
Internet Draft Shai Herzog

Expires September 19, 1997 Dimitrios Pendarakis

File: draft-ietf-rsvp-policy-oops-00.ps Raju Rajan

Roch Gu�erin

IBM T.J. Watson Research Center

Apr. 1997

Open Outsourcing Policy Service (OOPS) for RSVP

March 19, 1997

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This document describes a protocol for exchanging policy information and deci-

sions between an RSVP-capable router (client) and a policy server. The OOPS

protocol supports a wide range of router con�gurations and RSVP implementa-

tions, and is compatible with the RSVP Extensions for Policy Control [Ext].

Internet Draft OOPS: Policy Protocol for RSVP

Contents

1 Overview 4

1.1 Representative OOPS Scenarios : 4

2 Query-Response Protocol 6

2.1 Division of Labor between Client and Server : : : : : : : : : : : : : : : : : : 6

2.1.1 Error Reporting : 7

2.2 State Management : 8

2.2.1 Client State Information Cached at Server : : : : : : : : : : : : : : : 9

2.2.2 Server State Information Cached at Client : : : : : : : : : : : : : : : 9

2.2.3 State Change Noti�cation : 10

3 Client-Server Communications 10

3.1 Connection Establishment : 10

3.1.1 Secure Communications : 11

3.2 Reliable Communication : 11

3.2.1 Sequence Numbers : 12

3.2.2 Receiver initiated retransmit : 12

3.2.3 Keep-Alive Messages : 12

3.2.4 Overhead : 13

3.3 Connection Termination : 13

3.3.1 Explicit Termination : 13

3.3.2 Implicit Termination : 13

3.3.3 Post Termination : 14

3.3.4 Switching to An Alternative Server : : : : : : : : : : : : : : : : : : 14

Shai Herzog et al. Expires September 19, 1997 [Page 2]

Internet Draft OOPS: Policy Protocol for RSVP

4 OOPS Message Format 15

4.1 OOPS Operations : 16

4.1.1 Null-Noti�cation (a.k.a Keep-Alive) : : : : : : : : : : : : : : : : : : 17

4.1.2 Connection-Initiation-Query : 17

4.1.3 Connection-Accept-Response : 17

4.1.4 Connection-Reject-Response : 18

4.1.5 Bye-Noti�cation : 18

4.1.6 Incoming-Policy-Query : 18

4.1.7 Incoming-Policy-Response : 19

4.1.8 Outgoing-Policy-Query : 19

4.1.9 Outgoing-Policy-Response : 19

4.1.10 Status-Query : 20

4.1.11 Status-Response : 20

4.1.12 Delete-State-Noti�cation : 21

4.1.13 Schedule-RSVP-Noti�cation : 21

4.1.14 Client-Status-Noti�cation : 22

4.1.15 Resend-Noti�cation : 22

4.1.16 Error-Noti�cation : 22

4.2 Fields format : 23

5 Acknowledgment 25

Shai Herzog et al. Expires September 19, 1997 [Page 3]

Internet Draft OOPS: Policy Protocol for RSVP

1 Overview

Open Outsourcing Policy Service (OOPS) is a protocol for exchanging policy information

and decisions between an RSVP-capable router (client) and a policy server. As the name

suggests, OOPS is an outsourcing protocol which allows the partial or complete delegation

of the task of policy control from the local router to an external server. Moreover, it is an

open protocol in a sense that it does not de�ne or depend on particular policies; instead,

it provides a framework for adding, modifying and experimenting with new policies in a

modular, plug-n-play fashion.

The OOPS protocol was designed to be compatible with the RSVP Extensions for Policy

Control [Ext], both in the format of RSVP objects, as well as the set of supported services.

The basic features of OOPS design are as follows:

Asymmetry between client and server

Adding policy support to RSVP may require substantial modi�cations to platforms

(e.g., routers) which may not have the required implementation
exibility and/or

processing power. OOPS assumes that the server is more sophisticated than the

client, in terms of processing power and support for diverse policies.

Support for a wide range of client implementation

The OOPS protocol supports a wide range of client implementations. At one end

of the spectrum, a "dumb" client may delegate total responsibility to the server for

all policy decisions without even maintaining cached states. At the other end, smart

clients can perform most policy processing locally and only address the server for a

small number of policies and only when they change (otherwise, cache can be used).

Minimal knowledge of RSVP's processing rules.

The server must be aware of the format of several RSVP objects and basic RSVP

message types. However, it is not required to understand RSVP's processing rules

(e.g., di�erent reservation styles).

Asynchronicity

Both client and server may asynchronously generate queries or requests.

TCP for reliable communications

TCP is used as a reliable communication protocol between client and server.

1.1 Representative OOPS Scenarios

Figure 1 depicts some representative scenarios for policy control along an RSVP path, as

envisioned in OOPS. Nodes A, B and C belong to one administrative domain AD-1 (advised

Shai Herzog et al. Expires September 19, 1997 [Page 4]

Internet Draft OOPS: Policy Protocol for RSVP

by policy server PS-1), while D and E belong to AD-2 and AD-3, respectively.

