
Internet Draft Shai Herzog

Expires May 22, 1997 IBM T.J. Watson Research Center

File: draft-ietf-rsvp-policy-ext-01.ps November 1996

RSVP Extensions for Policy Control

November 22, 1996

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This memo describes a set of extensions for supporting generic policy based

admission control in RSVP.

1

This document does not advocate particular policy

control mechanisms; however, a recommendation for a mechanism built on top

of these extensions can be found in [LPM].

1

This memo could be conceived as an extension to the RSVP functional speci�cations [RSVPSP].

Internet Draft RSVP Extensions for Policy Control November 1996

Contents

1 Introduction 3

2 Policy Data Object Format 3

2.1 Base Format : 3

2.2 Policy Data Options : 4

2.2.1 RSVP Objects : 4

2.2.2 Policy Options : 5

2.2.3 Options Constraints : 6

3 RSVP/Policy Control Interface 6

3.1 Policy Control Services : 7

3.2 PC Success Codes : 9

3.3 PC Codes: Required Action by RSVP : 9

3.3.1 Refreshing Policy State : 9

3.3.2 Policy Error Signaling : 10

3.3.3 RSVP Response : 10

3.4 Default Handling of Policy Data Objects : 10

4 Syntactic Fragmentation of large Policy Data objects 11

5 API Considerations 13

6 Acknowledgment 13

Shai Herzog Expires May 22, 1997 [Page 2]

Internet Draft RSVP Extensions for Policy Control November 1996

1 Introduction

RSVP, by its de�nition, discriminates between users, by providing some users with better

service at the expense of others. Therefore, it is reasonable to expect that RSVP be accom-

panied by mechanisms for controlling and enforcing access and usage policies. Historically,

when RSVP Ver. 1 was developed, the knowledge and understanding of policy issues was in

its infancy. As a result, Ver. 1 of the RSVP Functional Speci�cations[RSVPSP] left a place

holder for policy support in the form of POLICY DATA objects. However, it deliberately

refrained from specifying mechanisms, message formats, or providing insight into how policy

enforcement should be carried out. This document is intended to �ll in this void.

The current RSVP Functional Speci�cation describes the interface to admission (tra�c)

control that is based only on resource availability (capacity). In this document we describe

a set of extensions to RSVP for supporting policy based admission control as well, in one

atomic operation. The scope of this document is limited to these extensions; a discussion

of accounting and access control policies for resource reservation protocols can be found

in [Arch] and a recommendation for a mechanism built on top of these extensions can be

found in [LPM].

2 Policy Data Object Format

The following replaces section A.13 in [RSVPSP]:

2.1 Base Format

POLICY DATA class=14

� Type 1 POLICY DATA object: Class=14, C-Type=1

+-------------+-------------+-------------+-------------+

| Length | POLICY_DATA | 1 |

+---------------------------+-------------+-------------+

| Data Offset | OID |

+---------------------------+---------------------------+

| |

// Option List //

| |

+---+

| |

// Policy Element List //

| |

+---+

Data O�set: 16 bits

The o�set in bytes of the data portion (from the �rst byte of the object header).

Shai Herzog Expires May 22, 1997 [Page 3]

Internet Draft RSVP Extensions for Policy Control November 1996

OID: 16 bits

This �eld contains an Object ID or 0 if unused. OIDs must be unique for each

object of a local session (within a single RSVP node). The OID value is assigned

by the PC module, and is mainly used for fragmenting POLICY DATA objects.

(All fragments of a single POLICY DATA object must have the same OID, see

Section 4.)

Option List

The list of options and their usage is de�ned in Section 2.2.

Policy Element List

Policy Elements have the following format:

+-------------+-------------+-------------+-------------+

| Length | P-type |

+---------------------------+---------------------------+

| |

// Policy information (Opaque to RSVP) //

| |

+---+

The contents of policy elements is opaque to RSVP and its internal format is

only known to the Policy Control (PC) module (see [LPM]).

