
Internet Draft Daniel Zappala

Expires September 26, 1997 USC Information Sciences Institute

File: draft-zappala-multicast-routing-mech-00.ps March 1997

A Route Setup Mechanism For Multicast Routing

March 26, 1997

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This document describes a multicast route setup protocol that can be used to

install alternate paths and pinned routes when they are requested by receivers.

We describe the protocol, derive some of its properties, and address its applica-

bility to unicast route setup.



Internet Draft Multicast Route Setup March 1997

1 Introduction

This document describes a multicast route setup protocol that can be used to install al-

ternate paths and pinned routes when they are requested by receivers. This protocol is

designed as part of the interdomain multicast routing architecture described in [7]. In

general, this protocol is useful when multicast routers wish to install explicit routes in a

multicast tree without coordinating the routing of the entire tree according to a globally

de�ned metric. Thus, in addition to being used as prescribed in [7], this protocol may also

be used to install a QoS route for a receiver. We have focused on designing a multicast

route setup protocol; a later section describes the relevance of our work to unicast route

setup.

For the purposes of this document, we assume that receivers use a reservation protocol

such as RSVP [8, 2] to reserve resources for unicast and multicast ows. By default, these

reservations are obtained over an opportunistic, shortest-path multicast tree computed and

installed by a multicast routing protocol, likely either DVMRP [6], MOSPF [5], PIM [4]

or CBT [1]. Each sender may have its own tree, or all senders may use a shared tree.

Throughout this document we assume sender trees, although the mechanism is equally

applicable to shared trees.

We also assume that a receiver, or some entity acting on behalf of a receiver, may request

several services in place of its current opportunistic route:

� Alternate Path: A route that is an alternative to the currently installed route. A

receiver may wish to use an alternate path when it is unable to reserve resources

along its current path.

� Pinned Route: A route that remains unchanged unless a node along the route fails.

A receiver may wish to know that once it has secured a reservation, the route will not

change unless it fails, and hence the reservation will likely remain in place. When an

application does not use a pinned route (the route is opportunistic), the reservation

protocol must adapt the reservation whenever the route adapts to a shorter path, even

if the original path is still working.

Using these basic services, a receiver may ask for an alternate path that is opportunistic, an

alternate path that is pinned, or it may ask to pin its current route. Note that an oppor-

tunistic alternate path has some pinned hops while the remaining hops are opportunistic;

see [7] for more details.

As part of the architecture described in [7], we assume that a receiver asks its �rst-hop

router for an alternate path or a pinned route. This router in turn contacts a local route

construction agent to construct a route and encodes the response as an explicit route. The

setup protocol connects the receiver to the multicast tree along this new path. Along the

way, the setup protocol pins any hop that is listed in the route; thus if the receiver wants

a pinned route, then every hop between the receiver and the sender must be listed.

Zappala Expires September 26, 1997 [Page 2]



Internet Draft Multicast Route Setup March 1997

Table 1: MORF Protocol Messages

Messages Parameters

Setup(Group,Target,Route) Group : multicast group

Failure(Group,Target,SetupRt,TreeRt) Target : sender or core

Teardown(Group,Target) Route : explicit route

SetupRt : route from Setup

TreeRt : route used by tree

Prune

Setup

a) Setup builds Setup Tree, prunes
multicast tree

b) re-configured Setup tree and
multicast tree

multicast tree
Setup Tree

Figure 1: Using a Setup Message to Install a Route

2 The MORF Multicast Route Setup Protocol

We have designed the MORF multicast route setup protocol to install routes provided by

local route construction agents. For each multicast tree built by the multicast routing

protocol, MORF creates its own parallel multicast tree consisting of alternate paths and

pinned routes. Each branch of this tree, called the Setup Tree, is constructed using a Setup

message originated by a leaf router on behalf of local receivers. The Setup message contains

an explicit route indicating the path the Setup should travel (Table 1). As the Setup travels

upstream, MORF noti�es the multicast routing protocol that it is overriding some local

portions of the multicast tree with some branches in the Setup Tree. The multicast routing

protocol adds these branches to the multicast tree and prunes any conicting branches

from the original tree (Figure 1a). The resulting multicast tree reects the path installed

by MORF (Figure 1b). The multicast tree may be for a single sender [4], or multiple senders

may rendezvous via a core [4, 1]. In either case, the protocol is the same; in the following

discussion we refer to sender-based trees for simplicity.

