RSVP Extensions for Policy Control

Shai Herzog,
IBM T. J. Watson Research Center
herzog@watson.ibm.com

draft-ietf-rsvp-policy-ext-01. {txt,ps}

1/15/23 1

General Policy Control
Characteristics

=Bilateral agreements (even with non-neighbors?)

=However, it is important to have:
“Inter-operability

=Between providers
=Some globally adequate/consistent policies

1/15/23 2

RSVP Extensions

....... .

?fﬂﬁPurpOSQZ

=Initial vehicle for experimentation and development

=|Inter-operability in multi-vendor environments

=Consistent, comprehensive, and flexible p.c.

....... .

“What do we care about?

“Data formats
“RSVP/PC interface
“Define required functionality, not form
=Define required functionality.
=Common semantics/processing rules
=Security, errors, default handling, fragmentation, etc.

1/15/23 3

POLICY_DATA Object

Length lass POLICY DATA 1
Data Offset OID

Option List

Policy Element List

=“RSVP Style Options:
=“FILTER_SPEC, RSVP_HOP, INTEGRITY

=Fragmentation, NoChange, FilterList

1/15/23 4

Security Model

“Hop-by-Hop
=INTEGRITY object protection

=Policy hops (vs. RSVP hops)

“Policy may be performed at edges

=In-cloud RSVP nodes are not trusted

=Key exchange only between policy nodes

1/15/23 5

Policy Options

Fragmentation
Length 0 1
Variable Length

NoChange
Length 0 2
Reserved (0) Previous OID

Filter List
Length 0 3
Counter Hash type Reserved (0)

FILTER SPEC List 32 bit hash/CRC

1/15/23

Policy Control (PC) Interface

........

=Minimal changes to the RSVP spec:

=“Use only existing RSVP messages and signaling

“Flow identification (Filter Spec lists)

=Security (authentication)

“Fragmentation

“Required action and error signaling are decided by PC

=Synchronous with RSVP messages
=No additional timers, asynch. events, etfc.

“Handle multiple P.D. Objects

=Simple and extendible P.D. object format

1/15/23 7

Main Requirements from Any PC
Interface

~Receive, process and send policy objects
=PC_InPolicy() and PC_OutPolicy()

“Allow Path/Resv status checks
=PC_AuthCheck()

=PC_Init()

1/15/23 8

Example/Prototype of PC Services

........

“PC_InPolicy(session, lih, rsvp_hop,msg_type,in_objs, rhandle, rflow_spec, timeout)
=Process a set of incoming objects
=AuthCheck for lih.

=May accept, reject, or allow preemption

1/15/23 9

PC Services (Cont.)

........

a”L‘l)(.\:_1411th(: heCk(session, filter list, lih, msg_type, rhandle, rﬂow_spec)

=If message arrived from
“Downstream: check Path authorization
=Upstream: check Resv authorization

....... "

?f_H&éPC_Bl'anCh(session, filter list, rsvp hop, op_typE)
=Synchronize branch state with RSVP
~Blockade state or purge state

PC_C lOSe(session, ﬁltel’_liSt)

=Close a policy control session
=PC_Init(voia)

=Initialize the PC module

1/15/23 10

PC Success Codes:

....... .

=“Function return code, PC _errno, PC flags

=PC_RC_ModState: Modified policy state; force a refresh

=PC_RC_SendErr: Send Error (PathErr or ResvErr)

=PC_RC_Respond: Send a response/reverse message

=PC_RC_Cancel: Reject the reservation (or path)

#“PC_RC_Preempt: Accept but allow later preemption, if needed

1/15/23 11

Error Signaling Sequence

“RSVP sends the error + objects

“If no objects are given, may suppress the err message

1/15/23 12

Default Handling of P.D. Objects

=|f Concatenation creates large P.D. lists:

=Syntactic fragmentation, or

=Leave it to RSVP fragmentation

1/15/23 13

Router/Policy Server Interface

....... .

=P.C.s on routers may query policy servers

“Routers may not be able to handle complex policies
=Policy reply from server may be delayed:
=P.C. should not approve until server reply is received

=RSVP should not block

....... "

“Interface definition

=Basic inter-operability across multi-vendor env.
=Router and Server may belong to different vendors

=Routers from various vendors could interface with a single
policy server

1/15/23 14

Syntactic Fragmentation of P.D. Objs

=Large P.D. -> Large RSVP msg -> Frag. loss

....... .

=Objectives:
=|solate RSVP from this risk

“Push P.D. fragmentation to P.C. module

=Approach: Syntactic Fragmentation

“RSVP is aware of the syntax but not the semantics of
P.D. Fragmentation

1/15/23 15

Fragmentation Example

Vacuous msgs Standard msg

1/15/23 16

Syntactic Frag.: building blocks (1)

....... .

=P.D. Fragments

=All fragments of a PD object have the same OID
“Like IPv6 Frag. ID

=Fragmentation: PD -> PD;y,... ,PD,, PDE

=PD; Carry the Fragment Option

“PDE: small/token object embedded in std. msg

=Embed token & non-fragments in standard RSVP msg
=Send out standard messages

1/15/23 17

Syntactic Frag.: building blocks (2)

=Vacuous RSVP messages

conditions
=P.C. Success codes are ignored.

=“Reassembly (and checks): only for non-fragments.

1/15/23 18

APl Considerations

....... .

=P.D. parameters:

“Applications provide fully built P.D.s
=Applications provide guidelines, API library builds
=Hybrid: P.D.

rsvp_hop, etc.)

....... "

=Per application state
=Allow signaling/counting of individual applications

=Virtual “Prev/Next hop” from local node.

1/15/23 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

