
Internet Draft Shai Herzog

Expires January 30, 1998 IPHighway

File: draft-ietf-rsvp-policy-oops-01.ps Dimitrios Pendarakis

Raju Rajan

Roch Gu�erin

IBM T.J. Watson Research Center

Apr. 1997

Open Outsourcing Policy Service (OOPS) for RSVP

July 30, 1997

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This document describes a protocol for exchanging policy information and deci-

sions between an RSVP-capable router (client) and a policy server. The OOPS

protocol supports a wide range of router con�gurations and RSVP implementa-

tions, and is compatible with the RSVP Extensions for Policy Control [Ext].

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

1 Overview

Reservation protocols function by discriminating between users by providing some users

with better service at the expense of others. The utility of reservation protocols is sharply

degraded in the absence of mechanisms for restricting access to higher service categories

and enforcing network and bandwidth usage criteria. In this document, we refer to such

mechanisms as policy control. This term is quite broad; it ranges from simple access control

to sophisticated accounting and debiting mechanisms.

The policy control component may reside fully within the router (as an add-on module

to RSVP). However, it is often advantageous for routers to outsource some of their policy

decision making to external entities. Open Outsourcing Policy Service (OOPS) is a protocol

for exchanging policy information and decisions between Local Policy Modules (LPMs)

located within RSVP-capable routers and one or more external policy servers. OOPS is an

open protocol in a sense that it does not de�ne or depend on particular policies; instead,

it provides a framework for adding, modifying and experimenting with new policies in a

modular, plug-n-play fashion. Moreover, the OOPS protocol supports both partial and

complete delegation of policy control.

The OOPS protocol was designed to be compatible with the RSVP Extensions for Policy

Control [Ext], both in the format of RSVP objects, as well as the set of supported services.

The basic features of OOPS are as follows:

Asymmetry between client and server

Adding policy support to RSVP may require substantial modi�cations to platforms

(e.g., routers) which may not have the required implementation exibility and/or

processing power. OOPS assumes that the server is more sophisticated than the

client, in terms of processing power and support for diverse policies.

Support for a wide range of client implementation

The OOPS protocol supports a wide range of client implementations. At one end

of the spectrum, a "dumb" client may delegate total responsibility to the server for

all policy decisions without even maintaining cached states. At the other end, smart

clients can perform most policy processing locally and only address the server for a

small number of sub-policy elements and only when things change (otherwise, cache

can be used).

Support for di�erent policy interfaces

The OOPS protocol allows clients and servers to negotiate the nature and sophistica-

tion of their interaction. For instance, responses from the server to the client may be

restricted to allow the server to merely accept, deny or remain neutral on reservation

requests, while a more sophisticated implementation may allow the server to respond

with preemption priorities or other characteristics of the reservation. The negotiation

Shai Herzog et al. Expires January 30, 1998 [Page 2]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

handshake is simple, and may always fall back onto the lowest level of interaction that

must always be supported.

Minimal knowledge of RSVP's processing rules.

The server must be aware of the format of several RSVP objects and basic RSVP

message types. However, it is not required to understand RSVP's processing rules

(e.g., di�erent reservation styles). Moreover, OOPS functionality is not tied to that

of RSVP, and OOPS may be extended to be used by other, non-RSVP, connection

setup protocols.

Asynchronicity

Both client and server may asynchronously generate queries or requests.

TCP for reliable communications

TCP is used as a reliable communication protocol between client and server.

1.1 Glossary

Policy

Comprehensive set of rules for controlling some aspects of the network.

Sub-policies

Modular building blocks out of which comprehensive policies are compiled.

POLICY DESC

Data representation of policy information (e.g., POLICY DATA objects in RSVP).

Sub-policy element

Data representation of sub-policy information, as encapsulated in POLICY DESC

objects.

1.2 Representative OOPS Scenarios

Figure 1 depicts some representative scenarios for policy control along an RSVP path, as

envisioned in OOPS. Nodes A, B and C belong to one administrative domain AD-1 (advised

by policy server PS-1), while D and E belong to AD-2 and AD-3, respectively.

Shai Herzog et al. Expires January 30, 1998 [Page 3]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

AD-1 AD-2 AD-3

_______________/___________ __/__ __/__

{ } { } { }

+------+ +------+ +------+ +------+ +------+

+----+ | A | | B | | C | | D | | E | +----+

| S1 |--| RSVP |---| RSVP |---| RSVP |---| RSVP |---| RSVP |--| R1 |

+----+ +------+ +------+ +------+ +------+ +------+ +----+

| LPM | | LPM | | LPM | | LPM |

+------+ +------+ +------+ +------+

\ / |

\ / +------+

\ / |Policy|

\ / |Server|

\ / | PS-2 |

\ / +------+

+------+

|Policy|

|Server|

| PS-1 |

+------+

Figure 1: Policy Control along an RSVP path

Policy objects are carried in RSVP messages along the path consisting of four typical node

types:

(1) Policy incapable nodes: Node B. (2) Self-su�cient policy node: Node D does not need

to outsource policy tasks to external servers since its LPM satis�es its entire policy needs.

(3) "Dumb" policy nodes: Node E is an unsophisticated node that lacks processing power,

code support or caching capabilities, and needs to rely on PS-2 for every policy processing

operation. In this case, the volume of tra�c and delay requirements make it imperative to

connect Node E to PS-2 a direct link or a LAN. (4) "Smart" policy nodes: Nodes A and

C include sophisticated LPMs, in that these nodes can process some sub-policy elements,

and have the capacity to cache responses from PS-1. In this case, the contact between

the clients and server would be limited to occasional updates, and PS-1 could be located

somewhere in AD-1.

Consider the case where the receiver R1 sends a Resv message upstream toward sender S1.

Assuming that the reservation is successful, the conceptual ow of policy objects is:

R1 -- E -- ELPM -- PS-2 -- ELPM -- E -- D -- DLPM -- D -- C -- CLPM

-- PS-1 -- CLPM -- C -- B -- A -- ALPM -- PS-1 -- ALPM -- A -- S1.

Of course, other OOPS messages may be exchanged between policy servers and nodes before

authorizing the reservation at individual nodes.

The functioning of the policy module at a policy aware router is presented through the

following conceptual diagram.

