
Internet Draft R. Braden, Ed.

Expires April 29, 1997 ISI

File: draft-ietf-rsvp-spec-14.ps L. Zhang

PARC

S. Berson

ISI

S. Herzog

ISI

S. Jamin

USC

November 1996

Resource ReSerVation Protocol (RSVP) {

Version 1 Functional Speci�cation

October 29, 1996

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the

Internet Engineering Task Force (IETF), its areas, and its working groups. Note that

other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be

updated, replaced, or obsoleted by other documents at any time. It is inappropriate

to use Internet-Drafts as reference material or to cite them other than as \work in

progress."

To learn the current status of any Internet-Draft, please check the \1id-abstracts.txt"

listing contained in the Internet- Drafts Shadow Directories on ds.internic.net (US East

Coast), nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Paci�c

Rim).

Abstract

This memo describes version 1 of RSVP, a resource reservation setup protocol designed

for an integrated services Internet. RSVP provides receiver-initiated setup of resource

reservations for multicast or unicast data ows, with good scaling and robustness prop-

erties.

Internet Draft RSVP Speci�cation November 1996

Contents

1 Introduction 3

1.1 Data Flows : 5

1.2 Reservation Model : 6

1.3 Reservation Styles : 9

1.4 Examples of Styles : 11

2 RSVP Protocol Mechanisms 15

2.1 RSVP Messages : 15

2.2 Merging Flowspecs : 16

2.3 Soft State : 18

2.4 Teardown : 19

2.5 Errors : 20

2.6 Con�rmation : 21

2.7 Policy and Security : 22

2.8 Non-RSVP Clouds : 23

2.9 Host Model : 24

3 RSVP Functional Speci�cation 26

3.1 RSVP Message Formats : 26

3.2 Port Usage : 38

3.3 Sending RSVP Messages : 38

3.4 Avoiding RSVP Message Loops : 40

3.5 Blockade State : 43

3.6 Local Repair : 44

3.7 Time Parameters : 45

3.8 Tra�c Policing and Non-Integrated Service Hops : 46

3.9 Multihomed Hosts : 47

3.10 Future Compatibility : 49

3.11 RSVP Interfaces : 51

A Object De�nitions 61

B Error Codes and Values 75

C UDP Encapsulation 79

D Glossary 82

Braden, Zhang, et al. Expires April 29, 1997 [Page 2]

Internet Draft RSVP Speci�cation November 1996

1 Introduction

This document de�nes RSVP, a resource reservation setup protocol designed for an integrated

services Internet [RSVP93,ISInt93].

The RSVP protocol is used by a host, on behalf of an application data stream, to request a speci�c

quality of service (QoS) from the network for particular data streams or ows. The RSVP protocol

is also used by routers to deliver QoS control requests to all nodes along the path(s) of the ows

and to establish and maintain state to provide the requested service. RSVP requests will generally,

although not necessarily, result in resources being reserved in each node along the data path.

RSVP requests resources for simplex ows, i.e., it requests resources in only one direction. There-

fore, RSVP treats a sender as logically distinct from a receiver, although the same application

process may act as both a sender and a receiver at the same time. RSVP operates on top of IP

(either IPv4 or IPv6), occupying the place of a transport protocol in the protocol stack. However,

RSVP does not transport application data but is rather an Internet control protocol, like ICMP,

IGMP, or routing protocols. Like the implementations of routing and management protocols, an

implementation of RSVP will typically execute in the background, not in the data forwarding path,

as shown in Figure 1.

RSVP is not itself a routing protocol; RSVP is designed to operate with current and future unicast

and multicast routing protocols. An RSVP process consults the local routing database(s) to obtain

routes. In the multicast case, for example, a host sends IGMP messages to join a multicast group

and then sends RSVP messages to reserve resources along the delivery path(s) of that group.

Routing protocols determine where packets get forwarded; RSVP is only concerned with the QoS

of those packets that are forwarded in accordance with routing.

In order to e�ciently accommodate large groups, dynamic group membership, and heterogeneous

receiver requirements, RSVP makes receivers responsible for requesting QoS control [RSVP93]. A

QoS control request from a receiver host application is passed to the local RSVP process. The

RSVP protocol then carries the request to all the nodes (routers and hosts) along the reverse data

path(s) to the data source(s).

Each node that is capable of QoS control passes incoming data packets through a packet classi�er,

which determines the route and the QoS class for each packet. On each outgoing interface, a packet

scheduler then makes forwarding decisions for every packet, to achieve the promised QoS on the

particular link-layer medium used by that interface.

At each node, an RSVP QoS control request is passed to two local decision modules, admission

control and policy control. Admission control determines whether the node has su�cient available

resources to supply the requested QoS. Policy control determines whether the user has administra-

Braden, Zhang, et al. Expires April 29, 1997 [Page 3]

Internet Draft RSVP Speci�cation November 1996

HOST ROUTER

_____________________________ ____________________________

| _______ | | |

| | | _______ | | _______ |

| |Appli- | | | |RSVP | | | |

| | cation| | RSVP <---------------------------> RSVP <---------->

| | <--> | | | _______ | | |

| | | |process| _____ | ||Routing| |process| _____ |

| |_._____| | -->Polcy|| || <--> -->Polcy||

| | |__.__._| |Cntrl|| ||process| |__.__._| |Cntrl||

| |data | | |_____|| ||__.____| | | |_____||

|===|===========|==|==========| |===|==========|==|==========|

| | --------| | _____ | | | --------| | _____ |

| | | | ---->Admis|| | | | | ---->Admis||

| _V__V_ ___V____ |Cntrl|| | _V__V_ __V_____ |Cntrl||

| | | | | |_____|| | | | | ||_____||

| |Class-| | Packet | | | |Class-| | Packet | |

| | ifier|==>Schedulr|================> ifier|==>Schedulr|===========>

| |______| |________| |data | |______| |________| |data

| | | |

|_____________________________| |____________________________|

Figure 1: RSVP in Hosts and Routers

tive permission to make the reservation. If both checks succeed, parameters are set in the packet

classi�er and in the scheduler, to obtain the desired QoS. If either check fails, the RSVP program

returns an error noti�cation to the application process that originated the request. We refer to

the packet classi�er, packet scheduler, and admission control components as tra�c control. The

packet scheduler and admission control components implement QoS service models de�ned by the

Integrated Services Working Group.

RSVP protocol mechanisms provide a general facility for creating and maintaining distributed

reservation state across a mesh of multicast or unicast delivery paths. RSVP itself transfers and

manipulates QoS control parameters as opaque data, passing them to the appropriate tra�c control

modules for interpretation. The structure and contents of the QoS parameters are documented

in speci�cations developed by the Integrated Services Working Group. In particular, [ISrsvp96]

describes these data structures and how RSVP �ts into the larger integrated service architecture.

Braden, Zhang, et al. Expires April 29, 1997 [Page 4]

Internet Draft RSVP Speci�cation November 1996

RSVP is designed to scale well for very large multicast groups. Since both the membership of a

large group and the topology of large multicast trees are likely to change with time, the RSVP

design assumes that router state for tra�c control will be built and destroyed incrementally. For

this purpose, RSVP uses \soft state" in the routers. That is, RSVP sends periodic refresh messages

to maintain the state along the reserved path(s); in absence of refreshes, the state will automatically

time out and be deleted.

In summary, RSVP has the following attributes:

� RSVP makes resource reservations for both unicast and many-to-many multicast applications,

adapting dynamically to changing group membership as well as to changing routes.

� RSVP is simplex, i.e., it makes reservations for unidirectional data ows.

� RSVP is receiver-oriented, i.e., the receiver of a data ow initiates and maintains the resource

reservation used for that ow.

� RSVP maintains \soft state" in the routers, providing graceful support for dynamic member-

ship changes and automatic adaptation to routing changes.

� RSVP is not a routing protocol but depends upon present and future routing protocols.

� RSVP transports and maintains opaque state for tra�c control, and policy control.

� RSVP provides several reservation models or \styles" (de�ned below) to �t a variety of ap-

plications.

� RSVP provides transparent operation through routers that do not support it.

� RSVP supports both IPv4 and IPv6.

Further discussion on the objectives and general justi�cation for RSVP design are presented in

[RSVP93] and [ISInt93].

The remainder of this section describes the RSVP reservation services. Section 2 presents an

overview of the RSVP protocol mechanisms. Section 3 contains the functional speci�cation of

RSVP, while Section 4 presents explicit message processing rules. Appendix A de�nes the variable-

length typed data objects used in the RSVP protocol. Appendix B de�nes error codes and values.

Appendix C de�nes an extension for UDP encapsulation of RSVP messages.

1.1 Data Flows

RSVP de�nes a session to be a data ow with a particular destination and transport-layer pro-

tocol. The destination of a session is de�ned by DestAddress, the IP destination address of the

Braden, Zhang, et al. Expires April 29, 1997 [Page 5]

Internet Draft RSVP Speci�cation November 1996

data packets, by the IP protocol ID, and perhaps by DstPort, a generalized destination port, i.e.,

some further demultiplexing point in the transport or application protocol layer. RSVP treats

each session independently, and this document often omits the implied quali�cation \for the same

session".

DestAddress is a group address for multicast delivery or the unicast address of a single receiver.

DstPort could be de�ned by a UDP/TCP destination port �eld, by an equivalent �eld in another

transport protocol, or by some application-speci�c information. Although the RSVP protocol is

designed to be easily extensible for greater generality, the basic protocol documented here supports

only UDP/TCP ports as generalized ports. Note that it is not strictly necessary to include DstPort

in the session de�nition when DestAddress is multicast, since di�erent sessions can always have

di�erent multicast addresses. However, DstPort is necessary to allow more than one unicast session

addressed to the same receiver host.

Figure 2 illustrates the ow of data packets in a single RSVP session, assuming multicast data

distribution. The arrows indicate data owing from senders S1 and S2 to receivers R1, R2, and R3,

and the cloud represents the distribution mesh created by multicast routing. Multicast distribution

forwards a copy of each data packet from a sender Si to every receiver Rj; a unicast distribution

session has a single receiver R. Each sender Si may be running in a unique Internet host, or a single

host may contain multiple senders distinguished by generalized source ports.

Senders Receivers

() ===> R1

S1 ===> (Multicast)

() ===> R2

(distribution)

S2 ===> ()

(by Internet) ===> R3

(_____________________)

Figure 2: Multicast Distribution Session

For unicast transmission, there will be a single destination host but there may be multiple senders;

RSVP can set up reservations for multipoint-to-single-point transmission.

1.2 Reservation Model

An elementary RSVP reservation request consists of a owspec together with a �lter spec; this pair

is called a ow descriptor. The owspec speci�es a desired QoS. The �lter spec, together with a

Braden, Zhang, et al. Expires April 29, 1997 [Page 6]

Internet Draft RSVP Speci�cation November 1996

session speci�cation, de�nes the set of data packets { the \ow" { to receive the QoS de�ned by

the owspec. The owspec is used to set parameters in the node's packet scheduler (assuming that

admission control succeeds), while the �lter spec is used to set parameters in the packet classi�er.

Data packets that are addressed to a particular session but do not match any of the �lter specs for

that session are handled as best-e�ort tra�c.

Note that the action to control QoS occurs at the place where the data enters the medium, i.e., at

the upstream end of the logical or physical link, although an RSVP reservation request originates

from receiver(s) downstream. In this document, we de�ne the directional terms \upstream" vs.

\downstream", \previous hop" vs. \next hop", and "incoming interface" vs \outgoing interface"

with respect to the direction of data ow.

If the link-layer medium is QoS-active, i.e., if it has its own QoS management capability, then the

packet scheduler is responsible for negotiation with the link layer to obtain the QoS requested by

RSVP. This mapping to the link layer QoS may be accomplished in a number of possible ways; the

details will be medium-dependent. On a QoS-passive medium such as a leased line, the scheduler

itself allocates packet transmission capacity. The scheduler may also allocate other system resources

such as CPU time or bu�ers.

The owspec in a reservation request will generally include a service class and two sets of numeric

parameters: (1) an Rspec (R for `reserve') that de�nes the desired QoS, and (2) a Tspec (T for `traf-

�c') that describes the data ow. The formats and contents of Tspecs and Rspecs are determined

by the integrated service models [ISrsvp96] and are generally opaque to RSVP.

The exact format of a �lter spec depends upon whether IPv4 or IPv6 is in use; see Appendix A.

In the most general approach [RSVP93], �lter specs may select arbitrary subsets of the packets

in a given session. Such subsets might be de�ned in terms of senders (i.e., sender IP address and

generalized source port), in terms of a higher-level protocol, or generally in terms of any �elds

in any protocol headers in the packet. For example, �lter specs might be used to select di�erent

subows in a hierarchically-encoded signal by selecting on �elds in an application-layer header. In

the interest of simplicity (and to minimize layer violation), the present RSVP version uses a much

more restricted form of �lter spec, consisting of sender IP address and optionally the UDP/TCP

port number SrcPort.

Because the UDP/TCP port numbers are used for packet classi�cation, each router must be able

to examine these �elds. This raises three potential problems.

1. It is necessary to avoid IP fragmentation of a data ow for which a resource reservation is

desired.

Document [ISrsvp96] speci�es a procedure for applications using RSVP facilities to compute

the minimum MTU over a multicast tree and return the result to the senders.

Braden, Zhang, et al. Expires April 29, 1997 [Page 7]

Internet Draft RSVP Speci�cation November 1996

2. IPv6 inserts a variable number of variable-length Internet-layer headers before the transport

header, increasing the di�culty and cost of packet classi�cation for QoS.

E�cient classi�cation of IPv6 data packets could be obtained using the Flow Label �eld of

the IPv6 header. The details will be provided in the future.

3. IP-level Security, under either IPv4 or IPv6, may encrypt the entire transport header, hiding

the port numbers of data packets from intermediate routers.

A small extension to RSVP for IP Security under IPv4 and IPv6 is described separately in

[IPSEC96].

RSVP messages carrying reservation requests originate at receivers and are passed upstream towards

the sender(s). At each intermediate node, two general actions are taken on a request.

1. Make a reservation

The request is passed to admission control and policy control. If either test fails, the reser-

vation is rejected and RSVP returns an error message to the appropriate receiver(s). If both

succeed, the node uses the owspec to set up the packet scheduler for the desired QoS and

the �lter spec to set the packet classi�er to select the appropriate data packets.

2. Forward the request upstream

The reservation request is propagated upstream towards the appropriate senders. The set

of sender hosts to which a given reservation request is propagated is called the scope of that

request.

The reservation request that a node forwards upstream may di�er from the request that it received

from downstream, for two reasons. First, the tra�c control mechanism may modify the owspec

hop-by-hop. Second, reservations for the same sender, or the same set of senders, from di�erent

downstream branches of the multicast tree(s) are merged as reservations travel upstream; as a

result, a node forwards upstream only the reservation request with the \maximum" owspec.

When a receiver originates a reservation request, it can also request a con�rmation message to

indicate that its request was (probably) installed in the network. A successful reservation request

propagates upstream along the multicast tree until it reaches a point where an existing reservation

is equal or greater than that being requested. At that point, the arriving request is merged with

the reservation in place and need not be forwarded further; the node may then send a reservation

con�rmation message back to the receiver. Note that the receipt of a con�rmation is only a high-

probability indication, not a guarantee, that the requested service is in place all the way to the

sender(s), as explained in Section 2.6.

The basic RSVP reservation model is one pass: a receiver sends a reservation request upstream, and

each node in the path either accepts or rejects the request. This scheme provides no easy way for a

Braden, Zhang, et al. Expires April 29, 1997 [Page 8]

Internet Draft RSVP Speci�cation November 1996

receiver to �nd out the resulting end-to-end service. Therefore, RSVP supports an enhancement to

one-pass service known as One Pass With Advertising (OPWA) [OPWA95]. With OPWA, RSVP

control packets are sent downstream, following the data paths, to gather information that may be

used to predict the end-to-end QoS. The results (\advertisements") are delivered by RSVP to the

receiver hosts and perhaps to the receiver applications. The advertisements may then be used by

the receiver to construct, or to dynamically adjust, an appropriate reservation request.

1.3 Reservation Styles

A reservation request includes a set of options that are collectively called the reservation style.

One reservation option concerns the treatment of reservations for di�erent senders within the same

session: establish a distinct reservation for each upstream sender, or else make a single reservation

that is shared among all packets of selected senders.

Another reservation option controls the selection of senders; it may be an explicit list of all selected

senders, or a wildcard that implicitly selects all the senders to the session. In an explicit sender-

selection reservation, each �lter spec must match exactly one sender, while in a wildcard sender-

selection no �lter spec is needed.

Sender || Reservations:

Selection || Distinct | Shared

_________||__________________|____________________

|| | |

Explicit || Fixed-Filter | Shared-Explicit |

|| (FF) style | (SE) Style |

__________||__________________|____________________|

|| | |

Wildcard || (None defined) | Wildcard-Filter |

|| | (WF) Style |

__________||__________________|____________________|

Figure 3: Reservation Attributes and Styles

The following styles are currently de�ned (see Figure 3):

� Wildcard-Filter (WF) Style

The WF style implies the options: shared reservation and wildcard sender selection. Thus, a

Braden, Zhang, et al. Expires April 29, 1997 [Page 9]

Internet Draft RSVP Speci�cation November 1996

WF-style reservation creates a single reservation shared by ows from all upstream senders.

This reservation may be thought of as a shared \pipe", whose \size" is the largest of the

resource requests from all receivers, independent of the number of senders using it. A WF-

style reservation is propagated upstream towards all sender hosts, and it automatically extends

to new senders as they appear.

Symbolically, we can represent a WF-style reservation request by:

WF(* {Q})

where the asterisk represents wildcard sender selection and Q represents the owspec.

