
URN Resolution Requirements and Plans

Lewis Girod
Karen Sollins
MIT Laboratory for Computer
Science

June 27, 1996

URN Resolution

From NAPTR framework paper

Persistence/longevity

- flexibility in choice of resolution services
- modularity of layers of information management

Name scheme

- resolution should be independent of NS
- verifiable checklist of requirements (URN Requirements list?)

--- **Authority**

- modularize
- distribute to keep information maintenance close to authority for information

Caveats

URN namespaces must conform to URN Requirements doc.

Syntax: URN:<NID>:<NSS>

We must be able to convince the community that the proposal is reasonable - we are already getting negative press.

Our requirements

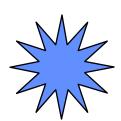
""Usability

- publishers
- ····clients
- minformation mgrs.

Security & Privacy

- access control on updating hint information
- server authenticity
- server availability: resistence to denial of service
- some degree of privacy

Evolution


- mew NIDs (URN schemes)
- new resolution services
- authentication and other security mechanisms
- mew or multiple top level models for URN to hint mapping

Quick Look at Fixing NAPTR

Evolution:

Require additional client gateway protocol

Security:

Build authentication into the new records

"Usability:

Rewrite rules should be generated by special management software that implements a set policy

Evolution

The NAPTR proposal can be implemented quickly because it uses the DNS.

This may mean that it is the only resolution method when some clients are implemented

We should explicitly require clients to support an additional gateway protocol

- clients running a DNS-based protocol cannot easily escape to a new one
- therefore, require a simple protocol that sends the whole URN to a gateway address and waits for a list of hints to come back (i.e. SRV, A, or NAPTR records, or whatever clients understand)

Security

DNSSEC will make the DNS more secure

- It gives each zone a private key; each record in that zone has an associated SIG record
- Public keys for zones can be acquired from the parent and child zones
- mods to the DNS DB must be authorized

NAPTR, SRV should still have extra auth info

- DNSSEC cannot authenticate resolution information except at granularity of zones
- there are other security issues that are part of the policies set by individual NAs
 - ex. interference between publishers' rules vs. restrictions on types of rules allowed

Usability and Evolution

- Large systems of rewrite rules are hairy
 - Difficult to understand, verify, maintain
 - Hard to translate for use by other systems
- Many problems with rewrite rules can be solved with management software
 - need software that takes namespace map as input, produces system of rewrite rules
 - forces security policies to be clearly defined and implemented in the software
 - easy to add a simple & secure publisher's interface to rewrite rule systems
 - ``source files'' can be moved over to future systems, updates can be mirrored

Quick Look at Fixing NAPTR

- Require additional client gateway protocol
 - clients running the current DNS-based protocol cannot easily escape to a new one
- Build authentication into the new records
 - DNSSEC can auth. at the granularity of a zone but cannot separately auth. individual records
- Confusing rewrite rules -> mgmt software
 - need software that takes namespace map as input, produces system of rewrite rules
 - software can implement security policies, prevent publishers' rules from interfering
 - can easily include simple & secure publisher interface to rewrite rule systems

KRSollins;URNRes1;