Shai Herzog et al. Expires January 30, 1998 [Page 4]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

+---------+ +----------+

| RSVP | | Policy |

| Module | | Server |

+---------+ OOPS | |

| LPM |---------| |

+- - - - -+ +----------+

|PSM| |PSM| |PSM| |PSM|

|___| |___| |___| |___|

Figure 2: Local Policy Modules and Policy Server communications

The policy server and the local policy module provide support for a number of sub-policy

elements, each embodied by a policy sub-module (PSM). The policy object forwarded by

RSVP may contain a number of elements, each identi�ed by a number, and hence destined

to the sub-module that enforces that sub-policy element's number. For instance, some of

these sub-objects may deal with authentication, others with security, accounting and so on.

The LPM is aware of the sub-modules it is capable of processing locally; After the handshake

comes to know the set of sub-policies that are supported by the server. Processing of policy

sub-objects can be split between the LPM and the policy server, and responses may be

merged back before returning a uni�ed response to RSVP.

2 OOPS Protocol: Basic Features

OOPS is a transaction protocol, in which most communication is in the form of queries

from the client followed by responses from the server. However, a small portion of the

communication may also consist of queries originating from the server, or of unidirectional

noti�cations from one entity to another. In this context, it is important that messages be

distinguished by a unique association, so that responses may identify the query to which

they correspond.

This section discusses four fundamental concepts of the OOPS protocol: (a) query/response

mechanism, (b) exible division of labor between client and server, and (c) consistent man-

agement of client, server and RSVP state.

2.1 Query/Response mechanism

Each OOPS message is uniquely identi�ed by a sequence number; Both client and server

begin communication with Mseq = 0 (the handshake message), and number consecutive

messages in increasing order. These sequence numbers do not imply the order of execution;

while the server receives messages in-order, it is free to execute them in any reasonable

order.

1

1

Execution order is implementation and policy speci�c; any order that does not violate the policy speci�c

requirements is assumed to be reasonable.

Shai Herzog et al. Expires January 30, 1998 [Page 5]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

These sequence numbers are mainly used by the Error-Notification operation as a means

to identify the message that is associated with the reported error.

2

2.1.1 Associating Queries and Responses

Queries and responses carry a Q ASSOC object which relates newly received responses to

their original query operations. The contents of this object is client-speci�c and therefore

opaque to the server; it is set by the client for each query and is echoed back as-is by the

server. The client must store enough information in the Q ASSOC object to enable its own

unique identi�cation of the original query.

2.2 Division of Labor between Client and Server

The OOPS protocol allows for a exible division of responsibilities between server and client.

First, the client must be able to decide how to distribute the processing and second, it must

be able to merge the distributed responses into one uni�ed result.

2.2.1 Distributed Processing

Processing of sub-policies (sub-policy elements within POLICY DESC objects) can be per-

formed by the server, the client, or by both. The decision on which sub-policies are to be

handled locally and which are to be sent to the server is always made by the client based on

information exchanged during the connection establishment handshake (see Section 3.1).

The client may remove sub-policy elements which are not to be processed by the server. In

this case, the client is solely responsible for checking the integrity of the incoming policy

object;

3

the client must also set the OP-Code header ag to inform the server to that fact.

During connection establishment, the server may request to have oversight over the clients

local decisions; in this case, the client should forward incoming policy objects in their

entirety, and consult the server for all RSVP ows, regardless of whether they include

POLICY DATA objects. This oversight is transparent to the client and is therefore post

factum.

4

2

Senders must be informed about the receiver's failure to process their messages. This is especially critical

given that OOPS relies on TCP's reliability and lacks additional reliability mechanisms.

3

If any portion of the POLICY DESC object is modi�ed, the digest integrity veri�cation at the server is

bound to fail.

4

The client should not wait for an oversight decision; if the server overrides a local decision, it may notify

the client sometime later, even after the local client authorized the RSVP operation.

Shai Herzog et al. Expires January 30, 1998 [Page 6]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

OOPS does not impose limitations on the number of servers connected to the client; when

appropriate, the client could divide the work along policy lines between several servers, and

be responsible for combining their results. In the rest of this document we describe the

protocol for a single server-client pair.

2.2.2 Uni�cation of Distributed Responses

Division of labor between client and server is only possible to the extent that the client

has the capability to unify or merge results; the client must be able to merge the results of

queries arriving from servers with its own local results, to produce a single uni�ed response

to the underlying protocol (e.g., RSVP).

Results uni�cation is straight-forward for outgoing POLICY DESC object; since sub-policy

elements are independent, their uni�cation is performed by concatenating all local and

server elements and packing them in POLICY DESC objects.

5

Uni�cation is more complex for status queries, since the various responses must truly be

merged to produce a single status result. OOPS de�nes one basic (default) status response

interface (object and uni�cation rules).

However, given that OOPS is an extensible framework, it allows the the client and server

to negotiate a more sophisticated interface (see Section 3.1). Additional response interfaces

could be described in separate documents which should de�ne the response object format

and uni�cation rules.

6

2.2.3 Default Status Response

The default status response object is of the C-Type 1. C-Type 1 objects may contain

two values: a policy admission decision (PAD) and a preemption priority value (PP). It is

reasonable to assume that some clients would not be able to utilize the ow preemption

priority information; such clients are free to ignore this value and assume that all ows are

created equal. (have priority 0).

PADs may have one of three values: ACCEPT, SNUB, and VETO. ACCEPT authorizes

the query, SNUB signi�es neutrality (neither accept nor reject). A VETO from the server

or LPM has a stronger semantics than a snub, since it has the power to forcefully reject a

ow regardless of any accept decisions made by the other.

The rules for uni�cation of PAD values A and B are straight-forward:

5

An oversight sub-policy element would override the locally generated element, if the two are of the same

type.

6

A separate template document and a list of more sophisticated responses should be prepared.

Shai Herzog et al. Expires January 30, 1998 [Page 7]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

+----------------------+---------------------+

| A+B | IF... |

+----------------------+---------------------+

| SNUB | A=SNUB and B=SNUB |

| VETO | A=VETO or B=VETO |

| ACCEPT (+PP value) | Otherwise |

+----------------------+---------------------+

A uni�ed result of ACCEPT provides approval for the status query; both SNUB and VETO

signal the rejection of the query.

Note that a client and/or server should complete their policy processing even if a veto was

cast by some policy.

