
Internet Draft Shai Herzog

Expires May 22, 1997 IBM T.J. Watson Research Center

File: draft-ietf-rsvp-policy-lpm-01.ps November 1996

Local Policy Modules (LPM): Policy Control for RSVP

November 22, 1996

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This memo details a generic framework for policy enforcement based on the

RSVP/Policy Control interface described in [Ext].

Internet Draft Local Policy Modules (LPM) November 1996

Contents

1 Introduction 4

2 Policy Elements 4

3 The LPM Policy Multiplexer 5

4 Associating Policies to Flows 6

5 LPM Policy Control (PC) Functions 7

5.1 Error Signaling : 8

6 State Maintenance 9

6.1 Time-out: 9

6.2 Instantaneous Policy Replacement : 9

6.3 Tree/Branch maintenance: 10

6.4 Closing: 10

7 Syntactic Fragmentation of Large Policy Data Objects 10

7.1 Fragmentation : 10

7.2 Reassembly : 11

7.3 IP Style vs. Semantic Fragmentation : 12

8 LPM Security 12

9 LPM Con�guration 13

9.1 Interaction Between Handlers : 13

10 Acknowledgment 14

Shai Herzog Expires May 22, 1997 [Page 2]

Internet Draft Local Policy Modules (LPM) November 1996

A A List of Currently De�ned Policies 15

B Semantic Fragmentation 16

B.1 Fragmentation Example : 16

Shai Herzog Expires May 22, 1997 [Page 3]

Internet Draft Local Policy Modules (LPM) November 1996

1 Introduction

The current admission process in RSVP uses resource (capacity) based admission control;

we expand this model to include policy based admission control as well. We introduce a

framework named \Local Policy Modules" (LPM) that is based on the RSVP/Policy Control

interface described in [Ext]. Policy admission control is enforced at border/policy nodes by

LPMs; LPMs provide RSVP with information about the status of reservations, based on the

contents of incoming policy objects, applicable bilateral agreements, and local policies. They

are also responsible for constructing outgoing POLICY DATA objects, by either copying,

modifying or entirely rewriting the POLICY DATA objects that pass through them.

This document suggests a generic framework for policy control which is based on RSVP's

policy extensions [Ext] and its policy reference [Arch] documents. Interoperability consid-

erations suggest the need for some standardized policies; the appendix to this document

provides a list of such policies, however, it leaves a wide range of policies for local and

proprietary usage.

The LPM architecture governs the following aspects of policy control: policy element format

(Section 2 and Appendix A), policy multiplexing (Section 3), ows association (Section 4),

PC services (Section 5), state maintenance (Section 6), fragmentation (Section 7, security

considerations (Section 8), and con�guration (Section 9).

2 Policy Elements

The format of policy data objects of C-type 1 is de�ned in [Ext] as including a list of policy

elements. Policy elements relate policy speci�c information and have the following format:

+---------------------------+---------------------------+

| Length | P-type |

+---------------------------+---------------------------+

| Policy |

+---+

Length: 16 bits

The length (in bytes) of the policy element

P-type: 16 bits

The type of the policy element

Policy: variable length (multiples of 32 bits)

A description of the policy itself. Each policy element has its own P-type speci�c

format. (See Appendix A for current type list).

Shai Herzog Expires May 22, 1997 [Page 4]

Internet Draft Local Policy Modules (LPM) November 1996

Handler0 Handler2 Handler3 Handler4Handler1

RSVP

Common Layer

lpm_in()

lpm_in()

LPM header

LPM headerRSVP RESV

Incoming

RSVP RESV

message

Figure 1: Demultiplexing an incoming Resv message with POLICY DATA objects

3 The LPM Policy Multiplexer

We have contended in [Arch] that the exact nature of the usage policies is a local matter

between service providers and their users, or other neighboring providers. Successful devel-

opment and deployment of usage policies would greatly depend on the ability of ISPs to

experiment and develop their desired policies. The LPM architecture was design to provide

such capability by supporting a wide range of local, exible, and plug-n-play policies.

