# 6.4

# What you should learn

GOAL Solve absolutevalue equations.

GOAL 2 Solve absolutevalue inequalities.

# Why you should learn it

To solve real-life problems such as finding the wavelengths of different colors of fireworks in Exs. 65-68.



# **Solving Absolute-Value Equations and Inequalities**



# **SOLVING ABSOLUTE-VALUE EQUATIONS**

You can solve some absolute-value equations using mental math. For instance, you learned in Lesson 2.1 that the equation |x| = 8 has two solutions: 8 and -8.

To solve absolute-value equations, you can use the fact that the expression inside the absolute value symbols can be either positive or negative.

# **EXAMPLE 1** Solving an Absolute-Value Equation

Solve |x - 2| = 5.

# SOLUTION

Because |x-2| = 5, the expression x - 2 can be equal to 5 or to -5.

| x – 2 IS POSITIVE | x – 2 IS NEGATIVE |
|-------------------|-------------------|
| x-2  = 5          | x-2  = 5          |
| x - 2 = +5        | x - 2 = -5        |
| x = 7             | x = -3            |

The equation has two solutions: 7 and -3.

**CHECK** Substitute both values into the original equation.

|7-2| = |5| = 5 |-3-2| = |-5| = 5

# **EXAMPLE 2** Solving an Absolute-Value Equation

Solve |2x - 7| - 5 = 4.

# SOLUTION

Isolate the absolute-value expression on one side of the equation.

| 2x – 7 IS POSITIVE | 2x - 7 IS NEGATIVE |
|--------------------|--------------------|
| 2x - 7  - 5 = 4    | 2x-7 -5=4          |
| 2x-7 =9            | 2x-7 =9            |
| 2x - 7 = +9        | 2x - 7 = -9        |
| 2x = 16            | 2x = -2            |
| x = 8              | x = -1             |

The equation has two solutions: 8 and -1. Check these solutions in the original equation.



Recall that |x| is the distance between x and 0. If |x| < 8, then any number between -8 and 8 is a solution of the inequality.

Developing Concepts

Investigating Absolute-Value Inequalities

Use Guess, Check, and Revise to find values of x that satisfy each absolutevalue inequality. Graph the solution set on a number line. Then use a compound inequality to describe the solution set.

**1.** |x| < 2 **2.**  $|x+2| \ge 1$  **3.**  $|x-3| \le 2$ 

You can use these properties to solve absolute-value inequalities and equations.

## SOLVING ABSOLUTE-VALUE EQUATIONS AND INEQUALITIES

Each absolute-value equation or inequality is rewritten as two equations or two inequalities joined by *and* or *or*.

| • $ ax+b  < c$    | means | → ax + b < c    | and | ax + b > -c.      |
|-------------------|-------|-----------------|-----|-------------------|
| • $ ax+b  \leq c$ | means | $ax + b \leq c$ | and | $ax + b \ge -c.$  |
| • $ ax+b =c$      | means | ax + b = c      | or  | ax + b = -c.      |
| • $ ax+b  > c$    | means | ax + b > c      | or  | ax + b < -c.      |
| • $ ax+b  \ge c$  | means | $ax + b \ge c$  | or  | $ax + b \leq -c.$ |

Notice that when an absolute value is *less than* a number, the inequalities are connected by *and*. When an absolute value is *greater than* a number, the inequalities are connected by *or*.

# **EXAMPLE 3** Solving an Absolute-Value Inequality

Solve |x-4| < 3.

## SOLUTION

STUDENT HELP
 Study Tip
 When you rewrite an
 absolute-value
 inequality, reverse the
 inequality symbol in the
 inequality involving -c.

x - 4 IS POSITIVEx - 4 IS NEGATIVE|x - 4| < 3|x - 4| < 3x - 4 < +3x - 4 > -3x < 7x > 1

The solution is all real numbers greater than 1 *and* less than 7, which can be written as 1 < x < 7.

**EXAMPLE 4** Solving an Absolute-Value Inequality

Solve  $|2x + 1| - 3 \ge 6$ . Then graph the solution.

