
Internet Draft Cengiz Alaettinoglu

Expires September 26, 1997 USC/ISI

draft-ietf-rps-appl-rpsl-00.txt David Meyer

University of Oregon

Joachim Schmitz

DFN-NOC

March 26, 1997

Application of Routing Policy Speci�cation Language (RPSL) on the Internet

Status of this Memo

This document is an Internet Draft, and can be found as draft-ietf-rps-appl-rpsl-00.txt in any stan-

dard internet drafts repository. Internet Drafts are working documents of the Internet Engineering

Task Force (IETF), its Areas, and its Working Groups. Note that other groups may also distribute

working documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of six months. Internet Drafts may be

updated, replaced, or obsoleted by other documents at any time. It is not appropriate to use

Internet Drafts as reference material, or to cite them other than as a \working draft" or \work in

progress."

Please check the I-D abstract listing contained in each Internet Draft directory to learn the current

status of this or any other Internet Draft.

1 Introduction

This document is a tutorial on using the Routing Policy Speci�cation Language (RPSL) to specify

routing policies. It covers registering policies in an Internet Routing Registry (IRR) using RPSL,

and the use of tools to generate vendor speci�c router con�guration. It is targeted towards an

Internet/Network Service Provider (ISP/NSP) engineer who is new to RPSL and to IRR. Readers

are referred to the RPSL reference document [1] for completeness. We recommend reading this

document before reading the reference document. We hope that for many cases, this document will

be su�cient.

IRR is a repository of routing policies. It currently consists of �ve sites: CA*Net registry in Canada,

ANS, MCI and RADB registries in the United States of America, and RIPE registry in Europe.

Each of these sites run independent of each other. However, each site exchanges its data with each

Internet Draft Application of RPSL March 26, 1997

other at some frequency (at least once a day or as often as every ten minutes). MCI, Ca*Net and

ANS are private registries and contain routing policies of MCI, Ca*Net, ANS, and their customers

respectively. RADB and RIPE are public registries, and any ISP can publish their policies in these

registries. Since registries exchange their data regularly, you need to register your policies in only

one of them. If you are an MCI, ANS or CA*Net customer, we recommend you register your

policies with them. Otherwise, please register your policies either at the RIPE or RADB registry,

whichever is closer to you. We recommend against registering in multiple registries since it often

eventually leads to inconsistent data between the registries.

Routing policies registered in IRR are speci�ed using RPSL. RPSL is based on an earlier language

known as RIPE-181 [2, 3]. Through operational use of RIPE-181 it has become apparent that

certain policies cannot be speci�ed and a need for an enhanced and more general language is

needed. RPSL addresses RIPE-181's limitations. RPSL obsoletes RIPE-181 [2, 3].

RPSL is object oriented; that is, objects contain pieces of policy and administrative information.

For example, each address pre�x routed in the inter-domain mesh is speci�ed in a route object and

policies of each AS are speci�ed in an aut-num object. Objects have relations between each other.

For example, all route objects of an ISP refer to the Autonomous System (AS) number of the ISP.

These relations form sets of objects. We can then use these set names to specify policies collectively

to all their members. For example, we can use the AS number of an ISP to specify policy against

all of its routes. In the following sections, we will describe each of these objects (rather object

classes) in more detail and give numerous examples for you to create your own objects. In most

cases, you should be able to cut and paste our examples to create your own objects.

Once you register your policies in IRR, they are available for others to query using a whois service.

For example, to see the route object for 128.223.0.0/16, please try the following UNIX command:

% whois -h radb.ra.net 128.223.0.0/16

route: 128.223.0.0/16

descr: UONet

descr: University of Oregon

descr: Computing Center

descr: Eugene, OR 97403-1212

descr: USA

origin: AS3582

mnt-by: MAINT-AS3582

changed: meyer@ns.uoregon.edu 960222

source: RADB

The output of the command is the ASCII representation of the route object whose details will be

covered in Section 2.3. That is not all, once you register your policies in IRR, they can be analyzed

for consistency or used to diagnose Internet's operational routing problems. RAToolSet [5] is a suite

of tools for analyzing this data. It contains tools (RtConfig) to con�gure routers, tools (prpath

and prtraceroute) to analyse paths on the Internet, tools (roe, aoe and prcheck) to compare,

validate and register RPSL objects, and others.

