
Internet Engineering Task Force MMUSIC WG

INTERNET-DRAFT H. Schulzrinne, A. Rao, R. Lanphier

draft-ietf-mmusic-rtsp-02.ps Columbia U./Netscape/Progressive Networks

February 22, 1997

Expires: August 20, 1997

Real Time Streaming Protocol (RTSP)

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working

documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt” listing contained

in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au

(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).
Distribution of this document is unlimited.

Abstract

The Real Time Streaming Protocol, or RTSP, is an application-level protocol for control over the

delivery of data with real-time properties. RTSP provides an extensible framework to enable controlled,

on-demand delivery of real-time data, such as audio and video. Sources of data can include both live

data feeds and stored clips. This protocol is intended to control multiple data delivery sessions, provide

a means for choosing delivery channels such as UDP, multicast UDP and TCP, and delivery mechanisms

based upon RTP (RFC 1889).

Contents

1 Introduction 4

1.1 Purpose . 4

1.2 Requirements . 5

1.3 Terminology . 5

1.4 Protocol Properties . 6

1.5 Extending RTSP . 7

1.6 Overall Operation . 8

1.7 RTSP States . 8

1.8 Relationship with Other Protocols . 9

2 Notational Conventions 9

3 Protocol Parameters 10

3.1 RTSP Version . 10

3.2 RTSP URL . 10

3.3 Conference Identifiers . 11

3.4 Relative Timestamps . 11

3.5 Absolute Time . 11

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

4 RTSP Message 12

4.1 Message Types . 12

4.2 Message Headers . 12

4.3 Message Body . 12

4.4 Message Length . 12

5 Request 13

6 Response 14

6.1 Status-Line . 14

6.1.1 Status Code and Reason Phrase . 14

6.1.2 Response Header Fields . 16

7 Entity 16

7.1 Entity Header Fields . 19

7.2 Entity Body . 19

8 Connections 19

8.1 Pipelining . 19

8.2 Reliability and Acknowledgements . 20

9 Method Definitions 20

9.1 HELLO . 21

9.2 GET . 22

9.3 SETUP . 24

9.4 PLAY . 24

9.5 PAUSE . 25

9.6 CLOSE . 25

9.7 BYE . 26

9.8 GET PARAMETER . 26

9.9 SET PARAMETER . 26

9.10 REDIRECT . 27

9.11 SESSION . 27

9.12 RECORD . 28

9.13 Embedded Binary Data . 28

10 Status Codes Definitions 28

10.1 Client Error 4xx . 28

10.1.1 451 Parameter Not Understood . 28

10.1.2 452 Conference Not Found . 28

10.1.3 453 Not Enough Bandwidth . 28

10.1.4 45x Session Not Found . 28

10.1.5 45x Method Not Valid in This State . 28

10.1.6 45x Header Field Not Valid for Resource . 28

10.1.7 45x Invalid Range . 29

10.1.8 45x Parameter Is Read-Only . 29

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 2]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

11 Header Field Definitions 29

11.1 Accept . 31

11.2 Accept-Encoding . 31

11.3 Accept-Language . 31

11.4 Allow . 31

11.5 Authorization . 31

11.6 Bandwidth . 31

11.7 Blocksize . 32

11.8 Conference . 32

11.9 Content-Encoding . 32

11.10Content-Length . 32

11.11Content-Type . 32

11.12Date . 32

11.13If-Modified-Since . 32

11.14Last-modified . 33

11.15Location . 33

11.16Range . 33

11.17Require . 33

11.18Unsupported . 34

11.19Nack-Transport-Require . 34

11.20Transport-Require . 34

11.21Retry-After . 34

11.22Speed . 34

11.23Server . 35

11.24Session . 35

11.25Transport . 35

11.26User-Agent . 36

11.27Via . 36

11.28WWW-Authenticate . 36

12 Caching 36

13 Examples 36

13.1 Media on Demand (Unicast) . 37

13.2 Live Media Event Using Multicast . 38

13.3 Playing media into an existing session . 39

13.4 Recording . 40

14 Syntax 40

14.1 Base Syntax . 40

14.2 Internet Media Type Syntax . 41

14.3 Universal Resource Identifier Syntax . 41

14.4 RTSP-specific syntax . 42

15 Experimental 43

15.1 Header Field Definitions . 43

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 3]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

15.1.1 Address . 43

16 Security Considerations 43

A State Machines 44

A.1 Client State Machine . 44

A.1.1 Client States . 44

A.1.2 Notes . 44

A.1.3 State Table . 45

A.2 Server State Machine . 45

A.2.1 Server States . 45

A.2.2 State Table . 46

B Open Issues 47

C Author Addresses 47

D Acknowledgements 48

1 Introduction

1.1 Purpose

RTSP establishes and controls either single or several (time-synchronized) streams of continuous media.

