
Internet Engineering Task Force MMUSIC WG

INTERNET-DRAFT H. Schulzrinne, A. Rao, R. Lanphier

draft-ietf-mmusic-rtsp-02.ps Columbia U./Netscape/Progressive Networks

March 27, 1997

Expires: September 26, 1997

Real Time Streaming Protocol (RTSP)

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working

documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt” listing contained

in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au

(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).
Distribution of this document is unlimited.

Abstract

The Real Time Streaming Protocol, or RTSP, is an application-level protocol for control over the

delivery of data with real-time properties. RTSP provides an extensible framework to enable controlled,

on-demand delivery of real-time data, such as audio and video. Sources of data can include both live

data feeds and stored clips. This protocol is intended to control multiple data delivery sessions, provide

a means for choosing delivery channels such as UDP, multicast UDP and TCP, and delivery mechanisms

based upon RTP (RFC 1889).

Contents

1 Introduction 4

1.1 Purpose . 4

1.2 Requirements . 5

1.3 Terminology . 5

1.4 Protocol Properties . 6

1.5 Extending RTSP . 7

1.6 Overall Operation . 8

1.7 RTSP States . 9

1.8 Relationship with Other Protocols . 9

2 Notational Conventions 9

3 Protocol Parameters 10

3.1 RTSP Version . 10

3.2 RTSP URL . 10

3.3 Conference Identifiers . 11

3.4 SMPTE Relative Timestamps . 11

3.5 Normal Play Time . 12

3.6 Absolute Time . 12

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

4 RTSP Message 12

4.1 Message Types . 13

4.2 Message Headers . 13

4.3 Message Body . 13

4.4 Message Length . 13

5 Request 13

6 Response 14

6.1 Status-Line . 15

6.1.1 Status Code and Reason Phrase . 15

6.1.2 Response Header Fields . 17

7 Entity 17

7.1 Entity Header Fields . 17

7.2 Entity Body . 19

8 Connections 19

8.1 Pipelining . 19

8.2 Reliability and Acknowledgements . 19

9 Method Definitions 20

9.1 OPTIONS . 21

9.2 DESCRIBE . 21

9.3 SETUP . 22

9.4 PLAY . 23

9.5 PAUSE . 24

9.6 TEARDOWN . 25

9.7 GET PARAMETER . 25

9.8 SET PARAMETER . 26

9.9 REDIRECT . 26

9.10 RECORD . 27

9.11 Embedded Binary Data . 27

10 Status Code Definitions 27

10.1 Redirection 3xx . 27

10.2 Client Error 4xx . 27

10.2.1 451 Parameter Not Understood . 27

10.2.2 452 Conference Not Found . 28

10.2.3 453 Not Enough Bandwidth . 28

10.2.4 45x Session Not Found . 28

10.2.5 45x Method Not Valid in This State . 28

10.2.6 45x Header Field Not Valid for Resource . 28

10.2.7 45x Invalid Range . 28

10.2.8 45x Parameter Is Read-Only . 28

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 2]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

11 Header Field Definitions 28

11.1 Accept . 30

11.2 Accept-Encoding . 30

11.3 Accept-Language . 30

11.4 Allow . 30

11.5 Authorization . 30

11.6 Bandwidth . 30

11.7 Blocksize . 31

11.8 Cache-Control . 31

11.9 Conference . 32

11.10Connection . 33

11.11Content-Encoding . 33

11.12Content-Length . 33

11.13Content-Type . 33

11.14Date . 33

11.15Expires . 33

11.16If-Modified-Since . 34

11.17Last-modified . 34

11.18Location . 34

11.19Nack-Transport-Require . 34

11.20Range . 34

11.21Require . 35

11.22Retry-After . 35

11.23Scale . 35

11.24Speed . 36

11.25Server . 36

11.26Session . 36

11.27Transport . 37

11.28Transport-Require . 38

11.29Unsupported . 38

11.30User-Agent . 38

11.31Via . 38

11.32WWW-Authenticate . 38

12 Caching 38

13 Examples 39

13.1 Media on Demand (Unicast) . 39

13.2 Live Media Presentation Using Multicast . 41

13.3 Playing media into an existing session . 42

13.4 Recording . 42

14 Syntax 43

14.1 Base Syntax . 43

15 Security Considerations 43

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 3]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

A RTSP Protocol State Machines 44

A.1 Client State Machine . 44

A.2 Server State Machine . 45

B Open Issues 46

C Changes 47

D Author Addresses 47

E Acknowledgements 48

1 Introduction

1.1 Purpose

The Real-Time Streaming Protocol (RTSP) establishes and controls either a single or several time-synchronized

streams of continuous media such as audio and video. It does not typically deliver the continuous streams

itself, although interleaving of the continuous media stream with the control stream is possible (see Section

9.11). In other words, RTSP acts as a “network remote control” for multimedia servers.

The set of streams to be controlled is defined by a presentation description. This memorandum does not

define a format for a presentation description.

There is no notion of an RTSP connection; instead, a server maintains a session labeled by an identifier.

An RTSP session is in no way tied to a transport-level connection such as a TCP connection. During an

RTSP session, an RTSP client may open and close many reliable transport connections to the server to issue

RTSP requests. Alternatively, it may use a connectionless transport protocol such as UDP.

The streams controlled by RTSP may use RTP [1], but the operation of RTSP does not depend on the

transport mechanism used to carry continuous media.

The protocol is intentionally similar in syntax and operation to HTTP/1.1, so that extension mechanisms

to HTTP can in most cases also be added to RTSP. However, RTSP differs in a number of important aspects

from HTTP:

� RTSP introduces a number of new methods and has a different protocol identifier.

� An RTSP server needs to maintain state by default in almost all cases, as opposed to the stateless

nature of HTTP. (RTSP servers and clients MAY use the HTTP state maintenance mechanism [2].)

� Both an RTSP server and client can issue requests.

� Data is carried out-of-band, by a different protocol. (There is an exception to this.)

� RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1, consistent with current HTML

internationalization efforts [3].

� The Request-URI always contains the absolute URI. Because of backward compatibility with a his-

torical blunder, HTTP/1.1 carries only the absolute path in the request

This makes virtual hosting easier. However, this is incompatible with HTTP/1.1, which may be a bad

idea.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 4]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

The protocol supports the following operations:

Retrieval of media from media server: The client can request a presentation description via HTTP or

some other method. If the presentation is being multicast, the presentation description contains the

multicast addresses and ports to be used for the continuous media. If the presentation is to be sent

only to the client via unicast, the client provides the destination for security reasons.

Invitation of a media server to a conference: A media server can be “invited” to join an existing confer-

ence, either to play back media into the presentation or to record all or a subset of the media in a

presentation. This mode is useful for distributed teaching applications. Several parties in the confer-

ence may take turns “pushing the remote control buttons”.

Addition of media to an existing presentation: Particularly for live presentations, it is useful if the server

can tell the client about additional media becoming available.

RTSP requests may be handled by proxies, tunnels and caches as in HTTP/1.1.

1.2 Requirements

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in RFC xxxx [4].

1.3 Terminology

Some of the terminology has been adopted from HTTP/1.1 [5]. Terms not listed here are defined as in

HTTP/1.1.

Conference: a multiparty, multimedia presentation, where “multi” implies greater than or equal to one.

Client: The client requests continuous media data from the media server.

Connection: A transport layer virtual circuit established between two programs for the purpose of commu-

nication.

Continuous media: Data where there is a timing relationship between source and sink, that is, the sink

must reproduce the timing relationshop that existed at the source. The most common examples of

continuous media are audio and motion video. Continuous media can be realtime (interactive), where

there is a “tight” timing relationship between source and sink, or streaming (playback), where the

relationship is less strict.

Participant: Participants are members of conferences. A participant may be a machine, e.g., a media record

or playback server.

Media server: The network entity providing playback or recording services for one or more media streams.

Different media streams within a presentation may originate from different media servers. A media

server may reside on the same or a different host as the web server the presentation is invoked from.

Media parameter: Parameter specific to a media type that may be changed while the stream is being played

or prior to it.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 5]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

(Media) stream: A single media instance, e.g., an audio stream or a video stream as well as a single white-

board or shared application group. When using RTP, a stream consists of all RTP and RTCP packets

created by a source within an RTP session. This is equivalent to the definition of a DSM-CC stream.

Message: The basic unit of RTSP communication, consisting of a structured sequence of octets matching

the syntax defined in Section 14 and transmitted via a connection or a connectionless protocol.

Presentation: A set of one or more streams which the server allows the client to manipulate together.

A presentation has a single time axis for all streams belonging to it. Presentations are defined by

presentation descriptions (see below). A presentation description contains RTSP URIs that define

which streams can be controlled individually and an RTSP URI to control the whole presentation.

A movie or live concert consisting of one or more audio and video streams is be an example of a

presentation.

Presentation description: A presentation description contains information about one or more media streams

within a presentation, such as the set of encodings, network addresses and information about the con-

tent. Other IETF protocols such as SDP [6] use the term “session” for a live presentation. The

presentation description may take several different formats, including but not limited to the session

description format SDP.

Response: An RTSP response. If an HTTP response is meant, that is indicated explicitly.

Request: An RTSP request. If an HTTP request is meant, that is indicated explicitly.

RTSP session: A complete RTSP “transaction”, e.g., the viewing of a movie. A session typically consist

of a client setting up a transport mechanism for the continuous media stream (SETUP), starting the

stream with PLAY or RECORD and closing the stream with TEARDOWN.

1.4 Protocol Properties

RTSP has the following properties:

Extendable: New methods and parameters can be easily added to RTSP.

Easy to parse: RTSP can be parsed by standard HTTP or MIME parsers.

Secure: RTSP re-uses web security mechanisms, either at the transport level (TLS [7]) or within the proto-

col itself. All HTTP authentication mechanisms such as basic [5, Section 11.1] and digest authentica-

tion [8] are directly applicable.

Transport-independent: RTSP may use either an unreliable datagram protocol (UDP) [9], a reliable data-

gram protocol (RDP, not widely used [10]) or a reliable stream protocol such as TCP [11] as it imple-

ments application-level reliability.

Multi-server capable: Each media stream within a presentation can reside on a different server. The client

automatically establishes several concurrent control sessions with the different media servers. Media

synchronization is performed at the transport level.

Control of recording devices: The protocol can control both recording and playback devices, as well as

devices that can alternate between the two modes (“VCR”).

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 6]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Separation of stream control and conference initiation: Stream control is divorced from inviting a me-

dia server to a conference. The only requirement is that the conference initiation protocol either

provides or can be used to create a unique conference identifier. In particular, SIP [12] or H.323 may

be used to invite a server to a conference.