Modularity is achieved by dividing the policy space into 65535 independent types of pol-

icy elements, identi�ed by the P-type �eld. Moreover, multiple independent policies could

simultaneously be in e�ect when multiple policy elements are included in a single POL-

ICY DATA object. The LPM is divided into two layers: a policy-speci�c layer and a com-

mon layer (Figure 1). The policy-speci�c layer contains the set of locally con�gured han-

dlers, one for each P-type supported by the local node. Unrecognized objects are processed

by a handler of the reserved P-type 0; this handler performs the default handling as speci-

�ed in [Ext] (forwarding the objects as-is with the appropriate outgoing RSVP messages).

The common layer provides the glue between RSVP and the policy-speci�c layer by demul-

tiplexing RSVP's LPM calls into individual policy-speci�c calls.

On input, the common layer disassembles the incoming POLICY DATA object, dispatches

each policy element to its policy-speci�c handler, and aggregates the return code status

from all handlers (Figure 1). On output, the common layer collects the policy elements

from all active handlers, and assembles them into a single POLICY DATA object (Figure

2).

On status queries, policy-speci�c handlers can vote to accept or snub a reservation, but may

also cast a veto. The common layer collects responses from all active handlers, and combines

them into a single status result. We use the following rule: A reservation is approved by the

common layer, if there is at least one handler that accepts it it, and no other that vetoed

Shai Herzog Expires May 22, 1997 [Page 5]

Internet Draft Local Policy Modules (LPM) November 1996

Handler0 Handler2 Handler3 Handler4Handler1

RSVP

Common Layer

lpm_out()

lpm_out()

LPM header

LPM headerRSVP RESV

Outgoing

RSVP RESV

message

Figure 2: Constructing POLICY DATA objects for an outgoing Resv message

it.

1

Consider the case where an internet service provider (ISP) admits ows either under

at-rate service or under pay-per-use arrangement. Several handlers can be active: [ID] for

verifying the ow's owner/group ID, [FR] for verifying a at-rate account, and [PPU] for

performing pay-per-use transactions.

Let us examine some representative cases:

� Unknown user: REJECT: [ID]: veto. It doesn't matter what other handlers say.

� Flat-rate user: ADMIT : [ID]: snub, [FR]: accept, and [PPU]: snub.

� Pay-per-use user:

Broke: REJECT: [ID]: snub, [FR]: snub, and [PPU]: snub.

Rich : ADMIT: [ID]: snub, [FR]: snub, and [PPU]: accept.

4 Associating Policies to Flows

The LPM uses RSVP's criteria for identifying ows; Each policy element is associated with

a speci�c [SESSION, RSVP HOP, FILTER SPEC list] combination.

For every POLICY DATA object, the SESSION information is provided by RSVP (as pa-

rameter in the PC xxxx() calls) and the RSVP HOP and FILTER SPEC list are embedded

in the POLICY DATA object itself. When no FILTER SPECs are provided, the object is

assumed to be associated with all the ows of the session. When no RSVP HOP is provided,

the POLICY DATA object is assumed to have been assembled by the RSVP HOP listed in

the RSVP message. (i.e., the neighboring RSVP next/previous hop).

1

Notice that veto has a stronger semantics than a snub, since it has the power to forcefully reject a ow

regardless of any accept decisions made by other handlers.

Shai Herzog Expires May 22, 1997 [Page 6]

Internet Draft Local Policy Modules (LPM) November 1996

5 LPM Policy Control (PC) Functions

In this section we provide a rough outline of the basic operations required for each service

supported by the LPM. We use the notation xxxx rtn() to represent a call to function rtn()

for element of P-type xxxx.

� Process a received POLICY DATA object

Call: PC InPolicy (session, lih, rsvp hop, message type,

in policy objects, resv handle,

resv flowspec, timeout)

-> RCode

PD_List = PC_Reassemble(session, rsvp_hop, in_policy_objects->OID, ...);

Flowp = Locate_state(session, PD_List->filter_spec_list);

for (each PD in PD_List) {

if (!Integrity_check(PD)

error();

for (each P_element_xxxx in PD)

if (!xxxx_InPolicy(..., Flowp, PA, rsvp_hop, message_type, timeout)

error();

}

return PC_AuthCheck(session, lih, message_type,

PD_List->filter_spec_list,

resv_handle, resv_flowspec);

� Request an outgoing POLICY DATA object

Call: PC OutPolicy (session, filter spec list,

lih, rsvp hop, message type,

out policy objects,

max pd, avail pd)

