SHORTSCREENINSERT (Prefs Flag)
	Don't scroll into the border (Prefs Flag)
	Invisible Type Ahead/TYPEAHEAD (Prefs Flag)
	Disable Horizontal Scroller/DISABLEPROPX (Prefs Flag)
	Disable Horizontal Scroller/DISABLEPROPY (Prefs Flag)
	Enable Scrollers in RAW Mode/RAWSCROLLERS (Prefs Flag)
	Rigid XTerm Cursor/RIGIDCURSOR (Prefs Flag)
	Keep Duplicates in the History/KEEPDOUBLES (Prefs Flag)
	Do not Place File Requester/DONTPLACEREQUESTER (Prefs Flag)
	History lines/BUFFERSIZE (Prefs Setting)
	Upper display size/UPPERSIZE (Prefs Setting)
	Lower display size/LOWERSIZE (Prefs Setting)
	Cached directories/CACHESIZE (Prefs Setting)
	Vertical scroll threshold/SCROLLTIME (Prefs Setting)
	Cursor Blink Speed/BLINKSPEED (Prefs Setting)
	Rebuild Delay/REBUILDTIME (Prefs Setting)
	Double TAB time interval/DOUBLETABTIME (Prefs Setting)
	Monitor/MONITORID (Prefs Setting)
	Path Only Qualifier/PATHONLYQU (Prefs Setting)
	Name Only Qualifier/NAMEONLYQU (Prefs Setting)
	Cursor Color Setup/CURSOR COLOR (Prefs Setting)
	Color Setup/COLOR (Prefs Setting)
	TAB_FILE_PRI (Prefs Setting)
	TAB_EXEC_PRI (Prefs Setting)
	TAB_SCRIPT_PRI (Prefs Setting)
	TAB_PATH_PRI (Prefs Setting)
	TAB_COMMAND_PRI (Prefs Setting)
	TAB_RESIDENT_PRI (Prefs Setting)
	TAB_INFO_PRI (Prefs Setting)
	TAB_DEVICE_PRI (Prefs Setting)
	TAB_ASSIGN_PRI (Prefs Setting)
	TAB_VOLUME_PRI (Prefs Setting)
	TAB_DIRECTORY_PRI (Prefs Setting)
	TAB_DOUBLEREQ (Prefs Setting)
	TAB_FULLEXPAND (Prefs Setting)
	TAB_VNCREQUESTER (Prefs Setting)
	TAB_AMBIGREQ (Prefs Setting)
	TAB_PARTIALPAT (Prefs Setting)
	TAB_INTOCONSOLE (Prefs Setting)
	SRT_FILE_PRI (Prefs Setting)
	SRT_EXEC_PRI (Prefs Setting)
	SRT_SCRIPT_PRI (Prefs Setting)
	SRT_PATH_PRI (Prefs Setting)
	SRT_COMMAND_PRI (Prefs Setting)
	SRT_RESIDENT_PRI (Prefs Setting)
	SRT_INFO_PRI (Prefs Setting)
	SRT_DEVICE_PRI (Prefs Setting)
	SRT_ASSIGN_PRI (Prefs Setting)
	SRT_VOLUME_PRI (Prefs Setting)
	SRT_DIRECTORY_PRI (Prefs Setting)
	SRT_DOUBLEREQ (Prefs Setting)
	SRT_FULLEXPAND (Prefs Setting)
	SRT_VNCREQUESTER (Prefs Setting)
	SRT_AMBIGREQ (Prefs Setting)
	SRT_PARTIALPAT (Prefs Setting)
	SRT_INTOCONSOLE (Prefs Setting)
	DEV_FILE_PRI (Prefs Setting)
	DEV_EXEC_PRI (Prefs Setting)
	DEV_SCRIPT_PRI (Prefs Setting)
	DEV_PATH_PRI (Prefs Setting)
	DEV_COMMAND_PRI (Prefs Setting)
	DEV_RESIDENT_PRI (Prefs Setting)
	DEV_INFO_PRI (Prefs Setting)
	DEV_DEVICE_PRI (Prefs Setting)
	DEV_ASSIGN_PRI (Prefs Setting)
	DEV_VOLUME_PRI (Prefs Setting)
	DEV_DIRECTORY_PRI (Prefs Setting)
	DEV_DOUBLEREQ (Prefs Setting)
	DEV_FULLEXPAND (Prefs Setting)
	DEV_VNCREQUESTER (Prefs Setting)
	DEV_AMBIGREQ (Prefs Setting)
	DEV_PARTIALPAT (Prefs Setting)
	DEV_INTOCONSOLE (Prefs Setting)
	DIR_FILE_PRI (Prefs Setting)
	DIR_EXEC_PRI (Prefs Setting)
	DIR_SCRIPT_PRI (Prefs Setting)
	DIR_PATH_PRI (Prefs Setting)
	DIR_COMMAND_PRI (Prefs Setting)