AD-1 AD-2 AD-3

_______________/___________ __/__ __/__

{ } { } { }

+------+ +------+ +------+ +------+ +------+

+----+ | A | | B | | C | | D | | E | +----+

| S1 |--| RSVP |---| RSVP |---| RSVP |---| RSVP |---| RSVP |--| R1 |

+----+ +------+ +------+ +------+ +------+ +------+ +----+

| LPM | | LPM | | LPM | | LPM |

+------+ +------+ +------+ +------+

\ / |

\ / +------+

\ / |Policy|

\ / |Server|

\ / | PS-2 |

\ / +------+

+------+

|Policy|

|Server|

| PS-1 |

+------+

Figure 1: Policy Control along an RSVP path

The scenario includes four typical node types:

(1) Policy incapable nodes: Node B. (2) Self-su�cient policy node: Node D is self-su�cient

since its local LPM satis�es its entire policy needs. (It has no need for server advice.)

(3) "Dumb" policy nodes: Node E is an unsophisticated node that lacks processing power,

code support or caching capabilities, and needs to rely on PS-2 for every policy processing

operation. In this case, the volume of tra�c and delay requirements make it imperative to

connect PS-2 to node E by a direct link or a LAN. (4) "Smart" policy nodes: Nodes A and

C include sophisticated LPMs, in that these nodes can process some policies, and have the

capacity to cache responses from PS-1. In this case, the contact between the clients and

server will be limited to occasional updates, and PS-1 could be located somewhere in AD-1.

Consider the case where the receiver R1 sends a Resv message upstream toward sender S1.

Assuming that the reservation is successful, the conceptual
ow of policy objects is:

R1 -- E -- ELPM -- PS-2 -- ELPM -- E -- D -- DLPM -- D -- C -- CLPM

-- PS-1 -- CLPM -- C -- B -- A -- ALPM -- PS-1 -- ALPM -- A -- S1.

Of course, other OOPS messages may be exchanged between policy servers and nodes before

authorizing the reservation at individual nodes.

Shai Herzog et al. Expires September 19, 1997 [Page 5]

Internet Draft OOPS: Policy Protocol for RSVP

2 Query-Response Protocol

OOPS is a transaction protocol, in which most communication is in the form of queries

from the client followed by responses from the server. However, a small portion of the

communication may also consist of queries originating from the server, or of unidirectional

noti�cations from one entity to another. In this context, it is important that messages be

distinguished by a unique sequence number, so that responses may identify the query to

which they correspond.

This section discusses two fundamental concepts of the OOPS protocol: (a)
exible division

of labor between client and server. (b) consistent management of client, server and RSVP

state.

2.1 Division of Labor between Client and Server

The OOPS protocol allows for a
exible division of responsibilities between server and client.

Processing of policies (policy elements within POLICY DATA objects) can be performed by

the server, the client, or by both. The decision on which policies are to be handled locally

and which are to be sent to the server is always made by the client based on information

exchanged during the connection establishment handshake (see Section 3.1).

Before the client forwards incoming POLICY DATA objects to the server (Incoming-Policy-

Query) it removes or marks the policy elements it wishes the server to ignore. (Marking

is performed by changing the policy element P-type to zero.) When forwarding incoming

policy objects, the client may also set header
ags to inform the server that message integrity

and/or rsvp hop has been already checked.

OOPS does not impose limitations on the number of servers connected to the client; when

appropriate, the client could divide the work along policy lines between several servers, and

be responsible for combining their results. In the rest of this document we describe the

protocol for a single server-client pair.

When the client receives outgoing POLICY DATA objects in response to a previous query

(Outgoing-Policy-Response) it is responsible for merging the server response with the locally

generated outgoing POLICY DATA object. Merging is performed by concatenating the

local and server policy elements and if necessary, computing some of the POLICY DATA

object �elds (e.g., length, INTEGRITY, etc.)

When the client receive status results in response to a previous query (Status-Policy-

Response) it is responsible for merging the results from the server with the local results.

The following rule applies for combining any number of policies, and speci�cally, local and

server policies:

Shai Herzog et al. Expires September 19, 1997 [Page 6]

Internet Draft OOPS: Policy Protocol for RSVP

� When responding to a status query (authorization check), individual policy handlers

may vote to ACCEPT, SNUB or VETO the request. As their names suggest, a vote

of accept authorizes the request; a snub fails it, but remains indi�erent on its �nal

outcome (i.e., other policies could provide authorization); a veto vote excludes the

possibility of authorizing the request, even if other policy handlers cast accept votes.

� The merge result provides an authorization if there is at least one accept, and no

vetoes.

1

(See [LPM]) for more details).

� The client and/or server should complete their policy processing even if a veto was

cast by some policy.

2

� Protocol errors are always considered as snubs, and thus, neutral.

It is recommended (although not required) that all local status processing at the client

be completed before querying the server. This allows the server to immediately commit

the transaction rather than having to wait until the client is done. (See the Client-Status-

Noti�cation operation.)

2.1.1 Error Reporting

Policy error reporting is policy speci�c; it is performed by sending POLICY DATA objects

with speci�c error objects toward the originator of the error. The rules governing error

reporting are described in [Ext].

In this document, we discuss only error reporting between the client and the server, which

is intended to help the client determine whether error reporting is required at all.

There are two types of possible errors; policy errors and protocol errors. For the purpose

of this protocol, policy errors are considered as legitimate results (e.g., reject) and not as

errors. Protocol errors must be reported as such. However, since they do not reveal any

policy decisions they should always be considered as snubs (and therefore neutral to the

overall policy decision).