Alaettinoglu et. al. Expires September 26, 1997 [Page 2]

Internet Draft Application of RPSL March 26, 1997

The remainder of this document is organized as follows: Section 2 introduces the fundamental

RPSL objects. Section 3 discusses implementation of various common policies using RPSL. Finally,

Section 4 describes the use of RtConfig to generate vendor speci�c router con�gurations.

2 RPSL Objects

This section introduces the fundamental RPSL objects required to implement many typical Internet

routing policies. The basic elements are

� maintainer objects (mntner)

� autonomous system number objects (aut-num)

� route objects (route)

� set objects (as-set, route-set)

and they are described in the following sections. These objects must be registered in the IRR, in

only one of the existing registries. In general, registration is done by sending mail to a registry robot.

The mail addresses are di�erent for di�erent registries. The contents of the mail consists of the

objects you want to have registered, separated by empty lines, and often some kind of authorization

(see below). The registry robot automatically processes your mail, entering new objects into the

database, deleting old ones, or activating changes. Moreover, it may send noti�cations and replies

with an error or success report about its actions. The �rst object which has to be registered,

normally is the mntner. In general, to have it properly authenticated, a maintainer object is added

manually by registry sta�. Afterwards, all other actions should be done through the registry robot.

Each registry provides documentation on how to use it. If problems arise your registry sta� is

willing to assist you.

2.1 The Maintainer Object

The maintainer object is used to introduce some kind of authorization for registrations. It lists

various contact persons and describes security mechanisms that will be applied when updating

other objects in an IRR. Registering a mntner object is the �rst step in creating policies for an

AS. An example is shown in Figure 1. The maintainer is called MAINT-AS3701. The contact person

here is the same for administrative admin-c and technical tech-c issues and is referenced by the

NIC-handle DMM65. NIC-handles are unique identi�ers for persons in registries. Refer to registry

documentation for further details on person objects and usage of NIC-handles.

The example shows two authentication mechanisms: CRYPT-PW and MAIL-FROM. CRYPT-PW takes as

its argument a password that is encrypted with Unix crypt(3) routine. When sending updates, the

maintainer adds the �eld password: <cleartext password> to the beginning of any requests that

Alaettinoglu et. al. Expires September 26, 1997 [Page 3]

Internet Draft Application of RPSL March 26, 1997

are to be authenticated. MAIL-FROM takes an argument that is a regular expression which covers

a set of mail addresses. Only users with any of these mail addresses are authorized to work with

objects secured by the corresponding maintainer

1

.

The security mechanisms of the mntner object will only be applied on those objects referencing a

speci�c mntner object. The reference is done by adding the attribute mnt-by to an object using the

name of the mntner object as its value. In Figure 1, the maintainer MAINT-AS3701 is maintained

by itself.

mntner: MAINT-AS3701

descr: Network for Research and Engineering in Oregon

remark: Internal Backbone

admin-c: DMM65

tech-c: DMM65

upd-to: noc@nero.net

auth: CRYPT-PW 949WK1mirBy6c

auth: MAIL-FROM .*@nero.net

notify: noc@nero.net

mnt-by: MAINT-AS3701

changed: meyer@antc.uoregon.edu 970318

source: RADB

Figure 1: Maintainer Object

2.2 The Autonomous System Object

The autonomous system object describes the import and export policies of an AS. Each organization

registers an autonomous system object (aut-num) in the IRR for its AS. Figure 2 shows the aut-num

for AS3582 (UONET).

The autonomous system object lists contacts (admin-c, tech-c) and here is maintained by mnt-by:

MAINT-AS3701 which is the maintainer displayed in Figure 2.

The most important attributes of the aut-num object are as-in and as-out. The as-in clause

of an aut-num speci�es import policies, while the as-out clause speci�es export policies. The

corresponding clauses allow a very detailed description of the routing policy of the AS speci�ed.

