
(English Version)

Heinrich-Heine-Universität

Düsseldorf

Universitätsrechenzentrum

Friedhelm Sowa

Version 1.1 — October 1, 1991

! () +

, - . /

0 1 2 3

4 5 6 7

8 9 : ;

Integration
of

Graphics
and

Pictures
into TEX–Documents

Printed on a 300 dpi device

Contents

1 Introduction 1

2 Sources of pictures 4

2.1 PCX files . 6

2.2 GIF files . 7

2.3 BMP files . 8

2.4 IFF or LBM files . 9

2.5 TIFF files . 10

2.6 IMG files . 11

2.7 CUT files . 12

2.8 BitMaps . 12

3 The method of integration 14

4 Variations by changing parameter values 16

4.1 The name of the output files: Parameter -f 17

4.2 Resolution: Parameters -h and -v 17

4.3 Usage of bitmaps: Parameter -ln, -gc and -xc 18

4.4 Graphics adapter: Parameter -a 18

4.5 Scaling: Parameter -m and -n 18

4.6 Width of the raster: Parameter -u and -c 20

4.7 Gradation: Parameters -t and -z 23

4.8 Global lightening: Parameters -b and -s 25

4.9 Error distribution: Parameter -d 26

4.10 Other matters: Parameter -i, -w and -r 28

4.11 Suppressing the screen correction: Parameter -e 28

4.12 PK–Format or Pixel: Parameter -p 29

5 An example for using BM2FONT 30

6 Hardware and Software 33

List of Figures

1 Example of a PCX file containing 16 grey shades, printed with 15
grey shades . 6

2 Example of a GIF file with 256 colors, printed with 16 grey shades
and separation of raster points 7

3 Example of a BMP file with 16 colors, printed with 16 grey shades
and separation of raster points 8

4 Example of an IFF or LBM file with 256 colors, printed with 16
grey shades and separation of raster points 9

5 Example of a TIFF file with 16 grey shades, printed with 16 grey
shades and separation of raster points 10

6 Example of an IMG file with 16 colors, printed with 16 grey
shades, no error distribution used 11

7 Example of CUT files with 256 grey shades, printed with 16 resp.
36 grey shades . 12

8 Example of a BitMap with 16 grey shades, printed with 14 grey
shades . 13

9 Example of a scaled picture with a width of 75mm, 15 greyshades 19

10 Example of gradation with default parameter values; generation
of the picture using 16 grey levels 23

11 Example of gradation with changing of lightening and range of
effect; generation of the picture using 16 grey levels 25

12 Picture of the U.S. Capitol, printed with 36 grey shades, grada-
tion increased with effect on the whole grey scale 30

1 INTRODUCTION 1

1 Introduction

The integration of graphics and halftone pictures into TEX– and LaTEX– doc-
uments can be done in many different ways. The main disadvantage of most
of the methods is that the format of the graphics or picture will be in a device
dependent format. This often requires a different format of TEX commands for
each printer and specialized driver programs.

It seems to be an anachronism that after more than ten years of TEX’s release
there is not a common means of inclusion of graphic elements that will work
with all printers.

The need for the solution of this problem is increased by the profiliteration of
user friendly graphics programs that are available on personal computers and
workstations. Also, the improving quality, availability, and decreasing price
of optical systems like scanners, cameras, and video scanners have enabled
convenient and economical digital sources of photographs and works of art.

This document is intended to introduce the TEX user to a system that should
solve this problem, even for the casual user. A logical procedure which solves
this problem of integration of graphics into a TEX document is outlined by the
following steps:

1. Obtain the desired picture or graphics in hard copy form.

2. Translate that picture into the TEX language so that it will be under-
standable for all driver programs. Since TEX’s basic actions are to place
a character (or rule) at a given point, this means translate the picture
into a series of characters that TEX can properly place on the page.

3. Issue the commands that place these characters in appropriate positions
relative to the others.

4. Use TEX to typeset the document.

5. Use a driver program to convert TEX’s output into a hard copy.

1 INTRODUCTION 2

The second step in the list is the one which has been missing in a portable and
reliable form. Again, since TEX’s primary means of putting ink on paper is
through the use of fonts, this step is accomplished by converting the graphic
into a series of characters in a “special” font that is meaningful for this graphic
only.

The tool or program which does this is called BM2FONT. This is a program
which is available for IBM PCs and compatibles at this writing. It is intended to
be publicly distributed as is the rest of the TEX system. Although it initially
runs only on this class of computers, its output has no restrictions on use
except that each run creates a font for printers of one resolution and one
marking technology at that resolution. This philosophy is obtained as the
output files of the program are to be understood on any computer, running
under any operating system with its ‘local’ implementation of the TEX system.

We will discuss in some detail that the original sources of these graphics can
come from computer generated pictures or pictures entered into a computer by
means of a scanner or other form of electronic camera.

Caveat: The font that the picture has been created at works only for that
resolution of printer. There is another element that affects the quality of the
output picture. Some printers form the printed page by marking the black
pixels and others form the printed page by erasing the white space where
pixels are not black. Different fonts should be done for each type printer. The
majority of printers that are available are of the write black type.