When the client (or server) discovers a protocol error (syntax, missing parameters, etc.), it

is reported alongside and orthogonal to the status results (accept, reject or veto).

1

A veto has a stronger semantics than a snub, since it has the power to forcefully reject a
ow regardless

of any accept decisions made by others.

2

A wide range of policies may not care about the �nal status results and should be activated regardless.

For instance: a policy that logs all policy queries.

Shai Herzog et al. Expires September 19, 1997 [Page 7]

Internet Draft OOPS: Policy Protocol for RSVP

2.2 State Management

In order for policy objects contained in RSVP messages to be processed quickly and cor-

rectly, it is often required that the results of past policy decisions be cached and maintained

at the LPM or the policy server. Maintenance of policy state must be done in a manner

that is consistent with the division of responsibility for policy processing between client and

server and with RSVP's state management rules.

3

The most straightforward method for state maintenance is for the LPM and the policy

server to use the same soft-state mechanism as the RSVP capable router. Unfortunately,

this soft-state approach has undesirable scaling properties since it requires the client to

contact the server on each refresh period (regardless of state changes).

An alternative approach is to allow both client and server to use hard-state mechanisms

that could limit the client-server communication to updates only. This alternative implies

that the client must be capable of recognizing objects that would result in a change of policy

state, as well as being able to translate between the soft-state provided by RSVP and the

hard-state exchanged with the server.

Thus, we envision one end of the spectrum where a "dumb" client would use a soft-state

approach and simply pass all policy objects to the server relying on it for all policy process-

ing. The rate of queries and lack of caching at the client implies the need for a dedicated,

close-by server (PS-2, in our example). As we move towards the other extreme, clients

become smarter, more capable of caching, and dividing the work between themselves and

the server. Such clients could take advantage of the bene�ts of hard-state management, and

initiate queries only on actual state updates.

OOPS supports soft and hard state mechanisms seamlessly, as described in this section.

The client determines its desired type of state management, and communicates it on an

object-by-object basis. A single client can use soft-state for some information, and hard

state for others. Furthermore, the OOPS protocol allows clients to modify their caching

strategies on the
y (without having to renegotiate with the server). While the protocol

does not impose strategy limitations, a client implementation could restrict itself to a more

modest and simple combination of soft and hard state.

There are two types of state information that is stored at the client: (a) client state in-

formation that was forwarded to the server (e.g., policy objects in incoming Path/Resv

messages). (b) server state which is cached at the client (e.g., policy results computed by

the server). The OOPS protocol addresses each of these types of states:

3

During normal processing, state split between client and server should remain consistent, and timeout

at roughly the same time at RSVP, the client, and the server.

Shai Herzog et al. Expires September 19, 1997 [Page 8]

Internet Draft OOPS: Policy Protocol for RSVP

2.2.1 Client State Information Cached at Server

The client indicates that it desires hard (or soft) state management of client state informa-

tion cached at the server by setting (or resetting) the OOPS HardState
ag in objects sent

to the server. When the client chooses soft-state management for a particular object, policy

state for that object would age and expire at the server according to the timeout speci�ed

in the object. The client must, therefore, forward each policy refresh (update or not) to

the server, to keep the soft-state at the server from becoming stale and expiring. On the

other hand, when the client indicates hard-state management, it assumes responsibility for

reliably informing the server on every policy update. In this case, the state cached at the

server would not expire unless explicitly modi�ed by the client, or when the communication

channel to the client breaks. The client may refrain from forwarding to the server any policy

objects that are identical to objects previously sent to the server.

The client may switch between hard and soft states on the
y by modifying the OOPS HardState

flag while forwarding input to the server.

2.2.2 Server State Information Cached at Client

The client indicates that it is capable of hard (or soft) state management of server state

information by setting (or resetting) the OOPS HardState
ag in queries sent to the server.

Here, hard state management refers to the caching of response results at the client. Soft

state management means that the client, being incapable of caching, would purge them

after usage (one-time, or disposable results).

A non-cached response has no strings attached, but the client must issue a query each

time that responses are needed. When the server responds to a cached (hard-state) query,

it assumes responsibility to reliably inform the client about any changes that may occur

later to the original results of this query. The client may rely on cached results as long as

the there is no change in RSVP's state (which includes incoming policy objects),

4

and the

communication channel with the server is intact.

The client may switch between hard and soft states on the
y by issuing a new query with

a modi�ed
ag.

4

A con�gurable option may allow the client to use cached results even when some RSVP state changes.

Clearly, there is a trade-o� between fast and accurate policy processing, however, given that the server is up,

and that authorization was already granted previously for that RSVP
ow, some may �nd it a reasonable

policy approach.

Shai Herzog et al. Expires September 19, 1997 [Page 9]

Internet Draft OOPS: Policy Protocol for RSVP

2.2.3 State Change Noti�cation

State change noti�cation is done by resending the same type as the original message but

with the modi�ed state instead.

Client noti�cation example (incoming POLICY DATA objects for Resv-X):

Seq# Type Data

--- ---- ----

Client ==> Server: 50 Notify:input Resv-X: PD-1

Time passes; the input POLICY_DATA object associated with

Resv-X changed to PD-2.