It does not typically deliver the continuous streams itself, although interleaving of the continuous media

stream with the control stream is possible (Section 9.13).

There is no notion of an RTSP connection, but rather a session maintained by an identifier. An RTSP

session is in no way tied to a transport-level session. During an RTSP session, an RTSP client may open and

close many reliable transport connections to the server to issue RTSP requests. Alternatively, it may use a

connectionless transport protocol such as UDP.

The protocol is intentionally similar in syntax and operation to HTTP/1.1, so that extension mechanisms

to HTTP can in most cases also be added to RTSP. However, RTSP differs in a number of important aspects

from HTTP:

� RTSP introduces a number of new methods and has a different protocol identifier.

� An RTSP server needs to maintain state by default in almost all cases, as opposed to the stateless

nature of HTTP. (RTSP servers and clients MAY use the HTTP state maintenance mechanism [1].)

� Both an RTSP server and client can issue requests.

� Data is carried out-of-band, by a different protocol. (There is an exception to this.)

� RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1, consistent with current HTML

internationalization efforts [2].

HS: Probably the right thing to do, but may lead to confusion with GET.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 4]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

� The Request-URI always contains the absolute URI. Because of backward compatibility with a his-

torical blunder, HTTP/1.1 carries only the absolute path in the request

This makes virtual hosting easier. However, this is incompatible with HTTP/1.1, which may be a bad

idea. Makes definition of GET confusing, if it is included in RTSP.

The protocol supports the following operations:

Retrieval of media from media server: The client can request a session description via HTTP or some

other method. If the session is being multicast, the session description contains the multicast addresses

and ports to be used for the continuous media. If the session is to be sent only to the client via unicast,

the client provides the destination for security reasons.

Invitation of a media server to a conference: A media server can be “invited” to join an existing confer-

ence, either to play back media into the session or to record all or a subset of the media in a session.

This mode is useful for distributed teaching applications. Several parties in the conference may take

turns “pushing the remote control buttons”.

Addition of media to an existing session: Particularly for live events, it is useful if the server can tell the

client about additional media becoming available.

RTSP requests may be handled by proxies, tunnels and caches as in HTTP/1.1.

1.2 Requirements

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in RFC xxxx [3].

1.3 Terminology

Some of the terminology has been adopted from HTTP/1.1 [4]. Terms not listed here are defined as in

HTTP/1.1.

Conference: a multiparty, multimedia session, where “multi” implies greater than or equal to one.

Client: The client requests continuous media data from the media server.

Connection: A transport layer virtual circuit established between two programs for the purpose of commu-

nication.

Continuous media: Data where there is a timing relationship between source and sink, that is, the sink

must reproduce the timing relationshop that existed at the source. The most common examples of

continuous media are audio and motion video. Continuous media can be realtime (interactive), where

there is a “tight” timing relationship between source and sink, or streaming (playback), where the

relationship is less strict.

Entity: An entity is a participant in a conference. This participant may be non-human, e.g., a media record

or playback server.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 5]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Media server: The network entity providing playback or recording services for one or more media streams.

Different media streams within a session may originate from different media servers. A media server

may reside on the same or a different host as the web server the media session is invoked from.

Media session: A collection of media streams to be treated as an aggregate, with a single time axis. Typ-

ically, a client will synchronize in time all media streams within a media session. An example of a

media session is a movie consisting of a video and audio track.

(Media) stream: A single media instance, e.g., an audio stream or a video stream as well as a single white-

board or shared application group. When using RTP, a stream consists of all RTP and RTCP packets

created by a source within an RTP session.

[TBD: terminology is confusing since there’s an RTP session, which is used by a single RTSP stream.]

Message: The basic unit of RTSP communication, consisting of a structured sequence of octets matching

the syntax defined in Section 14 and transmitted via a connection or a connectionless protocol.