The picture of Donald Duck on the title page was obtained from a public archive
of bitmaps. The process of including it in the document was to execute the
conversion utility like:

bm2font donalt.gif

which created several files: donalt.tex donalta.pk donalta.tfm

(Notice that the original version of this manual was in German. If it had
been in English, the first two files mentioned would have been donald.gif and
donald.tex). The bm2font utility has converted a graphics file into two files

1 INTRODUCTION 3

that describe a font and a TEX source file that uses the font described in the
other two files. The user’s TEX source must now include two fragements of
TEX code which implement the use of the font/graphics. These fragments are
shown in the following two lines:

\input donalt

\setbox\donalt

The last line is used just like a character or any other box in TEX. We will give
more details later.

2 SOURCES OF PICTURES 4

2 Sources of pictures

The contents of a graphics file can consist of either vector or raster information.
Vector information will eventually undergo a metamorphosis in the printing
cycle and be changed to raster information since our output devices print rasters
that are always ‘ink’ or ‘no ink.’ These two basic states of binary systems are
common throughout the world of electronic data processing. If the bit is “on”,
it has ink and if it is “off” it has value “0”. On the paper either black or white
areas will appear. There is an obvious extension for the handling of colors in
that it is layers of these pixels of each color that will be “on” or “off.”

The idea of converting vector graphics to raster graphics is not new. It is what
the ‘printing engine’ in todays printers do as their primary function. The basic
printers actually copy characters (which are usually bitmaps) to the bitmap
for the whole page. The more advanced printers convert vector commands into
bitmaps. Most printers also have commands that allow the “filling” of closed
areas with ink. Thus, some printers can create characters by drawing the
outline with vector commands and “filling.” This does not lead to high quality
fonts at the usual 300 dot/inch resolution. The use of such filling techniques
is seldom helpful in pictures. These have rows of rasters that frequently have
little in common with the adjacent rows of pixels. The contribution here is that
the conversion happens at a stage that makes the graphics into a font which
can be used by TEX in a manner that is reasonably device independent. This
enables the basic printer to also do this graphics.

There are many commercial and public domain programs that can be used to
create graphics on personal computers and workstations. There are also several
de facto standards for storing bitmapped graphics. Most of the programs that
allow the user to create graphics support more than one of these output formats
for the storage of graphics.

We decided that the support of bitmapped graphics should be supported be-
cause it is the ‘lowest common denominator’ of all representations of graphics.
The machine readable graphics can be created by programs like MacPaint or
by scanning photographs, sketches, and drawings with some kind of a camera
device. Vector graphics can also be converted in the same manner or more
directly by the use of the vector information and output device resolution.

2 SOURCES OF PICTURES 5

The different bitmap formats that are supported by BM2FONT will be de-
scribed. Some details as to their common origins, uses, and limitations will be
given. The suffix of the input file is important and is used to specify the for-
mat of the input bitmap file. If that format requires a header, then “proofing”
of the format will be done by scanning the header. Deviations are reported by
the BM2FONT. Conversion of the graphics continues, if possible. This causes
unexpected results in some cases. The reasons are:

• These standards are often poorly documented.

• These standards are often incomplete and subject to significant variations
in their implementations.

• Programs that create such files are like all other programs in the world
and are therefore subject to bugs.

We have used the word “standards” rather loosely here. These are certainly not
standards (in most or all cases) similar to those promulgated by ANSI, DIN,
and/or ISO. These are standards only in that there is some documentation
available, more than one vendor’s product can output files meeting the standard
to some extent, and that it is apparently ‘supported’ by more than one vendor.

BM2FONT support is based upon the best information available. Errors or
warnings about inconsistencies in the input file can appear like: “keep your
fingers crossed.” It is possible that you may still get a good document, but
don’t count on it.

The different types of bitmaps that BM2FONT currently handles are:

PCX, GIF, BMP, IFF or LBM, TIFF, IMG, CUT, and BitMaps, a home grown basic
version.

2 SOURCES OF PICTURES 6

2.1 PCX files

ZSOFT developed the PCX–format for dumps of video screens. It now supports
up to 256 colors in a picture and is quite efficient in storing a screen bugger.
Only 16 colors were supported through versions 3.0. It uses a runlength encod-
ing scheme to achieve the economy of disk storage. This format is also used by
some programs which “capture” screens and make files for hardcopies of the
screen information.

! () + , - . / 0

1 2 3 4 5 6 7 8 9

: ; < ! () + , -

. / 0 1 2 3 4 5 6

7 8 9 : ; < ! ()

+ , - . / 0 1 2 3

Figure 1: Example of a PCX file containing 16 grey shades, printed with 15 grey
shades

Paintbrush, PC Paintbrush+,Deluxe Paint II or Publishers Paintbrush sup-
port the PCX format as well as some scanner systems.

2 SOURCES OF PICTURES 7

2.2 GIF files

CompuServe introduced the Graphics Interchange Format (GIF) in 1987. It
is a device independent and mainly used for exchange of graphic files within
network systems. The LZW algorithm is used to obtain efficient storage.

