
Texinfo
The GNU Documentation Format

Edition 2.10, for Texinfo Version Two
September 1991

by Robert J. Chassell and Richard M. Stallman

Copyright c© 1988, 1990, 1991 Free Software Foundation, Inc.

This is the second edition of the Texinfo documentation,
and is consistent with version 2 of texinfo.tex.

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA
Printed copies are available for $15 each.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Cover art by Etienne Suvasa.

1

Texinfo Copying Conditions

The programs currently being distributed that relate to Texinfo include portions of
GNU Emacs, plus other separate programs (including makeinfo, info, texindex, and
texinfo.tex). These programs are free; this means that everyone is free to use them
and free to redistribute them on a free basis. The Texinfo-related programs are not in
the public domain; they are copyrighted and there are restrictions on their distribution,
but these restrictions are designed to permit everything that a good cooperating citizen
would want to do. What is not allowed is to try to prevent others from further sharing
any version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Texinfo, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and
that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Texinfo related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Texinfo. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Texinfo are found in the General Public Licenses that accompany them.

3

1 Overview of Texinfo

Texinfo1 is a documentation system that uses a single source file to produce both on-line
help (and other information) and a printed manual. This means that instead of writing
two different documents, one providing on-line information and the other for a printed
manual, you need write only one document. When the system is revised, you need revise
only one document. (You can read the on-line help, known as an Info file, with the Info
documentation-reading program.)

Using Texinfo, you can create a printed document with the normal features of a book,
including chapters, sections, cross references, and indices. From the same Texinfo source
file, you can create a menu-driven, on-line Info file with nodes, menus, cross references,
and indices. You can, if you wish, make the chapters and sections of the printed document
correspond to the nodes of the on-line information; and you use the same cross references
and indices for both the Info file and the printed document. The GNU Emacs Manual is a
good example of a Texinfo file.

To make a printed manual, process a Texinfo source file with the TEX typesetting pro-
gram. This creates a dvi file that you can typeset and print as a book. (Note that the
Texinfo language is completely different from TEX’s usual language, PlainTEX, which Tex-
info replaces.) If you do not have TEX, but do have troff or nroff, you can use the
texi2roff program instead. To create an Info file, process a Texinfo source file with the
makeinfo utility or Emacs’s texinfo-format-buffer command; this creates an Info file
that you can install on-line.

Info works with almost every type of computer terminal; similarly, TEX and texi2roff

work with many types of printer. This power makes Texinfo a general purpose system, but
brings with it a constraint, which is that a Texinfo file may contain only the customary
“typewriter” characters (letters, numbers, spaces, and punctuation marks) but no special
graphics.

A Texinfo file is a plain ascii file containing text and @-commands (words preceded
by an ‘@’) that tell the typesetting and formatting programs what to do. You may edit a
Texinfo file with any text editor; but it is especially convenient to use GNU Emacs since
that editor has a special mode, called Texinfo mode, that provides various Texinfo-related
features. (See Chapter 2 [Texinfo Mode], page 13.)

Before writing a Texinfo source file, you should become familiar with the Info documen-
tation reading program and learn about nodes, menus, cross references, and the rest. (See
Info file info, node ‘Top’, for more information.)

Texinfo creates both on-line help and a printed manual; moreover, it is freely redis-
tributable. For these reasons, Texinfo is the format in which documentation for GNU
utilities and libraries should be written.

1 Note that the first syllable of “texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation
is derived from TEX, in which the ‘X’ is actually the Greek letter “chi” rather than the English letter
“ex” (the ‘T’ and ‘E’ are Greek letters also, but they happen to be pronounced the same way in Greek
as in English).

4 Texinfo 2.10

1.1 Info files

An Info file is a file formatted so that the Info documentation reading program can operate
on it. Info files are divided into pieces called nodes, each of which contains the discussion of
one topic. Each node has a name, and contains both text for the user to read and pointers
to other nodes, which are identified by their names. The Info program displays one node at
a time, and provides commands with which the user can move to the other related nodes.

Each node of an Info file may have any number of child nodes that describe subtopics
of the node’s topic. The names of these child nodes, if any, are listed in a menu within
the parent node; this allows you to use certain Info commands to move to one of the child
nodes. Generally, a Texinfo file is organized like a book. If a node is at the logical level of
a chapter, its child nodes are at the level of sections; likewise, the child nodes of sections
are at the level of subsections.

All the children of any one parent are linked together in a bidirectional chain of ‘Next’
and ‘Previous’ pointers. This means that all the nodes that are at the level of sections
within a chapter are linked together. Normally the order in this chain is the same as the
order of the children in the parent’s menu. Each child node records the parent node name,
as its ‘Up’ pointer. The last child has no ‘Next’ pointer, and the first child has the parent
both as its ‘Previous’ and as its ‘Up’ pointer.2

The book-like structuring of an Info file into nodes that correspond to chapters, sections,
and the like is a matter of convention, not a requirement. The ‘Up’, ‘Previous’, and ‘Next’
pointers of a node can point to any other nodes, and a menu can contain any other nodes.
Thus, the node structure can be any directed graph. But it is usually more comprehensible
to follow a structure that corresponds to the structure of chapters and sections in a printed
manual.

In addition to ‘Next’, ‘Previous’, and ‘Up’ pointers and menus, Info provides pointers of
another kind, called references, that can be sprinkled throughout the text. This is usually
the best way to represent links that do not fit a hierarchical structure.

Usually, you will design a document so that its nodes match the structure of chapters
and sections in the printed manual. But there are times when this is not right for the
material being discussed. Therefore, Texinfo uses separate commands to specify the node
structure of the Info file and the section structure of the printed manual.

Generally, you enter an Info file through a node that by convention is called ‘Top’.
This node normally contains just a brief summary of the file’s purpose, and a large menu
through which the rest of the file is reached. From this node, you can either traverse the
file systematically by going from node to node, or you can go to a specific node listed in
the main menu, or you can search the index menus and then go directly to the node that
has the information you want.

If you want to read through an Info file in sequence, as if it were a printed manual, you
can get the whole file with the advanced Info command g* RET. (See Info file info, node
‘Expert’.)

2 In some documents, the first child has no ‘Previous’ pointer. Occassionally, the last child has the node
name of the next following higher level node as its ‘Next’ pointer.

Chapter 1: Overview of Texinfo 5

The dir file in the .../emacs/info directory serves as the departure point for the whole
Info system. From it, you can reach the top nodes of each of the documents in a complete
Info system.

1.2 Printed Manuals

A Texinfo file can be formatted and typeset as a printed manual. To do this, you need to
use TEX, a powerful, sophisticated typesetting program written by Donald Knuth.3

A Texinfo-based printed manual will be similar to any other book; it will have a title page,
copyright page, table of contents, and preface, as well as chapters, numbered or unnumbered
sections and subsections, page headers, cross references, footnotes, and indices.

You can use Texinfo to write a book without ever having the intention of converting it
into on-line information. You can use Texinfo for writing a printed novel, and even to write
a printed memo, although this latter application is not recommended since electronic mail
is so much easier.

TEX is a general purpose typesetting program. Texinfo provides a file called texinfo.tex

that contains information (definitions or macros) that TEX uses when it typesets a Texinfo
file. (The macros tell TEX how to convert the Texinfo @-commands to TEX commands,
which TEX can then process to create the typeset document.) texinfo.tex contains the
specifications for printing a document, either with 7 inch by 9.25 inch pages or with 8.5 inch
by 11 inch pages. (This is 178 mm by 235 mm or else 216 mm by 280 mm.) By changing the
parameters in texinfo.tex, you can change the size of the printed document. In addition,
you can change the style in which the printed document is formatted; for example, you can
change the sizes and fonts used, the amount of indentation for each paragraph, the degree
to which words are hyphenated, and the like. By changing the specifications, you can make
a book look dignified, old and serious, or light-hearted, young and cheery.

TEX is freely distributable. It is written in a dialect of Pascal called WEB and can
be compiled either in Pascal or (by using a conversion program that comes with the TEX
distribution) in C. (See Section “TeX Mode” in The GNU Emacs Manual, for information
about TEX.)

TEX is very powerful and has a great many features. Because a Texinfo file must be
able to present information both on a character-only terminal in Info form and in a typeset
book, the formatting commands that Texinfo supports are necessarily limited.

1.2.1 Obtaining TEX

TEX is freely redistributable. You can obtain TEX for Unix systems from the University of
Washington for a distribution fee.

To order a full distribution, send $140.00 for a 1/2-inch 9-track 1600 bpi (tar or cpio)
tape reel, or $165.00 for a 1/4-inch 4-track QIC-24 (tar or cpio) cartridge, to:

Northwest Computing Support Center
DR-10, Thomson Hall 35
University of Washington
Seattle, Washington 98195

3 You can also use the texi2roff program if you do not have TEX; since Texinfo is designed for use with
TEX, texi2roff is not described here. texi2roff is part of the standard GNU distribution.

6 Texinfo 2.10

Please make checks payable to the University of Washington.

Prepaid orders are preferred but purchase orders are acceptable; however, purchase
orders carry an extra charge of $10.00, to pay for processing.

Overseas sites: please add to the base cost $20.00 for shipment via air parcel post, or
$30.00 for shipment via courier.

Please check with the Northwest Computing Support Center at the University of Wash-
ington for current prices and formats:

telephone: (206) 543-6259
email: elisabet@max.u.washington.edu

1.3 @-commands

In a Texinfo file, the commands that tell TEX how to typeset the printed manual and
tell makeinfo and texinfo-format-buffer how to create an Info file are preceded by ‘@’;
they are called @-commands. For example, @node is the command to indicate a node and
@chapter is the command to indicate the start of a chapter.

Please note: All the @-commands, with the exception of the @TeX{} command,
must be written entirely in lower case.

The Texinfo @-commands are a strictly limited set of constructs. The strict limits make
it possible for Texinfo files to be understood both by TEX and by the code that converts
them into Info files. You can display Info files on any terminal that displays alphabetic and
numeric characters. Similarly, you can print the output generated by TEX on a wide variety
of printers.

Depending on what they do or what arguments4 they take, you need to write @-
commands on lines of their own or as part of sentences:

• Write a command such as @page at the beginning of a line as the only text on the line.

• Write a command such as @chapter at the beginning of a line followed by the com-
mand’s arguments, in this case the chapter title, on the rest of the line.

• Write a command such as @dots{} wherever you wish (but usually within a sentence).

• Write a command such as @code{sample-code} wherever you wish (but usually within
a sentence) with its argument, sample-code, in this example, between the braces.

As you gain experience with Texinfo, you will rapidly learn how to write the different
commands: the different ways to write commands make it easier to write and read Texinfo
files than if all commands followed exactly the same syntax.

4 The word argument comes from the way it is used in mathematics and does not refer to a disputation
between two people; it refers to the information presented to the command. According to the Oxford
English Dictionary, the word derives from the Latin for to make clear, prove; thus it came to mean
‘the evidence offered as proof’, which is to say, ‘the information offered’, which led to its mathematical
meaning. In its other thread of derivation, the word came to mean ‘to assert in a manner against which
others may make counter assertions’, which led to the meaning of ‘argument’ as a disputation.

Chapter 1: Overview of Texinfo 7

1.4 General Syntactic Conventions

All ascii printing characters except ‘@’, ‘{’ and ‘}’ can appear in a Texinfo file and stand
for themselves. ‘@’ is the escape character which introduces commands. ‘{’ and ‘}’ should
be used only to surround arguments to certain commands. To put one of these special
characters into the document, put an ‘@’ character in front of it, like this: ‘@@’, ‘@{’, and
‘@}’.

It is customary in TEX to use doubled single-quote characters to begin and end quo-
tations: ‘‘‘’ and ‘’’’. This convention should be followed in Texinfo files. TEX converts
doubled single-quote characters to left- and right-hand doubled quotation marks, “like this,”
and Info converts doubled single-quote characters to ascii double-quotes: ‘‘‘’ and ‘’’’ to
‘"’.

Use three hyphens in a row, ‘---’, for a dash—like this. In TEX, a single or even a
double hyphen produces a printed dash that is shorter than you want. Info reduces three
hyphens to two for display on the screen.

To prevent a paragraph from being indented in the printed manual, put the command
@noindent on a line by itself before the paragraph.

If you mark off a region of the Texinfo file with the @iftex and @end iftex commands,
that region will appear only in the printed copy; in that region, you can use certain com-
mands borrowed from PlainTEX that you cannot use in Info. Likewise, if you mark off a
region with the @ifinfo and @end ifinfo commands, that region will appear only in the
Info file; in that region, you can use Info commands that you cannot use in TEX. (See
Chapter 17 [Conditionals], page 109.)

Caution: Do not use tabs in a Texinfo file! TEX has trouble with tabs: it treats
them like single spaces, and that is not what they look like. This is a problem
with TEX. (To avoid putting tabs into your file, you can set the indent-tabs-
mode variable in Emacs to nil so that Emacs inserts multiple spaces when you
press the TAB key. Also, you can run untabify to convert tabs in a region to
multiple spaces.)

1.5 Comments

You can write comments in a Texinfo file that will not appear in either the Info file or the
printed manual by using the @comment command (which may be abbreviated to @c). Such
comments are for the person who reads the Texinfo file. All the text on a line that follows
either @comment or @c is a comment; the rest of the line does not appear in either the Info
file or the printed manual. (The @comment or @c does not have to be at the beginning of
the line; only the text on the line that follows after the @comment or @c command does not
appear.)

You can write long stretches of text that will not appear in either the Info file or the
printed manual by using the @ignore and @end ignore commands. Write each of these
commands on a line of its own, starting each command at the beginning of the line. Text
between these two commands does not appear in the processed output. You can use @ignore
and @end ignore for writing comments or for holding text you may wish to use in another
version of your document. Often, @ignore and @end ignore is used to enclose a part of the
copying permissions that applies to the Texinfo source file of a document, but not to the
Info or printed version of the document.

8 Texinfo 2.10

1.6 What a Texinfo File Must Have

By convention, the names of Texinfo files end with either of the three extensions .texinfo,
.texi, or .tex. The longer extension is preferred since it describes more clearly to a human
reader the nature of the file. The shorter extensions are for operating systems that cannot
handle long file names.

In order to be made into a printed manual and an Info file, a Texinfo file must begin
with lines like this:

\input texinfo

@setfilename info-file-name

@settitle name-of-manual

The contents of the file follow this beginning, and then you must end a Texinfo file with a
line like this:

@bye

The ‘\input texinfo’ line tells TEX to use the texinfo.tex file, which tells TEX how to
translate the Texinfo @-commands into TEX typesetting commands. The ‘@setfilename’
line provides a name for the Info file and the ‘@settitle’ line specifies a title for the page
headers (or footers) of the printed manual.

The @bye line at the end of the file on a line of its own tells TEX that the file is ended
and to stop typesetting.

Usually, you won’t use quite such a spare format, but will include mode setting and
start-of-header and end-of-header lines at the beginning of a Texinfo file, like this:

\input texinfo @c -*-texinfo-*-

@c %**start of header

@setfilename info-file-name

@settitle name-of-manual

@c %**end of header

In the first line, ‘-*-texinfo-*-’ causes Emacs to switch into Texinfo mode when you edit
the file.

The @c lines which surround the @setfilename and @settitle lines are optional, but
you need them in order to run TEX or Info on just part of the file. (See Section 3.2.2 [Start
of Header], page 25, for more information.)

Furthermore, you will usually provide a Texinfo file with a title page, master menu, and
the like. But the minimum, which can be useful for short documents, is just the three lines
at the beginning and the one line at the end.

1.7 Six Parts of a Texinfo File

Generally, a Texinfo file contains contains more than the minimal beginning and end—it
usually contains six parts:

Header The Header names the file, tells TEX which definitions’ file to use, and performs
other “housekeeping” tasks.

Summary Description and Copyright
The Summary Description and Copyright segment describes the document and
contains the copyright notice and copying permissions for the Info file. The

Chapter 1: Overview of Texinfo 9

segment must be enclosed between @ifinfo and @end ifinfo commands so
that it appears only in the Info file.

Title and Copyright
The Title and Copyright segment contains the title and copyright pages and
copying permissions for the printed manual. The segment must be enclosed
between @titlepage and @end titlepage commands and appears only in the
printed manual.

Top Node and Master Menu
The Master Menu contains a complete menu of all the nodes in the whole Info
file. It appears only in the Info file, in the Top node.

Body The Body of the document may be structured like a traditional book or ency-
clopedia or it may be free form.

End The End contains commands for printing indices and generating the table of
contents, and the @bye command on a line of its own.

1.8 A Short Sample Texinfo File

Here is a complete but very short Texinfo file. The first three parts of the file, from ‘\input
texinfo’ through to ‘@end titlepage’, look more intimidating than they are. Most of the
material is standard boilerplate; when you write a manual, simply insert the names for your
own manual in this segment. (See Chapter 3 [Beginning a File], page 23.)

Part 1: Header

\input texinfo @c -*-texinfo-*-

@c %**start of header

@setfilename sample.info

@settitle Sample Document

@c %**end of header

@setchapternewpage odd

Part 2: Summary Description and Copyright

The summary description and copyright segment does not
appear in the printed document.

@ifinfo

This is a short example of a complete Texinfo file.

Copyright @copyright{} 1990 Free Software Foundation, Inc.

@end ifinfo

Part 3: Titlepage and Copyright

The titlepage segment does not appear in the Info file.

@titlepage

@sp 10

@comment The title is printed in a large font.

@center @titlefont{Sample Title}

10 Texinfo 2.10

@c The following two commands start the copyright page.

@page

@vskip 0pt plus 1filll

Copyright @copyright{} 1990 Free Software Foundation, Inc.

@end titlepage

Part 4: Top Node and Master Menu

The Top node contains the master menu for the Info file.
Since a printed manual uses a table of contents rather than
a menu, the master menu appears only in the Info file.

@node Top, First Chapter, (dir), (dir)

@comment node-name, next, previous, up

@menu

* First Chapter:: The first chapter is the

only chapter in this sample.

* Concept Index:: This index has two entries.

@end menu

Part 5: The Body of the Document

@node First Chapter, Concept Index, Top, Top

@comment node-name, next, previous, up

@chapter First Chapter

@cindex Sample index entry

This is the contents of the first chapter.

@cindex Another sample index entry

Here is a numbered list.

@enumerate

@item

This is the first item.

@item

This is the second item.

@end enumerate

The @code{makeinfo} and @code{texinfo-format-buffer}

commands transform a Texinfo file such as this into

an Info file; and @TeX{} typesets it for a printed

manual.

Part 6: The End of the Document

@node Concept Index, , First Chapter, Top

@comment node-name, next, previous, up

Chapter 1: Overview of Texinfo 11

@unnumbered Concept Index

@printindex cp

@contents

@bye

The Results

Here is what the contents of the first chapter of the sample look like:

This is the contents of the first chapter.

Here is a numbered list.

1. This is the first item.

2. This is the second item.

The makeinfo and texinfo-format-buffer commands transform a Texinfo
file such as this into an Info file; and TEX typesets it for a printed manual.

13

2 Using Texinfo Mode

In GNU Emacs, Texinfo mode provides commands and features especially designed for
working with Texinfo files:

• Insert commonly used strings of text.

• Automatically create node lines.

• Show the structure of a Texinfo source file.

• Automatically create or update the ‘Next’,
‘Previous’, and ‘Up’ pointers of a node.

• Automatically create or update menus.

• Automatically create a master menu.

• Format a part or all of a file for Info.

• Typeset and print part or all of a file.

The special Texinfo commands are in addition to the usual editing commands, which
are generally the same as the commands of Text mode. However, in Texinfo mode the
paragraph separation variable and syntax table are redefined so that Texinfo commands
that should be on lines of their own are not inadvertently included in paragraphs. Thus, the
M-q (fill-paragraph) command will refill a paragraph but not mix an indexing command
on a line adjacent to it into the paragraph.

In addition, Texinfo mode sets the page-delimiter variable to the value of
texinfo-chapter-level-regexp; by default, this is a regular expression matching the
commands for chapters and their equivalents, such as appendices. With this value for
the page delimiter, you can jump from chapter title to chapter title with the C-x]

(forward-page) and C-x [(backward-page) commands and narrow to a chapter with the
C-x p (narrow-to-page) command. (See Section “Pages” in The GNU Emacs Manual,
for details about the page commands.)

You may name a Texinfo file however you wish, but the convention is to end a Texinfo
file name with one of the three extensions .texinfo, .texi, or .tex. A longer extension is
preferred, since it is explicit, but a shorter extension may be necessary for operating systems
that limit the length of file names. GNU Emacs automatically enters Texinfo mode when
you visit a file with any of these extensions. Also, Emacs switches to Texinfo mode for a
file that has ‘-*-texinfo-*-’ in its first line. If ever you are in another mode and wish to
switch to Texinfo mode, type M-x texinfo-mode.

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.
In particular, the keybindings are very easy to change. The keybindings described here are
the default or standard ones.

2.1 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands into the
buffer. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command.

14 Texinfo 2.10

C-c C-c c

M-x texinfo-insert-@code

Insert @code{} and put the cursor between the braces.

C-c C-c d

M-x texinfo-insert-@dfn

Insert @dfn{} and put the cursor between the braces.

C-c C-c e

M-x texinfo-insert-@end

Insert @end.

C-c C-c i

M-x texinfo-insert-@item

Insert @item and put the cursor at the beginning of the next line.

C-c C-c k

M-x texinfo-insert-@kbd

Insert @kbd{} and put the cursor between the braces.

C-c C-c n

M-x texinfo-insert-@node

Insert @node and a comment line listing the sequence for the ‘Next’, ‘Previous’,
and ‘Up’ nodes. Leave point after the @node.

C-c C-c o

M-x texinfo-insert-@noindent

Insert @noindent and put the cursor at the beginning of the next line.

C-c C-c s

M-x texinfo-insert-@samp

Insert @samp{} and put the cursor between the braces.

C-c C-c v

M-x texinfo-insert-@var

Insert @var{} and put the cursor between the braces.

C-c C-c x

M-x texinfo-insert-@example

Insert @example and put the cursor at the beginning of the next line.

C-c C-c {

M-x texinfo-insert-braces

Insert {} and put the cursor between the braces.

C-c C-c }

M-x up-list

Move forward past one set of closing braces.

This set of insert commands was created after analyzing the frequency with which differ-
ent @-commands are used in the GNU Emacs Manual and the GDB Manual. If you wish to
add your own insert commands, you can bind a keyboard macro to a key, use abbreviations,
or extend the code in texinfo.el.

Chapter 2: Using Texinfo Mode 15

2.2 Showing the Section Structure of a File

You can show the section structure of a Texinfo file by using the C-c C-s command
(texinfo-show-structure). This command shows the section structure of a Texinfo file
by listing the lines that begin with the @-commands for @chapter, @section, and the like.
The command constructs what amounts to a table of contents. These lines are displayed
in another buffer called the ‘*Occur*’ buffer. In that buffer, you can position the cursor
over one of the lines and use the C-c C-c command (occur-mode-goto-occurrence), to
jump to the corresponding spot in the Texinfo file.

C-c C-s

M-x texinfo-show-structure

Show the @chapter, @section, and such lines of a Texinfo file.

C-c C-c

M-x occur-mode-goto-occurrence

Go to the line in the Texinfo file corresponding to the line under the cursor in
the *Occur* buffer.

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list not only those lines with the @-commands for @chapter, @section, and the like, but
also the @node lines. (This is how the texinfo-show-structure command worked without
an argument in the first version of Texinfo. It was changed because @node lines clutter up the
the ‘*Occur*’ buffer and are usually not needed.) You can use texinfo-show-structure

with a prefix argument to check whether the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node
line are correct.

Often, when you are working on a manual, you will be interested only in the structure
of the current chapter. In this case, you can mark off the region of the buffer that you are
interested in with the C-x n (narrow-to-region) command and texinfo-show-structure

will work on only that region. To see the whole buffer again, use C-x w (widen). (See
Section “Narrowing” in The GNU Emacs Manual, for more information about the narrowing
commands.)

In addition to providing the texinfo-show-structure command, Texinfo mode sets the
value of the page delimiter variable to match the chapter-level @-commands. This enables
you to use the C-x] (forward-page) and C-x [(backward-page) commands to move
forward and backward by chapter, and to use the C-x p (narrow-to-page) command to
narrow to a chapter. See Section “Pages” in The GNU Emacs Manual, for more information
about the page commands.

2.3 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus and node
pointers. The commands are called “update” commands because their most frequent use is
for updating a Texinfo file after you have worked on it; but you can use them to insert the
‘Next’, ‘Previous’, and ‘Up’ pointers into a node line that has none and to create menus in
a file that has none.

You can use the updating commands

• to insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,

16 Texinfo 2.10

• to insert or update the menu for a section, and

• to create a master menu for a Texinfo source file.

You can also use the commands to update all the nodes and menus in a region or in a
whole Texinfo file.

Texinfo mode has five updating commands that are used most often: two are for updating
the node pointers or menu of a single node (or a region), two are for updating every node
pointer and menu in a file, and one, the texinfo-master-menu command, is for creating a
master menu for a complete file, and optionally, for updating every node and menu in the
whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-c C-u m

M-x texinfo-master-menu

Create or update a master menu that includes all the other menus (incorporat-
ing the descriptions from pre-existing menus, if any).

With an argument (prefix argument, if interactive), first create or update all
the nodes and all the regular menus in the buffer before constructing the master
menu. (See Section 3.5 [The Top Node and Master Menu], page 32, for more
about a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a ‘Top’ node.

After extensively editing a Texinfo file, it is common to type C-u C-c C-u m or
C-u M-x texinfo-master-menu to update all the nodes and menus completely
and all at once.

The other major updating commands do smaller jobs and are designed for the person
who updates nodes and menus as he or she writes a Texinfo file.

The commands are:

C-c C-u C-n

M-x texinfo-update-node

Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node point is within (i.e.,
for the @node line preceding point). If the @node line has pre-existing ‘Next’,
‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and new ones
inserted. With an argument (prefix argument, if interactive), this command
updates all @node lines in the region (which is the text between point and
mark).

C-c C-u C-m

M-x texinfo-make-menu

Create or update the menu in the node that point is within. With an argument
(prefix argument, if interactive), the command makes or updates menus for the
nodes within or part of the region.

Whenever texinfo-make-menu updates an existing menu, the descriptions from
that menu are incorporated into the new menu. This is done by copying de-
scriptions from the existing menu to the entries in the new menu that have the
same node names. If the node names are different, the descriptions are not
copied to the new menu.

Chapter 2: Using Texinfo Mode 17

Menu entries that refer to other Info files are removed since they do not refer
to nodes within the current buffer. This is a deficiency.

C-c C-u C-e

M-x texinfo-every-node-update

Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for every node in the
buffer .

C-c C-u C-a

M-x texinfo-all-menus-update

Create or update all the menus in the buffer. With an argument (prefix argu-
ment, if interactive), first insert or update all the node pointers before working
on the menus.

If a master menu exists, the texinfo-all-menus-update command updates it;
but the command does not create a new master menu if none already exists.
(Use the texinfo-master-menu command for that.)

The texinfo-column-for-description variable specifies the column to which menu
descriptions are indented. By default, the value is 32 although it is often useful to reduce it
to as low as 24. You can set the variable with the M-x edit-options command (see Section
“Editing Variable Values” in The GNU Emacs Manual) or with the M-x set-variable

command (see Section “Examining and Setting Variables” in The GNU Emacs Manual).

Also, the texinfo-indent-menu-description command may be used to indent existing
menus to a specified column. See Section 2.3.2 [Other Updating Commands], page 18.

Finally, if you wish, you can use the texinfo-insert-node-lines command to insert
missing @node lines into a file. (See Section 2.3.2 [Other Updating Commands], page 18,
for more information.)

2.3.1 Updating Requirements

To use the updating commands, you must organize the Texinfo file hierarchically with
chapters, sections, subsections, and the like. Each @node line, with the exception of the
line for the ‘Top’ node, must be followed by a line with a structuring command such as
@chapter, @section, or @unnumberedsubsec.

Each @node line/structuring-command line combination must look either like this:

@node Comments, Minimum, Conventions, Overview

@comment node-name, next, previous, up

@section Comments

or like this (without the @comment line):

@node Comments, Minimum, Conventions, Overview

@section Comments

(In this example, ‘Comments’ is the name of both the node and the section. The next node
is called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section
is within the ‘Overview’ node, which is specified by the ‘Up’ pointer.)

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the file.

Incidently, the makeinfo command will create an Info file for hierarchically organized
Texinfo file that lacks ‘Next’, ‘Previous’ and ‘Up’ pointers. Thus, if you can be sure that

18 Texinfo 2.10

your Texinfo file will be formatted with makeinfo, you have no need for the ‘update node’
commands. (See Chapter 19 [Creating an Info File], page 117, for more information about
makeinfo.) However, both makeinfo and the texinfo-format-... commands require that
you insert menus in the file.

2.3.2 Other Updating Commands

In addition to the five major updating commands, Texinfo mode possesses several less
frequently used updating commands.

M-x texinfo-insert-node-lines

Insert @node before the @chapter, @section, and other sectioning commands
wherever it is missing throughout a region in a Texinfo file. With an argument
(prefix argument, if interactive), the texinfo-insert-node-lines command
not only inserts @node lines but also inserts the chapter or section titles as the
names of the corresponding nodes; and it inserts their titles for node names in
pre-existing @node lines that lack names. Since node names should be more
concise than section or chapter titles, node names so inserted should be edited
manually.

M-x texinfo-multiple-files-update

Update nodes and menus in a document built from several separate files. With
a prefix argument if called interactively (a non-nil ‘make-master-menu’ argu-
ment, if called non-interactively), create and insert a master menu in the outer
file. With a numeric prefix argument if called interactively (a non-nil ‘update-
everything’ argument if called non-interactively), first update all the menus
and all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included files before
creating and inserting a master menu in the outer file. The texinfo-multiple-
files-update command is described in the appendix on @include files. See
Appendix B [Include Files], page 137.

M-x texinfo-indent-menu-description

Indent every description in the menu following point to the specified
column. You can use this command to give yourself more space for
descriptions. With an argument (prefix argument, if interactive), the
texinfo-indent-menu-description command indents every description in
every menu in the region. However, this command does not indent the second
and subsequent lines of a multi-line description.

M-x texinfo-sequential-node-update

Insert the names of the nodes immediately following and preceding the current
node as the ‘Next’ or ‘Previous’ pointers regardless of those nodes’ hierarchical
level. This means that the ‘Next’ node of a subsection may well be the next
chapter. Sequentially ordered nodes are useful for novels and other documents
that you read through sequentially. (However, in Info, the g* RET command
lets you look through the file sequentially, so sequentially ordered nodes are
not strictly necessary.) With an argument (prefix argument, if interactive),
the texinfo-sequential-node-update command sequentially updates all the
nodes in the region.

Chapter 2: Using Texinfo Mode 19

2.4 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo file for Info.
Often, when you are writing a document, you want to format only part of a file—that is, a
region.

You can use either the texinfo-format-region or the makeinfo-region command to
format a region.

C-c C-e C-r

M-x texinfo-format-region

C-c C-m C-r

M-x makeinfo-region

Format the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer command to
format a whole buffer:

C-c C-e C-b

M-x texinfo-format-buffer

C-c C-m C-b

M-x makeinfo-buffer

Format the current buffer for Info.

After writing a Texinfo file, you can type C-u C-c C-u m or C-u M-x texinfo-

master-menu to update all the nodes and menus and then type C-c C-m C-b or
M-x makeinfo-buffer to create an Info file.

For the Info formatting commands to work, the file must include a line that has
@setfilename in its header.

Not all systems support the makeinfo-based formatting commands.

See Chapter 19 [Creating an Info File], page 117, for details about Info formatting.

2.5 Formatting and Printing

Typesetting and printing a Texinfo file is a multi-step process in which you first create a
file for printing (called a dvi file), and then you print the file. Optionally, also, you may
create indices.

Often, when you are writing a document, you want to typeset and print only part of a file,
to see what it will look like. You can use the texinfo-tex-region and related commands
for this purpose. Use the texinfo-tex-buffer command to format all of a buffer.

C-c C-t C-r

M-x texinfo-tex-region

Run TEX on the region.

C-c C-t C-b

M-x texinfo-tex-buffer

Run TEX on the buffer.

20 Texinfo 2.10

C-c C-t C-i

M-x texinfo-texindex

Sort the indices of a Texinfo file formatted with texinfo-tex-region or
texinfo-tex-buffer. You must run the tex command a second time after
sorting the raw index files.

C-c C-t C-p

M-x texinfo-tex-print

Print the file (or the part of the file) previously formatted with texinfo-tex-

buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must start with a
‘\input texinfo’ line and must include an @settitle line between start of header and
end of header lines. The file must end with @bye on a line by itself.

See Chapter 18 [Printing Hardcopy], page 111, for a description of the other TEX related
commands, such as texinfo-texindex and tex-show-print-queue.

2.6 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with the same
keys. All the commands that are custom-created for Texinfo mode begin with C-c. The
keys that follow are arranged mnemonically.

Insert Commands

The insert commands are invoked by typing C-c twice and then the first letter of the @-
command to be inserted. (It might make more sense mnemonically to use C-c C-i, for
‘custom insert’, but C-c C-c is quick to type.)

C-c C-c c Insert ‘@code’.

C-c C-c d Insert ‘@dfn’.

C-c C-c e Insert ‘@end’.

C-c C-c i Insert ‘@item’.

C-c C-c n Insert ‘@node’.

C-c C-c s Insert ‘@samp’.

C-c C-c v Insert ‘@var’.

C-c C-c { Insert braces.
C-c C-c } Move out of enclosing braces.

Show Structure

The texinfo-show-structure command is often used within a narrowed region.

C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to update
every node and menu in a file as well.

C-c C-u m

M-x texinfo-master-menu

Create or update a master menu.

Chapter 2: Using Texinfo Mode 21

With an argument, first create or
update all nodes and regular menus.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n for
texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

The update menu commands are invoked by typing C-c C-u and then either C-m for
texinfo-make-menu or C-a for texinfo-all-menus-update. You may precede a C-c C-u

C-a so as to update both nodes and menus.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all the menus
in a buffer; with an argument,
first update all the nodes.

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing C-c

C-e and then either C-r for a region or C-b for the whole buffer.

The Info formatting commands that are written in C and based on the makeinfo program
are invoked by typing C-c C-m and then either C-r for a region or C-b for the whole buffer.
Not all systems support the makeinfo program used by these commands.

Use the texinfo-format... commands:

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

Use makeinfo:

C-c C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-l Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and then
another control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer,
and so on.

C-c C-t C-r Run TEX on the region.
C-c C-t C-b Run TEX on the buffer.
C-c C-t C-i Run texindex.

C-c C-t C-p Print the dvi file.
C-c C-t C-q Show the print queue.
C-c C-t C-d Delete a job from the print queue.

22 Texinfo 2.10

C-c C-t C-k Kill the current TEX formatting job.
C-c C-t C-x Quit a currently stopped TEX formatting job.
C-c C-t C-l Recenter the output buffer.

Other Updating Commands

The ‘other updating commands’ do not have standard keybindings because they are rarely
used.

M-x texinfo-insert-node-lines

Insert missing node lines using
section titles as node names.

M-x texinfo-multiple-files-update

Update a multi-file document.

M-x texinfo-indent-menu-description

Indent descriptions.

M-x texinfo-sequential-node-update

Insert node pointers in strict sequence.