2.2 Policy Data Options

The following objects could appear as options in POLICY DATA objects:

2.2.1 RSVP Objects

� FILTER SPEC object (list)

This list represent the set of senders associated with the POLICY DATA object. If

none is provided, the policy information is assumed to be associated with all the ows

of the session.

� RSVP HOP Object

The RSVP HOP object uses the same format as RSVP's neighboring node identi�er,

however, in policy objects it has a slightly di�erent meaning. Here, it identi�es the

neighbor/peer policy-capable node that constructed the policy object. When policy

is enforced at border nodes, the peer policy-capable node may be several RSVP hops

away.

� INTEGRITY Object

The INTEGRITY object [Bak96], provides guarantees that the object was not compromised.

2

2

In this document, we do not de�ne the algorithm for computing the INTEGRITY value. However, in

order to guarantee that the policy is associated with the correct ow/reservation, it may be necessary to

perform the computation over other RSVP objects like SESSION, FILTER SPEC list, etc.

Shai Herzog Expires May 22, 1997 [Page 4]

Internet Draft RSVP Extensions for Policy Control November 1996

2.2.2 Policy Options

� Fragmentation Option

+-------------+-------------+-------------+-------------+

| Length | 0 | 1 |

+---------------------------+-------------+-------------+

| Variable Length |

+---+

This is required and present only in POLICY DATA fragment objects (allowing RSVP

to distinguish them from unfragmented or token objects). The only current format is:

{ Length = 4, no variable length.

This option is present when semantic fragmentation is used.

� NoChange Option

+-------------+-------------+-------------+-------------+

| Length | 0 | 2 |

+---------------------------+-------------+-------------+

| 0 | Previous-OID |

+---------------------------+---------------------------+

This option provide a hint to the receiving node that the policy information is iden-

tical to the Previous-OID object. While this option may save on input and output

processing, it does not reduce the size of the transmitted state; the complete infor-

mation must be transmitted in full anyhow since with RSVP's soft-state there is no

guarantee that the information associated with the Previous-OID is available at the

receiving node.

� FilterSpec Option

+-------------+-------------+-------------+-------------+

| Length | 0 | 3 |

+---------------------------+-------------+-------------+

| Counter | hash type | 0 |

+---------------------------+-------------+-------------+

| FILTER_SPEC List 32 bit hash/CRC |

+---+

This option allows separating FILTER SPECs from their corresponding policy data.

When present, the policy information should not be associated with the session, but

instead, with a list of FILTER SPECs which was previously sent in a separate POL-

ICY DATA fragment. This option conserves resources across a non-policy cloud: it

allows multiple POLICY DATA objects from multiple rsvp hops to share the same

FILTER SPEC list. The FILTER SPEC list itself is sent by a special type of POL-

ICY DATA fragment. This fragment carries the Fragmentation option, however, its

OID is always 0; this way, a POLICY DATA object created at one node can be

matched with a FILTER SPEC list created by another. Instead of using the OID

Shai Herzog Expires May 22, 1997 [Page 5]

Internet Draft RSVP Extensions for Policy Control November 1996

�eld, this match is based on the counter �eld, which provides information about the

number of FILTER SPECs in the list. When two FILTER SPEC lists have the same

number of elements, the included CRC becomes the only method for matching policy

data and �lter lists. The CRC algorithm is a matter for agreement between adjacent

policy nodes, (like key management); however, a default hash/CRC (type 0) algorithm

can be de�ned. When this option has a length of 8, no CRC is provided, and the list

identi�cation is limited to the counter value.

2.2.3 Options Constraints

� The RSVP HOP and INTEGRITY options are mutually exclusive since the IN-

TEGRITY object already contains the sending-system address. If neither is present,

the policy data is implicitly assumed to have been constructed by the RSVP HOP

indicated in the RSVP message itself (i.e., the neighboring RSVP node is policy-

capable).

� If present, the Fragmentation option should appear �rst.

� If present, the NoChange option should appear �rst (after the Fragmentation option).