Client ==> Server: 90 Notify:input Resv-X: PD-2

Server noti�cation example (status query for reservation Resv-X):

Seq# Type Data

--- ---- ----

Client ==> Server: 150 Query:status Resv-X

Server ==> Client: 151 Resp :status #150: accept

Time passes; the status of Resv-X changed to "reject".

Server ==> Client: 205 Resp :status #150: reject

3 Client-Server Communications

This section describes the fundamentals of client-server communications: connection estab-

lishment, communication channel management, and connection termination.

3.1 Connection Establishment

Connections are always initiated by clients. The client establishes a TCP connection to its

preferred policy server, and then initiates the OOPS session through a two way handshake.

� Communication Initiation by the Client

Shai Herzog et al. Expires September 19, 1997 [Page 10]

Internet Draft OOPS: Policy Protocol for RSVP

The client sends a Connection-Initiation-Query to the server. This message identi�es

the client to the server and provides the basic characteristics of the client.

� Response by the Server

The server responds with a Connection-Accept-Response to connect to the client. It

may also respond with a Connection-Reject-Response to refuse and disconnect from

the client.

After connection establishment both the client and server know the set of policies that

the client can send to the server, and which one of them should handle default (un-

recognized) policies. The Keep-Alive period is determined as the minimum between

the two values declared in the handshake messages.

3.1.1 Secure Communications

The integrity of the communication channel between client and server is guaranteed by

the use of shared-key message digest. (e.g., keyed MD5). A client, wishing to establish

secure communications adds a "Cookie" to the Connection-Initiation-Query. The server

may respond with a reply Cookie or with an Error-Description

5

Shared keys may be obtained from local static con�gurations or could be distributed dy-

namically. The exchange of cookies provides the client and server with an opportunity for

establishing a temporary shared-key (e.g., from Kerberos) for the connection length.

Once a shared key is available, each message sent by either client or server includes an

INTEGRITY object as described in [Bak96]. The format and functionality of the IN-

TEGRITY object are identical to that of RSVP. The sender client or server computes the

message digest over the entire OOPS message; if the receiver fails to verify the message, it

response with an error message.

The format of "cookies" is left for future versions of this document.

3.2 Reliable Communication

We expect TCP to provide us with reliable, in-order delivery of packets, as well as infor-

mation on the liveliness of the communication channel. Given that TCP is responsible

for all the time critical network operations, reliability errors are assumed to be virtually

nonexistent. However, to maintain application-level reliability, OOPS uses a minimalistic

reliability mechanism using sequence numbers, selective retransmit and keep-alive messages.

This requires no retransmission timeouts, and has low overhead.

5

The Error-Description provides reasons for rejecting the secure communications request.

Shai Herzog et al. Expires September 19, 1997 [Page 11]

Internet Draft OOPS: Policy Protocol for RSVP

3.2.1 Sequence Numbers

Each OOPS message, except a Resend-Noti�cation, is uniquely identi�ed by a sequence

number

6

(Mseq). These numbers do not imply any order of execution; while the server

receives messages in-order, it is free to execute them in any reasonable order.

7

In addi-

tion, each message also carries the sequence number of the last received message (Rseq).

Both client and server begin communication with Mseq = 0 (the handshake message), and

number consecutive messages in increasing order.

A transmitted message with Mseq = m is considered to be acknowledged if m � Rseq

(Rseq from the latest received message).

8

The sender must be prepared to retransmit

(as requested) any message that has not been acknowledged yet. Missing, or out-of-order

messages are identi�ed by a gap in sequence numbers of received messages.

3.2.2 Receiver initiated retransmit

When the receiver (client or server) detects missing messages it immediately sends an ex-

plicit Resend-Noti�cation listing these messages. The Resend-Noti�cation has a sequence

number 0.

9

Upon receiving the Resend-Noti�cation, the sender must retransmit all the

requested messages before sending new ones.

3.2.3 Keep-Alive Messages

Many platforms provide system support for detecting broken TCP connections. OOPS can

utilize, but does not depend on such mechanisms. Instead, it relies on Keep-Alive messages

to provide application-level communication-channel veri�cation, as a server may be in a

dysfunctional state while its TCP connection is still open and viable.

The client sends a Keep-Alive message to the server only after the receiving channel has

been idle for longer than the Keep-Alive period. The server responds promptly with a

Keep-Alive ack.

6

Not counting wraparounds

7

Execution order is implementation and policy speci�c; any order that does not violate the policy speci�c

requirements is assumed to be reasonable.

8

Mseq � Rseq should take into account possible wrap-around of sequence numbers.

9

Thus, Resend-Noti�cation cannot participate in sequence number reliability veri�cation. A lost Resend-

Noti�cation cannot not be detected, however, a new one is bound to be triggered sometime again.

Shai Herzog et al. Expires September 19, 1997 [Page 12]

Internet Draft OOPS: Policy Protocol for RSVP

3.2.4 Overhead

These reliability mechanisms were designed to be simple and impose minimal overhead in

a busy working environment. When the client supports a large number of RSVP sessions

and has frequent message exchange with the server, it would not be sending Keep-Alive

messages. Similarly, since TCP is used for reliable communications, there is a virtually zero

probability that Resend-Noti�cation messages would be required. The only timer required

is for the Keep-Alive period; the timer is reset on each message arrival and a Keep-Alive

message is initiated only when it expires.

3.3 Connection Termination

This section describes how communication breakdown is handled.