23

3 Beginning a Texinfo File

Various pieces of information must be provided at the beginning of a Texinfo file, such as
the name of the file and the title of the document.

Generally, the beginning of a Texinfo file has several parts:

1. The header, delimited by special comment lines, that includes the commands for naming
the Texinfo file and telling TEX what definitions’ file to use when processing the Texinfo
file.

2. A short statement of what the file is about, with a copyright notice and copying per-
missions. This is enclosed in @ifinfo and @end ifinfo commands so that it appears
only in the Info file.

3. A title page and copyright page, with a copyright notice and copying permissions.
This is enclosed in @titlepage and @end titlepage commands and appears only in
the printed manual.

4. The ‘Top’ node that contains a master menu for the whole Info file. The contents of
this node appear only in the Info file.

Also, optionally, you may include the copying conditions for a program and a warranty
disclaimer. The copying section will be followed by an introduction or else by the first
chapter of the manual.

Since the copyright notice and copying permissions for the Texinfo document (in contrast
to the copying permissions for a program) are in parts that appear only in the Info file or
only in the printed manual, this information must be given twice.

3.1 Sample Texinfo File Beginning

The following sample shows what is needed.

\input texinfo @c -*-texinfo-*-

@c %**start of header

@setfilename name-of-info-file

@settitle name-of-manual

@setchapternewpage odd

@c %**end of header

@ifinfo

This file documents ...

Copyright @copyright{} year copyright-owner

Permission is granted to ...

@end ifinfo

@c This title page illustrates only one of the

@c two methods of forming a title page.

24 Texinfo 2.10

@titlepage

@title name-of-manual-when-printed

@subtitle subtitle-if-any

@subtitle second-subtitle

@author author

@c The following two commands

@c start the copyright page.

@page

@vskip 0pt plus 1filll

Copyright @copyright{} year copyright-owner

Published by ...

Permission is granted to ...

@end titlepage

@node Top, Overview, (dir), (dir)

@ifinfo

This document describes ...

This document applies to version ...

of the program named ...

@end ifinfo

@menu

* Copying:: Your rights and freedoms.

* First Chapter:: Getting started ...

* Second Chapter:: ...

<many more menu items here>

@end menu

@node First Chapter, Second Chapter, top, top

@comment node-name, next, previous, up

@chapter First Chapter

@cindex Reference to First Chapter

3.2 The Texinfo File Header

Texinfo files start with at least three lines that provide Info and TEX with necessary infor-
mation. These are the \input texinfo line, the @settitle line, and the @setfilename

line. If you want to run TEX on just a part of the Texinfo File, you also have to surround
the @settitle and @setfilename lines with start-of-header and end-of-header lines.

Chapter 3: Beginning a Texinfo File 25

3.2.1 The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TEX must begin with a line that looks
like this:

\input texinfo @c -*-texinfo-*-

The line serves two functions:

1. When the file is processed by TEX, the ‘\input texinfo’ command tells TEX to load
the macros needed for processing a Texinfo file. These are in a file called texinfo.tex,
which is usually located in the /usr/lib/tex/macros directory.

2. When the file is edited in GNU Emacs, the ‘-*-texinfo-*-’ mode specification tells
Emacs to use to Texinfo mode.

3.2.2 Start of Header

You should write a start-of-header line on the second line of a Texinfo file. Follow
the start-of-header line with @setfilename and @settitle lines and, optionally, an
@setchapternewpage command line, and then by an end-of-header line.

With these lines, you can format part of a Texinfo file for Info or typeset part for printing.

A start-of-header line looks like this:

@c %**start of header

The odd string of characters (‘%**’) is to ensure that no other comment is accidently
taken for a start-of-header line.

3.2.3 @setfilename

In order to be made into an Info file, a Texinfo file must contain a line that looks like this:

@setfilename info-file-name

Write the @setfilename command at the beginning of a line followed by the Info file name.

The @setfilename line specifies the name of the Info file to be generated. Specify the
name with an ‘.info’ extension, to produce an Info file name such as texinfo.info.

The Info formatting commands ignore everything written before the @setfilename line,
which is why the very first line of the the file (the \input line) does not need to be com-
mented out. The @setfilename line is ignored when you typeset a printed manual.

3.2.4 @settitle

In order to be made into a printed manual, a Texinfo file must contain a line that looks like
this:

@settitle title

Write the @settitle command at the beginning of a line followed by the title name. This
tells TEX the title to use in a header or footer.

Conventionally, TEX formats a Texinfo file for double-sided output so as to print the
title in the left-hand (even-numbered) page headings and the current chapter titles in the
right-hand (odd-numbered) page headings. (TEX learns the title of each chapter from each
@chapter command.) Page footers are not printed.

Even if you are printing in a single-sided style, TEX looks for an @settitle command
line, in case you include the manual title in the heading.

26 Texinfo 2.10

The @settitle command should precede everything that generates actual output in
TEX.

The title in the @settitle command is usually the same as the real title on the title
page, but not always. It can be a shortened or expanded version of the title.

TEX prints page headings only for that text that comes after the @end titlepage com-
mand in the Texinfo file, or that comes after an @headings command that turns on headings.
(See Section 3.4.6 [The @headings Command], page 31, for more information.)

You may, if you wish, create your own, customized headings and footings. See
Appendix C [Page Headings], page 141, for a detailed discussion of this process.

3.2.5 @setchapternewpage

In a book or a manual, usually text is printed on both sides of the paper, chapters start on
right-hand pages, and right-hand pages have odd numbers. But in short reports, text often
is printed only on one side of the paper. Also in short reports, chapters sometimes do not
start on new pages, but are printed on the same page as the end of the preceding chapter,
after a small amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to specify how
TEX should start chapters and whether it should typeset pages for printing on one or both
sides of the paper (single-sided or double-sided printing).

Write the @setchapternewpage command at the beginning of a line followed by its
argument.

For example, you would write the following to cause each chapter to start on a fresh
odd-numbered page:

@setchapternewpage odd

You can specify one of three alternatives for the @setchapternewpage command:

@setchapternewpage off

This tells TEX to typeset for double-sided printing, but not to start new chapters
on new pages.

@setchapternewpage on

This tells TEX to typeset for single-sided printing and to start new chapters on
new pages. This is the form most often used for short reports.

This alternative is the default.

@setchapternewpage odd

This tells TEX to typeset for double-sided printing and to start new chapters
on new, odd-numbered pages (right-handed pages). This is the form most often
used for books and manuals.

Texinfo does not have an @setchapternewpage even command.

(You can countermand or modify an @setchapternewpage command with an @headings

command. See Section 3.4.6 [The @headings Command], page 31.)

At the beginning of a manual or book, pages are not numbered—for example, the title
and copyright pages of a book are not numbered. By convention, table of contents pages
are numbered with roman numerals and not in sequence with the rest of the document.

Chapter 3: Beginning a Texinfo File 27

Since an Info file does not have pages, the @setchapternewpage command has no effect
on it.

Usually, you do not use an @setchapternewpage command when you are printing single-
sidedly, and you use the @setchapternewpage odd command when you are printing double-
sidedly.

3.2.6 Paragraph Indenting

The Info formatting commands may insert spaces at the beginning of the first line of each
paragraph, thereby indenting that paragraph. The @paragraphindent command specifies
the indentation. Write @paragraphindent at the beginning of a line followed by either
‘asis’ or a number. The template is:

@paragraphindent indent

The Info formatting commands indent according to the value of indent:

• If the value of indent is ‘asis’, the Info formatting commands do not change the existing
indentation.

• If the value of indent is 0, the Info formatting commands delete existing indentation.

• If the value of indent is greater than 0, the Info formatting commands indent the
paragraph by that number of spaces.

The default value of indent is ‘asis’.

Write the @paragraphindent command before or shortly after the end of header line at
the beginning of a Texinfo file. (If you write the command between the start of header and
end of header lines, the region formatting commands indent paragraphs as specified.)

The makeinfo utility and the two Emacs formatting commands, texinfo-format-

buffer and texinfo-format-region, work somewhat differently.

− The makeinfo utility indents every paragraph that ought to be indented as specified
by @paragraphindent.

− However, the texinfo-format-buffer and texinfo-format-region commands
do not automatically indent paragraphs. These commands only indent paragraphs
that are ended by an @refill command. The amount of indentation is specified
by @paragraphindent in exactly the same way as with makeinfo. See Appendix E
[Refilling Paragraphs], page 153, for more information about @refill.

3.2.7 End of Header

Follow the line that contains the @settitle or @setchapternewpage command with the
end-of-header line.

An end-of-header line looks like this:

@c %**end of header

If you include the @setchapternewpage command between the start-of-header and end-
of-header lines, TEX will typeset a region as that command specifies.

See Section 3.2.2 [Start of Header], page 25.

28 Texinfo 2.10

3.3 Summary and Copying Permissions for Info

Since the title page and the copyright page appear only in the printed copy of the manual,
the same information must be inserted in a section that appears only in the Info file. This
section usually contains a brief description of the contents of the Info file, a copyright notice,
and copying permissions.

The copyright notice should read:

Copyright year copyright-owner

and be put on a line by itself.

Standard text for the copyright permissions is contained in the appendix. See
Section 3.7.1 [‘ifinfo’ Copying Permissions], page 34, for the complete text.

3.4 The Title and Copyright Pages

A manual’s name and author are usually printed on a title page. Sometimes copyright
information is printed on the title page as well; more often, copyright information is printed
on the back of the title page.

The title and copyright pages appear in the printed manual, but not in the Info file.
Because of this, it is possible to use several slightly obscure TEX typesetting commands
that cannot be used in an Info file. In addition, this part of the beginning of a Texinfo file
contains the text of the copying permissions that will appear in the printed manual.

3.4.1 @titlepage

Start the material for the title page and following copyright page with @titlepage on a
line by itself and end it with @end titlepage on a line by itself.

The @end titlepage command starts a new page and turns on page numbering. (See
Appendix C [Page Headings], page 141, for details about the generation of page headings.)
All the material that you want to appear on unnumbered pages should be put between
the @titlepage and @end titlepage commands. By using the @page command you can
force a page break within the region delineated by the @titlepage and @end titlepage

commands and thereby create more than one unnumbered page. This is how the copyright
page is produced. (The @titlepage command might perhaps have been better named the
@titleandadditionalpages command, but that would have been rather long!)

When you write a manual about a computer program, you should write the version of
the program to which the manual applies on the the title page. If the manual changes more
frequently than the program or is independent of it, you should also include an edition
number1 for the manual. This helps readers keep track of which manual is for which version
of the program. (The ‘Top’ node of the manual should also contain this information. See
Section 5.3 [@top], page 42.)

Texinfo provides two methods for creating a title page. One method uses the
@titlefont, @sp, and @center commands to generate a title page in which the words on
the page are centered.

1 We have found that it is helpful to refer to versions of manuals as ‘editions’ and versions of programs as
‘versions’; otherwise, we find we are liable to confuse each other in conversation by referring to both the
documentation and the software with the same words.

Chapter 3: Beginning a Texinfo File 29

The second method uses the @title, @subtitle, and @author commands to create a
title page with black rules under the title and author lines and the subtitle text set flush
to the right hand side of the page. With this method, you do not specify any of the actual
formatting of the title page. You must specify the text you want, and Texinfo does the
formatting. You may use either method.

3.4.2 @titlefont, @center, and @sp

You can use the @titlefont, @sp, and @center commands to create a title page for a
printed document.

Use the @titlefont command to select a large font suitable for the title itself. For
example:

@titlefont{Texinfo Manual}

Use the @center command at the beginning of a line to center the remaining text on
that line. Thus,

@center @titlefont{Texinfo Manual}

centers the title, which in this example is “Texinfo Manual” printed in the title font.

Use the @sp command to insert vertical space. For example:

@sp 2

This inserts two blank lines on the printed page. (See Section 16.3 [@sp], page 106, for more
information about the @sp command.)

A typical title page looks like the following:

@titlepage

@sp 10

@center @titlefont{name-of-manual-when-printed}

@sp 2

@center subtitle-if-any

@sp 2

@center author

The spacing of the example fits an 8 1/2 by 11 inch manual.

3.4.3 @title, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create a title page in
which the vertical and horizontal spacing is done for you. This contrasts with the method
described in the previous section, in which the @sp command is needed to adjust vertical
spacing.

Write the @title, @subtitle, or @author commands at the beginning of a line followed
by the title, subtitle, or author.

The @title command produces a line in which the title is set flush to the left-hand side
of the page in a larger than normal font. The title is underlined with a black rule.

The @subtitle command sets subtitles in a normal-sized font flush to the right-hand
side of the page.

The @author command sets the names of the author or authors in a middle-sized font
flush to the left-hand side of the page on a line near the bottom of the title page. The

30 Texinfo 2.10

names are underlined with a black rule that is thinner than the rule that underlines the
title. (The black rule only occurs if the @author command line is followed by an @page

command line.)

There are two ways to use the @author command: you can write the name or names on
the remaining part of the line that starts with an @author command:

@author by Jane Smith and John Doe

or you can write the names one above each other by using two (or more) @author commands:

@author Jane Smith

@author John Doe

(Only the bottom name is underlined with a black rule.)

Thus, a typical title page looks like the following:

@title name-of-manual-when-printed

@subtitle subtitle-if-any

@subtitle second-subtitle

@author author

3.4.4 Copyright Page and Permissions

By international treaty, the copyright notice for a book should be either on the title page
or on the back of the title page. The copyright notice should include the year followed by
the name of the organization or person who owns the copyright.

When the copyright notice is on the back of the title page, that page is customarily not
numbered. Therefore, in Texinfo, the information on the copyright page should be within
@titlepage and @end titlepage commands.

Use the @page command to cause a page break. To push the copyright notice and the
other text on the copyright page towards the bottom of the page, you can write a somewhat
mysterious line after the @page command that reads like this:

@vskip 0pt plus 1filll

This is a TEX command that is not supported by the Info formatting commands. The
@vskip command inserts white space. The ‘0pt plus 1filll’ means to put in zero points
of mandatory white space, and as much optional white space as needed to push the following
text to the bottom of the page. Note the use of three ‘l’s in the word ‘filll’; this is the
correct usage in TEX.

In a printed manual, the @copyright{} command generates a ‘c’ inside a circle. (In Info,
it generates ‘(C)’.) The copyright notice itself has the following legally defined sequence:

Copyright c© year copyright-owner

It is customary to put information on how to get a manual after the copyright notice,
followed by the copying permissions for the manual.

Note that permissions must be given here as well as in the summary segment within
@ifinfo and @end ifinfo that immediately follows the header since this text appears only
in the printed manual and the ‘ifinfo’ text appears only in the Info file.

See Section 3.7 [Sample Permissions], page 34, for recommended permission text.

Chapter 3: Beginning a Texinfo File 31

3.4.5 Heading Generation

An @end titlepage command (on a line by itself) not only marks the end of the title and
copyright pages but it causes TEX to start generating page headings and page numbers.

To repeat what is said elsewhere (see Section 3.2.5 [@setchapternewpage], page 26),
Texinfo has two standard heading formats, one for documents printed on one side of each
sheet of paper (single-sided printing), and the other for documents printed on both sides of
each sheet (double-sided printing). You can specify these formats in different ways:

• The conventional way is to write an @setchapternewpage command before the title
page commands, and then have the @end titlepage command start generating head-
ings in the manner desired. (See Section 3.2.5 [@setchapternewpage], page 26.)

• Alternatively, you can use the @headings command to prevent headings from being
generated or to start them for either single or double-sided printing. See Section 3.4.6
[The @headings Command], page 31.

• Or, you may specify your own heading and footing format. See Appendix C [Page
Headings], page 141, for detailed information about headings and footings.

Most documents are formatted with the standard single-sided or double-sided format, us-
ing @setchapternewpage odd for double-sided printing and no @setchapternewpage com-
mand for single-sided printing.

3.4.6 The @headings Command

The @headings command is rarely used. It specifies what kind of page headings and footings
to print on each page. Usually, this is controlled by the @setnewchapter command. You
need the @headings command only if the @setnewchapter command does not do what you
want, or if you want to turn off pre-defined headings prior to defining your own.

There are four ways to use the @headings command:

@headings off

Turns off printing of headings.

@headings single

Turns on headings appropriate for single-sided printing.

@headings double

@headings on

Turns on headings appropriate for double-sided printing. The two commands,
@headings on and @headings double, are synonymous.

To prevent TEX from generating any page headings, write @headings off on a line of its
own immediately after the line containing the @end titlepage command. The @headings

off command overrides the @end titlepage command, which would otherwise cause TEX
to print headings.

You can also specify your own style of heading and footing. See Appendix C [Page
Headings], page 141, for more information.

32 Texinfo 2.10

3.5 The Top Node and Master Menu

The ‘Top’ node is the node from which you enter the file from outside.

A ‘Top’ node should contain a brief description of the file and an extensive, master
menu for the whole Info file. The contents of this node should appear only in the Info
file; none of it should appear in printed output, so enclose it between @ifinfo and @end

ifinfo commands. (TEX does not print either an @node line or a menu; they appear only
in Info; strictly speaking, you do not have to enclose these parts between @ifinfo and @end

ifinfo, but it is simplest to do so. See Chapter 17 [Conditionally Visible Text], page 109.)

Sometimes, you will want to place an @top line containing the title of the document
after the @node line, followed by a short summary. This helps the reader understand what
the Info file is about. Also, you should write the version number of the program to which
the Info file applies; or, at least, the edition number.

For example, the beginning of the Top node of this manual looks like this:

...

@end titlepage

@ifinfo

@node Top, Copying, (dir), (dir)

@top Texinfo

Texinfo is a documentation system...

This is edition...

...

@end ifinfo

@menu

* Copying:: Texinfo is freely

redistributable.

* Overview:: What is Texinfo?

...

@end menu

In a ‘Top’ node, the ‘Previous’, and ‘Up’ nodes usually refer to the top level directory
of the whole Info system, which is called ‘(dir)’.

3.5.1 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a file.

A master menu is enclosed in @menu and @end menu commands and does not appear in
the printed document.

Generally, a master menu is divided into parts.

• The first part contains the major nodes in the Texinfo file: the nodes for the chapters,
chapter-like sections, and the appendices.

• The second part contains nodes for the indices.

Chapter 3: Beginning a Texinfo File 33

• The third and subsequent parts contain a listing of the other, lower level nodes, often
ordered by chapter. This way, rather than go through an intermediary menu, an
inquirer can go directly to a particular node when searching for specific information.
These menu items are not required; add them if you think they are a convenience.

Each section in the menu can be introduced by a descriptive line. So long as the line
does not begin with an asterisk, it will not be treated as a menu item. (See Section 6.4
[Making Menus], page 50, for more information.)

For example, the master menu for this manual looks like the following (but has many
more entries):

@menu

* Copying:: Texinfo is freely

redistributable.

* Overview:: What is Texinfo?

* Texinfo Mode:: Special features in GNU Emacs.

...

...

* Command and Variable Index::

An item for each @-command.

* Concept Index:: An item for each concept.

--- The Detailed Node Listing ---

Overview of Texinfo

* Info Files:: What is an Info file?

* Printed Manuals:: Characteristics of

a printed manual.

...

...

Using Texinfo Mode

* Info on a Region:: Formatting part of a file

for Info.

...

...

@end menu

3.6 Software Copying Conditions

If the Texinfo file has a section containing the “General Public License” and the distribution
information and a warranty disclaimer for the software that is documented, this section
usually follows the ‘Top’ node. The General Public License is very important to Project
GNU software. It ensures that you and others will continue to have a right to use and share
the software.

34 Texinfo 2.10

The copying and distribution information and the disclaimer are followed by an intro-
duction or else by the first chapter of the manual.

Although an introduction is not a required part of a Texinfo file, it is very helpful. Ide-
ally, it should state clearly and concisely what the file is about and who would be interested
in reading it. In general, an introduction would follow the licensing and distribution infor-
mation, although sometimes people put it earlier in the document. Usually, an introduction
is put in an @unnumbered section. (See Section 5.5 [The @unnumbered and @appendix

Commands], page 43.)

3.7 Sample Permissions

Texinfo files should contain sections that tell the readers that they have the right to copy
and distribute the Info file, the printed manual, and any accompanying software. Here are
samples containing the standard text of the Free Software Foundation copying permission
notice for an Info file and printed manual.

See Section “Distribution” in The GNU Emacs Manual, for an example of the text that
could be used in the software Distribution, General Public License, and NO WARRANTY
sections of a document.

In a Texinfo file, the first @ifinfo section usually begins with a line that says what
the file documents. This is what a person reading the unprocessed Texinfo file or using
the advanced Info command g * sees first. See Info file info, node ‘Expert’, for more
information. (A reader using the regular Info commands will usually start reading at the
first node and skip this first section, which is not in a node.)

In the @ifinfo section, the summary sentence should be followed by a copyright notice
and then by the copying permission notice. One of the copying permission paragraphs is
enclosed in @ignore and @end ignore commands. This paragraph states that the Texinfo
file can be processed through TEX and printed, provided the printed manual carries the
proper copying permission notice. This paragraph is not made part of the Info file since it
is not relevant to the Info file; but it is a mandatory part of the Texinfo file since it permits
people to process the Texinfo file in TEX.

In the printed manual, the Free Software Foundation copying permission notice follows
the copyright notice and publishing information and is located within the region delineated
by the @titlepage and @end titlepage commands. The copying permission notice is
exactly the same as the notice in the @ifinfo section except that the paragraph enclosed
in @ignore and @end ignore commands is not part of the notice.

To make it simple to copy the permission notice into each section of the Texinfo file, the
complete permission notices for each section are reproduced in full below.

Note that you may have to specify the correct name of a section mentioned in the
permission notice. For example, in the GDB Manual, the name of the section referring to
the General Public License is called the “GDB General Public License”, but in the sample
shown below, that section is referred to generically as the “General Public License”.

3.7.1 ‘ifinfo’ Copying Permissions

In the @ifinfo section of the Texinfo file, the standard Free Software Foundation permission
notices reads as follows:

This file documents ...

Chapter 3: Beginning a Texinfo File 35

Copyright 1988 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim

copies of this manual provided the copyright notice and

this permission notice are preserved on all copies.

@ignore

Permission is granted to process this file through TeX

and print the results, provided the printed document

carries a copying permission notice identical to this

one except for the removal of this paragraph (this

paragraph not being relevant to the printed manual).

@end ignore

Permission is granted to copy and distribute modified

versions of this manual under the conditions for

verbatim copying, provided also that the sections

entitled ‘‘Distribution’’ and ‘‘General Public License’’

are included exactly as in the original, and provided

that the entire resulting derived work is distributed

under the terms of a permission notice identical to this

one.

Permission is granted to copy and distribute

translations of this manual into another language, under

the above conditions for modified versions, except that

the sections entitled ‘‘Distribution’’ and ‘‘General

Public License’’ may be included in a translation

approved by the author instead of in the original

English.

3.7.2 Titlepage Copying Permissions

In the @titlepage section of the Texinfo file, the standard Free Software Foundation copying
permission notice follows the copyright notice and publishing information. The standard
phrasing is:

Permission is granted to make and distribute verbatim

copies of this manual provided the copyright notice and

this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this manual under the conditions for

verbatim copying, provided also that the sections

entitled ‘‘Distribution’’ and ‘‘General Public License’’

are included exactly as in the original, and provided

that the entire resulting derived work is distributed

36 Texinfo 2.10

under the terms of a permission notice identical to this

one.

Permission is granted to copy and distribute

translations of this manual into another language, under

the above conditions for modified versions, except that

the sections entitled ‘‘Distribution’’ and ‘‘General

Public License’’ may be included in a translation

approved by the author instead of in the original

English.

37

4 Ending a Texinfo File

The end of a Texinfo file should include the commands that create indices and generate
detailed and summary tables of contents. And it must include the @bye command that
marks the last line that TEX processes.

For example,

@node Concept Index, , Variables Index, Top

@comment node-name, next, previous, up

@unnumbered Concept Index

@printindex cp

@contents

@bye

4.1 Index Menus and Printing an Index

To print an index means to include it as part of a manual or Info file. This does not happen
automatically just because you use @cindex or other index-entry generating commands in
the Texinfo file; those just cause the raw data for the index to be accumulated. To generate
an index, you must include the @printindex command at the place in the document where
you want the index to appear. Also, as part of the process of creating a printed manual,
you must run a program called texindex (see Chapter 18 [Printing Hardcopy], page 111) to
sort the raw data to produce a sorted index file. The sorted index file is what will actually
be used to print the index.

Texinfo offers six different types of predefined index: the concept index, the function
index, etc. (See Section 15.2 [Predefined Indices], page 101.) Each index type has a two-
letter name. You may merge indices, or put them into separate sections (See Section 15.4
[Combining Indices], page 103.).

The @printindex command takes a two-letter index name, reads the corresponding
sorted index file and formats it appropriately into an index.

The @printindex command does not generate a chapter heading for the index. Conse-
quently, you should precede the @printindex command with a suitable section or chapter
command (usually @unnumbered) to supply the chapter heading and put the index into the
table of contents. Precede the @unnumbered command with an @node line. For example,

@node Variables Index, Concept Index, Function Index, Top

@comment node-name, next, previous, up

@unnumbered Variable Index

@printindex vr

@node Concept Index, , Variables Index, Top

@comment node-name, next, previous, up

@unnumbered Concept Index

@printindex cp

@summarycontents

@contents

38 Texinfo 2.10

@bye

(Readers often prefer that the concept index come last in a book, since that makes it easiest
to find.)

4.2 Generating a Table of Contents

The @chapter, @section, and other structuring commands supply the information to make
up a table of contents, but they do not cause an actual table to appear in the manual. To
do this, you must use the @contents and @summarycontents commands.

@contents

Generate a table of contents in a printed manual, including all chapters, sec-
tions, subsections, etc., as well as appendices and unnumbered chapters. (Head-
ings generated by the @heading series of commands do not appear in the table
of contents.) The @contents command should be written on a line by itself.

@shortcontents

@summarycontents

(@summarycontents is a synonym for @shortcontents; the two commands are
exactly the same.)

Generate a short or summary table of contents that lists only the chapters
(and appendices and unnumbered chapters); sections, subsections and subsub-
sections are omitted. Write the @shortcontents command on a line by itself
immediately before the @contents command. Only a long manual needs a short
table of contents in addition to the full table of contents.

The table of contents commands automatically generate a chapter-like heading at the
top of the first table of contents page. Write tables of contents commands at the very end
of a Texinfo file, just before the @bye command, following any index sections—anything
in the Texinfo file after the table of contents commands will be omitted from the table of
contents. When you print a manual with a table of contents, the table of contents will be
printed last and numbered with roman numerals. You need to place those pages in their
proper place, after the title page, yourself. (This is the only collating you need to do for a
printed manual. The table of contents is printed last because it is generated after the rest
of the manual is typeset.)

Here is an example of where to write table of contents commands:

indices...

@shortcontents

@contents

@bye

Since an Info file uses menus instead of tables of contents, the Info formatting commands
ignore the @contents and @shortcontents commands.

4.3 @bye File Ending

An @bye command terminates TEX or Info formatting. None of the formatting commands
see any of the file following @bye. The @bye command should be on a line by itself.

Chapter 4: Ending a Texinfo File 39

Optionally, you may follow an @bye line with a local variables list. See Section 18.4
[Using Local Variables and the Compile Command], page 114, for more information.

41

5 Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters, sections,
subsections, and subsubsections. These commands generate large headings; they also pro-
vide information for the table of contents of a printed manual (see Section 4.2 [Generating
a Table of Contents], page 38).

The chapter structuring commands do not create an Info node structure, so normally
you should put an @node command immediately before each chapter structuring command
(see Chapter 6 [Nodes and Menus], page 47). The only time you are likely to use the chapter
structuring commands without using the node structuring commands is if you are writing a
document that contains no cross references and will never be transformed into Info format.

It is unlikely that you will ever write a Texinfo file that is intended only as an Info
file and not as a printable document. If you do, you might still use chapter structuring
commands to create a heading at the top of each node—but you don’t have to.

5.1 Tree Structure of Sections

A Texinfo file is usually structured like a book with chapters, sections, subsections, and
the like. This structure can be visualized as a tree (or rather as an upside-down tree)
with the root at the top and the levels corresponding to chapters, sections, subsection, and
subsubsections. In Info format, ‘Next’ and ‘Previous’ pointers of a node usually lead to
other nodes at the same level; an ‘Up’ pointer usually leads to a node at the level above;
and a ‘Menu’ leads to nodes at a level below. Cross references can point to nodes at any
level. See Chapter 7 [Cross References], page 53.

Here is a diagram that shows a Texinfo file with three chapters, each of which has two
sections.

top

|

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2 looks like this:

@node Chapter 2, Chapter 3, Chapter 1, top

@chapter Chapter 2

The chapter structuring commands are described in the sections that follow; the @node

and @menu commands are described in the following chapter (see Chapter 6 [Nodes &
Menus], page 47).

42 Texinfo 2.10

5.2 Types of Structuring Command

The chapter structuring commands fall into four groups or series, each of which contains
structuring commands corresponding to the hierarchical levels of chapters, sections, subsec-
tions, and subsubsections.

The four groups are the @chapter series, the @unnumbered series, the @appendix series,
and the @heading series.

Each command produces titles that have a different appearance on the printed page or
Info file; only some of the commands produce titles that are listed in the table of contents
of a printed book or manual.

• The @chapter and @appendix series of commands produce numbered or lettered entries
both in the body of a printed work and in its table of contents.

• The @unnumbered series of commands produce unnumbered entries both in the body
of a printed work and in its table of contents. The @top command, which has a special
use, is a member of this series. See Section 5.3 [@top], page 42.

• The @heading series of commands produce unnumbered headings that do not appear
in a table of contents. The heading commands never start a new page.

• The @majorheading command produces results similar to using the @chapheading

command but generates a larger vertical whitespace before the heading.

• When an @setchapternewpage command says to do so, the @chapter, @unnumbered,
and @appendix commands start new pages in the printed manual; the @heading com-
mands do not.

Here are the four groups of chapter structuring commands:
No new pages

Numbered Unnumbered Lettered and numbered Unnumbered
In contents In contents In contents Not in contents

@top @majorheading

@chapter @unnumbered @appendix @chapheading

@section @unnumberedsec @appendixsec @heading

@subsection @unnumberedsubsec @appendixsubsec @subheading

@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

5.3 @top

A special sectioning command, @top, has been created for use with the @node Top line.
The @top command tells makeinfo that it marks the ‘Top’ node in the file. It provides the
information that makeinfo needs to insert node pointers automatically. Write the @top at
the beginning of the line immediately following the @node Top line. Write the title on the
remaining part of the same line as the @top command.

In Info, the @top command causes the title to appear on a line by itself, with a line of
asterisks inserted underneath.

In TEX and texinfo-format-buffer, the @top command is merely a synonym for
@unnumbered. Neither of these formatters require an @top command, and do nothing spe-
cial with it. You can use @chapter (or some other sectioning command) after the @node

Top line when you are formatting with texinfo-format-buffer; you can do the same when
you are using the Texinfo updating commands to create or update pointers and menus.

Chapter 5: Chapter Structuring 43

Whatever sectioning command follows an @node Top line, whether it be @top or
@chapter, the @node Top line and the immediately following line and any additional
text must be enclosed between @ifinfo and @end ifinfo commands. (See Chapter 17
[Conditionals], page 109.) This prevents the title and the accompanying text from
appearing in printed output. Write the @ifinfo command before the node line and write
the @end ifinfo command after the @top or other sectioning command and after any
additional text. (You can write the @end ifinfo command after the @end menu command
if you like.)

You can help readers by writing a summary after the @top line. The summary should
briefly describe the Info file. You should also write the version number of the program to
which the manual applies in this section. This helps the reader keep track of which manual is
for which version of the program. If the manual changes more frequently than the program
or is independent of it, you should also include an edition number for the manual. (The
title page should also contain this information. See Section 3.4.1 [@titlepage], page 28.)

5.4 @chapter

@chapter identifies a chapter in the document. Write the command at the beginning of a
line and follow it on the same line by the title of the chapter.

For example, this chapter in this manual is entitled “Chapter Structuring”; the @chapter
line looks like this:

@chapter Chapter Structuring

In TEX, the @chapter command creates a chapter in the document, specifying the chap-
ter title. The chapter is numbered automatically.

In Info, the @chapter command causes the title to appear on a line by itself, with a line
of asterisks inserted underneath. Thus, in Info, the above example produces the following
output:

Chapter Structuring

5.5 @unnumbered, @appendix

Use the @unnumbered command to create a chapter that appears in a printed manual
without chapter numbers of any kind. Use the @appendix command to create an appendix
in a printed manual that is labelled by letter instead of by number.

For Info file output, the @unnumbered and @appendix commands are equivalent to
@chapter: the title is printed on a line by itself with a line of asterisks underneath. (See
Section 5.4 [@chapter], page 43.)

To create an appendix or an unnumbered chapter, write an @appendix or @unnumbered
command at the beginning of a line and follow it on the same line by the title, as you would
if you were creating a chapter.

5.6 @majorheading, @chapheading

The @majorheading and @chapheading commands put chapter-like headings in the body
of a document.

44 Texinfo 2.10

However, neither command causes TEX to produce a numbered heading or an entry in
the table of contents; and neither command causes TEX to start a new page in a printed
manual.

In TEX, a @majorheading command generates a larger vertical whitespace before the
heading than a @chapheading command but is otherwise the same.

For Info file output, the @majorheading and @chapheading commands commands are
equivalent to @chapter: the title is printed on a line by itself with a line of asterisks
underneath. (See Section 5.4 [@chapter], page 43.)

5.7 @section

In a printed manual, an @section command identifies a numbered section within a chapter.
The section title appears in the table of contents. In Info, an @section command provides
a title for a segment of text, underlined with ‘=’.

To create a section, write the @section command at the beginning of a line and follow
it on the same line by the section title.

Thus,

@section This is a section

produces

This is a section

=================

in Info.

5.8 @unnumberedsec, @appendixsec, @heading

The @unnumberedsec, @appendixsec, and @heading commands are, respectively, the un-
numbered, appendix-like, and heading-like equivalents of the @section command. (See
Section 5.7 [@section], page 44.)

@appendixsec

@appendixsection

@appendixsection is a longer spelling of the @appendixsec command; it is a
synonym for the @appendixsec command.

Conventionally, the @appendixsec or @appendixsection command is used only
within appendices.

@unnumberedsec

The @unnumberedsec command may be used within an unnumbered chapter or
within a regular chapter or appendix to provide an unnumbered section.

@heading You may use the @heading command anywhere you wish for a section-style
heading that will not appear in the table of contents.

5.9 The @subsection Command

Subsections are to sections as sections are to chapters. (See Section 5.7 [@section], page 44.)
In Info, subsection titles are underlined with ‘-’. For example,

@subsection This is a subsection

Chapter 5: Chapter Structuring 45

produces

This is a subsection

In a printed manual, subsections are listed in the table of contents and are numbered
three levels deep.

5.10 The @subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respec-
tively, the unnumbered, appendix-like, and heading-like equivalents of the @subsection

command. (See Section 5.9 [@subsection], page 44.)