� If present FILTER SPEC objects must appear as one consecutive list (i.e., no more

than one list in each POLICY DATA object and its fragments).

3 RSVP/Policy Control Interface

Policy control in RSVP is performed through a set of functions that regulate the use of POL-

ICY DATA objects and advise RSVP about the policy status of reservations. In this section,

we describe these services as a set of functions, which conceptually belong in Section 3.10.3

titled "RSVP/Policy Control Interface" of the RSVP functional speci�cation[RSVPSP].

Shai Herzog Expires May 22, 1997 [Page 6]

Internet Draft RSVP Extensions for Policy Control November 1996

3.1 Policy Control Services

Before we discuss the functions themselves, let us describe some of their common parame-

ters: The session and �lter spec list describe the set of ows to which an outgoing policy

applies. Parameters lih, rsvp hop and message type provide network/topology information,

and resv handle and resv owspec provide information about the current/desired level of

reservation and tra�c characteristics.

� Process a received POLICY DATA object

Call: PC InPolicy (session, lih, rsvp hop, message type,

in policy objects, resv handle,

resv flowspec, timeout)

-> RCode

Incoming policy objects are checked for syntax, and a policy admission decision takes

place (i.e., PC AuthCheck() is called internally). If successful, the reservation can

be admitted. Otherwise, the reservation should be rejected in a manner similar to

admission control failure. A reservation may be marked as preemptable, which means

that admission control may cancel it at any time to make room for another more

important reservation. (See the TC Preempt() upcall and the discussion of service

preemption in [RSVPSP].) The timeout parameter communicates the lifespan (in

seconds) of the state contained in the input policy object. This value should be

identical to the one used by RSVP to purge the state created by the RSVP message

that carried the policy object.

An authorization to establish reservations must always be performed on outgoing

interfaces (lih). However, for messages arriving on incoming interfaces (e.g., Path)

only the incoming lih is known, and therefore only the authorization for accepting a

Path message could be checked. Since the policy status of a reservation may change

upon receiving an incoming Path message, RSVP should either perform individual

PC AuthCheck() calls for each of its outgoing interfaces, or wait until the reservation

refresh timer goes o�.

� Request an outgoing POLICY DATA object

Call: PC OutPolicy (session, filter spec list,

lih, rsvp hop, message type,

out policy objects,

max pd, avail pd)

-> RCode

Before RSVP �nalizes an outgoing control message it must query the PC module for

policy data objects. RSVP speci�es the desired maximal object size (max pd), and the

available space within the current RSVP control message (avail pd).

3

The call returns

3

avail pd must be at least the size of a POLICY DATA object without a data portion (i.e., 64 bits), since

this is a minimal size of any valid policy object.

Shai Herzog Expires May 22, 1997 [Page 7]

Internet Draft RSVP Extensions for Policy Control November 1996

a linked list of outgoing POLICY DATA objects which must be sent by RSVP either

embedded in the current RSVP message, or in separate ones (see Section 4).

In the case of Path messages, the rsvp hop parameter should be NULL. The outgoing

policy object must include policy information for all the next hops over interface lih.

� Check the status of an existing reservation

Call: PC AuthCheck (session, filter spec list,

lih, message type, resv handle,

resv flowspec, ind)

-> RCode

Authorization checks can be performed on both Path and Resv directions. When the

message type is an upstream type (Resv, Resv Tear, Path Err) the lih is assumed

to be an outgoing interface and reservation status is checked. However, when the

message type is an downstream type (Path, Path Tear, Resv Err), the lih is assumed

to be an incoming interface and Path-sending authorization is checked.

Authorization checks are usually event triggered by the arrival of a new message;

these are handled transparently by the input processing call PC InPolicy(). How-

ever, RSVP itself must verify the status of reservations periodically before refreshing

them by calling PC AuthCheck() with RSVP RESV message type, for each outgoing

reserved interface. If the reservation status changes, RSVP must act accordingly (e.g.,

cancel the reservation, etc.).