7

An ACCEPT response is accompanied by a PP value between 0..255. Lower values describe

higher priorities (priority 1 is the highest). The value 0 is reserved for "N/A"; this value is

used when preemption priority is not applicable.

The uni�cation of PP values A and B attempts to provide the highest priority (lowest

value) which is supported by an ACCEPT decision. The value 0 has no e�ect on the uni�ed

priority:

+----------------------+---------------------+

| A+B | IF... |

+----------------------+---------------------+

| MIN(A,B) | A!=0 and B!=0 |

| A | B=0 |

| B | A=0 |

| 0 (n/a) | A=0 and B=0 |

+----------------------+---------------------+

2.3 State Management

In order for policy objects contained in RSVP messages to be processed quickly and cor-

rectly, it is often required that the results of past policy decisions be cached and maintained

at the LPM or the policy server. During normal operations, the state maintained in the

client and in the server must remain consistent, and must timeout at roughly the identical

times in RSVP, the client, and the server.

The most straightforward method for state maintenance is for the LPM and the policy

server to use the same soft-state mechanism as the RSVP capable router. Unfortunately,

this soft-state approach has undesirable scaling properties since it requires the client to

contact the server on each refresh period (regardless of state changes).

An alternative approach is to allow both client and server to use hard-state mechanisms

that could limit the client-server communication to state updates only. To support the

7

A wide range of sub-policies may not care about the �nal status results and should be activated regard-

less. For instance: a policy that logs all policy queries.

Shai Herzog et al. Expires January 30, 1998 [Page 8]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

hard-state mode, the client must be able to distinguish between repeats (refreshes) and

updates; it must also be able to translate the soft-state that is provided by RSVP into the

hard-state exchanged with the server.

Thus, we envision one end of the spectrum where a "dumb" client would use a soft-state

approach and simply pass all policy objects to the server relying on it for all policy process-

ing. The rate of queries and lack of caching at the client implies the need for a dedicated,

close-by server (PS-2, in our example). As we move towards the other extreme, clients be-

come smarter, split the work between themselves and the server, utilize caching capabilities.

Such clients could take advantage of the bene�ts of hard-state management, and initiate

queries only on actual state updates.

OOPS supports soft and hard state mechanisms seamlessly, as described in this section.

The client determines its desired type of state management, and communicates it on an

object-by-object basis. A single client can use soft-state for some information, and hard

state for others. Furthermore, the OOPS protocol allows clients to modify their caching

strategies on the y (without having to renegotiate with the server). While the protocol

does not impose strategy limitations, a client implementation could restrict itself to a more

modest and simple combination of soft and hard state.

There are two types of state information that is stored at the client: (a) client state in-

formation that was forwarded to the server (e.g., policy objects in incoming Path/Resv

messages). (b) server state which is cached at the client (e.g., policy results computed by

the server). The OOPS protocol addresses each of these types of states separately:

2.3.1 Client State Information Cached at the Server

The client indicates its choice of state management approach by setting (or resetting) the

OOPS HardState ag in objects sent to the server. When the client chooses soft-state

management, policy state for that speci�c object ages and expires at the server according

to the speci�ed timeout (refresh-period * K). Therefore, the state cached at the server is

kept alive by constant refreshing (the client must forward ALL incoming RSVP messages,

whether or not they represent refreshes or updates). On the other hand, when indicating a

choice of hard-state management, the client assumes responsibility for reliably informing the

server on every policy update. In this case, the state cached at the server would not expire

unless explicitly modi�ed by the client, or when the communication channel to the client

breaks.

8

The client may refrain from forwarding to the server any repeat policy objects

(which represent no updated information).

The client may switch between hard and soft states on the y by modifying the OOPS HardState

flag while forwarding input to the server.

8

Clearly the channel breaks when either the client or server become disfunctional or die.

Shai Herzog et al. Expires January 30, 1998 [Page 9]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

2.3.2 Server State Information Cached at the Client

The client indicate its state management capabilities by setting (or resetting) the OOPS HardState

ag in queries sent to the server. A choice of soft-state indicates that the client is incapable

of caching, and it purges the server responses after usage (one-time, or disposable results).

Clearly, without caching, the client must issue a new query each time that responses are

needed.

When the server responds to a cached (hard-state) query, it assumes responsibility to reliably

inform the client about any changes that may occur later with the original response to this

query. The client may rely on cached results as long as there is no change in RSVP's state

(which includes incoming policy objects),

9

and the communication channel with the server

is intact.

The client may switch between hard and soft states on the y by issuing a new query with

a modi�ed ag.

2.3.3 State Change Noti�cation

State change noti�cation is done by resending the same type as the original message but

with the modi�ed state instead.

Client noti�cation example (incoming POLICY DESC objects for Resv-X):

TYPE DATA

---- ----

CLIENT ==> SERVER: NOTIFY:INPUT RESV-X: PD-1

Time passes; the input POLICY DESC object associated with Resv-X changed to PD-2.

CLIENT ==> SERVER: NOTIFY:INPUT RESV-X: PD-2

Server noti�cation example (status query for reservation Resv-X):

TYPE DATA

---- ----

CLIENT ==> SERVER: QUERY:STATUS Q_ASSOC=ID1, RESV-X

SERVER ==> CLIENT: RESP :STATUS Q_ASSOC=ID1, ACCEPT

Time passes; the status of Resv-X changed to "reject".

SERVER ==> CLIENT: RESP :STATUS Q_ASSOC=ID1, REJECT

9

A con�gurable option may allow the client to use cached results even when some RSVP state changes.

There is a clear trade-o� here between fast and accurate policy processing, however, given that the server is

up, and that authorization was already granted previously for that RSVP ow, some may �nd it a reasonable

policy approach.

Shai Herzog et al. Expires January 30, 1998 [Page 10]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

2.3.4 State Re-synchronization

Both client and server may re-synchronize their respective states at any time during the

connection. The reset initiator sends a Bye-Noti�cation with a RESET code, and the

receiver responds with a Bye-Noti�cation with the same code. After this exchange, all

cached state becomes soft, and a new logical connection is reestablished (beginning with

Connection-Initiation-Query,...). New/hard state gradually replaces old/soft state as de-

scribed in Section 3.2.3.

2.4 Error Handling

We distinguish between two types of possible errors; policy errors and protocol errors.

