
11/15/23

RSVP Extensions for Policy Control

Shai Herzog, 
IBM T. J. Watson Research Center

herzog@watson.ibm.com

draft-ietf-rsvp-policy-ext-01.{txt,ps}



21/15/23

General Policy Control 
Characteristics

�Cannot assume global info. or agreements
�Bilateral agreements (even with non-neighbors?)
�Distributed responsibility
�Good scaling properties

�Policies must be controlled/configured locally
�However, it is important to have:

�Inter-operability 
�Multi-vendor environments
�Between providers

�Some globally adequate/consistent policies



31/15/23

RSVP Extensions

�Purpose:
�Initial vehicle for experimentation and development
�Inter-operability in multi-vendor environments
�Consistent, comprehensive, and flexible p.c. 

�What do we care about?
�Data formats
�RSVP/PC interface 

�Define required functionality, not form
�Router/Policy Server interface

�Define required functionality.
�Common semantics/processing rules 

�Security, errors, default handling, fragmentation, etc.



41/15/23

POLICY_DATA Object

�RSVP Style Options: 
�FILTER_SPEC, RSVP_HOP, INTEGRITY

�Policy Options:
�Fragmentation, NoChange, FilterList

class_POLICY_DATALength 1
Data Offset

Option List

OID

Policy Element List



51/15/23

Security Model

�Same model as RSVP:
�Hop-by-Hop
�INTEGRITY object protection

�Policy hops (vs. RSVP hops)
�Policy may be performed at edges
�In-cloud RSVP nodes are not trusted
�Key exchange only between policy nodes



61/15/23

Policy Options

Length 1
Variable Length

0

Length 20
Reserved (0) Previous OID

Length 3

FILTER_SPEC List 32 bit hash/CRC

0
Counter Reserved (0)Hash type

NoChange

Fragmentation

Filter List



71/15/23

Policy Control (PC) Interface
�Minimal changes to the RSVP spec:

�Use only existing RSVP messages and signaling
�Push the “smarts” to the PC module

�Flow identification (Filter Spec lists)
�Security (authentication)
�Fragmentation
�Required action and error signaling are decided by PC

�Synchronous with RSVP messages
�No additional timers, asynch. events, etc.

�Handle multiple P.D. Objects
�Simple and extendible P.D. object format



81/15/23

Main Requirements from Any PC 
Interface

�Allow exchange of policy information
�Receive, process and send policy objects
�PC_InPolicy() and PC_OutPolicy()

�Allow Path/Resv status checks
�PC_AuthCheck()

�Maintain synchronization with RSVP
�PC_Branch() and PC_Close()

�Initialize
�PC_Init()



91/15/23

Example/Prototype of PC Services
�PC_InPolicy(session, lih, rsvp_hop,msg_type,in_objs, rhandle, rflow_spec, timeout)

�Process a set of incoming objects
�AuthCheck for lih. 
�May accept, reject, or allow preemption
�Instructs RSVP on Error handling

�PC_OutPolicy(session, filter_list, lih, rsvp_hop, msg_type, out_objs, max_pd, avail_pd)
�Assemble a list of outgoing objects destined to rsvp_hop
�Attempt / fragment to comply with max_pd and avail_pd



101/15/23

PC Services (Cont.)
�PC_AuthCheck(session, filter_list, lih, msg_type, rhandle, rflow_spec)

�Check the status of a reservation
�If message arrived from

�Downstream: check Path authorization 
�Upstream: check Resv authorization

�PC_Branch(session, filter_list, rsvp_hop, op_type)
�Synchronize branch state with RSVP

�Blockade state or purge state
�PC_Close(session, filter_list)

�Close a policy control session
�PC_Init(void)

�Initialize the PC module



111/15/23

PC Success Codes:

�Function return code, PC_errno, PC_flags
�PC_Flags instruct RSVP on immediate action:

�PC_RC_ModState: Modified policy state; force a refresh
�PC_RC_SendErr: Send Error (PathErr or ResvErr)
�PC_RC_Respond: Send a response/reverse message 
�PC_RC_Cancel: Reject the reservation (or path)
�PC_RC_Preempt: Accept but allow later preemption, if needed



121/15/23

Error Signaling Sequence

�PC_AuthCheck() or PC_InPolicy() fail
�PC_RC_SendErr is set

�RSVP performs standard error handling
�Generate PathErr or ResvErr

�RSVP queries the PC for outgoing objects
�The PC provides a set of outgoing objects
�RSVP sends the error + objects

�If no objects are given, may suppress the err message

�PathErr and ResvErr processing unchanged



131/15/23

Default Handling of P.D. Objects

�Non policy nodes, or non-recognized policies
�Forward P.D. (or policy elements) as-is

�Use same message type
�Concatenate in merging nodes
�If Concatenation creates large P.D. lists:

�Syntactic fragmentation, or
�Leave it to RSVP fragmentation



141/15/23

Router/Policy Server Interface

�P.C.s on routers may query policy servers
�Routers may not be able to handle complex policies
�Policy reply from server may be delayed:

�P.C. should not approve until server reply is received
�RSVP should not block

�Interface definition
�Describes generic functionality
�Basic inter-operability across multi-vendor env.

�Router and Server may belong to different vendors
�Routers from various vendors could interface with a single 

policy server



151/15/23

Syntactic Fragmentation of P.D. Objs

�Large P.D. -> Large RSVP msg -> Frag. loss
�Objectives: 

�Isolate RSVP from this risk
�Push P.D. fragmentation to P.C. module

�Save the added complexity from RSVP
�P.C. module has greater semantic knowledge

�Allow local flexibility in fragmentation schemes
�Policy Hop-by-Hop fragmentation and reassembly anyway
�Semantic vs. IP style

�Approach: Syntactic Fragmentation
�RSVP is aware of the syntax but not the semantics of 

P.D. Fragmentation



161/15/23

Fragmentation Example

1 2 3

1 2 31 2 3

Standard msgVacuous msgs



171/15/23

Syntactic Frag.: building blocks (1)
�P.D. Fragments

�All fragments of a PD object have the same OID 
�Like IPv6 Frag. ID
�OID selection is the responsibility of the sending node

�Fragmentation: PD -> PD1,... ,PDn, PDE
�PDi Carry the Fragment Option
�PDE: small/token object embedded in std. msg

�Token: 64 bit object, made only with the header and OID

�Sending Fragments
�If PC_OutPolicy() produces fragments:

�Send all fragments first in vacuous messages
�Embed token & non-fragments in standard RSVP msg
�Send out standard messages



181/15/23

Syntactic Frag.: building blocks (2)

�Vacuous RSVP messages
�RSVP messages with discardable RSVP state:

�Only the state required to route the message
�Only a duplicate of state delivered by other RSVP msgs.

�Receiving Fragments
�P.D. objects marked as fragments:

�Are handed over to the PC module regardless of error 
conditions

�P.C. Success codes are ignored.
�Reassembly (and checks): only for non-fragments.



191/15/23

API Considerations

�P.D. parameters:
�Applications provide fully built P.D.s
�Applications provide guidelines, API library builds
�Hybrid: P.D. 

�Mainly built by applications
�Some options are added by API library (like integrity, 

rsvp_hop, etc.)

�Per application state
�Allow signaling/counting of individual applications
�Virtual “Prev/Next hop” from local node.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