� Initialize Policy Control services

Call: PC Init (void) -> RCode

� Synchronize RSVP and policy control state

Call: PC Branch (session, filter spec list,

rsvp hop, op type)

-> RCode

This call a�ects all the state associated with a particular multicast (or unicast) branch.

It is used when routing indicates that this path is no longer in use, or when blockade

state changes.

op type:

1: Block branch (blockade state: ignore branch state)

2: Unblock branch

3: Delete branch

� Delete policy control state

Call: PC Close (session, filter spec list) -> RCode

This call purges all the policy state that is associated with the �lter spec list. It

provide the PC module with the opportunity to shut-down on-going operations (e.g.,

accounting) in an orderly manner before the state is purged.

Shai Herzog Expires May 22, 1997 [Page 8]

Internet Draft RSVP Extensions for Policy Control November 1996

3.2 PC Success Codes

The return code (RCode) provides policy feedback to RSVP, it is made of three separate

return variables:

4

� Function return value:

0: Success

1: Warning

2: Syntax Error (bad object)

3: Policy failure

� PC errno:

An external variable (similar to the errno in Unix) which provides speci�c error (rea-

son) code.

� PC ags:

An external variable with ags that advise RSVP about required operations:

0x01 PC RC ModState New or modi�ed policy

0x02 PC RC SendErr Send immediate RSVP error

0x04 PC RC Respond Send immediate RSVP response

0x08 PC RC Cancel Cancel the reservation

0x10 PC RC Preempt Allow preemption of ow

3.3 PC Codes: Required Action by RSVP

The PC success codes, and especially PC Flags advise RSVP about appropriate required

actions:

3.3.1 Refreshing Policy State

When ag PC RC ModState is set, RSVP must immediately send a refresh message. If RSVP

schedules an immediate refresh anyway (i.e., because of new or modi�ed Path/Resv state)

then the modi�ed policy can be piggybacked on this refresh message. Otherwise, RSVP

should either schedule an immediate refresh or send the policy refresh in a vacuous message

(see Section 4).

4

This is only an initial list, we expect that part to change as policy control matures.

Shai Herzog Expires May 22, 1997 [Page 9]

Internet Draft RSVP Extensions for Policy Control November 1996

3.3.2 Policy Error Signaling

Policy errors are reported inside POLICY DATA objects and is transparent to RSVP. The

PC module is responsible for generating the right contents in outgoing policy error objects

and interpreting the incoming ones.

Generic error signaling involves the following steps:

� While in PC AuthCheck() or PC InPolicy(), the PC module detects an error, and

reports it to RSVP using a return code.

� RSVP performs its standard error handling, by initiating either a PathErr or ResvErr

message.

� Before sending the error message, RSVP queries the PC module for an outgoing object

PC OutPolicy().

� The PC modules provides an outgoing object with speci�c error information. (Setting

ag PC RC SendErr).

� RSVP sends the error message with the embedded (error) policy object.

3.3.3 RSVP Response

When ag PC RC Respond is set, RSVP must generate a message in the reverse direction

to the current one. (i.e., Path vs. Resv and PathErr vs. ResvErr). The reverse message

may be a standard one. It may also be a vacuous message if no RSVP state need be

transmitted in the reverse direction at this time. A common case for such a response is

when an acknowledgment for some speci�c policy is required.

3.4 Default Handling of Policy Data Objects

It is generally assumed that policy enforcement (at least in its initial stages) is likely to

concentrate on border nodes between autonomous systems. This would mean that policy

objects transmitted at one edge of an autonomous cloud may need to traverse a non-

policy-capable, RSVP cloud before reaching the other edge. The minimal requirement from

a non-policy-capable RSVP node is to forward POLICY DATA objects embedded in the

appropriate outgoing messages, as-is (without modi�cations) according to the following

rules:

� POLICY DATA objects are to be forwarded as is, in RSVP messages with the same

type as the ones with which they arrive.