-> RCode

Flowp = locate_state(session, filter_spec_list);

element_list = NULL;

for (each active element handler of P-type xxxx) {

policy_element = xxxx_OutPolicy(..., flowp, rsvp_hop, message_type,...)

add_element(element_list, policy_element);

}

PD_List = PC_Fragment(element_list, max_pd, avail_pd)

return (PD_List);

� Check the status of an existing reservation

Shai Herzog Expires May 22, 1997 [Page 7]

Internet Draft Local Policy Modules (LPM) November 1996

Call: PC AuthCheck (session, filter spec list,

lih, message type, resv handle,

resv flowspec, ind)

-> RCode

Flowp = locate_state(session, filter_spec_list);

for (each active element handler of P-type xxxx) {

curr_status = xxxx_AuthCheck(Flowp, lih, message_type,

resv_handle, resv_flowspec,...)

merge_status(status, curr_status);

}

purge_old_state();

return (status);

� Initialize Policy Control services

Call: PC Init (void) -> RCode

for (each active element handler of P-type xxxx)

xxxx_Init()

� Synchronize RSVP and policy control state (see Section 6.3).

Call: PC Branch (session, filter spec list,

rsvp hop, op type)

-> RCode

Flowp = locate_state(session, filter_spec_list);

for (each active element handler of P-type xxxx)

xxxx_Branch(..., flowp, rsvp_hop, op_type,...)

� Delete policy control state (see Section 6.4)

Call: PC Close (session, filter spec list) -> RCode

Flowp = locate_state(session, filter_spec_list);

for (each active element handler of P-type xxxx)

xxxx_Close(flowp)

5.1 Error Signaling

As described in [Ext], policy errors are handled by RSVP in two phases: (1) RSVP is noti�ed

about the error (a return codes from either PC AuthCheck() or PC InPolicy()). (2) RSVP

prepares a standard error message (PathErr or ResvErr), queries PC OutPolicy() for an

outgoing error policy object, and embeds the object in the outgoing error message.

Shai Herzog Expires May 22, 1997 [Page 8]

Internet Draft Local Policy Modules (LPM) November 1996

Error Signaling is opaque to the LPM common-layer as well; it simply demultiplexes the

PC OutPolicy() call to the active handlers. When xxxx OutPolicy() is called with a

message type of either PathErr or ResvErr, individual policy handlers use a last-error cache

to generate outgoing error policy elements. These elements are assembles by the LPM

common-layer into a single POLICY DATA object that is returned to RSVP.

6 State Maintenance

LPM state must remain consistent with the corresponding RSVP state. State is created

when POLICY DATA objects are passed to the LPM and can be updated or removed

through several possible mechanisms that imitate RSVP's state management mechanisms:

6.1 Time-out:

When new POLICY DATA objects cease to arrive (either as a result of a change of policy

or a fragment loss) the locally stored state begins to age. Each policy-element is subject to

a timer, and when the timer goes o�, the state should be deleted. The timer mechanism

should be similar to that of RSVP and both should remained synchronized in the following

way: each time RSVP hands over a policy object to the LPM (PC InPolicy()) it provides

a time-out value. Each time RSVP veri�es the status of a reservation (PC AuthCheck()),

the LPM examines its internal state, purging old state.

6.2 Instantaneous Policy Replacement

In some cases, policies must be replaced or purged immediately.

2

Instantaneous replacement

is especially critical to avoid over-charging when accounting or other debiting policies are

in e�ect. We propose a very simple rule:

Only one instance of a policy element type (P-type) is allowed for any given ow.

Following this rule, a modi�ed policy-element would immediately purge the old one. Purging

an old policy-element without installing a new one can be done simply by sending an empty

policy-element (with the 32bit header only). As added bene�t, this rule guarantees that the

receiving LPM would never face multiple, contradictory provisions of the same policy-type.

3

2

As opposed to stopping refreshes and waiting for the time-out mechanism to purge old state.

3

\There can be only one", Highlander.

Shai Herzog Expires May 22, 1997 [Page 9]

Internet Draft Local Policy Modules (LPM) November 1996

6.3 Tree/Branch maintenance:

When the shape of the session (multicast) tree changes due to route changes, teardown

messages, or blockade state, RSVP must notify the LPM about the change. (See Section 5,

PC Branch() for more details.)