The details are given in section 3.

With these clauses the aut-num object shows the relationship to other autonomous systems by

describing the peerings. In addition, it also de�nes a routing entity comprising a group of IP

1

Clearly, neither of these mechanisms is su�cient to provide strong authentication or authorization. Other public

key (e.g., PGP) authentication mechanisms are available from some of the IRRs.

Alaettinoglu et. al. Expires September 26, 1997 [Page 4]

Internet Draft Application of RPSL March 26, 1997

networks which are handled according to the rules de�ned in the aut-num object. Therefore, it is

closely linked to route objects.

In this example, AS3582 imports all routes from AS3701 by using the keyword ANY. AS3582 imports

only internal routes from AS4222, AS5650, and AS1798. The import policy for for AS2914 is slightly

more complex. Since AS2914 provides transit to various <other ASs, AS3582 accepts routes with

ASPATHs that begin with AS2194 followed by members of AS-WNA, which is an AS-SET (see

section 2.4.1 below) describing those customers that transit AS2914.

Since AS3582 is a multi-homed stub AS (i.e., it does not provide transit), its export policy consists

simply of \announce AS3582" clauses.

aut-num: AS3582

as-name: UONET

descr: University of Oregon, Eugene OR

as-in: from AS3701 100 accept ANY

as-in: from AS4222 100 accept <^AS4222$>

as-in: from AS5650 100 accept <^AS5650$>

as-in: from AS2914 100 accept <^AS2914+ (AS-WNA)*$>

as-in: from AS1798 100 accept <^AS1798$>

as-out: to AS3701 announce AS3582

as-out: to AS4222 announce AS3582

as-out: to AS5650 announce AS3582

as-out: to AS2914 announce AS3582

as-out: to AS1798 announce AS3582

guardian: meyer@antc.uoregon.edu

admin-c: DMM65

tech-c: DMM65

notify: nethelp@ns.uoregon.edu

mnt-by: MAINT-AS3582

changed: meyer@antc.uoregon.edu 970316

source: RADB

Figure 2: Autonomous System Object

The aut-num object forms the basis of a scalable and maintainable router con�guration system.

For example, if AS3582 originates a new route, it need only create a route object for that route

with origin AS3582. AS3582 can now build con�guration using this route object without changing

its aut-num object.

Similarly, if for example, AS3701 originates a new route, it need only create a route object for that

route with origin AS3701. Both AS3701 and AS3582 can now build con�guration using this route

object without modifying its aut-num object.

Alaettinoglu et. al. Expires September 26, 1997 [Page 5]

Internet Draft Application of RPSL March 26, 1997

route: 128.223.0.0/16

descr: UONet

descr: University of Oregon

descr: Computing Center

descr: Eugene, OR 97403-1212

descr: USA

origin: AS3582

mnt-by: MAINT-AS3582

changed: meyer@ns.uoregon.edu 960222

source: RADB

Figure 3: Example of a route object

2.3 The Route Object

In contrast to aut-num objects which describe propagation of routing information for an autonomous

system as a whole, route objects de�ne single routes from an AS. An example was already given

in the introduction:

This route object is maintained by MAINT-AS3582 and references AS3582 by the origin attribute.

By this reference it is grouped together with other IP networks of same origin, becoming member

of the routing entity denoted by the corresponding AS number. The routing policy is then de�ned

in the aut-num object for this group of routes.

Consequently, the route objects give the routes from this AS which are distributed to peer ASs

according to the rules of the routing policy. Therefore, for any route in the global routing table of

the real world a route object must exist in one registry of the IRR. Since routes from the global

routing table come from external peerings alone, as they are described in the aut-num object, only

route objects must be registered in the IRR which should be seen outside your AS. Normally,

this set of external routes is di�erent from the routes internally visible within your AS. One of the

major reasons is that external peers need no information at all about your internal routing speci�cs.

Therefore, external routes are in general aggregated combinations of internal routes, having shorter

IP pre�xes where applicable according to the CIDR rules. Please see the CIDR FAQ [4] for a

tutorial introduction to CIDR. It is strongly recommended that you aggregate your routes as much

as possible, thereby minimizing the number of routes you inject into the global routing table and

at the same time reducing the corresponding number of route objects in the IRR.

