CHAPTER

Chapter Summary

WHAT did you learn?	WHY did you learn it?
Plot points and draw scatter plots. (4.1)	See relationships between two real-life quantities and make predictions. (p. 205)
Graph a linear equation in two variables	
 • using a table of values. (4.2) • using intercepts. (4.3) 	Model earnings from a business. (p. 216) Make a quick graph to help plan a fundraiser. (p. 220)
• using slope-intercept form. (4.6)	Make a quick graph of a river's heights. (p. 243)
Find the slope of a line passing through two points. (4.4)	Represent the steepness of a road. (p. 231)
Interpret slope as a rate of change. (4.4)	Describe the rate of change of a parachutist's height above the ground. (p. 229)
Write and graph direct variation equations. (4.5)	Model the relationship between lengths of stringed instruments. (p. 238)
Use a graph to check or approximate the solution of a linear equation. (4.7)	Model production costs for a business. (p. 254)
Identify, evaluate, and graph functions. (4.8)	Model projected school enrollments. (p. 260)

How does Chapter 4 fit into the BIGGER PICTURE of algebra?

In this chapter you saw that relationships between variables may be expressed in algebraic form as an equation or in geometric form as a graph. Recognizing and using the connection between equations and graphs is one of the most important skills you can acquire to help you solve real-life problems.

₽₽₽₽₽₽₽₽₽₽

STUDY STRATEGY

How did you use your list of questions?

The list of questions and answers you made, using the **Study Strategy** on page 202, may resemble this one.

Chapter Chapter Review

VOCABULARY

• coordinate plane, p. 203

- ordered pair, p. 203
- x-coordinate, p. 203
- y-coordinate, p. 203
- x-axis, p. 203
- y-axis, p. 203

- origin, p. 203
 - quadrants, p. 203
 - graph of an ordered pair,
 - p. 203
 - scatter plot, p. 204
 - solution of an equation, p. 210
- graph of an equation, p. 210
- x-intercept, p. 218
- y-intercept, 218
- slope, p. 226
- rate of change, p. 229
- constant of variation, p. 234
- direct variation, p. 234
- slope-intercept form, p. 241
- parallel lines, p. 242
- relation, p. 256
- function notation, p. 257
- graph of a function, p. 257

Examples on

pp. 203-205

4.1

COORDINATES AND SCATTER PLOTS

EXAMPLES

To plot the point
(4, -2), start at the
origin. Move 4 units
to the right and
2 units down.

y	•					
_ 1	j	1 4			-2	x
-1						
- 2		(4, -	-2)		
-3	,					

To plot the point (-3, 1), start at the origin. Move 3 units to the left and 1 unit up.

1. Make a scatter plot of the data in the table at the right.

Time (h)	1	1.5	3	4.5
Distance (mi)	20	24	32.5	41

Plot and label the ordered pair in a coordinate plane.

2. *A*(4, 6)

3. *B*(0, −3)

4. *C*(-3.5, 5)

5. *D*(4, 0)

Examples on **GRAPHING LINEAR EQUATIONS** рр. 210-213 **EXAMPLE** To graph 3y = x - 6, -10 1 x solve the equation for y, make a table $-1\frac{2}{3}$ $-2\frac{1}{3}$ of values, and plot the points. -2y 3y = x - 6Write original equation. $y = \frac{x-6}{3}$ Divide each side by 3.

Graph the equation.

6. y = 2x + 2 **7.** $y = 7 - \frac{1}{2}x$ **8.** y = -4(x + 1) **9.** x - 10 = 2y

4.2

QUICK GRAPHS USING INTERCEPTS EXAMPLE To graph y + 2x = 10, first find the intercepts.

y + 2x = 10 y + 2x = 10 0 + 2x = 10 0 + 2x = 10 y + 2(0) = 10 x = 5 y = 10Plot (5, 0) and (0, 10). Then draw a line through the points.

Graph the equation. Label the intercepts.

THE SLOPE OF A LINE

10. -x + 4y = 8 **11.** 3x + 5y = 15 **12.** 4x - 5y = -20 **13.** 2x + 3y = 12

Examples on pp. 227–229

Examples on

pp. 234-236

Examples on

pp. 218-220

4.4

4.3

EXAMPLE To find the slope of the line passing through the points (-2, 5) and (4, -7), let $(x_1, y_1) = (-2, 5)$ and $(x_2, y_2) = (4, -7)$.