Suitable for professional applications: RTSP supports frame-level accuracy through SMPTE time stamps

to allow remote digital editing.

Presentation description neutral: The protocol does not impose a particular presentation description or

metafile format and can convey the type of format to be used. However, the presentation description

must contain at least one RTSP URI.

Proxy and firewall friendly: The protocol should be readily handled by both application and transport-

layer (SOCKS [13]) firewalls. A firewall may need to understand the SETUP method to open a

“hole” for the UDP media stream.

HTTP-friendly: Where sensible, RTSP re-uses HTTP concepts, so that the existing infrastructure can be

re-used. This infrastructure includes JEPI (the Joint Electronic Payment Initiative) for electronic

payments and PICS (Platform for Internet Content Selection) for associating labels with content.

However, RTSP does not just add methods to HTTP, since the controlling continuous media requires

server state in most cases.

Appropriate server control: If a client can start a stream, it must be able to stop a stream. Servers should

not start streaming to clients in such a way that clients cannot stop the stream.

Transport negotiation: The client can negotiate the transport method prior to actually needing to process

a continuous media stream.

Capability negotiation: If basic features are disabled, there must be some clean mechanism for the client

to determine which methods are not going to be implemented. This allows clients to present the

appropriate user interface. For example, if seeking is not allowed, the user interface must be able to

disallow moving a sliding position indicator.

An earlier requirement in RTSP’ was multi-client capability. However, it was determined that a better approach

was to make sure that the protocol is easily extensible to the multi-client scenario. Stream identifiers can be used

by several control streams, so that “passing the remote” would be possible. The protocol would not address how

several clients negotiate access; this is left to either a “social protocol” or some other floor control mechanism.

1.5 Extending RTSP

Since not all media servers have the same functionality, media servers by necessity will support different

sets of requests. For example:

� A server may only be capable of playback, not recording and thus has no need to support the RECORD

request.

� A server may not be capable of seeking (absolute positioning), say, if it is to support live events only.

� Some servers may not support setting stream parameters and thus not support GET PARAMETER

and SET PARAMETER.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 7]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

A server SHOULD implement all header fields described in Section 11.

It is up to the creators of presentation descriptions not to ask the impossible of a server. This situation

is similar in HTTP/1.1, where the methods described in [H19.6] are not likely to be supported across all

servers.

RTSP can be extended in three ways, listed in order of the magnitude of changes supported:

� Existing methods can be extended with new parameters, as long as these parameters can be safely

ignored by the recipient. (This is equivalent to adding new parameters to an HTML tag.)

� New methods can be added. If the recipient of the message does not understand the request, it responds

with error code 501 (Not implemented) and the sender can then attempt an earlier, less functional

version.

� A new version of the protocol can be defined, allowing almost all aspects (except the position of the

protocol version number) to change.

1.6 Overall Operation

Each presentation and media stream may be identified by an RTSP URL. The overall presentation and the

properties of the media the presentation is made up of are defined by a presentation description file, the

format of which is outside the scope of this specification. The presentation description file may be obtained

by the client using HTTP or other means such as email and may not necessarily be stored on the media

server.

For the purposes of this specification, a presentation description is assumed to describe one or more

presentations, each of which maintains a common time axis. For simplicity of exposition and without loss

of generality, it is assumed that the presentation description contains exactly one such presentation. A

presentation may contain several media streams.

The presentation description file contains a description of the media streams making up the presenta-

tion, including their encodings, language, and other parameters that enable the client to choose the most

appropriate combination of media. In this presentation description, each media stream that is individually

controllable by RTSP is identified by an RTSP URL, which points to the media server handling that par-

ticular media stream and names the stream stored on that server. Several media streams can be located on

different servers; for example, audio and video streams can be split across servers for load sharing. The

description also enumerates which transport methods the server is capable of.

Besides the media parameters, the network destination address and port need to be determined. Several

modes of operation can be distinguished:

Unicast: The media is transmitted to the source of the RTSP request, with the port number chosen by the

client. Alternatively, the media is transmitted on the same reliable stream as RTSP.

Multicast, server chooses address: The media server picks the multicast address and port. This is the

typical case for a live or near-media-on-demand transmission.

Multicast, client chooses address: If the server is to participate in an existing multicast conference, the

multicast address, port and encryption key are given by the conference description, established by

means outside the scope of this specification.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 8]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

1.7 RTSP States

RTSP controls a stream which may be sent via a separate protocol, independent of the control channel. For

example, RTSP control may occur on a TCP connection while the data flows via UDP. Thus, data delivery

continues even if no RTSP requests are received by the media server. Also, during its lifetime, a single media

stream may be controlled by RTSP requests issued sequentially on different TCP connections. Therefore,

the server needs to maintain “session state” to be able to correlate RTSP requests with a stream. The state

transitions are described in Section A.

Many methods in RTSP do not contribute to state. However, the following play a central role in defin-

ing the allocation and usage of stream resources on the server: SETUP, PLAY, RECORD, PAUSE, and

TEARDOWN.

SETUP: Causes the server to allocate resources for a stream and start an RTSP session.

PLAY and RECORD: Starts data transmission on a stream allocated via SETUP.

PAUSE: Temporarily halts a stream, without freeing server resources.

TEARDOWN: Frees resources associated with the stream. The RTSP session ceases to exist on the server.

1.8 Relationship with Other Protocols

RTSP has some overlap in functionality with HTTP. It also may interact with HTTP in that the initial

contact with streaming content is often to be made through a web page. The current protocol specification

aims to allow different hand-off points between a web server and the media server implementing RTSP.

For example, the presentation description can be retrieved using HTTP or RTSP. Having the presentation

description be returned by the web server makes it possible to have the web server take care of authentication

and billing, by handing out a presentation description whose media identifier includes an encrypted version

of the requestor’s IP address and a timestamp, with a shared secret between web and media server.

However, RTSP differs fundamentally from HTTP in that data delivery takes place out-of-band, in a

different protocol. HTTP is an asymmetric protocol, where the client issues requests and the server responds.

In RTSP, both the media client and media server can issue requests. RTSP requests are also not stateless,

in that they may set parameters and continue to control a media stream long after the request has been

acknowledged.

Re-using HTTP functionality has advantages in at least two areas, namely security and proxies. The require-

ments are very similar, so having the ability to adopt HTTP work on caches, proxies and authentication is valuable.

While most real-time media will use RTP as a transport protocol, RTSP is not tied to RTP.

RTSP assumes the existence of a presentation description format that can express both static and tem-

poral properties of a presentation containing several media streams.

2 Notational Conventions

Since many of the definitions and syntax are identical to HTTP/1.1, this specification only points to the

section where they are defined rather than copying it. For brevity, [HX.Y] is to be taken to refer to Section

X.Y of the current HTTP/1.1 specification (RFC 2068).

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 9]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

All the mechanisms specified in this document are described in both prose and an augmented Backus-

Naur form (BNF) similar to that used in RFC 2068 [H2.1]. It is described in detail in [14].

In this draft, we use indented and smaller-type paragraphs to provide background and motivation. Some

of these paragraphs are marked with HS, AR and RL, designating opinions and comments by the individual

authors which may not be shared by the co-authors and require resolution.

3 Protocol Parameters

3.1 RTSP Version

[H3.1] applies, with HTTP replaced by RTSP.

3.2 RTSP URL

The “rtsp” and “rtspu” schemes are used to refer to network resources via the RTSP protocol. This section

defines the scheme-specific syntax and semantics for RTSP URLs.

rtsp_URL = ("rtsp:" | "rtspu:") "//" host [":" port] [abs_path]
host = <A legal Internet host domain name of IP address

(in dotted decimal form), as defined by Section 2.1
of RFC 1123>

port = *DIGIT

abs path is defined in [H3.2.1].

Note that fragment and query identifiers do not have a well-defined meaning at this time, with the interpretation

left to the RTSP server.

The scheme rtsp requires that commands are issued via a reliable protocol (within the Internet, TCP),

while the scheme rtspu identifies an unreliable protocol (within the Internet, UDP).

If the port is empty or not given, port 554 is assumed. The semantics are that the identified resource

can be controlled be RTSP at the server listening for TCP (scheme “rtsp”) connections or UDP (scheme

“rtspu”) packets on that port of host, and the Request-URI for the resource is rtsp URL.

The use of IP addresses in URLs SHOULD be avoided whenever possible (see RFC 1924 [15]).

A presentation or a stream is identified by an textual media identifier, using the character set and escape

conventions [H3.2] of URLs [16]. Requests described in Section 9 can refer to either the whole presentation

or an individual stream within the presentation. Note that some methods can only be applied to streams, not

presentations and vice versa. A specific instance of a presentation or stream, e.g., one of several concurrent

transmissions of the same content, an RTSP session, is indicated by the Session header field (Section 11.26)

where needed.

For example, the RTSP URL

rtsp://media.example.com:554/twister/audiotrack

identifies the audio stream within the presentation “twister”, which can be controlled via RTSP requests

issued over a TCP connection to port 554 of host media.example.com.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 10]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

This does not imply a standard way to reference streams in URLs. The presentation description defines the

hierarchical relationships in the presentation and the URLs for the individual streams. A presentation description

may name a stream ’a.mov’ and the whole presentation ’b.mov’.

The path components of the RTSP URL are opaque to the client and do not imply any particular file

system structure for the server.

This decoupling also allows presentation descriptions to be used with non-RTSP media control protocols, simply

by replacing the scheme in the URL.

3.3 Conference Identifiers

Conference identifiers are opaque to RTSP and are encoded using standard URI encoding methods (i.e.,

LWS is escaped with %). They can contain any octet value. The conference identifier MUST be globally

unique. For H.323, the conferenceID value is to be used.

conference-id = 1*OCTET ; LWS must be URL-escaped

Conference identifiers are used to allow to allow RTSP sessions to obtain parameters from multimedia con-

ferences the media server is participating in. These conferences are created by protocols outside the scope of this

specification, e.g., H.323 [17] or SIP [12]. Instead of the RTSP client explicitly providing transport information, for

example, it asks the media server to use the values in the conference description instead. If the conference partici-

pant inviting the media server would only supply a conference identifier which is unique for that inviting party, the

media server could add an internal identifier for that party, e.g., its Internet address. However, this would prevent

that the conference participant and the initiator of the RTSP commands are two different entities.