Response: An RTSP response. If an HTTP response is meant, that is indicated explicitly.

Request: An RTSP request. If an HTTP request is meant, that is indicated explicitly.

Session description: A session description contains information about one or more media within a session,

such as the set of encodings, network addresses and information about the content. The session

description may take several different formats, including SDP and SDF.

Media parameter: Parameter specific to a media type that may be changed while the stream is being played

or prior to it.

1.4 Protocol Properties

RTSP has the following properties:

Extendable: New methods and parameters can be easily added to RTSP.

Easy to parse: RTSP can be parsed by standard HTTP or MIME parsers.

Secure: RTSP re-uses web security mechanisms, either at the transport level (TLS [5]) or within the proto-

col itself. All HTTP authentication mechanisms such as basic [4, Section 11.1] and digest authentica-

tion [6] are directly applicable.

Transport-independent: RTSP may use either an unreliable datagram protocol (UDP) [7], a reliable data-

gram protocol (RDP, not widely used [8]) or a reliable stream protocol such as TCP [9] as it imple-

ments application-level reliability.

Multi-server capable: Each media stream within a session can reside on a different server. The client

automatically establishes several concurrent control sessions with the different media servers. Media

synchronization is performed at the transport level.

Control of recording devices: The protocol can control both recording and playback devices, as well as

devices that can alternate between the two modes (“VCR”).

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 6]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Separation of stream control and conference initiation: Stream control is divorced from inviting a me-

dia server to a conference. The only requirement is that the conference initiation protocol either

provides or can be used to create a unique conference identifier. In particular, SIP [10] or H.323 may

be used to invite a server to a conference.

Suitable for professional applications: RTSP supports frame-level accuracy through SMPTE time stamps

to allow remote digital editing.

Session description neutral: The protocol does not impose a particular session description or metafile for-

mat and can convey the type of format to be used. However, the session description must contain an

RTSP URI.

Proxy and firewall friendly: The protocol should be readily handled by both application and transport-

layer (SOCKS [11]) firewalls. A firewall may need to understand the SETUP method to open a

“hole” for the UDP media stream.

HTTP-friendly: Where sensible, RTSP re-uses HTTP concepts, so that the existing infrastructure can be

re-used. This infrastructure includes JEPI (the Joint Electronic Payment Initiative) for electronic

payments and PICS (Platform for Internet Content Selection) for associating labels with content.

However, RTSP does not just add methods to HTTP, since the controlling continuous media requires

server state in most cases.

Appropriate server control: If a client can start a stream, it must be able to stop a stream. Servers should

not start streaming to clients in such a way that clients cannot stop the stream.

Transport negotiation: The client can negotiate the transport method prior to actually needing to process

a continuous media stream.

Capability negotiation: If basic features are disabled, there must be some clean mechanism for the client

to determine which methods are not going to be implemented. This allows clients to present the

appropriate user interface. For example, if seeking is not allowed, the user interface must be able to

disallow moving a sliding position indicator.

An earlier requirement in RTSP’ was multi-client capability. However, it was determined that a better approach

was to make sure that the protocol is easily extensible to the multi-client scenario. Stream identifiers can be used

by several control streams, so that “passing the remote” would be possible. The protocol would not address how

several clients negotiate access; this is left to either a “social protocol” or some other floor control mechanism.

1.5 Extending RTSP

RTSP can be extended in three ways, listed in order of the magnitude of changes supported:

� Existing methods can be extended with new parameters, as long as these parameters can be safely

ignored by the recipient. (This is equivalent to adding new parameters to an HTML tag.)

� New methods can be added. If the recipient of the message does not understand the request, it responds

with error code 501 (Not implemented) and the sender can then attempt an earlier, less functional

version.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 7]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

� A new version of the protocol can be defined, allowing almost all aspects (except the position of the

protocol version number) to change.

1.6 Overall Operation

Each media stream and session may be identified by an RTSP URL. The overall session and the properties of

the media the session is made up of are defined by a session description file, the format of which is outside

the scope of this specification. The session description file is retrieved using HTTP, either from the web

server or the media server, typically using an URL with scheme HTTP.