� Fixed-Filter (FF) Style

The FF style implies the options: distinct reservations and explicit sender selection. Thus, an

elementary FF-style reservation request creates a distinct reservation for data packets from a

particular sender, not sharing them with other senders' packets for the same session.

Symbolically, we can represent an elementary FF reservation request by:

FF(S{Q})

where S is the selected sender and Q is the corresponding owspec; the pair forms a ow

descriptor. RSVP allows multiple elementary FF-style reservations to be requested at the

same time, using a list of ow descriptors:

FF(S1{Q1}, S2{Q2}, ...)

The total reservation on a link for a given session is the `sum' of Q1, Q2, ... for all requested

senders.

� Shared Explicit (SE) Style

The SE style implies the options: shared reservation and explicit sender selection. Thus, an

SE-style reservation creates a single reservation shared by selected upstream senders. Unlike

the WF style, the SE style allows a receiver to explicitly specify the set of senders to be

included.

We can represent an SE reservation request containing a owspec Q and a list of senders S1,

S2, ... by:

SE((S1,S2,...){Q})

Shared reservations, created by WF and SE styles, are appropriate for those multicast applications

in which multiple data sources are unlikely to transmit simultaneously. Packetized audio is an

Braden, Zhang, et al. Expires April 29, 1997 [Page 10]

Internet Draft RSVP Speci�cation November 1996

example of an application suitable for shared reservations; since a limited number of people talk at

once, each receiver might issue a WF or SE reservation request for twice the bandwidth required for

one sender (to allow some over-speaking). On the other hand, the FF style, which creates distinct

reservations for the ows from di�erent senders, is appropriate for video signals.

The RSVP rules disallow merging of shared reservations with distinct reservations, since these

modes are fundamentally incompatible. They also disallow merging explicit sender selection with

wildcard sender selection, since this might produce an unexpected service for a receiver that speci�ed

explicit selection. As a result of these prohibitions, WF, SE, and FF styles are all mutually

incompatible.

It would seem possible to simulate the e�ect of a WF reservation using the SE style. When an

application asked for WF, the RSVP process on the receiver host could use local state to create

an equivalent SE reservation that explicitly listed all senders. However, an SE reservation forces

the packet classi�er in each node to explicitly select each sender in the list, while a WF allows

the packet classi�er to simply \wild card" the sender address and port. When there is a large

list of senders, a WF style reservation can therefore result in considerably less overhead than an

equivalent SE style reservation. For this reason, both SE and WF are included in the protocol.

Other reservation options and styles may be de�ned in the future.

1.4 Examples of Styles

This section presents examples of each of the reservation styles and shows the e�ects of merging.

Figure 4 illustrates a router with two incoming interfaces, labeled (a) and (b), through which ows

will arrive, and two outgoing interfaces, labeled (c) and (d), through which data will be forwarded.

This topology will be assumed in the examples that follow. There are three upstream senders;

packets from sender S1 (S2 and S3) arrive through previous hop (a) ((b), respectively). There

are also three downstream receivers; packets bound for R1 (R2 and R3) are routed via outgoing

interface (c) ((d), respectively). We furthermore assume that outgoing interface (d) is connected

to a broadcast LAN, and that R2 and R3 are reached via di�erent next hop routers (not shown).

We must also specify the multicast routes within the node of Figure 4. Assume �rst that data

packets from each Si shown in Figure 4 are routed to both outgoing interfaces. Under this assump-

tion, Figures 5, 6, and 7 illustrate Wildcard-Filter, Fixed-Filter, and Shared-Explicit reservations,

respectively.

For simplicity, these examples show owspecs as one-dimensional multiples of some base resource

quantity B. The \Receive" column shows the RSVP reservation requests received over outgoing

Braden, Zhang, et al. Expires April 29, 1997 [Page 11]

Internet Draft RSVP Speci�cation November 1996

(a)| | (c)

(S1) ---------->| |----------> (R1)

| Router | |

(b)| | (d) |---> (R2)

(S2,S3) ------->| |------|

|________________| |---> (R3)

|

Figure 4: Router Con�guration

|

Send | Reserve Receive

|

| _______

WF(*{4B}) <- (a) | (c) | * {4B}| (c) <- WF(*{4B})

| |_______|

|

-----------------------|--

| _______

WF(*{4B}) <- (b) | (d) | * {3B}| (d) <- WF(*{3B})

| |_______| <- WF(*{2B})

Figure 5: Wildcard-Filter (WF) Reservation Example

interfaces (c) and (d), and the \Reserve" column shows the resulting reservation state for each

interface. The \Send" column shows the reservation requests that are sent upstream to previous

hops (a) and (b). In the \Reserve" column, each box represents one reserved \pipe" on the outgoing

link, with the corresponding ow descriptor.

Figure 5, showing the WF style, illustrates two distinct situations in which merging is required.

(1) Each of the two next hops on interface (d) results in a separate RSVP reservation request, as

shown; these two requests must be merged into the e�ective owspec, 3B, that is used to make the

reservation on interface (d). (2) The reservations on the interfaces (c) and (d) must be merged in

order to forward the reservation requests upstream; as a result, the larger owspec 4B is forwarded

upstream to each previous hop.

Figure 6 shows Fixed-Filter (FF) style reservations. The ow descriptors for senders S2 and S3,

received from outgoing interfaces (c) and (d), are packed (not merged) into the request forwarded

to previous hop (b). On the other hand, the three di�erent ow descriptors specifying sender

S1 are merged into the single request FF(S1f4Bg) that is sent to previous hop (a). For each

Braden, Zhang, et al. Expires April 29, 1997 [Page 12]

Internet Draft RSVP Speci�cation November 1996

outgoing interface, there is a separate reservation for each source that has been requested, but this

reservation will be shared among all the receivers that made the request.

|

Send | Reserve Receive

|

| ________

FF(S1{4B}) <- (a) | (c) | S1{4B} | (c) <- FF(S1{4B}, S2{5B})

| |________|

| | S2{5B} |

| |________|

---------------------|---

| ________

<- (b) | (d) | S1{3B} | (d) <- FF(S1{3B}, S3{B})

FF(S2{5B}, S3{B}) | |________| <- FF(S1{B})

| | S3{B} |

| |________|

Figure 6: Fixed-Filter (FF) Reservation Example

Figure 7 shows an example of Shared-Explicit (SE) style reservations. When SE-style reservations

are merged, the resulting �lter spec is the union of the original �lter specs, and the resulting

owspec is the largest owspec.

|

Send | Reserve Receive

|

| ________

SE(S1{3B}) <- (a) | (c) |(S1,S2) | (c) <- SE((S1,S2){B})

| | {B} |

| |________|

---------------------|---

| __________

<- (b) | (d) |(S1,S2,S3)| (d) <- SE((S1,S3){3B})

SE((S2,S3){3B}) | | {3B} | <- SE(S2{2B})

| |__________|

Figure 7: Shared-Explicit (SE) Reservation Example

Braden, Zhang, et al. Expires April 29, 1997 [Page 13]

Internet Draft RSVP Speci�cation November 1996

The three examples just shown assume that data packets from S1, S2, and S3 are routed to both

outgoing interfaces. The top part of Figure 8 shows another routing assumption: data packets

from S2 and S3 are not forwarded to interface (c), e.g., because the network topology provides a

shorter path for these senders towards R1, not traversing this node. The bottom part of Figure 8

shows WF style reservations under this assumption. Since there is no route from (b) to (c), the

reservation forwarded out interface (b) considers only the reservation on interface (d).

(a)| | (c)

(S1) ---------->| >-----------> |----------> (R1)

| - |

| - |

(b)| - | (d)

(S2,S3) ------->| >-------->--> |----------> (R2, R3)

|_______________|

Router Configuration

|

Send | Reserve Receive

|

| _______

WF(*{4B}) <- (a) | (c) | * {4B}| (c) <- WF(*{4B})

| |_______|

|

-----------------------|--

| _______

WF(*{3B}) <- (b) | (d) | * {3B}| (d) <- WF(* {3B})

| |_______| <- WF(* {2B})

Figure 8: WF Reservation Example { Partial Routing

Braden, Zhang, et al. Expires April 29, 1997 [Page 14]

Internet Draft RSVP Speci�cation November 1996

2 RSVP Protocol Mechanisms

2.1 RSVP Messages

Previous Incoming Outgoing Next

Hops Interfaces Interfaces Hops

_____ _____________________ _____

| | data --> | | data --> | |

| A |-----------| a c |--------------| C |

|_____| Path --> | | Path --> |_____|

<-- Resv | | <-- Resv _____

_____ | ROUTER | | | |

| | | | | |--| D |

| B |--| data-->| | data --> | |_____|

|_____| |--------| b d |-----------|

| Path-->| | Path --> | _____

_____ | <--Resv|_____________________| <-- Resv | | |

| | | |--| D' |

| B' |--| | |_____|

|_____| | |

Figure 9: Router Using RSVP

Figure 9 illustrates RSVP's model of a router node. Each data ow arrives from a previous hop

through a corresponding incoming interface and departs through one or more outgoing interface(s).

The same physical interface may act in both the incoming and outgoing roles for di�erent data

ows in the same session. Multiple previous hops and/or next hops may be reached through

a given physical interface, as a result of the connected network being a shared medium, or the

existence of non-RSVP routers in the path to the next RSVP hop (see Section 2.8).

There are two fundamental RSVP message types: Resv and Path.

Each receiver host sends RSVP reservation request (Resv) messages upstream towards the senders.

These messages must follow exactly the reverse of the path(s) the data packets will use, upstream

to all the sender hosts included in the sender selection. They create and maintain reservation

state in each node along the path(s). Resv messages must �nally be delivered to the sender hosts

themselves, so that the hosts can set up appropriate tra�c control parameters for the �rst hop.

The processing of Resv messages was discussed previously in Section 1.2.

Braden, Zhang, et al. Expires April 29, 1997 [Page 15]

Internet Draft RSVP Speci�cation November 1996

Each RSVP sender host transmits RSVP Path messages downstream along the uni-/multicast

routes provided by the routing protocol(s), following the paths of the data. These Path messages

store path state in each node along the way. This path state includes at least the unicast IP address

of the previous hop node, which is used to route the Resv messages hop-by-hop in the reverse

direction. (In the future, some routing protocols may supply reverse path forwarding information

directly, replacing the reverse-routing function of path state).

A Path message contains the following information in addition to the previous hop address:

� Sender Template

A Path message is required to carry a Sender Template, which describes the format of data

packets that the sender will originate. This template is in the form of a �lter spec that could

be used to select this sender's packets from others in the same session on the same link.

Sender Templates have exactly the same expressive power and format as �lter specs that

appear in Resv messages. Therefore a Sender Template may specify only the sender IP

address and optionally the UDP/TCP sender port, and it assumes the protocol Id speci�ed

for the session.

� Sender Tspec

A Path message is required to carry a Sender Tspec, which de�nes the tra�c characteristics

of the data ow that the sender will generate. This Tspec is used by tra�c control to prevent

over-reservation, and perhaps unnecessary Admission Control failures.

� Adspec

A Path message may carry a package of OPWA advertising information, known as an Adspec.

An Adspec received in a Path message is passed to the local tra�c control, which returns an

updated Adspec; the updated version is then forwarded in Path messages sent downstream.

Path messages are sent with the same source and destination addresses as the data, so that they

will be routed correctly through non-RSVP clouds (see Section 2.8). On the other hand, Resv

messages are sent hop-by-hop; each RSVP-speaking node forwards a Resv message to the unicast

address of a previous RSVP hop.

2.2 Merging Flowspecs

As noted earlier, a single physical interface may receive multiple reservation requests from di�erent

next hops for the same session and with the same �lter spec, but RSVP should install only one

reservation on that interface. The installed reservation should have an e�ective owspec that is the

Braden, Zhang, et al. Expires April 29, 1997 [Page 16]

Internet Draft RSVP Speci�cation November 1996

\largest" of the owspecs requested by the di�erent next hops. Similarly, a Resvmessage forwarded

to a previous hop should carry a owspec that is the \largest" of the owspecs requested by the

di�erent next hops (however, in certain cases the \smallest" is taken rather than the largest, see

Section 3.5). These cases both represent owspec merging.

Flowspec merging requires calculation of the \largest" of a set of owspecs. However, owspecs

are opaque to RSVP, so the actual rules for comparing owspecs must be de�ned and implemented

outside RSVP proper. The comparison rules are de�ned in the appropriate integrated service

speci�cation document; see [ISrsvp96]. An RSVP implementation will need to call service-speci�c

routines to perform owspec merging.

Note that owspecs are generally multi-dimensional vectors; they may contain both Tspec and

Rspec components, each of which may itself be multi-dimensional. Therefore, it may not be possible

to strictly order two owspecs. For example, if one request calls for a higher bandwidth and another

calls for a tighter delay bound, one is not \larger" than the other. In such a case, instead of taking

the larger, the service-speci�c merging routines must be able to return a third owspec that is at

least as large as each; mathematically, this is the least upper bound (LUB). In some cases, a owspec

at least as small is needed; this is the greatest lower bound (GLB) GLB (Greatest Lower Bound).

The following steps are used to calculate the e�ective owspec (Te, Re) to be installed on an

interface [ISrsvp96]. Here Te is the e�ective Tspec and Re is the e�ective Rspec. As an example,

consider interface (d) in Figure 9.

1. A service-speci�c calculation of the LUB of the owspecs that arrived in Resv messages from

di�erent next hops (e.g., D and D') but the same outgoing interface (d) is performed.

The result is a owspec that is opaque to RSVP but actually consists of the pair (Re, Resv Te),

where Re is the LUB of the Rspecs and Resv Te is the LUB of the Tspecs from the Resv

messages.

2. A service-speci�c calculation of Path Te, the sum of all Tspecs that were supplied in Path

messages from di�erent previous hops (e.g., some or all of A, B, and B' in Figure 9), is

performed.

3. RSVP passes these two results, (Re, Resv Te) and Path Te, to tra�c control. Tra�c control

will compute the "minimum" of Path Te and Resv Te in a service-dependent manner, to be

the e�ective owspec.

A generic set of service-speci�c calls to compare owspecs and compute the LUB and GLB of

owspecs, and to compare and sum Tspecs, is de�ned in Section 3.11.5.

Braden, Zhang, et al. Expires April 29, 1997 [Page 17]

Internet Draft RSVP Speci�cation November 1996

2.3 Soft State

RSVP takes a soft state approach to managing the reservation state in routers and hosts. RSVP

soft state is created and periodically refreshed by Path and Resv messages. The state is deleted if

no matching refresh messages arrive before the expiration of a cleanup timeout interval. State may

also be deleted by an explicit teardown message, described in the next section. At the expiration

of each refresh timeout period and after a state change, RSVP scans its state to build and forward

Path and Resv refresh messages to succeeding hops.

Path and Resvmessages are idempotent. When a route changes, the next Pathmessage will initialize

the path state on the new route, and future Resv messages will establish reservation state there;

the state on the now-unused segment of the route will time out. Thus, whether a message is \new"

or a \refresh" is determined separately at each node, depending upon the existence of state at that

node.

RSVP sends its messages as IP datagrams with no reliability enhancement. Periodic transmission

of refresh messages by hosts and routers is expected to handle the occasional loss of an RSVP

message. If the e�ective cleanup timeout is set to K times the refresh timeout period, then RSVP

can tolerate K-1 successive RSVP packet losses without falsely deleting state. The network tra�c

control mechanism should be statically con�gured to grant some minimal bandwidth for RSVP

messages to protect them from congestion losses.

The state maintained by RSVP is dynamic; to change the set of senders Si or to change any QoS

request, a host simply starts sending revised Path and/or Resv messages. The result will be an

appropriate adjustment in the RSVP state in all nodes along the path; unused state will time out

if it is not explicitly torn down.

In steady state, refreshing is performed hop-by-hop, to allow merging. When the received state

di�ers from the stored state, the stored state is updated. If this update results in modi�cation of

state to be forwarded in refresh messages, these refresh messages must be generated and forwarded

immediately, so that state changes can be propagated end-to-end without delay. However, prop-

agation of a change stops when and if it reaches a point where merging causes no resulting state

change. This minimizes RSVP control tra�c due to changes and is essential for scaling to large

multicast groups.

State that is received through a particular interface I* should never be forwarded out the same

interface. Conversely, state that is forwarded out interface I* must be computed using only state

that arrived on interfaces di�erent from I*. A trivial example of this rule is illustrated in Figure

10, which shows a transit router with one sender and one receiver on each interface (and assumes

one next/previous hop per interface). Interfaces (a) and (c) serve as both outgoing and incoming

interfaces for this session. Both receivers are making wildcard-style reservations, in which the Resv

Braden, Zhang, et al. Expires April 29, 1997 [Page 18]

Internet Draft RSVP Speci�cation November 1996

a | | c

(R1, S1) <----->| Router |<-----> (R2, S2)

|________________|

Send | Receive

|

WF(*{3B}) <-- (a) | (c) <-- WF(*{3B})

|

Receive | Send

|

WF(*{4B}) --> (a) | (c) --> WF(*{4B})

|

Reserve on (a) | Reserve on (c)

__________ | __________

| * {4B} | | | * {3B} |

|__________| | |__________|

|

Figure 10: Independent Reservations

messages are forwarded to all previous hops for senders in the group, with the exception of the next

hop from which they came. The result is independent reservations in the two directions.

There is an additional rule governing the forwarding of Resvmessages: state from Resvmessages re-

ceived from outgoing interface Io should be forwarded to incoming interface Ii only if Path messages

from Ii are forwarded to Io.

2.4 Teardown

Upon arrival, RSVP teardown messages remove path and reservation state immediately. Although

it is not necessary to explicitly tear down an old reservation, we recommend that all end hosts send

a teardown request as soon as an application �nishes.