2.4.1 Protocol Errors

Protocol errors (e.g., missing or bad parameters) do not reveal either positive or negative

policy decisions and are therefore neutral (represented as SNUBs).

10

It is recommended (although not required) that all local status processing at the client

be completed before querying the server. This allows the server to immediately commit

the transaction rather than having to wait until the client is done. (See the Client-Status-

Noti�cation Op-Code.)

Some OOPS protocol errors may only a�ect the OOPS protocol processing or simply be

logged. Other errors may escalate to become policy errors (e.g., a bad POLICY DESC is

reported as a policy error).

2.4.2 Policy Errors

Policy errors are reported in a sub-policy element speci�c format. These elements are

encapsulated in POLICY DESC objects and are forwarded toward the originator (cause) of

the error. In most cases, a negative Status-Response initiates an automatic error response

(e.g., RSVP ResvErr or PathErr), however, OOPS allows reporting of other error situations

by scheduling an explicit error message (using the Protocol-Message-Noti�cation op-code).

(See [Ext] for more about the rules governing error reporting).

10

This neutrality allows, when appropriate, other valid sub-policy elements to support an accept decision.

Shai Herzog et al. Expires January 30, 1998 [Page 11]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

Consider a scenario where two receivers R1 and R2 listen to a multicast transmission from

S1. A reservation sent by R1 is propagated upstream until it reaches node A, where it

encounters a policy rejection.

R1------------+

\

B--------------A----------- S1

/ \ |

R2------------+ \ |

\ |

PS1 PS2

Figure 3: An Error Reporting Scenario

The following table describes a subset of the relevant signaling which begins with reservation

initiation by R1 and R2 and ends by R1 receiving the appropriate error response.

From/To Message Comments

__

R1->B Resv [PD1]

R2->B Resv [PD2]

B->PS1 OOPS-Incoming-Policy-Query[PD1,PD2] ;B queries PS1

OOPS-Status-Query?

OOPS-Outgoing-Policy-Query? [Resv]

PS1->B OOPS-Status-Response: ACCEPT

OOPS-Outgoing-Policy-Response[PD3]

B->A Resv [PD3] ;B forwards the Resv to A

A->PS2 OOPS-Incoming-Policy-Query[PD3] ;A queries PS2

OOPS-Status-Query?

PS2->A OOPS-Status-Response: SNUB (reject) ;PS2 reject the reservation

A->PS2 OOPS-Outgoing-Policy-Query? [ResvErr] ;PS2 provides error PD

PS2->A OOPS-Outgoing-Policy-Response [PD1-E]

A->B ResvErr [PD1-E] ;A sends back ResvErr to B

B->PS1 OOPS-Incoming-Policy-Query[PD1-E]

OOPS-Outgoing-Policy-Query? [ResvErr] ;PS1 builds error PD

PS1->B OOPS-Outgoing-Policy-Response[PD1-E'],R1 ; (directed to R1 only)

B->R1 ResvErr [PD1-E'] ;B sends back ResvErr to R1

__

Figure 4: Error Reporting Signaling

All error information is carried in POLICY DESC objects (as sub-policy elements). OOPS

server may read and modify this information along the ResvErr path; it may also direct

the error responses only to the relevant branches of the reserved tree (in this scenario, the

error is associated with R1 but not with R2).

Shai Herzog et al. Expires January 30, 1998 [Page 12]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

3 Client-Server Connection

The following section describes the fundamentals of client-server connection: establishment,

channel, and termination.

3.1 Connection Establishment

OOPS uses a well known port number (OOPS = 3288) for incoming connection requests.

Usually, the client would attempt to establish a TCP connection to its preferred policy

server, however, both client and server listen to the OOPS port.

11

Regardless of who ini-

tiated the TCP connection, once the connection is in place, the OOPS logical connection

establishment is always initiated by the client and is performed through a two way hand-

shake.

� Communication Initiation by the Client

The client sends a Connection-Initiation-Query to the server. This message identi�es

the client to the server and provides the basic characteristics of the client as well as

a list of policy responses that are acceptable to the client. This list is in decreasing

order of acceptability, and terminates with the default element.

� Response by the Server

The server responds with a Connection-Accept-Response to connect to the client. It

may also respond with a Connection-Reject-Response to refuse and disconnect from

the client.

After connection establishment both the client and server know the set of sub-policies

that the client can send to the server, which one of them should handle default (unrec-

ognized) sub-policies, as well as the format of status responses from server to client.

They also establish the Channel-Hold period which is determined as the minimum

between the two values declared in the handshake messages, but must be at least 3

seconds.

3.1.1 Reliable Communication

We expect TCP to provide us with reliable, in-order delivery of packets. Given that TCP

is responsible for all the time critical network operations, reliability errors are assumed to

be virtually nonexistent.

11

New (or recovering) policy servers are allowed to notify clients on their existence by issuing a TCP

connection request to the client's OOPS port number.

Shai Herzog et al. Expires January 30, 1998 [Page 13]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

3.1.2 Secure Communications

OOPS relies on standard protocols for security of client-server communications. An emerg-

ing standard protocol IPSEC [IPSEC] is the mechanism of choice for ensuring either integrity

or secrecy. The use of IPSEC and/or other security protocols is transparent to OOPS.

3.2 Connection Termination

This section describes the handling of communication breakdown.

3.2.1 Implicit Termination

The communication channel may be unexpectedly disconnected because of a misbehaving

client or server, network split, or for other reasons. Both client and server must be able to

detect such channel failures and act accordingly. Consider the case where OOPS is used

for quota enforcement. The server may approve a reservation while debiting $X=min from

a local account. If the OOPS communication channel breaks, it is critical for the server to

detect the break and stop debiting this account.

The OOPS protocol relies on Keep-Alive messages to provide application-level communication-

channel veri�cation.

12

Implicitly, the communications channel is assumed to be discon-

nected after it has been idle (no message was received on it) for more than a Channel-Hold

period (see Section 3.1). Keep-Alive messages are sent by both client and server as needed

13

to ensure the liveness of the connection (to prevent a Channel-Hold timeout). Keep-Alive

messages are not acknowledged.

3.2.2 Explicit Termination

The client (or server) may terminate the connection by sending a Bye-Noti�cation, and wait

until either it receives an echoed Bye-Noti�cation or the Channel-Hold period had passed.

In between, it should ignore incoming messages (and not reset the Channel-Hold timer).

