WHAT did you learn?

Plot points and draw scatter plots. (4.1)

WHY did you learn it?

See relationships between two real-life quantities and make predictions. (p. 205)

Model earnings from a business. (p. 216) Make a quick graph to help plan a fundraiser. (p. 220)

Make a quick graph of a river's heights. (p. 243)
Represent the steepness of a road. (p. 231)

Describe the rate of change of a parachutist's height above the ground. (p. 229)

Write and graph direct variation equations. (4.5)

Model the relationship between lengths of stringed instruments. (p. 238)

Use a graph to check or approximate the $\quad \Rightarrow$ Model production costs for a business. (p. 254) solution of a linear equation. (4.7)
Identify, evaluate, and graph functions. (4.8)
Model projected school enrollments. (p. 260)

How does Chapter 4 fit into the BIGGER PICTURE of algebra?

In this chapter you saw that relationships between variables may be expressed in algebraic form as an equation or in geometric form as a graph. Recognizing and using the connection between equations and graphs is one of the most important skills you can acquire to help you solve real-life problems.

STUDY STRATEGY

 How did you use your list of questions?The list of questions and answers you made, using the Study Strategy on page 202, may resemble this one.

> Getting Questions Answered
> 1. In Lesson 4.1, Exercises 19-26, how can I find the quadrant without plotting the points?

> Answer: Mary told me that I just need to look at each coordinate to see the direction 1 move.

> For example, with (4, -5), I go right and then down, so the point is in Quadrant IV.

Chapter Review

VOCABULARY

- coordinate plane, p. 203
- ordered pair, p. 203
- x-coordinate, p. 203
- y-coordinate, p. 203
- x-axis, p. 203
- \boldsymbol{y}-axis, p. 203
- origin, p. 203
- quadrants, p. 203
- graph of an ordered pair, p. 203
- scatter plot, p. 204
- solution of an equation, p. 210
- graph of an equation, p. 210 • direct variation, p. 234
- x-intercept, p. 218
- y-intercept, 218
- slope, p. 226
- rate of change, p. 229
- constant of variation, p. 234
- slope-intercept form, p. 241
- parallel lines, p. 242
- relation, p. 256
- function notation, p. 257
- graph of a function, p. 257

EXAMPLES

To plot the point $(4,-2)$, start at the origin. Move 4 units to the right and 2 units down.

To plot the point $(-3,1)$, start at the origin. Move 3 units to the left and 1 unit up.

1. Make a scatter plot of the data in the table at the right.

Time (h)	1	1.5	3	4.5
Distance (mi)	20	24	32.5	41

Plot and label the ordered pair in a coordinate plane.
2. $A(4,6)$
3. $B(0,-3)$
4. $C(-3.5,5)$
5. $D(4,0)$

EXAMPLE To graph $3 y=x-6$, solve the equation for y, make a table of values, and plot the points.

x	-1	0	1
y	$-2 \frac{1}{3}$	-2	$-1 \frac{2}{3}$

$$
\begin{aligned}
3 y & =x-6 \\
y & =\frac{x-6}{3}
\end{aligned} \quad \text { Write original equation. }
$$

Graph the equation.

6. $y=2 x+2$
7. $y=7-\frac{1}{2} x$
8. $y=-4(x+1)$
9. $x-10=2 y$

EXAMPLE To graph $y+2 x=10$, first find the intercepts.

$$
\begin{array}{rlrl}
y+2 x & =10 & y+2 x & =10 \\
0+2 x & =10 & y+2(0) & =10 \\
x & =5 & y & =10
\end{array}
$$

Plot $(5,0)$ and $(0,10)$. Then draw a line through the points.

Graph the equation. Label the intercepts.
10. $-x+4 y=8$
11. $3 x+5 y=15$
12. $4 x-5 y=-20$
13. $2 x+3 y=12$

EXAMPLE To find the slope of the line passing through the points $(-2,5)$ and $(4,-7)$, let $\left(x_{1}, y_{1}\right)=(-2,5)$ and $\left(x_{2}, y_{2}\right)=(4,-7)$.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Write formula for slope. } \\
m=\frac{-7-5}{4-(-2)} & \text { Substitute values. } \\
m=\frac{-12}{6} & \text { Simplify. } \\
m=-2 & \text { Slope is negative. }
\end{array}
$$

Plot the points and find the slope of the line passing through the points.
14. $(2,1),(3,4)$
15. $(0,8),(-1,2)$
16. $(2,4),(5,0)$
17. $(0,5),(-4,5)$

EXAMPLE If x and y vary directly, the equation that relates x and y is of the form $y=k x$. If $x=3$ when $y=18$, then you can write an equation that relates x and y.

$$
\begin{aligned}
y & =k x & & \text { Write model for direct variation. } \\
18 & =k(3) & & \text { Substitute } 3 \text { for } x \text { and } 18 \text { for } y . \\
6 & =k & & \text { Divide each side by } 3 .
\end{aligned}
$$

An equation that relates x and y is $y=6 x$.

