Developing Concepts

GROUP ACTIVITY

Work with a partner.

MATERIALS

algebra tiles

Modeling the Factorization of $x^2 + bx + c$

QUESTION How can you model the factorization of a trinomial of the form $x^2 + bx + c$ using algebra tiles?

EXPLORING THE CONCEPT

You can use algebra tiles to create a model that can be used to factor a trinomial that has a leading coefficient of 1. Factor the trinomial $x^2 + 5x + 6$ as follows.

1 Use algebra tiles to model $x^2 + 5x + 6$.

2 With the x^2 -tile at the upper left, arrange the x-tiles and the 1-tiles around the x^2 -tile to form a rectangle.

3 The width of the rectangle is $\frac{?}{}$, and the length of the rectangle is $\frac{?}{}$. Complete the statement: $x^2 + 5x + 6 = ? \cdot ?$.

EXERCISES

Use the model to write the factors of the trinomial.

In Exercises 3-8, use algebra tiles to factor the trinomial. Sketch your model.

3.
$$x^2 + 7x + 6$$

4.
$$x^2 + 6x + 8$$

4.
$$x^2 + 6x + 8$$
 5. $x^2 + 8x + 15$

6.
$$x^2 + 6x + 9$$

7.
$$x^2 + 4x + 4$$

7.
$$x^2 + 4x + 4$$
 8. $x^2 + 7x + 10$

9. Use algebra tiles to show why the trinomial $x^2 + 3x + 4$ cannot be factored.