
Internet Draft Daniel Zappala

Expires May 26, 1997 USC/ISI

File: draft-ietf-rsvp-routing-01.ps November 1996

RSRR: A Routing Interface For RSVP

November 26, 1996

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This memo describes a routing interface for RSVP. The interface allows RSVP

to request information and services from routing in the form of an asynchronous

query-reply protocol. The primary addition to this version of the document is

the inclusion of extensions for shared trees appropriate to PIM and CBT. Aside

from these extensions, the rest of the interface described in this document is

implemented in ISI's implementation of RSVP and Xerox PARC's distribution

of DVMRP.

Internet Draft RSRR November 1996

1 Introduction

This document describes an asynchronous routing interface by which RSVP [6] may re-

quest forwarding information at each router in the network. We call this interface Routing

Support for Resource Reservations (RSRR), because it may conceivably be used by other

resource reservation protocols. The primary addition to this version of the document is the

inclusion of extensions for shared trees appropriate to PIM [3] and CBT [1]. Aside from

these extensions, the rest of the interface described in this document is implemented in ISI's

implementation of RSVP and Xerox PARC's distribution of DVMRP [4].

This document is written from the perspective of multicast routing; however, the interface

can also be used by RSVP to interact with a unicast routing protocol. This document

elaborates on the description contained in the RSVP spec [2]. Some familiarity with RSVP

is assumed.

Section 2 presents a brief overview of RSVP functionality and describes how RSVP uses

route queries and route change noti�cation. Section 3 details a general interface model

that routing protocols can use to give con�guration and forwarding information to RSVP.

Section 4 outlines the particular queries and responses that comprise the routing interface,

focusing on how RSVP uses this interface. Finally, Section 5 details the speci�cation of the

interface messages.

2 RSVP Overview

Using RSVP, sources send Path messages hop-by-hop to the destination (Figure 1a). Each

router uses the Path message to create reverse-path routing state and forwards the message

toward the destination. Receivers send Resv messages toward sources, following the reverse-

path routing state (Figure 1b). Each router uses the Resv message to query admission

control to accept or reject the embedded reservation request. Reservation messages utilize

various styles to allow sharing among di�erent senders. For example, the shared-explicit

style targets a reservation at a list of senders, and the wildcard style targets a reservation

at all upstream senders (Figure 1c).

RSVP does not use its own routing protocol; instead it uses underlying routing protocols

to determine where it should carry resource reservations. In keeping with this modularity,

we have designed the RSR interface, by which RSVP requests routing services from various

routing protocols (Figure 2). Using this interface, RSVP may acquire routing entries to

allow it to send control messages hop-by-hop, as well as request route change noti�cation.

RSVP acquires multicast routing entries by sending route queries to the routing protocol.

RSVP uses the routing entries to simulate the multicast of PATH messages. Normally, an

IP multicast packet sent out one interface is looped back and sent out the other interfaces

of a router. However, RSVP needs to send a di�erent copy of a PATH message out each

Zappala Expires May 26, 1997 [Page 2]

Internet Draft RSRR November 1996

Sender

Receiver

#3

Receiver

#2

Receiver

#1

Sender

Receiver

#3

Receiver

#2

Receiver

#1

(a) Path message

multicasted downstream

(b) RESV message merged as

it follows path state upstream

(c) RESV message branches as

it travels toward multiple senders

Sender

#1

Receiver

Sender

#2

Sender

#3

Figure 1: RSVP Overview

Routing RSVP

Router

RSRR

Interface

Figure 2: RSRR Interface

outgoing interface. Thus, rather than relying on IP multicast, RSVP simulates its own

multicast forwarding so that it can specify a single interface to send a multicast packet,

without any loop back.

When RSVP acquires routing entries, it may also ask routing to notify it when a particular

route changes. RSVP uses route change noti�cation so that it can quickly adapt its reserva-

tions to changes in the route between a source and destination. For multicast destinations,

a route change consists of any local change in the multicast tree for a source-group pair,

including prunes and grafts as well as routing changes due to failed or recovered links. In all

of these cases, RSVP adapts to route changes by re-sending Path or Resv messages where

needed. If routing can not support route change noti�cation, then RSVP must poll routing

for route entries in order to adapt to route changes.

3 RSRR Interface Abstraction

Because RSVP must learn about routing entries from a variety of di�erent routing protocols,

we have adopted portions of the DVMRP interface abstraction [4] as the means by which

RSVP can communicate with all routing protocols. A routing entry for a source-destination

pair consists of an incoming virtual interface (or vif) and a set of outgoing virtual interfaces.

A virtual interface is simply a number that routing creates to refer to each of the interfaces

(or virtual interfaces) it uses to send and receive packets on the router. Note that the

implementation of the virtual interface is hidden from RSVP; whether the interface is a real

interface, a pseudo-device, or a tunnel is irrelevant.