There are two types of RSVP teardown message, PathTear and ResvTear. A PathTear message

travels towards all receivers downstream from its point of initiation and deletes path state, as well as

all dependent reservation state, along the way. An ResvTear message deletes reservation state and

travels towards all senders upstream from its point of initiation. A PathTear (ResvTear) message

may be conceptualized as a reversed-sense Path message (Resv message, respectively).

Braden, Zhang, et al. Expires April 29, 1997 [Page 19]

Internet Draft RSVP Speci�cation November 1996

A teardown request may be initiated either by an application in an end system (sender or receiver),

or by a router as the result of state timeout or service preemption. Once initiated, a teardown

request must be forwarded hop-by-hop without delay. A teardown message deletes the speci�ed

state in the node where it is received. As always, this state change will be propagated immediately

to the next node, but only if there will be a net change after merging. As a result, a ResvTear

message will prune the reservation state back (only) as far as possible.

Like all other RSVP messages, teardown requests are not delivered reliably. The loss of a teardown

request message will not cause a protocol failure because the unused state will eventually time out

even though it is not explicitly deleted. If a teardown message is lost, the router that failed to

receive that message will time out its state and initiate a new teardown message beyond the loss

point. Assuming that RSVP message loss probability is small, the longest time to delete state will

seldom exceed one refresh timeout period.

It should be possible to tear down any subset of the established state. For path state, the granularity

for teardown is a single sender. For reservation state, the granularity is an individual �lter spec.

For example, refer to Figure 7. Receiver R1 could send a ResvTear message for sender S2 only (or

for any subset of the �lter spec list), leaving S1 in place.

A ResvTear message speci�es the style and �lters; any owspec is ignored. Whatever owspec is

in place will be removed if all its �lter specs are torn down.

2.5 Errors

There are two RSVP error messages, ResvErr and PathErr_PathErr messages are very simple; they

are simply sent upstream to the sender that created the error, and they do not change path state

in the nodes though which they pass. There are only a few possible causes of path errors.

However, there are a number of ways for a syntactically valid reservation request to fail at some node

along the path. A node may also decide to preempt an established reservation. The handling of

ResvErr messages is somewhat complex (Section 3.5). Since a request that fails may be the result

of merging a number of requests, a reservation error must be reported to all of the responsible

receivers. In addition, merging heterogeneous requests creates a potential di�culty known as the

\killer reservation" problem, in which one request could deny service to another. There are actually

two killer-reservation problems.

1. The �rst killer reservation problem (KR-I) arises when there is already a reservation Q0 in

place. If another receiver now makes a larger reservation Q1 > Q0, the result of merging Q0

and Q1 may be rejected by admission control in some upstream node. This must not deny

service to Q0.

Braden, Zhang, et al. Expires April 29, 1997 [Page 20]

Internet Draft RSVP Speci�cation November 1996

The solution to this problem is simple: when admission control fails for a reservation request,

any existing reservation is left in place.

2. The second killer reservation problem (KR-II) is the converse: the receiver making a reser-

vation Q1 is persistent even though Admission Control is failing for Q1 in some node. This

must not prevent a di�erent receiver from now establishing a smaller reservation Q0 that

would succeed if not merged with Q1.

To solve this problem, a ResvErrmessage establishes additional state, called blockade state, in

each node through which it passes. Blockade state in a node modi�es the merging procedure

to omit the o�ending owspec (Q1 in the example) from the merge, allowing a smaller request

to be forwarded and established. The Q1 reservation state is said to be blockaded. Detailed

rules are presented in Section 3.5.

A reservation request that fails Admission Control creates blockade state but is left in place in

nodes downstream of the failure point. It has been suggested that these reservations downstream

from the failure represent \wasted" reservations and should be timed out if not actively deleted.

However, the downstream reservations are left in place, for the following reasons:

� There are two possible reasons for a receiver persisting in a failed reservation: (1) it is polling

for resource availability along the entire path, or (2) it wants to obtain the desired QoS along

as much of the path as possible. Certainly in the second case, and perhaps in the �rst case,

the receiver will want to hold onto the reservations it has made downstream from the failure.

� If these downstream reservations were not retained, the responsiveness of RSVP to certain

transient failures would be impaired. For example, suppose a route \aps" to an alternate

route that is congested, so an existing reservation suddenly fails, then quickly recovers to the

original route. The blockade state in each downstream router must not remove the state or

prevent its immediate refresh.

� If we did not refresh the downstream reservations, they might time out, to be restored every

Tb seconds (where Tb is the blockade state timeout interval). Such intermittent behavior

might be very distressing for users.

2.6 Con�rmation

To request a con�rmation for its reservation request, a receiver Rj includes in the Resv message

a con�rmation-request object containing Rj's IP address. At each merge point, only the largest

owspec and any accompanying con�rmation-request object is forwarded upstream. If the reser-

vation request from Rj is equal to or smaller than the reservation in place on a node, its Resv are

not forwarded further, and if the Resv included a con�rmation-request object, a ResvConf message

Braden, Zhang, et al. Expires April 29, 1997 [Page 21]

Internet Draft RSVP Speci�cation November 1996

is sent back to Rj. If the con�rmation request is forwarded, it is forwarded immediately, and no

more than once for each request.

This con�rmation mechanism has the following consequences:

� A new reservation request with a owspec larger than any in place for a session will normally

result in either a ResvErr or a ResvConf message back to the receiver from each sender. In

this case, the ResvConf message will be an end-to-end con�rmation.

� The receipt of a ResvConf gives no guarantees. Assume the �rst two reservation requests

from receivers R1 and R2 arrive at the node where they are merged. R2, whose reservation

was the second to arrive at that node, may receive a ResvConf from that node while R1's

request has not yet propagated all the way to a matching sender and may still fail. Thus, R2

may receive a ResvConf although there is no end-to-end reservation in place; furthermore, R2

may receive a ResvConf followed by a ResvErr.

2.7 Policy and Security

RSVP-mediated QoS requests will result in particular user(s) getting preferential access to network

resources. To prevent abuse, some form of back pressure on users is likely to be required. This back

pressure might take the form of administrative rules, or of some form of real or virtual billing for the

\cost" of a reservation. The form and contents of such back pressure is a matter of administrative

policy that may be determined independently by each administrative domain in the Internet.

Therefore, there is likely to be policy control as well as admission control over the establishment of

reservations. As input to policy control, RSVP messages may carry policy data. Policy data may

include credentials identifying users or user classes, account numbers, limits, quotas, etc. RSVP

will pass the policy data to a Local Policy Module (LPM) for a decision.

To protect the integrity of the policy control mechanisms, it may be necessary to ensure the integrity

of RSVP messages against corruption or spoo�ng, hop by hop. For this purpose, RSVP messages

may carry integrity objects that can be created and veri�ed by neighbor RSVP-capable nodes.

These objects use a keyed cryptographic digest technique and assume that RSVP neighbors share

a secret [Baker96].

User policy data in reservation request messages presents a scaling problem. When a multicast

group has a large number of receivers, it will be impossible or undesirable to carry all receivers'

policy data upstream to the sender(s). The policy data will have to be administratively merged at

places near the receivers, to avoid excessive policy data. Administrative merging implies checking

the user credentials and accounting data and then substituting a token indicating the check has

Braden, Zhang, et al. Expires April 29, 1997 [Page 22]

Internet Draft RSVP Speci�cation November 1996

succeeded. A chain of trust established using integrity �elds will allow upstream nodes to accept

these tokens.

In summary, di�erent administrative domains in the Internet may have di�erent policies regarding

their resource usage and reservation. The role of RSVP is to carry policy data associated with

each reservation to the network as needed. Note that the merge points for policy data are likely

to be at the boundaries of administrative domains. It may be necessary to carry accumulated and

unmerged policy data upstream through multiple nodes before reaching one of these merge points.

This document does not specify the contents of policy data, the structure of an LPM, or any generic

policy models. These will be de�ned in the future.

2.8 Non-RSVP Clouds

It is impossible to deploy RSVP (or any new protocol) at the same moment throughout the entire

Internet. Furthermore, RSVP may never be deployed everywhere. RSVP must therefore provide

correct protocol operation even when two RSVP-capable routers are joined by an arbitrary \cloud"

of non-RSVP routers. Of course, an intermediate cloud that does not support RSVP is unable to

perform resource reservation. However, if such a cloud has su�cient capacity, it may still provide

useful realtime service.

RSVP is designed to operate correctly through such a non-RSVP cloud. Both RSVP and non-RSVP

routers forward Path messages towards the destination address using their local uni-/multicast

routing table. Therefore, the routing of Path messages will be una�ected by non-RSVP routers in

the path. When a Path message traverses a non-RSVP cloud, it carries to the next RSVP-capable

node the IP address of the last RSVP-capable router before entering the cloud. An Resv message is

then forwarded directly to the next RSVP-capable router on the path(s) back towards the source.

Even though RSVP operates correctly through a non-RSVP cloud, the non-RSVP-capable nodes

will in general perturb the QoS provided to a receiver. Therefore, RSVP passes a `NonRSVP'

ag bit to the local tra�c control mechanism when there are non-RSVP-capable hops in the path

to a given sender. Tra�c control combines this ag bit with its own sources of information, and

forwards the composed information on integrated service capability along the path to receivers

using Adspecs [ISrsvp96].

Some topologies of RSVP routers and non-RSVP routers can cause Resv messages to arrive at the

wrong RSVP-capable node, or to arrive at the wrong interface of the correct node. An RSVP

process must be prepared to handle either situation. If the destination address does not match any

local interface and the message is not a Path or PathTear the message must be forwarded without

further processing by this node. To handle the wrong interface case, a \Logical Interface Handle"

Braden, Zhang, et al. Expires April 29, 1997 [Page 23]

Internet Draft RSVP Speci�cation November 1996

(LIH) is used. The previous hop information included in a Path message includes not only the IP

address of the previous node but also an LIH de�ning the logical outgoing interface; both values

are stored in the path state. A Resv message arriving at the addressed node carries both the IP

address and the LIH of the correct outgoing interface, i.e, the interface that should receive the

requested reservation, regardless of which interface it arrives on.

The LIH may also be useful when RSVP reservations are made over a complex link layer, to map

between IP layer and link layer ow entities.

2.9 Host Model

Before a session can be created, the session identi�cation, comprised of DestAddress, ProtocolId,

and perhaps the generalized destination port, must be assigned and communicated to all the senders

and receivers by some out-of-band mechanism. When an RSVP session is being set up, the following

events happen at the end systems.

H1 A receiver joins the multicast group speci�ed by DestAddress, using IGMP.

H2 A potential sender starts sending RSVP Path messages to the DestAddress.

H3 A receiver application receives a Path message.

H4 A receiver starts sending appropriate Resv messages, specifying the desired ow descriptors.

H5 A sender application receives a Resv message.

H6 A sender starts sending data packets.

There are several synchronization considerations.

� H1 and H2 may happen in either order.

� Suppose that a new sender starts sending data (H6) but there are no multicast routes because

no receivers have joined the group (H1). Then the data will be dropped at some router node

(which node depends upon the routing protocol) until receivers(s) appear.

� Suppose that a new sender starts sending Path messages (H2) and data (H6) simultaneously,

and there are receivers but no Resv messages have reached the sender yet (e.g., because its

Path messages have not yet propagated to the receiver(s)). Then the initial data may arrive

at receivers without the desired QoS. The sender could mitigate this problem by awaiting

arrival of the �rst Resv message (H5); however, receivers that are farther away may not have

reservations in place yet.

Braden, Zhang, et al. Expires April 29, 1997 [Page 24]

Internet Draft RSVP Speci�cation November 1996

� If a receiver starts sending Resv messages (H4) before receiving any Path messages (H3),

RSVP will return error messages to the receiver.

The receiver may simply choose to ignore such error messages, or it may avoid them by

waiting for Path messages before sending Resv messages.

A speci�c application program interface (API) for RSVP is not de�ned in this protocol spec, as

it may be host system dependent. However, Section 3.11.1 discusses the general requirements and

outlines a generic interface.

Braden, Zhang, et al. Expires April 29, 1997 [Page 25]

Internet Draft RSVP Speci�cation November 1996

3 RSVP Functional Speci�cation

3.1 RSVP Message Formats

An RSVP message consists of a common header, followed by a body consisting of a variable number

of variable-length, typed objects. The following subsections de�ne the formats of the common

header, the standard object header, and each of the RSVP message types.

For each RSVP message type, there is a set of rules for the permissible choice of object types. These

rules are speci�ed using Backus-Naur Form (BNF) augmented with square brackets surrounding

optional sub-sequences. The BNF implies an order for the objects in a message. However, in many

(but not all) cases, object order makes no logical di�erence. An implementation should create

messages with the objects in the order shown here, but accept the objects in any permissible order.

3.1.1 Common Header

0 1 2 3

+-------------+-------------+-------------+-------------+

| Vers | Flags| Msg Type | RSVP Checksum |

+-------------+-------------+-------------+-------------+

| Send_TTL | (Reserved) | RSVP Length |

+-------------+-------------+-------------+-------------+

The �elds in the common header are as follows:

Vers: 4 bits

Protocol version number. This is version 1.

Flags: 4 bits

0x01-0x08: Reserved

No ag bits are de�ned yet.

Msg Type: 8 bits

1 = Path

2 = Resv

3 = PathErr

Braden, Zhang, et al. Expires April 29, 1997 [Page 26]

Internet Draft RSVP Speci�cation November 1996

4 = ResvErr

5 = PathTear

6 = ResvTear

7 = ResvConf

RSVP Checksum: 16 bits

The one's complement of the one's complement sum of the message, with the checksum �eld

replaced by zero for the purpose of computing the checksum. An all-zero value means that

no checksum was transmitted.

Send TTL: 8 bits

The IP TTL value with which the message was sent. See Section 3.8.

RSVP Length: 16 bits

The total length of this RSVP message in bytes, including the common header and the

variable-length objects that follow.

3.1.2 Object Formats

Every object consists of one or more 32-bit words with a one-word header, with the following

format:

0 1 2 3

+-------------+-------------+-------------+-------------+

| Length (bytes) | Class-Num | C-Type |

+-------------+-------------+-------------+-------------+

| |

// (Object contents) //

| |

+-------------+-------------+-------------+-------------+

An object header has the following �elds:

Length

A 16-bit �eld containing the total object length in bytes. Must always be a multiple of 4, and

at least 4.

Class-Num

Braden, Zhang, et al. Expires April 29, 1997 [Page 27]

Internet Draft RSVP Speci�cation November 1996

Identi�es the object class; values of this �eld are de�ned in Appendix A. Each object class

has a name, which is always capitalized in this document. An RSVP implementation must

recognize the following classes:

NULL

A NULL object has a Class-Num of zero, and its C-Type is ignored. Its length must

be at least 4, but can be any multiple of 4. A NULL object may appear anywhere in a

sequence of objects, and its contents will be ignored by the receiver.

SESSION

Contains the IP destination address (DestAddress), the IP protocol id, and some form of

generalized destination port, to de�ne a speci�c session for the other objects that follow.

Required in every RSVP message.

RSVP HOP

Carries the IP address of the RSVP-capable node that sent this message and a logical

outgoing interface handle (LIH; see Section 3.3). This document refers to a RSVP HOP

object as a PHOP (previous hop) object for downstream messages or as a NHOP (next

hop) object for upstream messages.

TIME VALUES

Contains the value for the refresh period R used by the creator of the message; see

Section 3.7. Required in every Path and Resv message.

STYLE

De�nes the reservation style plus style-speci�c information that is not in FLOWSPEC

or FILTER SPEC objects. Required in every Resv message.

FLOWSPEC

De�nes a desired QoS, in a Resv message.

FILTER SPEC

De�nes a subset of session data packets that should receive the desired QoS (speci�ed

by a FLOWSPEC object), in a Resv message.

SENDER TEMPLATE

Contains a sender IP address and perhaps some additional demultiplexing information

to identify a sender. Required in a Path message.

SENDER TSPEC

De�nes the tra�c characteristics of a sender's data ow. Required in a Path message.

ADSPEC

Carries OPWA data, in a Path message.

ERROR SPEC

Speci�es an error in a PathErr, ResvErr, or a con�rmation in a ResvConf message.

Braden, Zhang, et al. Expires April 29, 1997 [Page 28]

Internet Draft RSVP Speci�cation November 1996

POLICY DATA

Carries information that will allow a local policy module to decide whether an associ-

ated reservation is administratively permitted. May appear in Path, Resv, PathErr, or

ResvErr message.

The use of POLICY DATA objects is not fully speci�ed at this time; a future document

will �ll this gap.

INTEGRITY

Carries cryptographic data to authenticate the originating node and to verify the con-

tents of this RSVPmessage. The use of the INTEGRITY object is described in [Baker96].

SCOPE

Carries an explicit list of sender hosts towards which the information in the message is

to be forwarded. May appear in a Resv ResvErr or ResvTear message. See Section 3.4.

RESV CONFIRM

Carries the IP address of a receiver that requested a con�rmation. May appear in a Resv

or ResvConf message.

C-Type

Object type, unique within Class-Num. Values are de�ned in Appendix A.

The maximum object content length is 65528 bytes. The Class-Num and C-Type �elds may be

used together as a 16-bit number to de�ne a unique type for each object.

The high-order two bits of the Class-Num is used to determine what action a node should take if

it does not recognize the Class-Num of an object; see Section 3.10.

3.1.3 Path Messages

The format of a Path message is as follows:

<Path Message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP>

<TIME_VALUES>

[<POLICY_DATA> ...]