The session description file contains a description of the media streams making up the media session,

including their encodings, language, and other parameters that enable the client to choose the most appro-

priate combination of media. In this session description, each media stream is identified by an RTSP URL,

which points to the media server handling that particular media stream and names the stream stored on that

server. Several media streams can be located on different servers; for example, audio and video tracks can

be split across servers for load sharing. The description also enumerates which transport methods the server

is capable of. If desired, the session description can also contain only an RTSP URL, with the complete

session description retrieved via RTSP.

Besides the media parameters, the network destination address and port need to be determined. Several

modes of operation can be distinguished:

Unicast: The media is transmitted to the source of the RTSP request, with the port number picked by the

client. Alternatively, the media is transmitted on the same reliable stream as RTSP.

Multicast, server chooses address: The media server picks the multicast address and port. This is the

typical case for a live or near-media-on-demand transmission.

Multicast, client chooses address: If the server is to participate in an existing multicast conference, the

multicast address, port and encryption key are given by the conference description, established by

means outside the scope of this specification.

1.7 RTSP States

RTSP controls a stream which may be sent via a separate protocol, independent of the control channel. For

example, RTSP control may occur on a TCP connection while the data flows via UDP. Thus, data delivery

continues even if no RTSP requests are received by the media server. Also, during its lifetime, a single media

stream may be controlled by RTSP requests issued sequentially on different TCP connections. Therefore,

the server needs to maintain “session state” to be able to correlate RTSP requests with a stream.

HS: This does not imply that the protocol has to be stateful in the way described here. If state were to be defined

by identifier only, the first PLAY or RECORD request would initiate stream flow, with no need for SETUP. It has

been argued that a separate setup simplifies the life of firewall writers.

Many methods in RTSP do not contribute to state. However, there are four that play a central role in

defining the allocation and usage of stream resources on the server: SETUP, PLAY, PAUSE, and CLOSE.

The roles they play are defined as follows.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 8]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Step session allocation method session control method

1 SETUP

2 PLAY

3 PAUSE

4 CLOSE

SETUP Causes the server to allocate resources for a stream.

PLAY Starts data transmission on a stream allocated via SETUP.

PAUSE Temporarily halts a stream, without freeing server resources.

CLOSE Frees resources associated with the stream. The session ceases to exist on the server.

A client must issue a SETUP request unless all necessary transport information is already available.

1.8 Relationship with Other Protocols

RTSP has some overlap in functionality with HTTP. It also may interact with HTTP in that the initial contact

with streaming content is often to be made through a web page. The current protocol specification aims to

allow different hand-off points between a web server and the media server implementing RTSP. For example,

the session description can be retrieved using HTTP or RTSP. Having the session description be returned by

the web server makes it possible to have the web server take care of authentication and billing, by handing

out a session description whose media identifier includes an encrypted version of the requestor’s IP address

and a timestamp, with a shared secret between web and media server.

However, RTSP differs fundamentally from HTTP in that data delivery takes place out-of-band, in a

different protocol. HTTP is an asymmetric protocol, where the client issues requests and the server responds.

In RTSP, both the media client and media server can issue requests. RTSP requests are also not stateless,

in that they may set parameters and continue to control a media stream long after the request has been

acknowledged.

Re-using HTTP functionality has advantages in at least two areas, namely security and proxies. The require-

ments are very similar, so having the ability to adopt HTTP work on caches, proxies and authentication is valuable.

While most real-time media will use RTP as a transport protocol, RTSP is not tied to RTP.

RTSP assumes the existence of a session description format that can express both static and temporal

properties of a media session containing several media streams.

2 Notational Conventions

Since many of the definitions and syntax are identical to HTTP/1.1, this specification only points to the

section where they are defined rather than copying it. For brevity, [HX.Y] is to be taken to refer to Section

X.Y of the current HTTP/1.1 specification (RFC 2068).

All the mechanisms specified in this document are described in both prose and an augmented Backus-

Naur form (BNF) similar to that used in RFC 2068 [H2.1]. It is described in detail in [12].

In this draft, we use indented and smaller-type paragraphs to provide background and motivation. Some

of these paragraphs are marked with HS, AR and RL, designating opinions and comments by the individual

authors which may not be shared by the co-authors and require resolution.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 9]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

3 Protocol Parameters

3.1 RTSP Version

[H3.1] applies, with HTTP replaced by RTSP.

