
Internet Draft Shai Herzog

Expires September 5, 1996 USC/ISI

File: draft-ietf-rsvp-lpm-arch-00.ps March 1996

Building Blocks for Accounting and Access Control in RSVP

March 5, 1996

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of

the Internet Engineering Task Force (IETF), its areas, and its working groups.

Note that other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and

may be updated, replaced, or obsoleted by other documents at any time. It is

inappropriate to use Internet-Drafts as reference material or to cite them other

than as \work in progress."

To learn the current status of any Internet-Draft, please check the

\1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories

on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West

Coast), or munnari.oz.au (Paci�c Rim).

Abstract

This memo describes a set of building blocks for policy based admission control

in RSVP. We describe an interface between RSVP and Local Policy Modules

(LPM); this interface provides RSVP with policy related information, and allows

Local policy modules to support various accounting and access control policies.

Internet Draft Accounting and Access Control in RSVP March 1996

1 Introduction

RSVP, by its de�nition, discriminates between users, by providing some users with bet-

ter service at the expense of others. Therefore, it is reasonable to expect that RSVP be

accompanied by mechanisms for controlling and enforcing access and usage policies. In

this document, we refer to such policies as \access control". The term \access control" is

quite broad; it ranges from simple access approval to sophisticated accounting and debit-

ing mechanisms (Section 2 describes a few sample scenarios of access control mechanisms).

For scaling reasons, we concentrate on policies that follow the bilateral agreements model.

The bilateral model assumes that network clouds (providers) contract with their closest

point of contact (neighbor) to establish ground rules and arrangements for access control

and accounting. These contracts are mostly local and do not rely on global agreements.

The bilateral model has similar scaling properties to RSVP and is easier to maintain in

distributed environments.

The current admission process in RSVP uses resource (capacity) based admission control;

we expand this model to include policy based admission control as well, in one atomic

operation. Policy admission control is enforced at border/policy nodes by Local Policy

Modules (LPMs). LPMs based their admission decision, among other factors, on the con-

tents of POLICY DATA objects that are carried inside RSVP messages. LPMs are re-

sponsible for receiving, processing, and forwarding POLICY DATA objects. Subject to the

applicable bilateral agreements, and local policies, LPMs may also rewrite and modify the

POLICY DATA objects as the pass through policy nodes.

In this document, we describe the range of policies that can be supported, but leave the

speci�c policies to local LPM con�gurations.

1

We begin (Section 2) by describing a few sam-

ple scenarios which provide both motivation and demonstration of possible access control

policies. Section 3 provides a general description of the RSVP/LPM interface and Section

4 discusses RSVP spec related issues. The appendices describe the detailed interface (ob-

ject formats, LPM calls, etc.), and provide a peek into some of the more important LPM

implementation internals.

1

We do not advocate speci�c access control policies since we believe that standardization of speci�c

policies may require signi�cantly more research and better understanding of the tradeo�s.

Shai Herzog Expires September 5, 1996 [Page 2]

Internet Draft Accounting and Access Control in RSVP March 1996

2 Sample scenarios

In this section, we outline a few sample scenarios for access control; we provide these

scenarios as motivation and as needed context for the LPM architecture proposed in this

document.

These scenarios, as well as the LPM architecture as a whole, are based on two simple

assumptions: (1) RSVP would provide the needed transport service of carrying access

control state (POLICY DATA objects), hop-by-hop. (2) Access control policies are based

on bilateral agreements between neighboring providers or users, and are enforced locally

by a Local Policy Modules (LPMs). In this document we do not discuss policies based on

global agreements or global information because of obvious scalability concerns.

2.1 Simple access control

To provide simple access control, the LPM attempts to match incoming policy objects with

one or more of the pre-con�gured policies or bilateral agreements, in order to accept or

reject the reservation.

Consider the following network scenario: one receiver from ISI and two from MIT listen to

a PARC seminar. For simplicity of the scenario, let us limit ourselves to a receiver based

access control scenario.

The bilateral agreements between each two neighboring providers (e.g., R1, R2 with ISI,

ISI with LosNettos,... BARRNet with PARC) are simple: the �rst provider obtains a per-

mission to make reservations over the second provider's network. The notation PD(cr; uid)

represents a policy data object of type \cr" (credential) verifying that the ow belongs to

uid. Credentials can be hierarchical, and may be rewritten on a hop by hop basis through

a locally con�gured conversion table.