In Info, the @subsection-like commands generate a title underlined with hyphens. In
a printed manual, an @subheading command produces a heading like that of a subsection
except that it is not numbered and does not appear in the table of contents. Similarly, an
@unnumberedsubsec command produces an unnumbered heading like that of a subsection
and an @appendixsubsec command produces a subsection-like heading labelled with a letter
and numbers

5.11 The ‘subsub’ Commands

The fourth and lowest level sectioning commands in Texinfo are the ‘subsub’ commands.
They are:

@subsubsection

Subsubsections are to subsections as subsections are to sections. (See Section 5.9
[@subsection], page 44.) In a printed manual, subsubsection titles appear in
the table of contents and are numbered four levels deep.

@unnumberedsubsubsec

Unnumbered subsubsection titles appear in the table of contents of a printed
manual, but lack numbers. Otherwise, unnumbered subsubsections are the
same as subsubsections. In Info, unnumbered subsubsections look exactly like
ordinary subsubsections.

@appendixsubsubsec

Conventionally, appendix commands are used only for appendices and are let-
tered and numbered appropriately in a printed manual. In Info, appendix
subsubsections look exactly like ordinary subsubsections.

@subsubheading

The @subsubheading command may be used anywhere that you need a small
heading that will not appear in the table of contents. In Info, subsubheadings
look exactly like ordinary subsubsection headings.

In Info, ‘subsub’ titles are underlined with periods. For example,

@subsubsection This is a subsubsection

produces

This is a subsubsection

.......................

47

6 Nodes and Menus

Most Texinfo files are organized hierarchically like books, with chapters, sections, subsec-
tions, and subsubsections. Such a hierarchy is tree-like; the chapters are the major limbs
from which the sections branch out. In a conventional diagram, however, such a hierarchy
is drawn with the “root” at the top and the “leaves” at the bottom—as an upside-down
tree. The root node is called the ‘Top’ node, and ‘Up’ pointers carry you closer to the root.

6.1 Node and Menu Illustration

Here is a copy of the diagram shown earlier that illustrates a Texinfo file with three chapters,
each of which contains two sections.

top

|

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this organization, you would write the beginning of the node
for Chapter 2 like this:

@node Chapter 2, Chapter 3, Chapter 1, top

@comment node-name, next, previous, up

To go to Sections 2.1 and 2.2 using Info, you need a menu inside of Chapter 2 that says:

@menu

* Sect. 2.1:: Description of this section.

* Sect. 2.2::

@end menu

You would locate this menu inside Chapter 2, after the beginning of the chapter and before
Section 2.1.

The node for Sect. 2.1 will look like this:

@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2

@comment node-name, next, previous, up

Usually, an @node command and a chapter structuring command are used in sequence,
along with indexing commands. (The updating commands require this sequence. See
Section 2.3.1 [Updating Requirements], page 17.) Also, you may want to follow the @node

line with a comment line that reminds you which pointer is which. For example, the begin-
ning of the node for the chapter on ending a file looks like this:

@node Ending a File, Structuring, Beginning a File, Top

@comment node-name, next, previous, up

@chapter Ending a Texinfo File

@cindex Ending a Texinfo file

@cindex Texinfo file ending

@cindex File ending

48 Texinfo 2.10

The following two sections describe the @node and @menu commands in detail.

6.2 @node

@node defines the beginning of a new node in the Info output file. (See Info file info, node
‘Top’.) Write the command at the beginning of a line, followed by four arguments, separated
by commas, that make up the rest of the line. These arguments are the name of the node,
and the names of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order. You may insert
spaces before each pointer if you wish. The spaces are ignored.

In TEX, @node is nearly ignored. It generates nothing visible. Its only function is to
identify the name to use for cross references to the chapter or section which follows the
@node command and which makes up the body of the node. (Cross references, such as the
one following this sentence, are made with @xref and its related commands. See Chapter 7
[Cross References], page 53.)

In general, an @node line is followed immediately by a chapter-structuring command
such as @chapter, @section, @subsection, or @subsubsection. (See Section 5.2 [Types
of Structuring Command], page 42.)

The name of the node identifies the node. The pointers, which enable you to reach other
nodes, consist of the names of those nodes.

All the node names for a single Info file must be unique. Duplications confuse the
Info movement commands. This means, for example, that if you end each chapter with a
summary, you must name every summary node differently. You may, however, duplicate
section titles (although this practice may confuse a reader).

Try to pick node names that are informative but short. In the Info file, the file name,
node name, and pointer names are all inserted on one line, which may run into the right
edge of the window. (This does not cause a problem with Info, but is ugly.)

By convention, node names are capitalized just as they would be for section or chapter
titles.

Caution: Do not use any of the Texinfo @-commands in a node name; these
commands confuse Info.

Do not use commas within a node name; a comma terminates the node name.

Do not use apostrophes within a node name; an apostrophe confuses the inter-
nals of texinfo.tex.

Pointer names must be the names of nodes defined elsewhere. It does not matter whether
pointers are before or after the node that refers to them.

Normally, a node’s ‘Up’ pointer should contain the name of the node whose menu men-
tions that node. The node’s ‘Next’ pointer should contain the name of the node that follows
that node and its ‘Previous’ pointer should contain the name of the node that precedes it in
that menu. When a node’s ‘Up’ node is the same as its ‘Previous’ node, both node pointers
should name the same node.

6.2.1 Writing a Node Line

The easiest way to write a node line is to write @node at the beginning of a line and then
the name of the node. You can use update node commands provided by Texinfo mode to
insert the names of the pointers; or you can leave the pointers out of the Texinfo file and

Chapter 6: Nodes and Menus 49

have makeinfo insert pointers into the Info file it creates. (See Chapter 2 [Texinfo Mode],
page 13, and Section 6.3 [makeinfo Pointer Creation], page 49.)

Alternatively, you may insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you
do this, you may find it helpful to use the Texinfo mode keyboard command C-c C-c n.
This command inserts ‘@node’ and a comment line listing the names of the pointers in their
proper order. The comment line helps you keep track of which arguments are for which
pointers. This template is especially useful if you are not familiar with Texinfo.

If you wish, you can ignore node lines altogether in your first draft and then use the
texinfo-insert-node-lines command to create node lines for you. However, this practice
is not recommended. It is better to name the node itself at the same time you write a section
so you can easily make cross references. A large number of cross references are an especially
important feature of a good Info file.

After you have inserted a node line, you should immediately write an @-command for
the chapter or section and insert its name. Next (and this is important!), put in several
index entries. Usually, you will find at least two and often as many as four or five ways of
referring to the node in the index. Use them all. This will make it much easier for people
to find the node.

The top node of the file (which must be named ‘top’ or ‘Top’) should have as its ‘Up’
and ‘Previous’ nodes the name of a node in another file, where there is a menu that leads
to this file. Specify the file name in parentheses. If the file is to be installed directly in the
Info directory file, use ‘(dir)’ as the parent of the ‘Top’ node; this is short for ‘(dir)top’,
and specifies the ‘Top’ node in the dir file, which contains the main menu for Info. For
example, the ‘Top’ node line of this manual looks like this:

@node Top, Overview, (dir), (dir)

(You may use the Texinfo updating commands or the makeinfo utility to insert these ‘Next’
and ‘(dir)’ pointers automatically.)

See Chapter 20 [Installing an Info File], page 123, for more information about installing
an Info file in the info directory.

6.3 Creating Pointers with makeinfo

The makeinfo program has a feature for automatically creating node pointers for a hierar-
chically organized file that lacks them.

When you take advantage of this feature, you do not have to write the ‘Next’, ‘Previous’,
and ‘Up’ pointers after the name of a node. However, you must write a sectioning command,
such as @chapter or @section, on the line immediately following each truncated @node

line. (You cannot write a comment line after a node line; the section line must follow it
immediately.)

In addition, you must follow the ‘Top’ node line with a line beginning with @top to mark
the ‘Top’ node in the file. See Section 5.3 [@top], page 42.

Finally, you must write the name of each node (except for the ‘Top’ node) in a menu
that is one or more hierarchical levels above the node’s hierarchical level.

This node pointer insertion feature in makeinfo is an alternative to the menu and pointer
creation and update commands in Texinfo mode. (See Section 2.3 [Updating Nodes and

50 Texinfo 2.10

Menus], page 15.) It is especially helpful to people who do not use GNU Emacs to for
writing Texinfo documents.

6.4 @menu

The @menu command is used to create menus, which contain pointers to subordinate nodes.
In Info, you use menus to go to such nodes. Menus have no effect in printed manuals and
do not appear in them.

By convention, a menu is put at the end of a node. This way, it is easy for someone
using Info to find the menu, using the M-> (end-of-buffer) command.

A node that has a menu should not contain much text. If you have a lot of text and a
menu, move most of the text into a new subnode—all but a few lines. Otherwise, a reader
with a terminal that displays only a few lines may miss the menu and its associated text.
As a practical matter, you should locate a menu within 20 lines of the beginning of the
node.

The short text before a menu may look awkward in a printed manual. To avoid this,
you can write a menu near the beginning of its node and follow the menu by an @node line
and an @heading line within @ifinfo and @end ifinfo. This way, the menu, node line,
and title appear only in the Info file, not the printed document.

The preceding two paragraphs follow an Info-only menu, node line, and heading, and
look like this:

@menu

* Menu Location:: Put a menu in a short node.

* Menu Item:: How to write a menu item.

* Menu Example:: A menu example.

@end menu

@node Menu Location

@ifinfo

@subheading Menus Need Short Nodes

@end ifinfo

See the beginning of the “Cross References” chapter in the Texinfo source for this doc-
ument for another example this procedure.

6.4.1 Writing a Menu Item

In a menu, every line that begins with a ‘* ’ is a menu item. (Note the space after the
asterisk.) A line that does not start with a ‘* ’ can appear in the menu but is not a menu
item, just a comment.

A menu item has three parts, only the second of which is required:

1. The menu item name.

2. The name of the node.

3. A description of the item.

A menu item looks like this:

* Item name: Node name. Description.

Chapter 6: Nodes and Menus 51

Follow the menu item name with a single colon and follow the node name with tab,
comma, period, or newline.

In Info, a user can select a node with the m (Info-menu) command. The menu item
name is what the user types after the m command.

If the menu item name and the node name are the same, you can write the name
immediately after the asterisk and space at the beginning of the line and follow the name
with two colons.

For example, write

* Name::

instead of

* Name: Name.

You should use the node name for the menu item name whenever possible, since it reduces
visual clutter in the menu.

The third part of a menu entry is a short descriptive phrase or sentence. Menu item
names and node names are often short; the description explains to the reader what the node
is about. The description, which is optional, can spread over two or more lines. A useful
description complements the node name rather than repeating it.

6.4.2 A Menu Example

A menu looks like this in Texinfo:

@menu

* Menu item name: Node name. A short description.

* Node name:: This form is preferred.

@end menu

This produces:

* menu:

* Menu item name: Node name. A short description.

* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

@menu

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

@end menu

This produces:

* menu:

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

52 Texinfo 2.10

In this example, the menu has two entries. ‘Files’ is both a menu item name and the
name of the node referred to by that item. In the other entry, ‘Multiples’ is the item
name, and it refers to the node named ‘Buffers’.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names
of nodes in the same Info file. (See Section 6.5 [Referring to Other Info Files], page 52.)

The line ‘Larger Units of Text’ is a comment.

6.5 Referring to Other Info Files

You can refer to nodes in other Info files by writing the file name in parentheses just before
the node name. In this case, you should use the three-part menu item format, which saves
the reader from having to type the file name.

If you do not list the node name, but only name the file, then Info presumes that you
are referring to the ‘Top’ node.

The format looks like this:

@menu

* first-item:(filename)nodename. description

* second-item:(filename)second-node. description

@end menu

The dir top level directory for the Info system has menu entries that take you directly to
the ‘Top’ nodes of each Info document. (See Chapter 20 [Installing an Info File], page 123.)

For example,

...

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting

text editor.

...

To refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs Manual, you
would write a menu similar to the following:

@menu

* Outlining: (emacs)Outline Mode. The major mode for

editing outlines.

* Rebinding: (emacs)Rebinding. How to redefine the

meaning of a key.

@end menu

6.6 Describing Command Invocation

Documents that describe programs such as Emacs, GCC, and GAWK that are invoked from
a shell each contain a section that describes the command line arguments. Unfortunately,
the node names and titles for these sections are all different! This makes it hard to search
for the section.

We suggest adopting the convention of naming such sections with a phrase beginning
with the word ‘Invoking . . . ’, as in ‘Invoking Emacs’; this way users can find the section
easily.

53

7 Making Cross References

Cross references are used to refer the reader to other parts of the same or different Texinfo
files. In Texinfo, nodes are the points to which cross references can refer.

Often, but not always, a printed document should be designed so that it can be read
sequentially. People tire of flipping back and forth to find information that should be
presented to them as they need it.

However, in any document, some information will be too detailed for the current context,
or incidental to it; use cross references to provide access to such information. Also, an on-
line help system or a reference manual is not like a novel; few read such documents in
sequence from beginning to end. Instead, people look up what they need. For this reason,
such creations should contain many cross references to help readers find other information
that they may not have read.

In a printed manual, a cross reference creates a page reference, unless it is to another
manual altogether, in which case it names that manual.

In Info, a cross reference creates an entry that you can follow using the Info ‘f’ command.
(See Info file info, node ‘Help-Adv’.)

The various cross reference commands use nodes to define cross reference locations. This
is evident in Info, in which a cross reference takes you to the specified node. TEX also uses
nodes to define cross reference locations, but the action is less obvious. When TEX generates
a dvi file, it records nodes’ page numbers and uses the page numbers in making references.
Thus, if you are writing a manual that will only be printed, and will not be used on-line, you
must nonetheless write @node lines to name the places to which you make cross references.

7.1 Different Cross Reference Commands

There are several different cross reference commands:

@xref Used to start a sentence in the printed manual saying ‘See . . . ’ or an entry in
the Info file saying ‘*Note ...’.

@ref Used within or, more often, at the end of a sentence; produces just the reference
in the printed manual without a preceding ‘See’.

@pxref Used within parentheses to make a reference that starts with a lower case ‘see’
within the printed manual. (‘p’ is for ‘parenthesis’.)

@inforef Used to make a reference to an Info file for which there is no printed manual.

(The @cite command is used to make references to books and manuals for which there
is no corresponding Info file and, therefore, no node to which to point. See Section 8.1.8
[@cite], page 65.)

7.2 Parts of a Cross Reference

A cross reference command requires only one argument, which is the name of the node to
which it refers. But a cross reference command may contain up to four additional arguments.
By using these arguments, you can provide a menu item name for Info, a descriptive phrase
for the printed output, the name of a different Info file, and the name of a different printed
manual.

54 Texinfo 2.10

Here is a simple cross reference example:

@xref{Node name}.

which produces

*Note Node name::.

and

See section nnn [Node name], page ppp.

Here, however, is an example of a full five-part cross reference:

@xref{Node name, Item name, Topic, info-file-name,

A Printed Manual}, for details.

which produces

*Note Item name: (info-file-name)Node name, for details.

and

See section Topic of A Printed Manual, for details.

The five arguments for a cross reference are:

1. The node name (required). This is the node to which the cross reference takes you. In
a printed document, the location of the node provides the page reference (for references
within the same document).

2. The item name for the Info reference, if it is to be different from the node name. It is
usually omitted.

3. A topic description or section name. Often, this is the title of the section. This is used
as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the Info file in which the reference is located, if it is different from the
current file.

5. The name of another printed manual.

Cross references with one, two, three, four, and five arguments are described separately
following the description of @xref.

You can write cross reference commands within a paragraph, but note how Info and
TEX format the output of each of the various commands: write @xref at the beginning of
a sentence; write @pxref only within parentheses, and so on.

7.3 @xref

The @xref command generates a cross reference for the beginning of a sentence. The Info
formatting commands convert it into an Info cross reference, which the Info ‘f’ command
can use to bring you directly to another node. The TEX typesetting commands convert it
into a page reference, or a reference to another book or manual.

Most often, an Info cross reference looks like this:

*Note node-name::.

or like this

*Note item-name: node-name.

In TEX, a cross reference looks like this:

See section section [node-name], page page

Chapter 7: Making Cross References 55

or like this

See section section [topic], page page

The @xref command does not generate a period or comma to end the cross reference in
either the Info file or the printed output. You must write that period or comma yourself;
otherwise, Info will not recognize the end of the reference. (The @pxref command works
differently. See Section 7.6 [@pxref], page 59.)

Please note: A period or comma must follow the closing brace of an @xref. It
is required to terminate the cross reference. This period or comma will appear
in the output, both in the Info file and in the printed manual.

@xrefmust refer to an Info node by name. Use @node to define the node (see Section 6.2.1
[Writing a Node], page 48).

@xref is followed by several arguments inside braces, separated by commas. Whitespace
before and after these commas is ignored.

A cross reference requires only the name of a node; but it may contain up to four addi-
tional arguments. Each of these variations produces a cross reference that looks somewhat
different.

7.3.1 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the same Info
file.

For example,

@xref{Tropical Storms}.

produces

*Note Tropical Storms::.

and

See section nnn [Tropical Storms], page ppp.

(Note that in the preceding example the closing brace is followed by a period.)

You can write a clause after the cross reference, like this:

@xref{Tropical Storms}, for more info.

which produces:

*Note Tropical Storms::, for more info.

See section nnn [Tropical Storms], page ppp, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by
the clause.)

7.3.2 @xref with Two Arguments

With two arguments, the second one is used as the name of the Info cross reference, while
the first argument is still the node that the cross reference points to:

The template is like this:

@xref node-name, item-name.

For example:

@xref{Electrical Effects, Lightning}.

56 Texinfo 2.10

which produces:

*Note Lightning: Electrical Effects.

and

See section nnn [Electrical Effects], page ppp.

(Note that in the preceding example the closing brace is followed by a period; and that the
node name is printed, not the item name.)

You can write a clause after the cross reference, like this:

@xref{Electrical Effects, Lightning}, for more info.

produces

*Note Lightning: Electrical Effects, for more info.

and

See section nnn [Electrical Effects], page ppp, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by
the clause.)

7.3.3 @xref with Three Arguments

A third argument replaces the node name in the TEX output. The third argument should
state the topic discussed by the section being referenced, or be the name of the section.
Often, you will want to use initial upper case letters so it will be easier to read when the
reference is printed. Use a third argument when the node name is unsuitable because of
syntax or meaning.

Remember that a comma or period must follow the closing brace of an @xref command
to terminate the cross reference. In the following examples, a clause follows a terminating
comma.

The template is like this:

@xref node-name, item-name, topic.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning}, for details.

which produces

*Note Lightning: Electrical Effects, for details.

and

See section nnn [Thunder and Lightning], page ppp, for details.

If a third argument is given and the second one is empty, then the third argument serves
both. (Note how two commas, side by side, mark the empty second argument.)

@xref{Electrical Effects, , Thunder and Lightning}, for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.

and

See section nnn [Thunder and Lightning], page ppp, for details.

Chapter 7: Making Cross References 57

7.3.4 @xref with Four and Five Arguments

In a cross reference, a fourth argument specifies the name of another Info file, different from
the file in which the reference appears, and a fifth argument specifies its title as a printed
manual.

Remember that a comma or period must follow the closing brace of an @xref command
to terminate the cross reference. In the following examples, a clause follows a terminating
comma.

The template is:

@xref{node-name, item-name, topic, info-file-name, printed-title}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning,

weather, An Introduction to Meteorology}, for details.

which produces

*Note Lightning: (weather)Electrical Effects, for details.

The name of the the Info file is enclosed in parentheses and precedes the name of the node.

In a printed manual, the reference looks like this:

See section Thunder and Lightning of An Introduction to Meteorology, for de-
tails.

The name of the printed manual is typeset in italics; and the reference lacks a page number
since TEX cannot know to which page a refer refers when the reference is to another manual.

Often, you will leave out the second argument when you use the long version of @xref.
In this case, the third argument, the topic description, will be used as the item name in
Info.

The template looks like this:

@xref{node-name, , topic, info-file-name, printed-title}, for details.

which produces

*Note topic: (info-file-name)node-name, for details.

and

See section topic of printed-manual-title, for details.

For example:

@xref{Electrical Effects, , Thunder and Lightning,

weather, An Introduction to Meteorology}, for details.

which produces

*Note Thunder and Lightning: (weather)Electrical Effects, for details.

and

See section Thunder and Lightning of An Introduction to Meteorology, for de-
tails.

On rare occasions, you may want to refer to another Info file that is is within a single
printed manual—when multiple Texinfo files are incorporated into the same TEX run but
make separate Info files. In this case, you need to specify only the fourth argument, and
not the fifth.

58 Texinfo 2.10

7.4 Naming a ‘Top’ Node

In a cross reference, you must always name a node. This means that in order to refer to a
whole manual, you must identify the ‘Top’ node by writing it as the first argument to the
@xref command. (This is different from the way you write a menu entry. See Section 6.5
[Referring to Other Info Files], page 52.) At the same time, to provide a meaningful section
topic or title in the printed cross reference (instead of the word ‘Top’), you must write an
appropriate entry for the third argument to the @xref command.

Thus, to make a cross reference to The GNU Make Manual, write:

@xref{Top, , Overview, make, The GNU Make Manual}.

which produces

*Note Overview: (make)Top.

and

See section Overview of The GNU Make Manual.

In this example, ‘Top’ is the name of the node, and ‘Overview’ is the name of the first
section of the manual.

7.5 @ref

@ref is nearly the same as @xref except that it does not generate a ‘See’ in the printed
output, just the reference itself. This makes it useful as the last part of a sentence.

For example:

For more information, see @ref{Orogenesis, ,

Mountaing Building}.

produces

For more information, see *Note Mountain

Building: Orogenesis.

and

For more information, see section nnn [Mountain Building]. page ppp.

The @ref command sometimes leads writers to express themselves in a manner that is
suitable for a printed manual but looks awkward in the Info format. Bear in mind that
your audience will be using both the printed and the Info format.

For example,

Sea surges are described in @ref{Hurricanes}.

produces

Sea surges are described in section nnn [Hurricanes].

in a printed document, but

Sea surges are described in *Note Hurricanes::.

in Info.

Caution: You must write a period or comma immediately after an @ref com-
mand with two or more arguments. Otherwise, Info will not find the end of the
cross reference entry and attempts to follow the cross reference will fail. As a
general rule, you should write a period or comma after every @ref command.
This looks best in both the printed and the Info output.

Chapter 7: Making Cross References 59

7.6 @pxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but you use
it only inside parentheses and you do not type a comma or period after the command’s
closing brace. The command differs from @xref in two ways:

1. TEX typesets the reference for the printed manual with a lower case ‘see’ rather than
an upper case ‘See’.

2. The Info formatting commands automatically end the reference with a closing colon or
period.

Because one type of formatting automatically inserts closing punctuation and the other
does not, you should use @pxref only inside parentheses as part of another sentence. Also,
you yourself should not insert punctuation after the reference, as you do with @xref.

@pxref is designed so that the output looks right and works right between parentheses
both in printed output and in an Info file. In a printed manual, a closing comma or period
should not follow a cross reference within parentheses; such punctuation is wrong. But in an
Info file, suitable closing punctuation must follow the cross reference so Info can recognize
its end. @pxref spares you the need to use complicated methods to put a terminator into
one form of the output and not the other.

Don’t try to use @pxref as a clause in a sentence. It will look bad in either the Info file,
the printed output, or both. Use it only as a parenthetical reference.

With one argument, a parenthetical cross reference looks like this:

... large storms (@pxref{Hurricanes}) may cause flooding

...

which produces

... large storms (*Note Hurricanes::) may cause flooding ...

and

. . . large storms (see section nnn [Hurricanes], page ppp) may cause flooding

. . .

With two arguments, a parenthetical cross reference has this template:

... (@pxref{node-name, item-name}) ...

which produces

... (*Note item-name: node-name.) ...

and

. . . (see section nnn [node-name], page ppp) . . .

@pxref can be used with up to five arguments just like @xref (see Section 7.3 [@xref],
page 54).

7.7 @inforef

@inforef is used for cross references to Info files for which there are no printed manuals.
Even in a printed manual, @inforef generates a reference directing the user to look in an
Info file.

The command takes either two or three arguments, in the following order:

1. The node name.

60 Texinfo 2.10

2. The item name (optional).

3. The Info file name.

Separate the arguments with commas, as with @xref. Also, you must terminate the refer-
ence with a comma or period after the ‘}’, as you do with @xref.

The template is:

@inforef{node-name, item-name, info-file-name},

Thus,

@inforef{Expert, Advanced Info commands, info},

for more information.

produces

*Note Advanced Info commands: (info)Expert,

for more information.

and

See Info file info, node ‘Expert’, for more information.

Similarly,

@inforef{Expert, , info}, for more information.

produces

*Note (info)Expert::, for more information.

and

See Info file info, node ‘Expert’, for more information.

The converse of @inforef is @cite, which is used to refer to printed works for which no
Info form exists. See Section 8.1.8 [@cite], page 65.

61

8 Marking Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. These ways specify, for
example, whether a word or phrase is a defining occurrence, a metasyntactic variable, or a
symbol used in a program. Also, you can emphasize text.

8.1 Indicating Definitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refers to.
Metasyntactic variables, for example, are marked by @var and code by @code. Texinfo uses
this information to determine how to highlight the text. Since the pieces of text are labelled
by commands that tell what kind of object they are, it is easy to change the way Texinfo
formats such text. (Texinfo is an intentional formatting language rather than a typesetting
formatting language.)

For example, code is usually illustrated in a typewriter font, but it would be easy to
change the way Texinfo highlights code to use another font. This change would not effect
how keystroke examples are highlighted. If straight typesetting commands were used in the
body of the file and you wanted to make a change, you would have to check every single
occurrence to make sure that you were changing code and not something else that should
not be changed.

The highlighting commands can be used to generate useful information from the file,
such as lists of functions or file names. It is possible, for example, to write a program
in Emacs Lisp (or a keyboard macro) to insert an index entry after every paragraph that
contains words or phrases marked by a specified command. You could do this to construct
an index of functions if you had not already made the entries.

The commands serve a variety of purposes:

@code{sample-code}

Indicate text that is a literal example of a piece of a program.

@kbd{keyboard-characters}

Indicate keyboard input.

@key{key-name}

Use for the conventional name for a key on a keyboard.

@samp{text}

Indicate text that is a literal example of a sequence of characters.

@var{metasyntactic-variable}

Indicate a metasyntactic variable.

@file{file-name}

Indicate the name of a file.

@dfn{term}

Use for the introductory or defining use of a term.

@cite{reference}

Indicate the name of a book.

62 Texinfo 2.10

8.1.1 @code{sample-code}
Use the @code command to indicate text that is a piece of a program and which consists of
entire syntactic tokens. Enclose the text in braces.

Thus, you should use @code for an expression in a program, for the name of a variable
or function used in a program, or for a keyword. Also, you should use @code for the name
of a program, such as diff, that is a name used in the machine. (You should write the
name of a program in the ordinary text font if you regard it as a new English word, such
as ‘Emacs’ or ‘Bison’.)

Use @code for the TEXINPUTS environment variable and other such variables.

Do not use the @code command for a string of characters shorter than a syntactic token.
In particular, you should not use the @code command when writing about the characters
used in a token; do not, for example, use @code when you are explaining what letters or
printable symbols can be used in the names of functions. (Use @samp.) Also, you should
not use @code to mark text that is considered input to programs unless the input is written
in a language that is like a programming language. For example, you should not use @code
for the single character commands of GNU Emacs (use @kbd instead) although you may use
@code for the names of the Emacs Lisp functions that the keyboard commands invoke.

Do use @code for command names in command languages that resemble programming
languages, such as Texinfo or the shell. Note, however, that you should not use @code for
options such as ‘-c’ when such options stand alone. (Use @samp.) Also, an entire shell
command often looks better if written using @samp rather than @code.

It is incorrect to alter the case of a word inside an @code command when it appears
at the beginning of a sentence. Most computer languages are case sensitive. In C, for
example, Printf is a misspelling of printf. If you do not want to start a sentence with
such a command written all in lower case, you should rearrange the sentence.

In the printed manual, @code causes TEX to typeset the argument in a typewriter face.
In the Info file, it causes the Info formatting commands to use ‘. . . ’ quotation. For example:

Use @code{diff} to compare two files.

produces this in the printed manual:

Use diff to compare two files.

and this in Info file:

Use ‘diff’ to compare two files.

8.1.2 @kbd{keyboard-characters}
Use the @kbd command for characters of input to be typed by users. For example, to refer
to the characters M-a, write

@kbd{M-a}

and to refer to the characters M-x shell, write

@kbd{M-x shell}

The @kbd command has the same effect as @code in Info, but may produce a different
font in a printed manual.

Chapter 8: Marking Words and Phrases 63

You can embed another @-command inside the braces of an @kbd command. Here, for
example, is the way to describe a command that would be described more verbosely as
“press an ‘r’ and then press the RET key”:

@kbd{r @key{RET}}

This produces: r RET

You also use the @kbd command if you are spelling out the letters you type; for example:

To give the @code{logout} command,

type the characters @kbd{l o g o u t @key{RET}}.

This produces

To give the logout command, type the characters l o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you really want to
mention a space character as one of the characters of input, write @key{SPC} for it.)

8.1.3 @key{key-name}
Use the @key command for the conventional name for a key on a keyboard, as in

@key{RET}

You can use the @key command within the argument of an @kbd command when the
sequence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x ESC you would type:

@kbd{C-x @key{ESC}}

The recommended names to use for keys are in upper case and are

SPC Space

RET Return

LFD Linefeed

TAB Tab

BS Backspace

ESC Escape

DEL Delete

SFT Shift

CTL Control

META Meta

There are subtleties to handling words like ‘meta’ or ‘ctl’ that are names of shift keys.
When mentioning a character in which the shift key is used, such as Meta-a, use the @kbd

command alone without the @key command, but when you are referring to the shift key in
isolation, use the @key command. For example, write ‘@kbd{Meta-a}’ to produce Meta-a

and ‘@key{META}’ to produce META. This is because Meta-a refers to keys that you press
on a keyboard, but META refers to a key without implying that you press it.

64 Texinfo 2.10

8.1.4 @samp{text}
Use the @samp command to indicate text that is a literal example of a sequence of characters
in a file, string, pattern, etc. Enclose the text in braces. The argument appears within ‘. . . ’
quotation in both the Info file and the printed manual; in addition, it is printed in a fixed-
width font.

To match @samp{foo} at the end of the line,

use the regexp @samp{foo$}.

produces

To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

Any time you are referring to single characters, you should use @samp unless @kbd is
more appropriate. @samp is used for entire statements in C, for entire shell commands, and
for names of command-line options. Use it for buffer names in Emacs and for node names
in Info or Texinfo. Basically, @samp is a catchall for whatever is not covered by @code, @kbd,
or @key.

Only include punctuation marks within braces if they are part of the string you are
specifying. Write punctuation marks outside the braces if those punctuation marks are
part of the English text that surrounds the string. In the following sentence, for example,
the commas and period are outside of the braces:

In English, the vowels are @samp{a}, @samp{e},

@samp{i}, @samp{o}, @samp{u}, and sometimes

@samp{y}.

This produces:

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.

8.1.5 @var{metasyntactic-variable}
Use the @var command to indicate metasyntactic variables. A metasyntactic variable is
something that stands for another piece of text. For example, you should use a metasyntactic
variable in the documentation of a function to describe the arguments that are passed to
that function.

Do not use @var for the names of particular variables in programming languages. These
are specific names from a program, so @code is correct for them. For example, the Lisp
variable texinfo-tex-command is not a metasyntactic variable; it is properly formatted
using @code.

The effect of @var in the Info file is to upcase the argument; in the printed manual, to
italicize it. For example:

To delete file @var{filename},

type @code{rm @var{filename}}.

produces

To delete file filename, type rm filename.

(Note that @var may appear inside of @code, @samp, @file, etc.)

Write a metasyntactic variable all in lower case without spaces, and use hyphens to make
it more readable. Thus, the illustration of how to begin a Texinfo manual looks like this:

Chapter 8: Marking Words and Phrases 65

\input texinfo

@setfilename info-file-name

@settitle name-of-manual

In some documentation styles, metasyntactic variables are shown with angle brackets,
for example:

..., type rm <filename>

However, that is not the style we use in Texinfo. (You can, of course, modify the sources
to TEX and the Info formatting commands to output the <...> format if you wish.)

8.1.6 @file{file-name}
Use the @file command to indicate text that is the name of a file, buffer, or directory, or
is the name of a node in Info. You can also use the command for filename suffixes. Don’t
use @file for symbols in a programming language; thus, a node name is a name in an Info
file but not an identifier in a programming language.

Currently, @file is equivalent to @samp in its effects on the output. For example,

The @file{.el} files are in

the @file{/usr/local/emacs/lisp} directory.

produces

The .el files are in the /usr/local/emacs/lisp directory.

8.1.7 @dfn{term}
Use the @dfn command to identify the introductory or defining use of a technical term. Use
the command only in passages whose purpose is to introduce a term which will be used
again or which the reader ought to know. Mere passing mention of a term for the first time
doesn’t deserve @dfn. The command generates italics in the printed manual, and double
quotation marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.

produces

Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a
definition of the term. The sentence does not have to say explicitly that it is a definition,
but it should contain the information of a definition—it should make the meaning clear.

8.1.8 @cite{reference}
Use the @cite command for the name of a book that lacks a companion Info file. The
command produces italics in the printed manual, and quotation marks in the Info file.

(If a book is written in Texinfo, it is better to use a cross reference command since you
can easily follow such a reference in Info. See Section 7.3 [@xref], page 54.)

8.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to what category the
words belong to. The @code command, for example, does this. Most often, this is the best
way to mark words. However, sometimes you will want to emphasize text without indicating

66 Texinfo 2.10

a category. Texinfo has two ways to do this: commands that tell Texinfo to emphasize the
text but leave the method to the program, and commands that specify the method to use.
The first method is generally the best because it makes it possible to change the style of a
document without needing to re-edit it line by line.

8.2.1 @emph{text} and @strong{text}
The @emph and @strong commands are for emphasis; @strong is stronger. In printed
output, @emph produces italics and @strong produces bold.

For example,

@quotation

@strong{Caution:} @code{rm * .[^.]*} removes @emph{all}

files in the directory.

@end quotation

produces the following in printed output:

Caution: rm * .[^.]* removes all files in the directory.

and the following in Info:

Caution: ‘rm * .[^.]*’ removes *all*

files in the directory.

The @strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.1

In the Info file, both @emph and @strong put asterisks around the text.

8.2.2 @sc{text}: The Small Caps Font

Use the ‘@sc’ command to set text in the printed output in a small caps font and set
text in the Info file in upper case letters.

Write the text between braces in lower case, like this:

The @sc{acm} and @sc{ieee} are technical societies.

This produces:

The acm and ieee are technical societies.

TEX typesets the small caps font in a manner that prevents the letters from ‘jumping
out at you on the page’. This makes small caps text easier to read than text in all upper
case.

TEX typesets any upper case letters in the small caps fonts in FULL-SIZE CAPITALS.
Use them sparingly.

The Info formatting commands set all small caps text in upper case.

You may also use the small caps font for a jargon word such as ato (a nasa word
meaning ‘abort to orbit’).

There are subtleties to using the small caps font with a jargon word such as cdr, a word
used in Lisp programming. In this case, you should use the small caps font when the word
refers to the second and subsequent elements of a list (the cdr of the list), but you should
use ‘@code’ when the word refers to the Lisp function of the same spelling.

1 Don’t try to use @emph or @strong with the word ‘Note’; Info will mistake the combination for a cross
reference. Use a phrase such as Please note or Caution instead.