3.2 RTSP URL

The “rtsp” and “rtspu” schemes are used to refer to network resources via the RTSP protocol. This section

defines the scheme-specific syntax and semantics for RTSP URLs.

rtsp_URL = ("rtsp:" | "rtspu:") "//" host [":" port] [abs_path]
host = <A legal Internet host domain name of IP address

(in dotted decimal form), as defined by Section 2.1
of RFC 1123>

port = *DIGIT

abs path is defined in [H3.2.1].

Note that fragment and query identifiers do not have a well-defined meaning at this time, with the interpretation

left to the RTSP server.

The scheme rtsp requires that commands are issued via a reliable protocol (within the Internet, TCP),

while the scheme rtspu identifies an unreliable protocol (within the Internet, UDP).

If the port is empty or not given, port 554 is assumed. The semantics are that the identified resource

can be controlled be RTSP at the server listening for TCP (scheme “rtsp”) connections or UDP (scheme

“rtspu”) packets on that port of host, and the Request-URI for the resource is rtsp URL.

The use of IP addresses in URLs SHOULD be avoided whenever possible (see RFC 1924 [13]).

A media presentation is identified by an textual media identifier, using the character set and escape

conventions [H3.2] of URLs [14]. Requests described in Section 9 can refer to either the whole presentation

or an individual track within the presentation. Note that some methods can only be applied to tracks, not

presentations. A specific instance of a session, e.g., one of several concurrent transmissions of the same

content, is indicated by the Session header field (Section 11.24) where needed.

For example, the RTSP URL

rtsp://media.example.com:554/twister/audiotrack

identifies the audio track within the presentation “twister”, which can be controlled via RTSP requests issued

over a TCP connection to port 554 of host media.example.com.

This does not imply a standard way to reference tracks in URLs. The session description defines the hierarchical

relationships in the presentation and the URLs for the individual tracks. A session description may name a track

’a.mov’ and the whole presentation ’b.mov’.

The path components of the RTSP URL are opaque to the client and do not imply any particular file

system structure for the server.

This decoupling also allows session descriptions to be used with non-RTSP media control protocols, simply by

replacing the scheme in the URL.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 10]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

3.3 Conference Identifiers

Conference identifiers are opaque to RTSP and are encoded using standard URI encoding methods (i.e.,

LWS is escaped with %). They can contain any octet value. The conference identifier MUST be globally

unique. For H.323, the conferenceID value is to be used.

conference-id = 1*OCTET ; LWS must be URL-escaped

Conference identifiers are used to allow to allow RTSP sessions to obtain parameters from multimedia con-

ferences the media server is participating in. These conferences are created by protocols outside the scope of this

specification, e.g., H.323 [15] or SIP [10]. Instead of the RTSP client explicitly providing transport information, for

example, it asks the media server to use the values in the conference description instead. If the conference partici-

pant inviting the media server would only supply a conference identifier which is unique for that inviting party, the

media server could add an internal identifier for that party, e.g., its Internet address. However, this would prevent

that the conference participant and the initiator of the RTSP commands are two different entities.

3.4 Relative Timestamps

A relative time-stamp expresses time relative to the start of the clip. Relative timestamps are expressed as

SMPTE time codes for frame-level access accuracy. The time code has the format

hours:minutes:seconds.frames,

with the origin at the start of the clip. For NTSC, the frame rate is 29.97 frames per second. This is handled

by dropping the first frame index of every minute, except every tenth minute. If the frame value is zero, it

may be omitted.

smpte-range = "smpte" "=" smpte-time "-" [smpte-time]
smpte-time = 1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT ["." 1*2DIGIT]

Examples:

10:12:33.40
10:7:33
10:7:0

3.5 Absolute Time

Absolute time is expressed as ISO 8601 timestamps. It is always expressed as UTC (GMT).

utc-range = "clock" "=" utc-time "-" [utc-time]
utc-time = utc-date "T" utc-time "Z"
utc-date = 8DIGIT ; < YYYYMMDD >
utc-time = 6DIGIT ; < HHMMSS >

Example for November 8, 1996 at 14h37 and 20 seconds UTC:

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 11]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

19961108T143720Z

4 RTSP Message

RTSP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2044). Lines

are terminated by CRLF, but receivers should be prepared to also interpret CR and LF by themselves as line

terminators.

