Subnet Bandwidth Manager: Admission Control over Ethernet

Raj Yavatkar, Intel Don Hoffman, Sun Ema Patki, Intel

Goals

Step-by-step mapping of int-serv capabilities over **Ethernet infrastructure** short-term solution should work with existing bridges, hubs/switches **work with IEEE 802.1? for Level-2 support ex. traffic flow separation** Step I -- admission control for RSVP traffic and policing at end systems Step II -- traffic flow separation at hubs/switches Step III -- traffic control support in hubs/switches

Objectives for Step I

 administrative control over max amount of multimedia traffic over any LAN segment
 Rely on end-system policing and rate-adaptive applications for best effort traffic
 slow start type congestion avoidance
 Leverage existing RSVP-signaling as much as possible

Outline

Only architectural discussion

variations from RSVP message processing rules included protocol details, packet formats, etc. NOT included Discuss possible alternatives

intal

Overview

SBM (Subnet Bandwidth Manager) responsible for admission control a designated SBM (DSBM) for each LAN segment an SBM may act as DSBM for many segments **SBM** is a UDP-based server soft state in SBM with refresh ala RSVP **recovery from SBM restart and failures** dynamic binding between SBM and end-systems IP multicast based

Overview (contd.)

At the start, an RSVP node discovers and binds to its DSBM using IP multicast-based protocol PATH messages sent/forwarded to the session address (NO CHANGE) **Outgoing RESERVE over Ethernet interface unicast** to **DSBM a new LAN PHOP object specifies the PHOP DSBM** performs admission control and forwards **RESERVE** toward PHOP

Overview (contd.)

DSBM processing similar to conventional RSVP processing
 merges reservations appropriately
 avoids killer reservations
 returns RESV_ERROR or RESV_CONFIRM (if necessary)

Important Notes

NOT a centralized scheme
 Many SBMs can exist per LAN, each responsible for a separate portion of the LAN
 Does NOT require maintenance of consistent, distributed state across Hosts and SBMs
 Distribution of responsibility among SBMs allows scalability and fault tolerance

An Alternative Proposal

Assume one SBM per IP subnet PATH message sent to special SBM address mcast to SBM group address (a new encapsulation) SBM inserts itself as a PHOP between sender and receiver **RESERVE** automatically lands up at the SBM **Presented to IEEE 801.P does not allow for multiple SBMs within a subnet** an SBM per hub/switch should be allowed

Supporting Mechanisms

Discovering DSBM and binding to it
DSBM listens to a well-known UDP meast address
DSBM Election
more than one active SBM for same segment(s)
single SBM is a DSBM at any time, elected using an election protocol
Use of *I_AM_DSBM* declarations via IP multicast and some tiebreaking
peers step in when DSBM fails or terminates

Application Behavior

Sender on a LAN not to transmit any traffic until at least one successful RESERVE reaches it **Outgoing flow to be policed to be within maximum RESERVE** made For multicast flows, receivers must leave the session mcast group in case of RESV ERR or PATH TEAR **problematic** in case of multiple senders **Best-effort traffic must be rate-adaptive**

intal

Handling Complex Physical Topologies

Multi-hop topology consisting of bridges, hubs, and switches
 data flows traverse only a subset of segments
 multiple DSBMs, each for separate portion of LAN desirable
 How to discover topology information?
 How to discover peer DSBMs and communicate with them?

Discovering LAN Topology

techniques used by network management utilities
 static configuration info works only in case of non-redundant paths
 an interface to spanning tree topology info needed
 IEEE 802.1 area
 IETF hub MIB working group
 topology mapping section

Topology Discovery Protocol

Placing two endpoints on a map and identifying LAN segments between them
 endpoints identified using MAC addresses
 tell managed hubs in the collision domain to watch for packets with the endpoint MAC address
 send a *PING* to the endpoint to get it to transmit
 SBM then uses hub MIB interface to read the group/port of target MAC address from managed hubs
 SBM then identifies affected segments

Host

Peer-to-Peer DSBM Communication

 Peers discovered using SBM_QUERY to SBM_GRP address
 information is cached with time-out
 After successful admission control, DSBM forwards a RESERVE to the peer on next hop towards LAN_PHOP
 An error is sent back hop-by-hop using reservation state in intermediate DSBMs

Areas of Co-operation With IEEE 801.P

definition of a standard interface for accessing spanning tree (routing) information in MAUs
 mechanisms for traffic flow separation

 ex. priority mechanism

 RSVP-based admission control combined with traffic flow separation

 a good approximation to *Controlled Load*?