3.4 SMPTE Relative Timestamps

A SMPTE relative time-stamp expresses time relative to the start of the clip. Relative timestamps are

expressed as SMPTE time codes for frame-level access accuracy. The time code has the format

hours:minutes:seconds.frames,

with the origin at the start of the clip. For NTSC, the frame rate is 29.97 frames per second. This is handled

by dropping the first frame index of every minute, except every tenth minute. If the frame value is zero, it

may be omitted.

smpte-range = "smpte" "=" smpte-time "-" [smpte-time]
smpte-time = 1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT ["." 1*2DIGIT]

Examples:

smpte=10:12:33.40-
smpte=10:7:33-
smpte=10:7:0-10:7:33

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 11]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

3.5 Normal Play Time

Normal play time (NPT) indicates the stream absolute position relative to the beginning of the presentation,

measured in seconds and microseconds. The beginning of a presentation corresponds to 0 seconds and 0

microseconds. Negative values are not defined. The microsecond field is always less than 1,000,000. NPT

is defined as in DSM-CC: “Intuitively, NPT is the clock the viewer associates with a program. It is often

digitally displayed on a VCR. NPT advances normally when in normal play mode (scale = 1), advances at

a faster rate when in fast scan forward (high positive scale ratio), decrements when in scan reverse (high

negative scale ratio) and is fixed in pause mode. NPT is [logically] equivalent to SMPTE time codes.” [18]

npt-range = "npt" "=" npt-time "-" [npt-time]
npt-time = 1*DIGIT [":" *DIGIT]

Examples:

npt=123:45-125

3.6 Absolute Time

Absolute time is expressed as ISO 8601 timestamps, using UTC (GMT). Fractions of a second may be

indicated.

utc-range = "clock" "=" utc-time "-" [utc-time]
utc-time = utc-date "T" utc-time "Z"
utc-date = 8DIGIT ; < YYYYMMDD >
utc-time = 6DIGIT ["." fraction] ; < HHMMSS.fraction >

Example for November 8, 1996 at 14h37 and 20 and a quarter seconds UTC:

19961108T143720.25Z

Example

4 RTSP Message

RTSP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2044). Lines

are terminated by CRLF, but receivers should be prepared to also interpret CR and LF by themselves as line

terminators.

Text-based protocols make it easier to add optional parameters in a self-describing manner. Since the number

of parameters and the frequency of commands is low, processing efficiency is not a concern. Text-based protocols,

if done carefully, also allow easy implementation of research prototypes in scripting languages such as Tcl, Visual

Basic and Perl.

The 10646 character set avoids tricky character set switching, but is invisible to the application as long as US-

ASCII is being used. This is also the encoding used for RTCP. ISO 8859-1 translates directly into Unicode, with

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 12]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

a high-order octet of zero. ISO 8859-1 characters with the most-significant bit set are represented as 1100001x

10xxxxxx.

RTSP messages can be carried over any lower-layer transport protocol that is 8-bit clean.

Requests contain methods, the object the method is operating upon and parameters to further describe

the method. Methods are idempotent, unless otherwise noted. Methods are also designed to require little or

no state maintenance at the media server.

4.1 Message Types

See [H4.1]

4.2 Message Headers

See [H4.2]

4.3 Message Body

See [H4.3]

4.4 Message Length

When a message-body is included with a message, the length of that body is determined by one of the

following (in order of precedence):

1. Any response message which MUST NOT include a message-body (such as the 1xx, 204, and 304

responses) is always terminated by the first empty line after the header fields, regardless of the entity-

header fields present in the message. (Note: An empty line consists of only CRLF.)

2. If a Content-Length header field (section 11.12) is present, its value in bytes represents the length of

the message-body. If this header field is not present, a value of zero is assumed.

3. By the server closing the connection. (Closing the connection cannot be used to indicate the end of a

request body, since that would leave no possibility for the server to send back a response.)

Note that RTSP does not (at present) support the HTTP/1.1 “chunked” transfer coding and requires the

presence of the Content-Length header field.

Given the moderate length of presentation descriptions returned, the server should always be able to determine

its length, even if it is generated dynamically, making the chunked transfer encoding unnecessary. Even though

Content-Length must be present if there is any entity body, the rules ensure reasonable behavior even if the length

is not given explicitly.

5 Request

A request message from a client to a server or vice versa includes, within the first line of that message, the

method to be applied to the resource, the identifier of the resource, and the protocol version in use.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 13]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Request = Request-line CRLF
*request-header
CRLF
[message-body]

Request-Line = Method SP Request-URI SP RTSP-Version SP seq-no CRLF

Method = "DESCRIBE" ; Section
| "GET_PARAMETER" ; Section
| "OPTIONS" ; Section
| "PAUSE" ; Section
| "PLAY" ; Section
| "RECORD" ; Section
| "REDIRECT" ; Section
| "SETUP" ; Section
| "SET_PARAMETER" ; Section
| "TEARDOWN" ; Section
| extension-method

extension-method = token

Request-URI = "*" | absolute_URI

RTSP-Version = "RTSP" "/" 1*DIGIT "." 1*DIGIT

seq-no = 1*DIGIT

Note that in contrast to HTTP/1.1, RTSP requests always contain the absolute URL (that is, including

the scheme, host and port) rather than just the absolute path.

The asterisk ”*” in the Request-URI means that the request does not apply to a particular resource, but

to the server itself, and is only allowed when the method used does not necessarily apply to a resource. One

example would be

OPTIONS * RTSP/1.0

6 Response

[H6] applies except that HTTP-Version is replaced by RTSP-Version. Also, RTSP defines additional

status codes and does not define some HTTP codes. The valid response codes and the methods they can be

used with are defined in the table 1.

After receiving and interpreting a request message, the recipient responds with an RTSP response mes-

sage.

Response = Status-Line ; Section

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 14]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

*(general-header ; Section
| response-header ; Section
| entity-header) ; Section

CRLF
[message-body] ; Section

6.1 Status-Line

The first line of a Response message is the Status-Line, consisting of the protocol version followed by

a numeric status code, the sequence number of the corresponding request and the textual phrase associated

with the status code, with each element separated by SP characters. No CR or LF is allowed except in the

final CRLF sequence. Note that the addition of a

Status-Line = RTSP-Version SP Status-Code SP seq-no SP Reason-Phrase CRLF

6.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request.

These codes are fully defined in section10. The Reason-Phrase is intended to give a short textual

description of the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase

is intended for the human user. The client is not required to examine or display the Reason-Phrase.

The first digit of the Status-Code defines the class of response. The last two digits do not have any

categorization role. There are 5 values for the first digit:

� 1xx: Informational - Request received, continuing process

� 2xx: Success - The action was successfully received, understood, and accepted

� 3xx: Redirection - Further action must be taken in order to complete the request

� 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

� 5xx: Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for RTSP/1.0, and an example set of corre-

sponding Reason-Phrase’s, are presented below. The reason phrases listed here are only recommended

– they may be replaced by local equivalents without affecting the protocol. Note that RTSP adopts most

HTTP/1.1 status codes and adds RTSP-specific status codes in the starting at 450 to avoid conflicts with

newly defined HTTP status codes.

Status-Code = "100" ; Continue
| "200" ; OK
| "201" ; Created
| "300" ; Multiple Choices
| "301" ; Moved Permanently
| "302" ; Moved Temporarily
| "303" ; See Other

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 15]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

| "304" ; Not Modified
| "305" ; Use Proxy
| "400" ; Bad Request
| "401" ; Unauthorized
| "402" ; Payment Required
| "403" ; Forbidden
| "404" ; Not Found
| "405" ; Method Not Allowed
| "406" ; Not Acceptable
| "407" ; Proxy Authentication Required
| "408" ; Request Time-out
| "409" ; Conflict
| "410" ; Gone
| "411" ; Length Required
| "412" ; Precondition Failed
| "413" ; Request Entity Too Large
| "414" ; Request-URI Too Large
| "415" ; Unsupported Media Type
| "451" ; Parameter Not Understood
| "452" ; Conference Not Found
| "453" ; Not Enough Bandwidth
| "45x" ; Session Not Found
| "45x" ; Method Not Valid in This State
| "45x" ; Header Field Not Valid for Resource
| "45x" ; Invalid Range
| "45x" ; Parameter Is Read-Only
| "500" ; Internal Server Error
| "501" ; Not Implemented
| "502" ; Bad Gateway
| "503" ; Service Unavailable
| "504" ; Gateway Time-out
| "505" ; HTTP Version not supported
| extension-code

extension-code = 3DIGIT

Reason-Phrase = *<TEXT, excluding CR, LF>

RTSP status codes are extensible. RTSP applications are not required to understand the meaning of all

registered status codes, though such understanding is obviously desirable. However, applications MUST

understand the class of any status code, as indicated by the first digit, and treat any unrecognized response

as being equivalent to the x00 status code of that class, with the exception that an unrecognized response

MUST NOT be cached. For example, if an unrecognized status code of 431 is received by the client, it can

safely assume that there was something wrong with its request and treat the response as if it had received

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 16]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

a 400 status code. In such cases, user agents SHOULD present to the user the entity returned with the

response, since that entity is likely to include human-readable information which will explain the unusual

status.

6.1.2 Response Header Fields

The response-header fields allow the request recipient to pass additional information about the response

which cannot be placed in the Status-Line. These header fields give information about the server and

about further access to the resource identified by the Request-URI.

response-header = Location ; Section
| Proxy-Authenticate ; Section
| Public ; Section
| Retry-After ; Section
| Server ; Section
| Vary ; Section
| WWW-Authenticate ; Section

Response-header field names can be extended reliably only in combination with a change in the protocol

version. However, new or experimental header fields MAY be given the semantics of response-header fields

if all parties in the communication recognize them to be response-header fields. Unrecognized header fields

are treated as entity-header fields.

7 Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or

response status code. An entity consists of entity-header fields and an entity-body, although some responses

will only include the entity-headers.

In this section, both sender and recipient refer to either the client or the server, depending on who sends

and who receives the entity.