Figure 1 illustrates a reservation scenario. An typical example of a bilateral agreement

could be between MCI and LosNettos: MCI would allow the LosNettos users to use its

backbone. A policy data object PD(cr; LosNettos) would be interpreted by MCI as a

green light to accept the reservation. In this scenario, reservations from R1, R2, R3 carry

policy data objects that propagate hop-by-hop (encapsulated in reservation messages) to-

ward S1. Assuming all nodes are con�gured consistently, policy objects are rewritten in

nodes B,D,G,I,K,M, which are entry points to clouds).

The MCI cloud is interesting. E is not a border/policy node, but still, it receives the follow-

ing policy data objects: F!E: PD(cr; LosNettos) and J!E: PD(cr;NearNet). Assuming

E has no authority to merge or rewrite these credentials, it must concatenate the two ob-

jects and send PD(cr; LosNettos) + PD(cr;NearNet) to D. Let us further assume that D

is con�gured with the following conversion table:

Shai Herzog Expires September 5, 1996 [Page 3]

Internet Draft Accounting and Access Control in RSVP March 1996

ISI

S1 B

C

D

J

R3

K

R2

E

M

L

F

H

G

MIT

LosNettos
NearNet

MCINet

BARRNet
PARC

ISI

R1

IR1

ISI

LosNettos

LosNettos NearNet

NearNet

MCINet

BARRNet

MCINet

BARRNet

A

MIT

MIT

R3R2

Sprint
R4

NR4

Sprint

Policy: O
nly Nearnet

LosNettos

NearNet
+

Figure 1: Simple access control

PD(cr; LosNettos) =) PD(cr;MCI)

PD(cr;NearNet) =) PD(cr;MCI)

D's LPM �rst checks if LosNettos and NearNet are authorized to reserve on their corre-

sponding links and responds accordingly. Assuming authorization is cleared, it merges and

rewrites these policy objects as PD(cr;MCI) and forwards the reservation to C.

To complicate the example, assume the conversion table was:

PD(cr; LosNettos) =) PD(cr;MCI1)

PD(cr;NearNet) =) PD(cr;MCI2)

Then D's LPM would forward PD(cr;MCI1)+ PD(cr;MCI2) to C instead.

Local policies can also reject reservations:

In �gure 1 we see that a reservation made by R4 is rejected because it arrives with insu�cient

credentials: the local policy in node J accepts only tra�c marked as PD(cr;NearNet), and

R4's reservation arrives with PD(cr; Sprint).

Shai Herzog Expires September 5, 1996 [Page 4]

Internet Draft Accounting and Access Control in RSVP March 1996

2.2 Advanced reservation and preemption control

Advanced reservation can be built on top of simple access control: consider the case where

every advanced reservation consists of a set of bilateral agreements between di�erent ser-

vice providers, reserving network capacity at some future period of time. When advanced

reservations are not public (i.e., only authorized users can use them), three classes of reser-

vations exist: (1) walk-ins (where the conference itself does not have advanced reservations,

(2) advanced reservation with unauthorized users, and (3) advanced reservation with au-

thorized users. These numbers (1..3) can de�ne a \preemption priority" (i.e., walk-ins are

preempted �rst, unauthorized pre-reserved second, and authorized pre-reserved are never

preempted).

The advanced reservation scenario is almost identical to the simple access control: let us

assume that each bilateral pre-registration is identi�ed by a PRID (Pre-Registration con-

�rmation ID). Policy data objects of type AR (Advanced Reservation) would take the

following form: PD(ar; prid; uid). When an AR object arrives, the LPM veri�es the exis-

tence of pre-reservation prid, and checks that uid is permitted to use it. Finally, the ow

is classi�ed to one of the above three preemptive priorities and RSVP is noti�es.

2.3 Quota enforcement/accounting/debiting

The next step is to allow for more sophisticated access control that is based on usage

feedback. Here we add two additional mechanisms which (1) determine how much should

be debited for a reservation and (2) what debiting mechanism should be used (if any).

The following scenarios assume a pre-existing set of local accounts. These accounts are

established by bilateral agreements that pre-purchase network capacity and set applicable

debiting rules. The role of accounting mechanism is to verify the availability of funds/quotas

in these accounts for maintaining the reservation. We consider several accounting schemes

and briey describe three: simple debiting, limited debiting, Edge Pricing, and MultiCost

(MCost).