[<sender descriptor>]

Braden, Zhang, et al. Expires April 29, 1997 [Page 29]

Internet Draft RSVP Speci�cation November 1996

<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

[<ADSPEC>]

If the INTEGRITY object is present, it must immediately follow the common header. There are no

other requirements on transmission order, although the above order is recommended. Any number

of POLICY DATA objects may appear.

The PHOP (i.e., the RSVP HOP) object of each Path message contains the previous hop address,

i.e., the IP address of the interface through which the Path message was most recently sent. It also

carries a logical interface handle (LIH).

Each sender host periodically sends a Pathmessage for each data ow it originates. The SENDER TEMPLATE

object de�nes the format of the data packets, while the SENDER TSPEC object speci�es the traf-

�c characteristics of the ow. Optionally, there may be an ADSPEC object carrying advertising

(OPWA) data for the ow.

The Path message travels from a sender to receiver(s) along the same path(s) used by the data

packets. The IP source address of a Path message is an address of the sender it describes, while the

destination address is the DestAddress for the session. These addresses assure that the message

will be correctly routed through a non-RSVP cloud.

Each RSVP-capable node along the path(s) captures a Path message and processes it to create

path state for the sender de�ned by the SENDER TEMPLATE and SESSION objects. Any POL-

ICY DATA, SENDER TSPEC, and ADSPEC objects are also saved in the path state. If an error

is encountered while processing a Path message, a PathErr message is sent to the originating sender

of the Path message. Path messages must satisfy the rules on SrcPort and DstPort in Section 3.2.

Periodically, the RSVP process at a node scans the path state to create new Path messages to

forward towards the receiver(s). Each message contains a sender descriptor de�ning one sender,

and carries the original sender's IP address as its IP source address. Path messages eventually

reach the applications on all receivers; however, they are not looped back to a receiver running in

the same application process as the sender.

The RSVP process forwards Path messages and replicates them as required by multicast sessions,

using routing information it obtains from the appropriate uni-/multicast routing process. The

route depends upon the session DestAddress, and for some routing protocols also upon the source

(sender's IP) address. The routing information generally includes the list of zero or more outgoing

interfaces to which the Path message is to be forwarded. Because each outgoing interface has

a di�erent IP address, the Path messages sent out di�erent interfaces contain di�erent PHOP

Braden, Zhang, et al. Expires April 29, 1997 [Page 30]

Internet Draft RSVP Speci�cation November 1996

addresses. In addition, ADSPEC objects carried in Path messages will also generally di�er for

di�erent outgoing interfaces.

Some IP multicast routing protocols (e.g., DVMRP, PIM, and MOSPF) also keep track of the

expected incoming interface for each source host to a multicast group. Whenever this information

is available, RSVP should check the incoming interface of each Pathmessage and do special handling

of those messages Path messages that have arrived on the wrong interface; see Section 3.9.

3.1.4 Resv Messages

Resv messages carry reservation requests hop-by-hop from receivers to senders, along the reverse

paths of data ows for the session. The IP destination address of a Resv message is the unicast

address of a previous-hop node, obtained from the path state. The IP source address is an address

of the node that sent the message.

The Resv message format is as follows:

<Resv Message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP>

<TIME_VALUES>

[<RESV_CONFIRM>] [<SCOPE>]

[<POLICY_DATA> ...]

<STYLE> <flow descriptor list>

<flow descriptor list> ::= <empty> |

<flow descriptor list> <flow descriptor>

If the INTEGRITY object is present, it must immediately follow the common header. The STYLE

object followed by the ow descriptor list must occur at the end of the message, and objects

within the ow descriptor list must follow the BNF given below. There are no other requirements

on transmission order, although the above order is recommended.

The NHOP (i.e., the RSVP HOP) object contains the IP address of the interface through which

the Resv message was sent and the LIH for the logical interface on which the reservation is required.

Braden, Zhang, et al. Expires April 29, 1997 [Page 31]

Internet Draft RSVP Speci�cation November 1996

The appearance of a RESV CONFIRM object signals a request for a reservation con�rmation

and carries the IP address of the receiver to which the ResvConf should be sent. Any number of

POLICY DATA objects may appear.

The BNF above de�nes a ow descriptor list as simply a list of ow descriptors. The following

style-dependent rules specify in more detail the composition of a valid ow descriptor list for

each of the reservation styles.

� WF Style:

<flow descriptor list> ::= <WF flow descriptor>

<WF flow descriptor> ::= <FLOWSPEC>

� FF style:

<flow descriptor list> ::=

<FLOWSPEC> <FILTER_SPEC> |

<flow descriptor list> <FF flow descriptor>

<FF flow descriptor> ::=

[<FLOWSPEC>] <FILTER_SPEC>

Each elementary FF style request is de�ned by a single (FLOWSPEC, FILTER SPEC) pair,

and multiple such requests may be packed into the ow descriptor list of a single Resv

message. A FLOWSPEC object can be omitted if it is identical to the most recent such

object that appeared in the list; the �rst FF ow descriptor must contain a FLOWSPEC.

� SE style:

<flow descriptor list> ::= <SE flow descriptor>

<SE flow descriptor> ::=

<FLOWSPEC> <filter spec list>

<filter spec list> ::= <FILTER_SPEC>

Braden, Zhang, et al. Expires April 29, 1997 [Page 32]

Internet Draft RSVP Speci�cation November 1996

| <filter spec list> <FILTER_SPEC>

The reservation scope, i.e., the set of senders towards which a particular reservation is to be

forwarded (after merging), is determined as follows:

� Explicit sender selection

The reservation is forwarded to all senders whose SENDER TEMPLATE objects recorded in

the path state match a FILTER SPEC object in the reservation. This match must follow the

rules of Section 3.2.

� Wildcard sender selection

A request with wildcard sender selection will match all senders that route to the given outgoing

interface.

Whenever a Resv message with wildcard sender selection is forwarded to more than one

previous hop, a SCOPE object must be included in the message (see Section 3.4 below);

in this case, the scope for forwarding the reservation is constrained to just the sender IP

addresses explicitly listed in the SCOPE object.

3.1.5 Teardown Messages

There are two types of RSVP teardown message, PathTear and ResvTear.

� A PathTear message deletes path state (which in turn deletes any reservation state for that

sender), traveling towards all receivers that are downstream from the initiating node. A

PathTear message must be routed exactly like the corresponding Path message. Therefore,

its IP destination address must be the session DestAddress, and its IP source address must

be the address of the sender being torn down.

� A ResvTearmessage deletes reservation state, traveling towards all matching senders upstream

from the initiating node. A ResvTear message must be routed like the corresponding Resv

message, and its IP destination address will be the unicast address of a previous hop. A

ResvTear message will be initiated by a receiver, by a node in which reservation state has

timed out, or by a node in which a reservation has been preempted.

<PathTear Message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP>

[<sender descriptor>]

Braden, Zhang, et al. Expires April 29, 1997 [Page 33]

Internet Draft RSVP Speci�cation November 1996

<sender descriptor> ::= (see earlier definition)

<ResvTear Message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP>

[<SCOPE>] <STYLE>

<flow descriptor list>

<flow descriptor list> ::= (see earlier definition)

FLOWSPEC objects in the ow descriptor list of a ResvTear message will be ignored and may

be omitted. The order requirements for INTEGRITY object, sender descriptor, STYLE object,

and ow descriptor list are as given earlier for Path and Resv messages. A ResvTear message

may specify any subset of the �lter specs in FF-style or SE-style reservation state.

Note that, unless it is accidentally dropped along the way, a PathTear message will reach all

receivers downstream from the originating node. On the other hand, a ResvTearmessage will cease

to be forwarded at the node where merging would have suppressed forwarding of the corresponding

Resv message. Depending upon the resulting state change in a node, receipt of a ResvTearmessage

may cause a ResvTear message to be forwarded, a modi�ed Resv message to be forwarded, or no

message to be forwarded.

These three cases can be illustrated in the case of the FF-style reservations shown in Figure 6.

� If receiver R2 sends a ResvTear message for its reservation S3fBg, the corresponding reser-

vation is removed from interface (d) and an ResvTear for S3fBg is forwarded out (b).

� If receiver R1 sends a ResvTear for its reservation S1f4Bg, the corresponding reservation

is removed from interface (c) and a modi�ed Resv message FF(S1f3Bg) is immediately

forwarded out (a).

� If receiver R3 sends a ResvTear message for S1fBg, there is no change in the e�ective reser-

vation S1f3Bg on (d) and no message is forwarded.

Deletion of path state as the result of a PathTear message or a timeout must cause any adjustments

in related reservation state required to maintain consistency in the local node. The adjustment

in reservation state depends upon the style. For example, suppose a PathTear deletes the path

state for a sender S. If the style speci�es explicit sender selection (FF or SE), any reservation

Braden, Zhang, et al. Expires April 29, 1997 [Page 34]

Internet Draft RSVP Speci�cation November 1996

with a �lter spec matching S should be deleted; if the style has wildcard sender selection (WF), the

reservation should be deleted if S is the last sender to the session. These reservation changes should

not trigger an immediate Resv refresh message, since the PathTear message has already made the

required changes upstream. However, at the node in which a ResvTear message stops, the change

of reservation state may trigger a Resv refresh starting at that node.

3.1.6 Error Messages

There are two types of RSVP error messages.

� PathErr messages result from Path messages and travel upstream towards senders. PathErr

messages are routed hop-by-hop using the path state; at each hop, the IP destination address

is the unicast address of a previous hop. PathErr messages do not modify the state of any

node through which they pass; instead, they are only reported to the sender application.

� ResvErr messages result from Resv messages and travel downstream towards the appropriate

receivers. They are routed hop-by-hop using the reservation state; at each hop, the IP

destination address is the unicast address of a next-hop node.

<PathErr message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <ERROR_SPEC>

[<POLICY_DATA> ...]

[<sender descriptor>]

<sender descriptor> ::= (see earlier definition)

<ResvErr Message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP>

<ERROR_SPEC> [<SCOPE>]

[<POLICY_DATA> ...]

<STYLE> [<error flow descriptor>]

Braden, Zhang, et al. Expires April 29, 1997 [Page 35]

Internet Draft RSVP Speci�cation November 1996

The ERROR SPEC object speci�es the error and includes the IP address of the node that detected

the error (Error Node Address). One or more POLICY DATA objects may be included in an error

message to provide relevant information (i.e., when an administrative failure is being reported).

In a ResvErr message, the RSVP HOP object contains the previous hop address, and the STYLE

object is copied from the Resvmessage in error. The use of the SCOPE object in a ResvErrmessage

is de�ned below in Section 3.4.

The following style-dependent rules de�ne the composition of a valid error ow descriptor; the

object order requirements are as given earlier for a Resv message.

� WF Style:

<error flow descriptor> ::= <WF flow descriptor>

� FF style:

<error flow descriptor> ::= <FF flow descriptor>

Each ow descriptor in a FF-style Resv message must be processed independently, and a

separate ResvErr message must be generated for each one that is in error.

� SE style:

<error flow descriptor> ::= <SE flow descriptor>

An SE-style ResvErr message may list the subset of the �lter specs in the corresponding Resv

message to which the error applies.

Note that a ResvErr message contains only one ow descriptor. Therefore, a Resv message that

contains N > 1 ow descriptors (FF style) may create up to N separate ResvErr messages.

Generally speaking, a ResvErr message should be forwarded towards all receivers that may have

caused the error being reported. More speci�cally:

� The node that detects an error in a reservation request sends a ResvErr message to the next

hop from which the erroneous reservation came.

This message must contain the information required to de�ne the error and to route the error

message in later hops. It therefore includes an ERROR SPEC object, a copy of the STYLE

object, and the appropriate error ow descriptor. If the error is an admission control

failure, any reservation already in place must be left in place, and the InPlace ag bit must

be on in the ERROR SPEC of the ResvErr message.

Braden, Zhang, et al. Expires April 29, 1997 [Page 36]

Internet Draft RSVP Speci�cation November 1996

� Succeeding nodes forward the ResvErr message to next hops that have local reservation state.

For reservations with wildcard scope, there is an additional limitation on forwarding ResvErr

messages, to avoid loops; see Section 3.4. There is also a rule restricting the forwarding of a

Resv message after an Admission Control failure; see Section 3.5.

A ResvErrmessage that is forwarded should carry the FILTER SPEC from the corresponding

reservation state.

� When a ResvErr message reaches a receiver, the STYLE object, ow descriptor list, and

ERROR SPEC object (including its ags) should be delivered to the receiver application.

An error encountered while processing an error message must cause the error message to be dis-

carded without creating further error messages; however, logging of such events may be useful.

3.1.7 Con�rmation Messages

ResvConf messages are sent to (probabilistically) acknowledge reservation requests. A ResvConf

message is sent as the result of the appearance of a RESV CONFIRM object in a Resv message.

A ResvConf message is sent to the unicast address of a receiver host; the address is obtained

from the RESV CONFIRM object. However, a ResvConf message is forwarded to the receiver

hop-by-hop, to accommodate the hop-by-hop integrity check mechanism.

<ResvConf message> ::= <Common Header> [<INTEGRITY>]

<SESSION> <ERROR_SPEC>

<RESV_CONFIRM>

<STYLE> <flow descriptor list>

<flow descriptor list> ::= (see earlier definition)

The object order requirements are the same as those given earlier for a Resv message.

The RESV CONFIRM object is a copy of that object in the Resv message that triggered the

con�rmation. The ERROR SPEC is used only to carry the IP address of the originating node, in

the Error Node Address; the Error Code and Value are zero to indicate a con�rmation. The ow

descriptor list speci�es the particular reservations that are being con�rmed; it may be a subset

of ow descriptor list of the Resv that requested the con�rmation.

Braden, Zhang, et al. Expires April 29, 1997 [Page 37]

Internet Draft RSVP Speci�cation November 1996

3.2 Port Usage

An RSVP session is normally de�ned by the triple: (DestAddress, ProtocolId, DstPort). Here

DstPort is a UDP/TCP destination port �eld (i.e., a 16-bit quantity carried at octet o�set +2 in

the transport header). DstPort may be omitted (set to zero) if the ProtocolId speci�es a protocol

that does not have a destination port �eld in the format used by UDP and TCP.

RSVP allows any value for ProtocolId. However, end-system implementations of RSVP may know

about certain values for this �eld, and in particular the values for UDP and TCP (17 and 6,

respectively). An end system may give an error to an application that either:

� speci�es a non-zero DstPort for a protocol that does not have UDP/TCP-like ports, or

� speci�es a zero DstPort for a protocol that does have UDP/TCP-like ports.

Filter specs and sender templates specify the pair: (SrcAddress, SrcPort), where SrcPort is a

UDP/TCP source port �eld (i.e., a 16-bit quantity carried at octet o�set +0 in the transport

header). SrcPort may be omitted (set to zero) in certain cases.

The following rules hold for the use of zero DstPort and/or SrcPort �elds in RSVP.

1. Destination ports must be consistent.

Path state and reservation state for the same DestAddress and ProtocolId must each have

DstPort values that are all zero or all non-zero. Violation of this condition in a node is a

\Conicting Dest Port" error.

2. Destination ports rule.

If DstPort in a session de�nition is zero, all SrcPort �elds used for that session must also be

zero. The assumption here is that the protocol does not have UDP/TCP-like ports. Violation

of this condition in a node is a \Conicting Src Port" error.

3. Source Ports must be consistent.

A sender host must not send path state both with and without a zero SrcPort. Violation of

this condition is an \Ambiguous Path" error.

3.3 Sending RSVP Messages

RSVP messages are sent hop-by-hop between RSVP-capable routers as \raw" IP datagrams with

protocol number 46. Raw IP datagrams are also intended to be used between an end system and the

Braden, Zhang, et al. Expires April 29, 1997 [Page 38]

Internet Draft RSVP Speci�cation November 1996

�rst/last hop router, although it is also possible to encapsulate RSVP messages as UDP datagrams

for end-system communication, as described in Appendix C. UDP encapsulation is needed for

systems that cannot do raw network I/O.

Path, PathTear, and ResvConf messages must be sent with the Router Alert IP option [Katz95] in

their IP headers. This option may be used in the fast forwarding path of a high-speed router to

detect datagrams that require special processing.

Upon the arrival of an RSVP message M that changes the state, a node must forward the state

modi�cation immediately. However, this must not trigger sending a message out the interface

through which M arrived (which could happen if the implementation simply triggered an immediate

refresh of all state for the session). This rule is necessary to prevent packet storms on broadcast

LANs.

In this version of the spec, each RSVP message must occupy exactly one IP datagram. If it exceeds

the MTU, such a datagram will be fragmented by IP and reassembled at the recipient node. This

has several consequences:

� A single RSVP message may not exceed the maximum IP datagram size, approximately 64K

bytes.

� A congested non-RSVP cloud could lose individual message fragments, and any lost fragment

will lose the entire message.

Future versions of the protocol will provide solutions for these problems if they prove burdensome.

The most likely direction will be to perform \semantic fragmentation", i.e., break the path or

reservation state being transmitted into multiple self-contained messages, each of an acceptable

size.

RSVP uses its periodic refresh mechanisms to recover from occasional packet losses. Under network

overload, however, substantial losses of RSVP messages could cause a failure of resource reserva-

tions. To control the queueing delay and dropping of RSVP packets, routers should be con�gured to

o�er them a preferred class of service. If RSVP packets experience noticeable losses when crossing

a congested non-RSVP cloud, a larger value can be used for the timeout factor K (see section 3.7).

Some multicast routing protocols provide for multicast tunnels, which do IP encapsulation of mul-

ticast packets for transmission through routers that do not have multicast capability. A multicast

tunnel looks like a logical outgoing interface that is mapped into some physical interface. A multi-

cast routing protocol that supports tunnels will describe a route using a list of logical rather than

physical interfaces. RSVP can operate across such multicast tunnels in the following manner:

Braden, Zhang, et al. Expires April 29, 1997 [Page 39]

Internet Draft RSVP Speci�cation November 1996

1. When a node N forwards a Path message out a logical outgoing interface L, it includes in the

message some encoding of the identity of L, called the logical interface handle or LIH. The

LIH value is carried in the RSVP HOP object.