7.1 Entity Header Fields

Entity-header fields define optional metainformation about the entity-body or, if no body is present, about

the resource identified by the request.

entity-header = Allow ; Section 14.7
| Content-Encoding ; Section 14.12
| Content-Language ; Section 14.13
| Content-Length ; Section 14.14
| Content-Type ; Section 14.18
| Expires ; Section 14.21
| Last-Modified ; Section 14.29
| extension-header

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 17]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Code reason

100 Continue all

200 OK all

201 Created RECORD

300 Multiple Choices all

301 Moved Permanently all

302 Moved Temporarily all

303 See Other all

305 Use Proxy all

400 Bad Request all

401 Unauthorized all

402 Payment Required all

403 Forbidden all

404 Not Found all

405 Method Not Allowed all

406 Not Acceptable all

407 Proxy Authentication Required all

408 Request Timeout all

409 Conflict

410 Gone all

411 Length Required SETUP

412 Precondition Failed

413 Request Entity Too Large SETUP

414 Request-URI Too Long all

415 Unsupported Media Type SETUP

45x Only Valid for Stream SETUP

45x Invalid parameter SETUP

45x Not Enough Bandwidth SETUP

45x Illegal Conference Identifier SETUP

45x Illegal Session Identifier PLAY, RECORD, TEARDOWN

45x Parameter Is Read-Only SET PARAMETER

45x Header Field Not Valid all

500 Internal Server Error all

501 Not Implemented all

502 Bad Gateway all

503 Service Unavailable all

504 Gateway Timeout all

505 RTSP Version Not Supported all

Table 1: Status codes and their usage with RTSP methods

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 18]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

extension-header = message-header

The extension-header mechanism allows additional entity-header fields to be defined without changing

the protocol, but these fields cannot be assumed to be recognizable by the recipient. Unrecognized header

fields SHOULD be ignored by the recipient and forwarded by proxies.

7.2 Entity Body

See [H7.2]

8 Connections

RTSP requests can be transmitted in several different ways:

� persistent transport connections used for several request-response transactions;

� one connection per request/response transaction;

� connectionless mode.

The type of transport connection is defined by the RTSP URI (Section 3.2). For the scheme “rtsp”,

a persistent connection is assumed, while the scheme “rtspu” calls for RTSP requests to be send without

setting up a connection.

Unlike HTTP, RTSP allows the media server to send requests to the media client. However, this is

only supported for persistent connections, as the media server otherwise has no reliable way of reaching the

client. Also, this is the only way that requests from media server to client are likely to traverse firewalls.

8.1 Pipelining

A client that supports persistent connections or connectionless mode MAY “pipeline” its requests (i.e., send

multiple requests without waiting for each response). A server MUST send its responses to those requests

in the same order that the requests were received.

8.2 Reliability and Acknowledgements

Requests are acknowledged by the receiver unless they are sent to a multicast group. If there is no ac-

knowledgement, the sender may resend the same message after a timeout of one round-trip time (RTT). The

round-trip time is estimated as in TCP (RFC TBD), with an initial round-trip value of 500 ms. An imple-

mentation MAY cache the last RTT measurement as the initial value for future connections. If a reliable

transport protocol is used to carry RTSP, the timeout value MAY be set to an arbitrarily large value.

This can greatly increase responsiveness for proxies operating in local-area networks with small RTTs. The

mechanism is defined such that the client implementation does not have be aware of whether a reliable or unreliable

transport protocol is being used. It is probably a bad idea to have two reliability mechanisms on top of each other,

although the RTSP RTT estimate is likely to be larger than the TCP estimate.

Each request carries a sequence number, which is incremented by one for each request transmitted. If a

request is repeated because of lack of acknowledgement, the sequence number is incremented.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 19]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

This avoids ambiguities when computing round-trip time estimates.

[TBD: An initial sequence number negotiation needs to be added for UDP; otherwise, a new stream connec-

tion may see a request be acknowledged by a delayed response from an earlier “connection”. This handshake

can be avoided with a sequence number containing a timestamp of sufficiently high resolution.]

The reliability mechanism described here does not protect against reordering. This may cause problems

in some instances. For example, a TEARDOWN followed by a PLAY has quite a different effect than the

reverse. Similarly, if a PLAY request arrives before all parameters are set due to reordering, the media server

would have to issue an error indication. Since sequence numbers for retransmissions are incremented (to

allow easy RTT estimation), the receiver cannot just ignore out-of-order packets. [TBD: This problem could

be fixed by including both a sequence number that stays the same for retransmissions and a timestamp for

RTT estimation.]

Systems implementing RTSP MUST support carrying RTSP over TCP and MAY support UDP. The

default port for the RTSP server is 554 for both UDP and TCP.

A number of RTSP packets destined for the same control end point may be packed into a single lower-

layer PDU or encapsulated into a TCP stream. RTSP data MAY be interleaved with RTP and RTCP packets.

Unlike HTTP, an RTSP method header MUST contain a Content-Length whenever that method contains a

payload. Otherwise, an RTSP packet is terminated with an empty line immediately following the method

header.

9 Method Definitions

The method token indicates the method to be performed on the resource identified by the Request-URI.

The method is case-sensitive. New methods may be defined in the future. Method names may not start with

a $ character (decimal 24) and must be a token. Methods are summarized in Table 2.

method direction object requirement

DESCRIBE C ! S, S ! C P,S recommended

GET PARAMETER C ! S, S ! C P,S optional

OPTIONS C ! S P,S required

PAUSE C ! S P,S recommended

PLAY C ! S P,S required

RECORD C ! S P,S optional

REDIRECT S ! C P,S optional

SETUP C ! S S required

SET PARAMETER C ! S, S ! C P,S optional

TEARDOWN C ! S P,S required

Table 2: Overview of RTSP methods, their direction, and what objects (P: presentation, S: stream) they

operate on

Notes on Table 2: PAUSE is recommend, but not required in that a fully functional server can be built

that does not support this method, for example, for live feeds. If a server does not support a particular

method, it MUST return ”501 Not Implemented” and a client SHOULD not try this method again for this

server.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 20]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

9.1 OPTIONS

The behavior is equivalent to that described in [H9.2]. An OPTIONS request may be issued at any time,

e.g., if the client is about to try a non-standard request. It does not influence server state.

In addition, if the optional Require header is present, option tags within the header indicate features

needed by the requestor that are not required at the version level of the protocol.

Example 1:

C->S: OPTIONS * RTSP/1.0 1
Require: implicit-play, record-feature
Transport-Require: switch-to-udp-control, gzipped-messages

Note that these are fictional features (though we may want to make them real one day).

Example 2 (using RFC2069-style authentication only as an example):

S->C: OPTIONS * RTSP/1.0 1
Authenticate: Digest realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

S->C: RTSP/1.0 200 1 OK
Date: 23 Jan 1997 15:35:06 GMT
Nack-Transport-Require: switch-to-udp-control

Note that these are fictional features (though we may want to make them real one day).

Example 2 (using RFC2069-style authentication only as an example):

C->S: RTSP/1.0 401 1 Unauthorized
Authorization: Digest username="Mufasa",

realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/dir/index.html",
response="e966c932a9242554e42c8ee200cec7f6",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

9.2 DESCRIBE

The DESCRIBE method retrieves the description of a presentation or media object identified by the re-

quest URL from a server. It may use the Accept header to specify the description formats that the client

understands. The server responds with a description of the requested resource. Alternatively, the server may

“push” a new description to the client, for example, if a new stream has become available. If a new media

stream is added to a presentation (e.g., during a live presentation), the whole presentation description should

be sent again, rather than just the additional components, so that components can be deleted.

Example:

C->S: DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0 312

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 21]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Accept: application/sdp, application/rtsl, application/mheg

S->C: RTSP/1.0 200 312 OK
Date: 23 Jan 1997 15:35:06 GMT
Content-Type: application/sdp
Content-Length: 376

v=0
o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e=mjh@isi.edu (Mark Handley)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 3456 RTP/AVP 0
m=video 2232 RTP/AVP 31
m=whiteboard 32416 UDP WB
a=orient:portrait

or

S->C: RTSP/1.0 200 312 OK
Date: 23 Jan 1997 15:35:06 GMT
Content-Type: application/rtsl
Content-Length: 2782

<2782 octets of data containing stream description>

Server to client example:

S->C: DESCRIBE /twister RTSP/1.0 902
Session: 1234
Content-Type: application/rtsl

new RTSL presentation description

9.3 SETUP

The SETUP request for a URI specifies the transport mechanism to be used for the streamed media. A

client can issue a SETUP request for a stream that is already playing to change transport parameters. For

the benefit of any intervening firewalls, a client must indicate the transport parameters even if it has no

influence over these parameters, for example, where the server advertises a fixed multicast address.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 22]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

This avoids having firewall to parse numerous different presentation description formats, for information which

is irrelevant.

If the optional Require header is present, option tags within the header indicate features needed by

the requestor that are not required at the version level of the protocol. The Transport-Require header is

used to indicate proxy-sensitive features that MUST be stripped by the proxy to the server if not supported.

Furthermore, any Transport-Require header features that are not supported by the proxy MUST be negatively

acknowledged by the proxy to the client if not supported.

HS: In my opinion, the Require header should be replaced by PEP since PEP is standards-track, has more

functionality and somebody already did the work.

The Transport header specifies the transport parameters acceptable to the client for data transmission;

the response will contain the transport parameters selected by the server.

C->S: SETUP foo/bar/baz.rm RTSP/1.0 302
Transport: rtp/udp;port=458

S->C: RTSP/1.0 200 302 OK
Date: 23 Jan 1997 15:35:06 GMT
Transport: cush/udp;port=458

9.4 PLAY

The PLAY method tells the server to start sending data via the mechanism specified in SETUP. A client

MUST NOT issue a PLAY request until any outstanding SETUP requests have been acknowledged as

successful.

The PLAY request positions the normal play time to the beginning of the range specified and delivers

stream data until the end of the range is reached. PLAY requests may be pipelined (queued); a server MUST

queue PLAY requests to be executed in order. That is, a PLAY request arriving while a previous PLAY

request is still active is delayed until the first has been completed.

This allows precise editing.

For example, regardless of how closely spaced the two PLAY commands in the example below arrive, the

server will play first second 10 through 15 and then, immediately following, seconds 20 to 25 and finally

seconds 30 through the end.

C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0 835
Range: npt=10-15

C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0 836
Range: npt=20-25

C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0 837
Range: npt=30-

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 23]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

See the description of the PAUSE request for further examples.

A PLAY request without a Range header is legal. It starts playing a stream from the beginning unless

the stream has been paused. If a stream has been paused via PAUSE, stream delivery resumes at the pause

point. If a stream is playing, such a PLAY request causes no further action and can be used by the client to

test server liveness.

The Range header may also contain a time parameter. This parameter specifies a time in UTC at which

the playback should start. If the message is received after the specified time, playback is started immediately.

The time parameter may be used to aid in synchronisation of streams obtained from different sources.

For a on-demand stream, the server replies back with the actual range that will be played back. This may

differ from the requested range if alignment of the requested range to valid frame boundaries is required for

the media source. If no range is specified in the request, the current position is returned in the reply. The

unit of the range in the reply is the same as that in the request.

After playing the desired range, the presentation is automatically paused, as if a PAUSE request had

been issued.

The following example plays the whole presentation starting at SMPTE time code 0:10:20 until the end

of the clip. The playback is to start at 15:36 on 23 Jan 1997.