Since the Setup Tree overrides default opportunistic routing, each router in the Setup Tree

must have a mechanism to detect failures of an alternate path or a pinned route. The setup

protocol may rely on a unicast routing protocol to exchange query messages with its neigh-

bors to determine whether they are alive, or it may use its own similar mechanism. Once

a failure is detected, MORF sends a Teardown message both upstream and downstream

of the failure to remove failed branches from the Setup Tree (Figure 2a). At each hop,

Zappala Expires September 26, 1997 [Page 3]



Internet Draft Multicast Route Setup March 1997

a) Teardowns remove AP-tree branches
after failure, Join  re-builds multicast tree

b) re-configured Setup Tree and
multicast tree

multicast tree
Setup Tree

Teardown
Teardown

Join

Figure 2: Using a Teardown to Remove a Failed Route

MORF noti�es the multicast routing protocol of the branches it is removing. The multicast

routing protocol re-builds the multicast tree to reect its metric, often the shortest path to

the sender (Figure 2b).

The above examples represent the simpli�ed case when a Setup does not conict with the

rest of the Setup Tree. However, the setup protocol must also resolve Setup messages from

di�erent leaves that use conicting routes, because leaf routers may use independent route

construction agents. MORF resolves conicts by choosing the �rst route that is installed

for any given branch of the tree. Where subsequent routes meet this branch, they must

conform to the route used from that point upward toward the source. If the setup protocol

does not follow this restriction, then a number of looping scenarios may arise; Section 2.1

discusses these cases and the manner in which they are prevented.

Figure 3 shows an example of how all Setup messages except the �rst one must match the

route already used by the Setup Tree. When a Setup message adds a node to the Setup

Tree, it caches the route it will use to travel from that node upward toward the sender. If

a subsequent Setup message arrives at that node, it compares the remaining route it must

travel to the route cached locally. If the routes do not match, the node stops processing the

Setup and sends a Failure message downstream (Figure 3a). The Failure message contains

the route used by the failed Setup and the route used by the tree from the rejecting node

upward (Table 1). A router receiving a Failure message merges the two routes it contains to

construct a new route that will match the tree, then sends a second Setup with this route

(Figure 3b).

It is from this mechanism { Match or Fail { that MORF derives its name. By using

this restriction, MORF may increase the setup latency, but it prevents any loops from

forming while the tree is constructed. The remainder of this section discusses potential

looping scenarios and analyzes the tradeo�s of MORF versus other potential solutions for

preventing loops.

Zappala Expires September 26, 1997 [Page 4]



Internet Draft Multicast Route Setup March 1997

a) Setup does not match, triggers
Failure

b) Setup matches

Setup(<1,2,3,4,6,S>)

Failure(<1,2,3,4,6,S>,<4,5,6,S>)

Setup(<1,2,3,4,5,6,S>)

S

1

32

5 4

6

S

1

32

5 4

6

<4,5,6,S> <4,5,6,S> multicast tree
Setup Tree

Figure 3: Matching Setup Messages

5

2

31

S

4 6

a) Loop formed by two Setups b) Loop formed by three Setups

Setup #1 <4,1,2,S>
reaches 1 first

Setup #2 <5,2,3,S.>
reaches 2 first

Setup #3 <6,3,1,S>
reaches 3 first

Sender:

Loop:

S

1-2-3-1

Setup #1 <4,1,2,3,S>
reaches 1 first

Setup #2 <6,3,1,S>
reaches 3 first

Sender:

Loop:

S

1-2-3-1
5

2

31

S

4 6

Figure 4: Loops Formed by Setup Messages

2.1 Looping Scenarios

When Setup messages are not restricted to matching the rest of the Setup Tree, a number

of possible looping scenarios arise. Figure 4a shows two Setups, each using a strict explicit

route. Based on their order of arrival, as shown, if the Setups merge they form a loop. This

loop can be prevented if nodes A and C compare the routes and detect the loop will form.