Text-based protocols make it easier to add optional parameters in a self-describing manner. Since the number

of parameters and the frequency of commands is low, processing efficiency is not a concern. Text-based protocols,

if done carefully, also allow easy implementation of research prototypes in scripting languages such as Tcl, Visual

Basic and Perl.

The 10646 character set avoids tricky character set switching, but is invisible to the application as long as US-

ASCII is being used. This is also the encoding used for RTCP. ISO 8859-1 translates directly into Unicode, with

a high-order octet of zero. ISO 8859-1 characters with the most-significant bit set are represented as 1100001x

10xxxxxx.

RTSP messages can be carried over any lower-layer transport protocol that is 8-bit clean.

Requests contain methods, the object the method is operating upon and parameters to further describe

the method. Methods are idempotent, unless otherwise noted. Methods are also designed to require little or

no state maintenance at the media server.

4.1 Message Types

See [H4.1]

4.2 Message Headers

See [H4.2]

4.3 Message Body

See [H4.3]

4.4 Message Length

When a message-body is included with a message, the length of that body is determined by one of the

following (in order of precedence):

1. Any response message which MUST NOT include a message-body (such as the 1xx, 204, and 304

responses) is always terminated by the first empty line after the header fields, regardless of the entity-

header fields present in the message.

2. If a Content-Length header field (section 11.10) is present, its value in bytes represents the length of

the message-body. If this header field is not present, a value of zero is assumed.

3. By the server closing the connection. (Closing the connection cannot be used to indicate the end of a

request body, since that would leave no possibility for the server to send back a response.)

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 12]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Note that RTSP does not (at present) support the “chunked” transfer coding and requires the presence of

the Content-Length header field.

Given the moderate length of session descriptions returned, the server should always be able to determine

its length, even if it is generated dynamically, making the chunked transfer encoding unnecessary. Even though

Content-Length must be present if there is any entity body, the rules ensure reasonable behavior even if the length

is not given explicitly.

5 Request

A request message from a client to a server or vice versa includes, within the first line of that message, the

method to be applied to the resource, the identifier of the resource, and the protocol version in use.

Request = Request-line CRLF
*request-header
CRLF
[message-body]

Request-Line = Method SP Request-URI SP RTSP-Version SP seq-no CRLF

Method = "GET" ; Section
| "SETUP" ; Section
| "PLAY" ; Section
| "PAUSE" ; Section
| "CLOSE" ; Section
| "RECORD" ; Section
| "REDIRECT" ; Section
| "HELLO" ; Section
| "SESSION" ; Section
| "BYE" ; Section
| "SET_PARAMETER" ; Section
| "GET_PARAMETER" ; Section
| extension-method

extendion-method = token

Request-URI = absolute_URI

RTSP-Version = "RTSP" "/" 1*DIGIT "." 1*DIGIT

seq-no = 1*DIGIT

Note that in contrast to HTTP/1.1, RTSP requests always contain the absolute URL (that is, including

the scheme, host and port) rather than just the absolute path.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 13]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

6 Response

[H6] applies except that HTTP-Version is replaced by RTSP-Version. Also, RTSP defines additional

status codes and does not define some HTTP codes. The valid response codes and the methods they can be

used with are defined in the table 1 and 2.

After receiving and interpreting a request message, the recipient responds with an RTSP response mes-

sage.

Response = Status-Line ; Section
*(general-header ; Section
| response-header ; Section
| entity-header) ; Section

CRLF
[message-body] ; Section

6.1 Status-Line

The first line of a Response message is the Status-Line, consisting of the protocol version followed by

a numeric status code, the sequence number of the corresponding request and the textual phrase associated

with the status code, with each element separated by SP characters. No CR or LF is allowed except in the

final CRLF sequence. Note that the addition of a

Status-Line = RTSP-Version SP Status-Code SP seq-no SP Reason-Phrase CRLF

6.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request.

These codes are fully defined in section10. The Reason-Phrase is intended to give a short textual

description of the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase

is intended for the human user. The client is not required to examine or display the Reason-Phrase.