While you may easily query single route objects using the whois program, and submit objects via

mail to the registry robots, this becomes kind of awkward for larger sets. The RAToolSet [5] o�ers

several tools to make handling of route objects easier. If you want to read policy data from the

IRR and process it by other programs, you might be interested in using peval which is a low level

policy evaluation tool. As an example, the command

peval -h radb.ra.net -expand_all AS3582

Alaettinoglu et. al. Expires September 26, 1997 [Page 6]

Internet Draft Application of RPSL March 26, 1997

will give you all route objects from AS3582 registered with RADB.

A much more sophisticated tool from the RAToolSet to handle route objects interactively is the

route object editor roe. It has a graphical user interface to view and manipulate route objects

registered at any IRR. New route objects may be generated from templates and submitted to the

registries. Moreover, the route objects from the databases may be compared to real life routes.

Therefore, roe is highly recommended as an interface to the IRR for route objects. Further

information on peval and roe is available together with the RAToolSet [5].

2.4 Set Objects

With routing policies it is often necessary to reference groups of autonomous systems or routes

which have identical properties regarding a speci�c policy. To make working with such groups

easier RPSL allows to combine them in set objects. There are two basic types of prede�ned set

objects, as-set, and route-set. The RPSL set objects are described below.

2.4.1 AS-SET Object

Autonomous system set objects (as-set) are used to group autonomous system objects into named

sets. An as-set has an RPSL name that starts with \AS-". In the example in Figure 4, an as-set

called AS-NERO-PARTNERS and containing AS3701, AS4201, AS3582, AS4222, AS1798 is de�ned.

The as-set is the RPSL replacement for the RIPE-181 as-macro. Functionality is the same but

syntax is di�erent.

AS-SETs are particularly useful when specifying policies for groups such as customers, providers,

or for transit. You are encouraged to register sets for these groups because it is most likely that you

will treat them alike, i.e. you will have a very similar routing policy for all your customers which

have an autonomous system of their own. You may as well discover that this is also true for the

providers you are peering with, and it is most convenient to have the ASs combined in one as-set

for which you o�er transit. For example, if a transit provider speci�es its import policy using its

customer's as-set (i.e., its as-in clause for the customer contains the customer's as-set), then

that customer can modify the set of ASs that its transit provider accepts from it. Again, this can be

accomplished without requiring the customer or the transit provider to modify its aut-num object.

The ASs of the set are simply compiled in a comma delimited list following the members attribute

of the as-set. This list may also contain other AS-SETs. For an AS being member of an as-set

is indicated by the member-of attribute of the aut-num object.

Alaettinoglu et. al. Expires September 26, 1997 [Page 7]

Internet Draft Application of RPSL March 26, 1997

as-set: AS-NERO-PARTNERS

members: AS3701, AS4201, AS3582, AS4222, AS1798

aut-num: AS3701

member-of: AS-NERO-PARTNERS

...

aut-num: AS4201

member-of: AS-NERO-PARTNERS

...

[etc]

Figure 4: as-set Object

2.4.2 ROUTE-SET Object

A route-set is a way to name a group of routes. The syntax is similar to the as-set. A route-set

has an RPSL name that starts with \RS-". The members attribute lists the members of the set.

The value of a members attribute is a list of address pre�xes, or route-set names. The members of

the route-set are the address pre�xes or the names of other route sets speci�ed.

Figure 5 presents some example route-set objects. The set rs-uo contains two address pre�xes,

namely 128.223.0.0/16 and 198.32.162.0/24. The set rs-bar contains the members of the set

rs-uo and the address pre�x 128.7.0.0/16. The set rs-empty contains no members.

route-set: rs-uo

members: 128.223.0.0/16, 198.32.162.0/24

route-set: rs-bar

members: 128.7.0.0/16, rs-uo

route-set: rs-empty

Figure 5: route-set Objects

3 Specifying Policies using RPSL

In this section we show how the various RPSL objects can be used to specify typical Internet

policies.