However, when three joins are involved, as in Figure 4b, a single node cannot prevent the

loop from forming without having more information available.

To prevent loops, a node can use one of two strategies:

1. Before adding a parent, the node checks all its descendants to be sure the parent is

not already a descendant.

2. Before adding a child, the node checks all its ancestors to be sure the new child is not

already an ancestor.

We discuss each of these in turn. Due to the dynamic nature of multicast trees, a node may

Zappala Expires September 26, 1997 [Page 5]



Internet Draft Multicast Route Setup March 1997

a) Setup triggers Merge sent upstream b) Setup triggers Merge sent downstream

multicast tree
Setup Tree

Setup(<1,2,3,4,6,S>) Setup(<1,2,3,4,6,S>)

S

1

32

5 4

6

S

1

32

5 4

6
Merge(<1,2,3,4,6,S>)

Merge(<1,2,3,4,5,6,S>)

Figure 5: Merging Setup Messages Instead of Matching

not know all of its ancestors or descendants. While a node knows the route embedded in

the Setup message it has sent upstream, that message may have merged with another Setup

carrying a di�erent route. Likewise, other Setups may have merged downstream, adding

new descendants.

One approach to keep nodes updated concerning upstream and downstream merges is to

distribute information after each merge. Following solution (1) above, each Setup that

merges can send a Merge message upstream containing its route (Figure 5a). Every node

can then know all its descendants and thereby detect any loops. Alternatively, in keeping

with solution (2) above, each Setup that merges can send a Merge message downstream

containing the upstream portion of the route it merged with (Figure 5b). This allows every

node to detect loops by knowing all its ancestors. We denote these twomechanisms asMerge

Up and Merge Down, respectively. In both of these approaches, information distributed by

the Merge messages may be stale, so loops such as that shown in Figure 4 may still form

temporarily before being broken.

As opposed to these solutions, which in some cases will only detect loops after they have

been formed, the strategy we use in MORF prevents any loops from forming. By requiring

each Setup to match the upstream route already in place on the tree, MORF in e�ect

enforces solution (2) by requiring that each node know its ancestors before it is added to

the tree. Once a node is added to the multicast tree, its ancestors do not change. The cost

of this strategy is that each Setup may take an extra roundtrip between itself and the rest

of the tree. The following section more completely analyses the tradeo�s of MORF versus

the other mechanisms discussed above.

2.2 Analysis of Setup Mechanisms

Table 2 compares the setup mechanisms discussed above when building a single multicast

tree, assuming there is no packet loss and that one receiver joins the tree at a time. The

columns listing message and storage overhead consider the behavior of each mechanism at

Zappala Expires September 26, 1997 [Page 6]



Internet Draft Multicast Route Setup March 1997

Table 2: Comparison of Setup Mechanisms

Mechanism Message Storage Setup Loop

Name Overhead Overhead Latency Handling

MORF O(1) O(a) 1 or 3 trips Prevent

Merge Down O(1) O(a) 1 trip Detect/Break

Merge Up O(d) O(d) 1 trip Detect/Break

a single node. Overhead in these cases is expressed in terms of a, the number of ancestors

of a node, or d, the number of descendants of a node. The setup latency column lists time

in terms of the number of trips taken between a receiver and the multicast tree.

Clearly the Merge Up mechanism does not scale well because each node must store each

descendent as well as send one message upstream for each descendant. The advantages of

using a receiver-oriented mechanism are lost with Merge Up; a sender-oriented mechanism

has the same message overhead, but only the sender must store the descendants.

The MORF and Merge Down mechanisms have a similar overhead in this situation. The

MORF mechanism may have a longer setup latency, but in return has the distinct advantage

that it may prevent rather than just detect loops, as discussed above.