Chapter 8: Marking Words and Phrases 67

8.2.3 Fonts for Printing, Not Info

Texinfo provides four font commands that specify font changes in the printed manual but
have no effect in the Info file. @i requests italic font (in some versions of TEX, a slanted font
is used), @b requests bold face, @t requests the fixed-width font used by @code, and @r

requests a roman font, which is the usual font in which text is printed. All four commands
apply to an argument that follows, surrounded by braces.

Only the @r command has much use: in example programs, you can use the @r command
to convert code comments from the fixed-width font to a roman font. This looks better in
printed output.

For example,

@lisp

(+ 2 2) ; @r{Add two plus two.}

@end lisp

produces

(+ 2 2) ; Add two plus two.

If possible, you should avoid using the other three font commands. If you need to use
one, it probably indicates a gap in the Texinfo language.

69

9 Special Insertions

Texinfo provides several commands for formatting dimensions, for inserting single characters
that have special meaning in Texinfo, such as braces, and for inserting special graphic
symbols that do not correspond to characters, such as dots and bullets.

These are:

• Braces, ‘@’ and periods.

• Format a dimension, such as ‘12 pt’.

• Dots and bullets.

• The TEX logo and the copyright symbol.

• A minus sign.

9.1 Inserting ‘@’, Braces, and Periods

‘@’ and curly braces are special characters in Texinfo. To insert these characters into text,
you must put an ‘@’ in front of these characters to prevent Texinfo from misinterpreting
them.

Periods are also special. Depending on whether the period is inside of or at the end of
a sentence, less or more space is inserted after a period in a typeset manual. Since it is not
always possible for Texinfo to determine when a period ends a sentence and when it is used
in an abbreviation, special commands are needed in some circumstances. (Usually, Texinfo
can guess how to handle periods, so you don’t have to use the special commands; you just
enter a period as you would if you were using a typewriter, which means you put two spaces
after the period, question mark, or exclamation mark that ends a sentence.)

Do not put braces after any of these commands; they are not necessary.

9.1.1 Inserting ‘@’—@@

@@ stands for a single ‘@’ in either printed or Info output.

Do not put braces after an @@ command.

9.1.2 Inserting ‘{’ and ‘}’—@{ and @}
@{ stands for a single ‘{’ in either printed or Info output.

@} stands for a single ‘}’ in either printed or Info output.

Do not put braces after either an @{ or an @} command.

9.1.3 Spacing After Colons and Periods

Use the @: command after a period, question mark, exclamation mark, or colon that should
not be followed by extra space. For example, use @: after periods that end abbreviations
which are not at the ends of sentences. @: has no effect on the Info file output.

For example:

The U.S.A.@: is a continental nation.

produces

The U.S.A. is a continental nation.

70 Texinfo 2.10

Use @. instead of a period at the end of a sentence that ends with a single capital letter.
Otherwise, TEX will think the letter is an abbreviation and will not insert the correct
end-of-sentence spacing. Here is an example:

Give it to X. and to Y@. Give it to Z@.

Give it to X. and to Y. Give it to Z.

If you look carefully at this printed output, you will see a little more whitespace after the
Y in the first line than the Y in the second line.

Give it to X. and to Y. Give it to Z.
Give it to X. and to Y. Give it to Z.

In the Info file output, @. is equivalent to a simple ‘.’.

The meanings of @: and @. in Texinfo are designed to work well with the Emacs sentence
motion commands. This made it necessary for them to be incompatible with some other
formatting systems that use @-commands.

Do not put braces after either an @: or an @. command.

9.2 @dmn{dimension}: Format a Dimension

At times, you may want to write ‘12 pt’ or ‘8.5 in’ with little or no space between the
number and the abbreviation for the dimension. You can use the @dmn command to do
this. On seeing the command, TEX inserts just enough space for proper typesetting; the
Info formatting commands insert no space at all, since the Info file does not require it.

To use the @dmn command, write the number and then follow it immediately, with no
intervening space, by @dmn, and then by the dimension within braces.

For example,

A4 paper is 8.27@dmn{in} wide.

produces

A4 paper is 8.27 in wide.

Not everyone uses this style. Instead of ‘8.27 in’, you may write ‘8.27 in.’ or ‘8.27
inches’.

9.3 Inserting Ellipsis, Dots, and Bullets

An ellipsis (a line of dots) is typeset unlike a string of periods, so a special command is
used for ellipsis in Texinfo. The @bullet command is special, too. Each of these commands
is followed by a pair of braces, ‘{}’, without any whitespace between the name of the
command and the braces. (For an explanation of why the braces are needed, see Appendix F
[@-Command Syntax], page 155).

9.3.1 @dots{}
Use the @dots{} command to generate an ellipsis, which is three dots in a row, appropriately
spaced, like this: ‘. . . ’. Do not simply write three periods in the input file; that would work
for the Info file output, but would produce the wrong amount of space between the periods
in the printed manual.

Here is an ellipsis: . . .

Chapter 9: Special Insertions 71

Here are three periods in a row: ...

In printed output, the three periods in a row are closer together than the dots in the
ellipsis.

9.3.2 @bullet{}
Use the @bullet{} command to generate a large round dot, or the closest possible thing to
one. In Info, an asterisk is used.

Here is a bullet: •
When you use @bullet in @itemize, you do not need to type the braces, because

@itemize supplies them.

9.4 Inserting TEX and the Copyright Symbol

The logo TEX is typeset in a special fashion and it needs an @-command, as does the
command for inserting the copyright symbol. Each of these commands is followed by a pair
of braces, ‘{}’, without any whitespace between the name of the command and the braces.

9.4.1 @TeX{}
Use the @TeX{} command to generate ‘TEX’. In a printed manual, this is a special logo
that is different from three ordinary letters. In Info, it just looks like ‘TeX’. The @TeX{}

command is unique among Texinfo commands in that the T and the X are in upper case.

9.4.2 @copyright{}
Use the @copyright{} command to generate ‘ c©’. In a printed manual, this is a ‘c’ inside
a circle, and in Info, this is ‘(C)’.

9.5 @minus{}: Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a fixed-width font, this is a single
hyphen, but in a proportional font, the symbol is the customary length for a minus sign—a
little longer than a hyphen.

You can compare the two forms:

‘−’ is a minus sign generated with ‘@minus{}’,

‘-’ is a hyphen generated with the character ‘-’.

In the fixed-width font used by Info, @minus{} is the same as a hyphen.

You should not use @minus{} inside of @code or @example because the width distinction
is not made in the fixed-width font they use.

When you use @minus to specify the mark beginning each entry in an itemized list, you
do not need to type the braces.

73

10 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphs that
are set off from the bulk of the text and treated differently. They are usually indented.

In Texinfo, you always begin a quotation or example by writing an @-command at the
beginning of a line by itself, and end it by writing an @end command that is also at the
beginning of a line by itself. For instance, you begin an example by writing @example by
itself at the beginning of a line and end the example by writing @end example on a line by
at itself, at the beginning of that line.

10.1 The Various Block Enclosing Commands

There are a variety of commands for quotations and examples:

@quotation

Used to indicate text that is quoted. The text is filled, indented, and printed
in a roman font by default.

@example Used to illustrate code, commands, and the like. The text is printed in a fixed-
width font without filling.

@lisp Used to illustrate Lisp code. The text is printed in a fixed-width font without
filling.

@smallexample

Used to illustrate code, commands, and the like. The text is printed in a fixed-
width font without filling; for use with the @smallbook command.

@smalllisp

Used to illustrate Lisp code. The text is printed in a fixed-width font without
filling; for use with the @smallbook command.

@display Used for illustrative text. The text is indented but not filled, and no font is
specified (so, by default, the font is roman).

@format Used for illustrative text. The text is not indented and not filled and no font
is specified (so, by default, the font is roman).

The @exdent command is used within the above constructs to undo the indentation of
a line. The @flushleft and @flushright commands are used to line up the left or right
margins of unfilled text.

The @noindent command may be used after one of the above constructs to prevent the
following text from being indented as a new paragraph.

You can use the @cartouche command within one of the above constructs to highlight the
example or quotation by drawing a box with rounded corners around it. (The @cartouche
command affects only the printed manual; it has no effect in the Info file. See Section 10.11
[Drawing Cartouches Around Examples], page 78.)

74 Texinfo 2.10

10.2 @quotation

The text of a quotation is processed normally except that

• The margins are closer to the center of the page, so the whole of the quotation is
indented.

• The first lines of paragraphs are indented no more than the other lines.

• In the printed output, interline spacing and interparagraph spacing are reduced.

This is an example of text written between an @quotation command and an
@end quotation command. A @quotation command is most often used to
indicate text that is excerpted from another (real or hypothetical) printed work.

Write an @quotation command as text of a line by itself. This line will disappear from
the output. Mark the end of the quotation with a line beginning with and containing only
@end quotation. The @end quotation line will likewise disappear from the output. Thus,
the input

@quotation

This is

a foo.

@end quotation

produces

This is a foo.

10.3 @example

The @example command is used to indicate an example that is not part of the running text,
such as computer input or output.

This is an example of text written between an

@example command and an @end example

command. The text is indented but not filled.

In the printed manual, the text is typeset in a

fixed-width font, and extra spaces and blank lines are

significant. In the Info file, an analogous result is

obtained by indenting each line with five extra spaces.

Write an @example command at the beginning of and as the only text on a line by itself.
This line will disappear from the output. Mark the end of the example with a line beginning
with and containing only @end example. The @end example will likewise disappear from
the output. For example:

@example

mv foo bar

@end example

produces

mv foo bar

Since the lines containing @example and @end example will disappear, you should put a
blank line before the @example and another blank line after the @end example. (Remember

Chapter 10: Quotations and Examples 75

that blank lines between the beginning @example and the ending @end example will appear
in the output.)

Caution: Do not use tabs in lines of an example (or anywhere else in Texinfo,
for that matter)! TEX treats tabs like single spaces, and that is not what they
look like. This is a problem with TEX. (If necessary, in Emacs, you can use M-x
untabify to convert tabs in a region to multiple spaces.)

When you use @example to describe a C function’s calling conventions, use the ANSI C
syntax, like this:

void dld_init (char *@var{path});

And in the subsequent discussion, refer to the argument values by writing the same argument
names, again highlighted with @var.

Avoid the obsolete style that looks like this:

#include <dld.h>

dld_init (path)

char *path;

Also, it is best to avoid writing #include above the declaration just to indicate that
the function is declared in a header file. The practice may give the misimpression that the
#include belongs near the declaration of the function. Either state explicitly which header
file holds the declaration or, better yet, name the header file used for a group of functions
at the beginning of the section that describes the functions.

Examples are often, logically speaking, “in the middle” of a paragraph, and the text
continues after an example should not be indented. The @noindent command prevents a
piece of text from being indented as if it were a new paragraph.

(The @code command is used for examples of code that is embedded within sentences,
not set off from preceding and following text. See Section 8.1.1 [@code], page 62.)

10.4 @noindent

If you have text following an @example or other similar inclusion that reads as a continuation
of the text before the @example, it is good to prevent this text from being indented as a
new paragraph. To accomplish this, write @noindent at the beginning of a line by itself
preceding the continuation text. For example,

@example

This is an example

@end example

@noindent

This line will not be indented. As you can see, the

beginning of the line is fully flush left with the line

that follows after it. (This whole example is between

@display and @end display.)

produces

This is an example

76 Texinfo 2.10

This line will not be indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
@display and @end display.)

To adjust the number of blank lines properly in the Info file output, remember that
the line containing @noindent does not generate a blank line, and neither does the @end

example line.

In the Texinfo source file for this documentation, each of the lines that says ‘produces’
is preceded by a line containing @noindent.

Do not put braces after an @noindent command; they are not necessary, since @noindent
is a command used outside of paragraphs (see Appendix F [Command Syntax], page 155).

10.5 @lisp

The @lisp command is used for Lisp code. It is synonymous with the @example command.

This is an example of text written between an

@lisp command and an @end lisp command.

Use @lisp instead of @example so as to preserve information regarding the nature of the
example. This is useful, for example, if you write a function that evaluates only and all the
Lisp code in a Texinfo file. Then you can use the Texinfo file as a Lisp library.1

Mark the end of @lisp with @end lisp on a line by itself.

10.6 @smallexample and @smalllisp

In addition to the regular @example and @lisp commands, Texinfo has two other “example-
style” commands. These are the @smallexample and @smalllisp commands. Both these
commands are designed for use with the @smallbook command that causes TEX to produce
a printed manual in a 7 by 9.25 inch format rather than the regular 8.5 by 11 inch format.

In TEX, the @smallexample and @smalllisp commands are defined the same as the
@example and @lisp commands for 8.5 by 11 inch output and produce similar looking
output. But when TEX is preparing a manual in a 7 by 9.25 inch format, the text bounded
by @smallexample or @smalllisp commands is typeset in a smaller font than that used
for the ordinary examples.

In Info, the @smallexample and @smalllisp commands are equivalent to the @example
and @lisp commands.

Mark the end of @smallexample or @smalllisp with @end smallexample or @end

smalllisp, respectively.
This is an example of text written between @smallexample

and @end smallexample.

The @smallexample and @smalllisp commands make it easier to prepare smaller format
manuals without forcing you to edit examples by hand to fit them onto narrower pages.

1 It would be straightforward to extend Texinfo to work in a similar fashion for C, Fortran, or other
languages.

Chapter 10: Quotations and Examples 77

See Section 18.8 [Printing “Small” Books], page 116, for more information about the
@smallbook command.

10.7 @display

The @display command begins a kind of example. It is like the @example command except
that, in a printed manual, @display does not select the fixed-width font. In fact, it does
not specify the font at all, so that the text appears in the same font it would have appeared
in without the @display command.

This is an example of text written between an @display command
and an @end display command. The @display command
indents the text, but does not fill it.

10.8 @format

The @format command is similar to @example except that, in the printed manual, @format
does not select the fixed-width font and does not narrow the margins.

This is an example of text written between an @format command
and an @end format command.
The @format command does not fill the text.

10.9 @exdent: Undoing a Line’s Indentation

The @exdent command removes any indentation a line might have. The command is written
at the beginning of a line and applies only to the text that follows the command that is on
the same line. Don’t use braces around the text. In the printed manual, the text on the
@exdent line is printed in the roman font.

@exdent is usually used within examples. Thus,

@example

This line follows an @example command.

@exdent This line is exdented.

This line follows the exdented line.

The @end example comes on the next line.

@end example

produces

This line follows an @example command.

This line is exdented.
This line follows the exdented line.

The @end example comes on the next line.

In practice, the @exdent command is rarely used. Usually, you un-indent text by ending
the example and returning the page to its normal width.

10.10 @flushleft and @flushright

The @flushleft and @flushright commands line up the left or right ends of lines on the
left and right margins of a page, but do not fill the text. The commands are written on

78 Texinfo 2.10

lines of their own, without braces. The @flushleft and @flushright commands are ended
by @end flushleft and @end flushright commands on lines of their own.

For example,

@flushleft

This text is

written flushleft.

@end flushleft

produces

This text is
written flushleft.

Flushright produces the type of indentation often used in the return address of letters.

@flushright

Here is an example of text written

flushright. The @code{@flushright} command

right justifies every line but leaves the

left end ragged.

@end flushright

produces

Here is an example of text written
flushright. The @flushright command
right justifies every line but leaves the

left end ragged.

10.11 Drawing Cartouches Around Examples

In a printed manual, the @cartouche command draws a box with rounded corners around
its contents. You can use this command to further highlight an example or quotation.
For instance, you could write a manual in which one type of example is surrounded in a
cartouche to emphasize them.

The @cartouche command affects only the printed manual; it has no effect in the Info
file.

For example,

@example

@cartouche

% pwd

/usr/local/lib/emacs/info

@end cartouche

@end example

produces� �
% pwd

/usr/local/lib/emacs/info
 	

79

11 Special Glyphs for Examples

In Texinfo, code is often illustrated in examples that are delimited by @example and @end

example, or by @lisp and @end lisp. In such examples, you can indicate the results of
evaluation or an expansion using ‘⇒’ or ‘ 7→’. Likewise, there are special symbols to indicate
printed output, an error message, equivalence of expressions, and the location of point.

The special glyph commands do not have to be used within an example, but most often
they are. Every special glyph command is followed by a pair of left- and right-hand braces.

⇒ @result{} points to the result of an expression.

7→ @expansion{} shows the results of a macro expansion.

a @print{} indicates printed output.

error @error{} indicates that the following text is an error message.

≡ @equiv{} indicates the exact equivalence of two forms.

? @point{} shows the location of point.

11.1 ⇒: Indicating Evaluation

Use the @result{} command to indicate the result of evaluating an expression.

The @result{} command is displayed as ‘=>’ in Info and as ‘⇒’ in the printed output.

Thus, the following,

(cdr ’(1 2 3))

⇒ (2 3)

may be read as “(cdr ’(1 2 3)) evaluates to (2 3)”.

11.2 7→: Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the
result of the expansion with the @expansion{} command.

The @expansion{} command is displayed as ‘==>’ in Info and as ‘ 7→’ in the printed
output.

For example, the following

@lisp

(third ’(a b c))

@expansion{} (car (cdr (cdr ’(a b c))))

@result{} c

@end lisp

produces

(third ’(a b c))

7→ (car (cdr (cdr ’(a b c))))

⇒ c

which may be read as:

(third ’(a b c)) expands to (car (cdr (cdr ’(a b c)))); the result of eval-
uating the expression is c.

80 Texinfo 2.10

(Often, as in this case, an example looks better if the @expansion{} and @result{} com-
mands are indented five spaces.)

11.3 a : Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate the printed
output with the @print{} command.

The @print{} command is displayed as ‘-|’ in Info and as ‘ a ’ in the printed output.

In the following example, the printed text is indicated with ‘ a ’, and the the value of
the expression follows on the last line.

(progn (print ’foo) (print ’bar))

a foo

a bar

⇒ bar

In a Texinfo source file, this example is written as follows:

@lisp

(progn (print ’foo) (print ’bar))

@print{} foo

@print{} bar

@result{} bar

@end lisp

11.4 error : Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the error
message with the @error{} command.

The @error{} command is displayed as ‘error-->’ in Info and as ‘ error ’ in the printed
output.

Thus,

@lisp

(+ 23 ’x)

@error{} Wrong type argument: integer-or-marker-p, x

@end lisp

produces

(+ 23 ’x)

error Wrong type argument: integer-or-marker-p, x

This indicates that the following error message is printed when you evaluate the expression:

Wrong type argument: integer-or-marker-p, x

Note that ‘ error ’ itself is not part of the error message.

11.5 ≡ : Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence
of two forms with the @equiv{} command.

The @equiv{} command is displayed as ‘==’ in Info and as ‘≡ ’ in the printed output.

Chapter 11: Special Glyphs for Examples 81

Thus,

@lisp

(make-sparse-keymap) @equiv{} (list ’keymap)

@end lisp

produces

(make-sparse-keymap) ≡ (list ’keymap)

This indicates that evaluating (make-sparse-keymap) produces identical results to evalu-
ating (list ’keymap).

11.6 Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples, the
convention is to include the entire contents of the buffer in question between two lines of
dashes containing the buffer name.

You can use the ‘@point{}’ command to show the location of point in the text in the
buffer. (The symbol for point, of course, is not part of the text in the buffer; it indicates
the place between two characters where point is located.)

The @point{} command is displayed as ‘-!-’ in Info and as ‘?’ in the printed output.

The following example shows the contents of buffer foo before and after evaluating a
Lisp command to insert the word changed.

---------- Buffer: foo ----------

This is the ?contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

⇒ nil

---------- Buffer: foo ----------

This is the changed ?contents of foo.

---------- Buffer: foo ----------

In a Texinfo source file, the example is written like this:

@example

---------- Buffer: foo ----------

This is the @point{}contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

@result{} nil

---------- Buffer: foo ----------

This is the changed @point{}contents of foo.

---------- Buffer: foo ----------

@end example

83

12 Making Lists and Tables

Texinfo has several ways of making lists and two-column tables. Lists can be bulleted or
numbered, while two-column tables can highlight the items in the first column.

Texinfo automatically indents the text in lists or tables and numbers an enumerated
list. This last feature is useful if you modify the list, since you do not have to renumber it
yourself.

Numbered lists and tables begin with the appropriate @-command at the beginning of
a line, and end with the corresponding @end command on a line by itself. The table and
itemized-list commands also require that you write formatting information on the same line
as the beginning @-command.

Begin an enumerated list, for example, with an @enumerate command and end the list
with an @end enumerate command. Begin an itemized list with an @itemize command,
followed on the same line by a formatting command such as @bullet, and end the list with
an @end itemize command.

Precede each element of a list with an @item command.

Here is an itemized list of the different kinds of table and lists:

• Itemized lists with and without bullets.

• Numbered lists.

• Two-column tables with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.

2. Numbered lists.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:

@itemize Itemized lists with and without bullets.

@enumerate

Numbered lists.

@table

@ftable Two-column tables with highlighting.

12.1 Making an Itemized List

The @itemize command is used to produce sequences of indented paragraphs, with marks
inside the left margin at the beginning of paragraphs for which a mark is desired.

Begin an itemized list by writing @itemize at the beginning of a line. Follow the
command, on the same line, with a character or a Texinfo command that generates a mark.
Usually, you will write @bullet after @itemize, but you can use @minus, or any character
or any special symbol that results in a single character in the Info file. (When you write
@bullet or @minus after an @itemize command, you may omit the ‘{}’.)

Write the text of the indented paragraphs themselves after the @itemize, up to another
line that says @end itemize.

84 Texinfo 2.10

Before each paragraph for which a mark in the margin is desired, place a line that says
just @item. Don’t put any other text on this line.

Usually, you should put a blank line before an @item. This puts a blank line in the Info
file. (TEX inserts the proper interline whitespace in either case.) Except when the entries
are very brief, these blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it produces. Note
that @bullet produces a ‘*’ in Info and a round dot in TEX.

@itemize @bullet

@item

Some text for foo.

@item

Some text

for bar.

@end itemize

produces

• Some text for foo.

• Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked with
dashes embedded in a list marked with bullets:

@itemize @bullet

@item

First item.

@itemize @minus

@item

Inner item.

@item

Second inner item.

@end itemize

@item

Second outer item.

@end itemize

produces

• First item.

− Inner item.

− Second inner item.

• Second outer item.

Chapter 12: Making Lists and Tables 85

12.2 Making a Numbered List

@enumerate is like @itemize except that the marks in the left margin contain successive
integers starting with 1. (See Section 12.1 [@itemize], page 83.) Do not put any argument
on the same line as @enumerate.

Normally, you should put a blank line between the entries in the list. This generally
makes it easier to read the Info file.

@enumerate

@item

Some text for foo.

@item

Some text

for bar.

@end enumerate

produces

1. Some text for foo.

2. Some text for bar.

12.3 Making a Two-column Table

@table is similar to @itemize, but the command allows you to specify a name or heading
line for each item. (See Section 12.1 [@itemize], page 83.) The @table command is used to
produce two-column tables, and is especially useful for glossaries and explanatory exhibits.

Write the @table command at the beginning of a line and follow it on the same line by
an argument that is a Texinfo command such as @code, @samp, @var, or @kbd. Also, you
may use the @asis command. Although these commands are usually followed by arguments
in braces, in this case you use the command name without an argument because @item will
supply the argument. This command will be applied to the text that goes into the first
column of each item and determines how it will be highlighted. For example, @samp will
cause the text in the first column to be highlighted with an @samp command.

@asis is a command that does nothing; if you write this command after @table, TEX and
the Info formatting commands output the first column entries without added highlighting,
(‘as is’).

(The @table command may work with other commands besides those listed here. You
can experiment. However, you can only use commands that normally take arguments in
braces.)

Begin each table entry with an @item command at the beginning of a line. Write the
first column text on the same line as the @item command. Write the second column text on
the line following the @item line and on subsequent lines. (You don’t have to type anything
for an empty second column entry.) You may write as many lines of supporting text as you
wish, even several paragraphs. But only text on the same line as the @item will be placed
in the first column.

The following table, for example, highlights the text in the first column with an @samp

command:

@table @samp

86 Texinfo 2.10

@item foo

This is the text for

@samp{foo}.

@item bar

Text for @samp{bar}.

@end table

produces

‘foo’ This is the text for ‘foo’.

‘bar’ Text for ‘bar’.

If you want to list two or more named items with a single block of text, use the @itemx
command. (See Section 12.3.2 [@itemx], page 86.)

12.3.1 @ftable

The @ftable command is the same as the @table command except that it automatically
enters each of the items in the first column of the table into the index of functions, which
makes it easier to create indices. Only the items on the same line as the @item commands
are indexed, and they are indexed in exactly the form that they appear on that line. See
Chapter 15 [Creating Indices], page 101, for more information about indices.

Begin a two columns table using @ftable by writing @ftable at the beginning of a line,
followed on the same line by an argument that is a Texinfo command such as @code, exactly
as you would for an @table command; and end the table with an @end ftable command
on a line by itself.

12.3.2 @itemx

Use the @itemx command inside a table when you have two or more first column entries
for the same item, each of which should appear on a line of its own. Use @itemx for all
but the first entry. The @itemx command works exactly like @item except that it does not
generate extra vertical space above the first column text. For example,

@table @code

@item upcase

@itemx downcase

These two functions accept a character or a string as

argument, and return the corresponding upper case (lower

case) character or string.@refill

@end table

produces

upcase

downcase These two functions accept a character or a string as argument,
and return the corresponding upper case (lower case) character or
string.

(Note also that this example illustrates multi-line supporting text in a two-column table.)

87

13 Definition Commands: @deffn, etc.

The @deffn command and the other definition commands enable you to describe functions,
variables, macros, commands, user options, special forms and other such artifacts in a
uniform format.

In the Info file, a definition causes the category entity—‘Function’, ‘Variable’, or
whatever—to appear at the beginning of the first line of the definition, followed by the
entity’s name and arguments. In the printed manual, the command causes TEX to print
the entity’s name and its arguments on the left margin and print the category next to the
right margin. In both output formats, the body of the definition is indented. Also, the
name of the entity is entered into the appropriate index: @deffn enters the name into the
index of functions, @defvr enters it into the index of variables, and so on.

13.1 The Template for a Definition

The @deffn command is used for definitions of entities that resemble functions. To write
a definition using the @deffn command, write the @deffn command at the beginning of
a line and follow it on the same line by the category of the entity, the name of the entity
itself, and its arguments (if any). Then write the body of the definition on succeeding lines.
(You may embed examples in the body.) Finally, end the definition with an @end deffn

command written on a line of its own. (The other definition commands follow the same
format.)

The template for a definition looks like this:

@deffn category name arguments...

body-of-definition

@end deffn

For example,

@deffn Command forward-word count

This command moves point forward @var{count} words

(or backward if @var{count} is negative). ...

@end deffn

produces

[Command]forward-word count
This function moves point forward count words (or backward if count is
negative). . . .

Capitalize the category name like a title. If the name of the category contains spaces,
as in the phrase ‘Interactive Command’, write braces around it. For example,

@deffn {Interactive Command} isearch-forward

...

@end deffn

Otherwise, the second word will be mistaken for the name of the entity.

Some of the definition commands are more general than others. The @deffn command,
for example, is the general definition command for functions and the like—for entities that
may take arguments. When you use this command, you specify the category to which the

88 Texinfo 2.10

entity belongs. The @deffn command possesses three predefined, specialized variations,
@defun, @defmac, and @defspec, that specify the category for you: “Function”, “Macro”,
and “Special Form” respectively. The @defvr command also is accompanied by several
predefined, specialized variations for describing particular kinds of variables.

The template for a specialized definition, such as @defun, is similar to the template for
a generalized definition, except that you don’t have to specify the category:

@defun name arguments...

body-of-definition

@end defun

Thus,

@defun buffer-end flag

This function returns @code{(point-min)} if @var{flag}

is less than 1, @code{(point-max)} otherwise.

...

@end defun

produces

[Function]buffer-end flag
This function returns (point-min) if flag is less than 1, (point-max)
otherwise. . . .

See Section 13.5 [A Sample Function Definition], page 96, for a more detailed example of a
function definition, including the use of @example inside of the definition.

The other specialized commands work like @defun.

13.2 Optional and Repeated Parameters

Some entities take optional or repeated parameters, which may be specified by a distinctive
special glyph that uses square brackets and ellipses. For example, a special form often breaks
its argument list into separate arguments in more complicated ways than a straightforward
function.

An argument enclosed within square brackets is optional. Thus, the phrase ‘[optional-
arg]’ means that optional-arg is optional. An argument followed by an ellipsis is optional
and may be repeated more than once. Thus, ‘repeated-args...’ stands for zero or more
arguments. Parentheses are used when several arguments are grouped into additional levels
of list structure in Lisp.

Here is the @defspec line of an example of an imaginary special form:

[Special Form]foobar (var [from to [inc]]) body. . .

In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. These arguments are
grouped with the argument var into a list, to distinguish them from body, which includes
all remaining elements of the form.

In a Texinfo source file, this @defspec line is written like this (except it would not be
split over two lines, as it is in this example).

@defspec foobar (@var{var} [@var{from} @var{to}

[@var{inc}]]) @var{body}@dots{}

Chapter 13: Definition Commands: @deffn, etc. 89

The function is listed in the Command and Variable Index under ‘foobar’.

13.3 The Definition Commands

Texinfo provides more than a dozen definition commands, all of which are described in this
section.

The definition commands automatically enter the name of the entity in the appropriate
index: for example, @deffn, @defun, and @defmac enter function names in the index of
functions; @defvr and @defvar enter variable names in the index of variables.

Although the examples that follow mostly illustrate Lisp, the commands can be used for
other programming languages.

13.3.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities.

@deffn category name arguments...

The @deffn command is the general definition command for functions, interac-
tive commands, and similar entities that may take arguments. You must choose
a term to describe the category of entity being defined; for example, “Function”
could be used if the entity is a function. The @deffn command is written at the
beginning of a line and is followed on the same line by the category of entity
being described, the name of this particular entity, and its arguments, if any.
Terminate the definition with @end deffn on a line of its own.

For example,

@deffn Command forward-char nchars

Move point forward @var{nchars} characters.

@end deffn

shows a rather terse definition for a “command” named forward-char with
one argument, nchars.

@deffn prints argument names such as nchars in italics or upper case, as if @var
had been used, because we think of these names as metasyntactic variables—
they stand for the actual argument values. Within the text of the description,
write an argument name explicitly with @var to refer to the value of the argu-
ment. In the example above, we used ‘@var{nchars}’ in this way.

The template for @deffn is:

@deffn category name arguments...

body-of-definition

@end deffn

@defun name arguments...

The @defun command is the definition command for functions. @defun is equiv-
alent to ‘@deffn Function ...’.

For example,

@defun set symbol new-value

Change the value of the symbol symbol to new-value.

@end defun

90 Texinfo 2.10

shows a rather terse definition for a function set whose arguments are symbol
and new-value. The argument names on the @defun line automatically appear
in italics or upper case as if they were enclosed in @var. Terminate the definition
with @end defun on a line of its own.

The template is:

@defun function-name arguments...

body-of-definition

@end defun

@defun creates an entry in the index of functions.

@defmac name arguments...

The @defmac command is the definition command for macros. @defmac is
equivalent to ‘@deffn Macro ...’ and works like @defun.

@defspec name arguments...

The @defspec command is the definition command for special forms. (In Lisp,
a special form is an entity much like a function.) @defspec is equivalent to
‘@deffn {Special Form} ...’ and works like @defun.

13.3.2 Variables and Similar Entities

Here are the commands for defining variables and similar entities:

@defvr category name

The @defvr command is a general definition command for something like a
variable—an entity that records a value. You must choose a term to describe
the category of entity being defined; for example, “Variable” could be used if
the entity is a variable. Write the @defvr command at the beginning of a line
and followed it on the same line by the category of the entity and the name of
the entity.

Capitalize the category name like a title. If the name of the category contains
spaces, as in the name ‘User Option’, write braces around it. Otherwise, the
second word will be mistaken for the name of the entity. For example,

@defvr {User Option} fill-column

This buffer-local variable specifies

the maximum width of filled lines.

...

@end defvr

Terminate the definition with @end defvr on a line of its own.

The template is:

@defvr category name

body-of-definition

@end defvr

@defvr creates an entry in the index of variables for name.

@defvar name

The @defvar command is the definition command for variables. @defvar is
equivalent to ‘@defvr Variable ...’.

Chapter 13: Definition Commands: @deffn, etc. 91

For example,

@defvar kill-ring

...

@end defvar

The template is:

@defvar name

body-of-definition

@end defvar

@defvar creates an entry in the index of variables for name.

@defopt name

The @defopt command is the definition command for user options. @defopt is
equivalent to ‘@defvr {User Option} ...’ and works like @defvar.

13.3.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in C or any other
language in which you must declare types of variables and functions.

@deftypefn category data-type name arguments...

The @deftypefn command is the general definition command for functions and
similar entities that may take arguments and that are typed. The @deftypefn
command is written at the beginning of a line and is followed on the same line
by the category of entity being described, the type of the returned value, the
name of this particular entity, and its arguments, if any.

For example,

@deftypefn {Library Function} int foobar (int @var{foo},

float @var{bar})

...

@end deftypefn

(where the text before the “. . . ”, shown above as two lines, would actually be
a single line in a real Texinfo file) produces the following in Info:

-- Library Function: int foobar (int FOO, float BAR)

...

In a printed manual, it produces:

[Library Function]int foobar (int foo, float bar)
. . .

This means that foobar is a “library function” that returns an int, and its
arguments are foo (an int) and bar (a float).

The argument names that you write in @deftypefn are not subject to an im-
plicit @var—since the actual names of the arguments in @deftypefn are typi-
cally scattered among data type names and keywords, Texinfo can’t find them
without help. Instead, you must write @var explicitly around the argument
names. In the example above, the argument names are ‘foo’ and ‘bar’.

92 Texinfo 2.10

The template for @deftypefn is:
@deftypefn category data-type name arguments ...

body-of-description

@end deftypefn

Note that if the category or data type is more than one word then it must be
enclosed in braces to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada,
you might consider using @deftypefn in a manner somewhat contrary to the
convention described in the preceding paragraphs.

For example:

@deftypefn stacks private push (@var{s}:in out stack;

@var{n}:in integer)

...

@end deftypefn

(The @deftypefn arguments are shown split into two lines, but would be a
single line in a real Texinfo file.)

In this instance, the procedure is classified as belonging to the package stacks
rather than classified as a ‘procedure’ and its data type is described as private.
(The name of the procedure is push, and its arguments are s and n.)

@deftypefn creates an entry in the index of functions for name.

@deftypefun data-type name arguments...

The @deftypefun command is the specialized definition command for functions
in typed languages. The command is equivalent to ‘@deftypefn Function ...’.

@deftypefun int foobar (int @var{foo}, float @var{bar})

...

@end deftypefun

produces the following in Info:

-- Function: int foobar (int FOO, float BAR)

...

and the following in a printed manual:

[Function]int foobar (int foo, float bar)
. . .

The template is:

@deftypefun type name arguments...

body-of-description

@end deftypefun

@deftypefun creates an entry in the index of functions for name.

13.3.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed lan-
guages. See Section 13.3.3 [Typed Functions], page 91. The general definition com-
mand @deftypevr corresponds to @deftypefn and the specialized definition command
@deftypevar corresponds to @deftypefun.