6.4 Closing:

The call PC Close(session, �lter-spec list) purges all the state linked to the session and

�lter-spec list. Closing a Policy Association is done when RSVP no longer maintains any

state associated with that ow (all senders quit). Notice that on-going operations (e.g.,

accounting) must be shut-down in an orderly manner before the state is purged.

7 Syntactic Fragmentation of Large Policy Data Objects

Document [Ext] describe syntactic fragmentation of large POLICY DATA objects from

RSVP's view point. In this section, we describe the LPM support for this syntactic frag-

mentation.

7.1 Fragmentation

When RSVP queries the LPM for outgoing policy objects (PC OutPolicy()) it provide

the LPM with two size parameters: max pd (desired maximal object size), and avail pd

(available space in the outgoing RSVP message). The general fragmentation rules for a

POLICY DATA (PD) object is:

Shai Herzog Expires May 22, 1997 [Page 10]

Internet Draft Local Policy Modules (LPM) November 1996

PC_Fragment(session, ..., pd_list, max_pd, avail_pd)

if (avail_pd < MIN_POL_OBJ) /* Minimal object size */

return NULL;

/* Assemble the full PD */

if (size of PD <= avail_pd) /* No need for fragmentation */

pd_list = PD;

else {

oid=Pick_Oid(session);

pd_list=Fragment(max_pd, PD, oid);

Add_PD_Token(pd_list, oid);

}

return pd_list;

Remarks:

� Pick Oid() picks an object ID for the outgoing POLICY DATA object. (See [Ext] for

OID selection criteria).

� Fragment() fragments the PD object to the desired size (max pd). Notice that if it

cannot ful�ll the desired size it should attempt to get as close to it as it can, and let

IP fragmentation handle if from there.

4

All the fragments are marked by including

the Fragmentation option, and the OID is placed in their header.

� Add PD Token() completes the syntactic fragmentation by creating a token object

with minimal header of size MIN POL OBJ. The selected oid is placed in the token's

header, and the token is concatenated to the end of the pd list. This token object

will be embedded in the standard outgoing RSVP message.

7.2 Reassembly

PC_Reassemble(Session, rsvp_hop, ..., in_PD, time-out)

pd_list = Get_PDList(session, rsvp_hop, in_PD->oid);

if (IS_FRAGMENT(in_PD)) {

Add_PD_Fragment(pd_list, in_PD, time-out);

return;

}

Reassemble(pd_list); /* no need to add PD to list */

Reset_Fragments(...);

4

Because of syntactic fragmentation, the RSVP control message contains only a small policy token, and

therefore, do not incur signi�cant added loss risk. The impact of a failed IP fragmentation on a large policy

object is limited to the loss of the policy object itself.

Shai Herzog Expires May 22, 1997 [Page 11]

Internet Draft Local Policy Modules (LPM) November 1996

Remarks:

� Get PDList locates or creates a fragment list associated with a session/rsvp hop/oid

triplet.

� Add PD Fragment() adds a fragment to the pd list.

� Reassemble() processes the received list of fragments for that triplet.

� Reset Fragments(): The management of fragments is one of the issues at local discre-

tion. For example, fragments that arrive after the token object may be (1) purged

immediately or (2) combined with earlier fragments to generate a more complete

POLICY DATA object. If (1) is chosen, Reset Fragments() simply purges all the

previously received fragments each time. If (2) is chosen, a timeout mechanism must

be provided to purge old fragments.

7.3 IP Style vs. Semantic Fragmentation

The actual fragmentation method is determined by the Fragment/Reassembly; it is therefore

orthogonal to the syntactic fragmentation mechanism.

Two common fragmentation policies are:

� IP and IP style fragmentation:

The simplest approach could be to use IP fragmentation. First, the large POL-

ICY DATA object would be sent by a single vacuous RSVP message, that would

undergo IP fragmentation. A lost fragment would result in loosing the entire POL-

ICY DATA object, however RSVP would not be adversely e�ected. Immediately

following the vacuous message, a standard RSVP message is sent with a minimal pol-

icy token embedded in it. The LPM can also perform IP style fragmentation itself

if/when the limitations of IP fragmentation (e.g., maximum of 64K bytes message)

become a problem.

� Semantic Fragmentation:

Semantic fragmentation is highly context sensitive and at least in the case of the

RSVP protocol [RSVPSP] was proven to be a formidable problem. In Appendix B

we outline a possible approach to semantic fragmentation.