2. The next hop node N' stores the LIH value in its path state.

3. When N' sends a Resv message to N, it includes the LIH value from the path state (again, in

the RSVP HOP object).

4. When the Resv message arrives at N, its LIH value provides the information necessary to

attach the reservation to the appropriate logical interface. Note that N creates and interprets

the LIH; it is an opaque value to N'.

Note that this only solves the routing problem posed by tunnels. The tunnel appears to RSVP as

a non-RSVP cloud. To establish RSVP reservations within the tunnel, additional machinery will

be required, to be de�ned in the future.

3.4 Avoiding RSVP Message Loops

Forwarding of RSVP messages must avoid looping. In steady state, Path and Resv messages are

forwarded on each hop only once per refresh period. This avoids looping packets, but there is still

the possibility of an auto-refresh loop, clocked by the refresh period. Such auto-refresh loops keep

state active \forever", even if the end nodes have ceased refreshing it, until the receivers leave the

multicast group and/or the senders stop sending Path messages. On the other hand, error and

teardown messages are forwarded immediately and are therefore subject to direct looping.

Consider each message type.

� Path Messages

Path messages are forwarded in exactly the same way as IP data packets. Therefore there

should be no loops of Path messages (except perhaps for transient routing loops, which we

ignore here), even in a topology with cycles.

� PathTear Messages

PathTear messages use the same routing as Path messages and therefore cannot loop.

� PathErr Messages

Since Path messages do not loop, they create path state de�ning a loop-free reverse path to

each sender. PathErr messages are always directed to particular senders and therefore cannot

loop.

Braden, Zhang, et al. Expires April 29, 1997 [Page 40]

Internet Draft RSVP Speci�cation November 1996

� Resv Messages

Resv messages directed to particular senders (i.e., with explicit sender selection) cannot loop.

However, Resv messages with wildcard sender selection (WF style) have a potential for auto-

refresh looping.

� ResvTear Messages

Although ResvTear messages are routed the same as Resv messages, during the second pass

around a loop there will be no state so any ResvTear message will be dropped. Hence there

is no looping problem here.

� ResvErr Messages

ResvErr messages for WF style reservations may loop for essentially the same reasons that

Resv messages loop.

� ResvConf Messages

ResvConf messages are forwarded towards a �xed unicast receiver address and cannot loop.

If the topology has no loops, then looping of Resv and ResvErr messages with wildcard sender

selection can be avoided by simply enforcing the rule given earlier: state that is received through a

particular interface must never be forwarded out the same interface. However, when the topology

does have cycles, further e�ort is needed to prevent auto-refresh loops of wildcard Resv messages

and fast loops of wildcard ResvErr messages. The solution to this problem adopted by this protocol

speci�cation is for such messages to carry an explicit sender address list in a SCOPE object.

When a Resvmessage with WF style is to be forwarded to a particular previous hop, a new SCOPE

object is computed from the SCOPE objects that were received in matching Resv messages. If the

computed SCOPE object is empty, the message is not forwarded to the previous hop; otherwise,

the message is sent containing the new SCOPE object. The rules for computing a new SCOPE

object for a Resv message are as follows:

1. The union is formed of the sets of sender IP addresses listed in all SCOPE objects in the

reservation state for the given session.

If reservation state from some NHOP does not contain a SCOPE object, a substitute sender

list must be created and included in the union. For a message that arrived on outgoing

interface OI, the substitute list is the set of senders that route to OI.

2. Any local senders (i.e., any sender applications on this node) are removed from this set.

3. If the SCOPE object is to be sent to PHOP, remove from the set any senders that did not

come from PHOP.

Braden, Zhang, et al. Expires April 29, 1997 [Page 41]

Internet Draft RSVP Speci�cation November 1996

a | | c

R4, S4<----->| Router |<-----> R2, S2, S3

| |

b | |

R1, S1<----->| |

|________________|

Send on (a): | Receive on (c):

|

<-- WF([S4]) | <-- WF([S4, S1])

|

Send on (b): |

|

<-- WF([S1]) |

|

Receive on (a): | Send on (c):

|

WF([S1,S2,S3]) --> | WF([S2, S3]) -->

|

Receive on (b): |

|

WF([S2,S3,S4]) --> |

|

Figure 11: SCOPE Objects in Wildcard-Scope Reservations

Figure 11 shows an example of wildcard-scoped (WF style) Resv messages. The address lists within

SCOPE objects are shown in square brackets. Note that there may be additional connections among

the nodes, creating looping topology that is not shown.

SCOPE objects are not necessary if the multicast routing uses shared trees or if the reservation

style has explicit sender selection. Furthermore, attaching a SCOPE object to a reservation should

be deferred to a node which has more than one previous hop for the reservation state.

The following rules are used for SCOPE objects in ResvErr messages with WF style:

1. The node that detected the error initiates an ResvErr message containing a copy of the

SCOPE object associated with the reservation state or message in error.

2. Suppose a wildcard-style ResvErr message arrives at a node with a SCOPE object containing

Braden, Zhang, et al. Expires April 29, 1997 [Page 42]

Internet Draft RSVP Speci�cation November 1996

the sender host address list L. The node forwards the ResvErr message using the rules of

Section 3.1.6. However, the ResvErr message forwarded out OI must contain a SCOPE

object derived from L by including only those senders that route to OI. If this SCOPE object

is empty, the ResvErr message should not be sent out OI.

3.5 Blockade State

The basic rule for creating a Resv refresh message is to merge the owspecs of the reservation

requests in place in the node, by computing their LUB. However, this rule is modi�ed by the

existence of blockade state resulting from ResvErrmessages, to solve the KR-II problem (see Section

2.5). The blockade state also enters into the routing of ResvErr messages for Admission Control

failure.

When a ResvErr message for an Admission Control failure is received, its owspec Qe is used to

create or refresh an element of local blockade state. Each element of blockade state consists of a

blockade owspec Qb taken from the owspec of the ResvErr message, and an associated blockade

timer Tb. When a blockade timer expires, the corresponding blockade state is deleted.

The granularity of blockade state depends upon the style of the ResvErr message that created it.

For an explicit style, there may be a blockade state element (Qb(S),Tb(S)) for each sender S. For

a wildcard style, blockade state is per previous hop P.

An element of blockade state with owspec Qb is said to \blockade" a reservation with owspec

Qi if Qb is not (strictly) greater than Qi. For example, suppose that the LUB of two owspecs is

computed by taking the max of each of their corresponding components. Then Qb blockades Qi if

for some component j, Qb[j] <= Qi[j].

Suppose that a node receives a ResvErr message from previous hop P (or, if style is explicit, sender

S) as the result of an Admission Control failure upstream. Then:

1. An element of blockade state is created for P (or S) if it did not exist.

2. Qb(P) (or Qb(S)) is set equal to the owspec Qe from the ResvErr message.

3. A corresponding blockade timer Tb(P) (or Tb(S)) is started or restarted for a time Kb*R.

Here Kb is a �xed multiplier and R is the refresh interval for reservation state. Kb should be

con�gurable.

4. If there is some local reservation state that is not blockaded (see below), an immediate reser-

vation refresh for P (or S) is generated.

5. The ResvErr message is forwarded to next hops in the following way. If the InPlace bit is

o�, the ResvErr message is forwarded to all next hops for which there is reservation state. If

Braden, Zhang, et al. Expires April 29, 1997 [Page 43]

Internet Draft RSVP Speci�cation November 1996

the InPlace bit is on, the ResvErr message is forwarded only to the next hops whose Qi is

blockaded by Qb.

Finally, we present the modi�ed rule for merging owspecs to create a reservation refresh message.

� If there are any local reservation requests Qi that are not blockaded, these are merged by

computing their LUB. The blockaded reservations are ignored; this allows forwarding of a

smaller reservation that has not failed and may perhaps succeed, after a larger reservation

fails.

� Otherwise (all local requests Qi are blockaded), they are merged by taking the GLB (Greatest

Lower Bound) of the Qi's.

(The use of some de�nition of \minimum" improves performance by bracketing the failure

level between the largest that succeeds and the smallest that fails. The choice of GLB in

particular was made because it is simple to de�ne and implement, and no reason is known

for using a di�erent de�nition of \minimum" here).

This refresh merging algorithm is applied separately to each ow (each sender or PHOP) contribut-

ing to a shared reservation (WF or SE style).

Figure 12 shows an example of the the application of blockade state for a shared reservation (WF

style). There are two previous hops labelled (a) and (b), and two next hops labelled (c) and (d).

The larger reservation 4B arrived from (c) �rst, but it failed somewhere upstream via PHOP (a),

but not via PHOP (b). The �gures show the �nal "steady state" after the smaller reservation 2B

subsequently arrived from (d). This steady state is perturbed roughly every Kb*R seconds, when

the blockade state times out. The next refresh then sends 4B to previous hop (a); presumably

this will fail, sending a ResvErr message that will re-establish the blockade state, returning to the

situation shown in the �gure. At the same time, the ResvErr message will be forwarded to next

hop (c) and to all receivers downstream responsible for the 4B reservations.

3.6 Local Repair

When a route changes, the next Path or Resv refresh message will establish path or reservation

state (respectively) along the new route. To provide fast adaptation to routing changes without the

overhead of short refresh periods, the local routing protocol module can notify the RSVP process of

route changes for particular destinations. The RSVP process should use this information to trigger

a quick refresh of state for these destinations, using the new route.

The speci�c rules are as follows:

Braden, Zhang, et al. Expires April 29, 1997 [Page 44]

Internet Draft RSVP Speci�cation November 1996

Send Blockade | Reserve Receive

State {Qb}|

| ________

(a) <- WF(*{2B}) {4B} | | * {4B} | WF(*{4B}) <- (c)

| |________|

|

---------------------------|-------------------------------

|

| ________

(b) <- WF(*{4B}) (none)| | * {2B} | WF(*{2B}) <- (d)

| |________|

Figure 12: Blockading with Shared Style

� When routing detects a change of the set of outgoing interfaces for destination G, RSVP

should update the path state, wait for a short period W, and then send Path refreshes for all

sessions G/* (i.e., for any session with destination G, regardless of destination port).

The short wait period before sending Path refreshes is to allow the routing protocol to settle,

and the value for W should be chosen accordingly. Currently W = 2 sec is suggested; however,

this value should be con�gurable per interface.

� When a Path message arrives with a Previous Hop address that di�ers from the one stored

in the path state, RSVP should send immediate Resv refreshes to that PHOP.

3.7 Time Parameters

There are two time parameters relevant to each element of RSVP path or reservation state in a node:

the refresh period R between generation of successive refreshes for the state by the neighbor node,

and the local state's lifetime L. Each RSVP Resv or Path message may contain a TIME VALUES

object specifying the R value that was used to generate this (refresh) message. This R value is then

used to determine the value for L when the state is received and stored. The values for R and L

may vary from hop to hop.

In more detail:

1. Floyd and Jacobson [FJ94] have shown that periodic messages generated by independent

network nodes can become synchronized. This can lead to disruption in network services as

Braden, Zhang, et al. Expires April 29, 1997 [Page 45]

Internet Draft RSVP Speci�cation November 1996

the periodic messages contend with other network tra�c for link and forwarding resources.

Since RSVP sends periodic refresh messages, it must avoid message synchronization and

ensure that any synchronization that may occur is not stable.

For this reason, the refresh timer should be randomly set to a value in the range [0.5R, 1.5R].

2. To avoid premature loss of state, L must satisfy L >= (K + 0.5)*1.5*R, where K is a small

integer. Then in the worst case, K-1 successive messages may be lost without state being

deleted. To compute a lifetime L for a collection of state with di�erent R values R0, R1, ...,

replace R by max(Ri).

Currently K = 3 is suggested as the default. However, it may be necessary to set a larger K

value for hops with high loss rate. K may be set either by manual con�guration per interface,

or by some adaptive technique that has not yet been speci�ed.

3. Each Path or Resv message carries a TIME VALUES object containing the refresh time R

used to generate refreshes. The recipient node uses this R to determine the lifetime L of the

stored state created or refreshed by the message.

4. The refresh time R is chosen locally by each node. If the node does not implement local

repair of reservations disrupted by route changes, a smaller R speeds up adaptation to routing

changes, while increasing the RSVP overhead. With local repair, a router can be more relaxed

about R since the periodic refresh becomes only a backstop robustness mechanism. A node

may therefore adjust the e�ective R dynamically to control the amount of overhead due to

refresh messages.

The current suggested default for R is 30 seconds. However, the default value Rdef should be

con�gurable per interface.

5. When R is changed dynamically, there is a limit on how fast it may increase. Speci�cally, the

ratio of two successive values R2/R1 must not exceed 1 + Slew.Max.

Currently, Slew.Max is 0.30. With K = 3, one packet may be lost without state timeout while

R is increasing 30 percent per refresh cycle.

6. To improve robustness, a node may temporarily send refreshes more often than R after a

state change (including initial state establishment).

7. The values of Rdef, K, and Slew.Max used in an implementation should be easily modi�able

per interface, as experience may lead to di�erent values. The possibility of dynamically

adapting K and/or Slew.Max in response to measured loss rates is for future study.

3.8 Tra�c Policing and Non-Integrated Service Hops

Some QoS services may require tra�c policing at some or all of (1) the edge of the network, (2)

a merging point for data from multiple senders, and/or (3) a branch point where tra�c ow from

Braden, Zhang, et al. Expires April 29, 1997 [Page 46]

Internet Draft RSVP Speci�cation November 1996

upstream may be greater than the downstream reservation being requested. RSVP knows where

such points occur and must so indicate to the tra�c control mechanism. On the other hand, RSVP

does not interpret the service embodied in the owspec and therefore does not know whether

policing will actually be applied in any particular case.

The RSVP process passes to tra�c control a separate policing ag for each of these three situations.

� E Police Flag { Entry Policing

This ag is set in the �rst-hop RSVP node that implements tra�c control (and is therefore

capable of policing).

For example, sender hosts must implement RSVP but currently many of them do not im-

plement tra�c control. In this case, the E Police Flag should be o� in the sender host, and

it should only be set on when the �rst node capable of tra�c control is reached. This is

controlled by the E Police ag in SESSION objects.

� M Police Flag { Merge Policing

This ag should be set on for a reservation using a shared style (WF or SE) when ows from

more than one sender are being merged.

� B Police Flag { Branch Policing

This ag should be set on when the owspec being installed is smaller than, or incomparable

to, a FLOWSPEC in place on any other interface, for the same FILTER SPEC and SESSION.

RSVP must also test for the presence of non-RSVP hops in the path and pass this information to

tra�c control. From this ag bit that the RSVP process supplies and from its own local knowledge,

tra�c control can detect the presence of a hop in the path that is not capable of QoS control, and

it passes this information to the receivers in Adspecs [ISrsvp96].

With normal IP forwarding, RSVP can detect a non-RSVP hop by comparing the IP TTL with

which a Pathmessage is sent to the TTL with which it is received; for this purpose, the transmission

TTL is placed in the common header. However, the TTL is not always a reliable indicator of non-

RSVP hops, and other means must sometimes be used. For example, if the routing protocol uses

IP encapsulating tunnels, then the routing protocol must inform RSVP when non-RSVP hops are

included. If no automatic mechanism will work, manual con�guration will be required.

3.9 Multihomed Hosts

Accommodating multihomed hosts requires some special rules in RSVP. We use the term `multi-

homed host' to cover both hosts (end systems) with more than one network interface and routers

that are supporting local application programs.

Braden, Zhang, et al. Expires April 29, 1997 [Page 47]

Internet Draft RSVP Speci�cation November 1996

An application executing on a multihomed host may explicitly specify which interface any given

ow will use for sending and/or for receiving data packets, to override the system-speci�ed default

interface. The RSVP process must be aware of the default, and if an application sets a speci�c

interface, it must also pass that information to RSVP.

� Sending Data

A sender application uses an API call (SENDER in Section 3.11.1) to declare to RSVP the

characteristics of the data ow it will originate. This call may optionally include the local

IP address of the sender. If it is set by the application, this parameter must be the interface

address for sending the data packets; otherwise, the system default interface is implied.

The RSVP process on the host then sends Path messages for this application out the speci�ed

interface (only).

� Making Reservations

A receiver application uses an API call (RESERVE in Section 3.11.1) to request a reservation

from RSVP. This call may optionally include the local IP address of the receiver, i.e., the

interface address for receiving data packets. In the case of multicast sessions, this is the

interface on which the group has been joined. If the parameter is omitted, the system default

interface is used.

In general, the RSVP process should send Resv messages for an application out the speci�ed

interface. However, when the application is executing on a router and the session is multicast,

a more complex situation arises. Suppose in this case that a receiver application joins the

group on an interface Iapp that di�ers from Isp, the shortest-path interface to the sender.

Then there are two possible ways for multicast routing to deliver data packets to the appli-

cation. The RSVP process must determine which case holds by examining the path state, to

decide which incoming interface to use for sending Resv messages.

1. The multicast routing protocol may create a separate branch of the multicast distribution

`tree' to deliver to Iapp. In this case, there will be path state for both Isp and Iapp.

The path state on Iapp should only match a reservation from the local application; it

must be marked \Local only" by the RSVP process. If \Local only" path state for Iapp

exists, the Resv message should be sent out Iapp.

Note that it is possible for the path state blocks for Isp and Iapp to have the same next

hop, if there is an intervening non-RSVP cloud.