Shai Herzog Expires May 22, 1997 [Page 10]

Internet Draft RSVP Extensions for Policy Control November 1996

� POLICY DATA objects may be syntactically fragmented at any time to �t inside the

outgoing message.

567

� Multicast merging (splitting) nodes:

In the upstream direction, POLICY DATA objects are concatenated into a merged

list. If the list is too large it is up to RSVP to fragment the outgoing message.

8

4 Syntactic Fragmentation of large Policy Data objects

RSVP's extensions for policy control provide support for a wide range of policies; at least

in the initial phases, we could assume that they would be limited to very basic policies,

carried by small size POLICY DATA objects. However, we it is important to ensure that

our approach would be capable of handling policies that are more complex, and of large

sizes.

In the current version of the RSVP spec [RSVPSP], each RSVP message must occupy

exactly one IP datagram. If it exceeds the MTU, such a datagram will be fragmented

by IP and reassembled at the recipient node. Future versions of the RSVP protocol may

provide more exible solutions; the most likely direction will be to perform \semantic frag-

mentation" (see Section 3.2 in [RSVPSP]). Unfortunately neither the current or proposed

fragmentation solutions would be adequate for policy objects; When using IP fragmentation,

large POLICY DATA objects would increase the overall RSVP message size, the number

of fragments, and as a result, the risk of loosing complete RSVP messages. Even if RSVP

adopts a future proposal for semantic fragmentation, it is hard to see how POLICY DATA

objects, being semantically opaque, could be fragmented e�ectively by RSVP.

If the prevailing goal is to have as little as possible adverse e�ect on RSVP, fragmentation

and reassembly of POLICY DATA objects should be separated from RSVP. We introduce a

third approach called \syntactic fragmentation". With this approach, RSVP would be aware

of the syntax but not the semantics of policy fragmentation. (A detailed fragmentation

discussion can be found in [LPM].)

The basic building blocks of syntactic fragmentation are:

5

The available space in an outgoing message may be smaller than in the incoming message due to state

merging, change of MTU or other reasons.

6

The minimal POLICY DATA object size is 64 bits (without the data portion). Bigger objects are

considered as complete objects that may be fragmented.

7

Syntactic fragmentation is achieved by breaking the object into two asymmetric objects: the full size

POLICY DATA object and a token object. The full size object will undergo IP fragmentation (see [LPM]).

8

Notice here that because this is a set of semantically independent POLICY DATA objects, RSVP can

fragment the list e�ectively.

Shai Herzog Expires May 22, 1997 [Page 11]

Internet Draft RSVP Extensions for Policy Control November 1996

Vacuous RSVP Messages

Vacuous RSVP messages are a method for using RSVP signaling to carry policy

information without jeopardizing important RSVP state. Vacuous messages carry

fragments and only the minimal RSVP information that is required to properly route

and process these messages; however, any information contained in them is merely a

duplicate of information sent by other non-vacuous RSVP messages. As a result, a

lost vacuous message has no adverse e�ect on RSVP's signaling.

POLICY DATA fragments

A POLICY DATA object is broken into a series of fragments PD

1

; :::; PD

n

; PDE,

where all the fragments are conceptually linked by having the same OID value in

their header. The OID serves a similar purpose to IPv6's Fragment Identi�cation

�eld in the Fragment header; its value should be selected in a way that will prevent

two instances of policy objects (of the same session and RSVP HOP) from having the

same OID value. OID selection is a responsibility of the sending node, and can be

achieved by various strategies. A possible approach could be to use the low 16 bit

value in seconds of the Real-Time system clock.

9

.

Objects PD

1

; :::; PD

n

contain policy data fragments, and the Fragmentation option.

PDE is a special token object with a minimal size (64 bit header only). The PDE's

minimal size allows it to be embedded in the standard outgoing RSVP control message,

while the other fragments must be sent by separate \vacuous" RSVP messages.

Sending Fragments

Prior to sending an RSVPmessageM of type RSVP XXXX, RSVP calls PC OutPolicy()

to obtain the list of outgoing POLICY DATA objects.