1. Simple debiting

Consider the following example: lets assume that LosNettos and Nearnet each have

a debit account (pre-purchased capacity) with MCI for their tra�c. When E's LPM

receives the following PD(cr; LosNettos) and PD(cr;NearNet) for ow f, it must

decide the following: (1) How much should be debited for ow f, and (2) how would

that debit be shared between the account of LosNettos and NearNet. These are

local con�guration issues left for service providers. In this scenario, the LPM would

attempt to perform the debiting, and would notify RSVP on success or failure. The

other aspects of the scenario (Merging policy data objects and forwarding them) is

identical to that of simple access control.

2. Limited debiting (willingness to pay)

Shai Herzog Expires September 5, 1996 [Page 5]

Internet Draft Accounting and Access Control in RSVP March 1996

Although we do not have a full understanding of the dynamics of willingness-to-pay

and its properties, we can outline the basic scenario, as an extension of the simple

debiting model. Willingness to pay is manifested as a limit on the policy object that

authorizes the debit. For instance, PD(crwp; ISI; 10% of unicast) would represent

a policy data object of type crwp (Credential, Willingness to Pay), that authorizes

debiting the ISI account up to 10% of the unicast cost. Here, the basic idea is that

market forces would be the driving force behind what users specify as their willingness

to pay.

3. Edge Pricing

Edge Pricing was presented in [SHE95]. This paradigm is based on the assumption

that network costs can be estimated and approximated at the edge of the network,

based on purely local information. Edge Pricing is an extension of simple debiting:

Edge Pricing can determine how much is to be debited, and the set of credentials

associated with the reservation determines who (which account) should be debited.

4. MultiCost (MCost)

MCost is an accounting scheme (and mechanism) that was introduced in [HER95].

MCost has a unique feature: it takes into account the bene�ts of sharing a multi-

cast tree and distributes these savings among the members of the multicast group,

according to con�gurable policies, basic fairness, and equality.

MCost computes the cost allocated to each user, and that cost can be the basis for

debiting. MCost can be combined with simple debiting in a similar manner to Edge

Pricing.

3 The RSVP/LPM interface

Unless we are willing to declare a single monolithic access policy we need to accommodate

varying, independent access control mechanisms in RSVP (e.g., over di�erent regions of the

Internet, internal accounting vs. inter-provider accounting, quota vs. advanced reservations,

etc.). Each mechanism can have its own, type-speci�c internal format, can be con�gured

for local needs (e.g., policy data rewrite (conversion) table, etc.), and can be added and

removed from nodes with little or no impact on other mechanisms.

3.1 POLICY DATA objects

RSVP messages may carry optional POLICY DATA objects. Each individual POLICY DATA

object includes a FILTER SPEC object which identi�es the ow it is associated with. We

expect some access control mechanisms to use session POLICY DATA objects (with wild-

card FILTER SPEC) while others may require the full power of per-ow object semantics.

Generally, we assume that POLICY DATA objects may be carried by any RSVP message,

(e.g., Path, Resv, ResvErr, etc.).

Shai Herzog Expires September 5, 1996 [Page 6]

Internet Draft Accounting and Access Control in RSVP March 1996

RSVP

Accept/Reject LPM

Admission

 Control

In/Outgoing objectsReservation status

Status

Figure 2: The modular context of access control

3.2 Modular Context

Before RSVP accepts a reservation it must check for access authorization. This is where

local policy modules take e�ect, verifying access rights to local resources (i.e. links, clouds,

etc.). Figure 2 illustrates the context for the proposed design: RSVP interfaces to the LPM

to handle input and output of POLICY DATA objects and to check the status of reserva-

tions. Conceptually, a reservation must be accepted both physically and administratively;

physically, by traditional admission control (based on congestion) and administratively by

the local access policy enforced by the LPM. This dual admission must be atomic and this

atomicity is represented by the \accept/reject" module. In this document, we concentrate

only on the highlighted modules: the RSVP and the LPM interfaces. The RSVP interface

is de�ned by describing the functionality that is expected from RSVP in order to support

access control. It includes the handling of incoming messages, scheduling outgoing mes-

sages, and performing status checks. The LPM interface describes the services the LPM

provides, through a set of LPM functions. However, we do not de�ne how RSVP should

check the status of reservations (it could be done by calling the LPM directly, through an

accept/reject module, or in other ways).