Alaettinoglu et. al. Expires September 26, 1997 [Page 8]

Internet Draft Application of RPSL March 26, 1997

3.1 Provider-Customer Policies

In typical customer-provider relationships, the customer imports all the routes that the provider

has and exports its routes to the provider. The provider's policies are symmetrical in the sense

that it exports all routes that it has to the customer, and it imports only the customers routes.

Figure 6 illustrates one way of expressing these policies using RPSL where AS3701 is the provider

and AS3582 is the customer. Refer to Figure 2 for AS3582's aut-num.

aut-num: AS3701

as-name: NERO-NET

descr: Network for Engineering and Research in Oregon

...

as-in: from AS3582 100 accept <^AS3582$>

as-out: to AS3582 announce ANY

...

guardian: meyer@antc.uoregon.edu

admin-c: DMM65

tech-c: DMM65

notify: noc@nero.net

mnt-by: MAINT-AS3701

changed: meyer@antc.uoregon.edu 970316

source: RADB

Figure 6: Provider-Customer Policies in RPSL

In this example, \announce ANY" means export any route that AS3701 has registered, and \accept

<^AS3582$>" means accept only AS3582's routes (i.e., that have AS-PATHs of length one, where

the AS in the path is AS3582)

2

. Note that AS3582 is taking full routing from AS3701; this can

be seen in that AS3701 is announcing \ANY", and AS3582 is accepting \ANY". The important

point in this example is that if AS3582 adds or deletes route objects, there is no need to update

the aut-num objects. The added (or deleted) objects will implicitly update AS3582's and AS3701's

policies, and thus a�ect their router con�guration �les.

As mentioned above, if the customer is itself a provider, i.e. it has its own customers, the set of routes

passed to the provider includes its customers' routes as illustrated in Figure 7. In this example,

\accept AS-NERO-PARTNERS" means that for each AS X in the set de�ned by AS-NERO-PARTNERS

accept AS X's routes.

In this case shown in Figure 7, if AS3701 gets a new customer, then it can update the de�nition

of the AS-NERO-PARTNERS set to include the new AS. The policies speci�ed in the aut-num objects

for AS4600 and AS3701 do not change.

2

AS-PATH regular expressions are POSIX compliant regular expressions, see section 3.3.

Alaettinoglu et. al. Expires September 26, 1997 [Page 9]

Internet Draft Application of RPSL March 26, 1997

aut-num: AS4600

as-name: NERO-TRANSIT

descr: Network for Engineering and Research in Oregon

...

as-in: from AS3701 100 accept <^A3701+ (AS-NERO-PARTNERS)*$>

as-out: to AS3701 announce ANY

...

guardian: meyer@antc.uoregon.edu

admin-c: DMM65

tech-c: DMM65

notify: noc@nero.net

mnt-by: MAINT-AS4600

changed: meyer@antc.uoregon.edu 970316

source: RADB

Figure 7: Provider-Customer Policies in RPSL

3.2 Inter-Provider Policies

In this case, the policies of both providers are to export only their customer routes to the other

provider, and to import only the customer routes of the other provider. This is commonly referred

to as peerage. Figure 8 illustrates how this is expressed using RPSL where both AS 3701 and

AS AS2914 are providers. In this example, AS3701 advertises only the AS paths described by

the AS-SET AS-NERO-PARTNERS (i.e., customer routes). Likewise, we �lter routes that come from

AS2914, accepting only those de�ned by the �lter \<

^

AS2914+ (AS-WNA)*$>", i.e., those routes

whose AS-PATH attribute ends with an AS in the set de�ned by the AS-WNA AS-SET.

aut-num: AS3701

as-name: NERO-NET

descr: Network for Engineering and Research in Oregon

...

as-in: from AS2914 100 accept <^AS2914+ (AS-WNA)*$>

as-out: to AS2914 announce AS-NERO-PARTNERS

...

guardian: meyer@antc.uoregon.edu

admin-c: DMM65

tech-c: DMM65

notify: noc@nero.net

mnt-by: MAINT-AS3701

changed: meyer@antc.uoregon.edu 970316

source: RADB

Figure 8: Inter-Provider Policies in RPSL

Alaettinoglu et. al. Expires September 26, 1997 [Page 10]

Internet Draft Application of RPSL March 26, 1997

3.3 AS-PATHS

In previous examples of routing policies special expressions have been used to describe the ASs

accepted from or announced to peering partners. Actually, these expressions do not only cover the

ASs themselves but also their number and sequence. This is achieved by a mechanism known as

regular expressions. Those familiar with the UNIX world or with programming languages like C or

perl will most likely already understood the details of the AS-PATHS displayed in the examples.