The variables x and y vary directly. Use the given values of the variables to write an equation that relates x and y.
18. $x=7, y=35$
19. $x=12, y=-4$
20. $x=4, y=-16$
21. $x=3, y=10.5$

EXAMPLE Use the following steps to graph $4 x+y=0$.
STEP (1) Write the equation in $y=m x+b$ form: $y=-4 x$.
Step 2 Find the slope and the y-intercept: $m=-4, b=0$.
step 3 Plot the point $(0,0)$. Draw a slope triangle to locate a second point on the line. Draw a line through the two points.

Graph the equation.

22. $y=-x-2$
23. $x-4 y=12$
24. $-x+6 y=-24$ pp. 250-252

EXAMPLE You can solve the equation $2 x-4=2$ graphically.

$$
\begin{aligned}
2 x-4 & =2 & & \text { Write original equation. } \\
2 x-6 & =0 & & \text { Write in form } a x+b=0 . \\
y & =2 x-6 & & \text { Write related function } y=a x+b .
\end{aligned}
$$

Graph $y=2 x-6$. The x-intercept is 3 , so the solution is $x=3$.
\checkmark СНеск

$$
\begin{array}{rlrl}
2 x-4 & =2 & & \text { Write original equation. } \\
2(3)-4 \stackrel{?}{=} 2 & & \text { Substitute } 3 \text { for } x . \\
2 & =2 & & \text { True statement. }
\end{array}
$$

Solve the equation graphically. Check your solution algebraically.
25. $3 x-6=0$
26. $-5 x-3=0$
27. $3 x+8=4 x$
28. $-4 x-1=7$

EXAMPLE To evaluate the function $f(x)=-\frac{1}{5} x+1$ when $x=15$, substitute the given value for x.

$$
\begin{array}{ll}
f(x)=-\frac{1}{5} x+1 & \text { Write original function. } \\
f(15)=-\frac{1}{5}(15)+1 & \text { Substitute 15 for } x . \\
f(15)=-2 & \text { Simplify. }
\end{array}
$$

Evaluate the function for the given value of \boldsymbol{x}. Then graph the function.

29. $f(x)=x-7$ when $x=-2$
30. $f(x)=-x+4$ when $x=4$
31. $f(x)=2 x+6$ when $x=-3$
32. $f(x)=1.5 x-4.2$ when $x=-9$

Plot and label the points in a coordinate plane.

1. $A(2,6), B(-4,-1), C(-1,4), D(3,-5)$
2. $A(-5,1), B(0,3), C(-1,-5), D(4,6)$
3. $A(7,3), B(-2,-2), C(0,4), D(6,-2)$
4. $A(0,-1), B(-5,-6), C(7,-2), D(2,4)$

Graph the line that has the given intercepts.

5. x-intercept: 3
y-intercept: -1
6. x-intercept: -5
y-intercept: 4
7. x-intercept: 6
y-intercept: 6
8. x-intercept: $-\frac{1}{2}$
y-intercept: -3

Use a table of values to graph the equation.
9. $y=-x+3$
10. $y=4$
11. $y=-(5-x)$
12. $x=6$

Graph the equation. Tell which method you used.
13. $2 x+y-11=0$
14. $3 x-2 y-2=0$
15. $-7 x-y+49=0$
16. $\frac{2}{3} x+y-32=0$

Plot the points and find the slope of the line passing through the points.
17. $(0,1),(-2,-6)$
18. $(-4,-1),(5,-7)$
19. $(-3,5),(2,-2)$
20. $(-3,-1),(2,-1)$

The variables x and y vary directly. Use the given values of the variables to write an equation that relates x and y.
21. $x=-2, y=-2$
22. $x=2, y=10$
23. $x=-3, y=7$
24. $x=\frac{1}{2}, y=6$
25. $x=1.3, y=3.9$
26. $x=16, y=3.2$

In Exercises 27 and 28, decide whether the graphs of the two equations are parallel lines. Explain your answer.
27. $y=4 x+3, y=-4 x-5$
28. $10 y+20=6 x, 5 y=3 x+35$
29. Solve $x-2=-3 x$ graphically. Check your solution algebraically.

In Exercises 30-32, evaluate the function when $x=3, x=0$, and $x=-4$.
30. $f(x)=6 x$
31. $f(x)=-(x-2)$
32. $g(x)=3.2 x+2.8$
33. Flood Waters A river has risen 6 feet above flood stage. Beginning at time $t=0$, the water level drops at a rate of two inches per hour. The number of feet above flood stage y after t hours is given by $y=6-\frac{1}{6} t$.
Graph the equation over the 12 -hour period from $t=0$ to $t=12$.
34. Shoe Sizes The table below shows how foot length relates to women's shoe sizes. Is shoe size a function of foot length? Why or why not?

Foot length (in inches), x	$9 \frac{1}{4}$	$9 \frac{1}{2}$	$9 \frac{5}{8}$	$9 \frac{3}{4}$	$9 \frac{15}{16}$	$10 \frac{1}{4}$	$10 \frac{1}{2}$
Shoe size, y	$6 \frac{1}{2}$	7	7	8	8	$9 \frac{1}{2}$	$9 \frac{1}{2}$