Chapter 13: Definition Commands: @deffn, etc. 93

@deftypevr category data-type name

The @deftypevr command is the general definition command for something
like a variable in a typed language—an entity that records a value. You must
choose a term to describe the category of the entity being defined; for example,
“Variable” could be used if the entity is a variable.

The @deftypevr command is written at the beginning of a line and is followed
on the same line by the category of the entity being described, the data type,
and the name of this particular entity.

For example:

@deftypevr {Global Flag} int enable

...

@end deftypevr

produces the following in Info:

-- Global Flag: int enable

...

and the following in a printed manual:

[Global Flag]int enable
. . .

The template is:

@deftypevr category data-type name

body-of-description

@end deftypevr

@deftypevr creates an entry in the index of variables for name.

@deftypevar data-type name

The @deftypevar command is the specialized definition command for variables
in typed languages. @deftypevar is equivalent to ‘@deftypevr Variable ...’.

For example,

@deftypevar int foobar

...

@end deftypevar

produces the following in Info:

-- Variable: int foobar

...

and the following in a printed manual:

[Variable]int foobar
. . .

The template is:

@deftypevar data-type name

body-of-description

@end deftypevar

@deftypevar creates an entry in the index of variables for name.

94 Texinfo 2.10

13.3.5 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such as are used
in object-oriented programming. A class is a defined type of abstact object. An instance
of a class is a particular object that has the type of the class. An instance variable is a
variable that belongs to the class but for which each instance has its own value.

In a definition, if the name of a class is truly a name defined in the programming system
for a class, then you should write an @code around it. Otherwise, it is printed in the usual
text font.

@defcv category class name

The @defcv command is the general definition command for variables associated
with classes in object-oriented programming. The @defcv command is followed
by three arguments: the category of thing being defined, the class to which it
belongs, and its name.

Thus,

@defcv {Class Option} Window border-pattern

...

@end defcv

illustrates how you would write the first line of a definition of the
border-pattern class option of the class Window.

The template is

@defcv category class name

...

@end defcv

@defcv creates an entry in the index of variables.

@defivar class name

The @defivar command is the definition command for instance variables in
object-oriented programming. @defivar is equivalent to ‘@defcv {Instance

Variable} ...’

The template is:

@defivar class instance-variable-name

body-of-definition

@end defivar

@defivar creates an entry in the index of variables.

@defop category class name arguments...

The @defop command is the general definition command for entities that may
resemble methods in object-oriented programming. These entities take argu-
ments, as functions do, but are associated with particular classes of objects.

For example, some systems have constructs called wrappers that are associated
with classes as methods are, but that act more like macros than like functions.
You could use @defop Wrapper to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of
an operation as the specification for a method. Thus, a window system might
specify that all window classes have a method named expose; we would say

Chapter 13: Definition Commands: @deffn, etc. 95

that this window system defines an expose operation on windows in general.
Typically, the operation has a name and also specifies the pattern of arguments;
all methods that implement the operation must accept the same arguments,
since applications that use the operation do so without knowing which method
will implement it.

Often it makes more sense to document operations than methods. For example,
window application developers need to know about the expose operation, but
need not be concerned with whether a given class of windows has its own method
to implement this operation. To describe this operation, you would write:

@defop Operation windows expose

The @defop command is written at the beginning of a line and is followed on
the same line by the overall name of the category of operation, the name of the
class of the operation, the name of the operation, and its arguments, if any.

The template is:

@defop category class name arguments...

body-of-definition

@end defop

@defop creates an entry, such as ‘expose on windows’, in the index of functions.

@defmethod class name arguments...

The @defmethod command is the definition command for methods in object-
oriented programming. A method is a kind of function that implements an
operation for a particular class of objects and its subclasses. In the Lisp Ma-
chine, methods actually were functions, but they were usually defined with
defmethod.

@defmethod is equivalent to ‘@defop Method ...’. The command is written at
the beginning of a line and is followed by the name of the class of the method,
the name of the method, and its arguments, if any.

For example,

@defmethod bar-class bar-method argument

...

@end defmethod

illustrates the definition for a method called bar-method of the class bar-class.
The method takes an argument.

The template is:

@defmethod class method-name arguments...

body-of-definition

@end defmethod

@defmethod creates an entry, such as ‘bar-method on bar-class’, in the index
of functions.

13.3.6 Data Types

Here is the command for data types:

96 Texinfo 2.10

@deftp category name attributes...

The @deftp command is the generic definition command for data types. The
command is written at the beginning of a line and is followed on the same line
by the category, by the name of the type (which is a word like int or float,
and then by names of attributes of objects of that type. Thus, you could use
this command for describing int or float, in which case you could use data

type as the category. (A data type is a category of certain objects for purposes
of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that
type has two slots called the car and the cdr. Here is how you would write
the first line of a definition of pair.

@deftp {Data type} pair car cdr

...

@end deftp

The template is:

@deftp category name-of-type attributes...

body-of-definition

@end deftp

@deftp creates an entry in the index of data types.

13.4 Conventions for Writing Definitions

When you write a definition using @deffn, @defun, or one of the other definition commands,
please take care to use arguments that indicate the meaning, as with the count argument
to the forward-word function. Also, if the name of an argument contains the name of a
type, such as integer, take care that the argument actually is of that type.

13.5 A Sample Function Definition

A function definition uses the @defun and @end defun commands. The name of the function
follows immediately after the @defun command and it is followed, on the same line, by the
parameter list.

Here is a definition from The GNU Emacs Lisp Reference Manual. (See Section “Calling
Functions” in The GNU Emacs Lisp Reference Manual.)

[Function]apply function &rest arguments
apply calls function with arguments, just like funcall but with one dif-
ference: the last of arguments is a list of arguments to give to function,
rather than a single argument. We also say that this list is appended to
the other arguments.

apply returns the result of calling function. As with funcall, function
must either be a Lisp function or a primitive function; special forms and
macros do not make sense in apply.

(setq f ’list)

⇒ list

(apply f ’x ’y ’z)

Chapter 13: Definition Commands: @deffn, etc. 97

error Wrong type argument: listp, z

(apply ’+ 1 2 ’(3 4))

⇒ 10

(apply ’+ ’(1 2 3 4))

⇒ 10

(apply ’append ’((a b c) nil (x y z) nil))

⇒ (a b c x y z)

An interesting example of using apply is found in the description of
mapcar.

In the Texinfo source file, this example looks like this:

@defun apply function &rest arguments

@code{apply} calls @var{function} with @var{arguments}, just like

@code{funcall} but with one difference: the last of @var{arguments} is a

list of arguments to give to @var{function}, rather than a single

argument. We also say that this list is @dfn{appended} to the other

arguments.

@code{apply} returns the result of calling @var{function}. As with

@code{funcall}, @var{function} must either be a Lisp function or a

primitive function; special forms and macros do not make sense in

@code{apply}.

@example

(setq f ’list)

@result{} list

(apply f ’x ’y ’z)

@error{} Wrong type argument: listp, z

(apply ’+ 1 2 ’(3 4))

@result{} 10

(apply ’+ ’(1 2 3 4))

@result{} 10

(apply ’append ’((a b c) nil (x y z) nil))

@result{} (a b c x y z)

@end example

An interesting example of using @code{apply} is found in the description

of @code{mapcar}.@refill

@end defun

In this manual, this function is listed in the Command and Variable Index under apply.

Ordinary variables and user options are described using a format like that for functions
except that variables do not take arguments.

99

14 Footnotes

A footnote is for a reference that documents or elucidates the primary text.1

In Texinfo, footnotes are created with the @footnote command. This command is
followed immediately by a left brace, then by the text of the footnote, and then by a
terminating right brace. The template is: @footnote{text}.

Footnotes may be of any length, but are usually short.

For example, this clause is followed by a sample footnote2; in the Texinfo source, it looks
like this:

...a sample footnote @footnote{Here is the sample

footnote.}; in the Texinfo source...

In a printed manual or book, the reference mark for a footnote is a small, superscripted
number; the text of the footnote is written at the bottom of the page, below a horizontal
line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote
number between them, like this: ‘(1)’.

Info has two footnote styles, which determine where the text of the footnote is located:

• In the end of node style, all the footnotes for a single node are placed at the end of that
node. The footnotes are separated from the rest of the node by a line of dashes with
the word ‘Footnotes’ within it. Each footnote begins with an ‘(n)’ reference mark.

Here is an example of a single footnote in the end of node style:

--------- Footnotes ---------

(1) Here is a sample footnote.

• In the separate style, all the footnotes for a single node are placed in an automatically
constructed node of their own. In this style, a “footnote reference” follows each ‘(n)’
reference mark in the body of the node. The footnote reference is actually a cross
reference and you use it to reach the footnote node.

The name of the footnotes’ node is constructed by appending ‘-Footnotes’ to the
name of the node that contains the footnotes. (Consequently, the footnotes’ node for
the Footnotes node is Footnotes-Footnotes!) The footnotes’ node has an ‘Up’ node
pointer that leads back to its parent node.

Here is how the first footnote in this manual looks after being formatted for Info in the
separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) Note that the first syllable of "texinfo" is pronounced like

"speck", not "hex". ...

A Texinfo file may be formatted into an Info file with either footnote style.

1 A footnote should complement or expand upon the primary text, but a reader should not need to read
a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style, which is published by the University of Chicago Press.

2 Here is the sample footnote.

100 Texinfo 2.10

Use the @footnotestyle command to specify an Info file’s footnote style. Write this
command at the beginning of a line followed by an argument, either ‘end’ for the end node
style or ‘separate’ for the separate node style. For example:

@footnotestyle end

or

@footnotestyle separate

Write an @footnotestyle command before or shortly after the end of header line at the
beginning of a Texinfo file. (If you include the @footnotestyle command between the start
of header and end of header lines, the region formatting commands will format footnotes
as specified.)

If you do not specify a footnote style, the formatting commands will chose a default
style.

This chapter contains two footnotes.

101

15 Creating Indices

Using Texinfo, you can generate indices without having to sort and collate entries manually.
In an index, the entries are listed in alphabetical order, together with information on how
to find the discussion of each entry. In a printed manual, this information consists of page
numbers. In an Info file, this information is a menu item leading to the first node referenced.

Texinfo provides several predefined kinds of index: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other
than their canonical purpose. If you wish, you can define your own indices.

15.1 Making Index Entries

When you are making index entries, it is good practice to think of the different ways people
may look for something. Different people do not think of the same words when they look
something up. A helpful index will have items indexed under all the different words that
people may use. For example, someone might think it obvious that the two-letter names
for indices should be listed under “Indices, two-letter names”, since the word “Index” is
the general concept. But another reader may remember the specific concept of two-letter
names and search for the entry listed as “Two letter names for indices”. A good index will
have both entries and will help both kinds of user.

Like typesetting, the construction of an index is a highly skilled, professional art, the
subtleties of which are not appreciated until you have to do it yourself.

See Section 4.1 [Printing an Index and Generating Index Menus], page 37, for information
about printing an index at the end of a book or creating an index menu in an Info file.

15.2 Predefined Indices

Texinfo provides six predefined indices:

• A concept index listing concepts that are discussed.

• A function index listing functions (such as, entry points of libraries).

• A variables index listing variables (such as, global variables of libraries).

• A keystroke index listing keyboard commands.

• A program index listing names of programs.

• A data type index listing data types (such as, structures defined in header files).

Not every manual needs all of these. This manual has two indices: a concept index and an
@-command index (that is actually the function index but is called a command index in
the chapter heading). Two or more indices can be combined into one using the @synindex
or @syncodeindex commands. See Section 15.4 [Combining Indices], page 103.

15.3 Defining the Entries of an Index

The data to make an index comes from many individual indexing commands scattered
throughout the Texinfo source file. Each command says to add one entry to a particular
index; after processing, it will give the current page number or node name as the reference.

An index entry consists of an indexing command at the beginning of a line followed, on
the rest of the line, by the entry.

102 Texinfo 2.10

For example, this section begins with the following five entries for the concept index:

@cindex Defining indexing entries

@cindex Index entries

@cindex Entries for an index

@cindex Specifying index entries

@cindex Creating index entries

Each predefined index has its own indexing command—@cindex for the concept index,
@findex for the function index, and so on.

The usual convention is to capitalize the first word of each index entry, unless that word
is the name of a function, variable, or other such entitity that should not be capitalized.
Thus, if you are documenting Emacs Lisp, your concept index entries are usually capitalized,
but not your function index entries. However, if your concept index entries are consistently
short (one or two words each) it may look better for each regular entry to start with a lower
case letter. Which ever convention you adapt, please be consistent!

By default, entries for a concept index are printed in a small roman font and entries for
the other indices are printed in a small @code font. You may change the way part of an
entry is printed with the usual Texinfo commands, such as @file for file names and @emph

for emphasis (see Chapter 8 [Marking Text], page 61).

The six indexing commands for predefined indices are:

@cindex concept

Make an entry in the concept index for concept.

@findex function

Make an entry in the function index for function.

@vindex variable

Make an entry in the variable index for variable.

@kindex key

Make an entry in the key index for key.

@pindex program

Make an entry in the program index for program.

@tindex data type

Make an entry in the data type index for data type.

Caution: Do not use a colon in an index entry. In Info, a colon separates
the menu item name from the node name. An extra colon confuses Info. See
Section 6.4.1 [Writing a Menu Item], page 50, for more information about the
structure of a menu entry.

If the same name is indexed on several pages, all the pages are listed in the printed
manual’s index. However, only the first node referenced will appear in the index of an Info
file. This means that it is best to write indices in which each entry will refer to only one
place in the Texinfo file. Fortunately, this constraint is a feature rather than a loss since
it means that the index will be easy to use. Otherwise, it can be easy to create an index
which has many pages listed for an entry and you don’t know which one you need. If you
have two entries for one topic, change the topics slightly, or qualify them to indicate the
difference.

Chapter 15: Creating Indices 103

You are not actually required to use the predefined indices for their canonical purposes.
For example, suppose you wish to index some C preprocessor macros. You could put them
in the function index along with actual functions, just by writing @findex commands for
them; then, when you print the “function index” as an unnumbered chapter, you could give
it the title ‘Function and Macro Index’ and all will be consistent for the reader. Or you
could put the macros in with the data types by writing @tindex commands for them, and
give that index a suitable title so the reader will understand. (See Section 4.1 [Printing
Indices & Menus], page 37.)

15.4 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and concepts,
perhaps because you have few enough of one of them that a separate index for them would
look silly.

You could put functions into the concept index by writing @cindex commands for them
instead of @findex commands, and produce a consistent manual by printing the concept
index with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at
all; but this is not a robust procedure. It works only if your document is never included
in part of or together with another document that is designed to have a separate function
index; if your document were to be included with such a document, the functions from your
document and those from the other would not end up together. Also, to make your function
names appear in the right font in the concept index, you would have to enclose every one
of them between @code and @end code.

What you should do instead when you want functions and concepts in one index is to
index the functions with @findex as they should be, but use the @syncodeindex command
to redirect these @findex commands to the concept index.

The @syncodeindex command takes two arguments: the name of an index to redirect,
and the name of an index to redirect it to:

@syncodeindex from to

For this purpose, the indices are given two-letter names:

‘cp’ the concept index

‘vr’ the variable index

‘fn’ the function index

‘ky’ the key index

‘pg’ the program index

‘tp’ the data type index

Write an @syncodeindex command before or shortly after the end of header line at the
beginning of a Texinfo file. For example, to merge a function index with a concept index,
write the following:

@syncodeindex fn cp

This will cause all entries designated for the function index to go to the concept index
instead.

104 Texinfo 2.10

The @syncodeindex command puts all the entries from the redirected index into the
@code font, overriding whatever default font is used by the index to which the entries are
redirected. This way, if you redirect function names from a function index into a concept
index, all the function names are printed the @code font as you would expect.

The @synindex command is nearly the same as the @syncodeindex command, except
that it does not put the redirected index into the @code font, but puts it in the roman font.

See Section 4.1 [Printing an Index and Generating Index Menus], page 37, for information
about printing an index at the end of a book or creating an index menu in an Info file.

15.5 Defining New Indices

In addition to the predefined indices, you may use the @defindex and @defcodeindex

commands to define new indices. These commands create new indexing @-commands with
which you mark index entries. The @defindex command is used like this:

@defindex name

The name of an index should be a two letter word, such as ‘au’. For example,

@defindex au

This defines a new index, called the ‘au’ index. At the same time, it creates a new
indexing command, @auindex, that you can use to make index entries. Use the new indexing
command just as you would use a predefined indexing command.

For example, here is a section heading followed by a concept index entry and two ‘au’
index entries.

@section Cognitive Semantics

@cindex kinesthetic image schemas

@auindex Johnson, Mark

@auindex Lakoff, George

(Evidently, ‘au’ serves here as a abbreviation for “author”.) Texinfo constructs the new
indexing command by concatenating the name of the index with ‘index’; thus, defining an
‘au’ index leads to the automatic creation of an @auindex command.

Use the @printindex command to print the index, as you do with the predefined indices.
For example,

@node Author Index, Subject Index, , Top

@unnumbered Author Index

@printindex au

The @defcodeindex is like the @defindex command, except that in the printed output,
it prints entries in an @code font, like the @findex command, rather than in a roman font,
like the @cindex command.

You should define new indices within or right after the end-of-header line of a Texinfo
file, before any @synindex or @syncodeindex commands (see Section 3.2 [Header], page 24).

105

16 Making and Preventing Breaks

Usually, a Texinfo file is processed both by TEX and by one of the Info formatting commands.
Sometimes line, paragraph, or page breaks occur in the ‘wrong’ place in one or other form
of output. You must ensure that text looks right both in the printed manual and in the
Info file.

For example, in a printed manual, page breaks may occur awkwardly in the middle of
an example; to prevent this, you can hold text together using a grouping command that
keeps the text from being split across two pages. Conversely, you may want to force a page
break where none would occur normally. Fortunately, problems like these do not often arise.
When they do, use the following commands.

The break commands create line and paragraph breaks:

@* Force a line break.

@sp n Skip n blank lines.

The line-break-prevention command holds text together all on one line.

@w{text} Prevent text from being split across two lines.

The pagination commands apply only to printed output, since Info files do not have
pages.

@page Start a new page in the printed manual.

@group Hold text together that must appear on one printed page.

@need mils

Start a new printed page if not enough space on this one.

16.1 @*: Generate Line Breaks

The @* command forces a line break in both the printed manual and in Info.

For example,

This line @* is broken @*in two places.

produces

This line

is broken

in two places.

(Note that the space after the first @* command is faithfully carried down to the next line.)

The @* command is often used in a file’s copyright page:

This is version 2.0 of the Texinfo documentation,@*

and is for ...

In this case, the @* command keeps TEX from stretching the line across the whole page in
an ugly manner.

Do not write braces after an @* command; they are not needed.

Do not write an @refill command at the end of a paragraph containing an @* command;
it will cause the paragraph to be refilled after the line break occurs, negating the effect of
the line break.

106 Texinfo 2.10

16.2 @w{text}: Prevent Line Breaks

@w{text} outputs text and prohibits line breaks within text.

You can use the @w command to prevent TEX from automatically hyphenating a long
name or phrase that accidentally falls near the end of a line.

You can copy GNU software from @w{@file{prep.ai.mit.edu}}.

produces

You can copy GNU software from prep.ai.mit.edu.

In the Texinfo file, you must write the @w command and its argument (all the affected
text) all on one line.

Do not write an @refill command at the end of a paragraph containing an @w command;
it will cause the paragraph to be refilled and may thereby negate the effect of the @w

command.

16.3 @sp n: Insert Blank Lines

A line beginning with and containing only @sp n generates n blank lines of space in both
the printed manual and the Info file. @sp also forces a paragraph break. For example,

@sp 2

generates two blank lines.

The @sp command is most often used in the title page.

16.4 @page: Start a New Page

A line containing only @page starts a new page in a printed manual. The command has no
effect on Info files since they are not paginated. An @page command is often used in the
title section of a Texinfo file to start the copyright page.

16.5 @group: Prevent Page Breaks

The @group command (on a line by itself) is used inside of an @example or similar construct
to begin an unsplittable vertical group, which will appear entirely on one page in the printed
output. The group is terminated by a line containing only @end group. These two lines
produce no output of their own, and in the Info file output they have no effect at all.

Although @group would make sense conceptually in a wide variety of contexts, its current
implementation works reliably only within @example and variants, and within @quotation,
@display, @format, @flushleft and @flushright. (What all these commands have in
common is that they turn off vertical spacing between “paragraphs”.) In other contexts,
@group can cause anomalous vertical spacing. See Chapter 10 [Quotations and Examples],
page 73.

with the @group and @end group command insides of the @example and @end example

commands.

The @group command is most often used to hold an example together on one page. In
this Texinfo manual, about 100 examples contain text that is enclosed between @group and
@end group.

Chapter 16: Making and Preventing Breaks 107

If you forget to end a group, you may get strange and unfathomable error messages when
you run TEX. This is because TEX keeps trying to put the rest of the Texinfo file onto the
one page and does not start to generate error messages until it has processed considerable
text. It is a good rule of thumb to look for a missing @end group if you get incomprehensible
error messages in TEX.

16.6 @need mils: Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than n
mils (thousandths of an inch) remain on the current page. Do not use braces around the
argument n. The @need command has no effect on Info files since they are not paginated.

This paragraph is preceded by an @need command that tells TEX to start a new page if
fewer than 300 mils (nearly one-third inch) remain on the page. It looks like this:

@need 300

This paragraph is preceded by ...

The @need command is useful for preventing orphans (single lines at the bottoms of
printed pages).

109

17 Conditionally Visible Text

Sometimes it is good to use different text for a printed manual and its corresponding Info
file. In this case, you can use the conditional commands to specify which text is for the
printed manual and which is for the Info file.

@ifinfo begins text that should be ignored by TEX when it typesets the printed manual.
The text appears only in the Info file. The @ifinfo command should appear on a line by
itself. End the Info-only text with a line containing @end ifinfo by itself. At the beginning
of a Texinfo file, the Info permissions are contained within a region marked by @ifinfo and
@end ifinfo. (See Section 3.3 [Info Summary and Permissions], page 28.)

The @iftex and @end iftex commands are used similarly but to delimit text that will
appear in the printed manual but not in the Info file.

For example,

@iftex

This text will appear only in the printed manual.

@end iftex

@ifinfo

However, this text will appear only in Info.

@end ifinfo

The preceding example produces the following. Note how you only see one of the two lines,
depending on whether you are reading the Info version or the printed version of this manual.

This text will appear only in the printed manual.

The @titlepage command is a special variant of @iftex that is used for making the
title and copyright pages of the printed manual. (See Section 3.4.1 [@titlepage], page 28.)

17.1 Using Ordinary TEX Commands

Inside a region delineated by @iftex and @end iftex, you can embed some PlainTEX
commands. Info will ignore these commands since they are only in that part of the file that
is seen by TEX. The TEX commands are the same as any TEX commands except that an ‘@’
replaces the ‘\’ used by TEX. For example, in the @titlepage section of a Texinfo file, the
TEX command @vskip is used to format the copyright page. (The @titlepage command
causes Info to ignore the region automatically, as it does with the @iftex command.)

However, many features of PlainTEX will not work, as they are overriden by features of
Texinfo.

You can enter PlainTEX completely, and use ‘\’ in the TEX commands, by delineating
a region with the @tex and @end tex commands. (The @tex command also causes Info to
ignore the region, like the @iftex command.)

For example, here is some mathematics:

@tex

$\bigl(x\in A(n)\bigm|x\in B(n)\bigr)$

@end tex

110 Texinfo 2.10

The output of this example will appear only in the printed manual. If you are reading
this in Info, you will not see anything after this paragraph. In the printed manual, the
above mathematics looks like this:

(x ∈ A(n) | x ∈ B(n))

111

18 Printing Hardcopy

There are three major shell commands for printing hardcopy of a Texinfo file. One is for
formatting the file, the second is for sorting the index, and the third is for printing the
formatted document. When you use the shell commands, you can either work directly in
the operating system shell or work within a shell inside of GNU Emacs.

Instead of shell commands, you can use commands provided by Texinfo mode. In addi-
tion to three commands to to format a file, sort the indices, and print the result, Texinfo
mode offers key bindings for commands to recenter the output buffer, show the print queue,
and delete a job from the print queue.

The typesetting program TEX is used for formatting a Texinfo file.1 TEX is a very
powerful typesetting program and, if used right, does an exceptionally good job.

The makeinfo, texinfo-format-region, and texinfo-format-buffer commands read
the very same @-commands in the Texinfo file as does TEX, but process them differently to
make an Info file. (See Chapter 19 [Creating an Info File], page 117.)

18.1 How to Print Using Shell Commands

Format the Texinfo file with the shell command tex followed by the name of the Texinfo
file. This produces a formatted dvi file as well as several auxiliary files containing indices,
cross references, etc. The dvi file (for DeVice Independent file) can be printed on a wide
variety of printers.

The tex formatting command itself does not sort the indices; it writes an output file of
unsorted index data. This is a misfeature of TEX. Hence, to generate a printed index, you
first need a sorted index to work from. The texindex command sorts indices.2

The tex formatting command outputs unsorted index files under names that obey a
standard convention. These names are the name of your main input file to the tex for-
matting command, with everything after the first period thrown away, and the two letter
names of indices added at the end. For example, the raw index output files for the input
file foo.texinfo would be foo.cp, foo.vr, foo.fn, foo.tp, foo.pg and foo.ky. Those
are exactly the arguments to give to texindex. Or else, you can use ‘??’ as “wild-cards”
and give the command in this form:

texindex foo.??

This command will run texindex on all the unsorted index files, including any that you
have defined yourself using @defindex or @defcodeindex. (You may execute ‘texindex
foo.??’ even if there are similarly named files with two letter extensions that are not index
files, such as ‘foo.el’. The texindex command reports but otherwise ignores such files.)

For each file specified, texindex generates a sorted index file whose name is made by
appending ‘s’ to the input file name. The @printindex command knows to look for a file
of that name. texindex does not alter the raw index output file.

1 If you do not have TEX, you can use the texi2roff program for formatting.
2 The source file texindex.c comes as part of the standard GNU distribution and is usually installed when

Emacs is installed.

112 Texinfo 2.10

After you have sorted the indices, you need to rerun the tex formatting command on
the Texinfo file. This regenerates a formatted dvi file with up-to-date index entries.3

To summarize, this is a three step process:

1. Run the tex formatting command on the Texinfo file. This generates the formatted
dvi file as well as the raw index files with two letter extensions.

2. Run the shell command texindex on the raw index files to sort them. This creates the
corresponding sorted index files.

3. Rerun the tex formatting command on the Texinfo file. This regenerates a formatted
dvi file with the index entries in the correct order. This second run also makes all the
cross references correct as well. (The tables of contents are always correct.)

You need not run texindex each time after you run the tex formatting. If you don’t,
on the next run, the tex formatting command will use whatever sorted index files happen
to exist from the previous use of texindex. This is usually ok while you are debugging.

Rather than type the tex and texindex commands yourself, you can use texi2dvi.
This shell script is designed to simplify the tex—texindex—tex sequence by figuring out
whether index files and dvi files are up-to-date. It runs texindex and tex only when
necessary.

The syntax for texi2dvi is like this (where ‘%’ is the shell prompt):

% texi2dvi filenames...

Finally, you can print a dvi file with the dvi print command. The precise command to
use depends on the system; ‘lpr -d’ is common. The dvi print command may require a file
name without any extension or with a ‘.dvi’ extension.

The following commands, for example, sort the indices, format, and print the Bison
Manual (where ‘%’ is the shell prompt):

% tex bison.texinfo

% texindex bison.??

% tex bison.texinfo

% lpr -d bison.dvi

(Remember that the shell commands may be different at your site; but these are commonly
used versions.)

18.2 Printing from an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. To create
a shell within Emacs, type M-x shell. In this shell, you can format and print the document.
See Section 18.1 [How to Print Using Shell Commands], page 111, for details.

You can switch to and from the shell buffer while tex is running and do other editing.
If you are formatting a long document on a slow machine, this can be very convenient.

You can also use texi2dvi from an Emacs shell. (See Section 18.1 [How to Print Using
Shell Commands], page 111.)

3 If you use more than one index and have cross references to an index other than the first, you must run
tex three times to get correct output: once to generate raw index data; again (after texindex) to output
the text of the indices and determine their true page numbers; and a third time to output correct page
numbers in cross references to them. However, cross references to indices are rare.

Chapter 18: Printing Hardcopy 113

18.3 Formatting and Printing in Texinfo Mode

Texinfo mode provides several predefined key commands for TEX formatting and print-
ing. These include commands for sorting indices, looking at the printer queue, killing the
formatting job, and recentering display of the buffer in which the operations occur.

C-c C-t C-r

M-x texinfo-tex-region

Run TEX on the current region.

C-c C-t C-b

M-x texinfo-tex-buffer

Run TEX on the current buffer.

C-c C-t C-i

M-x texinfo-texindex

Sort the indices of a Texinfo file formatted with texinfo-tex-region or
texinfo-tex-buffer.

C-c C-t C-p

M-x texinfo-tex-print

Print a dvi file that was made with texinfo-tex-region or texinfo-tex-

buffer.

C-c C-t C-q

M-x texinfo-show-tex-print-queue

Show the print queue.

C-c C-t C-d

M-x texinfo-delete-from-tex-print-queue

Delete a job from the print queue; you will be prompted for the job num-
ber shown by a preceding C-c C-t C-q command (texinfo-show-tex-print-
queue).

C-c C-t C-k

M-x texinfo-kill-tex-job

Kill the currently running TEX job started by texinfo-tex-region or
texinfo-tex-buffer, or any other process running in the Texinfo shell buffer.

C-c C-t C-x

M-x texinfo-quit-tex-job

Quit a TEX formatting job that has stopped because of an error by sending an
x to it. When you do this, TEX preserves a record of what it did in a .log file.

C-c C-t C-l

M-x texinfo-recenter-tex-output-buffer

Redisplay the shell buffer in which the TEX printing and formatting commands
are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with com-
ments to the right):

114 Texinfo 2.10

C-c C-t C-b Run TEX on the buffer.
C-c C-t C-i Sort the indices.
C-c C-t C-b Rerun TEX to regenerate indices.
C-c C-t C-p Print the dvi file.
C-c C-t C-q Display the printer queue.

The Texinfo mode TEX formatting commands start a subshell in Emacs called the
texinfo-tex-shell. The texinfo-tex-command, texinfo-texindex-command, and
tex-dvi-print-command commands are all run in this shell.

You can watch the commands operate in the ‘*texinfo-tex-shell*’ buffer, and you
can switch to and from and use the ‘*texinfo-tex-shell*’ buffer as you would any other
shell buffer.

The formatting and print commands depend on the values of several variables. The
default values are:

Variable Default value

texinfo-tex-command "tex"

texinfo-texindex-command "texindex"

texinfo-tex-shell-cd-command "cd"

texinfo-tex-dvi-print-command "lpr -d"

texinfo-show-tex-queue-command "lpq"

texinfo-delete-from-print-queue-command "lprm"

texinfo-start-of-header "%**start"

texinfo-end-of-header "%**end"

texinfo-tex-trailer "@bye"

The default values of texinfo-tex-command and texinfo-texindex-command are set
in the texnfo-tex.el file.

You can change the values of these variables with the M-x edit-options command (see
Section “Editing Variable Values” in The GNU Emacs Manual), with the M-x set-variable

command (see Section “Examining and Setting Variables” in The GNU Emacs Manual), or
with your .emacs initialization file (see Section “Init File” in The GNU Emacs Manual).

18.4 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo file is to put that
command in a local variables list at the end of the Texinfo file. You can then specify the
TEX formatting command as a compile-command and have Emacs run the TEX formatting
command by typing M-x compile. This creates a special shell called the ‘*compilation
buffer*’ in which Emacs runs the compile command. For example, at the end of the
gdb.texinfo file, after the @bye, you would put the following:

@c Local Variables:

@c compile-command: "tex gdb.texinfo"

@c End:

This technique is most often used by programmers who also compile programs this way.
(See Section “Compilation” in The GNU Emacs Manual.)

Chapter 18: Printing Hardcopy 115

18.5 TEX Formatting Requirements Summary

Every Texinfo file that is to be input to TEX must begin with a \input command and
contain a @settitle command:

\input texinfo

@settitle name-of-manual

The first command instructs TEX to load the macros it needs to process a Texinfo file and
the second command specifies the title of printed manual.

Every Texinfo file must end with a line that terminates TEX processing and forces out
unfinished pages:

@bye

Strictly speaking these three lines are all a Texinfo file needs for TEX, besides the body.
(The @setfilename line is the only line that a Texinfo file needs for Info formatting.)

Usually, the file’s first line contains an ‘@c -*-texinfo-*-’ comment that causes Emacs
to switch to Texinfo mode when you edit the file. In addition, the beginning usually includes
an @setfilename for Info formatting, an @setchapternewpage command, a title page, a
copyright page, and permissions. Besides an @bye, the end of a file usually includes indices
and a table of contents.

See Section 3.2.5 [@setchapternewpage], page 26,
Appendix C [Page Headings], page 141,
Section 3.4 [Titlepage & Copyright Page], page 28,
Section 4.1 [Index Menus and Printing an Index], page 37, and
Section 4.2 [Contents], page 38.

18.6 Preparing for Use of TEX

TEX needs to know where to find the texinfo.tex file that that you have told it to input
with the ‘\input texinfo’ command at the beginning of the first line. The texinfo.tex

file tells TEX how to handle @-commands.

Usually, the texinfo.tex file is put in the default directory that contains TEX macros,
namely the /usr/lib/tex/macros directory, when GNU Emacs is installed. In this case,
TEX will find the file and you don’t have to do anything special. Alternatively, you can put
texinfo.tex in the directory in which the Texinfo source file is located, and TEX will find
it there.

However, if you may want to specify the location of the \input file yourself. One way
to do this is to write the complete path for the file after the \input command. Another
way is to set the TEXINPUTS environment variable in your .cshrc or .profile file. The
TEXINPUTS environment variable will tell TEX where to find the texinfo.tex file and any
other file that you might want TEX to use.

Whether you use a .cshrc or .profile file depends on whether you use csh, sh, or
bash for your shell command interpreter. When you use csh, it looks to the .cshrc file for
initialization information, and when you use sh or bash, it looks to the .profile file.

In a .cshrc file, you could use the following csh command sequence:

setenv TEXINPUTS .:/usr/me/mylib:/usr/lib/tex/macros

116 Texinfo 2.10

In a .profile file, you could use the following sh command sequence:

TEXINPUTS=.:/usr/me/mylib:/usr/lib/tex/macros

export TEXINPUTS

This would cause TEX to look for \input file first in the current directory, indicated by the
‘.’, then in a hypothetical user’s me/mylib directory, and finally in the system library.

18.7 Overfull “Hboxes”

TEX is sometimes unable to typeset a line without extending it into the right margin. This
can occur when TEX comes upon what it interprets as a long word that it cannot hyphenate,
such as an electronic mail network address or a very long title. When this happens, TEX
prints an error message like this:

Overfull \hbox (20.76302pt too wide)

(In TEX, lines are in “horizontal boxes”, hence the term, “hbox”.)

TEX also provides the line number in the Texinfo source file and the text of the offending
line, which is marked at all the places that TEX knows how to hyphenate words.

If the Texinfo file has an overfull hbox, you can rewrite the sentence so the overfull hbox
does not occur, or you can decide to leave it. A small excursion into the right margin often
does not matter and may not even be noticeable.