3.3.1 Explicit Termination

The client (or server) may terminate the connection by sending a Bye-Noti�cation, and wait

until either it receives an echoed Bye-Noti�cation or a Keep-Alive period had passed. In

between, it should ignore incoming messages (and not reset the Keep-Alive timer).

At the opposite side, when a client (or server) receive a Bye-Noti�cation message, they

should echo it, and close the connection.

After an explicit termination, both client and server may cleans up and purges the state

related to the closed connection.

3.3.2 Implicit Termination

The communication channel may be unexpectedly disconnected because of a misbehaving

client or server, network split, or other reasons. Both client and server must be able to

detect such channel failures and act accordingly.

Consider the case where OOPS is used for quota enforcement. The server may approve

a reservation while debiting $X=min from a local account. If the OOPS communication

channel breaks, it is critical for the server to detect it and stop debiting this account.

A communication channel is assumed to be disconnected when the channel was idle (no

message was received on it) for over two Keep-Alive periods.

Shai Herzog et al. Expires September 19, 1997 [Page 13]

Internet Draft OOPS: Policy Protocol for RSVP

3.3.3 Post Termination

Soft-state has an inherent cleanup mechanism; when the channel disconnects, the soft-state

would age and eventually expire based on the same mechanism and refresh-period used by

RSVP.

When hard-state is used, cached state is assumed to be valid unless explicitly modi�ed.

However, when the channel disconnects such an explicit noti�cation is not possible. Purging

all state immediately upon disconnection is not an acceptable approach since it may cause

a disruption of service before an alternate server is contacted. OOPS uses the following

simple rule:

When the communication channel disconnects, the hard state associated with it is assumed

to be soft-state that was just refreshed.

Naturally, when any RSVP state changes (e.g., routing changes, policy input changes, etc.),

cached results at the client should not be used and must be purged.

3.3.4 Switching to An Alternative Server

We assume that the client is provided a list of policy servers and site speci�c selection

criteria.

A switch to an alternate server may be triggered by a voluntary disconnection (i.e., Bye-

Noti�cation) or an unexpected break in the communication channel.

During normal operations, the client may wish to switch to an alternate server (for any

reason). The client is advised to �rst connect to the new server before sending a Bye-

Noti�cation to the original one. If the communication channel unexpectedly disconnects,

the client should quickly attempt to connect to an alternate server.

In both cases, after the connection to a new server

10

is established, the aging cached state

from the old server would be gradually replaced by responses from the new server.

11

As

general guidelines, state replacement from a new server should not cause a disruption of

service that would not otherwise occur (if a new server was not found).

12

10

The term "new server" may be the same as the "previous server"; it may happen that the connection

encounters a problem and the client chooses to disconnected and re-established the connection.

11

The client could speed-up replacement of cached state by sending copies of cached input to the server and

issuing repeated queries, on connection establishment (instead of waiting until objects arrive from RSVP).

12

Practically, this means that as long as there is no change in RSVP messages, the client is advised to

choose between cached and new results in favor of authorizing the request.

Shai Herzog et al. Expires September 19, 1997 [Page 14]

Internet Draft OOPS: Policy Protocol for RSVP

4 OOPS Message Format

OOPS messages serve as a wrapper that may include one or more protocol operations;

this wrapper allows common operation (e.g., MD5 integrity, RSVP HOPs, protocol version,

etc.) to be veri�ed and performed in one-shot.

+---------------+---------------+---------------+---------------+

| Vers | Flags | op-objs# | Reserved (0) |

+---------------+---------------+---------------+---------------+

| Message Length |

+---------------+---------------+---------------+---------------+

| Message Sequence Number |

+---------------+---------------+---------------+---------------+

| Ack-ed Sequence Number |

+---------------+---------------+---------------+---------------+

| INTEGRITY Object... (optional) |

+---------------+---------------+---------------+---------------+

| List of operations |

+---------------+---------------+---------------+---------------+

Any OOPS message is composed of the following �elds:

Version: 8 bits

Protocol version number. The current version is 1.

Flags: 8 bits

0x01 H_Integrity_Checked Integrity already checked by client

0x01 H_Hops_Checked RSVP_HOPs already checked by client

op-objs#: 8 bits

Number of objects included in this message.

Message Length: 32 bits

The total length of this OOPS message in bytes.

Message Sequence Number: 32 bits

The sequence number of the message being sent.

Ack-ed Sequence Number: 32 bits

The sequence number of the last message received in-order from the peer entity (client

or server).

Shai Herzog et al. Expires September 19, 1997 [Page 15]

Internet Draft OOPS: Policy Protocol for RSVP

RSVP INTEGRITY Object (optional): variable length

This object is de�ned in [Bak96]. It provides a message digest based on a shared key

between the client and sender. The message digest is calculated over the entire OOPS

message.

List of OOPS operations: variable length

Described in the following section.

4.1 OOPS Operations

Each OOPS message may contain multiple OOPS operations each encapsulating a di�erent

query, response or noti�cation. For example, multiple Incoming-Policy-Queries might be

followed by a Status-Query operation in the same message. Operations within an OOPS

message are sequentially numbered.