At the opposite side, when a client (or server) receive a Bye-Noti�cation message, it should

echo it, and close the connection.

12

OOPS implementations may utilize system dependent mechanisms for detecting broken TCP connec-

tions, but does not rely on them. This is especially important since a server may be in a dysfunctional state

while its TCP connection is still open and viable.

13

When the intermediate period in between two OOPS messages approaches the Channel-Hold time.

Shai Herzog et al. Expires January 30, 1998 [Page 14]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

3.2.3 Post Termination

Soft-state has an inherent cleanup mechanism; when the channel disconnects, the soft-state

begins to age until it eventually expires (using the same mechanism and refresh-period * K

used by RSVP).

In contrast, hard-state is assumed to be valid unless explicitly modi�ed. However, when

the channel disconnects such an explicit noti�cation is not possible. Clearly, purging all

state immediately upon disconnection is not an acceptable approach since should cause

disruption of service and would not allow enough time to contact an ALTERNATE server.

OOPS uses the following simple rule:

When the communication channel disconnects, all hard state associated with it is assumed

to be soft-state that had been refreshed recently.

3.2.4 Switching to An Alternative Server

We assume that as part of their local con�guration, clients obtain a list of policy servers

and site speci�c selection criteria. This list can be the basis for server switching decisions.

A switch to an alternate server may be triggered by a voluntary disconnection (i.e., Bye-

Noti�cation) or an unexpected break in the communication channel. During normal oper-

ations, the client may wish to switch to an alternate server (for any reason). The client is

advised to �rst connect to the new server before sending a Bye-Noti�cation to the origi-

nal one. If the communication channel unexpectedly disconnects, the client should quickly

attempt to connect to an alternate server.

In both cases, after the connection to a new server

14

is established, the aging cached state

from the old server would be gradually replaced by responses from the new server.

15

As

general guidelines, state replacement from a new server should not cause a disruption of

service that would not otherwise occur (if a new server was not found).

16

After switching to an alternate server, the client may periodically poll its old (preferred)

server by attempting a TCP connection to its OOPS port. Similarly, a new (or recovered

server) may notify clients about its liveness by attempting to connect to their OOPS port.

In the latter case, clients may disconnect the TCP connection or respond with a Connection-

14

The term "new server" may be the same as the "previous server"; it may happen that the connection

encounters a problem and the client chooses to disconnected and re-established the connection.

15

The client could speed-up replacement of cached state by sending copies of cached input to the server and

issuing repeated queries, on connection establishment (instead of waiting until objects arrive from RSVP).

16

Practically, this means that as long as there is no change in RSVP messages, the client is advised to

choose between cached and new results in favor of authorizing the request.

Shai Herzog et al. Expires January 30, 1998 [Page 15]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

Initiation-Query as if the client initiated the connection in the �rst place.

17

4 OOPS Message Format

OOPS messages serve as a wrapper that may include one or more Op-Codes; the message

wrapper allows common operation (e.g., MD5 integrity, HOP DESCs, protocol version, etc.)

to be performed and veri�ed in one-shot. All OOPS messages are composed of the following

�elds:

+---------------+---------------+---------------+---------------+

| Ver | #Op-Codes | Flags | ////// |

+---------------+---------------+---------------+---------------+

| Message Length |

+---------------+---------------+---------------+---------------+

| Message Sequence Number |

+---------------+---------------+---------------+---------------+

| OOPS_MSG_AUTH (Optional) |

+---------------+---------------+---------------+---------------+

| List of Op-Codes... |

+---------------+---------------+---------------+---------------+

Version: 8 bits

Protocol version number. The current version is 1.

Flags: 8 bits

0x01 H_Integrity_Checked POLICY_DESC Integrity already checked by client

0x02 H_Hops_Checked Prev/Next HOPs already checked by client

#Op-Codes: 8 bits

Number of Op-Codes included in this message.

Message Length: 32 bits

The total length of this OOPS message in bytes.

Message Sequence Number: 32 bits

The sequence number of the message being sent.

OOPS MSG AUTH (optional): variable length

This Message Authenticator provides integrity veri�cation based on a shared-keyed

message digest. The message digest is calculated over the entire OOPS message.

There is only one object format currently de�ned is identical to the RSVP IN-

TEGRITY object (de�ned in [Bak96]).

List of OOPS operation codes (Op-Codes): variable length

Described in the following section.

17

Future version of this document may include the use of multicast to advertise the liveness of servers.

Shai Herzog et al. Expires January 30, 1998 [Page 16]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1 OOPS Operation Codes (Op-Codes)

Each OOPS message may contain multiple OOPS operations each encapsulating a di�erent

query, response or noti�cation. For example, multiple Incoming-Policy-Queries might be

followed by a Status-Query operation in the same message.

Individual OOPS Op-Codes have the following header:

+---------------+---------------+---------------+---------------+

| Operation Code| Op. Subtype | Flags | ////// |

+---------------+---------------+---------------+---------------+

| Length (bytes) |

+---------------+---------------+---------------+---------------+

| Refresh Period |

+---------------+---------------+---------------+---------------+

The operation header has the following �elds:

operation Code: 8 bits

The type of OOPS operation.

Operation Subtype: 8 bits

This �eld can be used to indicate an attribute of the Op-Code, such as its version;

currently it is always set to 1.

Flags: 8 bits

0x01 OOPS_HardState: Hard State (soft-state if not set (0))

0x02 OOPS_Shared : Resv shared among sources as filter specs

0x02 OOPS_FullList : Last in the set of status queries.

Length: 32 bits

Contains the total operation length in bytes (including header).

Refresh Period

The refresh-period associates with this object (e.g., RSVP's refresh period).

The remainder of this section describes the set of operations that may appear in OOPS

messages and their object format. OOPS does not bind itself to a particular protocol (i.e.,

RSVP) and is built around objects that may belong to di�erent (other) protocols. The

current draft is based on the assumption that RSVP would be one (the �rst) of these

protocols and thus, the draft provides the appropriate RSVP objects format.

Shai Herzog et al. Expires January 30, 1998 [Page 17]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1.1 Null-Noti�cation (a.k.a Keep-Alive)

Operation Type = 0, sub-type = 1

<Null-Notification> ::= <Common OOPS header>

This empty or null noti�cation triggers no operation; thus, can be used as as Keep-Alive

signal to test the viability of the communication channel between client and server (see

Section 3.2.1).