C->S: PLAY rtsp://audio.example.com/twister.en RTSP/1.0 833
Range: smpte=0:10:20-;time=19970123T153600Z

S->C: RTSP/1.0 200 833 OK
Date: 23 Jan 1997 15:35:06 GMT
Range: smpte=0:10:22-;time=19970123T153600Z

For playing back a recording of a live presentation, it may be desirable to use clock units:

C->S: PLAY rtsp://audio.example.com/meeting.en RTSP/1.0 835
Range: clock=19961108T142300Z-19961108T143520Z

S->C: RTSP/1.0 200 833 OK
Date: 23 Jan 1997 15:35:06 GMT

A media server only supporting playback MUST support the smpte format and MAY support the clock

format.

9.5 PAUSE

The PAUSE request causes the stream delivery to be interrupted (halted) temporarily. If the request URL

names a stream, only playback and recording of that stream is halted. For example, for audio, this is equiva-

lent to muting. If the request URL names a presentation or group of streams, delivery of all currently active

streams within the presentation or group is halted. After resuming playback or recording, synchronization

of the tracks MUST be maintained. Any server resources are kept.

The PAUSE request may contain a Range header specifying when the stream or presentation is to be

halted. The header must contain exactly one value rather than a time range. The normal play time for the

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 24]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

stream is set to that value. The pause request becomes effective the first time the server is encountering the

time point specified. If this header is missing, stream delivery is interrupted immediately on receipt of the

message.

For example, if the server has play requests for ranges 10 to 15 and 20 to 29 pending and then receives a

pause request for NPT 21, it would start playing the second range and stop at NPT 21. If the pause request

is for NPT 12 and the server is playing at NPT 13 serving the first play request, it stops immediately. If

the pause request is for NPT 16, it stops after completing the first play request and discards the second play

request.

As another example, if a server has received requests to play ranges 10 to 15 and then 13 to 20, that is,

overlapping ranges, the PAUSE request for NPT=14 would take effect while playing the first range, with the

second PLAY request effectively being ignored, assuming the PAUSE request arrives before the server has

started playing the second, overlapping range. Regardless of when the PAUSE request arrives, it sets the

NPT to 14.

If the server has already sent data beyond the time specified in the Range header, a PLAY would still

resume at that point in time, as it is assumed that the client has discarded data after that point. This ensures

continuous pause/play cycling without gaps.

Example:

C->S: PAUSE /fizzle/foo RTSP/1.0 834

S->C: RTSP/1.0 200 834 OK
Date: 23 Jan 1997 15:35:06 GMT

9.6 TEARDOWN

Stop the stream delivery for the given URI, freeing the resources associated with it. If the URI is the root

node for this presentation, any RTSP session identifier associated with the session is no longer valid. Unless

all transport parameters are defined by the session description, a SETUP request has to be issued before the

session can be played again.

Example:

C->S: TEARDOWN /fizzle/foo RTSP/1.0 892

S->C: RTSP/1.0 200 892 OK

9.7 GET PARAMETER

The requests retrieves the value of a parameter of a presentation or stream specified in the URI. Multiple

parameters can be requested in the message body using the content type text/rtsp-parameters. Note

that parameters include server and client statistics. IANA registers parameter names for statistics and other

purposes. GET PARAMETER with no entity body may be used to test client or server liveness (“ping”).

Example:

S->C: GET_PARAMETER /fizzle/foo RTSP/1.0 431
Content-Type: text/rtsp-parameters

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 25]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Session: 1234
Content-Length: 15

packets_received
jitter

C->S: RTSP/1.0 200 431 OK
Content-Length: 46
Content-Type: text/rtsp-parameters

packets_received: 10
jitter: 0.3838

9.8 SET PARAMETER

This method requests to set the value of a parameter for a presentation or stream specified by the URI.

A request SHOULD only contain a single parameter to allow the client to determine why a particular

request failed. A server MUST allow a parameter to be set repeatedly to the same value, but it MAY disallow

changing parameter values.

Note: transport parameters for the media stream MUST only be set with the SETUP command.

Restricting setting transport parameters to SETUP is for the benefit of firewalls.

The parameters are split in a fine-grained fashion so that there can be more meaningful error indications. How-

ever, it may make sense to allow the setting of several parameters if an atomic setting is desirable. Imagine device

control where the client does not want the camera to pan unless it can also tilt to the right angle at the same time.

A SET PARAMETER request without parameters can be used as a way to detect client or server live-

ness.

Example:

C->S: SET_PARAMETER /fizzle/foo RTSP/1.0 421
Content-type: text/rtsp-parameters

fooparam: foostuff
barparam: barstuff

S->C: RTSP/1.0 450 421 Invalid Parameter
Content-Length: 6

barparam

9.9 REDIRECT

A redirect request informs the client that it must connect to another server location. It contains the mandatory

header Location, which indicates that the client should issue a DESCRIBE for that URL. It may contain

the parameter Range, which indicates when the redirection takes effect.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 26]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

This example request redirects traffic for this URI to the new server at the given play time:

S->C: REDIRECT /fizzle/foo RTSP/1.0 732
Location: rtsp://bigserver.com:8001
Range: clock=19960213T143205Z-

9.10 RECORD

This method initiates recording a range of media data according to the presentation description. The times-

tamp reflects start and end time (UTC). If no time range is given, use the start or end time provided in the

presentation description. If the session has already started, commence recording immediately. The Confer-

ence header is mandatory.

The server decides whether to store the recorded data under the request-URI or another URI. If the

server does not use the request-URI, the response SHOULD be 201 (Created) and contain an entity which

describes the status of the request and refers to the new resource, and a Location header.

A media server supporting recording of live presentations MUST support the clock range format; the

smpte format does not make sense.

In this example, the media server was previously invited to the conference indicated.

C->S: RECORD /meeting/audio.en RTSP/1.0 954
Session: 1234
Conference: 128.16.64.19/32492374

9.11 Embedded Binary Data

Binary packets such as RTP data are encapsulated by an ASCII dollar sign (24 decimal), followed by a one-

byte session identifier, followed by the length of the encapsulated binary data as a binary, two-byte integer

in network byte order. The binary data follows immediately afterwards, without a CRLF.

10 Status Code Definitions

Where applicable, HTTP status [H10] codes are re-used. Status codes that have the same meaning are not

repeated here. See Table 1 for a listing of which status codes may be returned by which request.

10.1 Redirection 3xx

See [H10.3].

Within RTSP, redirection may be used for load balancing or redirecting stream requests to a server

topologically closer to the client. Mechanisms to determine topological proximity are beyond the scope of

this specification.

10.2 Client Error 4xx

10.2.1 451 Parameter Not Understood

The recipient of the request does not support one or more parameters contained in the request.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 27]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

10.2.2 452 Conference Not Found

The conference indicated by a Conference header field is unknown to the media server.

10.2.3 453 Not Enough Bandwidth

The request was refused since there was insufficient bandwidth. This may, for example, be the result of a

resource reservation failure.

10.2.4 45x Session Not Found

The RTSP session identifier is invalid or has timed out.

10.2.5 45x Method Not Valid in This State

The client or server cannot process this request in its current state.

10.2.6 45x Header Field Not Valid for Resource

The server could not act on a required request header. For example, if PLAY contains the Range header

field, but the stream does not allow seeking.

10.2.7 45x Invalid Range

The Range value given is out of bounds, e.g., beyond the end of the presentation.

10.2.8 45x Parameter Is Read-Only

The parameter to be set by SET PARAMETER can only be read, but not modified.

11 Header Field Definitions

HTTP/1.1 or other, non-standard header fields not listed here currently have no well-defined meaning and

SHOULD be ignored by the recipient.

Tables 3 summarizes the header fields used by RTSP. Type “R” designates request headers, type “r”

response headers. Fields marked with “r” in the column label “support” MUST be implemented by the re-

cipient for a particular method, while fields marked “o” are optional. Note that not all fields marked ’r’ will

be send in every request of this type; merely, that client (for response headers) and server (for request head-

ers) MUST implement them. The last column lists the method for which this header field is meaningful; the

designation “entity” refers to all methods that return a message body. Within this specification, DESCRIBE

and GET PARAMETER fall into this class.

If the field content does not apply to the particular resource, the server MUST return status 45x (Header

Field Not Valid for Resource).

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 28]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Header type support methods

Accept R o entity

Accept-Encoding R o entity

Accept-Language R o all

Authorization R o all

Bandwidth R o SETUP

Blocksize R o all but OPTIONS, TEARDOWN

Cache-Control Rr o SETUP

Conference R o SETUP

Connection Rr r all

Content-Encoding R r SET PARAMETER

Content-Encoding r r DESCRIBE

Content-Length R r SET PARAMETER

Content-Length r r entity

Content-Type R r SET PARAMETER

Content-Type r r entity

Date Rr o all

Expires r o DESCRIBE

If-Modified-Since R o DESCRIBE, SETUP

Last-Modified r o entity

Public r o all

Range R o PLAY, PAUSE, RECORD

Range r o PLAY, PAUSE, RECORD

Referer R o all

Require R r all

Retry-After r o all

Scale Rr o PLAY, RECORD

Session Rr r all but SETUP, OPTIONS

Server r o all

Speed Rr o PLAY

Transport Rr r SETUP

Transport-Require R x all

User-Agent R o all

Via Rr o all

WWW-Authenticate r o all

Table 3: Overview of RTSP header fields

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 29]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

11.1 Accept

The Accept request-header field can be used to specify certain presentation description content types which

are acceptable for the response.

The “level” parameter for presentation descriptions is properly defined as part of the MIME type registration,

not here.

See [H14.1] for syntax.

Example of use:

Accept: application/rtsl, application/sdp;level=2

11.2 Accept-Encoding

See [H14.3]

11.3 Accept-Language

See [H14.4]. Note that the language specified applies to the presentation description and any reason phrases,

not the media content.

11.4 Allow

The Allow response header field lists the methods supported by the resource identified by the request-URI.

The purpose of this field is to strictly inform the recipient of valid methods associated with the resource. An

Allow header field must be present in a 405 (Method not allowed) response.

Example of use:

Allow: SETUP, PLAY, RECORD, SET_PARAMETER

11.5 Authorization

See [H14.8]

11.6 Bandwidth

The Bandwidth request header field describes the estimated bandwidth available to the client, expressed as

a positive integer and measured in bits per second.

Bandwidth = "Bandwidth" ":" 1*DIGIT

Example:

Bandwidth: 4000

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 30]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

11.7 Blocksize

This request header field is sent from the client to the media server asking the server for a particular media

packet size. This packet size does not include lower-layer headers such as IP, UDP, or RTP. The server is

free to use a blocksize which is lower than the one requested. The server MAY truncate this packet size to

the closest multiple of the minimum media-specific block size or overrides it with the media specific size

if necessary. The block size is a strictly positive decimal number and measured in octets. The server only

returns an error (416) if the value is syntactically invalid.