2. The multicast routing protocol may forward data within the router from Isp to Iapp. In

this case, Iapp will appear in the list of outgoing interfaces of the path state for Isp, and

the Resv message should be sent out Isp.

Braden, Zhang, et al. Expires April 29, 1997 [Page 48]

Internet Draft RSVP Speci�cation November 1996

3.10 Future Compatibility

We may expect that in the future new object C-Types will be de�ned for existing object classes,

and perhaps new object classes will be de�ned. It will be desirable to employ such new objects

within the Internet using older implementations that do not recognize them. Unfortunately, this is

only possible to a limited degree with reasonable complexity. The rules are as follows (`b' represents

a bit).

1. Unknown Class

There are three possible ways that an RSVP implementation can treat an object with un-

known class. This choice is determined by the two high-order bits of the Class-Num octet, as

follows.

� Class-Num = 0bbbbbbb

The entire message should be rejected and an \Unknown Object Class" error returned.

� Class-Num = 10bbbbbb

The node should ignore the object, neither forwarding it nor sending an error message.

� Class-Num = 11bbbbbb

The node should ignore the object but forward it, unexamined and unmodi�ed, in all

messages resulting from the state contained in this message.

For example, suppose that a Resv message that is received contains an object of unknown

class number 11bbbbbb. Such an object should be saved in the reservation state without

further examination; however, only the latest object with a given (unknown class, C-Type)

pair should be saved. When a Resv message is forwarded, it should include copies of such

saved unknown-class objects from all reservations that are merged to form the new Resv

message.

Note that objects with unknown class cannot be merged; however, unmerged objects may

be forwarded until they reach a node that knows how to merge them. Forwarding objects

with unknown class enables incremental deployment of new objects; however, the scaling

limitations of doing so must be carefully examined before a new object class is deployed with

both high bits on.

These rules should be considered when any new Class-Num is de�ned.

2. Unknown C-Type for Known Class

One might expect the known Class-Num to provide information that could allow intelligent

handling of such an object. However, in practice such class-dependent handling is complex,

and in many cases it is not useful.

Braden, Zhang, et al. Expires April 29, 1997 [Page 49]

Internet Draft RSVP Speci�cation November 1996

Generally, the appearance of an object with unknown C-Type should result in rejection of the

entire message and generation of an error message (ResvErr or PathErr as appropriate). The

error message will include the Class-Num and C-Type that failed (see Appendix B); the end

system that originated the failed message may be able to use this information to retry the

request using a di�erent C-Type object, repeating this process until it runs out of alternatives

or succeeds.

Objects of certain classes (FLOWSPEC, ADSPEC, and POLICY DATA) are opaque to

RSVP, which simply hands them to tra�c control or policy modules. Depending upon its

internal rules, either of the latter modules may reject a C-Type and inform the RSVP pro-

cess; RSVP should then reject the message and send an error, as described in the previous

paragraph.

Braden, Zhang, et al. Expires April 29, 1997 [Page 50]

Internet Draft RSVP Speci�cation November 1996

3.11 RSVP Interfaces

RSVP on a router has interfaces to routing and to tra�c control. RSVP on a host has an interface

to applications (i.e, an API) and also an interface to tra�c control (if it exists on the host).

3.11.1 Application/RSVP Interface

This section describes a generic interface between an application and an RSVP control process.

The details of a real interface may be operating-system dependent; the following can only sug-

gest the basic functions to be performed. Some of these calls cause information to be returned

asynchronously.

� Register Session

Call: SESSION(DestAddress , ProtocolId, DstPort

[, SESSION_object]

[, Upcall_Proc_addr]) -> Session-id

This call initiates RSVP processing for a session, de�ned by DestAddress together with Pro-

tocolId and possibly a port number DstPort. If successful, the SESSION call returns imme-

diately with a local session identi�er Session-id, which may be used in subsequent calls.

The Upcall Proc addr parameter de�nes the address of an upcall procedure to receive asyn-

chronous error or event noti�cation; see below. The SESSION object parameter is included

as an escape mechanism to support some more general de�nition of the session (\generalized

destination port"), should that be necessary in the future. Normally SESSION object will be

omitted.

� De�ne Sender

Call: SENDER(Session-id

[, Source_Address] [, Source_Port]

[, Sender_Template]

[, Sender_Tspec] [, Adspec]

Braden, Zhang, et al. Expires April 29, 1997 [Page 51]

Internet Draft RSVP Speci�cation November 1996

[, Data_TTL] [, Policy_data])

A sender uses this call to de�ne, or to modify the de�nition of, the attributes of the data

ow. The �rst SENDER call for the session registered as `Session-id' will cause RSVP to

begin sending Path messages for this session; later calls will modify the path information.

The SENDER parameters are interpreted as follows:

{ Source Address

This is the address of the interface from which the data will be sent. If it is omitted, a

default interface will be used. This parameter is needed only on a multihomed sender

host.

{ Source Port

This is the UDP/TCP port from which the data will be sent.

{ Sender Template

This parameter is included as an escape mechanism to support a more general de�nition

of the sender (generalized source port). Normally this parameter may be omitted.

{ Sender Tspec

This parameter describes the tra�c ow to be sent; see [ISrsvp96].

{ Adspec

This parameter may be speci�ed to initialize the computation of QoS properties along

the path; see [ISrsvp96].

{ Data TTL

This is the (non-default) IP Time-To-Live parameter that is being supplied on the data

packets. It is needed to ensure that Path messages do not have a scope larger than

multicast data packets.

{ Policy data

This optional parameter passes policy data for the sender. This data may be supplied

by a system service, with the application treating it as opaque.

� Reserve

Call: RESERVE(session-id, [receiver_address ,]

[CONF_flag,] [Policy_data,]

style, style-dependent-parms)

A receiver uses this call to make or to modify a resource reservation for the session registered as

`session-id'. The �rst RESERVE call will initiate the periodic transmission of Resv messages.

Braden, Zhang, et al. Expires April 29, 1997 [Page 52]

Internet Draft RSVP Speci�cation November 1996

A later RESERVE call may be given to modify the parameters of the earlier call (but note

that changing existing reservations may result in admission control failures).

The optional `receiver address' parameter may be used by a receiver on a multihomed host (or

router); it is the IP address of one of the node's interfaces. The CONF ag should be set on

if a reservation con�rmation is desired, o� otherwise. The `Policy data' parameter speci�es

policy data for the receiver, while the `style' parameter indicates the reservation style. The

rest of the parameters depend upon the style; generally these will be appropriate owspecs

and �lter specs.

The RESERVE call returns immediately. Following a RESERVE call, an asynchronous ER-

ROR/EVENT upcall may occur at any time.

� Release

Call: RELEASE(session-id)

This call removes RSVP state for the session speci�ed by session-id. The node then sends

appropriate teardown messages and ceases sending refreshes for this session-id.

� Error/Event Upcalls

The general form of a upcall is as follows:

Upcall: <Upcall_Proc>() -> session-id, Info_type,

information_parameters

Here Upcall Proc represents the upcall procedure whose address was supplied in the SESSION

call. This upcall may occur asynchronously at any time after a SESSION call and before a

RELEASE call, to indicate an error or an event.

Currently there are �ve upcall types, distinguished by the Info type parameter. The selection

of information parameters depends upon the type.

1. Info type = PATH EVENT

A Path Event upcall results from receipt of the �rst Path message for this session,

indicating to a receiver application that there is at least one active sender, or if the path

state changes.

Upcall: <Upcall_Proc>() -> session-id,

Info_type=PATH_EVENT,

Sender_Tspec, Sender_Template

[, Adspec] [, Policy_data]

Braden, Zhang, et al. Expires April 29, 1997 [Page 53]

Internet Draft RSVP Speci�cation November 1996

This upcall presents the Sender Tspec, the Sender Template, the Adspec, and any policy

data from a Path message.

2. Info type = RESV EVENT

A Resv Event upcall is triggered by the receipt of the �rst Resv message, or by modi�-

cation of a previous reservation state, for this session.

Upcall: <Upcall_Proc>() -> session-id,

Info_type=RESV_EVENT,

Style, Flowspec, Filter_Spec_list

[, Policy_data]

Here `Flowspec' will be the e�ective QoS that has been received. Note that an FF-style

Resvmessage may result in multiple RESV EVENT upcalls, one for each ow descriptor.

3. Info type = PATH ERROR

An Path Error event indicates an error in sender information that was speci�ed in a

SENDER call.

Upcall: <Upcall_Proc>() -> session-id,

Info_type=PATH_ERROR,

Error_code , Error_value ,

Error_Node , Sender_Template

[, Policy_data_list]

The Error code parameter will de�ne the error, and Error value may supply some addi-

tional (perhaps system-speci�c) data about the error. The Error Node parameter will

specify the IP address of the node that detected the error. The Policy data list param-

eter, if present, will contain any POLICY DATA objects from the failed Path message.

4. Info type = RESV ERR

An Resv Error event indicates an error in a reservation message to which this application

contributed.

Upcall: <Upcall_Proc>() -> session-id,

Info_type=RESV_ERROR,

Braden, Zhang, et al. Expires April 29, 1997 [Page 54]

Internet Draft RSVP Speci�cation November 1996

Error_code , Error_value ,

Error_Node , Error_flags ,

Flowspec, Filter_spec_list

[, Policy_data_list]

The Error code parameter will de�ne the error and Error value may supply some ad-

ditional (perhaps system-speci�c) data. The Error Node parameter will specify the IP

address of the node that detected the event being reported.

There are two Error ags:

{ InPlace

This ag may be on for an Admission Control failure, to indicate that there was,

and is, a reservation in place at the failure node. This ag is set at the failure point

and forwarded in ResvErr messages.

{ NotGuilty

This ag may be on for an Admission Control failure, to indicate that the owspec

requested by this receiver was strictly less than the owspec that got the error. This

ag is set at the receiver API.

Filter spec list and Flowspec will contain the corresponding objects from the error ow

descriptor (see Section 3.1.6). List count will specify the number of FILTER SPECS in

Filter spec list. The Policy data list parameter will contain any POLICY DATA objects

from the ResvErr message.

5. Info type = RESV CONFIRM

A Con�rmation event indicates that a ResvConf message was received.

Upcall: <Upcall_Proc>() -> session-id,

Info_type=RESV_CONFIRM,

Style, List_count,

Flowspec, Filter_spec_list

[, Policy_data]

The parameters are interpreted as in the Resv Error upcall.

Although RSVP messages indicating path or resv events may be received periodically, the

API should make the corresponding asynchronous upcall to the application only on the �rst

Braden, Zhang, et al. Expires April 29, 1997 [Page 55]

Internet Draft RSVP Speci�cation November 1996

occurrence or when the information to be reported changes. All error and con�rmation events

should be reported to the application.

3.11.2 RSVP/Tra�c Control Interface

In an RSVP-capable node, enhanced QoS is achieved by a group of inter-related tra�c control

functions: a packet classi�er, an admission control module, and a packet scheduler. This section

describes a generic RSVP interface to tra�c control.

� Make a Reservation

Call: TC_AddFlowspec(Interface, TC_Flowspec,

TC_Tspec, Police_Flags)

-> RHandle [, Fwd_Flowspec]

The TC Flowspec parameter de�nes the desired e�ective QoS to admission control; its value is

computed as the maximum over the owspecs of di�erent next hops (see the Compare Flowspecs

call below). The TC Tspec parameter de�nes the e�ective sender Tspec Path Te (see Section

2.2). The Police Flags parameter carries the three ags E Police Flag, M Police Flag, and

B Police Flag; see Section 3.8.

If this call is successful, it establishes a new reservation channel corresponding to RHandle;

otherwise, it returns an error code. The opaque number RHandle is used by the caller for

subsequent references to this reservation. If the tra�c control service updates the owspec,

the call will also return the updated object as Fwd Flowspec.

� Modify Reservation

Call: TC_ModFlowspec(Interface, RHandle, TC_Flowspec,

Sender_Tspec, Police_flags)

[-> Fwd_Flowspec]

This call is used to modify an existing reservation. TC Flowspec is passed to Admission

Control; if it is rejected, the current owspec is left in force. The corresponding �lter specs, if

any, are not a�ected. The other parameters are de�ned as in TC AddFlowspec. If the service

updates the owspec, the call will also return the updated object as Fwd Flowspec.

Braden, Zhang, et al. Expires April 29, 1997 [Page 56]

Internet Draft RSVP Speci�cation November 1996

� Delete Flowspec

Call: TC_DelFlowspec(Interface, RHandle)

This call will delete an existing reservation, including the owspec and all associated �lter

specs.

� Add Filter Spec

Call: TC_AddFilter(Interface, RHandle,

Session , FilterSpec) -> FHandle

This call is used to associate an additional �lter spec with the reservation speci�ed by the

given RHandle, following a successful TC AddFlowspec call. This call returns a �lter handle

FHandle.

� Delete Filter Spec

Call: TC_DelFilter(Interface, FHandle)

This call is used to remove a speci�c �lter, speci�ed by FHandle.

� OPWA Update

Call: TC_Advertise(Interface, Adspec,

Non_RSVP_Hop_flag) -> New_Adspec

This call is used for OPWA to compute the outgoing advertisement New Adspec for a speci�ed

interface. The ag bit Non RSVP Hop ag should be set whenever the RSVP process detects

that the previous RSVP hop included one or more non-RSVP-capable routers. TC Advertise

will insert this information into New Adspec to indicate that a non-integrated-service hop

was found; see Section 3.8.

� Preemption Upcall

Upcall: TC_Preempt() -> RHandle, Reason_code

In order to grant a new reservation request, the admission control and/or policy control

modules may preempt one or more existing reservations. This will trigger a TC Preempt()

upcall to RSVP for each preempted reservation, passing the RHandle of the reservation and

a sub-code indicating the reason.

Braden, Zhang, et al. Expires April 29, 1997 [Page 57]

Internet Draft RSVP Speci�cation November 1996

3.11.3 RSVP/Policy Control Interface

This interface will be speci�ed in a future document.

3.11.4 RSVP/Routing Interface

An RSVP implementation needs the following support from the packet forwarding and routing

mechanisms of the node.

� Promiscuous Receive Mode for RSVP Messages

Packets received for IP protocol 46 but not addressed to the node must be diverted to the

RSVP program for processing, without being forwarded. On a router, the identity of the

interface, real or virtual, on which it is received as well as the IP source address and IP TTL

with which it arrived must also be available to the RSVP process.

The RSVP messages to be diverted will carry the Router Alert IP option, which can be used

to pick them out of a high-speed forwarding path. Alternatively, the node can intercept all

protocol 46 packets.

� Route Query

To forward Path and PathTear messages, an RSVP process must be able to query the routing

process(s) for routes.

Ucast_Route_Query([SrcAddress,] DestAddress,

Notify_flag) -> OutInterface

Mcast_Route_Query([SrcAddress,] DestAddress,

Notify_flag)

-> [IncInterface,] OutInterface_list

Depending upon the routing protocol, the query may or may not depend upon SrcAddress,

i.e., upon the sender host IP address, which is also the IP source address of the message. Here

IncInterface is the interface through which the packet is expected to arrive; some multicast

routing protocols may not provide it. If the Notify ag is True, routing will save state

necessary to issue unsolicited route change noti�cation callbacks (see below) whenever the

speci�ed route changes.

Braden, Zhang, et al. Expires April 29, 1997 [Page 58]

Internet Draft RSVP Speci�cation November 1996

A multicast route query may return an empty OutInterface list if there are no receivers

downstream of a particular router. A route query may also return a `No such route' error,

probably as a result of a transient inconsistency in the routing (since a Path or PathTear

message for the requested route did arrive at this node). In either case, the local state should

be updated as requested by the message, which cannot be forwarded further. Updating local

state will make path state available immediately for a new local receiver, or it will tear down

path state immediately.

� Route Change Noti�cation

If requested by a route query with the Notify ag True, the routing process may provide an

asynchronous callback to the RSVP process that a speci�ed route has changed.

Ucast_Route_Change() -> [SrcAddress,] DestAddress,

OutInterface

Mcast_Route_Change() -> [SrcAddress,] DestAddress,

[IncInterface,] OutInterface_list

� Outgoing Link Speci�cation

RSVP must be able to force a (multicast) datagram to be sent on a speci�c outgoing virtual

link, bypassing the normal routing mechanism. A virtual link may be a real outgoing link

or a multicast tunnel. Outgoing link speci�cation is necessary to send di�erent versions of

an outgoing Path message on di�erent interfaces. It is also necessary in some cases to avoid

routing loops.

� Source Address Speci�cation

RSVP must be able to specify the IP source address to be used when sending Path messages.

� Interface List Discovery

RSVP must be able to learn what real and virtual interfaces are active, with their IP addresses.

It should be possible to logically disable an interface for RSVP. When an interface is disabled

for RSVP, a Path message should never be forwarded out that interface, and if an RSVP

message is received on that interface, the message should be silently discarded (perhaps with

local logging).

3.11.5 Service-Dependent Manipulations

Flowspecs, Tspecs, and Adspecs are opaque objects to RSVP; their contents are de�ned in service

speci�cation documents. In order to manipulate these objects, RSVP process must have available

Braden, Zhang, et al. Expires April 29, 1997 [Page 59]

Internet Draft RSVP Speci�cation November 1996

to it the following service-dependent routines.

� Compare Flowspecs

Compare_Flowspecs(Flowspec_1, Flowspec_2) ->

result_code

The possible result codes indicate: owspecs are equal, Flowspec 1 is greater, Flowspec 2 is

greater, owspecs are incomparable but LUB can be computed, or owspecs are incompatible.

Note that comparing two owspecs implicitly compares the Tspecs that are contained. Al-

though the RSVP process cannot itself parse a owspec to extract the Tspec, it can use the

Compare Flowspecs call to implicitly calculate Resv Te (see Section 2.2).