Individual OOPS operations have the following header:

+---------------+---------------+---------------+---------------+

| Operation Type| Op. Subtype | Op. Seq# | Flags |

+---------------+---------------+---------------+---------------+

| Length (bytes) |

+---------------+---------------+---------------+---------------+

| | RSVP's Refresh Period |

+---------------+---------------+---------------+---------------+

The operation header has the following �elds:

operation Type: 8 bits

The type of OOPS operation.

Operation Subtype: 8 bits

This �eld can be used to indicate an attribute of the operation type, such as its

version; currently it is always set to 1.

Operation Sequence Number: 8 bits

The operation sequence number within the message.

Flags: 8 bits

0x01 OOPS_HardState: Hard State (soft-state if not set (0))

0x02 OOPS_Shared : Resv shared among sources as filter specs

0x02 OOPS_FullList : Last in the set of status queries.

Shai Herzog et al. Expires September 19, 1997 [Page 16]

Internet Draft OOPS: Policy Protocol for RSVP

Length: 32 bits

Contains the total operation length in bytes.

RSVP's Refresh Period

The refresh-period RSVP associates with this object.

This remainder of this section describes the set of operations that may appear in OOPS

messages. Many data �elds of these operations are RSVP objects; they are typed in up-

percase letters and their format is de�ned in [RSVPSP]. The format of other operations is

listed in the following section.

4.1.1 Null-Noti�cation (a.k.a Keep-Alive)

Operation Type = 0, sub-type = 0

<Null-Notification> ::= <Common OOPS header>

This empty or null noti�cation triggers no operation; thus, can be used as as Keep-Alive

signal to test the viability of the communication channel between client and server (see

Section 3.2.3).

4.1.2 Connection-Initiation-Query

Operation Type = 1, sub-type = 1

<Connection-Initiation-Query> ::= <Common OOPS header>

<Ver> <RSVP-K> <Flags>

<Client-ID>

<Max-Pkt-Size> <Keep-Alive period>

<Class Indicator>

<Cookie>

The client sends this query to establish a connection with a server. This message is sent

following the establishment of a transport connection (TCP).

4.1.3 Connection-Accept-Response

Operation Type = 2, sub-type = 1

Shai Herzog et al. Expires September 19, 1997 [Page 17]

Internet Draft OOPS: Policy Protocol for RSVP

<Connection-Accept-Response> ::= <Common OOPS header>

<Max-Pkt-Size> <Keep-Alive period>

<Policy list>

<Cookie>

The server sends this response to accept a client's connection connection request.

4.1.4 Connection-Reject-Response

Operation Type = 3, sub-type = 1

<Connection-Reject-Response> ::= <Common OOPS header>

<Error-Description>

The server sends this response to reject a client's connection initiation. It speci�es both

reason code and text.

4.1.5 Bye-Noti�cation

Operation Type = 4, sub-type = 1

<Bye-Notification> ::= <Common OOPS header>

This message is used by either client or server to terminate the OOPS connection. (Section

3.3.1 includes a description of explicit termination)

4.1.6 Incoming-Policy-Query

Operation Type = 5, sub-type = 1

<Incoming-Policy-Query> ::= <Common OOPS header>

<RSVP MESSAGE TYPE>

<SESSION>

<FILTER_SPEC list> <RSVP_HOP>

<resv_handle> <RESV_FLOWSPEC>

<counter (of in P.D.)>

<in POLICY_DATA objects>

This operation is used to forward POLICY DATA objects from the client to the server.

Selection between hard and soft state management is re
ected in the OOPS HardState
ag.

The other �elds are copied from the PC InPolicy() function called by RSVP. (See [Ext]).

Shai Herzog et al. Expires September 19, 1997 [Page 18]

Internet Draft OOPS: Policy Protocol for RSVP

4.1.7 Incoming-Policy-Response

Operation Type = 6, sub-type = 1

<Incoming-Policy-Query> ::= <Common OOPS header>

<Query Sequence Number>

<Error-Description>

Incoming-Policy-Response is used ONLY to report protocol errors (e.g., syntax) found with

incoming policy objects. (it is not used in the normal operation of the protocol).

The <Query Sequence Number> links the response to the original query.

4.1.8 Outgoing-Policy-Query

Operation Type = 7, sub-type = 1

<Outgoing-Policy-Query> ::= <Common OOPS header>

<RSVP MESSAGE TYPE>

<SESSION>

<FILTER_SPEC list>

<counter (of RSVP_HOPs)>

<RSVP_HOP list>

This operation queries the server for a set of outgoing policy objects for a set of RSVP HOPs.

The client can choose between hard and soft state management through the OOPS HardState

ag. When hard state is selected, the client caches copies of the outgoing objects and

assumes they remain valid unless explicitly modi�ed by the server.

4.1.9 Outgoing-Policy-Response

Operation Type = 8, sub-type = 1

<Outgoing-Policy-Response> ::= <Common OOPS header>

<Query Sequence Number>

<Counter (of triplets)>

{ <RSVP_HOP>

<Error-Description>

<out POLICY_DATA objects>

} pair list

The <Query Sequence Number> links the response to the original query.

In the response, the server provides a list of triplets, one for each outgoing RSVP HOP

Shai Herzog et al. Expires September 19, 1997 [Page 19]

Internet Draft OOPS: Policy Protocol for RSVP

(For Path messages, only the LIH part is signi�cant). Each triplet contains a list of policy

objects for that hop and an error description.