4.1.2 Connection-Initiation-Query

Operation Type = 1, sub-type = 1

<Connection-Initiation-Query> ::= <Common OOPS header>

<CONNECT_DESC>

<CLASS_ID>

<CLIENT_ID>

<RESP_INT>

<COOKIE>

The client sends this query to establish a connection with a server. This message is sent

following the establishment of a transport connection (TCP).

� CONNECT DESC

Description of connection parameters.

� CLASS ID

The client's class provides an implicit description of the client's capabilities and re-

quirements; the CLASS ID is an index into the class list maintained by the server; it

is used in conjunction with the CLIENT ID.)

� CLIENT ID

The network address of the client. From the combination of CLIENT ID and CLASS ID

the server can learn about the set of sub-policies it is required to support for this par-

ticular client; it can also learn which of these sub-policies are optional and which are

mandatory.

� RESP INT

A list of possible response interfaces.

� COOKIE

Shai Herzog et al. Expires January 30, 1998 [Page 18]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1.3 Connection-Accept-Response

Operation Type = 2, sub-type = 1

<Connection-Accept-Response> ::= <Common OOPS header>

<CONNECT_DESC>

<PLIST>

<RESP_INT>

<COOKIE>

The server sends this response to accept a client's connection connection request.

� CONNECT DESC

� PLIST

Each "From Policy m" and "To Policy m" pair represent a range of sub-policies that

the server is willing to support.

� RESP INT

The chosen (agreed upon) status response interface.

� COOKIE

4.1.4 Connection-Reject-Response

Operation Type = 3, sub-type = 1

<Connection-Reject-Response> ::= <Common OOPS header>

<ERR_DESC>

The server sends this response to reject a client's connection initiation. It speci�es both

reason code and text.

4.1.5 Bye-Noti�cation

Operation Type = 4, sub-type = 1

<Bye-Notification> ::= <Common OOPS header>

<BYE_DESC>

[<ERR_DESC>]

This message is used by either client or server to terminate the OOPS connection.

Shai Herzog et al. Expires January 30, 1998 [Page 19]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1.6 Incoming-Policy-Query

Operation Type = 5, sub-type = 1

<Incoming-Policy-Query> ::= <Common OOPS header>

<Q_ASSOC>

<PROT_MSG_TYPE>

<DST_DESC>

<SRC_DESC list>

<HOP_DESC>

[<ADV_DESC>]

<POLICY_DESC list>

This operation is used to forward POLICY DESC objects from the client to the server.

Selection between hard and soft state management is reected in the OOPS HardState ag.

The other �elds are copied from the PC InPolicy() function called by RSVP. (See [Ext]).

4.1.7 Incoming-Policy-Response

Operation Type = 6, sub-type = 1

<Incoming-Policy-Response> ::= <Common OOPS header>

<Q_ASSOC>

<ERR_DESC>

Incoming-Policy-Response is used ONLY to report protocol errors (e.g., syntax) found with

incoming policy objects. (it is not used in the normal operation of the protocol).

4.1.8 Outgoing-Policy-Query

Operation Type = 7, sub-type = 1

<Outgoing-Policy-Query> ::= <Common OOPS header>

<Q_ASSOC>

<PROT_MSG_TYPE>

<DST_DESC>

<SRC_DESC list>

<HOP_DESC list>

This operation queries the server for a set of outgoing policy objects for a set of HOP DESCs.

The client can choose between hard and soft state management through the OOPS HardState

ag. When hard state is selected, the client caches copies of the outgoing objects and

assumes they remain valid unless explicitly modi�ed by the server.

Shai Herzog et al. Expires January 30, 1998 [Page 20]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1.9 Outgoing-Policy-Response

Operation Type = 8, sub-type = 1

<Outgoing-Policy-Response> ::= <Common OOPS header>

<Q_ASSOC>

{ <HOP_DESC>

<ERR_DESC> or <POLICY_DESC>

} pairs list

The <Query Sequence Number> links the response to the original query.

In the response, the server provides a list of triplets, one for each outgoing HOP DESC

(For Path messages, only the LIH part is signi�cant). Each triplet contains a list of policy

objects for that hop and an error description.

The OOPS server can block an outgoing RSVP message by replacing the outgoing POL-

ICY DESC list for a particular HOP DESC with an <Error-Description> with an appro-

priate value.

The ability to block outgoing RSVP control messages is especially useful when policy is

enforcement is performed at border nodes of a network; RSVP control messages that are

allowed through are capable of installing state at internal nodes without being subject to

further policy control.

4.1.10 Status-Query

Operation Type = 9, sub-type = 1

<Status_Query> ::= <Common OOPS header>

<Q_ASSOC>

<PROT_MSG_TYPE>

<DST_DESC>

<SRC_DESC list>

{ <HOP_DESC>

<QOS_DESC>

} triplets list

This operation queries the server for status results of a list of LIHs. The client can choose

between hard and soft state management through the OOPS HardState ag. When hard

state is selected, the client caches the status results and assumes they remain valid unless

explicitly modi�ed by the server.

In the upstream direction (e.g., Resv) status may need to be checked on multiple LIHs (all

reservations for a ow). In such cases, status queries can be perform separately for each

Shai Herzog et al. Expires January 30, 1998 [Page 21]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

LIH, once for all LIHs, or anything in between. Flag OOPS FullList must be set at the last

of status query of the series.

18

18

When sub-policies are interdependent across LIHs (as when the cost is shared among downstream

receivers), ag OOPS FullList noti�es the server that the list of reserved LIH is complete and that it can

safely compute the status of these reservations.

Shai Herzog et al. Expires January 30, 1998 [Page 22]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1.11 Status-Response

Operation Type = 10, sub-type = 1

<Status-Response> ::= <Common OOPS header>

<Q_ASSOC>

{ <HOP_DESC>

<STATUS_DESC>

[<ERR_DESC>]

} triplet list

The <Q ASSOC> links the response to the original query.