� Compute LUB of Flowspecs

LUB_of_Flowspecs(Flowspec_1, Flowspec_2) ->

Flowspec_LUB

� Compute GLB of Flowspecs

GLB_of_Flowspecs(Flowspec_1, Flowspec_2) ->

Flowspec_GLB

� Compare Tspecs

Compare_Tspecs(Tspec_1, Tspec_2) -> result_code

The possible result codes indicate: Tspecs are equal, or Tspecs are unequal.

� Sum Tspecs

Sum_Tspecs(Tspec_1, Tspec_2) -> Tspec_sum

This call is used to compute Path Te (see Section 2.2).

Braden, Zhang, et al. Expires April 29, 1997 [Page 60]

Internet Draft RSVP Speci�cation November 1996

A Object De�nitions

C-Types are de�ned for the two Internet address families IPv4 and IPv6. To accommodate other

address families, additional C-Types could easily be de�ned. These de�nitions are contained as an

Appendix, to ease updating.

All unused �elds should be sent as zero and ignored on receipt.

A.1 SESSION Class

SESSION Class = 1.

� IPv4/UDP SESSION object: Class = 1, C-Type = 1

+-------------+-------------+-------------+-------------+

| IPv4 DestAddress (4 bytes) |

+-------------+-------------+-------------+-------------+

| Protocol Id | Flags | DstPort |

+-------------+-------------+-------------+-------------+

� IPv6/UDP SESSION object: Class = 1, C-Type = 2

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 DestAddress (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

| Protocol Id | Flags | DstPort |

+-------------+-------------+-------------+-------------+

DestAddress

The IP unicast or multicast destination address of the session. This �eld must be non-zero.

Braden, Zhang, et al. Expires April 29, 1997 [Page 61]

Internet Draft RSVP Speci�cation November 1996

Protocol Id

The IP Protocol Identi�er for the data ow. This �eld must be non-zero.

Flags

0x01 = E Police ag

The E Police ag is used in Path messages to determine the e�ective \edge" of the

network, to control tra�c policing. If the sender host is not itself capable of tra�c

policing, it will set this bit on in Path messages it sends. The �rst node whose RSVP is

capable of tra�c policing will do so (if appropriate to the service) and turn the ag o�.

DstPort

The UDP/TCP destination port for the session. Zero may be used to indicate `none'.

Other SESSION C-Types could be de�ned in the future to support other demultiplexing

conventions in the transport-layer or application layer.

Braden, Zhang, et al. Expires April 29, 1997 [Page 62]

Internet Draft RSVP Speci�cation November 1996

A.2 RSVP HOP Class

RSVP HOP class = 3.

� IPv4 RSVP HOP object: Class = 3, C-Type = 1

+-------------+-------------+-------------+-------------+

| IPv4 Next/Previous Hop Address |

+-------------+-------------+-------------+-------------+

| Logical Interface Handle |

+-------------+-------------+-------------+-------------+

� IPv6 RSVP HOP object: Class = 3, C-Type = 2

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 Next/Previous Hop Address +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

| Logical Interface Handle |

+-------------+-------------+-------------+-------------+

This object provides the IP address of the interface through which the last RSVP-knowledgeable

hop forwarded this message. The Logical Interface Handle is a 32-bit number which may be used

to distinguish logical outgoing interfaces as described in Section 3.3; it should be identically zero if

there is no logical interface handle.

Braden, Zhang, et al. Expires April 29, 1997 [Page 63]

Internet Draft RSVP Speci�cation November 1996

A.3 INTEGRITY Class

INTEGRITY class = 4.

See [Baker96].

A.4 TIME VALUES Class

TIME VALUES class = 5.

� TIME VALUES Object: Class = 5, C-Type = 1

+-------------+-------------+-------------+-------------+

| Refresh Period R |

+-------------+-------------+-------------+-------------+

Refresh Period

The refresh timeout period R used to generate this message; in milliseconds.

Braden, Zhang, et al. Expires April 29, 1997 [Page 64]

Internet Draft RSVP Speci�cation November 1996

A.5 ERROR SPEC Class

ERROR SPEC class = 6.

� IPv4 ERROR SPEC object: Class = 6, C-Type = 1

+-------------+-------------+-------------+-------------+

| IPv4 Error Node Address (4 bytes) |

+-------------+-------------+-------------+-------------+

| Flags | Error Code | Error Value |

+-------------+-------------+-------------+-------------+

� IPv6 ERROR SPEC object: Class = 6, C-Type = 2

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 Error Node Address (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

| Flags | Error Code | Error Value |

+-------------+-------------+-------------+-------------+

Error Node Address

The IP address of the node in which the error was detected.

Flags

0x01 = InPlace

This ag is used only for an ERROR SPEC object in a ResvErr message. If it on, this

ag indicates that there was, and still is, a reservation in place at the failure point.

0x02 = NotGuilty

This ag is used only for an ERROR SPEC object in a ResvErr message, and it is

only set in the interface to the receiver application. If it on, this ag indicates that the

Braden, Zhang, et al. Expires April 29, 1997 [Page 65]

Internet Draft RSVP Speci�cation November 1996

FLOWSPEC that failed was strictly greater than the FLOWSPEC requested by this

receiver.

Error Code

A one-octet error description.

Error Value

A two-octet �eld containing additional information about the error. Its contents depend

upon the Error Type.

The values for Error Code and Error Value are de�ned in Appendix B.

Braden, Zhang, et al. Expires April 29, 1997 [Page 66]

Internet Draft RSVP Speci�cation November 1996

A.6 SCOPE Class

SCOPE class = 7.

This object contains a list of IP addresses, used for routing messages with wildcard scope without

loops. The addresses must be listed in ascending numerical order.

� IPv4 SCOPE List object: Class = 7, C-Type = 1

+-------------+-------------+-------------+-------------+

| IPv4 Src Address (4 bytes) |

+-------------+-------------+-------------+-------------+

// //

+-------------+-------------+-------------+-------------+

| IPv4 Src Address (4 bytes) |

+-------------+-------------+-------------+-------------+

� IPv6 SCOPE list object: Class = 7, C-Type = 2

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 Src Address (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

// //

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 Src Address (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

Braden, Zhang, et al. Expires April 29, 1997 [Page 67]

Internet Draft RSVP Speci�cation November 1996

A.7 STYLE Class

STYLE class = 8.

� STYLE object: Class = 8, C-Type = 1

+-------------+-------------+-------------+-------------+

| Flags | Option Vector |

+-------------+-------------+-------------+-------------+

Flags: 8 bits

(None assigned yet)

Option Vector: 24 bits

A set of bit �elds giving values for the reservation options. If new options are added in the

future, corresponding �elds in the option vector will be assigned from the least-signi�cant

end. If a node does not recognize a style ID, it may interpret as much of the option vector as

it can, ignoring new �elds that may have been de�ned.

The option vector bits are assigned (from the left) as follows:

19 bits: Reserved

2 bits: Sharing control

00b: Reserved

01b: Distinct reservations

10b: Shared reservations

11b: Reserved

3 bits: Sender selection control

000b: Reserved

001b: Wildcard

010b: Explicit

011b - 111b: Reserved

The low order bits of the option vector are determined by the style, as follows:

WF 10001b

FF 01010b

SE 10010b

Braden, Zhang, et al. Expires April 29, 1997 [Page 68]

Internet Draft RSVP Speci�cation November 1996

A.8 FLOWSPEC Class

FLOWSPEC class = 9.

� Reserved (obsolete) owspec object: Class = 9, C-Type = 1

� Inv-serv Flowspec object: Class = 9, C-Type = 2

The contents and encoding rules for this object are speci�ed in documents prepared by the

int-serv working group [ISrsvp96].

Braden, Zhang, et al. Expires April 29, 1997 [Page 69]

Internet Draft RSVP Speci�cation November 1996

A.9 FILTER SPEC Class

FILTER SPEC class = 10.

� IPv4 FILTER SPEC object: Class = 10, C-Type = 1

+-------------+-------------+-------------+-------------+

| IPv4 SrcAddress (4 bytes) |

+-------------+-------------+-------------+-------------+

| ////// | ////// | SrcPort |

+-------------+-------------+-------------+-------------+

� IPv6 FILTER SPEC object: Class = 10, C-Type = 2

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 SrcAddress (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

| ////// | ////// | SrcPort |

+-------------+-------------+-------------+-------------+

� IPv6 Flow-label FILTER SPEC object: Class = 10, C-Type = 3

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 SrcAddress (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

| /////// | Flow Label (24 bits) |

+-------------+-------------+-------------+-------------+

Braden, Zhang, et al. Expires April 29, 1997 [Page 70]

Internet Draft RSVP Speci�cation November 1996

SrcAddress

The IP source address for a sender host. Must be non-zero.

SrcPort

The UDP/TCP source port for a sender, or zero to indicate `none'.

Flow Label

A 24-bit Flow Label, de�ned in IPv6. This value may be used by the packet classi�er to

e�ciently identify the packets belonging to a particular (sender� >destination) data ow.

Braden, Zhang, et al. Expires April 29, 1997 [Page 71]

Internet Draft RSVP Speci�cation November 1996

A.10 SENDER TEMPLATE Class

SENDER TEMPLATE class = 11.

� IPv4 SENDER TEMPLATE object: Class = 11, C-Type = 1

De�nition same as IPv4/UDP FILTER SPEC object.

� IPv6 SENDER TEMPLATE object: Class = 11, C-Type = 2

De�nition same as IPv6/UDP FILTER SPEC object.

� IPv6 Flow-label SENDER TEMPLATE object: Class = 11, C-Type = 3

A.11 SENDER TSPEC Class

SENDER TSPEC class = 12.

� Intserv SENDER TSPEC object: Class = 12, C-Type = 2

The contents and encoding rules for this object are speci�ed in documents prepared by the

int-serv working group.

A.12 ADSPEC Class

ADSPEC class = 13.

� Intserv ADSPEC object: Class = 13, C-Type = 2

The contents and format for this object are speci�ed in documents prepared by the int-serv

working group.

Braden, Zhang, et al. Expires April 29, 1997 [Page 72]

Internet Draft RSVP Speci�cation November 1996

A.13 POLICY DATA Class

POLICY DATA class = 14.

� Type 1 POLICY DATA object: Class = 14, C-Type = 1

The contents of this object are for further study.

Braden, Zhang, et al. Expires April 29, 1997 [Page 73]

Internet Draft RSVP Speci�cation November 1996

A.14 RESV CONFIRM Class

RESV CONFIRM class = 15.

� IPv4 RESV CONFIRM object: Class = 15, C-Type = 1

+-------------+-------------+-------------+-------------+

| IPv4 Receiver Address (4 bytes) |

+-------------+-------------+-------------+-------------+

� IPv6 RESV CONFIRM object: Class = 15, C-Type = 2

+-------------+-------------+-------------+-------------+

| |

+ +

| |

+ IPv6 Receiver Address (16 bytes) +

| |

+ +

| |

+-------------+-------------+-------------+-------------+

Braden, Zhang, et al. Expires April 29, 1997 [Page 74]

Internet Draft RSVP Speci�cation November 1996

B Error Codes and Values

The following Error Codes may appear in ERROR SPEC objects and be passed to end systems.

Except where noted, these Error Codes may appear only in ResvErr messages.

� Error Code = 00: Con�rmation

This code is reserved for use in the ERROR SPEC object of a ResvConf message. The Error

Value will also be zero.

� Error Code = 01: Admission Control failure

Reservation request was rejected by Admission Control due to unavailable resources.

For this Error Code, the 16 bits of the Error Value �eld are:

ssur cccc cccc cccc

where the bits are:

ss = 00: Low order 12 bits contain a globally-de�ned sub-code (values listed below).

ss = 10: Low order 12 bits contain a organization-speci�c sub-code. RSVP is not expected

to be able to interpret this except as a numeric value.

ss = 11: Low order 12 bits contain a service-speci�c sub-code. RSVP is not expected to be

able to interpret this except as a numeric value.

Since the tra�c control mechanism might substitute a di�erent service, this encoding

may include some representation of the service in use.

u = 0: RSVP rejects the message without updating local state.

u = 1: RSVP may use message to update local state and forward the message. This means

that the message is informational.

r: Reserved bit, should be zero.

cccc cccc cccc: 12 bit code.

The following globally-de�ned sub-codes may appear in the low-order 12 bits when ssur =

0000:

{ Sub-code = 1: Delay bound cannot be met

{ Sub-code = 2: Requested bandwidth unavailable

{ Sub-code = 3: MTU in owspec larger than interface MTU.

Braden, Zhang, et al. Expires April 29, 1997 [Page 75]

Internet Draft RSVP Speci�cation November 1996

� Error Code = 02: Policy Control failure

Reservation or path message has been rejected for administrative reasons, for example, re-

quired credentials not submitted, insu�cient quota or balance, or administrative preemption.

This Error Code may appear in a PathErr or ResvErr message.

Contents of the Error Value �eld are to be determined in the future.

� Error Code = 03: No path information for this Resv message.

No path state for this session. Resv message cannot be forwarded.

� Error Code = 04: No sender information for this Resv message.

There is path state for this session, but it does not include the sender matching some ow

descriptor contained in the Resv message. Resv message cannot be forwarded.

� Error Code = 05: Conicting reservation style

Reservation style conicts with style(s) of existing reservation state. The Error Value �eld

contains the low-order 16 bits of the Option Vector of the existing style with which the conict

occurred. This Resv message cannot be forwarded.

� Error Code = 06: Unknown reservation style

Reservation style is unknown. This Resv message cannot be forwarded.

� Error Code = 07: Conicting dest port

Sessions for same destination address and protocol have appeared with both zero and non-zero

dest port �elds. This Error Code may appear in a PathErr or ResvErr message.

� Error Code = 08: Ambiguous path

Sender port appears both zero and non-zero in same session in a Path message. This Error

Code may appear only in a PathErr message.

� Error Code = 09: Ambiguous Filter Spec

Message contains a �lter spec that matches more than one sender, but an explicit style that

requires an exact match.

� Error Code = 10, 11: (reserved)

� Error Code = 12: Service preempted

The service request de�ned by the STYLE object and the ow descriptor has been admin-

istratively preempted.

For this Error Code, the 16 bits of the Error Value �eld are:

ssur cccc cccc cccc

Here the high-order bits ssur are as de�ned under Error Code 01. The globally-de�ned sub-

codes that may appear in the low-order 12 bits when ssur = 0000 are to be de�ned in the

future.

Braden, Zhang, et al. Expires April 29, 1997 [Page 76]

Internet Draft RSVP Speci�cation November 1996

� Error Code = 13: Unknown object class

Error Value contains 16-bit value composed of (Class-Num, C-Type) of unknown object.

This error should be sent only if RSVP is going to reject the message, as determined by the

high-order bits of the Class-Num. This Error Code may appear in a PathErr or ResvErr

message.

� Error Code = 14: Unknown object C-Type

Error Value contains 16-bit value composed of (Class-Num, C-Type) of object.

� Error Code = 15-19: (reserved)

� Error Code = 20: Reserved for API

Error Value �eld contains an API error code, for an API error that was detected asyn-

chronously and must be reported via an upcall.

� Error Code = 21: Tra�c Control Error

Reservation request was rejected by Tra�c Control due to the format or contents of the

request. This Resv message cannot be forwarded, and continued attempts would be futile.

For this Error Code, the 16 bits of the Error Value �eld are:

ss00 cccc cccc cccc

Here the high-order bits ss are as de�ned under Error Code 01.

The following globally-de�ned sub-codes may appear in the low order 12 bits (cccc cccc cccc)

when ss = 00:

{ Sub-code = 01: Service conict

Trying to merge two incompatible service requests.

{ Sub-code = 02: Service unsupported

Tra�c control can provide neither the requested service nor an acceptable replacement.

{ Sub-code = 03: Bad Flowspec value

Malformed or unreasonable request.

{ Sub-code = 04: Bad Tspec value

Malformed or unreasonable request.

� Error Code = 22: Tra�c Control System error

A system error was detected and reported by the tra�c control modules. The Error Value

will contain a system-speci�c value giving more information about the error. RSVP is not

expected to be able to interpret this value.

� Error Code = 23: RSVP System error

The Error Value �eld will provide implementation-dependent information on the error. RSVP

is not expected to be able to interpret this value.

Braden, Zhang, et al. Expires April 29, 1997 [Page 77]

Internet Draft RSVP Speci�cation November 1996

In general, every RSVP message is rebuilt at each hop, and the node that creates an RSVP

message is responsible for its correct construction. Similarly, each node is required to verify the

correct construction of each RSVP message it receives. Should a programming error allow an

RSVP to create a malformed message, the error is not generally reported to end systems in an

ERROR SPEC object; instead, the error is simply logged locally, and perhaps reported through

network management mechanisms.

The only message formatting errors that are reported to end systems are those that may reect

version mismatches, and which the end system might be able to circumvent, e.g., by falling back

to a previous CType for an object; see code 13 and 14 above.

The choice of message formatting errors that an RSVP may detect and log locally is implementation-

speci�c, but it will typically include the following:

� Wrong-length message: RSVP Length �eld does not match message length.

� Unknown or unsupported RSVP version.

� Bad RSVP checksum

� INTEGRITY failure

� Illegal RSVP message Type

� Illegal object length: not a multiple of 4, or less than 4.

� Next hop/Previous hop address in HOP object is illegal.

� Conicting source port: Source port is non-zero in a �lter spec or sender template for a session

with destination port zero.

� Required object class (specify) missing

� Illegal object class (specify) in this message type.

� Violation of required object order

� Flow descriptor count wrong for style

� Logical Interface Handle invalid

� Unknown object Class-Num.