Zappala Expires May 26, 1997 [Page 3]

Internet Draft RSRR November 1996

When RSVP receives a packet, it expects the forwarding engine to tell it which virtual

interface the packet arrived on. This allows RSVP to suppress forwarding of packets that

routing has determined have arrived via the wrong incoming virtual interface, while still

allowing local processing. When RSVP sends a packet, it expects that it can tell the

forwarding engine to forward the packet directly over a particular vif, without performing

any of the forwarding engine's usual routing checks or lookups. Together, these functions

allow RSVP to forward distinct packets hop-by-hop over each link in a unicast or multicast

path between a source and destination(s).

The RSVP routing model de�nes a virtual interface using the following attributes:

id a unique identi�er,

threshold a TTL threshold,

status a bitmask status vector, and

local addr a local address.

RSVP uses the TTL threshold to control the scope of a control message. The use of ad-

ministrative scoping (as with DVMRP) by a routing protocol will a�ect the forwarding

information given to RSVP, but its implementation is transparent to RSVP. The status

vector currently only de�nes whether the virtual interface has been administratively dis-

abled.

4 RSRR Messages

Before RSVP can obtain routing entries, it must �rst discover which virtual interfaces (vifs)

routing is using. It does this by issuing an Initial Query:

Initial Query():

Routing responds with an Initial Reply that includes the number of vifs and a list of vifs

and their attributes as de�ned by the RSVP routing model:

Initial Reply(num; vif list):

Once RSVP has received the Initial Reply, it can begin requesting routing entries by sending

a Route Query for a source-destination pair:

Route Query(source; destination):

Routing responds by sending a Route Reply that includes the incoming vif and an outgoing

vif bitmask:

Route Reply(source; destination; incoming vif; outgoing vif bitmask):

Zappala Expires May 26, 1997 [Page 4]

Internet Draft RSRR November 1996

(a) wildcard RESV message

carrying scope objects

(b) wildcard RESV message with

senders #1,2 on a shared tree

Sender

#2

Receiver

Sender

#1

Sender

#3

[*,3]

[3]

[3]
[*]

[*]

[*]

Sender

#1

Receiver

Sender

#1

Sender

#3

[1,2,3]

[3]

[3]
[2][1]

[1,2]

Figure 3: The Scope Object in Wildcard Reservations

RSVP can request noti�cation of route changes by sending a Route Query with an additional

noti�cation
ag:

Route Query(source; destination; notification):

By setting the noti�cation
ag in the query, RSVP requests that routing provide route

change noti�cation. If routing is able to provide this service, it sets a corresponding no-

ti�cation
ag in the Route Reply, otherwise it clears the
ag. If RSVP receives a Route

Reply with the noti�cation bit set, it can assume that routing will notify it { via a spon-

taneous Route Reply { when the routing entry for the source-destination pair changes. In

the meantime, RSVP can use the routing entry inde�nitely.

Routing incurs very little cost for providing route change noti�cation; essentially it only

has to tag the subset of its routing entries for which RSVP is interested in receiving no-

ti�cation. This amounts to keeping an extra bit for each routing entry. Since this service

can be provided independently by each router, its implementation is not subject to any

interoperability constraints.

A routing protocol that uses shared trees (such as PIM[3] or CBT[1]) can help RSVP to

decrease the size of the SCOPE object in wildcard �lter RESV messages. RSVP uses a

SCOPE object, listing all upstream senders, to prevent looping of wildcard �lter RESV

messages [5] (Figure 3a). For shared trees, RSVP can use a SCOPE object that includes a

wildcard address, greatly reducing the size of the RESV message. A RESV message with

a wildcard address would follow shared tree state but never sender tree state (Figure 3b).

Routing can indicate a particular sender is using a shared tree by setting the shared
ag in

a Route Reply:

Route Reply(source; destination; incoming vif; outgoing vif bitmask; shared):

If at some later point this sender switches to a sender-based tree, routing can send an

updated Route Reply with this
ag cleared.

A routing protocol that uses shared trees can also help reduce the amount of message

passing between RSVP and routing. RSVP normally sends a separate Route Query for

every active source in a group. For a shared tree, RSVP only needs to send one query, since

all the routing entries for a given destination will be the same. Routing can indicate that

Zappala Expires May 26, 1997 [Page 5]

Internet Draft RSRR November 1996

all senders are using a shared tree by setting the all-shared
ag:

Route Reply(source; destination; incoming vif; outgoing vif bitmask; all shared):

If, at some later point, a sender switches to a sender-based tree (i.e. with PIM), then routing

can send an updated Route Reply with this
ag cleared.

5 RSRR Speci�cation

This section details the format of RSRR messages received and sent by a routing protocol.

5.1 RSRR message format

An RSRR message consists of:

+-+

| Version | Type | Flags | Num |

+-+

|... |

| |

Version

Routing Support for Resource Reservations Version. This

document specifies version 1 of RSRR.