In the response, the server provides a list of triplets, each of which contains an LIH, status,

and any applicable error results. The set of LIHs is an attribute of the results and not of

the query; the server is allowed to respond with a superset of LIHs speci�ed in the original

query, as in the following example:

SEQ# TYPE DATA

--- ---- ----

Client ==> Server: 150 Query:status Q_ASSOC=ID2, Resv-X, LIH={2}

Server ==> Client: 153 Resp :status Q_ASSOC=ID2, {2,rej}

Two new reservations arrive, carrying new policy data objects:

Client ==> Server: 160 Query:status Q_ASSOC=ID3, Resv-X, LIH={4,7}

Server ==> Client: 169 Resp :status Q_ASSOC=ID3, {2,acc;4,acc;7,rej}

4.1.12 Delete-State-Noti�cation

Operation Type = 11, sub-type = 1

<Delete-State-Notification> ::= <Common OOPS header>

<STATE_OP_DESC>

<DST_DESC>

[<PROT_MSG_TYPE>]

[<SRC_DESC list>]

[<HOP_DESC>]

[<ERR_DESC>]

� STATE OP DESC

This object describes the type of requested operation (see Appendix A).

Shai Herzog et al. Expires January 30, 1998 [Page 23]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

This operation informs the sender about an immediate RSVP teardown of state caused by

PATH TEAR, RESV TEAR, routes change, etc. As a result, the server should ignore the

described state as if it was never received from the client.

Despite its name, this operation can be used to switch between blockaded and non-blockaded

state.

The semantics of this operation is described for PC DelState() in [Ext].

Error description is used to provide the server with a reason for the delete (for logging

purposes).

4.1.13 Protocol-Message-Noti�cation

Operation Type = 12, sub-type = 1

<Protocol-Message-Notification> ::= <Common OOPS header>

<PROT_MSG_TYPE>

<DST_DESC>

<SRC_DESC list>

<HOP_DESC>

The operation results in the generation of an outgoing protocol message (e.g., RSVP's Path,

Resv). The client should schedule the requested message to the speci�ed HOP DESC.

4.1.14 Client-Status-Noti�cation

Operation Type = 13, sub-type = 1

<Client-Status-Notification> ::= <Common OOPS header>

<Q_ASSOC>

<STATUS_DESC>

The Client noti�es the server about the status results computed at the client (that may also

include results from other servers, if policy computation is spread among several servers).

The overall status of an RSVP ow is computed by merging the client's status report with

the server's. The server should not commit a transaction (e.g., charge an account) before

knowing its �nal status. The Client-Status-Results operation can be sent with the query,

if the client computed its status prior to making the query. It can also be sent later, after

the server sent its response to the status query.

Shai Herzog et al. Expires January 30, 1998 [Page 24]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

4.1.15 Error-Noti�cation

Operation Type = 14, sub-type = 1

<Message-Error-Notification> ::= <Common OOPS header>

<Message-Sequence-Number>

<ERR_DESC>

Message-Error-Noti�cation can be used by either client or server to report errors associated

with an entire message (as opposed to a speci�c operation). Error-Noti�cation may be

triggered by both syntax or substantive errors (e.g., failure to verify the integrity of the

message).

<Message-Sequence-Number> identi�ed the message that triggered the error. It uses iden-

tical format to the one used by the OOPS message header.

Message-Error-Noti�cation is not acked.

5 Acknowledgment

This document reects feedback from Paul Amsden, Fred Baker, Lou Berger, Bob Braden,

Ron Cohen, Deborah Estrin, Steve Jackowski, Tim O'Malley, Claudio Topolcic, Raj Ya-

vatkar, and many other IPC and RSVP collaborators,

6 Authors' Address

Shai Herzog Phone: (917) 318-7938

IPHighway Email: herzog@iphighway.com

Dimitrios Pendarakis Phone: (914) 784-7536

Email: dimitris@watson.ibm.com

Raju Rajan Phone: (914) 784-7260

Email: raju@watson.ibm.com

Roch Gu�erin Phone: (914) 784-7038

Email: guerin@watson.ibm.com

IBM T. J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Shai Herzog et al. Expires January 30, 1998 [Page 25]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

7 References

References

[IPSEC] R. Atkinson, Security Architecture for the Internet Protocol, RFC1825, Aug. 1997.

[Bak96] F. Baker. RSVP Cryptographic Authentication Internet-Draft, draft-ietf-rsvp-md5-

02.txt, 1996.

[RSVPSP] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSer-

Vation Protocol (RSVP) Version 1 Functional Speci�cation. Internet-Draft, draft-ietf-

RSVPSP-14.[ps,txt], Nov. 1996.

[Arch] S. Herzog Accounting and Access Control Policies for Resource Reservation Proto-

cols. Internet-Draft, draft-ietf-rsvp-policy-arch-01.[ps,txt], Nov. 1996.

[LPM] S. Herzog Local Policy Modules (LPM): Policy Enforcement for Resource Reserva-

tion Protocols. Internet-Draft, draft-ietf-rsvp-policy-lpm-01.[ps,txt], Nov. 1996.

[Ext] S. Herzog RSVP Extensions for Policy Control. Internet-Draft, draft-ietf-rsvp-policy-

ext-02.[ps,txt], Apr. 1997.

Shai Herzog et al. Expires January 30, 1998 [Page 26]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

A Appendix: OOPS Objects

This section describes objects that are used within OOPS OP-Codes. All objects have a

common header:

+---------------+---------------+---------------+---------------+

| Length | Class | C-Type |

+---------------+---------------+---------------+---------------+

Length describes the length of the entire object, in bytes. Class describes the type of object

and C-Type describes the a class sub-type.

� CLASS ID class

{ Class = 1, C-Type = 1

+---------------+---------------+---------------+---------------+

| ASCII String 0 Padded to multiples of 32 bits |

+---------------+---------------+---------------+---------------+

� CLIENT ID class

{ Class = 2, C-Type = 1

A Network Address.

+---------------+---------------+---------------+---------------+

| IPv4 Address |

+---------------+---------------+---------------+---------------+

{ Class = 2, C-Type = 2

+---------------+---------------+---------------+---------------+

| IPv6 Address |

| |

| |

| |

+---------------+---------------+---------------+---------------+

From the combination of Client-ID and Class-Indicator the server can learn about the

set of sub-policies it is required to support for this particular client; it can also learn

which of these sub-policies are optional and which are mandatory.

� RESP INT class

{ Class = 3, C-Type = 1

+---------------+---------------+---------------+---------------+

| Most-Prefered |..... | | |

+---------------+---------------+---------------+---------------+

| | Least-Pref. |...0 Padded to 32 bit multiples|

+---------------+---------------+---------------+---------------+

� COOKIE class

Shai Herzog et al. Expires January 30, 1998 [Page 27]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

{ Class = 4, C-Type = 1

Currently, no values are de�ned.