11.8 Cache-Control

The Cache-Control general header field is used to specify directives that MUST be obeyed by all caching

mechanisms along the request/response chain.

Cache directives must be passed through by a proxy or gateway application, regardless of their signifi-

cance to that application, since the directives may be applicable to all recipients along the request/response

chain. It is not possible to specify a cache- directive for a specific cache.

Cache-Control should only be specified in a SETUP request and its response. Note: Cache-Control

does not govern the caching of responses as for HTTP, but rather of the stream identified by the SETUP

request. Responses to RTSP requests are not cacheable.

[HS: Should there be an exception for DESCRIBE?]

Cache-Control = "Cache-Control" ":" 1#cache-directive

cache-directive = cache-request-directive
| cache-response-directive

cache-request-directive =
"no-cache"

| "max-stale"
| "min-fresh"
| "only-if-cached"
| cache-extension

cache-response-directive =
"public"

| "private"
| "no-cache"
| "no-transform"
| "must-revalidate"
| "proxy-revalidate"
| "max-age" "=" delta-seconds
| cache-extension

cache-extension = token ["=" (token | quoted-string)]

no-cache: Indicates that the media stream MUST NOT be cached anywhere. This allows an origin server to

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 31]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

prevent caching even by caches that have been configured to return stale responses to client requests.

public: Indicates that the media stream is cachable by any cache.

private: Indicates that the media stream is intended for a single user and MUST NOT be cached by a shared

cache. A private (non-shared) cache may cache the media stream.

no-transform: An intermediate cache (proxy) may find it useful to convert the media type of certain stream.

A proxy might, for example, convert between video formats to save cache space or to reduce the

amount of traffic on a slow link. Serious operational problems may occur, however, when these

transformations have been applied to streams intended for certain kinds of applications. For example,

applications for medical imaging, scientific data analysis and those using end-to-end authentication,

all depend on receiving a stream that is bit for bit identical to the original entity-body. Therefore, if a

response includes the no-transform directive, an intermediate cache or proxy MUST NOT change the

encoding of the stream. Unlike HTTP, RTSP does not provide for partial transformation at this point,

e.g., allowing translation into a different language.

only-if-cached: In some cases, such as times of extremely poor network connectivity, a client may want a

cache to return only those media streams that it currently has stored, and not to receive these from the

origin server. To do this, the client may include the only-if-cached directive in a request. If it receives

this directive, a cache SHOULD either respond using a cached media stream that is consistent with

the other constraints of the request, or respond with a 504 (Gateway Timeout) status. However, if a

group of caches is being operated as a unified system with good internal connectivity, such a request

MAY be forwarded within that group of caches.

max-stale: Indicates that the client is willing to accept a media stream that has exceeded its expiration time.

If max-stale is assigned a value, then the client is willing to accept a response that has exceeded its

expiration time by no more than the specified number of seconds. If no value is assigned to max-stale,

then the client is willing to accept a stale response of any age.

min-fresh: Indicates that the client is willing to accept a media stream whose freshness lifetime is no less

than its current age plus the specified time in seconds. That is, the client wants a response that will

still be fresh for at least the specified number of seconds.

must-revalidate: When the must-revalidate directive is present in a SETUP response received by a cache,

that cache MUST NOT use the entry after it becomes stale to respond to a subsequent request without

first revalidating it with the origin server. (I.e., the cache must do an end-to-end revalidation every

time, if, based solely on the origin server’s Expires, the cached response is stale.)

11.9 Conference

This request header field establishes a logical connection between a conference, established using non-RTSP

means, and an RTSP stream. The conference-id must not be changed for the same RTSP session.

Conference = "Conference" ":" conference-id

Example:

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 32]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

11.10 Connection

See [H14.10].

11.11 Content-Encoding

See [H14.12]

11.12 Content-Length

This field contains the length of the content of the method (i.e. after the double CRLF following the last

header). Unlike HTTP, it MUST be included in all messages that carry content beyond the header portion

of the message. It is interpreted according to [H14.14].

11.13 Content-Type

See [H14.18]. Note that the content types suitable for RTSP are likely to be restricted in practice to presen-

tation descriptions and parameter-value types.

11.14 Date

See [H14.19].

11.15 Expires

The Expires entity-header field gives the date/time after which the media-stream should be considered stale.

A stale cache entry may not normally be returned by a cache (either a proxy cache or an user agent cache)

unless it is first validated with the origin server (or with an intermediate cache that has a fresh copy of the

entity). See section 13.2 for further discussion of the expiration model.

The presence of an Expires field does not imply that the original resource will change or cease to exist

at, before, or after that time.

The format is an absolute date and time as defined by HTTP-date in [H3.3]; it MUST be in RFC1123-

date format:

Expires = "Expires" ":" HTTP-date

An example of its use is

Expires: Thu, 01 Dec 1994 16:00:00 GMT

RTSP/1.0 clients and caches MUST treat other invalid date formats, especially including the value ”0”,

as in the past (i.e., ”already expired”).

To mark a response as ”already expired,” an origin server should use an Expires date that is equal to the

Date header value.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 33]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

To mark a response as ”never expires,” an origin server should use an Expires date approximately one

year from the time the response is sent. RTSP/1.0 servers should not send Expires dates more than one year

in the future.

The presence of an Expires header field with a date value of some time in the future on a media stream

that otherwise would by default be non-cacheable indicates that the media stream is cachable, unless indi-

cated otherwise by a Cache-Control header field (Section 11.8.

11.16 If-Modified-Since

The If-Modified-Since request-header field is used with the DESCRIBE and SETUP methods to make

them conditional: if the requested variant has not been modified since the time specified in this field, a

description will not be returned from the server (DESCRIBE) or a stream will not be setup (SETUP);

instead, a 304 (not modified) response will be returned without any message-body.

If-Modified-Since = "If-Modified-Since" ":" HTTP-date

An example of the field is:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

11.17 Last-modified

The Last-Modified entity-header field indicates the date and time at which the origin server believes the

variant was last modified. See [H14.29]. If the request URI refers to an aggregate, the field indicates the last

modification time across all leave nodes of that aggregate.

11.18 Location

See [H14.30].

11.19 Nack-Transport-Require

Negative acknowledgement of features not supported by the server. If there is a proxy on the path between

the client and the server, the proxy MUST insert a message reply with an error message 506 (Feature not

supported).

HS: Same caveat as for Require applies.

11.20 Range

This request header field specifies a range of time. The range can be specified in a number of units. This

specification defines the smpte (see Section 3.4) and clock (see Section 3.6) range units. Within RTSP,

byte ranges [H14.36.1] are not meaningful and MUST NOT be used. The header may also contain a time

parameter in UTC, specifying the time at which the operation is to be made effective.

Range = "Range" ":" 1#ranges-specifier [";" "time" "=" utc-time]

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 34]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

ranges-specifier = npt-range | utc-range | smpte-range

Example:

Range: clock=19960213T143205Z-;Time=19970123T143720Z

The notation is similar to that used for the HTTP/1.1 header. It allows to select a clip from the media object, to

play from a given point to the end and from the current location to a given point.

11.21 Require

The Require header is used by clients to query the server about features that it may or may not support. The

server MUST respond to this header by negatively acknowledging those features which are NOT supported

in the Unsupported header.

HS: Naming of features – yet another name space. I believe this header field to be redundant. PEP should be

used instead.

For example

C->S: SETUP /foo/bar/baz.rm RTSP/1.0 302
Require: funky-feature
Funky-Parameter: funkystuff

S->C: RTSP/1.0 200 506 Option not supported
Unsupported: funky-feature

C->S: SETUP /foo/bar/baz.rm RTSP/1.0 303

S->C: RTSP/1.0 200 303 OK

This is to make sure that the client-server interaction will proceed optimally when all options are un-

derstood by both sides, and only slow down if options aren’t understood (as in the case above). For a

well-matched client-server pair, the interaction proceeds quickly, saving a round-trip often required by ne-

gotiation mechanisms. In addition, it also removes state ambiguity when the client requires features that the

server doesn’t understand.

11.22 Retry-After

See [H14.38].

11.23 Scale

A scale value of 1 indicates normal play or record at the normal forward viewing rate. If not 1, the value

corresponds to the rate with respect to normal viewing rate. For example, a ratio of 2 indicates twice the

normal viewing rate (“fast forward”) and a ratio of 0.5 indicates half the normal viewing rate. In other

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 35]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

words, a ratio of 2 has normal play time increase at twice the wallclock rate. For every second of elapsed

(wallclock) time, 2 seconds of content will be delivered. A negative value indicates reverse direction.

Unless requested otherwise by the Speed parameter, the data rate SHOULD not be changed. Imple-

mentation of scale changes depends on the server and media type. For video, a server may, for example,

deliver only key frames or selected key frames. For audio, it may time-scale the audio while preserving

pitch or, less desirably, deliver fragments of audio.

The server should try to approximate the viewing rate, but may restrict the range of scale values that it

supports. The response MUST contain the actual scale value chosen by the server.

If the request contains a Range parameter, the new scale value will take effect at that time.

Scale = "Scale" ":" ["-"] 1*DIGIT ["." *DIGIT]

Example of playing in reverse at 3.5 times normal rate:

Scale: -3.5

11.24 Speed

This request header fields parameter requests the server to deliver data to the client at a particular speed,

contingent on the server’s ability and desire to serve the media stream at the given speed. Implementation

by the server is OPTIONAL. The default is the bit rate of the stream.

The parameter value is expressed as a decimal ratio, e.g., a value of 2.0 indicates that data is to be

delivered twice as fast as normal. A speed of zero is invalid. A negative value indicates that the stream is to

be played back in reverse direction.

HS: With ’Scale’, the negative value is redundant and should probably be removed since it only leads to possible

conflicts when Scale is positive and Speed negative.

If the request contains a Range parameter, the new speed value will take effect at that time.

Speed = "Speed" ":" ["-"] 1*DIGIT ["." *DIGIT]

Example:

Speed: 2.5

11.25 Server

See [H14.39]

11.26 Session

This request and response header field identifies an RTSP session, started by the media server in a SETUP

response and concluded by TEARDOWN on the presentation URL. The session identifier is chosen by the

media server and has the same syntax as a conference identifier. Once a client receives a Session identifier,

it MUST return it for any request related to that session.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 36]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

HS: This may be redundant with the standards-track HTTP state maintenance mechanism [2]. The equivalent

way of doing this would be for the server to send Set-Cookie: Session="123"; Version=1; Path

= "/twister" and for the client to return later Cookie: Session = "123"; $Version=1; $Path

= "/twister". In the response to the TEARDOWN message, the server would simply send Set-Cookie:

Session="123"; Version=1; Max-Age=0 to get rid of the cookie on the client side. Cookies also have a

time-out, so that a server may limit the lifetime of a session at will. Unlike a web browser, a client would not store

these states on disk. To avoid privacy issues, we should prohibit the Host parameter.