However, if you do leave an overfull hbox, unless told otherwise, TEX will print a large,
ugly, black rectangle beside the line. This is so you will notice the location of the problem if
you are correcting a draft. To prevent such a monstrosity from marring your final printout,
put the following in the beginning of the Texinfo file on a of its own, before the @titlepage
command:

@finalout

18.8 Printing “Small” Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, you can
direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for bound
books by inserting the following command on a line by itself at the beginning of the Texinfo
file, before the @setchapternewpage command:

@smallbook

(Since regular sized books are often about 7 by 9.25 inches, this command might better
have been called the @regularbooksize command, but it came to be called the @smallbook
command by comparison to the 8.5 by 11 inch format.)

The Free Software Foundation distributes printed copies of the GNU Emacs Manual
in the “small” book size. See Section 10.6 [@smallexample and @smalllisp], page 76, for
information about commands that make it easier to produce examples for a smaller manual.

117

19 Creating an Info File

makeinfo is a utility you can use from a shell to format a Texinfo file; texinfo-format-
region and texinfo-format-buffer are Emacs commands that you can also use for for-
matting.

A Texinfo file must possess an @setfilename line near its beginning, otherwise the
formatting commands will fail.

For information on installing the Info file in the Info system, see Chapter 20 [Installing
an Info File], page 123.

The makeinfo utility creates an Info file from a Texinfo source file more quickly than
either of the Emacs formatting commands and provides better error messages. It is recom-
mended. The texinfo-format-region and the texinfo-format-buffer commands are
obsolete and are useful only if you cannot run makeinfo, which is written in C.

makeinfo is a C program that is independent of Emacs. You do not have to run Emacs
to use makeinfo, which means you can use makeinfo on machines that are too small to run
Emacs.

In addition, makeinfo automatically fills paragraphs (as if every paragraph were followed
by an @refill command). texinfo-format-region and texinfo-format-buffer do not
automatically fill paragraphs. (See Appendix E [Refilling Paragraphs], page 153.)

You can run makeinfo in any one of three ways: from an operating system shell, from
a shell inside of Emacs, or, in Texinfo mode in Emacs, by typing a key command.

19.1 Running makeinfo from a Shell

To create an Info file from a Texinfo file, type makeinfo followed by the name of the Texinfo
file. Thus, to create the Info file for Bison, type the following at the shell prompt (where
‘%’ is the prompt):

% makeinfo bison.texinfo

(You can run a shell inside of Emacs by typing M-x shell.)

19.2 Options for makeinfo

The makeinfo command takes several options. Most often, options are used to set the
value of the fill column and specify the footnote style. Each command line option is a word
preceded by a ‘+’. You can use abbreviations for the option names as long as they are
unique.

For example, you could use the following command to create an Info file for
bison.texinfo in which each line is filled to only 68 columns (where ‘%’ is the prompt):

% makeinfo +fill-column=68 bison.texinfo

You can write two or more options in sequence, like this:

makeinfo +no-split +fill-column=70 ...

This would keep the Info file together as one, possibly very long, file set the fill column to
70.

If you wish to discover which version of makeinfo you are using, type:

% makeinfo +version

118 Texinfo 2.10

The options are:

+error-limit=limit

Set the maximum number of errors that makeinfo will report before exiting
(on the assumption that continuing would be useless). The default number of
errors that can be reported before makeinfo gives up is 100.

+fill-column=width

Specify the maximum number of columns in a line; this is the right-hand edge
of a line. Paragraphs that are filled will be filled to this width. (Filling is the
process of breaking up and connecting lines so that lines are the same length
as or shorter than the number specified as the fill column. Lines are broken
between words.)

+footnote-style=style

Set the footnote style to style, either ‘end’ for the end node style or ‘separate’
for the separate node style. The value set by this option overrides the value set
in a Texinfo file by an @footnotestyle command. When the footnote style is
‘separate’, makeinfo makes a new node containing the footnotes found in the
current node. When the footnote style is ‘end’, makeinfo places the footnote
references at the end of the current node.

+no-pointer-validation

Suppress the pointer-validation phase of makeinfo. Normally, after a Texinfo
file is processed, some consistency checks are made to ensure that cross refer-
ences can be resolved, etc. See Section 19.3 [Pointer Validation], page 119.

+no-split

Suppress the splitting stage of makeinfo. Normally, large output files (where
the size is greater than 70k bytes) are split into smaller subfiles, each one
approximately 50k bytes. If you specify ‘+no-split’, makeinfo will not split
up the output file.

+no-warn Suppress the output of warning messages. This does not suppress the output
of error messages, only warnings. You might want this if the file you are creat-
ing has examples of Texinfo cross references within it, and the nodes that are
referenced don’t actually exist.

+paragraph-indent=indent

Set the paragraph indentation style to indent. The value set by this option
overrides the value set in a Texinfo file by an @paragraphindent command.
The value of indent is interpreted as follows:

• If the value of indent is ‘asis’, do not change the existing indentation at
the starts of paragraphs.

• If the value of indent zero, delete any existing indentation.

• If the value of indent is greater than zero, indent each paragraph by that
number of spaces.

+reference-limit=limit

Set the value of the number of references to a node that makeinfo will make
without reporting a warning. If a node has more than this number of references
in it, makeinfo will make the references but also report a warning.

Chapter 19: Creating an Info File 119

+verbose Cause makeinfo to display messages saying what it is doing. Normally,
makeinfo only outputs messages if there are errors or warnings.

+version Report the version number of this copy of makeinfo.

19.3 Pointer Validation

If you do not suppress pointer-validation (by using the ‘+no-pointer-validation’ option),
makeinfo will check the validity of the final Info file. Mostly, this means ensuring that nodes
you have referenced really exist. Here is a complete list of what is checked:

1. If a ‘Next’, ‘Previous’, or ‘Up’ node reference is a reference to a node in the current file
and is not an external reference such as to (dir), then the referenced node must exist.

2. In every node, if the ‘Previous’ node is different from the ‘Up’ node, then the ‘Previous’
node must also be pointed to by a ‘Next’ node.

3. Every node except the ‘Top’ node must have an ‘Up’ pointer.

4. The node referenced by an ‘Up’ pointer must contain a reference to the current node
in some manner other than through a ‘Next’ reference. This includes menu items and
cross references.

5. If the ‘Next’ reference of a node is not the same as the ‘Next’ reference of the ‘Up’
reference, then the node referenced by the ‘Next’ pointer must have a ‘Previous’ pointer
that points back to the current node. This rule allows the last node in a section to
point to the first node of the next chapter.

19.4 Running makeinfo inside Emacs

You can run makeinfo in GNU Emacs by using either the makeinfo-region or the
makeinfo-buffer commands. In Texinfo mode, the commands are bound to C-c C-m C-r

and C-c C-m C-b by default.

C-c C-m C-r

M-x makeinfo-region

Format the current region for Info.

C-c C-m C-b

M-x makeinfo-buffer

Format the current buffer for Info.

When you invoke either makeinfo-region or makeinfo-buffer, Emacs prompts for a
file name, offering the name of the visited file as the default. You can edit the default file
name in the minibuffer if you wish, before typing RET to start the makeinfo process.

The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfo pro-
gram in a temporary shell buffer. If makeinfo finds any errors, Emacs displays the error
messages in the temporary buffer.

You can parse the error messages by typing C-x ‘ (next-error). This causes Emacs
to go to and position the cursor on the line in the Texinfo source that makeinfo thinks
caused the error. See Section “Running make or Compilers Generally” in The GNU Emacs
Manual, for more information about using the next-error command.

120 Texinfo 2.10

In addition, you can kill the shell in which the makeinfo command is running or make
the shell buffer display its most recent output.

C-c C-m C-k

M-x makeinfo-kill-job

Kill the current running makeinfo job created by makeinfo-region or
makeinfo-buffer.

C-c C-m C-l

M-x makeinfo-recenter-output-buffer

Redisplay the makeinfo shell buffer to display its most recent output.

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-k

and C-c C-t C-l. See Section 18.3 [Texinfo Mode Printing], page 113.)

You can specify options for makeinfo by setting the makeinfo-options variable with
either the M-x edit-options or the M-x set-variable command, or by setting the variable
in your with your .emacs initialization file.

See Section “Editing Variable Values” in The GNU Emacs Manual,
Section “Examining and Setting Variables” in The GNU Emacs Manual,
Section “Init File” in The GNU Emacs Manual, and Section 19.2 [Options for makeinfo],
page 117.

19.5 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo file with the
texinfo-format-region command. This formats the current region and displays the for-
matted text in a temporary buffer called ‘*Info Region*’.

Similarly, you can format a buffer with the texinfo-format-buffer command. This
command creates a new buffer and generates the Info file in it. Typing C-x C-s will save
the Info file under the name specified by the @setfilename line which must be near the
beginning of the Texinfo file.

C-c C-e C-r

texinfo-format-region

Format the current region for Info.

C-c C-e C-b

texinfo-format-buffer

Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide you
with some error checking; and other functions provide you with further help in finding
formatting errors. These procedures are described in an appendix. See Appendix D
[Catching Mistakes], page 145. However, the makeinfo program is faster and provides
better error checking.

19.6 Tag Files and Split Files

If a Texinfo file has more than 30,000 bytes, texinfo-format-buffer automatically creates
a tag table for its Info file; makeinfo always creates a tag table. With a tag table, Info can
jump to new nodes more quickly than it can otherwise.

Chapter 19: Creating an Info File 121

In addition, if the Texinfo file contains more than about 70,000 bytes, texinfo-format-
buffer and makeinfo split the large Info file into shorter indirect subfiles of about 50,000
bytes each. Big files are split into smaller files so that Emacs does not have to make a large
buffer to hold the whole of a large Info file; instead, Emacs allocates just enough memory for
the small, split off file that is needed at the time. This way, Emacs avoids wasting memory
when you run Info. (Before splitting was implemented, Info files were always kept short
and include files were designed as a way to create a single, large printed manual out of the
smaller Info files. See Appendix B [Include Files], page 137, for more information. Include
files are still used for very large documents, such as The Emacs Lisp Reference Manual, in
which each chapter is a separate file.)

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split off files
are called indirect files.

The split off files have names that are created by appending ‘-1’, ‘-2’, ‘-3’ and so on
to the file names specified by the @setfilename command. The shortened version of the
original file continues to have the name specified by @setfilename.

At one stage in writing this document, for example, the Info file was saved as
test-texinfo and that file looked like this:

Info file: test-texinfo, -*-Text-*-

produced by texinfo-format-buffer

from file: new-texinfo-manual.texinfo

^_

Indirect:

test-texinfo-1: 102

test-texinfo-2: 50422

test-texinfo-3: 101300

^_^L

Tag table:

(Indirect)

Node: overview^?104

Node: info file^?1271

Node: printed manual^?4853

Node: conventions^?6855

...

(But test-texinfo had far more nodes than are shown here.) Each of the split off, indirect
files, test-texinfo-1, test-texinfo-2, and test-texinfo-3, is listed in this file after
the line that says ‘Indirect:’. The tag table is listed after the line that says ‘Tag table:’.

If you are using texinfo-format-buffer to create Info files, you may want to run the
Info-validate command. (The makeinfo command does such a good job on its own,
you do not need Info-validate.) However, you cannot run the M-x Info-validate node-
checking command on indirect files. For information on how to prevent files from being
split and how to validate the structure of the nodes, see Section D.5.1 [Using Info-validate],
page 150.

123

20 Installing an Info File

Info files are usually kept in the .../emacs/info directory. (You can find the location of
this directory within Emacs by typing C-h i to enter Info and then typing C-x C-f to see
the full pathname to the info directory.)

For Info to work, the info directory must contain a file that serves as a top level directory
for the Info system. By convention, this file is called dir. The dir file is itself an Info file.
It contains the top level menu for all the Info files in the system. The menu looks like this:

* Menu:

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting

text editor.

* Texinfo: (texinfo). With one source file, make

either a printed manual using

TeX or an Info file.

...

Each of these menu entries points to the ‘Top’ node of the Info file that is named in
parentheses. (The menu entry does not have to specify the ‘Top’ node, since Info goes to
the ‘Top’ node if no node name is mentioned. See Section 6.5 [Nodes in Other Info Files],
page 52.)

Thus, the ‘Info’ entry points to the ‘Top’ node of the info file and the ‘Emacs’ entry
points to the ‘Top’ node of the emacs file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file.
For example, the node line for the ‘Top’ node of the Emacs manual looks like this:

File: emacs Node: Top, Up: (DIR), Next: Distrib

(Note that in this case, the file name is written in upper case letters—it can be written in
either upper or lower case. Info has a feature that it will change the case of the file name
to lower case if it cannot find the name as written.)

20.1 Listing a New Info File

To add a new Info file to your system, add the name to the menu in the dir file by editing
the dir file by hand. Also, put the new Info file in the .../emacs/info directory. For
example, if you were adding documentation for GDB, you would make the following new
entry:

* GDB: (gdb). The source-level C debugger.

The first item is the menu item name; it is followed by a colon. The second item is the
name of the Info file, in parentheses; it is followed by a period. The third part of the entry
is the description of the item.

Conventionally, the name of an Info file has a .info extension. Thus, you might list the
name of the file like this:

* GDB: (gdb.info). The source-level C debugger.

124 Texinfo 2.10

However, Info will look for a file with a .info extension if it does not find the file under the
name given in the menu. This means that you can write to gdb.info in a menu as gdb, as
shown in the first example. This looks better.

20.2 Info Files in Other Directories

If an Info file is not in the info directory, there are two ways to specify its location:

• Write the menu’s second part as a pathname, or;

• Specify an environment variable in your .profile or .cshrc initialization file. (Only
you and others with the same environment variable will be able to find Info files whose
location is specified this way.)

For example, to reach a test file in the ~bob/manuals directory, you could add an entry
like this to the menu in the dir file:

* Test: (~bob/manuals/info-test). Bob’s own test file.

In this case, the absolute file name of the info-test file is written as the second item of
the menu entry.

Alternatively, you may set the INFOPATH environment variable in your .cshrc or
.profile file. The INFOPATH environment variable will tell Info where to look.

If you use sh or bash for your shell command interpreter, you must set the INFOPATH

environment variable in the .profile initialization file; but if you use csh, you must set the
variable in the .cshrc initialization file. The two files require slightly different command
formats.

• In a .cshrc file, you could set the INFOPATH variable as follows:
setenv INFOPATH .:~bob/manuals:/usr/local/emacs/info

• In a .profile file, you would achieve the same effect by writing:
INFOPATH=.:~bob/manuals:/usr/local/emacs/info

export INFOPATH

Either form would cause Info to look first in the current directory, indicated by the ‘.’,
then in the ~bob/manuals directory, and finally in the /usr/local/emacs/info directory
(which is the usual location for the standard Info directory).

125

Appendix A @-Command List

Here is an alphabetical list of the @-commands in Texinfo.

@* Force a line break. Do not end a paragraph that uses @* with an @refill

command. See Section 16.1 [Line Breaks], page 105.

@. Stands for a period that really does end a sentence. See Section 9.1.3 [Control-
ling Spacing], page 69.

@: Indicate to TEX that an immediately preceding period, question mark, excla-
mation mark, or colon does not end a sentence. Prevent TEX from inserting
extra whitespace as it does at the end of a sentence. The command has no
effect on the Info file output. See Section 9.1.3 [Controlling Spacing], page 69.

@@ Stands for ‘@’. See Section 9.1 [Inserting ‘@’], page 69.

@{ Stands for a left-hand brace, ‘{’. See Section 9.1 [Inserting @ braces and peri-
ods], page 69.

@} Stands for a right-hand brace, ‘}’. See Section 9.1 [Inserting @ braces and
periods], page 69.

@appendix title

Begin an appendix. The title appears in the table of contents of a printed
manual. In Info, the title is underlined with asterisks. See Section 5.5 [The
@unnumbered and @appendix Commands], page 43.

@appendixsec title

Begin an appendix section within an appendix. The section title appears in the
table of contents of a printed manual. In Info, the title is underlined with equal
signs. See Section 5.8 [Section Commands], page 44.

@appendixsubsec title

Begin an appendix subsection within an appendix. The title appears in the
table of contents of a printed manual. In Info, the title is underlined with
hyphens. See Section 5.10 [Subsection Commands], page 45.

@appendixsubsubsec title

Begin an appendix subsubsection within a subappendix. The title appears in
the table of contents of a printed manual. In Info, the title is underlined with
periods. See Section 5.11 [The ‘subsub’ Commands], page 45.

@asis Used following @table and @ftable to print the table’s first column without
highlighting (“as is”). See Section 12.3 [Making a Two-column Table], page 85.

@author author

Typeset author flushleft and underline it. See Section 3.4.3 [The @title and
@author Commands], page 29.

@b{text} Print text in bold font. No effect in Info. See Section 8.2.3 [Fonts], page 67.

@bullet{}

Generate a large round dot, or the closest possible thing to one. See
Section 9.3.2 [@bullet], page 71.

126 Texinfo 2.10

@bye Terminate TEX processing on the file. TEX does not see any of the contents of
the file following the @bye command. See Chapter 4 [Ending a File], page 37.

@c comment

Begin a comment in Texinfo. The rest of the line does not appear in either
the Info file or the printed manual. A synonym for @comment. See Section 1.4
[General Syntactic Conventions], page 7.

@cartouche

Highlight an example or quotation by drawing a box with rounded corners
around it. Pair with @end cartouche. No effect in Info. See Section 10.11
[Drawing Cartouches Around Examples], page 78.)

@center line-of-text

Center the line of text following the command. See Section 3.4.2 [@center],
page 29.

@chapheading title

Print a chapter-like heading in the text, but not in the table of contents of a
printed manual. In Info, the title is underlined with asterisks. See Section 5.6
[@majorheading and @chapheading], page 43.

@chapter title

Begin a chapter. The chapter title appears in the table of contents of a
printed manual. In Info, the title is underlined with asterisks. See Section 5.4
[@chapter], page 43.

@cindex entry

Add entry to the index of concepts. See Section 15.1 [Defining the Entries of
an Index], page 101.

@cite{reference}

Highlight the name of a book or other reference that lacks a companion Info
file. See Section 8.1.8 [@cite], page 65.

@code{sample-code}

Highlight text that is an expression, a syntactically complete token of a pro-
gram, or a program name. See Section 8.1.1 [@code], page 62.

@comment comment

Begin a comment in Texinfo. The rest of the line does not appear in either the
Info file or the printed manual. See Section 1.4 [General Syntactic Conventions],
page 7.

@contents

Print a complete table of contents. Has no effect in Info, which uses menus
instead. See Section 4.2 [Generating a Table of Contents], page 38.

@copyright{}

Generate a copyright symbol. See Section 9.4.2 [@copyright], page 71.

@defcodeindex index-name

Define a new index and its indexing command. Print entries in an @code font.
See Section 15.5 [Defining New Indices], page 104.

Appendix A: @-Command List 127

@defcv category class name

Format a description for a variable associated with a class in object-oriented
programming. Takes three arguments: the category of thing being defined, the
class to which it belongs, and its name. See Chapter 13 [Definition Commands],
page 87.

@deffn category name arguments...

Format a description for a function, interactive command, or similar entity that
may take arguments. @deffn takes as arguments the category of entity being
described, the name of this particular entity, and its arguments, if any. See
Chapter 13 [Definition Commands], page 87.

@defindex index-name

Define a new index and its indexing command. Print entries in a roman font.
See Section 15.5 [Defining New Indices], page 104.

@defivar class instance-variable-name

Format a description for an instance variable in object-oriented programming.
The command is equivalent to ‘@defcv {Instance Variable} ...’. See
Chapter 13 [Definition Commands], page 87.

@defmac macro-name arguments...

Format a description for a macro. The command is equivalent to ‘@deffn Macro

...’. See Chapter 13 [Definition Commands], page 87.

@defmethod class method-name arguments...

Format a description for a method in object-oriented programming. The com-
mand is equivalent to ‘@defop Method ...’. Takes as arguments the name of
the class of the method, the name of the method, and its arguments, if any.
See Chapter 13 [Definition Commands], page 87.

@defop category class name arguments...

Format a description for an operation in object-oriented programming. @defop
takes as arguments the overall name of the category of operation, the name of
the class of the operation, the name of the operation, and its arguments, if any.
See Chapter 13 [Definition Commands], page 87.

@defopt option-name

Format a description for a user option. The command is equivalent to ‘@defvr
{User Option} ...’. See Chapter 13 [Definition Commands], page 87.

@defspec special-form-name arguments...

Format a description for a special form. The command is equivalent to ‘@deffn
{Special Form} ...’. See Chapter 13 [Definition Commands], page 87.

@deftp category name-of-type attributes...

Format a description for a data type. @deftp takes as arguments the category,
the name of the type (which is a word like ‘int’ or ‘float’), and then the names
of attributes of objects of that type. See Chapter 13 [Definition Commands],
page 87.

@deftypefn classification data-type name arguments...

Format a description for a function or similar entity that may take arguments
and that is typed. @deftypefn takes as arguments the classification of entity

128 Texinfo 2.10

being described, the type, the name of the entity, and its arguments, if any. See
Chapter 13 [Definition Commands], page 87.

@deftypefun data-type function-name arguments...

Format a description for a function in a typed language. The command is equiv-
alent to ‘@deftypefn Function ...’. See Chapter 13 [Definition Commands],
page 87.

@deftypevr classification data-type name

Format a description for something like a variable in a typed language—an
entity that records a value. Takes as arguments the classification of entity being
described, the type, and the name of the entity. See Chapter 13 [Definition
Commands], page 87.

@deftypevar data-type variable-name

Format a description for a variable in a typed language. The command is equiv-
alent to ‘@deftypevr Variable ...’. See Chapter 13 [Definition Commands],
page 87.

@defun function-name arguments...

Format a description for functions. The command is equivalent to ‘@deffn
Function ...’. See Chapter 13 [Definition Commands], page 87.

@defvar variable-name

Format a description for variables. The command is equivalent to ‘@defvr
Variable ...’. See Chapter 13 [Definition Commands], page 87.

@defvr category name

Format a description for any kind of variable. @defvr takes as arguments the
category of the entity and the name of the entity. See Chapter 13 [Definition
Commands], page 87.

@dfn{term}

Highlight the introductory or defining use of a term. See Section 8.1.7 [@dfn],
page 65.

@display Begin a kind of example. Indent text, do not fill, do not select a new font. Pair
with @end display. See Section 10.7 [@display], page 77.

@dmn{dimension}

Format a dimension. Causes TEX to insert a narrow space before dimension.
Has no effect in Info. Used for writing a number followed by an abbreviation
of a dimension name, such as ‘12 pt’, written as ‘12@dmn{pt}’, with no space
between the number and the @dmn command. See Section 9.2 [@dmn], page 70.

@dots{} Insert an ellipsis: ‘...’. See Section 9.3.1 [@dots], page 70.

@emph{text}

Highlight text. See Section 8.2 [Emphasizing Text], page 65.

@enumerate

Begin a numbered list, using @item for each entry. Pair with @end enumerate.
See Section 12.2 [@enumerate], page 85.

Appendix A: @-Command List 129

@equiv{} Indicate the exact equivalence of two forms to the reader with a special glyph:
‘≡ ’. See Section 11.5 [Equivalence], page 80.

@error{} Indicate to the reader with a special glyph that the following text is an error
message: ‘ error ’. See Section 11.4 [Error Special Glyph], page 80.

@evenfooting [left] @| [center] @| [right]

Specify footings for even-numbered (left-hand) pages. Not relevant to Info. See
Section C.3 [How to Make Your Own Headings], page 143.

@evenheading [left] @| [center] @| [right]

Specify headings for even-numbered (left-hand) pages. Not relevant to Info.
See Section C.3 [How to Make Your Own Headings], page 143.

@everyfooting [left] @| [center] @| [right]

Specify footings for every page. Not relevant to Info. See Section C.3 [How to
Make Your Own Headings], page 143.

@everyheading [left] @| [center] @| [right]

Specify headings for every page. Not relevant to Info. See Section C.3 [How to
Make Your Own Headings], page 143.

@example Begin an example. Indent text, do not fill, select fixed-width font. Pair with
@end example. See Section 10.3 [@example], page 74.

@exdent line-of-text

Remove any indentation a line might have. See Section 10.9 [Undoing the
Indentation of a Line], page 77.

@expansion{}

Indicate the result of a macro expansion to the reader with a special glyph:
‘ 7→’. See Section 11.2 [expansion], page 79.

@file{filename}

Highlight the name of a file or directory. See Section 8.1.6 [@file], page 65.

@finalout

Prevent TEX from printing large black warning rectangles beside over-wide lines.
See Section 18.7 [Overfull Hboxes], page 116.

@findex entry

Add entry to the index of functions. See Section 15.1 [Defining the Entries of
an Index], page 101.

@flushleft

Left justify every line but leave the right end ragged. Leave font as is. Pair with
@end flushleft. See Section 10.10 [@flushleft and @flushright], page 77.

@flushright

Right justify every line but leave the left end ragged. Leave font as is. Pair with
@end flushright. See Section 10.10 [@flushleft and @flushright], page 77.

@footnote{text-of-footnote}

Enter a footnote. Footnote text is printed at the bottom of the page by TEX;
Info may format in either ‘End Node’ or ‘Make Node’ style. See Chapter 14
[Footnotes], page 99.

130 Texinfo 2.10

@footnotestyle style

Specify an Info file’s footnote style, either ‘end’ for the end node style or
‘separate’ for the separate node style. See Chapter 14 [Footnotes], page 99.

@format Begin a kind of example. Like @example or @display, but do not narrow the
margins and do not select the fixed-width font. Pair with @end format. See
Section 10.3 [@example], page 74.

@ftable formatting-command

Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of functions. Pair with
@end ftable. The same as @table, except for indexing. See Section 12.3.1
[@ftable], page 86.

@group Hold text together that must appear on one printed page. Pair with @end

group. Not relevant to Info. See Section 16.5 [@group], page 106.

@heading title

Print an unnumbered section-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined with equal signs.
See Section 5.8 [Section Commands], page 44.

@headings on-off-single-double

Turn headings on or off, or specify single-sided or double-sided headings
for printing. @headings on is synonymous with @headings double. See
Section 3.4.6 [The @headings Command], page 31.

@i{text} Print text in italic font. No effect in Info. See Section 8.2.3 [Fonts], page 67.

@ifinfo Begin a stretch of text that will be ignored by TEX when it typesets the printed
manual. The text appears only in the Info file. Pair with @end ifinfo. See
Chapter 17 [Conditionally Visible Text], page 109.

@iftex Begin a stretch of text that will not appear in the Info file, but will be processed
only by TEX. Pair with @end iftex. See Chapter 17 [Conditionally Visible
Text], page 109.

@ignore Begin a stretch of text that will not appear in either the Info file or the printed
output. Pair with @end ignore. See Section 1.5 [Comments and Ignored Text],
page 7.

@include filename

Incorporate the contents of the file filename into the Info file or printed docu-
ment. See Appendix B [Include Files], page 137.

@inforef{node-name, [entry-name], info-file-name}

Make a cross reference to an Info file for which there is no printed manual. See
Section 7.7 [Cross references using @inforef], page 59.

\input macro-definitions-file

Use the specified macro definitions file. This command is used only in the first
line of a Texinfo file to cause TEX to make use of the texinfo macro definitions
file. The backslash in \input is used instead of an @ because TEX does not
properly recognize @ until after it has read the definitions file. See Section 3.2
[The Texinfo File Header], page 24.

Appendix A: @-Command List 131

@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;
indicate the beginning of the text of a first column entry for @table and
@ftable. See Chapter 12 [Lists and Tables], page 83.

@itemize mark-generating-character-or-command

Produce a sequence of indented paragraphs, with a mark inside the left margin
at the beginning of each paragraph. Pair with @end itemize. See Section 12.1
[@itemize], page 83.

@itemx Like @item but do not generate extra vertical space above the item text. See
Section 12.3.2 [@itemx], page 86.

@kbd{keyboard-characters}

Indicate text that consists of characters of input to be typed by users. See
Section 8.1.2 [@kbd], page 62.

@key{key-name}

Highlight key-name, a conventional name for a key on a keyboard. See
Section 8.1.3 [@key], page 63.

@kindex entry

Add entry to the index of keys. See Section 15.1 [Defining the Entries of an
Index], page 101.

@lisp Begin an example of Lisp code. Indent text, do not fill, select fixed-width font.
Pair with @end lisp. See Section 10.5 [@lisp], page 76.

@majorheading title

Print a chapter-like heading in the text, but not in the table of contents of a
printed manual. Generate more vertical whitespace before the heading than
the @chapheading command. In Info, the chapter heading line is underlined
with asterisks. See Section 5.6 [@majorheading and @chapheading], page 43.

@menu Mark the beginning of a menu of nodes in Info. No effect in a printed manual.
Pair with @end menu. See Section 6.4 [@menu], page 50.

@minus{} Generate a minus sign. See Section 9.5 [@minus], page 71.

@need n Start a new page in a printed manual if fewer than n mils (thousandths of an
inch) remain on the current page. See Section 16.6 [@need], page 107.

@node name, next, previous, up

Define the beginning of a new node in Info, and serve as a locator for references
for TEX. See Section 6.2 [@node], page 48.

@noindent

Prevent text from being indented as if it were a new paragraph. See Section 10.4
[@noindent], page 75.

@oddfooting [left] @| [center] @| [right]

Specify footings for odd-numbered (right-hand) pages. Not relevant to Info.
See Section C.3 [How to Make Your Own Headings], page 143.

@oddheading [left] @| [center] @| [right]

Specify headings for odd-numbered (right-hand) pages. Not relevant to Info.
See Section C.3 [How to Make Your Own Headings], page 143.

132 Texinfo 2.10

@page Start a new page in a printed manual. No effect in Info. See Section 16.4
[@page], page 106.

@paragraphindent indent

Indent paragraphs by indent number of spaces; delete indentation if the value
of indent is 0; and do not change indentation if indent is asis. See Section 3.2.6
[Paragraph Indenting], page 27.

@pindex entry

Add entry to the index of programs. See Section 15.1 [Defining the Entries of
an Index], page 101.

@point{} Indicate the position of point in a buffer to the reader with a special glyph: ‘?’.
See Section 11.6 [Indicating Point in a Buffer], page 81.

@print{} Indicate printed output to the reader with a special glyph: ‘ a ’. See Section 11.3
[Print Special Glyph], page 80.

@printindex index-name

Print an alphabetized two-column index in a printed manual or generate an
alphabetized menu of index entries for Info. See Section 4.1 [Printing Indices
& Menus], page 37.

@pxref{node-name, [entry], [topic], [info-file], [manual]}
Make a reference that starts with a lower case ‘see’ in a printed manual. Use
within parentheses only. Do not follow command with a punctuation mark.
The Info formatting commands automatically insert terminating punctuation
as needed, which is why you do not need to insert punctuation. Only the first
argument is mandatory. See Section 7.6 [@pxref], page 59.

@quotation

Narrow the margins to indicate text that is quoted from another real or imag-
inary work. Write command on a line of its own. Pair with @end quotation.
See Section 10.2 [@quotation], page 74.

@r{text} Print text in roman font. No effect in Info. See Section 8.2.3 [Fonts], page 67.

@ref{node-name, [entry], [topic], [info-file], [manual]}
Make a reference. In a printed manual, the reference does not start with a
‘See’. Follow command with a punctuation mark. Only the first argument is
mandatory. See Section 7.5 [@ref], page 58.

@refill In Info, refill and indent the paragraph after all the other processing has been
done. No effect on TEX, which always refills, and not needed on an Info file
formatted with makeinfo, which also automatically refills. See Appendix E
[Refilling Paragraphs], page 153.

@result{}

Indicate the result of an expression to the reader with a special glyph: ‘⇒’. See
Section 11.1 [@result], page 79.

@samp{text}

Highlight text that is a literal example of a sequence of characters. Used for
single characters, for statements and often for entire shell commands. See
Section 8.1.4 [@code], page 64.

Appendix A: @-Command List 133

@sc{text}

Set text in a printed output in the small caps font and set text in the Info
file in uppercase letters. See Section 8.2.2 [Smallcaps], page 66.

@section title

Begin a section within a chapter. In a printed manual, the section title is
numbered and appears in the table of contents. In Info, the title is underlined
with equal signs. See Section 5.7 [@section], page 44.

@setchapternewpage on-off-odd

Specify whether chapters start on new pages, and if so, whether on odd-
numbered (right-hand) new pages. See Section 3.2.5 [@setchapternewpage],
page 26.

@setfilename info-file-name

Provide a name for the Info file. See Section 1.4 [General Syntactic Conven-
tions], page 7.

@settitle title

Provide a title for page headers in a printed manual. See Section 1.4 [General
Syntactic Conventions], page 7.

@shortcontents

Print a short table of contents. Not relevant to Info, which uses menus rather
than tables of contents. A synonym for @summarycontents. See Section 4.2
[Generating a Table of Contents], page 38.

@smallbook

Cause TEX to produce a printed manual in a 7 by 9.25 inch format rather than
the regular 8.5 by 11 inch format. See Section 18.8 [Printing Small Books],
page 116. Also, see Section 10.6 [@smallexample and @smalllisp], page 76.

@smallexample

Indent text to indicate an example. Do not fill, select fixed-width font. In
@smallbook format, print text in a smaller font than with @example. Pair
with @end smallexample. See Section 10.6 [@smallexample and @smalllisp],
page 76.

@smalllisp

Begin an example of Lisp code. Indent text, do not fill, select fixed-width font.
In @smallbook format, print text in a smaller font. Pair with @end smalllisp.
See Section 10.6 [@smallexample and @smalllisp], page 76.

@sp n Skip n blank lines. See Section 16.3 [@sp], page 106.

@strong text

Emphasize text by typesetting it in a bold font for the printed manual and by
surrounding it with asterisks for Info. See Section 8.2.1 [Emphasizing Text],
page 66.

@subheading title

Print an unnumbered subsection-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined with hyphens. See
Section 5.10 [@unnumberedsubsec @appendixsubsec @subheading], page 45.

134 Texinfo 2.10

@subsection title

Begin a subsection within a section. In a printed manual, the subsection title is
numbered and appears in the table of contents. In Info, the title is underlined
with hyphens. See Section 5.9 [@subsection], page 44.

@subsubheading title

Print an unnumbered subsubsection-like heading in the text, but not in the
table of contents of a printed manual. In Info, the title is underlined with
periods. See Section 5.11 [The ‘subsub’ Commands], page 45.

@subsubsection title

Begin a subsubsection within a subsection. In a printed manual, the subsubsec-
tion title is numbered and appears in the table of contents. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands], page 45.

@subtitle title

In a printed manual, set a subtitle in a normal sized font flush to the right-
hand side of the page. Not relevant to Info, which does not have title pages.
See Section 3.4.3 [@title @subtitle and @author Commands], page 29.

@summarycontents

Print a short table of contents. Not relevant to Info, which uses menus rather
than tables of contents. A synonym for @shortcontents. See Section 4.2
[Generating a Table of Contents], page 38.

@syncodeindex from-index into-index

Merge the index named in the first argument into the index named in the
second argument, printing the entries from the first index in @code font. See
Section 15.4 [Combining Indices], page 103.

@synindex from-index into-index

Merge the index named in the first argument into the index named in the second
argument. Do not change the font of from-index entries. See Section 15.4
[Combining Indices], page 103.

@t{text} Print text in a fixed-width font. No effect in Info. See Section 8.2.3 [Fonts],
page 67.