	DIR_RESIDENT_PRI (Prefs Setting)
	DIR_INFO_PRI (Prefs Setting)
	DIR_DEVICE_PRI (Prefs Setting)
	DIR_ASSIGN_PRI (Prefs Setting)
	DIR_VOLUME_PRI (Prefs Setting)
	DIR_DIRECTORY_PRI (Prefs Setting)
	DIR_DOUBLEREQ (Prefs Setting)
	DIR_FULLEXPAND (Prefs Setting)
	DIR_VNCREQUESTER (Prefs Setting)
	DIR_AMBIGREQ (Prefs Setting)
	DIR_PARTIALPAT (Prefs Setting)
	DIR_INTOCONSOLE (Prefs Setting)
	INF_FILE_PRI (Prefs Setting)
	INF_EXEC_PRI (Prefs Setting)
	INF_SCRIPT_PRI (Prefs Setting)
	INF_PATH_PRI (Prefs Setting)
	INF_COMMAND_PRI (Prefs Setting)
	INF_RESIDENT_PRI (Prefs Setting)
	INF_INFO_PRI (Prefs Setting)
	INF_DEVICE_PRI (Prefs Setting)
	INF_ASSIGN_PRI (Prefs Setting)
	INF_VOLUME_PRI (Prefs Setting)
	INF_DIRECTORY_PRI (Prefs Setting)
	INF_DOUBLEREQ (Prefs Setting)
	INF_FULLEXPAND (Prefs Setting)
	INF_VNCREQUESTER (Prefs Setting)
	INF_AMBIGREQ (Prefs Setting)
	INF_PARTIALPAT (Prefs Setting)
	INF_INTOCONSOLE (Prefs Setting)
	ALT_FILE_PRI (Prefs Setting)
	ALT_EXEC_PRI (Prefs Setting)
	ALT_SCRIPT_PRI (Prefs Setting)
	ALT_PATH_PRI (Prefs Setting)
	ALT_COMMAND_PRI (Prefs Setting)
	ALT_RESIDENT_PRI (Prefs Setting)
	ALT_INFO_PRI (Prefs Setting)
	ALT_DEVICE_PRI (Prefs Setting)
	ALT_ASSIGN_PRI (Prefs Setting)
	ALT_VOLUME_PRI (Prefs Setting)
	ALT_DIRECTORY_PRI (Prefs Setting)
	ALT_DOUBLEREQ (Prefs Setting)
	ALT_FULLEXPAND (Prefs Setting)
	ALT_VNCREQUESTER (Prefs Setting)
	ALT_AMBIGREQ (Prefs Setting)
	ALT_PARTIALPAT (Prefs Setting)
	ALT_INTOCONSOLE (Prefs Setting)
	Left Edge/REQ_LEFTEDGE (Prefs Setting)
	Top Edge/REQ_TOPEDGE (Prefs Setting)
	Width/REQ_WIDTH (Prefs Setting)
	Height/REQ_HEIGHT (Prefs Setting)
	MACRO (Prefs Setting)
	SYSTEMMACRO (Prefs Setting)
	Fork new shell/RUN_NEW_SHELL (Prefs Setting)
	Icon Path/ICON_PATH (Prefs Setting)
	Icon Title/ICON_TITLE (Prefs Setting)
	Quit Program/QUIT_PROGRAM (Prefs Setting)
	Font/DEFAULT_FONT (Prefs Setting)
	Default path/DEFAULT_PATH (Prefs Setting)
	BUTTONMACRO (Prefs Setting)
	BUTTONTITLE (Prefs Setting)
	File priority (TAB Setting)
	Executables priority (TAB Setting)
	Scripts priority (TAB Setting)
	Path priority, relative (TAB Setting)
	Command (C:) priority, relative (TAB Setting)
	Residents priority (TAB Setting)
	Icon (.info) priority (TAB Setting)
	Devices priority (TAB Setting)
	Assigns priority (TAB Setting)
	Volumes priority (TAB Setting)
	Directories priority (TAB Setting)
	Double TAB Requester (TAB Setting)
	First TAB expands fully (TAB Setting)
	Add ViNCEd matches to the requester (TAB Setting)
	Requester if expansion is ambiguous (TAB Setting)
	Do not match characters behind cursor (TAB Setting)
	List expansions on the console (TAB Setting)
	05 ENQ
	07 BEL
	08 BS
	09 HT
	0A LF
	0B VT
	0C FF
	0D CR
	0E SI
	0F SO
	1B ESC
	7F DEL
	84 IND
	85 NL
	88 HST
	8D RI
	8E SS2
	8F SS3
	90 DCS
	96 SPA
	97 EPA
	98 SOS
	9A DECID
	9B CSI