11.27 Transport

This request header indicates which transport protocol is to be used and configures its parameters such as

multicast, compression, multicast time-to-live and destination port for a single stream. It sets those values

not already determined by a presentation description. In some cases, the presentation description contains

all necessary information. In those cases, a Transport header field (and the SETUP request containing it)

are not needed.

’Interleaved’ implies mixing the media stream with the control stream, in whatever protocol is being

used by the control stream. Currently, the next-layer protocols RTP is defined. Parameters may be added

to each protocol, separated by a semicolon. For RTP, the boolean parameter compressed is defined,

indicating compressed RTP according to RFC XXXX. For multicast UDP, the integer parameter ttl defines

the time-to-live value to be used. The client may specify the multicast address with the multicast parameter.

A server SHOULD authenticate the client before allowing the client to direct a media stream to a multicast

address not chosen by the server to avoid becoming the unwitting perpetrator of a denial-of-service attack.

For UDP and TCP, the parameter port defines the port data is to be sent to.

The SSRC parameter indicates the RTP SSRC value that should be (request) or will be (response) used

by the media server. This parameter is only valid for unicast transmission. It identifies the synchronization

source to be associated with the media stream.

The Transport header MAY also be used to change certain transport parameters. A server MAY refuse

to change parameters of an existing stream.

The server MAY return a Transport response header in the response to indicate the values actually

chosen.

A Transport request header field may contain a list of transport options acceptable to the client. In that

case, the server MUST return a single option which was actually chosen. The Transport header field makes

sense only for an individual media stream, not a presentation.

Transport = "Transport" ":"
1#transport-protocol/upper-layer *parameter

transport-protocol = "UDP" | "TCP"
upper-layer = "RTP"
parameters = ";" "multicast" ["=" mca]

| ";" "compressed"
| ";" "interleaved"
| ";" "ttl" "=" ttl
| ";" "port" "=" port
| ";" "ssrc" "=" ssrc

ttl = 1*3(DIGIT)

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 37]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

port = 1*5(DIGIT)
ssrc = 8*8(HEX)
mca = host

Example:

Transport: udp/rtp;compressed;ttl=127;port=3456

11.28 Transport-Require

The Transport-Require header is used to indicate proxy-sensitive features that MUST be stripped by the

proxy to the server if not supported. Furthermore, any Transport-Require header features that are not sup-

ported by the proxy MUST be negatively acknowledged by the proxy to the client if not supported.

See Section 11.21 for more details on the mechanics of this message and a usage example.

HS: Same caveat as for Require applies.

11.29 Unsupported

See Section 11.21 for a usage example.

HS: same caveat as for Require applies.

11.30 User-Agent

See [H14.42]

11.31 Via

See [H14.44].

11.32 WWW-Authenticate

See [H14.46].

12 Caching

In HTTP, response-request pairs are cached. RTSP differs significantly in that respect. Responses are not

cachable, with the exception of the stream description returned by DESCRIBE. (Since the responses for

anything but DESCRIBE and GET PARAMETER do not return any data, caching is not really an issue for

these requests.) However, it is desirable for the continuous media data, typically delivered out-of-band with

respect to RTSP, to be cached.

On receiving a SETUP or PLAY request, the proxy would ascertain as to whether it has an up-to-

date copy of the continuous media content. If not, it would modify the SETUP transport parameters as

appropriate and forward the request to the origin server. Subsequent control commands such as PLAY or

PAUSE would pass the proxy unmodified. The proxy would then pass the continuous media data to the

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 38]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

client, while possibly making a local copy for later re-use. The exact behavior allowed to the cache is

given by the cache-response directives described in Section 11.8. A cache MUST answer any DESCRIBE

requests if it is currently serving the stream to the requestor, as it is possible that low-level details of the

stream description may have changed on the origin-server.

Note that an RTSP cache, unlike the HTTP cache, is of the “cut-through” variety. Rather than retrieving

the whole resource from the origin server, the cache simply copies the streaming data as it passes by on its

way to the client, thus, it does not introduce additional latency.

To the client, an RTSP proxy cache would appear like a regular media server, to the media origin server

like a client. Just like an HTTP cache has to store the content type, content language, etc. for the objects

it caches, a media cache has to store the presentation description. Typically, a cache would eliminate all

transport-references (that is, multicast information) from the presentation description, since these are inde-

pendent of the data delivery from the cache to the client. Information on the encodings remains the same. If

the cache is able to translate the cached media data, it would create a new presentation description with all

the encoding possibilities it can offer.

13 Examples

The following examples reference stream description formats that are not finalized, such as RTSL and SDP.

Please do not use these examples as a reference for those formats.

13.1 Media on Demand (Unicast)

ClientC requests a movie from media serversA (audio.example.com) and V (video.example.com).

The media description is stored on a web server W . The media description contains descriptions of the pre-

sentation and all its streams, including the codecs that are available, dynamic RTP payload types, the proto-

col stack and content information such as language or copyright restrictions. It may also give an indication

about the time line of the movie.

In our example, the client is only interested in the last part of the movie. The server requires authentica-

tion for this movie. The audio track can be dynamically switched between between two sets of encodings.

The URL with scheme rtpsu indicates the media servers want to use UDP for exchanging RTSP messages.

C->W: DESCRIBE /twister HTTP/1.1
Host: www.example.com
Accept: application/rtsl; application/sdp

W->C: 200 OK
Content-Type: application/rtsl

<session>
<group language=en lipsync>
<switch>

<track type=audio
e="PCMU/8000/1"
src="rtsp://audio.example.com/twister/audio.en/lofi">

<track type=audio

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 39]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

e="DVI4/16000/2" pt="90 DVI4/8000/1"
src="rtsp://audio.example.com/twister/audio.en/hifi">

</switch>
<track type="video/jpeg"

src="rtspu://video.example.com/twister/video">
</group>

</session>

C->A: SETUP rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 1
Transport: rtp/udp;compression;port=3056

A->C: RTSP/1.0 200 1 OK
Session: 1234

C->V: SETUP rtsp://video.example.com/twister/video RTSP/1.0 1
Transport: rtp/udp;compression;port=3058

V->C: RTSP/1.0 200 1 OK
Session: 1235

C->V: PLAY rtsp://video.example.com/twister/video RTSP/1.0 2
Session: 1235
Range: smpte=0:10:00-

V->C: RTSP/1.0 200 2 OK

C->A: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 2
Session: 1234
Range: smpte=0:10:00-

A->C: 200 2 OK

C->A: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 3
Session: 1234

A->C: 200 3 OK

C->V: TEARDOWN rtsp://video.example.com/twister/video RTSP/1.0 3
Session: 1235

V->C: 200 3 OK

Even though the audio and video track are on two different servers, may start at slightly different times

and may drift with respect to each other, the client can synchronize the two using standard RTP methods, in

particular the time scale contained in the RTCP sender reports.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 40]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

13.2 Live Media Presentation Using Multicast

The media server M chooses the multicast address and port. Here, we assume that the web server only

contains a pointer to the full description, while the media server M maintains the full description. During

the RTSP session, a new subtitling stream is added.

C->W: GET /concert HTTP/1.1
Host: www.example.com

W->C: HTTP/1.1 200 OK
Content-Type: application/rtsl

<session>
<track id=17 src="rtsp://live.example.com/concert/audio">

</session>

C->M: DESCRIBE rtsp://live.example.com/concert/audio RTSP/1.0 1

M->C: RTSP/1.0 200 1 OK
Content-Type: application/rtsl

<track id=17 type=audio address=224.2.0.1 port=3456 ttl=16>

C->M: SETUP rtsp://live.example.com/concert/audio RTSP/1.0 2
Transport: multicast=224.2.0.1; port=3456; ttl=16

C->M: PLAY rtsp://live.example.com/concert/audio RTSP/1.0 3
Range: smpte 1:12:0

M->C: RTSP/1.0 405 3 No positioning possible

M->C: DESCRIBE concert RTSP/1.0
Content-Type: application/rtsl

<session>
<track id=17
media=audio/g.728 src="rtsp://live.example.com/concert/audio">

<track id=18
media=text/html src="rtsp://live.example.com/concert/lyrics">

</session>

C->M: PLAY rtsp://live.example.com/concert/lyrics RTSP/1.0

The attempt to position the stream fails since this is a live presentation.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 41]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

13.3 Playing media into an existing session

A conference participant C wants to have the media server M play back a demo tape into an existing

conference. When retrieving the presentation description, C indicates to the media server that the network

addresses and encryption keys are already given by the conference, so they should not be chosen by the

server. The example omits the simple ACK responses.

C->M: GET /demo HTTP/1.1
Host: www.example.com
Accept: application/rtsl, application/sdp

M->C: HTTP/1.1 200 1 OK
Content-type: application/rtsl

<session>
<track type=audio/g.723.1
src="rtsp://server.example.com/demo/548/sound">

</session>

C->M: SETUP rtsp://server.example.com/demo/548/sound RTSP/1.0 2
Conference: 218kadjk

13.4 Recording

The conference participant C asks the media server M to record a meeting. If the presentation description

contains any alternatives, the server records them all.

C->M: DESCRIBE rtsp://server.example.com/meeting RTSP/1.0 89
Content-Type: application/sdp

v=0
s=Mbone Audio
i=Discussion of Mbone Engineering Issues

M->C: 415 89 Unsupported Media Type
Accept: application/rtsl

C->M: DESCRIBE rtsp://server.example.com/meeting RTSP/1.0 90
Content-Type: application/rtsl

M->C: 200 90 OK

C->M: RECORD rtsp://server.example.com/meeting RTSP/1.0 91
Range: clock 19961110T1925-19961110T2015

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 42]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

14 Syntax

The RTSP syntax is described in an augmented Backus-Naur form (BNF) as used in RFC 2068 (HTTP/1.1).