8 LPM Security

The RSVP security mechanism proposed in [Bak96] relies on hop-by-hop authentication.

This form of authentication creates a chain of trust that is only as strong as its weakest

Shai Herzog Expires May 22, 1997 [Page 12]

Internet Draft Local Policy Modules (LPM) November 1996

element; as long as we believe that all RSVP nodes are policy nodes as well, then RSVP

security is su�cient for the entire RSVP message, including POLICY DATA objects.

However, when policy is enforced only at border nodes (cloud entry and exit points), RSVP's

hop-by-hop security is insu�cient to protect policy objects; from a policy control perspec-

tive, the in-cloud nodes are unsecured, and might be unlawfully manipulating policy objects

that pass through them. The solution is to have a secure \policy tunnel", that creates logical

policy topology, on top of which security is enforced.

The secure, automatic tunnel is created by adding an INTEGRITY object to each policy

data object assembled by a border node. When the policy object is received by the next

border/policy node, the integrity envelope guarantees that none of the intermediate non-

policy-aware (and unsecured) RSVP nodes have modi�ed the object's contents.

One of the advantages of automatic tunneling is that it can use the same or similar key

distribution mechanisms as advocated for RSVP in [Bak96] since it complies with the hop-

by-hop security model. Here, the previous/next hops are the policy-capable (as opposed to

directly connected) neighboring RSVP nodes.

9 LPM Con�guration

LPM con�guration can be general, for all handlers, but can also be type/handler speci�c

(e.g., a speci�c handler's rewrite conversion table for policy data objects). Con�guration

may be expressed in a simple con�guration �le, or even through a con�guration language.

Because of the early stages of this work, we believe it is too early to provide speci�c con-

�guration details.

9.1 Interaction Between Handlers

Independent element types may require some interaction between their handlers. Consider

the case where policy type-1 computes the cost of a ow, while type-2 performs actual

debiting of a user/group account based on the this computed cost (e.g., credit card account).

Such interaction has two basic requirements: order dependency and export capability. In

our example, type-1 must calculate the cost before type-2 is activated (such partial ordering

may be set as part of the local con�guration process). Export capability is required, in this

case, to allow type-1 to export the calculation results to type-2. The simplest approach

could be to allow inter-handler function calls.

In some cases, a single element handler may be capable of interacting with multiple equiva-

lent peer handlers. In our example, once type-1 determined the cost, there could be several

accounts available for debiting (Visa, MasterCard, AmEx etc.) each handled by a di�erent

element type (type-2, type-3, type-4). Local con�guration may enforce the use of a certain

Shai Herzog Expires May 22, 1997 [Page 13]

Internet Draft Local Policy Modules (LPM) November 1996

card by binding type-1 with a particular card handler, e.g., AmEx/type-4. Con�guration

may also set a certain order such that the lower cards on the list would be debited only

after the previous ones have been attempted and failed.

10 Acknowledgment

This document incorporates inputs from Lou Berger, Bob Braden, Deborah Estrin, Roch

Gu�erin, Scott Shenker and feedback from RSVP collaborators.

References

[Bak96] F. Baker. RSVP Cryptographic Authentication Internet-Draft, draft-ietf-rsvp-md5-

02.txt, 1996.

[RSVPSP] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSerVation

Protocol (RSVP) Version 1 Functional Speci�cation. Internet-Draft, draft-ietf-rsvp-

spec-14.txt, Nov. 1996.

[Her95] S. Herzog, S. Shenker, and D. Estrin. Sharing the Cost of Multicast Trees: An

Axiomatic Analysis. Proceedings of ACM SIGCOMM '95, Aug. 1995.

[Ext] S. Herzog RSVP Extensions for Policy Control. Internet-Draft, draft-ietf-rsvp-policy-

ext-01.[ps,txt], Nov. 1996.

[Arch] S. Herzog Accounting and Access Control Policies for Resource Reservation Proto-

cols. Internet-Draft, draft-ietf-rsvp-policy-arch-01.[ps,txt], Nov. 1996.