� PLIST class

{ Class = 5, C-Type = 1

+---------------+---------------+---------------+---------------+

| Number (or pairs) | ////// |

+---------------+---------------+---------------+---------------+

| From Policy 1 | To Policy 1 |

+---------------+---------------+---------------+---------------+

....

+---------------+---------------+---------------+---------------+

| From Policy n | To Policy n |

+---------------+---------------+---------------+---------------+

Each "From Policy m" and "To Policy m" pair represent a range of sub-policies that

the server is willing to support.

� ERR DESC class

{ Class = 6, C-Type = 1

+---------------+---------------+---------------+---------------+

| Error-Code | ////// | Reason Code |

+---------------+---------------+---------------+---------------+

| Error ASCII String 0 Padded to multiples of 32 bits |

+---------------+---------------+---------------+---------------+

Detailed Error-Code and Reason-Codes would be de�ned in future versions of this

document.

� Q ASSOC class

{ Class = 7, C-Type = 1

+---------------+---------------+---------------+---------------+

| Client-Specific Semantics |

// (Variable Length) //

| |

+---------------+---------------+---------------+---------------+

The client-speci�c contents of this object is opaque to the server; it is set by the

client for a query and is echoed by the server as-is. The client must store enough

information there that will enable it to uniquely identify the original query when

the response arrive. This must at least include a counter to identify the version

of the latest query.

19

� PROT MSG TYPE class

19

A simple association could be the combination of a pointer to an internal client (router) control-block

that describes the query, and a query version counter.

Shai Herzog et al. Expires January 30, 1998 [Page 28]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

{ Class = 8, C-Type = 1

+---------------+---------------+---------------+---------------+

| RSVP MSG TYPE |

+---------------+---------------+---------------+---------------+

Values speci�ed in [RSVPSP].

� DST DESC class

{ Class = 9, C-Type = 1

The RSVP SESSION object as de�ned in [RSVPSP].

� SRC DESC class

{ Class = 10, C-Type = 1

The RSVP FILTER SPEC object as de�ned in [RSVPSP].

� HOP DESC class

{ Class = 11, C-Type = 1

The RSVP HOP object as de�ned in [RSVPSP].

� ADV DESC class

{ Class = 12, C-Type = 1

The RSVP ADSPEC object as de�ned in [RSVPSP].

� QOS DESC class

{ Class = 13, C-Type = 1

The RSVP FLOWDESC object as de�ned in [RSVPSP].

� POLICY DESC class

{ Class = 14, C-Type = 1

The RSVP POLICY DATA object as de�ned in [Ext] and [RSVPSP].

� OOPS MSG AUTH class

{ Class = 15, C-Type = 1

The RSVP INTEGRITY object as de�ned in [RSVPSP] and [Bak96].

� STATUS DESC class

{ Class = 16, C-Type = 1

+---------------+---------------+---------------+---------------+

| Results | Priority | ////// |

+---------------+---------------+---------------+---------------+

Shai Herzog et al. Expires January 30, 1998 [Page 29]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

Results may have one of the following values:

1 : Accept

2 : Snub

3 : Veto

Priority ranges between 1..255 (see 2.2.3).

� CONNECT DESC class

{ Class = 17, C-Type = 1

This object describes the OOPS connection parameters; in the Connection-

Accept-Response, the refresh-multiplier is an echo of the value received with

the Connection-Initiation-Query.

+---------------+---------------+---------------+---------------+

| Version | Flags | Refresh-Mult. | ////// |

+---------------+---------------+---------------+---------------+

| Max-Msg-Size (in KBytes) | Channel-Hold period (in sec.) |

+---------------+---------------+---------------+---------------+

Ver: 8 bits

Currently, version 1.

Flags:

0x01 OOPS_CONNECT_DefaultC Client handles default sub-policies.

Refresh-Mult.:

The refresh-period multiplier (e.g., RSVP's K value).

Max-Msg-Size: Upper limit on the length of an OOPS message

Channel-Hold period: Implicit disconnection timeout

� BYE DESC class

{ Class = 18, C-Type = 1

BYE DESC provides details about the Bye-Noti�cation request.

+---------------+---------------+---------------+---------------+

| Bye-Flags | ////// | BYE_DELAY (seconds) |

+---------------+---------------+---------------+---------------+

Bye-Flags:

0x01 An echo (response) to a received Bye-Notification

The BYE DELAY could provide both sides with some time delay to be better

prepared to a pending bye.

20

The delay value is determined by the originator of

the bye-noti�cation, and is echoed in the bye response. The delay e�ect should

be as if the Bye-Noti�cation was sent BYE DELAY seconds later with a delay

timer value of 0.

� STATE OP DESC class

20

Similar to the delayed shutdown command known in Unix.

Shai Herzog et al. Expires January 30, 1998 [Page 30]

Internet Draft OOPS: Policy Protocol for RSVP Apr. 1997

{ Class = 19, C-Type = 1

+---------------+---------------+---------------+---------------+

| Op-Type | ////// |

+---------------+---------------+---------------+---------------+

Op-Type values:

1 : Delete State

2 : Block State

3 : Unblock State

B Appendix: Error Codes

This appendix describes an initial list of error codes available in OOPS, as well as the set

of Reason Codes for each error code. (Reason Code of 0 must be used when Reason Codes

are not applicable). This list should evolve and not be considered conclusive.

21

� Code = 1, Connection Management

1: Connection Reject: Server does not support client version.

2: Bye: Reset due to routine state re-synchronization

2: Bye: Reset due to connection problems (Bad message formats)

� Code = 2, Protocol problems

1: Syntax: Bad OOPS message

2: Syntax: Bad OOPS Op-Code

3: Syntax: Bad POLICY DESC format

� Code = 3, Policy Decisions

1: Don't forward: refrain from forwarding an outgoing message

2: Policy Reject: cancel protocol operation (Reservation, path, etc.)

� Code = 4, State Management

1: Delete State: Reservation Canceled

2: Delete State: route change

3: Delete State: State Timeout

4: Blockade State

5: Unblock State

21

Not even close to be conclusive at this point in time!

Shai Herzog et al. Expires January 30, 1998 [Page 31]