RPSL uses POSIX compliant regular expressions.

Regular expressions follow certain rules. Several characters have special meanings, e.g. \^" denotes

the beginning of a string, \$" its end. Then it becomes obvious that the AS-PATH <^AS3582$>

accepted from AS3582 in �gure 7 has length one and consists of AS3582 only.

Besides these positional indicators there are also operators, e.g. the unary post�x operators \+"

or *" as seen in �gure 8 which ASs are accepted by AS2914: <^AS2914+ (AS-WNA)*$>. These

operators work on the directly preceding regular expressions, i.e. + only a�ects AS2914, and * only

works on (AS-WNA). Operator \+" means one or more occurrences, operator *" means zero or more

occurrences. Now it becomes obvious that the AS-PATHS accepted start with at least one AS2914

but may as well be stu�ed allowing several occurrences of AS2914. Then the AS-PATH continues

with no or any number of any ASs out of the as-set AS-WNA. No other ASs may then follow.

Apparently, quite complicated AS-PATHS can be expressed in a very handy and short way. For a

complete list of operators and rules for regular expressions applicable to AS-PATHS in RPSL refer

to the RPSL document [1].

3.4 Including Interfaces in Peering De�nitions

In the above examples peerings were only given among ASs. However, the peerings may be described

in much more detail by RPSL. Actually, peerings are introduced among physical routers using real

IP addresses. These can be speci�ed in the as-in and as-out attributes. Figure 9 shows a simple

example of two ASs AS1 and AS2 which are connected to an exchange point IX. While AS1 has

only one connection to the exchange point via a router interface with IP address 7.7.7.1, AS2 has

two di�erent connections with IP address 7.7.7.2 and 7.7.7.3. The �rst AS may then de�ne its

routing policy in more detail by specifying its boundary router.

aut-num: AS1

as-in: from AS2 at 7.7.7.1 accept <^AS2$>

...

This is very simple and does not make much of a di�erence compared to a policy where no boundary

router is speci�ed because AS1 in this example has only one connection to the exchange point.

However, AS1 might want to choose to accept only announcements from AS2 which come from the

Alaettinoglu et. al. Expires September 26, 1997 [Page 11]

Internet Draft Application of RPSL March 26, 1997

+--------------------+ +--------------------+

| 7.7.7.1 |-----+ +-----| 7.7.7.2 |

| | | | | |

| AS1 | ======== | AS2 |

| | IX | | |

| | +-----| 7.7.7.3 |

+--------------------+ +--------------------+

Figure 9: Including interfaces in peerings de�nitions

router with IP address 7.7.7.2 and disregard router 7.7.7.3. AS1 then de�nes the following routing

policy towards AS2:

aut-num: AS1

as-in: from AS2 7.7.7.2 at 7.7.7.1 accept <^AS2$>

...

So both routers involved in a peering may be speci�ed and by selecting certain pairs of routers

other connections can be denied. If no routers are included in a policy clause then it is assumed

that the policy is true for all peerings among the ASs involved.

3.5 Describing Simple Backup Connections

The speci�cation of peerings among ASs is not limited to one router for each AS. In �gure 9 one

of the two connections of AS2 to the exchange point IX might be used as backup in case the other

connection fails. Let us assume that AS1 wants to use the connection to router 7.7.7.2 of AS2

during regular operations, and router 7.7.7.3 as backup. In a router con�guration this may be done

by setting a local preference. The equivalent in RPSL is a corresponding action de�nition in the

peering description. The action de�nitions are inserted directly before the accept keyword.

aut-num: AS1

as-in: from AS2 7.7.7.2 at 7.7.7.1 action pref=10

from AS2 7.7.7.3 at 7.7.7.1 action pref=20

accept <^AS2$>

...