	9C ST
	9D OSC
	9E PM
	9F APC
	ESC 7
	ESC 8
	ESC 9
	ESC D
	ESC E
	ESC F
	ESC H
	ESC M
	ESC N
	ESC O
	ESC P
	ESC V
	ESC W
	ESC X
	ESC Z
	ESC c
	ESC l
	ESC m
	ESC _
	ESC ^
	ESC [
	ESC \
	ESC]
	ESC # 8
	ESC SPC F
	ESC SPC G
	ESC SPC L
	ESC SPC M
	ESC SPC N
	ESC @
	ESC # 3
	ESC # 4
	ESC # 6
	ESC (
	ESC)
	ESC *
	ESC +
	ESC |
	ESC }
	ESC ~
	ESC n
	ESC o
	ESC <
	ESC =
	ESC] 0;strg ST
	ESC] 1;strg ST
	ESC] 2;strg ST
	ESC] 3;strg ST
	ESC] 4;strg ST
	ESC] 10;strg ST
	ESC] 11;strg ST
	ESC] 12;strg ST
	ESC] 13;strg ST
	ESC] 14;strg ST
	ESC] 15;strg ST
	ESC] 16;strg ST
	ESC] 17;strg ST
	ESC] 41;strg ST
	ESC] 42;strg ST
	ESC] 46;strg ST
	ESC] 50;strg ST
	CSI n @
	CSI n A
	CSI n B
	CSI n C
	CSI n D
	CSI n E
	CSI n F
	CSI n G
	CSI n;n H
	CSI n I
	CSI n J
	CSI n K
	CSI n L
	CSI n M
	CSI n P
	CSI n S
	CSI n T
	CSI reg;r;g;b V
	CSI n W
	CSI n X
	CSI n Y
	CSI n Z
	CSI n `
	CSI c
	CSI n d
	CSI n;n f
	CSI n g
	CSI n h
	CSI n l
	CSI n m
	CSI n n
	CSI n p
	CSI n q
	CSI n;n r
	CSI SPC s
	CSI n t
	CSI n u
	CSI n v
	CSI n w
	CSI n x
	CSI n y
	CSI n {
	CSI n }
	CSI n T
	CSI n b
	CSI n h
	CSI n i
	CSI n m
	CSI n n
	CSI n q
	CSI n r
	CSI n;n s
	CSI n;n;n t
	CSI n x
	CSI n |
	CSI and ESC sequences
	List of control characters
	Unsupported control characters
	List of ESC sequences
	Unsupported ESC sequences
	List of OSC sequences
	Unsupported OSC sequences
	List of CSI sequences
	Sequences that return results
	Unsupported CSI sequences
	Sequences you might receive
	List of control sequences the keyboard parser sends and receives
	ANSI Colors
	Mouse Tracking
	Console Modes
	List of understood DOS packets
	What is a ViNCEd owner, please?
	List of Gurus thrown by ViNCEd
	ViNCEd goodies
	Goodies of the SetVNC program
	Frequently asked questions
	ViNCEd seems sometimes to hang
	How do I avoid moving the cursor by the cursor keys?
	How to run the TAB expansion with the TAB keys?
	How to avoid cursor movements on scrolling?
	I don't want to be able to set the cursor with the mouse
	I don't want to be able to move the cursor into the prompt
	ViNCEd messes up my output
	The TAB expansion does not work!
	SetVNC doesn't save the preferences.
	How to setup ViNCEd as a VT-220 terminal?
	Is it possible to run a ssh in ViNCEd?
	I don't like the iconification gadget image
	For terminal usage, ^C isn't sent over the stream.
	How to turn off the horizontal scroller in the window?
	How to avoid that ViNCEd prints text into the right window border?
	I can't invoke the online guide!
	I don't want to keep the icon of the online help
	Customizing the iconification icon does not work
	The TAB expansion doesn't match files
	Iconification doesn't work any more
	Thank you folks! Credits page
	Version information
	Future Plans with ViNCEd
	Bug notes and reports, how to contact the author
	The tbiclass Boopsi Interface
	Index