4.1.10 Status-Query

Operation Type = 9, sub-type = 1

<Status_Query> ::= <Common OOPS header>

<RSVP MESSAGE TYPE>

<SESSION>

<FILTER_SPEC_LIST>

<counter (of Triplets)>

{ <LIH> <resv_handle> <RESV_FLOWSPEC> }

This operation queries the server for status results of a list of LIHs. The client can choose

between hard and soft state management through the OOPS HardState
ag. When hard

state is selected, the client caches the status results and assumes they remain valid unless

explicitly modi�ed by the server.

In the upstream direction (e.g., Resv) status may need to be checked on multiple LIHs (all

reservations for a
ow). In such cases, status queries can be perform separately for each

LIH, once for all LIHs, or anything in between. Flag OOPS FullList must be set at the last

of status query of the series.

13

4.1.11 Status-Response

Operation Type = 10, sub-type = 1

<Status_Response> ::= <Common OOPS header>

<Query Sequence Number>

<Counter (of triplets)>

{ <LIH>

<Status Result>

<Error-Description>

} pair list

The <Query Sequence Number> links the response to the original query.

In the response, the server provides a list of triplets, each of which contains an LIH, status,

and any applicable error results. The set of LIHs is an attribute of the results and not of

13

When policies are interdependent across LIHs (as when the cost is shared among downstream receivers),

ag OOPS FullList noti�es the server that the list of reserved LIH is complete and that it can safely compute

the status of these reservations.

Shai Herzog et al. Expires September 19, 1997 [Page 20]

Internet Draft OOPS: Policy Protocol for RSVP

the query; the server is allowed to respond with a superset of LIHs speci�ed in the original

query, as in the following example:

Seq# Type Data

--- ---- ----

Client ==> Server: 150 Query:status Resv-X, LIH={2}

Server ==> Client: 153 Resp :status #150:{2,rej}

Two new reservations arrive, carrying new policy data objects:

Client ==> Server: 160 Query:status Resv-X, LIH={4,7}

Server ==> Client: 169 Resp :status #160:{2,acc;4,acc;7,rej}

4.1.12 Delete-State-Noti�cation

Operation Type = 11, sub-type = 1

<Delete-State-Notification> ::= <Common OOPS header>

<RSVP MESSAGE TYPE>

<SESSION>

<FILTER_SPEC_LIST>

<RSVP_HOP>

<Op-type>

This operation informs the sender about an immediate RSVP teardown of state caused by

PATH TEAR, RESV TEAR, routes change, etc. As a result, the server should ignore the

described state as if it was never received from the client.

Despite its name, this operation can be used to switch between blockaded and non-blockaded

state.

The semantics of this operation is described for PC DelState() in [Ext].

4.1.13 Schedule-RSVP-Noti�cation

Operation Type = 12, sub-type = 1

<Schedule-RSVP-Notification> ::= <Common OOPS header>

<RSVP MESSAGE TYPE>

<SESSION>

<FILTER_SPEC list>

<RSVP_HOP>

The operation results in the generation of an outgoing RSVP message (Path, Resv, etc.) in

Shai Herzog et al. Expires September 19, 1997 [Page 21]

Internet Draft OOPS: Policy Protocol for RSVP

the client's RSVP. RSVP should schedule the requested message to the speci�ed RSVP HOP.

4.1.14 Client-Status-Noti�cation

Operation Type = 13, sub-type = 1

<Client-Status-Notification> ::= <Common OOPS header>

<Query Sequence Number>

<Status Result>

The Client noti�es the server about the status results computed at the client (that may also

include results from other servers, if policy computation is spread among several servers).

The overall status of an RSVP
ow is computed by merging the client's status report with

the server's. The server should not commit a transaction (e.g., charge an account) before

knowing its �nal status. The Client-Status-Results operation can be sent with the query,

if the client computed its status prior to making the query. It can also be sent later, after

the server sent its response to the status query.

4.1.15 Resend-Noti�cation

Operation Type = 14, sub-type = 1

<Resend-Notification> ::= <Common OOPS header>

<Counter (of missing messages)>

<Message sequence number> list

Both client and server may issue a Resend-Messsage request when they detect missing

or out-of-order messages. The Resend-Noti�cation has message sequence number 0. The

message explicitly lists the sequence numbers of all missing messages. Notice that since

OOPS uses a reliable transmission protocol this list should never be long. (See Section 3.2).

4.1.16 Error-Noti�cation

Operation Type = 6, sub-type = 1

<Error-Notification> ::= <Common OOPS header>

<Message Sequence Number>

<Error-Description>

Error-Noti�cation can be used by either client or server to report errors associated with an

entire message (as opposed to a speci�c operation). Error-Noti�cation may be triggered by

both syntax or substantive errors (e.g., failure to verify the integrity of a previous message).

Shai Herzog et al. Expires September 19, 1997 [Page 22]

Internet Draft OOPS: Policy Protocol for RSVP

<Message Sequence Number> identi�ed the message that triggered the error.

Error-Noti�cation is not acked.

4.2 Fields format

� <Ver><RSVP-K><Flags>

+---------------+---------------+---------------+---------------+

| Version | RSVP-K | Flags | 0 |

+---------------+---------------+---------------+---------------+

Ver: Currently, version 1.

RSVP-K: The K value used by RSVP as a refresh-period multiplier.