Actions may also be de�ned without specifying IP addresses of routers. If no routers are included

in the policy clause then it is asumed that the actions are carried out for all peerings among the

ASs involved.

Alaettinoglu et. al. Expires September 26, 1997 [Page 12]

Internet Draft Application of RPSL March 26, 1997

In the previous example AS1 controls where it sends its tra�c and which connection is used as

backup. However, AS2 may also de�ne a backup connection in an as-out clause:

aut-num: AS2

as-out: to AS1 7.7.7.1 at 7.7.7.2 action med=10

to AS1 7.7.7.1 at 7.7.7.3 action med=20

announce <^AS2$>

...

The de�nition given here for AS2 is the symmetric counterpart to the routing policy of AS1. The

selection of routing information is done by setting the multi exit discriminator metric med. Actually,

med metrics will not be used in practice like this; they are more suitable for load balancing including

backups. For more details on med metrics refer to the BGP-4 RFC [6].

3.6 The aut-num Object Editor

All the examples shown in the previous sections may well be edited by hand. They may be extracted

one by one from the IRR using the whois program, edited, and then handed back to the registry

robots. However, again the RAToolSet [5] provides a very nice tool which makes working with

aut-num objects much easier: the aut-num object editor aoe.

The aut-num object editor has a graphical user interface to view and manipulate aut-num objects

registered at any IRR. New aut-num objects may be generated using templates and submitted

ot the registries. Moreover, the routing policy from the databases may be compared to real life

peerings. Therefore, aoe is highly recommended as an interface to the IRR for aut-num objects.

Further information on aoe is available together with the RAToolSet [5].

4 Router Con�guration Using RtConfig

RtConfig is a tool developed by the Routing Arbiter project [7])to generate vendor speci�c router

con�gurations from the policy data held in the various IRRs. RtConfig currently supports Cisco,

gated and RSd con�guration formats. RtConfig written in C++, C, lex, and yacc. It has been pub-

licly available since late 1994, and is currently being used by several sites for router con�guration. A

few of the sites currently using RtConfig include the Routing Arbiter Project (USA), ANS (USA),

CA*Net (Canada), IMNet (Japan), VERIO (USA), Oregon-IX (USA), IAfrica (South Africa). The

next section describes a methodology for generating vendor speci�c router con�gurations using

RtConfig.

3

3

Discussion of RtConfig internals is beyond the scope of this document.

Alaettinoglu et. al. Expires September 26, 1997 [Page 13]

Internet Draft Application of RPSL March 26, 1997

4.1 Using RtConfig

The general paradigm for using RtConfig involves registering policy in an IRR, building a Rt-

Con�g source �le, then running running RtConfig against the source �le and the IRR database

to create vendor speci�c router con�guration for the speci�ed policy. The source �le will contain

vendor speci�c commands as well as RtConfig commands; in particular, the vendor speci�c policy

con�guration will be removed and replaced with RtConfig commands. Commands beginning with

@RtConfig instruct RtConfig to perform special operations. An example template �le is shown

in Figure 10. In this example, commands such as \@RtConfig import AS3582 198.32.162.1/32

AS3701 198.32.162.2/32" instruct RtConfig to generate vendor speci�c import policies where

the router 198.32.162.1 in AS3582 is importing routes from router 198.32.162.2 in AS3701.

The other @RtConfig commands instruct the RtConfig to use certain names and numbers in the

output that it generates (please refer to RtConfig manual [7] for additional information).

router bgp 3582

network 128.223.0.0

!

! Start with access-list 100

!

@RtConfig set cisco_access_list_no = 100

!

! NERO

!

neighbor 198.32.162.2 remote-as 3701

@RtConfig set cisco_map_name = "AS3701-EXPORT"

@RtConfig export AS3582 198.32.162.1/32 AS3701 198.32.162.2/32

@RtConfig set cisco_map_name = "AS3701-IMPORT"

@RtConfig import AS3582 198.32.162.1/32 AS3701 198.32.162.2/32

!