14.1 Base Syntax

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US-ASCII uppercase letter "A".."Z">
LOALPHA = <any US-ASCII lowercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DIGIT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<"> = <US-ASCII double-quote mark (34)>
CRLF = CR LF
LWS = [CRLF] 1*(SP | HT)
TEXT = <any OCTET except CTLs>
tspecials = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "\" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

token = 1*<any CHAR except CTLs or tspecials>
quoted-string = (<"> *(qdtext) <">)
qdtext = <any TEXT except <">>
quoted-pair = "\" CHAR

message-header = field-name ":" [field-value] CRLF
field-name = token
field-value = *(field-content | LWS)
field-content = <the OCTETs making up the field-value and consisting
of either *TEXT or combinations of token, tspecials,
and quoted-string>

15 Security Considerations

The protocol offers the opportunity for a remote-control denial-of-service attack. The attacker, using a

forged source IP address, can ask for a stream to be played back to that forged IP address.

Since there is no relation between a transport layer connection and an RTSP session, it is possible for a

malicious client to issue requests with random session identifiers which would affect unsuspecting clients.

This does not require spoofing of network packet addresses. The server SHOULD use a large random

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 43]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

session identifier to make this attack more difficult.

Both problems can be be prevented by appropriate authentication.

In addition, the security considerations outlined in [H15] apply.

A RTSP Protocol State Machines

The RTSP client and server state machines describe the behavior of the protocol from RTSP session initial-

ization through RTSP session termination.

[TBD: should we allow for the trivial case of a server that only implements the PLAY message, with no

control.]

State is defined on a per object basis. An object is uniquely identified by the stream URL and the RTSP

session identifier. (A server may choose to generate dynamic presentation descriptions where the URL is

unique for a particular RTSP session and thus may not need an explicit RTSP session identifier in the request

header.) Any request/reply using URLs denoting an RTSP session comprised of multiple streams will have

an effect on the individual states of all the substreams. For example, if the stream /movie contains two

substreams /movie/audio and /movie/video, then the following command:

PLAY /movie RTSP/1.0 559
Session: 12345

will have an effect on the states of movie/audio and movie/video.

This example does not imply a standard way to represent substreams in URLs or a relation to the filesystem.

See Section 3.2.

The requests OPTIONS, DESCRIBE, GET PARAMETER, SET PARAMETER do not have any ef-

fect on client or server state and are therefore not listed in the state tables.

Client and servers MUST disregard messages with a sequence number less than the last one. If no

message has been received, the first received message’s sequence number will be the starting point.

A.1 Client State Machine

The client can assume the following states:

Init: SETUP has been sent, waiting for reply.

Ready: SETUP reply received OR after playing, PAUSE reply received.

Playing: PLAY reply received

Recording: RECORD reply received

The client changes state on receipt of replies to requests. If no explicit SETUP is required for the object

(for example, it is available via a multicast group), state begins at READY. In this case, there are only two

states, READY and PLAYING.

The “next state” column indicates the state assumed after receiving a success response (2xx). If a request

yields a status code greater or equal to 300, the client state becomes Init, with the exception of status codes

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 44]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

401 (Unauthorized) and 402 (Payment Required), where the state remains unchanged and the request should

be re-issued with the appropriate authentication or payment information. Messages not listed for each state

MUST NOT be issued by the client in that state, with the exception of messages not affecting state, as listed

above. Receiving a REDIRECT from the server is equivalent to receiving a 3xx redirect status from the

server.

HS: Depends on allowing PLAY without SETUP. After 4xx or 5xx error, do we go back to Init?

state message next state

Init SETUP Ready

TEARDOWN Init

Ready PLAY Playing

RECORD Recording

TEARDOWN Init

Playing PAUSE Ready

TEARDOWN Init

PLAY Playing

RECORD Recording

SETUP Playing (changed transport)

Recording PAUSE Init

TEARDOWN Init

PLAY Playing

RECORD Recording

SETUP Recording (changed transport)

A.2 Server State Machine

The server can assume the following states:

Init: The initial state, no valid SETUP received.

Ready: Last SETUP received was successful, reply sent or after playing, last PAUSE received was suc-

cessful, reply sent.

Playing: Last PLAY received was successful, reply sent. Data is being sent.

Recording: The server is recording media data.

The server changes state on receiving requests. If the server is in state Playing or Recording and in

unicast mode, it MAY revert to Init and tear down the RTSP session if it has not received “wellness” infor-

mation, such as RTCP reports, from the client for a defined interval, with a default of one minute. If the

server is in state Ready, it MAY revert to Init if it does not receive an RTSP request for an interval of more

than one minute.

The REDIRECT message, when sent, is effective immediately. If a similar change of location occurs at

a certain time in the future, this is assumed to be indicated by the presentation description.

SETUP is valid in states Init and Ready only. An error message should be returned in other cases. If

no explicit SETUP is required for the object, state starts at READY, there are only two states READY and

PLAYING.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 45]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

state message next state

Init SETUP Ready

TEARDOWN Init

Ready PLAY Playing

SETUP Ready

TEARDOWN Ready

Playing PLAY Playing

PAUSE Ready

TEARDOWN Ready

RECORD Recording

SETUP Playing

Recording RECORD Recording

PAUSE Ready

TEARDOWN Ready

PLAY Playing

SETUP Recording

B Open Issues

� Define text/rtsp-parameter MIME type.

� HS believes that RTSP should only control individual media objects rather than aggregates. This

avoids disconnects between presentation descriptions and streams and avoids having to deal separately

with single-host and multi-host case. Cost: several PLAY/PAUSE/RECORD in one packet, one for

each stream.

� Allow changing of transport for a stream that’s playing? May not be a great idea since the same can

be accomplished by tear down and re-setup.

� Allow fragment (#) identifiers for controlling substreams in Quicktime, AVI and ASF files?

� How does the server get back to the client unless a persistent connection is used? Probably cannot, in

general.

� Cache and proxy behavior?

� Session: or Set-Cookie: ?

� When do relative RTSP URLs make sense?

� Nack-require, etc. are dubious. This is getting awfully close to the HTTP extension mechanisms [19]

in complexity, but is different.

� Use HTTP absolute path + Host field or do the right thing and carry full URL, including host in

request?

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 46]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

C Changes

Since the February 1997 version, the following changes were made:

� Various editorial changes and clarifications.

� Removed references to SDF and replaced by RTSL.

� Added Scale general header.

� Clarify behavior of PLAY.

� Rename GET to DESCRIBE.

� Removed SESSION since it is just DESCRIBE in the other direction.

� Rename CLOSE to TEARDOWN, in symmetry with SETUP.

� Terminology adjusted to “presentation” and “stream”.

� Redundant syntax BNF in appendix removed since it just duplicates HTTP spec.

� Beginnings of cache control.

Changes are marked by changebars in the margins of the PostScript version.

D Author Addresses

Henning Schulzrinne

Dept. of Computer Science

Columbia University

1214 Amsterdam Avenue

New York, NY 10027

USA

electronic mail: schulzrinne@cs.columbia.edu

Anup Rao

Netscape Communications Corp.

USA

electronic mail: anup@netscape.com

Robert Lanphier

Progressive Networks

1111 Third Avenue Suite 2900

Seattle, WA 98101

USA

electronic mail: robla@prognet.com

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 47]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

E Acknowledgements

This draft is based on the functionality of the RTSP draft. It also borrows format and descriptions from

HTTP/1.1.

This document has benefited greatly from the comments of all those participating in the MMUSIC-WG.

In addition to those already mentioned, the following individuals have contributed to this specification:

Rahul Agarwal Eduardo F. Llach

Bruce Butterfield Rob McCool

Martin Dunsmuir Sujal Patel

Eric Fleischman

Mark Handley Igor Plotnikov

Peter Haight Pinaki Shah

Brad Hefta-Gaub Jeff Smith

John K. Ho Alexander Sokolsky

Ruth Lang Dale Stammen

Stephanie Leif John Francis Stracke

References

[1] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” RFC 1890,

Internet Engineering Task Force, Jan. 1996.

[2] D. Kristol and L. Montulli, “HTTP state management mechanism,” RFC 2109, Internet Engineering

Task Force, Feb. 1997.

[3] F. Yergeau, G. Nicol, G. Adams, and M. Duerst, “Internationalization of the hypertext markup lan-

guage,” RFC 2070, Internet Engineering Task Force, Jan. 1997.

[4] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Internet Draft, Internet Engi-

neering Task Force, Jan. 1997. Work in progress.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext transfer protocol –

HTTP/1.1,” RFC 2068, Internet Engineering Task Force, Jan. 1997.

[6] M. Handley, “SDP: Session description protocol,” Internet Draft, Internet Engineering Task Force,

Nov. 1996. Work in progress.

[7] A. Freier, P. Karlton, and P. Kocher, “The TLS protocol,” Internet Draft, Internet Engineering Task

Force, Dec. 1996. Work in progress.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, P. A. Luotonen, and E. L. Stewart, “An extension to HTTP:

digest access authentication,” RFC 2069, Internet Engineering Task Force, Jan. 1997.

[9] J. Postel, “User datagram protocol,” STD 6, RFC 768, Internet Engineering Task Force, Aug. 1980.

[10] R. Hinden and C. Partridge, “Version 2 of the reliable data protocol (RDP),” RFC 1151, Internet

Engineering Task Force, Apr. 1990.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 48]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps March 27, 1997

[11] J. Postel, “Transmission control protocol,” STD 7, RFC 793, Internet Engineering Task Force, Sept.

1981.

[12] M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session initiation protocol,” Internet Draft, Internet

Engineering Task Force, Dec. 1996. Work in progress.

[13] P. McMahon, “GSS-API authentication method for SOCKS version 5,” RFC 1961, Internet Engineer-

ing Task Force, June 1996.

[14] D. Crocker, “Augmented BNF for syntax specifications: ABNF,” Internet Draft, Internet Engineering

Task Force, Oct. 1996. Work in progress.

[15] R. Elz, “A compact representation of IPv6 addresses,” RFC 1924, Internet Engineering Task Force,

Apr. 1996.

[16] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),” RFC 1738, Inter-

net Engineering Task Force, Dec. 1994.

[17] International Telecommunication Union, “Visual telephone systems and equipment for local area net-

works which provide a non-guaranteed quality of service,” Recommendation H.323, Telecommunica-

tion Standardization Sector of ITU, Geneva, Switzerland, May 1996.

[18] ISO/IEC, “Information technology – generic coding of moving pictures and associated audio in-

formaiton – part 6: extension for digital storage media and control,” Draft International Standard

ISO 13818-6, International Organization for Standardization ISO/IEC JTC1/SC29/WG11, Geneva,

Switzerland, Nov. 1995.

[19] D. Connolly, “PEP: an extension mechanism for http,” Internet Draft, Internet Engineering Task Force,

Jan. 1997. Work in progress.

H. Schulzrinne, A. Rao, R. Lanphier Expires September 26, 1997 [Page 49]