BM2FONT does not support all commands that can appear in GIF file. For
example, BM2FONT will extract only the first picture from a GIF file that
may contain mutliple pictures. This decision is based upon the fact that each
picture should be converted to fonts individually. Further, the tools should be
kept as simple as possible. Overlays and other special effects should be done by
specific software. Animation is not appropriate for paper documents. Taking
only the first picture ignores the problem but keeps this tool simple.

! () + , -

. / 0 1 2 3

4 5 6 7 8 9

: ; < ! ()

Figure 2: Example of a GIF file with 256 colors, printed with 16 grey shades
and separation of raster points

The documentation of the GIF standard has a discussion on the aspect ratio
of pixels in the file. This information is not given in most of the cases. As a
matter of fact, none of the GIF files that we have seen have such information
imbedded. A picture that was created on an EGA video screen would look
distorted on paper if this is not included. Thus, BM2FONT looks for the typical
horizontal and vertical resolution of an EGA card and stretches the picture to
a suitable height. This “default stretching” can disturb the intention of the
picture, particularly when printing art graphics. The user can override this by
furnishing an explicit aspect ratio.

2 SOURCES OF PICTURES 8

2.3 BMP files

Windows 3.0 includes tools for creating graphics in the device-independent
BitMaP (BMP) format. This format supports uncompressed bitmaps and run
length encoding (RLE) compression for samples of 4 and 8 bits. These represent
16 or 256 color maps, respectively.

! () + , -

. / 0 1 2 3

4 5 6 7 8 9

: ; < ! ()

Figure 3: Example of a BMP file with 16 colors, printed with 16 grey shades and
separation of raster points

BM2FONT does not support the RLE compression of BMP graphics in the cur-
rent version. At this time we have not had an opportunity to test decompression
on pictures with RLE. Current versions of graphics programs that we have ac-
cess to using Windows 3.0 apparently do not support RLE. As files including
this feature become available, this feature should be easily added.

2 SOURCES OF PICTURES 9

2.4 IFF or LBM files

The Interchange File Format standard was defined by the Electronic Arts
corporation. The format is mainly used on Amiga computers. It has been
introduced to the PC world by the graphics software DeLuxe Paint and
DeLuxe Paint II.

! () + , -

. / 0 1 2 3

4 5 6 7 8 9

: ; < ! ()

Figure 4: Example of an IFF or LBM file with 256 colors, printed with 16 grey
shades and separation of raster points

IFF or LBM files are usually labelled by the extension .lbm in the MS-DOS en-
vironment, but BM2FONT also allows a file with extension .iff to be accepted
as an IFF or LBM file.

2 SOURCES OF PICTURES 10

2.5 TIFF files

The Tagged Image File Format of the Aldus company is one of the most com-
monly used standards for storing and interchange of graphics. Its support of
black and white graphics as halftones and colors is probably one of the chief
reasons for its popularity.

The following picture was originally a color photograph and is used to illustrate
the quality of representing color pictures as halftones:

! () + ,

- . / 0 1

2 3 4 5 6

7 8 9 : ;

< ! () +

, - . / 0

1 2 3 4 5

Figure 5: Example of a TIFF file with 16 grey shades, printed with 16 grey
shades and separation of raster points

The most important item in this digitizing process is the number of colors
available in the scanned image. It is even more important than the resolution.

2 SOURCES OF PICTURES 11

2.6 IMG files

The GEM IMaGe file format (IMG) is yet another format. This format en-
codes the contents of the screen buffer by different methods of data compres-
sion. These include: runlength encoding, bitstreams, patterns, and repeated
sequences The following example is made with the SIRGraph software, which
is available in several different environments.

! () + , - . / 0

1 2 3 4 5 6 7 8 9

: ; < ! () + , -

. / 0 1 2 3 4 5 6

7 8 9 : ; < ! ()

+ , - . / 0 1 2 3

4 5 6 7 8 9 : ; <

Figure 6: Example of an IMG file with 16 colors, printed with 16 grey shades,
no error distribution used

The plan is to have BM2FONT run on several different platforms which in-
clude workstations, a mainframes, supercomputers, along with the current PC
environment.

2 SOURCES OF PICTURES 12

2.7 CUT files

The CUT format is used for storing images, among others, by the video system
ImagePro (Dr. Halo). It uses a runlength encoding format. It may be necessary
to reduce the height of the captured image, depending upon the hardware.
BM2FONT uses a default x/y–ratio of the halftone pixels of 5/7. Of course,
this can be specified on the command line if another parameter value is desired.

! () + ,

- . / 0 1

2 3 4 5 6

7 8 9 : ;

! ()

+ , -

. / 0

1 2 3

Figure 7: Example of CUT files with 256 grey shades, printed with 16 resp. 36
grey shades

2.8 BitMaps

The incorporation of bitmapped graphics should not be limited to these for-
mats. There are many more and there is no reason to expect that other formats
will not be developed. Also, if the available conversion programs can’t produce
a supported format, it may be able to produce a fairly “pure” bitmap that
would not even have a header. BM2FONT does accomodate this but it may
require the user to create a special decoding program.