The first digit of the Status-Code defines the class of response. The last two digits do not have any

categorization role. There are 5 values for the first digit:

� 1xx: Informational - Request received, continuing process

� 2xx: Success - The action was successfully received, understood, and accepted

� 3xx: Redirection - Further action must be taken in order to complete the request

� 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

� 5xx: Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for RTSP/1.0, and an example set of corre-

sponding Reason-Phrase’s, are presented below. The reason phrases listed here are only recommended

– they may be replaced by local equivalents without affecting the protocol. Note that RTSP adopts most

HTTP/1.1 status codes and adds RTSP-specific status codes in the starting at 450 to avoid conflicts with

newly defined HTTP status codes.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 14]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Status-Code = "100" ; Continue
| "200" ; OK
| "201" ; Created
| "202" ; Accepted
| "203" ; Non-Authoritative Information
| "204" ; No Content
| "205" ; Reset Content
| "206" ; Partial Content
| "300" ; Multiple Choices
| "301" ; Moved Permanently
| "302" ; Moved Temporarily
| "303" ; See Other
| "304" ; Not Modified
| "305" ; Use Proxy
| "400" ; Bad Request
| "401" ; Unauthorized
| "402" ; Payment Required
| "403" ; Forbidden
| "404" ; Not Found
| "405" ; Method Not Allowed
| "406" ; Not Acceptable
| "407" ; Proxy Authentication Required
| "408" ; Request Time-out
| "409" ; Conflict
| "410" ; Gone
| "411" ; Length Required
| "412" ; Precondition Failed
| "413" ; Request Entity Too Large
| "414" ; Request-URI Too Large
| "415" ; Unsupported Media Type
| "451" ; Parameter Not Understood}
| "452" ; Conference Not Found}
| "453" ; Not Enough Bandwidth}
| "45x" ; Session Not Found}
| "45x" ; Method Not Valid in This State}
| "45x" ; Header Field Not Valid for Resource}
| "45x" ; Invalid Range}
| "45x" ; Parameter Is Read-Only}
| "500" ; Internal Server Error
| "501" ; Not Implemented
| "502" ; Bad Gateway
| "503" ; Service Unavailable
| "504" ; Gateway Time-out
| "505" ; HTTP Version not supported
| extension-code

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 15]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

extension-code = 3DIGIT

Reason-Phrase = *<TEXT, excluding CR, LF>

RTSP status codes are extensible. RTSP applications are not required to understand the meaning of all

registered status codes, though such understanding is obviously desirable. However, applications MUST

understand the class of any status code, as indicated by the first digit, and treat any unrecognized response

as being equivalent to the x00 status code of that class, with the exception that an unrecognized response

MUST NOT be cached. For example, if an unrecognized status code of 431 is received by the client, it can

safely assume that there was something wrong with its request and treat the response as if it had received

a 400 status code. In such cases, user agents SHOULD present to the user the entity returned with the

response, since that entity is likely to include human-readable information which will explain the unusual

status.

6.1.2 Response Header Fields

The response-header fields allow the request recipient to pass additional information about the response

which cannot be placed in the Status-Line. These header fields give information about the server and

about further access to the resource identified by the Request-URI.

response-header = Location ; Section
| Proxy-Authenticate ; Section
| Public ; Section
| Retry-After ; Section
| Server ; Section
| Vary ; Section
| WWW-Authenticate ; Section

Response-header field names can be extended reliably only in combination with a change in the protocol

version. However, new or experimental header fields MAY be given the semantics of response-header fields

if all parties in the communication recognize them to be response-header fields. Unrecognized header fields

are treated as entity-header fields.

7 Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or

response status code. An entity consists of entity-header fields and an entity-body, although some responses

will only include the entity-headers.

In this section, both sender and recipient refer to either the client or the server, depending on who sends

and who receives the entity.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 16]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Code reason HELLO GET SETUP PLAY RECORD PAUSE