2

3.3 Local Policy Modules

Local Policy Modules (LPMs) can be con�gured locally, to a particular access policy. LPMs

have three basic functions: �rst, to receive incoming policy data objects, second, to update

the access/accounting status of reservations, and third, to build accounting/policy data

objects for outgoing RSVP messages (The LPM message ow outline is illustrated in �gure

2

The RSVP admission process is unidirectional and does not include upcalls to RSVP, e.g., there is no

upcall to notify RSVP that a previously made reservation was canceled or preempted. We do however

anticipate that once the initial access control architecture is in place, later changes to the RSVP spec, would

de�ne an \accept/reject" module, and associated status update upcalls to RSVP.

Shai Herzog Expires September 5, 1996 [Page 7]

Internet Draft Accounting and Access Control in RSVP March 1996

RSVP
NODE

Common Layer

H-0 H-1 H-2

Legend:

Path
Resv

Handler

Figure 3: LPM and RSVP: message ow outline

3). LPMs maintain local access state for supporting the LPM operations, and this state

must remain consistent with RSVP's state.

3.3.1 Processing incoming messages

RSVP calls the LPM for object processing each time it receives a POLICY DATA object.

The LPM processes, stores the object's information, and returns a status code to RSVP.

The status code reports the success/failure of object processing, but does not reect the

acceptance of the reservation. The status of a reservation must be checked separately (see

Section 3.3.3 for more details).

3.3.2 Processing outgoing messages

When RSVP generates an outgoing message it calls the LPM. The LPM assembles the

outgoing policy data objects and hands them to RSVP for placing inside the outgoing

message.

3.3.3 Reservation status updates

The concept of access control assumes that even previously admitted reservations are condi-

tional, in a sense that changes in access status may trigger some action against the associated

reservation (i.e., cancel it, allow its preemption, etc.). Therefore, the access control mecha-

nism must periodically check for reservation status changes (like quota exhaustion) and take

the appropriate measures. Reservation status should also be checked when system events

Shai Herzog Expires September 5, 1996 [Page 8]

Internet Draft Accounting and Access Control in RSVP March 1996

require it, (e.g., the arrival of a new policy data object with updated information). Status

checks may be limited to the scope of the change (e.g., only the interface from which the

new RSVP message arrived).

3.3.4 Optional debiting for Reservations

The simplest form of access control performs a binary task: accept or reject a reservation.

More advanced policies may require the LPM to perform book keeping (i.e., usage quota

enforcement or even cost recovery). To achieve such tasks, the LPM can be con�gured

to perform debiting. Debiting is not part of the LPM interface, and can be con�gured

as an option into the status update: when RSVP queries the LPM about the status of

a reservation, the LPM may perform debiting, and update the status of the reservation

according to the debiting result. The debiting process is based on two separate functions:

determining \cost", and actual debiting. These two functions can be fully independent

from each other, and most likely be carried out by di�erent handlers.

In multicast environments, with upstream merging, it is very likely that a reservation will

be debited against multiple network entities that represent the aggregated credentials of the

downstream receivers. This raises the issue of the \sharing model". The sharing model

de�nes how the reservation is shared among the di�erent policy data objects.

3

The sharing

model, and the selection of cost allocation and actual debiting mechanisms is an issue of

LPM local con�guration, and is not discussed in this document.

3.3.5 Security issues

Hop-by-hop authentication mechanism:

The RSVP security mechanism proposed in [BAK96] relies on hop-by-hop authenti-

cation. This form of authentication creates a chain of trust that is only as strong as

its weakest element (in our case, the weakest router). As long as we believe that all

RSVP nodes are policy nodes as well, then RSVP security is su�cient for the entire

RSVP message, including the policy data objects. This however is not the case when

policy is enforced at boundary nodes only.

Security over clouds:

If policies are only enforced at cloud entry and exit points, then RSVP's security is

insu�cient to protect policy objects, since from a policy enforcement perspective, the

in-cloud nodes are unsecured. We propose a \policy data tunneling" approach, where

the logical policy topology is discovered automatically, and security is enforced over

3

Sharing model examples: (1) Each policy object is allocated the full cost, (2) The cost is divided equally

between the di�erent objects (3) The cost is attributed to an arbitrary object (4) The cost allocated relative

to some criteria like the number of downstream receivers, the size of the organization, the amount of pre-

purchased capacity (remaining quota), etc.