Author's Address

Shai Herzog

IBM T. J. Watson Research Center,

P.O. Box 704

Yorktown Heights, NY 10598

Phone: (914) 784-6059

Email: herzog@watson.ibm.com

Shai Herzog Expires May 22, 1997 [Page 14]

Internet Draft Local Policy Modules (LPM) November 1996

A A List of Currently De�ned Policies

Usage policies are assumed to be local by nature, however, interoperable framework implies

the need to standardize the format and contents of inter-provider policies. The policy

element space is partitioned accordingly into two ranges; the lower range is reserved for

globally meaningful policies, while the upper range is set aside for purely local policies. The

following list details the currently de�ned policy elements:

0: NULL/default

This is a reserved type that is used for unrecognized objects.

1: String Credentials (Sender or Receiver)

A single character string.

The string must be NULL-terminated and padded to multiple of 32 bits.

2: Reservation Ack

In its simplest form, this policy requires only a header and no actual policy informa-

tion.

If included in Resv messages, it requests an ack of the current reservation. When

included in the Path message, it con�rms the Reservation succeeded all the way to

the source (end-to-end).

3: MultiCost (Cost Allocation) [Her95]

Upstream Format:

FLOW SPEC object,

32bit unsigned counter: the number of downstream members for FLOW SPEC.

Downstream Format:

FLOW SPEC object,

32bit unsigned counter: cost unit type

Double Precision Float: allocated cost (units)

Local Policies:

All P-types values that are not de�ned in this document are available for local use. We

recommend that you choose local policy P-types starting at 65535 and going down,

to prevent conicts when the list in this appendix grows.

Shai Herzog Expires May 22, 1997 [Page 15]

Internet Draft Local Policy Modules (LPM) November 1996

B Semantic Fragmentation

IP style fragmentation is best suited for cases where nothing but the complete set of frag-

ments will do. Policies enjoy a di�erent semantics. They are compiled from the start as

a list of smaller, independent elements, which makes it ideal for semantic fragmentation.

When policies are fragmented into independent elements, the loss of some elements does

not invalidate others that were received properly. Moreover, the received elements can be

incrementally added to form a workable (even if not complete) policy. The consequences

are that there is no need for fragmentation negotiation between the sender and receiver;

the sender may fragment the object into its desired level of details. The receiver may use

its preferred reassembly policy. (i.e., what to do when fragments are missing).

Semantic fragmentation imposes an added burden on state management since the absence of

a policy-element is ambiguous. Consider the case were a new policy element P

i

is introduced

but an older policy element P

j

is lost. One option would be to apply only the new policy in

P

i

, but another could be to use the previously received P

j

along with the new P

i

to maintain

consistency (Assuming the state in P

j

had not timed out yet). This implies the need for a

time-out (and possibly a teardown) mechanism for each fpolicy-element, FILTER SPECg

object pair.

B.1 Fragmentation Example

Semantic fragmentation is context sensitive and therefore can only be performed by the same

handlers that assemble speci�c policy elements and understand their internal semantics.

Clearly, the following example is not universal since it assumes speci�c policy semantics.

Consider the following fragmentation example where S

i

denotes a FilterSpec for sender i,

P

j

[i::j] represents a policy element that is associated with individual senders from the set

(S

i

; :::; S

j

), and � is a wildcard, all senders, operator. Let us further assume that the original

POLICY DATA object is:

(1) S

1

; :::; S

n

; P

1

[i::j]; P

2

[k::l]; P

3

[�]

First, we can separate the di�erent policy elements since each of them is an independent

unit. (1 into 2:1 + 2:2 + 2:3)

(2.1) S

1

; :::; S

n

; P

1

[i::j]

(2.2) S

1

; :::; S

n

; P

2

[k::l]

(2.3) S

1

; :::; S

n

; P

3

[�]

Now, we can compress the source list by eliminating irrelevant sources:

(3.1) S

i

; :::; S

j

; P

1

[i::j]

(3.2) S

k

; :::; S

l

; P

2

[k::l]

Shai Herzog Expires May 22, 1997 [Page 16]

Internet Draft Local Policy Modules (LPM) November 1996

(3.3) S

1

; :::; S

n

; P

3

[�]

Finally, we can break each non-wildcard policy element and attach it to its corresponding

�lter: (3:1 into 4:1:i::4:1:j)

(4.1.i) S

i

; P

1

[i]

...

(4.1.j) S

j

; P

1

[j]

We could do the same for 3.2, however, P

3

could not be broken to smaller semantic pieces

since is a wildcard policy.

Shai Herzog Expires May 22, 1997 [Page 17]