BM2FONT is not able to process a pure bitmap file correctly without any
accompanying information only by scanning the filename. The filename only
says, that there is coming a bitmap, because the extension didn’t match one
of the mentioned formats like .gif or .tif. By using the parameter l like for

2 SOURCES OF PICTURES 13

example -l320 BM2FONT assumes, that there comes a bitmap with a width
of 320 bytes.

The following picture was generated with bm2font venus.bit -l320 -gy -x4

-u2 -b2. Originally it has been the file venus.gif, but the right border of the
picture was not scanned as it should be. An extraction of the image was done
which removed the damaged part of the picture. Then it was processed by
BM2FONT.

! () + , - . / 0

1 2 3 4 5 6 7 8 9

: ; < ! () + , -

. / 0 1 2 3 4 5 6

7 8 9 : ; < ! ()

+ , - . / 0 1 2 3

Figure 8: Example of a BitMap with 16 grey shades, printed with 14 grey
shades

Each time a pure bitmap is processed, several parameters should always be
included:

(-gy) indicates that halftone pixels are present,

(-x4) the width of the color sample (in bits),

(-u2) the size of the raster (-u2), and

(-b2) the grade of lightening.

3 THE METHOD OF INTEGRATION 14

3 The method of integration

The inclusion of graphics is accomplished by writing a text file (of TEX com-
mands) and two files that contain font information that TEX and its variants
understand. The TEX commands make explicit use of the font files. Further,
the font may have several “characters” which represent parts of the picture.
The TEX macros will assemble these characters to make the image.

BM2FONT wrote the following text file for the example of Figure 2. First, the
new picture fonts are defined, then we get the width of the picture and put
the parts of the picture into a box. A macro is defined to output this box,
like a TEX table, paragraph, or other box. TEX gets the information about
the dimensions of the characters, which were used to typeset the picture from
the tfm file, the driver programs read the packed (pk) files files to print the
document, including the picture.
1 \newbox\cobrabox

2 \newdimen\cobraw

3 \font\cobraa=cobraa

4 \font\cobrab=cobrab

5 \setbox\cobrabox=\vbox{\hbox{%

6 \cobraa !()+,-}}

7 \cobraw=\wd\cobrabox

8 \setbox\cobrabox=\hbox{\vbox{\hsize=\cobraw

9 \parskip=0pt\offinterlineskip\parindent0pt

10 \hbox{\cobraa !()+,-}

11 \hbox{\cobraa ./0123}

12 \hbox{\cobraa 456789}

13 \hbox{\cobraa :;<\cobrab !()}}}

14 \ifx\parbox\undefined

15 \def\setcobra{\box\cobrabox}

16 \else

17 \def\setcobra{\parbox{\wd\cobrabox}{\box\cobrabox}}

18 \fi

The maximum size of the characters which are ‘tiled’ together is 0.5 inch.
These characters should be placed immediately adjacent to each other and there
should also not be any interline space between rows of these tiled characters.

3 THE METHOD OF INTEGRATION 15

The driver program that convert’s TEX’s output (a .dvi file) into a printer
image may have some slight problems that keep the ‘tiles’ in proper alignment.
In the low resolution printers (600 dots/inch and less), the drivers should gen-
erally allow a slight accumulation of spacing errors in long words due to the
fact that the exact width of characters are not whole multiples of the width of
pixels. This accumulation is normally bounded by a maxdrift value. If it is
not zero, then these tiles can overlap or have a gap between them.

If so, look around, there are several good drivers that will not have this problem.
A single picture is converted into several characters because many printers have
a small limit to the size of characters they can handle. The driver family from
Nelson Beebe now handles this properly as does the dvips driver from Tom

Rokicki. The size of this M is approximately the same as the
individual tiles or parts of the picture that are created by BM2FONT.

Within a TEX installation there may be one or more directories from which
TEX and the driver obtain font files. The output of BM2FONT must be placed
in one of those directories or an environment variable must be set to let these
programs know where these font files are placed. BM2FONT uses an environ-
ment variable in the PC environment to place the generated files in a proper
directory. The environment variables are named TEXFONTS, TEXINPUTS and
DIRPXL. The following example is based upon the default resolution of 300dpi:

Environment-Variable File written by BM2FONT

texinputs=\tex\inputs \tex\inputs\cobra.tex

texfonts=\tex\fonts\tfm \tex\fonts\tfm\acobra.tfm

\tex\fonts\tfm\bcobra.tfm

dirpxl=\tex\fonts\pxl \tex\fonts\pxl300\acobra.pk

\tex\fonts\pxl300\bcobra.pk

If these environment variables are not defined, BM2FONT outputs the font and
TEX files in the current directory.