Flags:

0x01 OOPS_CONNECT_DefaultC Client handles default policies.

� <Max-Pkt-Size><Keep-Alive period>

+---------------+---------------+---------------+---------------+

| Max-Pkt-Size (in KBytes) | Keep-Alive period (in seconds)|

+---------------+---------------+---------------+---------------+

� <Class Indicator>

+---------------+---------------+---------------+---------------+

| Length (total) | Class Code |

+---------------+---------------+---------------+---------------+

| ASCII String 0 Padded to multiples of 32 bits |

+---------------+---------------+---------------+---------------+

� <Client-ID>

Client address, uses the same format as RSVP's FILTER SPEC objects.

From the combination of Client-ID and Class-Indicator the server can learn about the

set of policies it is required to support for this particular client.

� <Cookie>

+---------------+---------------+---------------+---------------+

| Length (total) | Type | 0 |

+---------------+---------------+---------------+---------------+

| Octet String 0 Padded to multiples of 32 bits |

+---------------+---------------+---------------+---------------+

Shai Herzog et al. Expires September 19, 1997 [Page 23]

Internet Draft OOPS: Policy Protocol for RSVP

Currently, no values are de�ned.

� <Policy list>

+---------------+---------------+---------------+---------------+

| Number (or pairs) | 0 |

+---------------+---------------+---------------+---------------+

| From Policy 1 | To Policy 1 |

+---------------+---------------+---------------+---------------+

....

+---------------+---------------+---------------+---------------+

| From Policy n | To Policy n |

+---------------+---------------+---------------+---------------+

Each "From Policy m" and "To Policy m" pair represent a range of policies that the

server is willing to support.

� <Error-Description>

+---------------+---------------+---------------+---------------+

| Length (*) | Error-Type | Reason Code |

+---------------+---------------+---------------+---------------+

| Error ASCII String 0 Padded to multiples of 32 bits |

+---------------+---------------+---------------+---------------+

(*) Length of the overall <Error-Description> in 4 bytes increments (i.e., length value

of X should be interpreted as X � 4 bytes description and an (X � 1) � 4 bytes Error

ASCII String.

No errors are reported by setting the length to 1 (4 bytes) and setting the Error-Type

to 0.

Detailed Error-Types and Reason-Codes would be de�ned in future versions of this

document.

� <resv handle>

+---------------+---------------+---------------+---------------+

| IntServ or Client-Specific Semantics |

+---------------+---------------+---------------+---------------+

The server may use the <resv handle> to obtain IntServ and other low-level infor-

mation about the reservation.

The current version of this document does not de�ne the semantics of this �eld. It

may be a pointer into some router speci�c data structures (proprietary) or an index

into mib records obtainable through SNMP.

Shai Herzog et al. Expires September 19, 1997 [Page 24]

Internet Draft OOPS: Policy Protocol for RSVP

� <Query Sequence Number> (and internally, <Message Sequence Number>)

+---------------+---------------+---------------+---------------+

| <Message Sequence Number> |

+---------------+---------------+---------------+---------------+

| Obj. Seq. Num.| 0 |

+---------------+---------------+---------------+---------------+

� <Counter>

+---------------+---------------+---------------+---------------+

| <Counter> |

+---------------+---------------+---------------+---------------+

� <Status Result>

+---------------+---------------+---------------+---------------+

| Results | 0 |

+---------------+---------------+---------------+---------------+

Results may have one of the following values:

1 : Accept

2 : Snub

3 : Veto

� <Op-Type>

+---------------+---------------+---------------+---------------+

| Mod-Type | 0 |

+---------------+---------------+---------------+---------------+

Op-Type values:

1 : Delete State

2 : Block State

3 : Unblock State

5 Acknowledgment

This document re
ects feedback from many other RSVP collaborators.

Shai Herzog et al. Expires September 19, 1997 [Page 25]

Internet Draft OOPS: Policy Protocol for RSVP

References

[Bak96] F. Baker. RSVP Cryptographic Authentication Internet-Draft, draft-ietf-rsvp-md5-

02.txt, 1996.

[RSVPSP] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSer-

Vation Protocol (RSVP) Version 1 Functional Speci�cation. Internet-Draft, draft-ietf-

RSVPSP-14.[ps,txt], Nov. 1996.

[Arch] S. Herzog Accounting and Access Control Policies for Resource Reservation Proto-

cols. Internet-Draft, draft-ietf-rsvp-policy-arch-01.[ps,txt], Nov. 1996.

[LPM] S. Herzog Local Policy Modules (LPM): Policy Enforcement for Resource Reserva-

tion Protocols. Internet-Draft, draft-ietf-rsvp-policy-lpm-01.[ps,txt], Nov. 1996.

[Ext] S. Herzog RSVP Extensions for Policy Control. Internet-Draft, draft-ietf-rsvp-policy-

ext-02.[ps,txt], Apr. 1997.

Authors' Address

Shai Herzog Phone: (914) 784-6059

Email: herzog@watson.ibm.com

Dimitrios Pendarakis Phone: (914) 784-7536

Email: dimitris@watson.ibm.com

Raju Rajan Phone: (914) 784-7260

Email: raju@watson.ibm.com

Roch Gu�erin Phone: (914) 784-7038

Email: guerin@watson.ibm.com

IBM T. J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Shai Herzog et al. Expires September 19, 1997 [Page 26]