Type

This document defines four message codes for RSRR:

1 = Initial Query

2 = Initial Reply

3 = Route Query

4 = Route Reply

The rest of the message is defined separately for each RSRR code.

5.2 Initial Query

+-+

| Version | Type | Flags | Num |

+-+

Zappala Expires May 26, 1997 [Page 6]

Internet Draft RSRR November 1996

Version as defined above.

Type

1 = Initial Query

Flags, Num

0

5.3 Initial Reply

+-+

| Version | Type | Flags | Num |

+-+

| Vif ID-1 |Vif Threshold-1| Vif Status-1 |

+-+

| Vif Local Address-1 |

+-+

|... |

| |

+-+

| Vif ID-N |Vif Threshold-N| Vif Status-N |

+-+

| Vif Local Address-N |

+-+

Version as defined above.

Type

2 = Initial Reply

Flags

0

Num

Number of vifs being reported

Vif ID-N

ID for the Nth vif

Vif Threshold-N

The threshold ttl for the vif; an outgoing message must have a

ttl greater than the threshold to be sent

Zappala Expires May 26, 1997 [Page 7]

Internet Draft RSRR November 1996

Vif Status-N

A bit vector representing the vif status. Currently only

the Disabled bit is defined:

+-+-+-+-+-+-+-+-+

| |D|

+-+-+-+-+-+-+-+-+

D = 1 if vif is administratively disabled, 0 otherwise.

The rest of the field is transmitted as zeroes.

Vif Local Address-N

The local address of the physical interface corresponding to the

vif

5.4 Route Query

+-+

| Version | Type | Flags | Num |

+-+

| Destination Address |

+-+

| Source Address |

+-+

| Query Identifier |

+-+

Version as defined above

Type

3 = Route Query

Flags

Currently only the Notification Bit is defined:

+-+-+-+-+-+-+-+-+

| |N|

+-+-+-+-+-+-+-+-+

N = 1 if RSVP requests route change notification for this query,

0 otherwise.

Zappala Expires May 26, 1997 [Page 8]

Internet Draft RSRR November 1996

The rest of the field is transmitted as zeroes.

Num

0

Destination Address

Group address being queried

Source Address

Source address being queried

Query Identifier

Identifier used by reservation protocol

5.5 Route Reply

+-+

| Version | Type | Flags | Num |

+-+

| Destination Address |

+-+

| Source Address |

+-+

| Query Identifier |

+-+

| Incoming Vif | Reserved |

+-+

| Outgoing Vif Bitmask |

+-+

Version as defined above.

Type

4 = Route Reply

Flags

The currently defined flags are:

+-+-+-+-+-+-+-+-+

| | S |E|N|

+-+-+-+-+-+-+-+-+

N is set if N is set in the corresponding route query and the

Zappala Expires May 26, 1997 [Page 9]

Internet Draft RSRR November 1996

router can perform route change notification for the query.

Otherwise N is cleared.

E is set if routing is unable to obtain routing information for

the route query. Otherwise E is cleared.

S has the binary value 01 if the listed sender is using a shared

tree, but some other senders for the same destination use sender

trees. S has the binary value 10 if all senders for the

destination use shared trees. Otherwise, S has the value 00.

The rest of the field is transmitted as zeroes.

Destination Address

group address of query = group address of reply

Source Address

source address of query = source address of reply

Query Identifier

identifier used by reservation protocol, copied from query message

Incoming Vif

incoming Vif for (S,G) or default (S,*) if no group-specific

state; invalid if E bit is set

Reserved

transmitted as 0

Outgoing Vif Bitmask

bitmask of outgoing Vifs for (S,G) or default (S,*) if no

group-specific state; invalid if E bit is set

6 Acknowledgments

We would like to thank Bob Braden, Deborah Estrin, Bill Fenner, Scott Shenker, and Lixia

Zhang for their help with this work.

References

[1] A. J. Ballardie, P.F. Francis, and J. Crowcroft. \Core Based Trees". In ACM SIG-

Zappala Expires May 26, 1997 [Page 10]

Internet Draft RSRR November 1996

COMM, August 1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. \Resource ReSerVation

Protocol (RSVP) - Version 1 Functional Speci�cation". work in progress, May 1996.

[3] Stephen Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ching-Gung Liu, and

Liming Wei. An Architecture for Wide-Area Multicast Routing. In ACM SIGCOMM,

August 1994.

[4] D. Waitzman, C. Partridge, and S. Deering. \Distance Vector Multicast Routing Pro-

tocol". RFC 1075, November 1988.

[5] Daniel Zappala. \RSVP Loop Prevention for Wildcard Reservations". Work in Progress,

February 1996.

[6] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.

\RSVP: A New Resource ReSerVation Protocol". IEEE Network, September 1993.

Security Considerations

Security considerations are not discussed in this memo.

Author's Address

Daniel Zappala

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

EMail: daniel@isi.edu

Zappala Expires May 26, 1997 [Page 11]