@table formatting-command

Begin a two column table, using @item for each entry. Write each first column
entry on the same line as @item. First column entries are printed in the font
resulting from formatting-command. See Section 12.3 [Making a Two-column
Table], page 85. Also see Section 12.3.1 [@ftable], page 86, and Section 12.3.2
[@itemx], page 86.

@TeX{} Insert the logo TEX. See Section 9.4 [Inserting TEX and c©], page 71.

@tex Enter TEX completely. Pair with @end tex. See Section 17.1 [Using Ordinary
TEX Commands], page 109.

@thischapter

In a heading or footing, stands for the number and name of the current chapter,
in the format ‘Chapter 1: First Chapter’. See Section C.3 [How to Make Your
Own Headings], page 143.

Appendix A: @-Command List 135

@thischaptername

In a heading or footing, stands for the name of the current chapter. See
Section C.3 [How to Make Your Own Headings], page 143.

@thisfile

In a heading or footing, stands for the name of the current @include file. Does
not insert anything if not within an @include file. See Section C.3 [How to
Make Your Own Headings], page 143.

@thispage

In a heading or footing, stands for the current page number. See Section C.3
[How to Make Your Own Headings], page 143.

@thistitle

In a heading or footing, stands for the name of the document, as specified by
the @settitle command. See Section C.3 [How to Make Your Own Headings],
page 143.

@tindex entry

Add entry to the index of data types. See Section 15.1 [Defining the Entries of
an Index], page 101.

@title title

In a printed manual, set a title flush to the left-hand side of the page in a
larger than normal font and underline it with a black rule. Not relevant to Info,
which does not have title pages. See Section 3.4.3 [The @title @subtitle and
@author Commands], page 29.

@titlefont{text}

In a printed manual, print text in a larger than normal font. Not relevant
to Info, which does not have title pages. See Section 3.4.2 [The @titlefont

@center and @sp Commands], page 29.

@titlepage

Indicate to Texinfo the beginning of the title page. Write command on a line
of its own. Pair with @end titlepage. Nothing between @titlepage and @end

titlepage appears in Info. See Section 3.4.1 [@titlepage], page 28.

@today{} Insert the current date, in ‘1 Jan 1900’ style. See Section C.3 [How to Make
Your Own Headings], page 143.

@top title

In a Texinfo file to be formatted with makeinfo, identify the topmost node line
in the file, which must be written on the line immediately preceding the @top

command. Used for makeinfo’s node pointer insertion feature. The title is un-
derlined with asterisks. Both the node line and the @top line normally should be
enclosed by @ifinfo and @end ifinfo. In TEX and texinfo-format-buffer,
the @top command is merely a synonym for @unnumbered. See Section 6.3
[Creating Pointers with makeinfo], page 49.

@unnumbered title

In a printed manual, begin a chapter that appears without chapter numbers of
any kind. The title appears in the table of contents of a printed manual. In

136 Texinfo 2.10

Info, the title is underlined with asterisks. See Section 5.5 [@unnumbered and
@appendix], page 43.

@unnumberedsec title

In a printed manual, begin a section that appears without section numbers of
any kind. The title appears in the table of contents of a printed manual. In Info,
the title is underlined with equal signs. See Section 5.8 [Section Commands],
page 44.

@unnumberedsubsec title

In a printed manual, begin an unnumbered subsection within a chapter.
The title appears in the table of contents of a printed manual. In Info,
the title is underlined with hyphens. See Section 5.10 [@unnumberedsubsec
@appendixsubsec @subheading], page 45.

@unnumberedsubsubsec title

In a printed manual, begin an unnumbered subsubsection within a chapter. The
title appears in the table of contents of a printed manual. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands], page 45.

@var{metasyntactic-variable}

Highlight a metasyntactic variable, which is something that stands for another
piece of text. Thus, in this entry, the word metasyntactic-variable is highlighted
with @var. See Section 8.1.5 [Indicating Metasyntactic Variables], page 64.

@vindex entry

Add entry to the index of variables. See Section 15.1 [Defining the Entries of
an Index], page 101.

@vskip amount

in a printed manual, insert whitespace so as to push text on the remainder of
the page towards the bottom of the page. Used in formatting the copyright
page with the argument ‘0pt plus 1filll’. (Note spelling of ‘filll’.) @vskip

may be used only in contexts ignored for Info. See Section 3.4.4 [The Copyright
Page and Printed Permissions], page 30.

@w{text} Prevent text from being split across two lines. Do not end a paragraph that
uses @w with an @refill command. In the Texinfo file, keep text on one line.
See Section 16.2 [@w], page 106.

@xref{node-name, [entry], [topic], [info-file], [manual]}
Make a reference that starts with ‘See’ in a printed manual. Follow command
with a punctuation mark. Only the first argument is mandatory. See Section 7.3
[@xref], page 54.

137

Appendix B Include Files

When TEX or an Info formatting command sees an @include command in a Texinfo file, it
processes the contents of the file named by the command and incorporates them into the
dvi or Info file being created. Index entries from the included file are incorporated into the
indices of the output file.

B.1 How to Use Include Files

To include another file within a Texinfo file, write the @include command at the beginning
of a line and follow it on the same line by the name of a file to be included. For example:

@include chap47.texinfo

An included file should simply be a segment of text that you expect to be included as-is
into the overall or outer Texinfo file; it should not contain the standard beginning and end
parts of a Texinfo file. In particular, you should not start an included file with a line saying
‘\input texinfo’; if you do, that phrase is inserted into the output file as is. Likewise,
you should not end an included file with an @bye command; that command will stop TEX
processing immediately.

In the past, you did need to write an @setfilename line at the beginning of an in-
cluded file, but no longer; now, it does not matter whether you write such a line. If an
@setfilename line exists in an included file, it is ignored.

Conventionally, an included file begins with an @node line that is followed by an @chapter

line. Each included file is one chapter. This makes it easy to use the regular node and menu
creating and updating commands to create the node pointers and menus within the included
file. However, the simple Emacs node and menu creating and updating commands do not
work with multiple Texinfo files. Thus you cannot use these commands to fill in the ‘Next’,
‘Previous’, and ‘Up’ pointers of the @node line that begins the included file. Also, you
cannot use the regular commands to create a master menu for the whole file. Either you
must insert the menus and the ‘Next’, ‘Previous’, and ‘Up’ pointers by hand, or you must
use the texinfo-multiple-files-update command that is designed for @include files.

B.2 texinfo-multiple-files-update

The texinfo-multiple-files-update command creates or updates ‘Next’, ‘Previous’, and
‘Up’ pointers of included files as well as those in the outer or over all Texinfo file, and it
creates or updates a main menu in the outer file. Depending whether you call it with
optional arguments, it updates only the pointers in the first @node line of the included files
or all of them.

M-x texinfo-multiple-files-update

Called without any arguments:

− Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first @node
line in each file included in an outer or overall Texinfo file.

− Create or update the ‘Top’ level node pointers of the outer or overall file.

− Create or update a main menu in the outer file.

138 Texinfo 2.10

C-u M-x texinfo-multiple-files-update

Called with a prefix argument (a non-nilmake-master-menu argument, if called
from a program), create and insert a master menu in the outer file in addition
to creating or updating pointers in the first @node line in each included file and
creating or updating the ‘Top’ level node pointers of the outer file. The master
menu is made from all the menus in all the included files.

C-u 8 M-x texinfo-multiple-files-update

Called with a numeric prefix argument (a non-nil update-everything argument,
if called from a program):

− Create or update the ‘Top’ level node pointers of the outer or overall file.

− Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the
included files.

− Create or update all the menus of all the included files.

− And then create a master menu in the outer file. This is similar to invoking
texinfo-master-menu with an argument when you are working with just
one file.

Note the use of the prefix argument in interactive use: with a regular prefix argument,
just C-u, the texinfo-multiple-files-update command inserts a master menu; with a
numeric prefix argument, such as C-u 8, the command updates every pointer and menu in
all the files and then inserts a master menu.

B.3 Sample File with @include

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo file
that lists included files within it should contain nothing but the beginning and end parts
of a Texinfo file, and a number of @include commands listing the included files. It should
not even include indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (con-
ventionally, an @chapter node or equivalent), and this node must be the first node in the
included file. Furthermore, each of these highest level nodes in each included file must
be at the same hierarchical level in the file structure. Usually, each is an @chapter, an
@appendix, or an @unnumbered node. Thus, normally, each included file contains one, and
only one, chapter or equivalent-level node.

The outer file should not contain any nodes besides the single ‘Top’ node. The
texinfo-multiple-files-update command will not process them.

Here is an example of an outer Texinfo file with @include files within it before running
texinfo-multiple-files-update, which would insert a main or master menu:

\input texinfo @c -*-texinfo-*-

@setfilename include-example.info

@settitle Include Example

@setchapternewpage odd

@titlepage

@sp 12

@center @titlefont{Include Example}

Appendix B: Include Files 139

@sp 2

@center by Whom Ever

@page

Copyright @copyright{} 1990 Free Software Foundation, Inc.

@end titlepage

@node Top, First, (dir), (dir)

@ifinfo

@chapter Master Menu

@end ifinfo

@include foo.texinfo

@include bar.texinfo

@include index.texinfo

@summarycontents

@contents

@bye

An included file, such as foo.texinfo, might look like this:

@node First, Second, , Top

@chapter First Chapter

Contents of first chapter ...

The full contents of index.texinfo might be as simple as this:

@unnumbered Concept Index, , Second, Top

@printindex cp

The outer Texinfo source file for the GNU Emacs Lisp Reference Manual is named
elisp.texi. This outer file contains a master menu with 417 items in it and a list of 41
@include files.

B.4 Evolution of Include Files

When Info was first created, it was customary to create many small Info files on one subject.
Each Info file was formatted from its own Texinfo source file. This custom meant that Emacs
did not need to make a large buffer to hold the whole of a large Info file when someone
wanted information; instead, Emacs allocated just enough memory for the small Info file
that contained the particular information sought. This way, Emacs could avoid wasting
memory.

References from one file to another were made by referring to the file name as well as the
node name. (See Section 6.5 [Referring to Other Info Files], page 52. Also, see Section 7.3.4
[@xref with Four and Five Arguments], page 57.)

Include files were designed primarily as a way to create a single, large printed manual
out of several smaller Info files. In a printed manual, all the references were within the same
document, so TEX could automatically determine the references’ page numbers. The Info

140 Texinfo 2.10

formatting commands used include files only for creating joint indices; each of the individual
Texinfo files had to be formatted for Info individually. (Each, therefore, required its own
@setfilename line.)

However, because large Info files are now split automatically, it is no longer necessary to
keep them small.

Nowadays, multiple Texinfo files are used mostly for large documents, such as the GNU
Emacs Lisp Reference Manual, and for projects in which several different people write
different sections of a document simultaneously.

In addition, the Info formatting commands have been extended to work with the
@include command so as to create a single large Info file that is split if necessary into
smaller files. This means that you can write menus and cross references without naming
the different Texinfo files.

141

Appendix C Page Headings

Most printed manuals contain headings along the top of every page except the title and
copyright pages. Some manuals also contain footings. (Headings and footings have no
meaning to Info, which is not paginated.)

Texinfo provides standard heading formats for manuals that are printed on one side of
each sheet of paper and for manuals that are printed on both sides of the paper. Usually,
you will use one or other of these formats, but you can specify your own format, if you wish.

In addition, you can specify whether chapters should begin on a new page, or merely
continue the same page as the previous chapter; and if chapters begin on new pages, you
can specify whether they must be odd-numbered pages.

By convention, a book is printed on both sides of each sheet of paper. When you open a
book flat, the right-hand page is odd-numbered, and chapters begin on right-hand pages—a
preceding left-hand page is left blank if necessary. Reports, however, are often printed on
just one side of paper, and chapters begin on a fresh page immediately following the end of
the preceding chapter. In short or informal reports, chapters often do not begin on a new
page at all, but are separated from the preceding text by a small amount of whitespace.

The @setchapternewpage command controls whether chapters begin on new pages, and
whether one of the standard heading formats is used. In addition, Texinfo has several
heading and footing commands that you can use to generate your own heading and footing
formats.

In Texinfo, headings and footings are single lines at the tops and bottoms of pages; you
cannot create multiline headings or footings. Each header or footer line is divided into three
parts: a left part, a middle part, and a right part. Any part, or a whole line, may be left
blank. Text for the left part of a header or footer line is set flushleft; text for the middle
part is centered; and, text for the right part is set flushright.

C.1 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side of each
sheet of paper, and the other for manuals printed on both sides of the paper.

By default, nothing is specified for the footing of a Texinfo file, so the footings remains
blank.

The standard format for single-sided printing consists of a header line in which the left-
hand part contains the name of the chapter, the central part is blank, and the right-hand
part contains the page number.

The single-sided page looks like this:

| |

| chapter page number |

| |

| Start of text ... |

| |

| |

142 Texinfo 2.10

The standard format for two-sided printing depends on whether the page number is even
or odd. By convention, even-numbered pages are on the left- and odd-numbered pages are
on the right. (TEX will adjust the widths of the left- and right-hand margins. Usually,
widths are correct, but during double-sided printing, it is wise to check that pages will bind
properly—sometimes a printer will produce output in which the even-numbered pages have
a larger right-hand margin than the odd-numbered pages.)

In the standard double-sided format, the left part of the left-hand (even-numbered) page
contains the page number, the central part is blank, and the right part contains the title
(specified by the @settitle command). The left part of the right-hand (odd-numbered)
page contains the name of the chapter, the central part is blank, and the right part contains
the page number.

The two pages, side by side as in an open book, look like this:

_______________________ _______________________

| | | |

| page number title | | chapter page number |

| | | |

| Start of text ... | | Start of text ... |

| | | |

| | | |

The chapter name is preceded by the word ‘Chapter’, the chapter number and a colon.
This makes it easier to keep track of where you are in the manual.

C.2 Specifying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo file until it reaches
the @end titlepage command. Thus, the title and copyright pages are not numbered.
The @end titlepage command causes TEX to begin to generate page headings according
to a standard format specified by the @setchapternewpage command that precedes the
@titlepage section.

There are four possibilities:

No @setchapternewpage command
Cause TEX to specify the single-sided heading format, with chapters on new
pages. This is the same as @setchapternewpage on.

@setchapternewpage on

Specify the single-sided heading format, with chapters on new pages.

@setchapternewpage off

Cause TEX to start new chapters on the same page as the the last page of the
preceding chapter, after skipping some vertical whitespace. It also causes TEX
to typeset for double-sided printing.

@setchapternewpage odd

Specify the double-sided heading format, with chapters on new pages.

Texinfo lacks an @setchapternewpage even command.

Appendix C: Page Headings 143

C.3 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own.

Texinfo provides six commands for specifying headings and footings. The
@everyheading and @everyfooting commands generate headers and footers that are the
same for both even- and odd-numbered pages. The @evenheading and @evenfooting

commands generate headers and footers for even-numbered (left-hand) pages; and the
@oddheading and @oddfooting commands generate headers and footers for odd-numbered
(right-hand) pages.

Write custom heading specifications in the Texinfo file immediately after the @end

titlepage command. Enclose your specifications between @iftex and @end iftex com-
mands since the texinfo-format-buffer command may not recognize them. Also, you
must cancel the predefined heading commands with the @headings off command before
defining your own specifications.

Here is how to tell TEX to place the chapter name at the left, the page number in the
center, and the date at the right of every header for both even- and odd-numbered pages:

@iftex

@headings off

@everyheading @thischapter @| @thispage @| @today{}

@end iftex

You need to divide the left part from the central part and the central part from the right
had part by inserting ‘@|’ between parts. Otherwise, the specification command will not be
able to tell where the text for one part ends and the next part begins.

Each part can contain text or ‘@this...’ commands. The text is printed as if the part
were within an ordinary paragraph in the body of the page. The ‘@this...’ commands
replace themselves with the page number, date, chapter name, or whatever.

Here are the six heading and footing commands:

@everyheading left @| center @| right

@everyfooting left @| center @| right

The ‘every’ commands specify the format for both even- and odd-numbered
pages. These commands are for documents that are printed on one side of each
sheet of paper, or for documents in which you want symmetrical headers or
footers.

@evenheading left @| center @| right

@oddheading left @| center @| right

@evenfooting left @| center @| right

@oddfooting left @| center @| right

The ‘even’ and ‘odd’ commands specify the format for even-numbered pages
and odd-numbered pages. These commands are for books and manuals that
are printed on both sides of each sheet of paper.

Use the ‘@this...’ commands to provide the names of chapters and sections and the
page number. You can use the ‘@this...’ commands in the left, center, or right portions of
headers and footers, or anywhere else in a Texinfo file so long as they are between @iftex

and @end iftex commands.

144 Texinfo 2.10

Here are the ‘@this...’ commands:

@thispage

Expands to the current page number.

@thischaptername

Expands to the name of the current chapter.

@thischapter

Expands to the number and name of the current chapter, in the format ‘Chapter
1: First Chapter’.

@thistitle

Expands to the name of the document, as specified by the @settitle command.

@thisfile

For @include files only: expands to the name of the current @include file. If
the current Texinfo source file is not an @include file, this command has no
effect. This command does not provide the name of the current Texinfo source
file unless it is an @include file. (See Appendix B [Include Files], page 137, for
more information about @include files.)

You can also use the @today{} command, which expands to the current date, in ‘1 Jan
1900’ format.

Other @-commands and text are printed in a header or footer just as if they were in the
body of a page. It is useful to incorporate text, particularly when you are writing drafts:

@iftex

@headings off

@everyheading @emph{Draft!} @| @thispage @| @thischapter

@everyfooting @| @| Version: 0.27: @today{}

@end iftex

Beware of overlong titles: they may overlap another part of the header or footer and
blot it out.

145

Appendix D Formatting Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistake
you can make with Texinfo: you can make mistakes with @-commands, and you can make
mistakes with the structure of the nodes and chapters.

Emacs has two tools for catching the @-command mistakes and two for catching struc-
turing mistakes.

For finding problems with @-commands, you can run TEX or a region formatting com-
mand on the region that has a problem; indeed, you can run these commands on each region
as you write it.

For finding problems with the structure of nodes and chapters, you can use C-c C-s

(texinfo-show-structure) (and the related occur command) and you can use the M-x

Info-validate command.

The makeinfo program does an excellent job of catching errors and reporting them—far
better than texinfo-format-region or texinfo-format-buffer. In addition, the various
functions for automatically creating and updating node pointers and menus remove many
opportunities for human error.

If you can, use the updating commands to create and insert pointers and menus.
These prevent many errors. Then use makeinfo (or its Texinfo mode manifestations,
makeinfo-region and makeinfo-buffer) to format your file and check for other errors.
This is the best way to work with Texinfo. But if you cannot use makeinfo, or your
problem is very puzzling, then you may want to use the tools described in this appendix.

D.1 Catching Errors with Info Formatting

After you have written part of a Texinfo file, you can use the texinfo-format-region or
the makeinfo-region command to see whether the region formats properly.

Most likely, however, you are reading this section because for some reason you cannot
use the makeinfo-region command; therefore, the rest of this section presumes that you
are using texinfo-format-region.

If you have made a mistake with an @-command, texinfo-format-region will stop
processing at or after the error and display an error message. To see where in the buffer
the error occurred, switch to the ‘*Info Region*’ buffer; the cursor will be in a position
that is after the location of the error. Also, the text will not be formatted after the place
where the error occurred (or more precisely, where it was detected).

For example, if you accidentally end a menu with the command @end menus with an ‘s’
on the end, instead of with @end menu, you will see an error message that says:

@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs, or not long after it.
The buffer will look like this:

146 Texinfo 2.10

---------- Buffer: *Info Region* ----------

* Menu:

* Using texinfo-show-structure:: How to use

‘texinfo-show-structure’

to catch mistakes.

* Running Info-Validate:: How to check for

unreferenced nodes.

@end menus

?
---------- Buffer: *Info Region* ----------

The texinfo-format-region command sometimes provides slightly odd error messages.
For example,

(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays a
message that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is
because the formatting command looks for mismatches between braces as if they were
parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For example, in the fol-
lowing, the closing brace is swapped with the closing parenthesis:

(@xref{Catching Mistakes), for more info.}

Formatting produces:

(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should have
looked like this:

(*Note Catching Mistakes::, for more info.)

Incidently, if you are reading this node in Info and type f RET (Info-follow-
reference), you will generate an error message that says:

No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the first cross reference in this
node and if you type a RET immediately after typing the Info f command, Info will attempt
to go to the referenced node. If you type f catch TAB RET, Info will complete the node
name of the correctly written example and take you to the ‘Catching Mistakes’ node. (If
you try this, you can return from the ‘Catching Mistakes’ node by typing l (Info-last).)

D.2 Catching Errors with TEX Formatting

You can also catch mistakes when you format a file with TEX.

Usually, you will want to do this after you have run texinfo-format-buffer (or, better,
makeinfo-buffer) on the same file, because texinfo-format-buffer sometimes displays
error messages that make more sense than TEX. (See Section D.1 [Debugging with Info],
page 145, for more information.)

For example, TEX was run on a Texinfo file, part of which is shown here:

---------- Buffer: texinfo.texi ----------

Appendix D: Formatting Mistakes 147

name of the texinfo file as an extension. The

@samp{??} are ‘wildcards’ that cause the shell to

substitute all the raw index files. (@xref{sorting

indices, for more information about sorting

indices.)@refill

---------- Buffer: texinfo.texi ----------

(The cross reference lacks a closing brace.) TEX produced the following output, after which
it stopped:

---------- Buffer: *texinfo-tex-shell* ----------

Runaway argument?

{sorting indices, for more information about sorting

indices.) @refill @ETC.

! Paragraph ended before \xref was complete.

<to be read again>

\par

l.27

?

---------- Buffer: *texinfo-tex-shell* ----------

In this case, TEX produced an accurate and understandable error message:

Paragraph ended before \xref was complete.

(Note, however, that TEX translated the ‘@’ into a ‘\’.) Also, ‘\par’ is an internal TEX
command of no relevance to Texinfo.)

Unfortunately, TEX is not always so helpful, and sometimes you have to be truly a
Sherlock Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of two things.

1. You can tell TEX to continue running and to ignore errors as best it can by typing r

RET at the ‘?’ prompt.

This is often the best thing to do. However, beware: the one error may produce a
cascade of additional error messages as its consequences are felt through the rest of the
file. (To stop TEX when it is producing such an avalanche of error messages, type C-d
(or C-c C-d, if you running a shell inside of Emacs.))

2. You can tell TEX to stop this run by typing x RET at the ‘?’ prompt.

Sometimes TEX will format a file without producing error messages even though there
is a problem. This usually occurs if a command is not ended but TEX is able to continue
processing anyhow. For example, if you fail to end an itemized list with the @end itemize

command, TEX will write a dvi file that you can print out. The only error message that
TEX will give you is the somewhat mysterious comment that

(\end occurred inside a group at level 1)

However, if you print the dvi file, you will find that the text of the file that follows the
itemized list is entirely indented as if it were part of the last item in the itemized list. The
error message is the way TEX says that it expected to find an @end command somewhere
in the file; but that it could not determine where it was needed.

148 Texinfo 2.10

Another source of notoriously hard-to-find errors is a missing @end group command. If
you ever are stumped by incomprehensible errors, look for a missing @end group command
first.

If you do not have the header lines in the file, TEX may stop in the beginning of its run
and display output that looks like the following. The ‘*’ indicates that TEX is waiting for
input.

This is TeX, Version 2.0 for Berkeley UNIX

(preloaded format=plain-cm 87.10.25)

(test.texinfo [1])

*

In this case, simply type \end RET after the asterisk. Then put the header lines into the
Texinfo file and run the TEX command again.

D.3 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a
Texinfo file. This is especially true if you are revising or adding to a Texinfo file that
someone else has written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists all the
lines that begin with the @-commands that specify the structure: @chapter, @section,
@appendix, and so on. With an argument (prefix, if interactive), the command also shows
the @node lines. The texinfo-show-structure command is bound to C-c C-s in Texinfo
mode, by default.

The lines are displayed in a buffer called the ‘*Occur*’ buffer. For example, when
texinfo-show-structure was run on an earlier version of this appendix, it produced the
following:

Lines matching "^@\\(chapter \\|sect\\|sub\\|unnum\\|major\\|

heading \\|appendix\\)" in buffer texinfo.texi.

4:@appendix Formatting Mistakes

52:@appendixsec Catching Errors with Info Formatting

222:@appendixsec Catching Errors with @TeX{} Formatting

338:@appendixsec Using @code{texinfo-show-structure}

407:@appendixsubsec Using @code{occur}

444:@appendixsec Finding Badly Referenced Nodes

513:@appendixsubsec Running @code{Info-validate}

573:@appendixsubsec Splitting a File Manually

This says that lines 4, 52, and 222 of texinfo.texi begin with the @appendix,
@appendixsec, and @appendixsec commands respectively. If you move your cursor into
the ‘*Occur*’ window, you can position the cursor over one of the lines and use the C-c

C-c command (occur-mode-goto-occurrence), to jump to the corresponding spot in the
Texinfo file. See Section “Using Occur” in The GNU Emacs Manual, for more information
about occur-mode-goto-occurrence.

The first line in the ‘*Occur*’ window describes the regular expression specified by
texinfo-heading-pattern. This regular expression is the pattern that texinfo-show-

structure looks for. See Section “Using Regular Expressions” in The GNU Emacs
Manual, for more information.

When you invoke the texinfo-show-structure command, Emacs will display the struc-
ture of the whole buffer. If you want to see the structure of just a part of the buffer, of

Appendix D: Formatting Mistakes 149

one chapter, for example, use the C-x n (narrow-to-region) command to mark the region.
(See Section “Narrowing” in The GNU Emacs Manual.) This is how the example used
above was generated. (To see the whole buffer again, use C-x w (widen).)

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list lines beginning with @node as well as the lines beginning with the @-sign commands
for @chapter, @section, and the like.

You can remind yourself of the structure of a Texinfo file by looking at the list in the
‘*Occur*’ window; and if you have mis-named a node or left out a section, you can correct
the mistake.

D.4 Using occur

Sometimes the texinfo-show-structure command produces too much information. Per-
haps you want to remind yourself of the overall structure of a Texinfo file, and are over-
whelmed by the detailed list produced by texinfo-show-structure. In this case, you can
use the occur command directly. To do this, type

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want
to match. (See Section “Regular Expressions” in The GNU Emacs Manual.) The occur

command works from the current location of the cursor in the buffer to the end of the
buffer. If you want to run occur on the whole buffer, place the cursor at the beginning of
the buffer.

For example, to see all the lines that contain the word ‘@chapter’ in them, just type
‘@chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘@chapter’ in the middle of the line.

If you want to see only those lines that start with the word ‘@chapter’, type ‘^@chapter’
when prompted by occur. If you want to see all the lines that end with a word or phrase,
end the last word with a ‘$’; for example, ‘catching mistakes$’. This can be helpful when
you want to see all the nodes that are part of the same chapter or section and therefore
have the same ‘Up’ pointer.

See Section “Using Occur” in The GNU Emacs Manual, for more information.

D.5 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previous’,
‘Up’ or other node pointers fail to point to a node. This command checks that every node
pointer points to an existing node. The Info-validate command works only on Info files,
not on Texinfo files.

The makeinfo program validates pointers automatically, so you do not need to use
the Info-validate command if you are using makeinfo. You only may need to use
Info-validate if you are unable to run makeinfo and instead must create an Info file
using texinfo-format-region or texinfo-format-buffer, or if you write an Info file
from scratch.

150 Texinfo 2.10

D.5.1 Running Info-validate

To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

(Note that the Info-validate command requires an upper case ‘I’. You may also need to
create a tag table before running Info-validate. See Section D.5.3 [Tagifying], page 151.)

If your file is valid, you will receive a message that says “File appears valid”. However,
if you have a pointer that does not point to a node, error messages will be displayed in a
buffer called ‘*problems in info file*’.

For example, Info-validate was run on a test file that contained only the first node of
this manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to
anything (which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘Texinfo Mode’ to our test case but we don’t specify
a ‘Previous’ for this node. Then we will get the following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because every ‘Next’ pointer should be matched by a ‘Previous’ (in the node where
the ‘Next’ points) which points back.

Info-validate also checks that all menu items and cross references point to actual
nodes.

Note that Info-validate requires a tag table and does not work with files that have been
split. (The texinfo-format-buffer command automatically splits files larger than 100,000
bytes.) In order to use Info-validate on a large file, you must run texinfo-format-

buffer with an argument so that it does not split the Info file; and you must create a tag
table for the unsplit file.

D.5.2 Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag table. The command will
not work on the indirect subfiles that are generated when a master file is split. If you have
a large file (longer than 70,000 bytes or so), you need to run the texinfo-format-buffer

or makeinfo-buffer command in such a way that it does not create indirect subfiles. You
will also need to create a tag table for the Info file. After you have done this, you can run
Info-validate and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent texinfo-format-buffer from
splitting a Texinfo file into smaller Info files, give a prefix to the M-x texinfo-format-

buffer command:

C-u M-x texinfo-format-buffer

or else

C-u C-c C-e C-b

When you do this, Texinfo will not split the file and will not create a tag table for it.

Appendix D: Formatting Mistakes 151

D.5.3 Tagifying a File

After creating an unsplit Info file, you must create a tag table for it. Visit the Info file you
wish to tagify and type:

M-x Info-tagify

(Note the upper case I in Info-tagify.) This creates an Info file with a tag table that you
can validate.

The third step is to validate the Info file:

M-x Info-validate

(Note the upper case I in Info-validate.) In brief, the steps are:

C-u M-x texinfo-format-buffer

M-x Info-tagify

M-x Info-validate

After you have validated the node structure, you can rerun texinfo-format-buffer in
the normal way so it will construct a tag table and split the file automatically, or you can
make the tag table and split the file manually.

D.5.4 Splitting a File Manually

You should split a large file or else let the texinfo-format-buffer or makeinfo-buffer
command do it for you automatically. (Generally you will let one of the formatting com-
mands do this job for you. See Chapter 19 [Creating an Info File], page 117.)

The split off files are called the indirect subfiles.

Info files are split to save memory. With smaller files, Emacs does not have make such
a large buffer to hold the information.

If an Info file has more than 30 nodes, you should also make a tag table for it. See
Section D.5.1 [Using Info-validate], page 150, for information about creating a tag table.
(Again, tag tables are usually created automatically by the formatting command; you only
need to create a tag table yourself if you are doing the job manually. Most likely, you will
do this for a large, unsplit file on which you have run Info-validate.)

Visit the file you wish to tagify and split and type the two commands:

M-x Info-tagify

M-x Info-split

(Note that the ‘I’ in ‘Info’ is upper case.)

When you use the Info-split command, the buffer is modified into a (small) Info file
which lists the indirect subfiles. This file should be saved in place of the original visited file.
The indirect subfiles are written in the same directory the original file is in, with names
generated by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a
directory of subfiles.

153

Appendix E Refilling Paragraphs

The @refill command refills and, optionally, indents the first line of a paragraph.1

If a paragraph contains long @-constructs, the paragraph may look badly filled after being
formatted by texinfo-format-region or texinfo-format-buffer. this is because both
texinfo-format-region and texinfo-format-buffer remove @-commands from format-
ted text but do not refill paragraphs automatically although both TEX and makeinfo do.
Consequently, some lines become shorter than they were.

To cause the texinfo-format-region and texinfo-format-buffer commands to refill
a paragraph, write @refill at the end of the paragraph. This command refills a paragraph
in the Info file after all the other processing has been done. @refill has no effect on TEX
or makeinfo, which always fill every paragraph that ought to be filled.

For example, without any indenting, the following

To use @code{foo}, pass @samp{xx%$} and

@var{flag} and type @kbd{x} after running

@code{make-foo}.@refill

produces (in the Info file)

To use ‘foo’, pass ‘xx%$’ and FLAG and type ‘x’ after

running ‘make-foo’.

whereas without the @refill it would produce

To use ‘foo’, pass ‘xx%$’ and

FLAG and type ‘x’ after running

‘make-foo’.

with the line broken at the same place as in the Texinfo input file.

Write the @refill command at the end of the paragraph. Do not put a space before
@refill; otherwise the command might be put at the beginning of the line when you refill
the paragraph in the Texinfo file with M-q (fill-paragraph). If this were to happen, the
@refill command might fail to work.

Do not put braces after @refill. The @refill command is the only ‘within-paragraph’
@-command that does not take braces. Because an @refill command is placed at the end
of a paragraph and never at the beginning of a line, the braces are not necessary.

As an exception to the general rule, you can write an @refill command at the end of
a footnote before the footnote’s closing brace, even if the footnote text is embedded in a
the middle of a paragraph in the Texinfo file. This is because the footnote text is extracted
from the surrounding text and formatted on its own.

Also, do not end a paragraph that uses either @* or @w with an @refill command;
otherwise, texinfo-format-buffer or texinfo-format-buffer will refill the paragraph
in spite of those commands.

In addition to refilling, the @refill command may insert spaces at the beginning
of the first line of the paragraph, thereby indenting that line. The argument to the

1 Perhaps the command should have been called the @refillandindent command, but @refill is shorter
and the name was chosen before indenting was possible.

154 Texinfo 2.10

@paragraphindent command specifies the amount of indentation: if the value of the argu-
ment is 0, an @refill command deletes existing indentation. If the value of the argument
is greater than 0, an @refill command indents the paragraph by that number of spaces.
And if the value of the argument is ‘asis’, an @refill command does not change existing
indentation. For more information about the @paragraphindent command, Section 3.2.6
[Paragraph Indenting], page 27.

The @refill command does not indent entries in a list, table, or definition, nor does
@refill indent paragraphs preceded by @noindent.

155

Appendix F @-Command Syntax

The character ‘@’ is used to start special Texinfo commands. (It has the same meaning that
‘\’ has in plain TEX.) Texinfo has four types of @-command:

1. Non-alphabetic commands.
These commands consist of an @ followed by a punctuation mark or other
character that is not part of the alphabet. Non-alphabetic commands are almost
always part of the text within a paragraph, and never take any argument.
The two characters (@ and the other one) are complete in themselves; none is
followed by braces. The non-alphabetic commands are: @., @:, @*, @@, @{, and
@}.

2. Alphabetic commands that do not require arguments.
These commands start with @ followed by a word followed by left- and right-
hand braces. These commands insert special symbols in the document; they
do not require arguments. For example, @dots{} ⇒ ‘...’, @equiv{} ⇒ ‘≡ ’,
@TeX{} ⇒ ‘TEX’, and @bullet{} ⇒ ‘•’.

3. Alphabetic commands that do require arguments.
These commands start with @ followed by a letter or a word, followed by
an argument within braces. For example, the command @dfn indicates the
introductory or defining use of a term; it is used as follows: ‘In Texinfo,

@@-commands are @dfn{mark-up} commands.’

4. Alphabetic commands that occupy an entire line.
These commands occupy an entire line. The line starts with @, followed by the
name of the command (a word) such as @center or @cindex. If no argument
is needed, the word is followed by the end of the line. If there is an argument,
it is separated from the command name by a space. Braces are not used.

Thus, the alphabetic commands fall into three classes that have different argument
syntax. You cannot tell to which class a command belongs by the appearance of its name,
but you can tell by the command’s meaning: if the command stands for a special glyph,
it is in class 2 and does not require an argument; if it makes sense to use the command
together with other text as part of a paragraph, the command is in class 3 and must be
followed by an argument in braces; otherwise, it is in class 4 and uses the rest of the line as
its argument.