Shai Herzog Expires September 5, 1996 [Page 9]

Internet Draft Accounting and Access Control in RSVP March 1996

the logical topology. When policy objects are created at border routers, they are

encapsulated in a security envelope (described in Sections A and 3.3.5). The envelop

is forwarded as-is over the cloud, and is only removed by the cloud border (exit) node.

3.4 Default handling of policy data objects

Because we do not expect (or desire) that every RSVP node will be capable of processing

all types of policy data objects, it is essential that RSVP de�ne default handling of such

unrecognized objects, and that this default handling be required from any RSVP/LPM

implementation. The general concept is that RSVP play the role of a repeater (or a tunnel)

by forwarding the received objects without modi�cation. Implementation details are an

part of the internal LPM architecture, described in appendix C.

4 RSVP spec issues

This section presents changes to the RSVP speci�cations, required to support the LPM

architecture.

4.1 New RSVP message: Reservation Report

The basic building blocks of access control and accounting must be bi-directional in order to

allow both source and receiver based policy data objects and both advertising and feedback.

Which RSVP messages should encapsulate these upstream and downstream objects? The

choice for upstream message is natural; the reservation message. The downstream direction,

however, is more problematic: Path messages ow downstream, but are routed according to

the multicast group membership, and therefore cannot be accurately delivered to a speci�c

next hop.

4

This makes Path messages less likely to be used for access control, and especially

for accounting.

We proposed a new RSVP message type: Reservation Report (Rept). Reservation Report

messages are sent unicast, downstream, according to the Next Hop object carried by Resv

messages; although Reservation Report messages follow the multicast tree, their unicast

delivery provides accurate delivery to the appropriate next hop nodes and only to these

nodes

5

Although we propose this new message for supporting the LPM architecture, it may

4

The same problem existed for the original design of ResvErr, until it was changed to a unicast delivery

along the multicast tree.

5

Consider the case of multipoint links or network clouds: a single copy of a Path message may be delivered

to an unknown number of next hops, while the copy of a Report message is guaranteed to reach only the

targeted node.

Shai Herzog Expires September 5, 1996 [Page 10]

Internet Draft Accounting and Access Control in RSVP March 1996

prove useful for other, more general functions of the RSVP protocol. A reservation may

have di�erent forms of responses to it: A negative response (ResvErr), a positive response

(ack), and a more advanced form of a Reservation Report, like the one proposed here. An

integrated approach may incorporate all three responses in the same message type while

leaving room for future types.

4.2 List of proposed changes to the RSVP spec

� LPM interface (LPM calls, error codes and response to errors)

� API modi�cations.

� Reservation Report messages (Either in a general form, or speci�c to the LPM archi-

tecture).

� Default handling of policy data objects.

5 Acknowledgment

This document incorporates inputs from Deborah Estrin, Scott Shenker and Bob Braden

and feedback from RSVP collaborators.

References

[BAK96] F. Baker. RSVP Cryptographic Authentication Internet-Draft, draft-ietf-rsvp-

md5-02.txt, 1996.

[HER95] S. Herzog, S. Shenker and D. Estrin, Sharing the Cost of Multicast Trees: An

Axiomatic Analysis, Proceedings of ACM/SIGCOMM '95, Cambridge, MA, Aug. 1995

[SHE95] S. Shenker, D. Clark, D. Estrin, and S. Herzog Pricing in Computer Networks:

Reshaping the Research Agenda, Telecommunications Policy, Vol. 20, No. 1, 1996

also published in Proceedings of the Twenty-Third Annual Telecommunications Policy

Research Conference, 1995.

Shai Herzog Expires September 5, 1996 [Page 11]

Internet Draft Accounting and Access Control in RSVP March 1996

A Appendix: object format

POLICY DATA objects are built from basic building blocks (sub-objects), with the follow-

ing format:

+-------------+-------------+-------------+-------------+

| length | PType |

+-------------+-------------+-------------+-------------+

| PType specific format |

+---+

The header of the POLICY DATA object is de�ned by the RSVP spec, while the body

format is hidden from RSVP, and is only known to the LPM. POLICY DATA object in-

clude the standard RSVP object header, with Class = class POLICY DATA, and a CType

value. Currently, the CType value selects from three versions of POLICY DATA objects:

POLICY SIMPLE, POLICY INTEGRITY, and POLICY ENCAP.