# SOLUTION

| 2x + 1 IS POSITIVE | 2x + 1 IS NEGATIVE   |
|--------------------|----------------------|
| $ 2x+1  - 3 \ge 6$ | $ 2x + 1  - 3 \ge 6$ |
| $ 2x+1  \ge 9$     | $ 2x+1  \ge 9$       |
| $2x + 1 \ge +9$    | $2x + 1 \le -9$      |
| $2x \ge 8$         | $2x \leq -10$        |
| $x \ge 4$          | $x \leq -5$          |

The solution of  $|2x + 1| - 3 \ge 6$  is all real numbers greater than or equal to 4 or less than or equal to -5, which can be written as the compound inequality  $x \leq -5 \text{ or } x \geq 4.$ 



#### EXAMPLE 5 Writing an Absolute-Value Inequality

You work in the quality control department of a manufacturing company. The diameter of a drill bit must be between 0.62 inch and 0.63 inch.

- **a.** Write an absolute-value inequality to represent this requirement.
- **b.** A bit has a diameter of 0.623 inch. Does it meet the requirement?

# SOLUTION

**a**. Let *d* represent the diameter (in inches) of the drill bit.

Write a compound inequality.

 $0.62 \le d \le 0.63$ 

*Find* the halfway point: 0.625.

Subtract 0.625 from each part of the compound inequality.

 $0.62 - 0.625 \le d - 0.625 \le 0.63 - 0.625$ 

 $-0.005 \le d - 0.625 \le 0.005$ 

*Rewrite* as an absolute-value inequality:

 $|d - 0.625| \le 0.005$ 

This inequality can be read as "the actual diameter must differ from 0.625 inch by no more than 0.005 inch."

**b.** Because  $|0.623 - 0.625| \le 0.005$ , the bit does meet the requirement.





STUDENT HELP

HOMEWORK HELP

Visit our Web site www.mcdougallittell.com for extra examples.

RNET

QUALITY CONTROL INSPECTOR

A quality control inspector usually works in a manufacturing company. Experienced workers usually advance to more complex inspecting positions.

CAREER LINK www.mcdougallittell.com



# **GUIDED PRACTICE**

Vocabulary Check

1. |x + 3| = 8 is an example of a(n) ? and  $|x + 3| \le 8$  is an example of a(n) ?. Concept Check

- **2.** Explain each step you should use to solve |x + 3| = 8.
- **3.** Explain why |x-5| < 2 means that x-5 is between -2 and 2.

Complete the sentence using the word and or the word or.

- 4. |x-5| < 2 means x-5 < 2? x-5 > -2.
- **5.** |x-5| > 2 means x-5 > 2? x-5 < -2.

#### Skill Check Solve the equation.

| <b>6.</b> $ n  = 5$    | <b>7.</b> $ a  = 0$     | <b>8.</b> $ x+3  = 6$         |
|------------------------|-------------------------|-------------------------------|
| <b>9.</b> $ x-4  = 10$ | <b>10.</b> $ 2n-3 +4=8$ | <b>11.</b> $ 3x + 2  + 2 = 5$ |

# Match the inequality with the graph of its solution.

| <b>12.</b> $ x+2  \ge 1$ | A5 -4 -3 -2 -1 0 1                                                                                                                                                  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>13.</b> $ x+2  \le 1$ | <b>B.</b> -5 -4 -3 -2 -1 0 1                                                                                                                                        |
| <b>14.</b> $ x+2  > 1$   | <b>C.</b> $\leftarrow$ $+$ $\rightarrow$ $+$ $\rightarrow$ $+$ $\rightarrow$ $+$ $\rightarrow$ $+$ $\rightarrow$ $+$ $\rightarrow$ $-5$ $-4$ $-3$ $-2$ $-1$ $0$ $1$ |

# Solve the inequality.

| <b>15.</b> $ x+6  < 4$ <b>16.</b> $ x-2  > 9$ <b>17.</b> $ 3x+1  \le 9$ | ≤ 5 |
|-------------------------------------------------------------------------|-----|
|-------------------------------------------------------------------------|-----|

**18. MANUFACTURING** In Example 5, suppose the diameter of the drill bit could be 0.5 inch, plus or minus as much as 0.005 inch. Write an absolute value inequality to represent this requirement.