4 VARIATIONS BY CHANGING PARAMETER VALUES 16

4 Variations by changing parameter values

We should seldom process pictures pictures with BM2FONT’s default parame-
ters. This is especially true if the pictures are photographs taken under varying
conditions. The user should exercise some ‘artistic license’ in the choice of pa-
rameters to achieve the best effects. The list of the default parameters is given
by BM2FONT when invoked without any parameters on the command line.
1 C:\>bm2font

2 This is BitMapTOfont, version 1.1 of october 91

3 Converting Bitmap Files to TeX-Fonts

4 usage is BM2FONT filename and parameters

5 -f<name of picture for TeX> (std filename)

6 -h<horizontal resolution> (pixel/inch, std 300)

7 -v<vertical resolution> (pixel/inch, std 300)

8 -l<length of mapline> (in bytes, only pure bitmaps)

9 -a<show pictures on screen> (y or n, std n)

10 -e<stretch EGA pictures> (y or n, std y)

11 -i<inversion of pixels> (y or n, std n)

12 -g<greypixels in bitmap> (y or n, std n)

13 -p<write pixel files> (y or n, std n)

14 -w<let white be light grey> (y or n, std y)

15 -d<distribute errors> (y or n, std y)

16 -s<separation of grey dots> (y or n, std n)

17 -r<repeat each grey pixel> (y or n, std n)

18 -u<pixels for grey rectangle> (less 8)

19 -c<vert. pixels for rectangle> (less 8)

20 -x<bits per sample> (0 < x < 9)

21 -b<reduce halftone colors> (f.e. by 1, less u*c*4, std 0)

22 -t<gradation value> (in %, std 70)

23 -z<area of gradation> (in %, std 70)

24 -m<width of picture on paper> (in mm)

25 -n<height of picture on paper> (in mm)

We emphasize again that the font files that BM2FONT creates from a picture
should be for a specific device. Each type of printer is a different marking engine
and has different characteristics. When we create fonts for TEX using META-

FONT, we specifically state which printer the font is intended for. A popular

4 VARIATIONS BY CHANGING PARAMETER VALUES 17

list of modes for METAFONT has 15 different 300 dpi modes.

TEX is device independent, but the driver can’t be! This is even more true with
halftone pictures than it is with fonts. When previewing the document on a
resolution of 100 dots per inch only the layout of the page can be interesting,
not the picture itself. One cannot be confident of the appearance of the picture
on a 300 or 1200 dpi device based upon the previewing of the ‘font’ on a screen’s
very low resolution. The user should be prepared to make several runs with
different parameters to find the ‘best settings’ for each picture or set of pictures.

4.1 The name of the output files: Parameter -f

The default procedure is to use the part of the input file name before the
extension as the root of the names of the output files. In a previous example,
the input came from cobra.gif and the output files all had ‘cobra’ in them.
The parameter -fsnake would cause the string ‘cobra’ to be replaces with
‘snake’ in the names of the output files, both the .tex and font files.

4.2 Resolution: Parameters -h and -v

The default assumption in BM2FONT is a resolution of 300 dpi in both the
horizontal and vertical directions. A pixel may have different positioning reso-
lutions. If the pixels were placed at 300 dpi intervals horizontally and 240 dpi
intervals vertically, then the parameters -h300 -v240 would be used. Some
of the more commonly used dot matrix printers have such an anomoly even
though the pixels are essentially round (or square).

This information is used in calculating the tfm-dimensions which TEX will use.
Thus, we can influence the relative size of the output font. The physical size
of the picture from the tiled characters is also affected by several parameters,
especially the raster size. The raster size and the printer’s resolution must both
be considered to get good results with halftones.

4 VARIATIONS BY CHANGING PARAMETER VALUES 18

4.3 Usage of bitmaps: Parameter -ln, -gc and -xc

These parameters were introduced in the discussion of Figure 8. The width
of the picture is declared as -ln bytes. This implies that the conversion that
has written the bitmap has padded the rows of pixels to a multiple of 8 if the
natural bitmap was not.

The parameter -gc is used to indicate that yes there are grey values of the
pixels because a black and white picture is expected. Halftone pictures also
need the specification of the color sample’s width, which is expected to be
8 bits. An 8 bit width gives a possible 256 grey shades. A picture with 16 grey
shades have a width of 4 bits. In the latter case, BM2FONT is to be called with
parameter setting -x4.

4.4 Graphics adapter: Parameter -a

BM2FONT is written in a manner that the picture can be shown on the screen
with most of the common video adapters. It is possible that there will be some
problems and inconsistencies with different VGA cards. For this reason, this
previewing or accompanying output to the screen is supressed, by default. This
viewing is activated by the parameter -ay. In this mode, BM2FONT waits after
the picture is displayed on the screen for a key to be pressed, before continuing.
The user may enter the q key which will cause the program to stop and not
delete temporary files which have the extension of .tmp.

4.5 Scaling: Parameter -m and -n

The user is sometimes surprised by the size of the picture that results from
BM2FONT’s processing. Scaling is possible by the use of these parameters.
The parameters -m and -n are followed by numeric values which set the width
and height of the resulting picture (in the font representation) in units of mil-
limeters. Thus, multiple pixels may be collapsed into one and the decision of

4 VARIATIONS BY CHANGING PARAMETER VALUES 19

how this is done is based upon the size of the original picture in pixels, the
resolution of the printer, and these parameters.