POLICY SIMPLE:

+-------------+-------------+-------------+-------------+

| length | POLICY_DATA | 1 |

+-------------+-------------+-------------+-------------+

| policy data sub-object 1 |

+---+

....

+---+

| policy data sub-object n |

+---+

POLICY INTEGRITY:

The object format is similar to POLICY SIMPLE, with the added integrity envelope.

+-------------+-------------+-------------+-------------+

| length | POLICY_DATA | 2 |

+-------------+-------------+-------------+-------------+

| RSVP_HOP object |

+---+

| INTEGRITY object |

+---+

| policy data sub-object 1 |

+---+

....

+---+

| policy data sub-object n |

+---+

Encapsulation provides an optional security envelope for policy data objects; it ensures that

all the policy sub-objects were created by the node described by the RSVP HOP object, and

were not compromised. In this document, we do not de�ne how the INTEGRITY object

is to be computed. However, we would like to note that it may be computed over other

RSVP objects like SESSION, SCOPE etc., in order to guarantee that the POLICY DATA

object is associated with the right ow/reservation.

Shai Herzog Expires September 5, 1996 [Page 12]

Internet Draft Accounting and Access Control in RSVP March 1996

POLICY ENCAP:

This object is the external (visible) representation of POLICY DATA object, representing

the full format.

+-------------+-------------+-------------+-------------+

| length | POLICY_DATA | 255 |

+-------------+-------------+-------------+-------------+

| FILTER_SPEC object |

+-------------+---+

| Flags | Reserved |

+-------------+---+

| POLICY_ENCAP or POLICY_SIMPLE object 1 |

+---+

....

+---+

| POLICY_ENCAP or POLICY_SIMPLE object n |

+---+

Note: The FILTER SPEC object is opaque to the LPM, however, it is included in the

POLICY OBJECT to assist RSVP with fragmentation.

There is currently only one ag in the ags �eld, POLICYD FLAG REPORT. This ag can

be speci�ed only for Resv messages, and tells the LPM (and RSVP) that the reservation

requires a Reservation Report message.

6

B Appendix: LPM calls

The LPM maintains access control state per ow. This state is complementary to the RSVP

state, and both are semantically attached by ow handles, for all the LPM calls.

B.1 Success codes

All the LPM calls report success/failure status. This report is made of three components:

(1) a return code of the lpm function, that reports the general success of the call (2) a global

variable lpm errno that reports speci�c reason code (similar to the errno in Unix), and (3)

a global variable lpm egs used for ags set by the LPM call.

B.2 Flow handles (fh)

The LPM uses Flow Handles (fh) to associate RSVP ows with LPM state. RSVP obtains

ow handles by calling lpm open(), which is called only once for each session or ow, upon

6

This may become obsolete if/when a Report Request bit is added to the Resv message format.

Shai Herzog Expires September 5, 1996 [Page 13]

Internet Draft Accounting and Access Control in RSVP March 1996

the �rst arrival of a POLICY DATA object associated with that ow or session. RSVP

obtains the ow handle and stores it in the ow's data structures, for future lpm calls.

When an RSVP message is fragmented, POLICY DATA objects may be out of order, and

may reside in separate packets. The responsibility of associating a POLICY DATA object

with a particular ow (and its ow handles (fh)) lies always with RSVP. The FILTER SPEC

object inside the POLICY DATA object is visible to RSVP, and should be used by it to

aid in this classi�cation.

7

It is important to note that under no circumstances should this

classi�cation be left to the LPM.

B.3 Associating source and receiver objects

The access status of a reservation may depend on policy data objects originating from the

source, receivers or both. For instance, a lecture can be sponsored by the source that

would provide the necessary credentials. If the LPM architecture is to support source

based policies, it must be able to associate source objects with reservation state. Some

associations are trivial (like in the case of �xed �lter (FF) reservation style) but some are

more complicated (as in WF reservations). Since the LPM architecture associates ow

handles with individual source state, it is the responsibility of RSVP to map reservations

to their list of associated sources. The list takes the form of a list of ow handles, and can

be passed on to LPM functions through a pair of parameters, int fh num and int *fn vec).

B.4 LPM calls format

lpm open (int *fh)

When RSVP �rst encounters POLICY DATA objects, it calls the LPM's lpm open routine.

The LPM builds internal control blocks and places the ow handle value in fh, for future

reference.