# PRACTICE AND APPLICATIONS

| STUDENT HELP                               | SOLVING EQUATIONS Solve the equation. |                                |                                                           |  |  |  |
|--------------------------------------------|---------------------------------------|--------------------------------|-----------------------------------------------------------|--|--|--|
| Extra Practice                             | <b>19.</b> $ x  = 7$                  | <b>20.</b> $ x  = 10$          | <b>21.</b> $ x  = 25$                                     |  |  |  |
| to help you master<br>skills is on p. 802. | <b>22.</b> $ x-4  = 6$                | <b>23.</b> $ x + 5  = 11$      | <b>24.</b> $ x+8  = 9$                                    |  |  |  |
|                                            | <b>25.</b> $ x-5  = 2$                | <b>26.</b> $ x-1  = 4$         | <b>27.</b> $ x+3  = 9$                                    |  |  |  |
| ► HOMEWORK HELP<br>Example 1: Fxs, 19-39   | <b>28.</b> $ x+1  = 6$                | <b>29.</b> $ x - 3.2  = 7$     | <b>30.</b> $ x + 5  = 6.5$                                |  |  |  |
|                                            | <b>31.</b> $ 4x - 2  = 22$            | <b>32.</b> $ 6x - 4  = 2$      | <b>33.</b> $ 3x + 5  = 23$                                |  |  |  |
| <b>Example 2:</b> Exs. 19–39               | <b>34.</b> $ 5 - 4x  - 3 = 4$         | <b>35.</b> $ 2x-4 -8=10$       | <b>36.</b> $ 7x + 3  + 2 = 33$                            |  |  |  |
| continued on p. 357                        | <b>37.</b> $ x + 3.6  = 4.6$          | <b>38.</b> $ x - 1.2  - 2 = 5$ | <b>39.</b> $\left  x - \frac{1}{2} \right  = \frac{5}{2}$ |  |  |  |

## STUDENT HELP

► HOMEWORK HELP continued from p. 356 Example 3: Exs. 40–60 Example 4: Exs. 40–60 Example 5: Exs. 61, 62

## **SOLVING INEQUALITIES** Solve the inequality.

**40.** |x + 3| < 8**41.**  $|2x - 9| \le 11$ **42.**  $|x + 10| \ge 20$ **43.** |x - 2.2| > 3**44.** |4x + 2| - 1 < 5**45.**  $|5x - 15| - 4 \ge 21$ 

SOLVING AND GRAPHING Solve the inequality. Then graph the solution.

| <b>46.</b> $ 9 + x  \le 7$      | <b>47.</b> $ 4 - x  < 5$         | <b>48.</b> $ x + 12  > 36$       |
|---------------------------------|----------------------------------|----------------------------------|
| <b>49.</b> $ x - 3  \le 17$     | <b>50.</b> $ x+5  \ge 1$         | <b>51.</b> $ x+3  \ge 8$         |
| <b>52.</b> $ 10 - 4x  \le 2$    | <b>53.</b> $ 2x + 3  > 4$        | <b>54.</b> $ x+2  - 5 \ge 8$     |
| <b>55.</b> $ 3 + x  + 7 < 10$   | <b>56.</b> $ 3x + 2  - 1 \ge 10$ | <b>57.</b> $ 5x + 1  - 8 \le 16$ |
| <b>58.</b> $ 5x + 3  - 4 \ge 9$ | <b>59.</b> $ 2x+5 -1<6$          | <b>60.</b> $ 3x - 9  + 2 > 7$    |

- **61. SASKETBALL** On your basketball team, the starting players' scoring averages are between 8 and 22 points per game. Write an absolute-value inequality describing the scoring averages for the players.
- **62. (S) TEST SCORES** The test scores in your class range from 60 to 100. Write an absolute-value inequality describing the range of the test scores.
- **63. (Solution) CAR MILEAGE** Your car averages 28 miles per gallon in the city. The actual mileage varies from the average by at most 4 miles per gallon. Write an absolute-value inequality that shows the range for the mileage your car gets.
- **64. Solution** Solution The cruiser weight division in boxing is centered at 183 pounds. A boxer's weight can be as much as 7 pounds more than or less than 183 pounds. Write an absolute-value inequality for this weight requirement.