! () + , - .

/ 0 1 2 3 4 5

6 7 8 9 : ; <

! () + , - .

/ 0 1 2 3 4 5

Figure 9: Example of a scaled picture with a width of 75mm, 15 greyshades

4 VARIATIONS BY CHANGING PARAMETER VALUES 20

The image above was genereated with parameter -m75. It was scaled from
1024x768 pixels to 443x332 pixel. The scaling process is done by repeating
or deleting pixels in the simplest way and has significant influence on the
quality of a picture. In many cases, like photographs, the change of quality can
be ignored. But in case of black and white pictures the problems should not
be ignored, for example:

! () + ,

- . / 0 1

2 3 4 5 6

7 8 9 : ;

! () +

, - . /

0 1 2 3

The picture was reduced to a width of

40mm

Two color graphics should be scaled to the desired size before using BM2FONT.
This will prevent effects like staircasing or lines with different widths. Text
within the original graphic may or may not be readable after the scaling process.

The program HP2XX converts HPGL-files (and some others) into the PCX format.
This is typical of the programs that should be used before BM2FONT. The user
can then determine the size of the graphic.

4.6 Width of the raster: Parameter -u and -c

Halftone pictures cannot be made by converting one pixel from the original
picture into one pixel on the printer. One pixel in the original picture may be
converted to, say, four pixels on the printer. Assume these four pixels form a
square. Then, all four of these printer’s pixels are white when the pixel in the
original picture is white and all four are black when the original pixel is black.
All the stages in between will reflect the halftones or levels of grey that give a
picture texture. This method is called dithering or rasterization. The quality
of a halftone picture on paper has a direct dependence upon the resolution of

4 VARIATIONS BY CHANGING PARAMETER VALUES 21

the output device. Higher resolutions allow more pixels to be in a ‘grey pixel’
giving more ‘grey levels.’

The next level of description will be based upon BM2FONT’s default output
device resolution of 300 dpi. Of course the horizontal and vertical resolution
can be set with the -hn and -vn parameters, respectively. The user sets the
size of the grey pixel with the with the -un and -cn parameters. These values
refer to the number of device pixels (wide and high, respectively) in one-fourth
of each grey pixel. Is -u3 is set, then the grey pixel will be a square of six
of the device’s pixels in both directions. The height parameter defaulted to
the horizontal value since it was not set. This 6 × 6 pixel will have a size of
approximately 0.5 mm for the 300 dpi device.

The following dither matrix is used as a basis. The numerals within the matrix
represent the grey values, for which the pixels must be blackened at the corre-
sponding positions within the chosen grid. Original grey values are transformed
to the available halftones.

Column
Row 1 2 3 4 5 6 7
1 01 03 06 10 18 26 38
2 02 04 07 12 19 28 40
3 05 08 09 14 21 30 42
4 11 13 15 16 23 32 44
5 17 20 22 24 25 34 46
6 27 29 31 33 35 36 48
7 37 39 41 43 45 47 49

A grey dot is built up by 4 neighboring original colored pixels. This means,
that every intensity level has 4 different occurences, following called patterns.
The amount of available grey levels G so is G = 4uc, where u is the width and
c is the height of the dot raster in pixels. When using the above mentioned
parameter setting we will have 36 levels of grey intensities and each level has
4 rasters, that are used by BM2FONT to compose the picture.

4 VARIATIONS BY CHANGING PARAMETER VALUES 22

Patterns
Grey level 1 2 3 4

1
• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

2
• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ •

3
• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

• ◦ ◦

4
• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

• ◦ ◦

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

5
• ◦ ◦

• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

• ◦ ◦

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

6
• ◦ ◦

• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ •

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

• ◦ ◦

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

...

Patterns
Grey level 1 2 3 4

20
• • ◦

• • ◦

• ◦ ◦

◦ ◦ •

◦ • •

◦ • •

• ◦ ◦

• • ◦

• • ◦

◦ • •

◦ • •

◦ ◦ •

21
• • •

• • ◦

• ◦ ◦

◦ ◦ •

◦ • •

◦ • •

• ◦ ◦

• • ◦

• • ◦

◦ • •

◦ • •

◦ ◦ •

22
• • •

• • ◦

• ◦ ◦

◦ ◦ •

◦ • •

• • •

• ◦ ◦

• • ◦

• • ◦

◦ • •

◦ • •

◦ ◦ •

...
...

...
...

...

34
• • •

• • •

• • •

• • •

• • •

• • •

• • ◦

• • •

• • •

• • •

• • •

◦ • •

35
• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

◦ • •

36
• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Depending on the actual position in a grey pixel, as it is generated for the
output device, the corresponding raster of the grey value is chosen. During
rotation around the center of the grey pixel the four segments are used in the
order 2, 3, 1 and 4.