When we relax the assumption that one receiver joins the tree at time, thus allowing multiple

simultaneous Setups, the other tradeo�s of these two mechanisms become more apparent.

In this situation, MORF must take into account conicting Setups. We assume that it

will use a binary exponential backo� to prevent thrashing. If we also assume a message

transmission takes a uniform time t when sent over any link, then the dynamic setup latency

for MORF:

Latency

MORF

= 3Lt(c+ 1) +

c

X

i=1

b � 2

i�1

;

where L is the average length of the branch from a receiver to the rest of the tree, b is the

backo� constant, and c is the number of conicts the Setup encounters.

When considering these dynamic conditions, each node using the Merge Down mechanism

may potentially send O(a) messages downstream, since each ancestor may send the node

one Merge message. In addition, the setup latency for Merge Down must take into account

the time required to break loops. The worst case time to break a loop of m nodes is t(m�1),

so the setup latency can be given by:

Latency

MergeDown

= 2Lt+

l

X

i=1

(m

i

� 1)t;

where l is the number of loops encountered and m

i

is the number of nodes in loop i.

As can be seen from this analysis, the Merge Down mechanism requires a robust protocol

design to ensure that loops are quickly detected and broken. The more merges that occur

simultaneously, the longer it will take for the mechanism to distribute the information

Zappala Expires September 26, 1997 [Page 7]



Internet Draft Multicast Route Setup March 1997

needed to break the loops. The Merge Down mechanism will also have to detect when

a Merge message is lost, as that event can cause a loop to persist. In contrast, MORF

uses a simpler protocol to prevent loops and uses more complexity only at the edges of the

network.

2.3 Unicast Route Setup

Previous work has studied the e�cacy of using source routing to support unicast real-time

applications [3]. One way to use source routes to provide alternate paths or pinned routes is

to embed the source route in an application's packets. Assuming the route will be inserted

by a �lter at a sender's nearest router, no modi�cations to applications will be needed.

However, because many routers currently delay processing of source routed packets, this

mechanism may not be applicable to applications with strict delay requirements.

An alternative is for the sender's nearest router to insert a label in the application's packets

rather than a source route. This label can reference an alternate path or pinned route

that is installed using MORF. Because unicast applications involve only one receiver, the

setup latency will only be 1 trip. Either the sender or receiver can initiate the route setup,

although initiating at the sender will require trivial modi�cations to the protocol.

3 Acknowledgments

Bob Braden, Deborah Estrin, and Scott Shenker provided valuable feedback on this work.

References

[1] A. J. Ballardie, P.F. Francis, and J. Crowcroft. \Core Based Trees". In ACM SIG-

COMM, August 1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. \Resource ReSerVation

Protocol (RSVP) - Version 1 Functional Speci�cation". work in progress, November

1996.

[3] Lee Breslau. \Adaptive Source Routing of Real-Time Tra�c in Integrated Services

Networks". PhD thesis, University of Southern California, December 1995.

[4] Stephen Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ching-Gung Liu, and

Liming Wei. An Architecture for Wide-Area Multicast Routing. In ACM SIGCOMM,

August 1994.

[5] J. Moy. \Multicast Extensions to OSPF". RFC 1584, March 1994.

Zappala Expires September 26, 1997 [Page 8]



Internet Draft Multicast Route Setup March 1997

[6] D. Waitzman, C. Partridge, and S. Deering. \Distance Vector Multicast Routing Pro-

tocol". RFC 1075, November 1988.

[7] Daniel Zappala, Bob Braden, Deborah Estrin, and Scott Shenker. \Interdomain Mul-

ticast Routing Support for Integrated Services Networks". work in progress, March

1997.

[8] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.

\RSVP: A New Resource ReSerVation Protocol". IEEE Network, September 1993.

Security Considerations

Security considerations are not discussed in this memo.

Author's Address

Daniel Zappala

USC Information Sciences Institute

4676 Admiralty Way, Floor 10

Marina del Rey, CA 90292

EMail: daniel@isi.edu

Zappala Expires September 26, 1997 [Page 9]