� Destination address of ResvConfmessage does not match Receiver Address in the RESV CONFIRM

object it contains.

Braden, Zhang, et al. Expires April 29, 1997 [Page 78]

Internet Draft RSVP Speci�cation November 1996

C UDP Encapsulation

An RSVP implementation will generally require the ability to perform \raw" network I/O, i.e., to

send and receive IP datagrams using protocol 46. However, some important classes of host systems

may not support raw network I/O. To use RSVP, such hosts must encapsulate RSVP messages in

UDP.

The basic UDP encapsulation scheme makes two assumptions:

1. All hosts are capable of sending and receiving multicast packets if multicast destinations are

to be supported.

2. The �rst/last-hop routers are RSVP-capable.

A method of relaxing the second assumption is given later.

Let Hu be a "UDP-only" host that requires UDP encapsulation, and Hr a host that can do raw

network I/O. The UDP encapsulation scheme must allow RSVP interoperation among an arbitrary

topology of Hr hosts, Hu hosts, and routers.

Resv, ResvErr, ResvTear, and PathErrmessages are sent to unicast addresses learned from the path

or reservation state in the node. If the node keeps track of which previous hops and which interfaces

need UDP encapsulation, these messages can be sent using UDP encapsulation when necessary. On

the other hand, Path and PathTear messages are sent to the destination address for the session,

which may be unicast or multicast.

The tables in Figures 13 and 14 show the basic rules for UDP encapsulation of Path and PathTear

messages, for unicast DestAddress and multicast DestAddress, respectively. The other message

types, which are sent unicast, should follow the unicast rules in Figure 13. Under the `RSVP Send'

columns in these �gures, the notation is `mode(destaddr, destport)'; destport is omitted for raw

packets. The `Receive' columns show the group that is joined and, where relevant, the UDP Listen

port.

It is useful to de�ne two avors of UDP encapsulation, one to be sent by Hu and the other to be

sent by Hr and R, to avoid double processing by the recipient. In practice, these two avors are

distinguished by di�ering UDP port numbers Pu and Pu'.

The following symbols are used in the tables.

� D is the DestAddress for the particular session.

Braden, Zhang, et al. Expires April 29, 1997 [Page 79]

Internet Draft RSVP Speci�cation November 1996

� G* is a well-known group address of the form 224.0.0.14, i.e., a group that is limited to the

local connected network.

� Pu and Pu' are two well-known UDP ports for UDP encapsulation of RSVP, with values 1698

and 1699.

� Ra is the IP address of the router interface `a'.

� Router interface `a' is on the local network connected to Hu and Hr.

RA indicates that the Router Alert option is sent.

The following notes apply to these �gures:

[Note 1] Hu sends a unicast Path message either to the destination address D, if D is

local, or to the address Ra of the �rst-hop router. Ra is presumably known to the host.

[Note 2] Here D is the address of the local interface through which the message arrived.

[Note 3] This assumes that the application has joined the group D.

A router may determine if its interface X needs UDP encapsulation by listening for UDP-encapsulated

Path messages that were sent to either G* (multicast D) or to the address of interface X (unicast

D). There is one failure mode for this scheme: if no host on the connected network acts as an RSVP

sender, there will be no Path messages to trigger UDP encapsulation. In this (unlikely) case, it will

be necessary to explicitly con�gure UDP encapsulation on the local network interface of the router.

When a UDP-encapsulated packet is received, the IP TTL is not available to the application on

most systems. The RSVP process that receives a UDP-encapsulated Path or PathTear message

should therefore use the Send TTL �eld of the RSVP common header as the e�ective receive TTL.

This may be overridden by manual con�guration.

We have assumed that the �rst-hop RSVP-capable router R is on the directly-connected network.

There are several possible approaches if this is not the case.

1. Hu can send both unicast and multicast sessions to UDP(Ra,Pu) with TTL=Ta

Here Ta must be the TTL to exactly reach R. If Ta is too small, the Path message will not

reach R. If Ta is too large, R and succeeding routers may forward the UDP packet until its

hop count expires. This will turn on UDP encapsulation between routers within the Internet,

perhaps causing bogus UDP tra�c. The host Hu must be explicitly con�gured with Ra and

Ta.

Braden, Zhang, et al. Expires April 29, 1997 [Page 80]

Internet Draft RSVP Speci�cation November 1996

UNICAST DESTINATION D:

RSVP RSVP

Node Send Receive

___ _____________ _______________

Hu UDP(D/Ra,Pu) UDP(D,Pu)

[Note 1] and UDP(D,Pu')

[Note 2]

Hr Raw(D)[RA] Raw()

and if (UDP) and UDP(D, Pu)

then UDP(D,Pu') [Note 2]

(Ignore Pu')

R (Interface a):

Raw(D)[RA] Raw()

and if (UDP) and UDP(Ra, Pu)

then UDP(D,Pu') (Ignore Pu')

Figure 13: UDP Encapsulation Rules for Unicast Path and Resv Messages

2. A particular host on the LAN connected to Hu could be designated as an RSVP relay host.

A relay host would listen on (G*,Pu) and forward any Path messages directly to R, although

it would not be in the data path. The relay host would have to be con�gured with Ra and

Ta.

Braden, Zhang, et al. Expires April 29, 1997 [Page 81]

Internet Draft RSVP Speci�cation November 1996

MULTICAST DESTINATION D:

RSVP RSVP

Node Send Receive

___ _____________ _________________

Hu UDP(G*,Pu) UDP(D,Pu')

[Note 3]

and UDP(G*,Pu)

Hr Raw(D,Tr)[RA] Raw()

and if (UDP) and UDP(G*,Pu)

then UDP(D,Pu') (Ignore Pu')

R (Interface a):

Raw(D,Tr)[RA] Raw()

and if (UDP) and UDP(G*,Pu)

then UDP(D,Pu') (Ignore Pu')

Figure 14: UDP Encapsulation Rules for Multicast Path Messages

D Glossary

� Admission control

A tra�c control function that decides whether the packet scheduler in the node can supply

the requested QoS while continuing to provide the QoS requested by previously-admitted

requests. See also policy control and tra�c control.

� Adspec

An Adspec is a data element (object) in a Path message that carries a package of OPWA

advertising information. See OPWA.

� Auto-refresh loop

An auto-refresh loop is an error condition that occurs when a topological loop of routers con-

tinues to refresh existing reservation state even though all receivers have stopped requesting

these reservations. See section 3.4 for more information.

� Blockade state

Blockade state helps to solve a \killer reservation" problem. See sections 2.5 and 3.5, and

killer reservation.

Braden, Zhang, et al. Expires April 29, 1997 [Page 82]

Internet Draft RSVP Speci�cation November 1996

� Branch policing

Tra�c policing at a multicast branching point on an outgoing interface that has \less" re-

sources reserved than another outgoing interface for the same ow. See tra�c policing.

� C-Type

The class type of an object; unique within class-name. See class-name.

� Class-name

The class of an object. See object.

� DestAddress

The IP destination address; part of session identi�cation. See session.

� Distinct style

A (reservation) style attribute; separate resources are reserved for each di�erent sender. See

also shared style.

� Downstream

Towards the data receiver(s).

� DstPort

The IP (generalized) destination port used as part of a session. See generalized destination

port.

� Entry policing

Tra�c policing done at the �rst RSVP- (and policing-) capable router on a data path.

� ERROR SPEC

Object that carries the error report in a PathErr or ResvErr message.

� Explicit sender selection

A (reservation) style attribute; all reserved senders are to be listed explicitly in the reservation

message. See also wildcard sender selection.

� FF style

Fixed Filter reservation style, which has explicit sender selection and distinct attributes.

� FilterSpec

Together with the session information, de�nes the set of data packets to receive the QoS

speci�ed in a owspec. The �lterspec is used to set parameters in the packet classi�er function.

A �lterspec may be carried in a FILTER SPEC or SENDER TEMPLATE object.

Braden, Zhang, et al. Expires April 29, 1997 [Page 83]

Internet Draft RSVP Speci�cation November 1996

� Flow descriptor

The combination of a owspec and a �lterspec.

� Flowspec

De�nes the QoS to be provided for a ow. The owspec is used to set parameters in the

packet scheduling function to provide the requested quality of service. A owspec is carried

in a FLOWSPEC object. The owspec format is opaque to RSVP, and is de�ned by the

Integrated Services Working Group.

� Generalized destination port

The component of a session de�nition that provides further transport or application protocol

layer demultiplexing beyond DestAddress. See session.

� Generalized source port

The component of a �lter spec that provides further transport or application protocol layer

demultiplexing beyond the sender address.

� GLB

Greatest Lower Bound

� Incoming interface

The interface on which data packets are expected to arrive, and on which Resv messages are

sent.

� INTEGRITY

Object of an RSVP control message that contains cryptographic data to authenticate the

originating node and to verify the contents of an RSVP message.

� Killer reservation problem

The killer reservation problem describes a case where a receiver attempting and failing to

make a large QoS reservation prevents smaller QoS reservations from being established. See

Sections 2.5 and 3.5 for more information.

� LIH

The LIH (Logical Interface Handle) is used to help deal with non-RSVP clouds. See Section

2.8 for more information.

� Local repair

Allows RSVP to rapidly adapt its reservations to changes in routing. See Section 3.6 for more

information.

Braden, Zhang, et al. Expires April 29, 1997 [Page 84]

Internet Draft RSVP Speci�cation November 1996

� LPM

Local Policy Module. the function that exerts policy control.

� LUB

Least Upper Bound.

� Merge policing

Tra�c policing that takes place at data merge point of a shared reservation.

� Merging

The process of taking the maximum (or more generally the least upper bound) of the reserva-

tions arriving on outgoing interfaces, and forwarding this maximum on the incoming interface.

See Section 2.2 for more information.

� MTU

Maximum Transmission Unit.

� Next hop

The next router in the direction of tra�c ow.

� NHOP

An object that carries the Next Hop information in RSVP control messages.

� Node

A router or host system.

� Non-RSVP clouds

Groups of hosts and routers that do not run RSVP. Dealing with nodes that do not support

RSVP is important for backwards compatibility. See section 2.8.

� Object

An element of an RSVP control message; a type, length, value triplet.

� OPWA

Abbreviation for \One Pass With Advertising". Describes a reservation setup model in which

(Path) messages sent downstream gather information that the receiver(s) can use to predict

the end-to-end service. The information that is gathered is called an advertisement. See also

Adspec.

� Outgoing interface

Interface through which data packets and Path messages are forwarded.

Braden, Zhang, et al. Expires April 29, 1997 [Page 85]

Internet Draft RSVP Speci�cation November 1996

� Packet classi�er

Tra�c control function in the primary data packet forwarding path that selects a service

class for each packet, in accordance with the reservation state set up by RSVP. The packet

classi�er may be combined with the routing function. See also tra�c control.

� Packet scheduler

Tra�c control function in the primary data packet forwarding path that implements QoS for

each ow, using one of the service models de�ned by the Integrated Services Working Group.

See also tra�c control.

� Path state

Information kept in routers and hosts about all RSVP senders.

� PathErr

Path Error RSVP control message.

� PathTear

Path Teardown RSVP control message.

� PHOP

An object that carries the Previous Hop information in RSVP control messages.

� Police

See tra�c policing.

� Policy control

A function that determines whether a new request for quality of service has administrative

permission to make the requested reservation. Policy control may also perform accounting

(usage feedback) for a reservation.

� Policy data

Data carried in a Path or Resvmessage and used as input to policy control to determine

authorization and/or usage feedback for the given ow.

� Previous hop

The previous router in the direction of tra�c ow. RESV messages ow towards previous

hops.

� ProtocolId

The component of session identi�cation that speci�es the IP protocol number used by the

data stream.

Braden, Zhang, et al. Expires April 29, 1997 [Page 86]

Internet Draft RSVP Speci�cation November 1996

� QoS

Quality of Service.

� Reservation state

Information kept in RSVP-capable nodes about successful RSVP reservation requests.

� Reservation style

Describes a set of attributes for a reservation, including the sharing attributes and sender

selection attributes. See Section 1.3 for details.

� Resv message

Reservation request RSVP control message.

� ResvConf

Reservation Con�rmation RSVP control message, con�rms successful installation of a reser-

vation at some upstream node.

� ResvErr

Reservation Error control message, indicates that a reservation request has failed or an active

reservation has been preempted.

� ResvTear

Reservation Teardown RSVP control message, deletes reservation state.

� Rspec

The component of a owspec that de�nes a desired QoS. The Rspec format is opaque to

RSVP, and is de�ned by the Integrated Services Working Group of the IETF.

� RSVP HOP

Object of an RSVP control message that carries the PHOP or NHOP address of the source

of the message.

� Scope

The set of sender hosts to which a given reservation request is to be propagated.

� SE style

Shared Explicit reservation style, which has explicit sender selection and shared attributes.

� Semantic fragmentation

A method of fragmenting a large RSVP message using information about the structure and

contents of the message, so that each fragment is a logically complete RSVP message.

Braden, Zhang, et al. Expires April 29, 1997 [Page 87]

Internet Draft RSVP Speci�cation November 1996

� Sender template

Parameter in a Pathmessage that de�nes a sender; carried in a SENDER TEMPLATE object.

It has the form of a �lter spec that can be used to select this sender's packets from other

packets in the same session on the same link.

� Sender Tspec

Parameter in a Path message, a Tspec that characterizes the tra�c parameters for the data

ow from the corresponding sender. It is carried in a SENDER TSPEC object.

� Session

An RSVP session de�nes one simplex unicast or multicast data ow for which reservations

are required. A session is identi�ed by the destination address, transport-layer protocol, and

an optional (generalized) destination port.

� Shared style

A (reservation) style attribute: all reserved senders share the same reserved resources. See

also distinct style.

� Soft state

Control state in hosts and routers that will expire if not refreshed within a speci�ed amount

of time.

� STYLE

Object of an RSVP message that speci�es the desired reservation style.

� Style

See reservation style

� TIME VALUES

Object in an RSVP control message that speci�es the time period timer used for refreshing

the state in this message.

� Tra�c control

The entire set of machinery in the node that supplies requested QoS to data streams. Tra�c

control includes packet classi�er, packet scheduler, and admission control functions.

� Tra�c policing

The function, performed by tra�c control, of forcing a given data ow into compliance with

the tra�c parameters implied by the reservation. It may involve dropping non-compliant

packets or sending them with lower priority, for example.

Braden, Zhang, et al. Expires April 29, 1997 [Page 88]

Internet Draft RSVP Speci�cation November 1996

� TSpec

A tra�c parameter set that describes a ow. The format of a Tspec is opaque to RSVP and

is de�ned by the Integrated Service Working Group.

� UDP encapsulation

A way for hosts that cannot use raw sockets to participate in RSVP by encapsulating the

RSVP protocol (raw) packets in ordinary UDP packets. See Section C for more information.

� Upstream

Towards the tra�c source. RSVP Resv messages ow upstream.

� WF style

Wildcard Filter reservation style, which has wildcard sender selection and shared attributes.

� Wildcard sender selection

A (reservation) style attribute: tra�c from any sender to a speci�c session receives the same

QoS. See also explicit sender selection.

References

[Baker96] Baker, F., RSVP Cryptographic Authentication, Work in Progress, February 1996.

[ISInt93] Braden, R., Clark, D., and S. Shenker, Integrated Services in the Internet Archi-

tecture: an Overview, RFC 1633, ISI, MIT, and PARC, June 1994.

[FJ94] Floyd, S. and V. Jacobson, Synchronization of Periodic Routing Messages,

IEEE/ACM Transactions on Networking, Vol. 2, No. 2, April, 1994.

[IPSEC96] Berger, L. and T. O'Malley, RSVP Extensions for IPSEC IPv4 Data Flows, Inter-

net Draft, <draft-ietf-rsvp-ext-04.txt>, Integrated Services Working Group, June

1996.

[Katz95] Katz, D., IP Router Alert Option, Work in Progress, November 1995.

[ISdata96] Wroclawski, J., Data Element Naming and Encoding for Integrated Services

Messages, <draft-ietf-intserv-data-encoding-02.txt>, Integrated Services Work-

ing Group, July 1996.

[ISrsvp96] Wroclawski, J., The Use of RSVP with Integrated Services, <draft-ietf-intserv-

rsvp-use.00.txt>, Integrated Services Working Group, July 1996.

Braden, Zhang, et al. Expires April 29, 1997 [Page 89]

Internet Draft RSVP Speci�cation November 1996

[ISTempl96] Shenker, S. and J. Wroclawski, Network Element QoS Control Service Speci-

�cation Template, <draft-ietf-intserv-serv-template-03.txt>, Integrated Services

Working Group, July 1996.

[OPWA95] Shenker, S. and L. Breslau, Two Issues in Reservation Establishment, Proc. ACM

SIGCOMM '95, Cambridge, MA, August 1995.

[RSVP93] Zhang, L., Deering, S., Estrin, D., Shenker, S., and D. Zappala, RSVP: A New

Resource ReSerVation Protocol, IEEE Network, September 1993.

Security Considerations

See Section 2.7.

Authors' Addresses

Bob Braden

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

Phone: (310) 822-1511

EMail: Braden@ISI.EDU

Lixia Zhang

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

Phone: (415) 812-4415

EMail: Lixia@PARC.XEROX.COM

Steve Berson

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

Phone: (310) 822-1511

EMail: Berson@ISI.EDU

Braden, Zhang, et al. Expires April 29, 1997 [Page 90]

Internet Draft RSVP Speci�cation November 1996

Shai Herzog

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

Phone: (310) 822 1511

EMail: Herzog@ISI.EDU

Sugih Jamin

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0871

Phone: (213) 740-6578

EMail: jamin@catarina.usc.edu

Braden, Zhang, et al. Expires April 29, 1997 [Page 91]