For each row of the picture the patterns ri are used as the following table shows:

r1 r4 r1 r4 r1 r4 . . .
r2 r3 r2 r3 r2 r3 . . .
r4 r1 r4 r1 r4 r1 . . .
r3 r2 r3 r2 r3 r2 . . .
r1 r4 r1 r4 r1 r4 . . .

r1 r4 r1 r4 r1 r4 . . .

4 VARIATIONS BY CHANGING PARAMETER VALUES 23

4.7 Gradation: Parameters -t and -z

It is necessary to compensate for the fact that most output devices will make
dark grey too dark. This is due to the fact that ‘write black’ marking en-
gines write overlapping pixels that have a larger diameter than their spacing.
BM2FONT uses gradation to correct these ‘tones.’

The parameters -t and -z are used to communicate the values of parameters
which specify the range and amount of of lightening. These parameters are
percentages and their use is illustrated in the heuristic:

y =

{

1

2xα

0

x1+α + 1

2
xα

0 x
1−α 0 ≤ x < x0

x x ≥ x0

where α = t

100
, x0 = z

100

This gives a more intensive lightening near x = 0, which is ‘black.’ The light-
ening disappears for x ≥ xo. The default value of 70 for both t and z causes a
slightly lightened picture, that has effects within 70% of the grey scale.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

! () + ,

- . / 0 1

2 3 4 5 6

bm2font parrot.gif -t70 -z70

.....

.....

.....

.....

.......
......
......
.........
.........
..........
..........
............
............
..............
..............
..............
..............
............
..............
............
..............
............
..............
............
..........
............
............
............
..........
............
............
........
..........
.......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....

Figure 10: Example of gradation with default parameter values; generation of
the picture using 16 grey levels

4 VARIATIONS BY CHANGING PARAMETER VALUES 24

In this plot, remember that the larger values of x and y are ‘lighter’ values or
further from ‘black.’

4 VARIATIONS BY CHANGING PARAMETER VALUES 25

A more intense lightening over 90% of the grey scale causes a visible difference
in the curve describing the heuristic and in the picture, which is the desire.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

! () + ,

- . / 0 1

2 3 4 5 6

bm2font parrot.gif -t80 -z90

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

......
........
........
.........
..........
..............
..........
................
................
................
..................
............
................
................
................
................
..............
................
..............
..............
..........
..............
..............
............
............
............
............
..........
............
............
........
............
..........
..........
...

........
.......
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.....

Figure 11: Example of gradation with changing of lightening and range of
effect; generation of the picture using 16 grey levels

If lightening is done in the processes before delivering a bitmap to BM2FONT,
then the user should furnish the parameter -t0. Also, if a picture is furnished
with a small number of grey levels, say 8 or 16, gradation should probably be
avoided.

4.8 Global lightening: Parameters -b and -s

The -b parameter is similar to the -z parameter in that it specifies the range
of lightening. It does this in a quite different manner. The -z specified the
percentage of the darker range of the grey scale that is to be lightened according
to the formula. The use of -b3 in a process with 36 grey levels will cause the
output grey scales to be distributed over the lower 33. Thus, the three darkest
will not be used.

The lightening of a picture by using this parameter setting can cause some
information to be lost. If a picture is “too dark” then it’s better to change

4 VARIATIONS BY CHANGING PARAMETER VALUES 26

contrast or brightness when capturing the picture with an optical system like a
scanner or a camera. If this cannot be done because the original is not available,
then the user should experiment with these parameters.

Most digitized pictures do not use the whole available color scale. BM2FONT

tries to expand the calculated intensity levels to all of the available grey scales,
because we usually have fewer scales available on the output side. This can
cause harsh contrasts in the dithered picture. If the program notices this fact it
will give a message. In this case a lightening with -b may give a better quality
of the picture.

The -sy parameter is another parameter which can be used to give some light-
ening. In this case, it is used to ‘separate’ ‘grey pixels’ by rows and columns of
white pixels. This is needed if the printer does not give sufficient separation.
Use of this parameter will cause the picture to be enlarged.

4.9 Error distribution: Parameter -d

We have already mentioned that the quality of a picture often decreases due to
the fact that color pictures often have more intensity levels than the number
of output grey levels.

The Floyd/Steinberg algorithm is an effective method to solve this problem by
distributing the rounding errors to the neighboring pixels cumulatively. The
basic idea of this solution is incorporated into BM2FONT by distributing the
different levels of intensity onto different patterns that have the same grey level.
The loss of information in this rounding process may be seen as hard changes
of grey intensities. BM2FONT considers the mean value of neighbouring pixels
with different colors. This produces a different scaling into the available grey
scale. This usually produces a distinctly better quality of the image. Here is
an example, in which about 4% of the grey values have been altered by error
distribution.

4 VARIATIONS BY CHANGING PARAMETER VALUES 27

! () + , -

. / 0 1 2 3

4 5 6 7 8 9

: ; < ! ()

+ , - . / 0

Image was done with error distribution

! () + , -

. / 0 1 2 3

4 5 6 7 8 9

: ; < ! ()

+ , - . / 0

Same picture without error distribution

BM2FONT’s default is is process all bitmaps with this error distribution. The
parameter -dn turns this off.