The purpose of having a different syntax for commands of classes 3 and 4 is to make
Texinfo files easier to read, and also to help the GNU Emacs paragraph and filling commands
work properly. There is only one exception to this rule: the command @refill, which is
always used at the end of a paragraph immediately following the final period or other
punctuation character. @refill takes no argument and does not require braces. @refill
never confuses the Emacs paragraph commands because it cannot appear at the beginning
of a line.

157

Appendix G Second Edition Features

The second edition of the Texinfo manual describes more than 20 new Texinfo mode com-
mands and more than 50 previously undocumented Texinfo @-commands. This edition is
more than twice the length of the first edition.

Here is a brief description of the new commands.

G.1 New Texinfo Mode Commands

Texinfo mode provides commands and features especially designed for working with Texinfo
files. More than 20 new commands have been added, including commands for automatically
creating and updating nodes and menus, a tedious task when done by hand.

The keybindings are intended to be somewhat mnemonic.

Update Pointers

Create or update ‘Next’, ‘Previous’, and ‘Up’ node pointers.

See Section 2.3 [Updating Nodes and Menus], page 15.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Create or update menus.

See Section 2.3 [Updating Nodes and Menus], page 15.

C-c C-u m Create or update a master menu.
With an argument, first create or
update all nodes and regular menus.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all the menus
in a buffer; with an argument,
first update all the nodes.

Format for Info

Provide keybindings both for the Info formatting commands that are written in Emacs Lisp
and for makeinfo which is written in C.

See Section 2.4 [Info Formatting], page 19.

Use the Emacs lisp texinfo-format... commands:

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

Use makeinfo:

C-c C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-l Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

158 Texinfo 2.10

Typeset and Print

Typeset and print Texinfo documents from within Emacs.

See Section 2.5 [Formatting and Printing], page 19.

C-c C-t C-r Run TEX on the region.
C-c C-t C-b Run TEX on the buffer.
C-c C-t C-i Run texindex.

C-c C-t C-p Print the dvi file.
C-c C-t C-q Show the print queue.
C-c C-t C-d Delete a job from the print queue.
C-c C-t C-k Kill the current TEX formatting job.
C-c C-t C-x Quit a currently stopped TEX formatting job.
C-c C-t C-l Recenter the output buffer.

Other Updating Commands

The “other updating commands” do not have standard keybindings because they are less
frequently used.

See Section 2.3.2 [Other Updating Commands], page 18.

M-x texinfo-insert-node-lines

Insert missing node lines using
section titles as node names.

M-x texinfo-multiple-files-update

Update a multi-file document.

M-x texinfo-indent-menu-description

Indent descriptions in menus.

M-x texinfo-sequential-node-update

Insert node pointers in strict sequence.

G.2 New Texinfo @-Commands

The second edition of the Texinfo manual describes more than 50 commands that were not
described in the first edition. A third or so of these commands existed in Texinfo but were
not documented in the manual; the others are new. Here is a listing, with brief descriptions
of them:

Indexing

Commands for creating your own index and for merging two indices:

See Chapter 15 [Indices], page 101.

@defindex index-name

Define a new index and its indexing command.
See also the @defcodeindex command.

@synindex from-index into-index

Appendix G: Second Edition Features 159

Merge first index into second index.
See also the @syncodeindex command.

Definitions

Many commands to help you describe functions, variables, macros, commands, user options,
special forms and other such artifacts in a uniform format.

See Chapter 13 [Definition Commands], page 87.

@deffn category name arguments...

Format a description for functions, interactive
commands, and similar entities.

@defvr, @defop, ...

15 other related commands.

Glyphs

Special symbols to indicate the results of evaluation or an expansion, printed output, an
error message, equivalence of expressions, and the location of point.

See Chapter 11 [Special Glyphs], page 79.

@equiv{} Equivalence:‘≡’

@error{} Error message: ‘ error ’

@expansion{} Macro expansion: ‘ 7→’

@point{} Position of point: ‘?’

@print{} Printed output: ‘ a ’

@result{} Result of an expression: ‘⇒’

Headings

Commands to customize headings.

See Appendix C [Headings], page 141.

@headings on-off-single-double

Headings on or off, single or double-sided.

@evenfooting [left] @| [center] @| [right]

Footings for even-numbered (left-hand) pages.

@evenheading, @everyheading, @oddheading, ...

Five other related commands.

@thischapter

Insert name of chapter and chapter number.

160 Texinfo 2.10

@thischaptername, @thisfile, @thistitle, @thispage

Related commands.

Formatting

Commands for formatting text:

See Chapter 10 [Quotations and Examples], page 73.

@cartouche Draw rounded box surrounding text (not in Info).

@exdent line-of-text

Remove indentation.

@flushleft Left justify.

@flushright Right justify.

@format Do not narrow nor change font.

@ftable formatting-command

Two column table with indexing.

@lisp For an example of Lisp code.

@smallexample

Like @example but for @smallbook.

@heading series for Titles

Produce unnumbered headings that do not appear in a table of contents.

See Chapter 5 [Structuring], page 41.

@heading title

Unnumbered section-like heading not listed
table of contents of a printed manual.

@chapheading, @majorheading

@subheading, @subsubheading

Related commands.

Fonts

Font commands.

See Section 8.2.2 [Smallcaps], page 66, and
Section 8.2.3 [Fonts], page 67.

@r{text} Print in roman font.

@sc{text} Print in small caps font.

Appendix G: Second Edition Features 161

Miscellaneous

This list includes a useful cross reference command among others.

See Section 3.4.3 [@title @subtitle and @author Commands], page 29,
see Section 7.1 [Cross Reference Commands], page 53,
see Section 9.2 [Format a Dimension], page 70,
see Section 9.5 [Inserting a Minus Sign], page 71,
see Chapter 14 [Footnotes], page 99,
see Section 18.7 [Overfull Hboxes], page 116, and
see Appendix E [Refilling Paragraphs], page 153.

@author author

Typeset author’s names.

@finalout Produce cleaner printed output.

@footnotestyle

Specify footnote style.

@dmn{dimension}

Format a dimension.

@minus{} Generate a minus sign.

@paragraphindent

Specify paragraph indentation.

@ref{node-name, [entry], [topic], [info-file], [manual]}
Make a reference. In the printed manual, the
reference does not start with a ‘See’.

@title title

Title in the alternative title page format.

@subtitle subtitle

Subtitle in the alternative title page format.

@today{} Insert the current date.

163

Command and Variable Index

This is an alphabetical list of all the @-commands and several variables. To make the list
easier to use, the commands are listed without their preceding ‘@’.

*
* (force line break) . 105

.

. (true end of sentence) . 69

:
: (suppress widening) . 69

@
@ (single ‘@’) . 69

{
{ (single ‘{’) . 69

}
} (single ‘}’) . 69

A
appendix . 43
appendixsec . 44
appendixsection . 44
appendixsubsec . 45
appendixsubsubsec . 45
apply . 96
author . 29

B
b (bold font) . 67
buffer-end . 88
bullet . 71
bye . 37, 38

C
c (comment) . 7
cartouche . 78
center . 29
chapheading . 43
chapter . 43
cindex . 102
cite . 65
code . 62
comment . 7
contents . 38
copyright . 30, 71

D
defcodeindex . 104
defcv . 94
deffn . 89
defindex . 104
defivar . 94
defmac . 90
defmethod . 95
defop . 94
defopt . 91
defspec . 90
deftp . 96
deftypefn . 91
deftypefun . 92
deftypevar . 93
deftypevr . 93
defun . 89
defvar . 90
defvr . 90
dfn . 65
display . 77
dmn . 70
dots . 70

E
emph . 66
enable . 93
end . 73, 83
end titlepage . 31
enumerate . 85
evenfooting . 143
evenheading . 143
everyfooting . 143
everyheading . 143
example . 74
exdent . 77

164 Texinfo 2.10

F
file . 65
filll . 30
finalout . 116
findex . 102
flushleft . 77
flushright . 77
foobar . 88, 91, 92, 93
footnote . 99
footnotestyle . 99
format . 77
forward-word . 87
ftable . 86

G
group . 106

H
heading . 44
headings . 31

I
i (italic font) . 67
ifinfo . 109
iftex . 109
ignore . 7
include . 137
Info-validate . 149
INFOPATH . 124
inforef . 59
item . 84, 85
itemize . 83
itemx . 86

K
kbd . 62
key . 63
kindex . 102

L
lisp . 76
lpr (dvi print command) . 112

M
majorheading . 43
makeinfo-buffer . 119
makeinfo-kill-job . 120
makeinfo-recenter-output-buffer 120
makeinfo-region . 119
menu . 50
minus . 71

N
need . 107
noindent . 75

O
occur . 149
occur-mode-goto-occurrence 15
oddfooting . 143
oddheading . 143

P
page . 106
page-delimiter . 15
paragraphindent . 27
pindex . 102
printindex . 37
pxref . 59

Q
quotation . 74

R
r (Roman font) . 67
ref . 58
refill . 153

S
samp . 64
sc (small caps font) . 66
section . 44
setchapternewpage . 26
setfilename . 25
settitle . 25
shortcontents . 38
smallbook . 116
smallexample . 76
smalllisp . 76
sp (line spacing) . 106
sp (titlepage line spacing) . 29
strong . 66
subheading . 45
subsection . 44
subsubheading . 45
subsubsection . 45
subtitle . 29
summarycontents . 38
syncodeindex . 103
synindex . 104

Command and Variable Index 165

T
t (typewriter font) . 67
table . 85
texi2dvi (shell script) . 112
texindex . 111
texinfo-all-menus-update . 17
texinfo-every-node-update 17
texinfo-format-buffer 19, 120
texinfo-format-region 19, 120
texinfo-indent-menu-description 18
texinfo-insert-@code . 14
texinfo-insert-@dfn . 14
texinfo-insert-@end . 14
texinfo-insert-@example . 14
texinfo-insert-@item . 14
texinfo-insert-@kbd . 14
texinfo-insert-@node . 14
texinfo-insert-@noindent . 14
texinfo-insert-@samp . 14
texinfo-insert-@var . 14
texinfo-insert-braces . 14
texinfo-insert-node-lines 18
texinfo-make-menu . 16
texinfo-master-menu . 16
texinfo-multiple-files-update 18, 137
texinfo-sequential-node-update 18
texinfo-show-structure 15, 148
texinfo-tex-buffer . 19
texinfo-tex-print . 20
texinfo-tex-region . 19
texinfo-update-node . 16
TeX . 71
TEXINPUTS . 115

thischapter . 144
thischaptername . 144
thisfile . 144
thispage . 144
thistitle . 144
tindex . 102
title . 29
titlefont . 29
titlepage . 28
today . 144
top . 42

U
unnumbered . 43
unnumberedsec . 44
unnumberedsubsec . 45
unnumberedsubsubsec . 45
up-list . 14

V
var . 64
vindex . 102
vskip . 30

W
w (prevent line break) . 106

X
xref . 54

167

Concept Index

.

.cshrc initialization file . 115

.profile initialization file . 115

@
@-Command list . 125
@-Command Syntax . 155
@-commands . 6

A
Abbreviations for keys . 63
Adding a new info file . 123
Alphabetical @-command list 125
Another Info directory . 124
Automatic pointer creation with makeinfo 49
Automatically insert nodes, menus 15

B
Badly referenced nodes . 149
Beginning a Texinfo file . 23
Beginning line of a Texinfo file 25
Black rectangle in hardcopy 116
Book, printing small . 116
Box with rounded corners . 78
Braces, inserting . 69
Breaks in a line . 105
Buffer formatting and printing 19
Bullets, inserting . 70

C
Capitalizing index entries . 102
Catching errors with Info formatting 145
Catching errors with TEX formatting 146
Catching mistakes . 145
Chapter structuring . 41
Characteristics of printed manual 5
Checking for badly referenced nodes 149
Combining indices . 103
Command definitions . 96
Command invocation . 52
Commands to insert single characters 69
Commands using ordinary TEX 109
Commands, inserting them . 13
Comments . 7
Compile command for formatting 114
Conditionally visible text . 109
Conditions for copying Texinfo 1
Contents, table of . 38
Contents-like outline of file structure 15
Conventions for writing definitions 96

Conventions, syntactic . 7

Copying conditions . 1

Copying permissions . 34

Copying software . 33

Copyright page . 30

Correcting mistakes . 145

Create nodes, menus automatically 15

Creating an Info file . 117

Creating an unsplit file . 150

Creating index entries . 101

Creating indices . 101

Creating pointers with makeinfo 49

Cross reference parts . 53

Cross references . 53

Cross references using @inforef 59

Cross references using @pxref 59

Cross references using @ref . 58

Cross references using @xref 54

D
Debugging the Texinfo structure 145

Debugging with Info formatting 145

Debugging with TEX formatting 146

Defining indexing entries . 101

Defining new indices . 104

Definition commands . 87

Definition conventions . 96

Definition template . 87

Different cross reference commands 53

Dimension formatting . 70

dir directory for Info installation 123

dir file listing . 123

Display formatting . 77

Distribution . 33

Dots, inserting . 70

dvi file . 111

168 Texinfo 2.10

E
Ellipsis, inserting . 70
Emacs . 13
Emacs shell, printing from . 112
Emphasizing text . 65
Emphasizing text, font for . 66
End of header line . 27
End of node footnote style . 99
End titlepage starts headings 31
Ending a Texinfo file . 37
Entries for an index . 101
Entries, making index . 101
Enumeration . 85
Equivalence, indicating it . 80
Error message, indicating it . 80
Evaluation special glyph . 79
Example for a small book . 76
Example menu . 51
Examples . 74
Expansion, indicating it . 79

F
File beginning . 23
File ending . 37
File section structure, showing it 15
Filling paragraphs . 153
Final output . 116
Finding badly referenced nodes 149
First line of a Texinfo file . 25
Fonts for indices . 104
Fonts for printing, not Info . 67
Footings . 141
Footnotes . 99
Format a dimension . 70
Format and print in Texinfo mode 113
Format with the compile command 114
Formatting a file for Info . 117
Formatting commands . 6
Formatting examples . 74
Formatting for Info . 19
Formatting for printing . 19
Formatting headings and footings 141
Formatting requirements . 115
Frequently used commands, inserting 13
Function definitions . 96

G
General syntactic conventions 7
Generating menus with indices 37
Glyphs for examples . 79
GNU Emacs . 13
GNU Emacs shell, printing from 112
Group . 106

H
Hardcopy, printing it . 111
Hboxes, overfull . 116
Header for Texinfo files . 24
Header of a Texinfo file . 25
Headings . 141
Headings begin . 31
Highlighting . 61
Holding text together vertically 106

I
If text conditionally visible . 109
‘ifinfo’ permissions . 34
Ignored text . 7
Include files . 137
Indentation undoing . 77
Indenting paragraphs . 27
Index entries . 101
Index entries, making . 101
Index entry capitalization . 102
Index font types . 102
Indexing table entries automatically 86
Indicating commands, definitions, etc. 61
Indicating evaluation . 79
Indices . 101
Indices, combining them . 103
Indices, defining new . 104
Indices, printing and menus . 37
Indices, sorting . 111
Indices, two letter names . 103
Indirect subfiles . 117
Info file installation . 123
Info file requires @setfilename 25
Info file, listing new one . 123
Info file, splitting manually . 151
Info files . 4
Info formatting . 19
Info installed in another directory 124
Info validating a large file . 150
Info, creating an on-line file 117
Initialization file for TEX input 115
Insert nodes, menus automatically 15
Inserting @, braces, and periods 69
Inserting dots . 70
Inserting ellipsis . 70
Inserting frequently used commands 13
Inserting special characters and symbols 69
Installing an Info file . 123
Installing Info in another directory 124
Introduction . 34
Invoking commands, convention for 52
Itemization . 83

K
Keys, recommended names . 63

Concept Index 169

L
License agreement . 33
Line breaks . 105
Line breaks, preventing . 106
Line spacing . 106
Lisp example . 76
Lisp example for a small book 76
List of @-Commands . 125
Listing a new info file . 123
Lists and tables, making them 83
Local variables . 114
Location of menus . 50
Looking for badly referenced nodes 149

M
Macro definitions . 96
makeinfo inside Emacs . 119
makeinfo options . 117
Making a printed manual . 111
Making a tag table manually 150
Making breaks . 105
Making cross references . 53
Making lists and tables . 83
Manual characteristics, printed 5
Marking text within a paragraph 61
Marking words and phrases . 61
Master menu . 32
Master menu parts . 32
Menu example . 51
Menu item writing . 50
Menu location . 50
Menus . 50
Menus generated with indices 37
Meta-syntactic chars for optional parameters . . . 88
META key . 63
Minimal Texinfo file . 8
Mistakes, catching . 145
Mode, using Texinfo . 13
Must have in Texinfo file . 8

N
Names for indices . 103
Names recommended for keys 63
Naming a ‘Top’ Node in references 58
Need space at page bottom 107
New index defining . 104
New info file, listing it . 123
Node line writing . 48
Node, Top . 32
Nodes for menus are short . 50
Nodes in other Info files . 52
Nodes, catching mistakes . 145
Nodes, checking for badly referenced 149

O
Occurrences, listing with @occur 149
Optional and repeated parameters 88
Options for makeinfo . 117
Ordinary TEX commands, using 109
Other Info files’ nodes . 52
Outline of file structure, showing it 15
Overfull “Hboxes” . 116
Overview of Texinfo . 3

P
Page breaks . 106
Page delimiter in Texinfo mode 15
Page headings . 141
Page numbering . 141
Page sizes for books . 116
Pages, starting odd . 26
Paragraph indentation . 27
Paragraph, marking text within 61
Parameters, optional and repeated 88
Part of file formatting and printing 19
Parts of a cross reference . 53
Parts of a master menu . 32
Periods, inserting . 69
Permissions . 34
Permissions, printed . 30
Point, indicating it in a buffer 81
Pointer creation with makeinfo 49
Pointer validation with makeinfo 119
Preparing for use of TEX . 115
Preventing breaks . 105
Print and format in Texinfo mode 113
Printed manual characteristics 5
Printed output, indicating it 80
Printed permissions . 30
Printing a region or buffer . 19
Printing an index . 37
Printing from an Emacs shell 112
Printing hardcopy . 111
Problems, catching . 145

Q
Quotations . 74

170 Texinfo 2.10

R
Recommended names for keys 63
Rectangle, ugly, black in hardcopy 116
References . 53
References using @inforef . 59
References using @pxref. 59
References using @ref . 58
References using @xref . 54
Referring to other Info files . 52
Refilling paragraphs . 153
Region formatting and printing 19
Region printing in Texinfo mode 113
Repeated and optional parameters 88
Requirements for formatting 115
Requirements for updating commands 17
Result of an expression . 79
Running an Info formatter . 19
Running Info-validate . 150
Running makeinfo in Emacs 119

S
Sample function definition . 96
Sample Texinfo file . 9
Section structure of a file, showing it 15
Separate footnote style . 99
Shell, printing from . 112
Shell, running makeinfo in . 119
Short nodes for menus . 50
Showing the section structure of a file 15
Showing the structure of a file 148
Single characters, commands to insert 69
Size of printed book . 116
Small book example . 76
Small book size . 116
Small caps font . 66
Software copying conditions . 33
Sorting indices . 111
Spaces from line to line . 106
Special glyphs . 79
Special insertions . 69
Special typesetting commands 70
Specifying index entries . 101
Splitting an Info file manually 151
Start of header line . 25
Starting chapters . 26
Structure of a file, showing it 15
Structure, catching mistakes in 145
Structuring of chapters . 41
Subsection-like commands . 45
Subsub commands . 45
Syntactic conventions . 7
Syntax of optional and repeated parameters 88

T
Table of contents . 38
Tables and lists, making them 83
Tables with indexes . 86
Tables, making two-column . 85
Tabs; don’t use! . 7
Tag table, making manually 150
Template for a definition . 87
TeX commands, using ordinary 109
TeX index sorting . 111
TeX input initialization . 115
Texinfo file beginning . 23
Texinfo file ending . 37
Texinfo file header . 24
Texinfo file minimum . 8
Texinfo file section structure, showing it 15
Texinfo mode . 13
Texinfo overview . 3
TEXINPUTS environment variable 115
Text conditionally visible . 109
Thin space between number and dimension 70
Title page . 28
Titlepage end starts headings 31
Titlepage permissions . 35
Top node . 32
Top node naming for references 58
Tree structuring . 41
Two letter names for indices 103
Two named items for @table 86
Typesetting commands for dots, etc. 70

U
Unprocessed text . 7
Unsplit file creation . 150
Updating nodes and menus . 15
Updating requirements . 17

V
Validating a large file . 150
Validation of pointers . 119
Value of an expression, indicating 79
Vertically holding text together 106
Visibility of conditional text 109

W
Words and phrases, marking them 61
Writing a menu item . 50
Writing a node Line . 48

i

Short Contents

Texinfo Copying Conditions . 1
1 Overview of Texinfo . 3

2 Using Texinfo Mode . 13

3 Beginning a Texinfo File . 23
4 Ending a Texinfo File . 37
5 Chapter Structuring . 41

6 Nodes and Menus . 47

7 Making Cross References . 53
8 Marking Words and Phrases . 61

9 Special Insertions . 69
10 Quotations and Examples . 73

11 Special Glyphs for Examples . 79

12 Making Lists and Tables . 83
13 Definition Commands: @deffn, etc. 87

14 Footnotes . 99
15 Creating Indices . 101
16 Making and Preventing Breaks . 105
17 Conditionally Visible Text . 109

18 Printing Hardcopy . 111

19 Creating an Info File . 117
20 Installing an Info File . 123

A @-Command List . 125
B Include Files . 137

C Page Headings . 141
D Formatting Mistakes . 145
E Refilling Paragraphs . 153

F @-Command Syntax . 155
G Second Edition Features . 157
Command and Variable Index . 163
Concept Index . 167

iii

Table of Contents

Texinfo Copying Conditions . 1

1 Overview of Texinfo . 3
1.1 Info files . 4
1.2 Printed Manuals . 5

1.2.1 Obtaining TEX . 5
1.3 @-commands . 6
1.4 General Syntactic Conventions . 7
1.5 Comments . 7
1.6 What a Texinfo File Must Have . 8
1.7 Six Parts of a Texinfo File . 8
1.8 A Short Sample Texinfo File . 9

2 Using Texinfo Mode . 13
2.1 Inserting Frequently Used Commands . 13
2.2 Showing the Section Structure of a File . 15
2.3 Updating Nodes and Menus . 15

2.3.1 Updating Requirements . 17
2.3.2 Other Updating Commands . 18

2.4 Formatting for Info . 19
2.5 Formatting and Printing . 19
2.6 Texinfo Mode Summary . 20

3 Beginning a Texinfo File . 23
3.1 Sample Texinfo File Beginning . 23
3.2 The Texinfo File Header . 24

3.2.1 The First Line of a Texinfo File . 25
3.2.2 Start of Header . 25
3.2.3 @setfilename . 25
3.2.4 @settitle . 25
3.2.5 @setchapternewpage . 26
3.2.6 Paragraph Indenting . 27
3.2.7 End of Header . 27

3.3 Summary and Copying Permissions for Info . 28
3.4 The Title and Copyright Pages . 28

3.4.1 @titlepage . 28
3.4.2 @titlefont, @center, and @sp . 29
3.4.3 @title, @subtitle, and @author . 29
3.4.4 Copyright Page and Permissions . 30
3.4.5 Heading Generation . 31
3.4.6 The @headings Command . 31

3.5 The Top Node and Master Menu . 32

iv

3.5.1 Parts of a Master Menu . 32
3.6 Software Copying Conditions . 33
3.7 Sample Permissions . 34

3.7.1 ‘ifinfo’ Copying Permissions . 34
3.7.2 Titlepage Copying Permissions . 35

4 Ending a Texinfo File . 37
4.1 Index Menus and Printing an Index . 37
4.2 Generating a Table of Contents . 38
4.3 @bye File Ending . 38

5 Chapter Structuring . 41
5.1 Tree Structure of Sections . 41
5.2 Types of Structuring Command . 42
5.3 @top . 42
5.4 @chapter . 43
5.5 @unnumbered, @appendix . 43
5.6 @majorheading, @chapheading . 43
5.7 @section . 44
5.8 @unnumberedsec, @appendixsec, @heading . 44
5.9 The @subsection Command . 44
5.10 The @subsection-like Commands . 45
5.11 The ‘subsub’ Commands . 45

6 Nodes and Menus . 47
6.1 Node and Menu Illustration . 47
6.2 @node . 48

6.2.1 Writing a Node Line . 48
6.3 Creating Pointers with makeinfo . 49
6.4 @menu . 50

6.4.1 Writing a Menu Item . 50
6.4.2 A Menu Example . 51

6.5 Referring to Other Info Files . 52
6.6 Describing Command Invocation . 52

7 Making Cross References . 53
7.1 Different Cross Reference Commands . 53
7.2 Parts of a Cross Reference . 53
7.3 @xref . 54

7.3.1 @xref with One Argument . 55
7.3.2 @xref with Two Arguments . 55
7.3.3 @xref with Three Arguments . 56
7.3.4 @xref with Four and Five Arguments . 57

7.4 Naming a ‘Top’ Node . 58
7.5 @ref . 58
7.6 @pxref . 59
7.7 @inforef . 59

v

8 Marking Words and Phrases 61
8.1 Indicating Definitions, Commands, etc. 61

8.1.1 @code{sample-code} . 62
8.1.2 @kbd{keyboard-characters} . 62
8.1.3 @key{key-name} . 63
8.1.4 @samp{text} . 64
8.1.5 @var{metasyntactic-variable} . 64
8.1.6 @file{file-name} . 65
8.1.7 @dfn{term} . 65
8.1.8 @cite{reference} . 65

8.2 Emphasizing Text . 65
8.2.1 @emph{text} and @strong{text} . 66
8.2.2 @sc{text}: The Small Caps Font . 66
8.2.3 Fonts for Printing, Not Info . 67

9 Special Insertions . 69
9.1 Inserting ‘@’, Braces, and Periods . 69

9.1.1 Inserting ‘@’—@@ . 69
9.1.2 Inserting ‘{’ and ‘}’—@{ and @} . 69
9.1.3 Spacing After Colons and Periods . 69

9.2 @dmn{dimension}: Format a Dimension . 70
9.3 Inserting Ellipsis, Dots, and Bullets . 70

9.3.1 @dots{} . 70
9.3.2 @bullet{} . 71

9.4 Inserting TEX and the Copyright Symbol . 71
9.4.1 @TeX{} . 71
9.4.2 @copyright{} . 71

9.5 @minus{}: Inserting a Minus Sign . 71

10 Quotations and Examples . 73
10.1 The Various Block Enclosing Commands . 73
10.2 @quotation . 74
10.3 @example . 74
10.4 @noindent . 75
10.5 @lisp . 76
10.6 @smallexample and @smalllisp . 76
10.7 @display . 77
10.8 @format . 77
10.9 @exdent: Undoing a Line’s Indentation . 77
10.10 @flushleft and @flushright . 77
10.11 Drawing Cartouches Around Examples . 78

vi

11 Special Glyphs for Examples 79
11.1 ⇒: Indicating Evaluation . 79
11.2 7→: Indicating an Expansion . 79
11.3 a : Indicating Printed Output . 80
11.4 error : Indicating an Error Message . 80
11.5 ≡ : Indicating Equivalence . 80
11.6 Indicating Point in a Buffer . 81

12 Making Lists and Tables . 83
12.1 Making an Itemized List . 83
12.2 Making a Numbered List . 85
12.3 Making a Two-column Table . 85

12.3.1 @ftable . 86
12.3.2 @itemx . 86

13 Definition Commands: @deffn, etc. 87
13.1 The Template for a Definition . 87
13.2 Optional and Repeated Parameters . 88
13.3 The Definition Commands . 89

13.3.1 Functions and Similar Entities . 89
13.3.2 Variables and Similar Entities . 90
13.3.3 Functions in Typed Languages . 91
13.3.4 Variables in Typed Languages . 92
13.3.5 Object-Oriented Programming . 94
13.3.6 Data Types . 95

13.4 Conventions for Writing Definitions . 96
13.5 A Sample Function Definition . 96

14 Footnotes . 99

15 Creating Indices . 101
15.1 Making Index Entries . 101
15.2 Predefined Indices . 101
15.3 Defining the Entries of an Index . 101
15.4 Combining Indices . 103
15.5 Defining New Indices . 104

16 Making and Preventing Breaks 105
16.1 @*: Generate Line Breaks . 105
16.2 @w{text}: Prevent Line Breaks . 106
16.3 @sp n: Insert Blank Lines . 106
16.4 @page: Start a New Page . 106
16.5 @group: Prevent Page Breaks . 106
16.6 @need mils: Prevent Page Breaks . 107

vii

17 Conditionally Visible Text 109
17.1 Using Ordinary TEX Commands . 109

18 Printing Hardcopy . 111
18.1 How to Print Using Shell Commands . 111
18.2 Printing from an Emacs Shell . 112
18.3 Formatting and Printing in Texinfo Mode . 113
18.4 Using the Local Variables List . 114
18.5 TEX Formatting Requirements Summary . 115
18.6 Preparing for Use of TEX . 115
18.7 Overfull “Hboxes” . 116
18.8 Printing “Small” Books . 116

19 Creating an Info File . 117
19.1 Running makeinfo from a Shell . 117
19.2 Options for makeinfo . 117
19.3 Pointer Validation . 119
19.4 Running makeinfo inside Emacs . 119
19.5 The texinfo-format... Commands . 120
19.6 Tag Files and Split Files . 120

20 Installing an Info File . 123
20.1 Listing a New Info File . 123
20.2 Info Files in Other Directories . 124

Appendix A @-Command List 125

Appendix B Include Files . 137
B.1 How to Use Include Files . 137
B.2 texinfo-multiple-files-update . 137
B.3 Sample File with @include . 138
B.4 Evolution of Include Files . 139

Appendix C Page Headings . 141
C.1 Standard Heading Formats . 141
C.2 Specifying the Type of Heading . 142
C.3 How to Make Your Own Headings . 143

viii

Appendix D Formatting Mistakes 145
D.1 Catching Errors with Info Formatting . 145
D.2 Catching Errors with TEX Formatting . 146
D.3 Using texinfo-show-structure . 148
D.4 Using occur . 149
D.5 Finding Badly Referenced Nodes . 149

D.5.1 Running Info-validate . 150
D.5.2 Creating an Unsplit File . 150
D.5.3 Tagifying a File . 151
D.5.4 Splitting a File Manually . 151

Appendix E Refilling Paragraphs 153

Appendix F @-Command Syntax 155

Appendix G Second Edition Features 157
G.1 New Texinfo Mode Commands . 157
G.2 New Texinfo @-Commands . 158

Command and Variable Index 163

Concept Index . 167

	Texinfo Copying Conditions
	1 Overview of Texinfo
	Info files
	Printed Manuals
	Obtaining TeX

	@-commands
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	Six Parts of a Texinfo File
	A Short Sample Texinfo File

	2 Using Texinfo Mode
	Inserting Frequently Used Commands
	Showing the Section Structure of a File
	Updating Nodes and Menus
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Formatting and Printing
	Texinfo Mode Summary

	3 Beginning a Texinfo File
	Sample Texinfo File Beginning
	The Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename
	@settitle
	@setchapternewpage
	Paragraph Indenting
	End of Header

	Summary and Copying Permissions for Info
	The Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page and Permissions
	Heading Generation
	The @headings Command

	The Top Node and Master Menu
	Parts of a Master Menu

	Software Copying Conditions
	Sample Permissions
	ifinfo Copying Permissions
	Titlepage Copying Permissions

	4 Ending a Texinfo File
	Index Menus and Printing an Index
	Generating a Table of Contents
	@bye File Ending

	5 Chapter Structuring
	Tree Structure of Sections
	Types of Structuring Command
	@top
	@chapter
	@unnumbered, @appendix
	@majorheading, @chapheading
	@section
	@unnumberedsec, @appendixsec, @heading
	The @subsection Command
	The @subsection-like Commands
	The `subsub' Commands

	6 Nodes and Menus
	Node and Menu Illustration
	@node
	Writing a Node Line

	Creating Pointers with makeinfo
	@menu
	Writing a Menu Item
	A Menu Example

	Referring to Other Info Files
	Describing Command Invocation

	7 Making Cross References
	Different Cross Reference Commands
	Parts of a Cross Reference
	@xref
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Naming a `Top' Node
	@ref
	@pxref
	@inforef

	8 Marking Words and Phrases
	Indicating Definitions, Commands, etc.
	@code{sample-code}
	@kbd{keyboard-characters}
	@key{key-name}
	@samp{text}
	@var{metasyntactic-variable}
	@file{file-name}
	@dfn{term}
	@cite{reference}

	Emphasizing Text
	@emph{text} and @strong{text}
	@sc{text}: The Small Caps Font
	Fonts for Printing, Not Info

	9 Special Insertions
	Inserting @, Braces, and Periods
	Inserting @---@@
	Inserting { and }---@{ and @}
	Spacing After Colons and Periods

	@dmn{dimension}: Format a Dimension
	Inserting Ellipsis, Dots, and Bullets
	@dots{}
	@bullet{}

	Inserting TeX and the Copyright Symbol
	@TeX{}
	@copyright{}

	@minus{}: Inserting a Minus Sign

	10 Quotations and Examples
	The Various Block Enclosing Commands
	@quotation
	@example
	@noindent
	@lisp
	@smallexample and @smalllisp
	@display
	@format
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	Drawing Cartouches Around Examples

	11 Special Glyphs for Examples
	=>: Indicating Evaluation
	==>: Indicating an Expansion
	-|: Indicating Printed Output
	error: Indicating an Error Message
	==: Indicating Equivalence
	Indicating Point in a Buffer

	12 Making Lists and Tables
	Making an Itemized List
	Making a Numbered List
	Making a Two-column Table
	@ftable
	@itemx

	13 Definition Commands: @deffn, etc.
	The Template for a Definition
	Optional and Repeated Parameters
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Object-Oriented Programming
	Data Types

	Conventions for Writing Definitions
	A Sample Function Definition

	14 Footnotes
	15 Creating Indices
	Making Index Entries
	Predefined Indices
	Defining the Entries of an Index
	Combining Indices
	Defining New Indices

	16 Making and Preventing Breaks
	@*: Generate Line Breaks
	@w{text}: Prevent Line Breaks
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	17 Conditionally Visible Text
	Using Ordinary TeX Commands

	18 Printing Hardcopy
	How to Print Using Shell Commands
	Printing from an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX Formatting Requirements Summary
	Preparing for Use of TeX
	Overfull ``Hboxes''
	Printing ``Small'' Books

	19 Creating an Info File
	Running makeinfo from a Shell
	Options for makeinfo
	Pointer Validation
	Running makeinfo inside Emacs
	The texinfo-format... Commands
	Tag Files and Split Files

	20 Installing an Info File
	Listing a New Info File
	Info Files in Other Directories

	A @-Command List
	B Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Sample File with @include
	Evolution of Include Files

	C Page Headings
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings

	D Formatting Mistakes
	Catching Errors with Info Formatting
	Catching Errors with TeX Formatting
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Running Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually

	E Refilling Paragraphs
	F @-Command Syntax
	G Second Edition Features
	New Texinfo Mode Commands
	New Texinfo @-Commands

	Command and Variable Index
	Concept Index