For e�cient processing, fragment objects must appear �rst on this list. If the list

contains any fragment objects, RSVP halts its normal processing to send these frag-

ments in vacuous RSVP XXXX messages. Once these fragments have been sent,

RSVP continues its regular processing by placing the PDE objects in M , and send-

ing the standard RSVP XXXX message out. In some cases, multiple PDE objects

(PDE

1

:::PDE

k

) may be embedded in the outgoing message M . However, if their

overall size exceeds the available space in the outgoing message, RSVP could apply

its own fragmentation rules, but should never send them in vacuous messages (whose

sole function is to carry fragments).

Receiving Fragments

On the receiving side, when an RSVP message arrives with a POLICY DATA object

with a fragmentation option, it should be handed over to the PC module (using

PC InPolicy()) regardless of the success of the RSVP message-syntax checks or policy

control return codes. Token objects do not contain the fragmentation option, and

therefore are indistinguishable (to RSVP) from unfragmented ones.

9

Using the system clock provides protection against system crash/recovery problems. Such OID values

would wraps around only after 2

1

6 seconds (over 8 hour) which is enough to guarantee that all old fragments

have either been timed-out or lost.

Shai Herzog Expires May 22, 1997 [Page 12]

Internet Draft RSVP Extensions for Policy Control November 1996

5 API Considerations

Section 3.10.1 in [RSVPSP] de�nes the Application/RSVP interface. Because the API

design is operating system speci�c, this section should be only considered as a suggestion.

Supporting policy control requires the following considerations:

� The SENDER and RESERVE calls accept policy data parameters. There are at least

two di�erent approaches for providing these parameters: the �rst places the burden

on applications (or their proxy servers) to build complete POLICY DATA objects and

pass them as API parameters. The second require that applications merely provide

general guidelines that are later converted to POLICY DATA by the API processing

code. We recommend using hybrid approach where applications provide partial POL-

ICY DATA objects through the API, and API processing adds additional, system

related information (e.g., INTEGRITY object, FILTER SPEC list, etc.). This hybrid

approach provides applications with the exibility to specify new policy parameteri-

zation without having to change the API, and at the same time relieves applications

from the burden of specifying routine, system related details.

� State merging at the API level should be handled with care; It is essential that each

API client (application) have its own separate state. An analogy to shared medium

may be appropriate: to distinguish between reservations over a shared medium, RSVP

maintains reservation state for each outgoing interface, as well as individual next

hops. In the API case, local clients may be perceived as all belonging to a single

virtual interface (local-host) however, each of them is subscribed with a separate

upcall procedure address (\next-hop").

6 Acknowledgment

This document incorporates inputs from Lou Berger, Bob Braden, Deborah Estrin, Roch

Gu�erin and Scott Shenker, and feedback from many RSVP collaborators.

References

[Bak96] F. Baker. RSVP Cryptographic Authentication Internet-Draft, draft-ietf-rsvp-md5-

02.txt, 1996.

[RSVPSP] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSer-

Vation Protocol (RSVP) Version 1 Functional Speci�cation. Internet-Draft, draft-ietf-

RSVPSP-14.[ps,txt], Nov. 1996.

[LPM] S. Herzog Local Policy Modules (LPM): Policy Enforcement for Resource Reserva-

tion Protocols. Internet-Draft, draft-ietf-rsvp-policy-lpm-01.[ps,txt], Nov. 1996.

Shai Herzog Expires May 22, 1997 [Page 13]

Internet Draft RSVP Extensions for Policy Control November 1996

[Arch] S. Herzog Accounting and Access Control Policies for Resource Reservation Proto-

cols. Internet-Draft, draft-ietf-rsvp-policy-arch-01.[ps,txt], Nov. 1996.

Author's Address

Shai Herzog

IBM T. J. Watson Research Center,

P.O. Box 704

Yorktown Heights, NY 10598

Phone: (914) 784-6059

Email: herzog@watson.ibm.com

Shai Herzog Expires May 22, 1997 [Page 14]