# **FIREWORKS** When a firework star bursts, the color of the "stars" is determined by the chemical compounds in the firework. The wavelengths for different colors in the spectrum are shown below.

- **65.** A firework star contains strontium. When it is burned, strontium emits light at wavelengths given by |w - 643| < 38. What colors could the star be?
- 66. A firework star contains a copper compound. When it is burned, the compound emits light at wavelengths given by |w 455| < 23. Determine the color of the star.
- 67. A firework star contains barium chlorate. When it is burned, barium chlorate emits light at wavelengths given by |w 519.5| < 12.5. What color is the star?

| Color       | Wavelength, <i>w</i> |
|-------------|----------------------|
| Ultraviolet | w < 400              |
| Violet      | $400 \le w < 424$    |
| Blue        | $424 \le w < 491$    |
| Green       | $491 \le w < 575$    |
| Yellow      | $575 \le w < 585$    |
| Orange      | $585 \le w < 647$    |
| Red         | $647 \le w < 700$    |
| Infrared    | $700 \le w$          |

**68.** A firework star contains a sodium compound. When it is burned, the compound emits light at wavelengths given by |w - 600| < 5. Determine the color of the star.





**69. MULTIPLE CHOICE** Solve |x - 7| < 6.

(A) -6 < x < 6 (B) -7 < x < 7 (C) 1 < x < 13 (D) -1 < x < 1370. MULTIPLE CHOICE Solve |3x + 3| > 12.

(A) 
$$-5 < x < 3$$
 (B)  $3 < x < -5$  (C)  $x > 3$  or  $x < -5$  (D)  $x > 3$ 

**71. MULTIPLE CHOICE** Solve  $|2x - 4| \le 3$ .

**(A)** 
$$2 \le x \le 7$$
 **(B)**  $\frac{1}{2} \le x \le \frac{7}{2}$  **(C)**  $-\frac{7}{2} \le x \le \frac{1}{2}$  **(D)**  $-\frac{7}{2} \le x \le \frac{7}{2}$ 

**†** Challenge

**SCIENCE** CONNECTION In Exercises 72 and 73, use the diagram below. It shows how light is absorbed in seawater.



- **72.** Write an absolute-value inequality approximating the wavelengths (*w*) of light that reach a depth of 30 meters in seawater.
- **73.** Write an absolute-value inequality approximating the wavelengths (*w*) of light that reach a depth of 60 meters in seawater.

# Mixed Review

EXTRA CHALLENGE

www.mcdougallittell.com

## MATRICES Find the sum or difference of the matrices. (Review 2.4)

| 74  | -2 | 7] | 3  | -6] | <b>-</b> 4      | -9 | ] [ | -12 | 8  |
|-----|----|----|----|-----|-----------------|----|-----|-----|----|
| /4. | 0  | 4  | -1 | -5  | <b>/5</b> . [-1 | 0  |     | -10 | -5 |

**SLOPE-INTERCEPT FORM** Rewrite the equation in slope-intercept form. (Review 3.7, 4.6 for 6.5)

**76.** x + 5y = 20 **77.** 6x + 9y = 36 **78.** 3x - 7y = 42

**EQUATIONS** Graph the equation. (Review 4.6)

**79.** x = -1 **80.** 3y = 15 **81.** x + y = 7

**WRITING EQUATIONS** Write the point-slope form of the equation of the line that passes through the point and has the given slope. Then rewrite the equation in slope-intercept form. (Review 5.5)

- **82.** (0, 4), m = 3 **83.** (2, -5), m = -2 **84.** (-3, 1),  $m = \frac{2}{3}$
- **85.** Straveling It is 368 miles from New York City to Pittsburgh. You make the trip in  $6\frac{1}{2}$  hours. What was your average speed? Round your answer to the nearest mile per hour. (Review 1.1)