! WNA/VERIO

!

neighbor 198.32.162.6 remote-as 2914

@RtConfig set cisco_map_name = "AS2914-EXPORT"

@RtConfig export AS3582 198.32.162.1/32 AS2914 198.32.162.6/32

@RtConfig set cisco_map_name = "AS2914-IMPORT"

@RtConfig import AS3582 198.32.162.1/32 AS2914 198.32.162.6/32

...

Figure 10: RtConfig Template File

Once a source �le is created, the �le is processed by RtConfig (the default IRR is the RADB, and

the default vendor is Cisco; however, RtConfig or command line options can be used to override

these values). The result of running RtConfig on the source �le in Figure 10 is shown in Figure 11.

Alaettinoglu et. al. Expires September 26, 1997 [Page 14]

Internet Draft Application of RPSL March 26, 1997

References

[1] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg, M. Terpstra, and C. Villamizer: Routing

Policy Speci�cation Language (RPSL), Internet draft, USC Information Sciences Institute,

Work in Progress.

[2] T. Bates, J-M. Jouanigot, D. Karrenberg, P. Lothberg, and M. Terpstra. Representation of IP

Routing Policies in the RIPE database, Technical Report ripe-81, RIPE, RIPE NCC, Amster-

dam, Netherlands, February 1993.

[3] T. Bates, E. Gerich, J. Joncharay, J-M. Jouanigot, D. Karrenberg, M. Terpstra, and J. Yu.

Representation of IP Routing Policies in a Routing Registry, Technical Report ripe-181, RIPE,

RIPE NCC, Amsterdam, Netherlands, October 1994.

[4] Hank Nussbacher. The CIDR FAQ. Tel Aviv University and IBM Israel.

http://www.ibm.net.il/�hank/cidr.html

[5] The RAToolSet. http://www.ra.net/ra/RAToolSet/

[6] Y. Rekhter adn T. Li. A Border Gateway Protocol 4 (BGP-4). Request for Comment RFC

1654. Network Information Center, July 1994.

[7] RtCon�g as part of the RAToolSet. http://www.ra.net/ra/RAToolSet/RtCon�g.html

Alaettinoglu et. al. Expires September 26, 1997 [Page 15]

Internet Draft Application of RPSL March 26, 1997

router bgp 3582

network 128.223.0.0

!

! NERO

!

neighbor 198.32.162.2 remote-as 3701

no access-list 100

access-list 100 permit ip 128.223.0.0 0.0.0.0 255.255.0.0 0.0.0.0

access-list 100 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

!

!

no route-map AS3701-EXPORT

route-map AS3701-EXPORT permit 1

match ip address 100

!

router bgp 3582

neighbor 198.32.162.2 route-map AS3701-EXPORT out

!

!

no route-map AS3701-IMPORT

route-map AS3701-IMPORT permit 1

set local-preference 1000

!

router bgp 3582

neighbor 198.32.162.2 route-map AS3701-IMPORT in

!

! WNA/VERIO

!

neighbor 198.32.162.6 remote-as 2914

!

no route-map AS2914-EXPORT

route-map AS2914-EXPORT permit 1

match ip address 100

!

router bgp 3582

neighbor 198.32.162.6 route-map AS2914-EXPORT out

no ip as-path access-list 100

ip as-path access-list 100 permit ^_2914(((_[0-9]+))*_ \

(13|22|97|132|175|668|1914|2905|2914|3361|3381|3791|3937| \

4178|4354|4571|4674|4683|5091|5303|5798|5855|5856|5881|6083 \

|6188|6971|7790|7951|8028))?$

!

no route-map AS2914-IMPORT

route-map AS2914-IMPORT permit 1

match as-path 100

set local-preference 998

!

router bgp 3582

neighbor 198.32.162.6 route-map AS2914-IMPORT in

!

! other cisco commands

Figure 11: Output of RtConfig

Alaettinoglu et. al. Expires September 26, 1997 [Page 16]