All incoming POLICY DATA objects are passed by RSVP to the LPM:

lpm in (int fh num, int *fh vec, int vif, RSVP HOP *hop, int mtype, POL-

ICY DATA *polp)

7

The FILTER SPEC object is opaque to the LPM and the only reason it is included inside the POL-

ICY DATA object is to allow RSVP to associate the object with its corresponding ow.

Shai Herzog Expires September 5, 1996 [Page 14]

Internet Draft Accounting and Access Control in RSVP March 1996

Parameter vif describes the input virtual interface

8

from which the RSVP message was

received, hop describes the node that sent the RSVP message (previous hop/next hop), and

mtype describes the type (and implicitly, the direction) of the RSVP message (i.e., Path,

Resv etc.). Parameter polp points to the policy data object.

When RSVP is ready for output, it queries the LPM:

lpm out (int fh num, int *fh vec, int vif, RSVP HOP *hop, int mtype, POL-

ICY DATA **polp)

The parameters are similar to those for lpm in. A successful call places a pointer to the out-

going POLICY DATA object in polp; Notice that the output process is performed separately

for each outgoing RSVP message, but is required to maintain consistency and atomicity even

if some LPM status had changed in between outputs of di�erent outgoing RSVP messages.

Checking the status of an existing reservation is done by calling:

lpm status (int fh session, int fh num, int *fh vec, int vif, int phy resv handle,

Object header *phy resv wspec, int ind)

Status is checked individually for each outgoing (reserved) link. Parameter fh session spec-

i�es the ow handle associated with the session, and phy resv handle identi�es the physical

reservation (e.g., ISPS, etc.), phy resv wspec describes the current, merged FlowSpec of

the reservation. ind is used to have di�erent avors of status checks:

LPM STATF AGE: setting this ag ages (and times out) LPM state associated with the

speci�ed fh. Status checks may be periodic or event driven; this ag is set only for periodic

status checks. LPM STATF RECALC: Status checks may involve calculations over multi-

ple outgoing interfaces, and thus need only be done once for all interfaces before individual

per-interface status is reported. This bit is set on for the �rst vif checked and is reset for

the rest.

9

Status checks with ind set to 0 simply report values that were already calculated

before and do not age the LPM state.

If RSVP prunes branches from the reservation tree, it must notify the LPM by calling:

lpm prune (int fh num, int *fh vec, int vif, RSVP HOP *hop, int mtype)

8

The term Virtual Interface (vif) is borrowed from DVMRP terminology, although, for LPM purposes

it can be any integer index that RSVP associates with speci�c interfaces, independently from any routing

protocol.

9

This is an optimization. While useless, there should be no harm in recalculating status parameters, for

each outgoing interface.

Shai Herzog Expires September 5, 1996 [Page 15]

Internet Draft Accounting and Access Control in RSVP March 1996

(The details of this call is described in Section B.5).

When RSVP deletes an entire ow state, it must notify the LPM:

lpm close (int fh)

Upon this noti�cation, the LPM �nishes its accounting for this reservation (�nal deb-

its/credits) and deletes all internal state associated with fh.

Initializing the LPM is done once only, in the initialization phase of RSVP, by calling.

lpm con�g (void)

B.5 State Maintenance

LPM state must remain consistent with the corresponding RSVP state. State is created

when POLICY DATA objects are passed to the LPM and can be updated or removed

through several possible mechanisms that correspond to RSVP's state management mech-

anisms:

Atomic object management: Every new POLICY DATA object is self contained and

its content overrides all previous state: existing state that is not listed in the newly

arriving POLICY DATA object is purged.

Aging: When new POLICY DATA objects cease to arrive (either because RSVP messages

cease to arrive, or because they arrive without policy data objects), the stored state

begins to age. Aging is done in a similar manner to the way RSVP ages reservations:

When a policy data object arrives, a timer is set to TTL FACTOR. Every call to

lpm status decreases the timer by 1. When the timer reaches 0, the state is purged.

Pruning When the shape of the reserved tree changes due to routing updates or RSVP

teardown messages, RSVP purges the state of the pruned link, and must also call

lpm prune() to purge the corresponding LPM state.

Closing: The call lpm close(fh) purges all the state associated with the handle fh. Closing

a ow handle is done when RSVP no longer maintains any state associated with that

ow (a sender quits, the session is over, etc.).