$m = \frac{y_2 - y_1}{x_2 - x_1}$	Write formula for slope.			
$m = \frac{-7 - 5}{4 - (-2)}$	Substitute values.			
$m = \frac{-12}{6}$	Simplify.			
m = -2	Slope is negative.			

Plot the points and find the slope of the line passing through the points.

14. (2, 1), (3, 4) **15.** (0, 8), (-1, 2) **16.** (2, 4), (5, 0) **17.** (0, 5), (-4, 5)

4.5

DIRECT VARIATION

EXAMPLE If x and y vary directly, the equation that relates x and y is of the form y = kx. If x = 3 when y = 18, then you can write an equation that relates x and y.

y = kx Write model for direct variation.

18 = k(3) Substitute 3 for *x* and 18 for *y*.

$$6 = k$$
 Divide each side by 3.

An equation that relates x and y is y = 6x.

The variables x and y vary directly. Use the given values of the variables to write an equation that relates x and y.

18. x = 7, y = 35 **19.** x = 12, y = -4 **20.** x = 4, y = -16 **21.** x = 3, y = 10.5

32. f(x) = 1.5x - 4.2 when x = -9

31. f(x) = 2x + 6 when x = -3

4.6

Plot and label the points in a coordinate plane.

1. $A(2, 6), B(-4, -1), C(-1, 4), D(3, -5)$	2 . <i>A</i> (-5, 1), <i>B</i> (0, 3), <i>C</i> (-1, -5), <i>D</i> (4, 6)
3. $A(7, 3), B(-2, -2), C(0, 4), D(6, -2)$	4. $A(0, -1), B(-5, -6), C(7, -2), D(2, 4)$

3. A(7, 3), B(-2, -2), C(0, 4), D(6, -2)

Graph the line that has the given intercepts.

5 . <i>x</i> -intercept: 3	6. <i>x</i> -intercept: -5	7. <i>x</i> -intercept: 6	8. <i>x</i> -intercept: $-\frac{1}{2}$
y-intercept: -1	y-intercept: 4	y-intercept: 6	y-intercept: -3^2

Use a table of values to graph the equation.

10. *y* = 4 **11.** y = -(5 - x)**9.** v = -x + 3

Graph the equation. Tell which method you used.

13. 2x + y - 11 = 0 **14**. 3x - 2y - 2 = 0 **15**. -7x - y + 49 = 0 **16**. $\frac{2}{3}x + y - 32 = 0$

Plot the points and find the slope of the line passing through the points.

The variables x and y vary directly. Use the given values of the variables to write an equation that relates x and y.

21. $x = -2, y = -2$	22. <i>x</i> = 2, <i>y</i> = 10	23. $x = -3, y = 7$
24. $x = \frac{1}{2}, y = 6$	25. <i>x</i> = 1.3, <i>y</i> = 3.9	26. $x = 16, y = 3.2$

In Exercises 27 and 28, decide whether the graphs of the two equations are parallel lines. Explain your answer.

27. y = 4x + 3, y = -4x - 5**28.** 10y + 20 = 6x, 5y = 3x + 35

29. Solve x - 2 = -3x graphically. Check your solution algebraically.

In Exercises 30–32, evaluate the function when x = 3, x = 0, and x = -4.

30.
$$f(x) = 6x$$
 31. $f(x) = -(x - 2)$ **32.** $g(x) = 3.2x + 2.8$

33. S FLOOD WATERS A river has risen 6 feet above flood stage. Beginning at time t = 0, the water level drops at a rate of two inches per hour. The

number of feet above flood stage y after t hours is given by $y = 6 - \frac{1}{6}t$.

Graph the equation over the 12-hour period from t = 0 to t = 12.

34. SHOE SIZES The table below shows how foot length relates to women's shoe sizes. Is shoe size a function of foot length? Why or why not?

Foot length (in inches), x	$9\frac{1}{4}$	$9\frac{1}{2}$	$9\frac{5}{8}$	$9\frac{3}{4}$	$9\frac{15}{16}$	$10\frac{1}{4}$	$10\frac{1}{2}$
Shoe size, y	$6\frac{1}{2}$	7	7	8	8	$9\frac{1}{2}$	$9\frac{1}{2}$

12. *x* = 6