4 VARIATIONS BY CHANGING PARAMETER VALUES 28

4.10 Other matters: Parameter -i, -w and -r

The color black is normally represented by zero in most palettes. The -iy

parameter inverts the scale, just in case a picture has appeared in this format.

Most halftone’s are more pleasing if truly white areas are shown as a light grey.
This is the default for BM2FONT and can be supressed by use of the parameter
-wn.

The normal mode of BM2FONT includes the representation of each pixel by four
‘grey pixels.’ This might still produce too small an output on high resolution
output devices, especially when working with relatively small input images.
The parameter -ry will increase the picture’s size by repeating each grey pixel
horizontally and vertically without changing the raster size.

4.11 Suppressing the screen correction: Parameter -e

It is expected that many of the bitmaps that will be included in documents
will be created, proofed, and stored on workstations. These workstations (par-
ticularly PCs) have a wide range of aspect ratios that the user may not have
considered when creating the bitmap. For example, a graphic created using an
EGA screen with (640× 350) pixels will not appear the same on a VGA screen
with (640 × 480) pixels. Further, the physical dimensions of two screens with
the same pixel configurations may be different.

The same problem will occur when the image is transcribed to a hardcopy.
BM2FONT can use the -en parameter to cancel the default adjustment of the
pixel aspect ratio. The -u and -c parameters were mentioned earlier and can
be used to achieve the same effects.

4 VARIATIONS BY CHANGING PARAMETER VALUES 29

4.12 PK–Format or Pixel: Parameter -p

The -py option will cause BM2FONT to output the obsolete PXL format of
files containing pixels. This is strongly discouraged because the common pixel
format is the packed, PK, format.

The pxtopk utility can be used for the conversion if needed.

It is planned to delete this option in the near future.

5 AN EXAMPLE FOR USING BM2FONT 30

5 An example for using BM2FONT

A example showing the effects of different values for some of the parameters is
considered a necessary part of the manual. The values of the parameters used
in creating the font files used in this manual were set for a typical 300 dpi,
write black printer. We make no claim that they are the best settings for this
printer and certainly we don’t make the claim for your printer.

We strongly recommend that the user experiment with the conversion for their
own installation. We would be pleased to learn of generalities that you observe
in your use of the system.

The following picture is of a well known building and this picture will be shown
using some different parameters.

! () + , - .

/ 0 1 2 3 4 5

6 7 8 9 : ; <

! () + , - .

Figure 12: Picture of the U.S. Capitol, printed with 36 grey shades, gradation
increased with effect on the whole grey scale

This picture was selected because it includes some specific problems concerning
transformation to a halftone image. This choice will allow the user to see the
noticeable results of parameter choices without requiring a magnifying glass. It
is a nice coincidence that it is a symbol of the country were TEX was created.

These additional copies of this picture of the U.S. Capitol were printed using

5 AN EXAMPLE FOR USING BM2FONT 31

16 grey levels. The parameters that were used are given under each figure. The
halftones were lightened on each of the pictures except for the last one.

The effects of using error distribution are not included for reasons of economy
of space and the size of the distribution of this code and document. We recom-
mend that the user do this as a test to gain familiarity with the system. The
command line invoking BM2FONT is shown below and should be understood
to add the individual parts shown below each figure:

bm2font capitol.295 -l295 -gy -x8

5 AN EXAMPLE FOR USING BM2FONT 32

! () + ,

- . / 0 1

2 3 4 5 6

! () + ,

- . / 0 1

2 3 4 5 6

default -b3

! () + ,

- . / 0 1

2 3 4 5 6

! () + ,

- . / 0 1

2 3 4 5 6

-t80 -z100 -t80 -z100 -b3

! () + ,

- . / 0 1

2 3 4 5 6

-b3 -t0 -wn

6 HARDWARE AND SOFTWARE 33

6 Hardware and Software

BM2FONT runs on PCs and compatibles under the MS–DOS operating system.
We know of no exceptions and the generated output is compatible to all versions
of TEX. The VGA, EGA and Hercules graphics adapters are supported. In case
of problems concerning graphics adapters, the option -ay should not be used.
In case of permanent errors please contact:

Heinrich-Heine-Universität Düsseldorf
Universitätsrechenzentrum
Friedhelm Sowa
Universitätsstras̈e 1
4000 Düsseldorf 1
Federal Republic of Germany
Telephone: 0211 / 311-3913
Telefax: 0211 / 311-2539
Email: tex@ze8.convex.rz.uni-duesseldorf.de or
sowa@convex.rz.uni-duesseldorf.de

The English version of this manual is maintained by:

Bart Childs Department of Computer Science Texas A&M University College
Station, TX 77843-3112 Telephone: 409-845-5470 Telefax: 409-847-8578
Email: bart@cs.tamu.edu or bart@tamzeus.bitnet

We would both like to know of efforts to port this code to different platforms.
Further, we would like to know of the TEX archives where this is made available
to the public.