C Appendix: LPM internals

This appendix describes the current internal design of the LPM. While this design is not

part of the mandatory speci�cation we recommend following it.

Shai Herzog Expires September 5, 1996 [Page 16]

Internet Draft Accounting and Access Control in RSVP March 1996

Handler0 Handler2 Handler3 Handler4Handler1

RSVP

Common Layer

lpm_in()

lpm_in()

LPM header

LPM headerRSVP RESV

Incoming

RSVP RESV

message

Figure 4: Disassembly of an incoming Resv message with POLICY DATA objects

C.1 LPM con�gurations

LPM con�guration can be general, for all handlers, but can also be type/handler speci�c.

(e.g., a speci�c handler's rewrite conversion table for policy data objects). Con�guration

may be expressed in a simple con�guration �le or even through a con�guration language.

C.2 The LPM layered Design

The internal format of POLICY DATA objects is PType speci�c, allowing up to 65535 inde-

pendent types. Our design allow each speci�c PType to be handled by a separate handler,

and allow such handlers to be added and con�gured independently. Clearly, handlers are

allowed to handler more than one PTypes.

The LPM is divided into two layers: a PType speci�c layer and a common layer (�gure

4). The PType speci�c layer provides a set of locally con�gured independent handlers, one

for each PType supported by the local node. The common layer provides the glue between

RSVP and the PType speci�c layer by multiplexing RSVP's lpm calls into individual, PType

speci�c calls.

On input, the common layer disassembles the incoming POLICY DATA object, dispatches

the internal objects to their PType speci�c handlers, and aggregates the return code status

(�gure 4). On output, it collects the internal objects from all active handlers, and assembles

them into a single POLICY DATA object (�gure 5).

On status queries, the common layer queries all the active handlers, and combines their

individual status responses into a single status result. We use the following rule: a reser-

vation is approved by the common layer, if there is at least one handler that approves it,

and none other rejects it. PType speci�c handlers can accept, reject or be neutral in their

Shai Herzog Expires September 5, 1996 [Page 17]

Internet Draft Accounting and Access Control in RSVP March 1996

Handler0 Handler2 Handler3 Handler4Handler1

RSVP

Common Layer

lpm_out()

lpm_out()

LPM header

LPM headerRSVP RESV

Outgoing

RSVP RESV

message

Figure 5: Assembly of POLICY DATA objects for an outgoing Resv message

responses.

10

C.3 Interaction between handlers

It is reasonable to assume that independent PTypes may require some interaction between

their handlers. Consider the case where policy object type-1 is a credential type (de�nes

a user identity) and a type-2 is an accounting type (determines cost), a possible interac-

tion could be to let type-2 determine the cost, and let type-1 perform the actual debiting

according to the user identity. (See the scenario 3 Section 2.3). Such interaction has two

basic requirements: order dependency and export capability. Order dependency is required

because type-2 must calculate the cost before type-1. Export capability is needed to allow

type-2 to export the calculation results to type-1. Our implementation allows the ordering

or handlers to be expressed as part of local LPM con�guration. It also provides internal

support for function calls between independent handlers (in order to obtain exported state).

Consider the case where type-3 and type-4 also perform accounting. The proposed archi-

tecture is exible enough to allow local con�guration to select the handler that determines

the debited cost: type-2, type-3 or type-4.

C.4 Default handling of policy data objects

Default handling of policy data objects is needed in two cases: �rst, when the RSVP node

is not a policy node at all, and second, when the arriving POLICY DATA object includes

objects of an unknown type. Both cases are handled in a similar manner: the policy

10

A policy data object that determines cost is a good example for a neutral handler. It provide information

about how much the ow costs, but does not perform actual debiting.

Shai Herzog Expires September 5, 1996 [Page 18]

Internet Draft Accounting and Access Control in RSVP March 1996

object is stored and forwarded without modi�cation, merging or any other operation. In

our implementation we dedicate PType 0 for default handling: Unrecognized objects are

handled by handler of PType 0. In a non-policy node, all objects are unrecognized, and

thus all are handled as PType 0, regardless of their actual PType. PType 0 is regarded as

a reserved type.

Notice that the internal format of POLICY DATA objects is a list of objects; If a node is

a merging point in the multicast tree, the default handler output is simply a concatenation

of the lists of incoming objects encapsulated in a single POLICY DATA object, of type

POLICY ENCAP.

Shai Herzog Expires September 5, 1996 [Page 19]