100 Continue x x x x x x

200 OK x x x x x x

300 Multiple Choices x x x x x

301 Moved Permanently x x x x x

302 Moved Temporarily x x x x x

303 See Other x x x x x

304 Not Modified x x x x x

305 Use Proxy x x x x x

400 Bad Request x x x x x x

401 Unauthorized x x x x x x

402 Payment Required x x x x x x

403 Forbidden x x x x x

404 Not Found x x x x x

405 Method Not Allowed x x x x x x

406 Not Acceptable x x x x x

407 Proxy Authentication Required x x x x x x

408 Request Timeout x x x x x x

409 Conflict

410 Gone x x x x x x

411 Length Required x x x

412 Precondition Failed x x

413 Request Entity Too Large x x

414 Request-URI Too Long x x x x x x

415 Unsupported Media Type x x

45x Only Valid for Stream x x x

45x Invalid parameter

45x Not Enough Bandwidth x

45x Illegal Conference Identifier

45x Illegal Session Identifier x x x x

45x Parameter Is Read-Only

45x Header Field Not Valid

500 Internal Server Error x x x x x x

501 Not Implemented x x x x x x

502 Bad Gateway x x x x x x

503 Service Unavailable x x x x x x

504 Gateway Timeout x x x x x x

505 RTSP Version Not Supported x x x x x x

Table 1: Status codes and their usage with RTSP methods

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 17]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Code reason CLOSE REDIRECT GET PARAMETER SET PARAMETER

100 Continue x x x x

200 OK x x x x

300 Multiple Choices x x x

301 Moved Permanently x x x x

302 Moved Temporarily x x x x

303 See Other x x x x

304 Not Modified x x x x

305 Use Proxy x x x x

400 Bad Request x x x x

401 Unauthorized x x x

402 Payment Required x x x

403 Forbidden x x x x

404 Not Found x x x x

405 Method Not Allowed x x x x

406 Not Acceptable x x x x

407 Proxy Authentication Required x x x x

408 Request Timeout x x x x

409 Conflict x x

410 Gone x x

411 Length Required x x

412 Precondition Failed x x

413 Request Entity Too Large x x x x

414 Request-URI Too Long x x x x

415 Unsupported Media Type

45x Only Valid for Stream

45x Invalid parameter

45x Not Enough Bandwidth

45x Illegal Conference Identifier

45x Illegal Session Identifier x x

45x Parameter Is Read-Only x

45x Header Field Not Valid

500 Internal Server Error x x x x

501 Not Implemented x x x x

502 Bad Gateway x x x x

503 Service Unavailable x x x x

504 Gateway Timeout x x x x

505 RTSP Version Not Supported x x x x

Table 2: Status codes and their usage with RTSP methods

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 18]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

7.1 Entity Header Fields

Entity-header fields define optional metainformation about the entity-body or, if no body is present, about

the resource identified by the request.

entity-header = Allow ; Section 14.7
| Content-Encoding ; Section 14.12
| Content-Language ; Section 14.13
| Content-Length ; Section 14.14
| Content-Type ; Section 14.18
| Expires ; Section 14.21
| Last-Modified ; Section 14.29
| extension-header

extension-header = message-header

The extension-header mechanism allows additional entity-header fields to be defined without changing

the protocol, but these fields cannot be assumed to be recognizable by the recipient. Unrecognized header

fields SHOULD be ignored by the recipient and forwarded by proxies.

7.2 Entity Body

See [H7.2]

8 Connections

RTSP requests can be transmitted in several different ways:

� persistent transport connections used for several request-response transactions;

� one connection per request/response transaction;

� connectionless mode.

The type of transport connection is defined by the RTSP URI (Section 3.2). For the scheme “rtsp”,

a persistent connection is assumed, while the scheme “rtspu” calls for RTSP requests to be send without

setting up a connection.

Unlike HTTP, RTSP allows the media server to send requests to the media client. However, this is

only supported for persistent connections, as the media server otherwise has no reliable way of reaching the

client. Also, this is the only way that requests from media server to client are likely to traverse firewalls.

8.1 Pipelining

A client that supports persistent connections or connectionless mode MAY “pipeline” its requests (i.e., send

multiple requests without waiting for each response). A server MUST send its responses to those requests

in the same order that the requests were received.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 19]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

8.2 Reliability and Acknowledgements

Requests are acknowledged by the receiver unless they are sent to a multicast group. If there is no ac-

knowledgement, the sender may resend the same message after a timeout of one round-trip time (RTT). The

round-trip time is estimated as in TCP (RFC TBD), with an initial round-trip value of 500 ms. An imple-

mentation MAY cache the last RTT measurement as the initial value for future connections. If a reliable

transport protocol is used to carry RTSP, the timeout value MAY be set to an arbitrarily large value.

This can greatly increase responsiveness for proxies operating in local-area networks with small RTTs. The

mechanism is defined such that the client implementation does not have be aware of whether a reliable or unreliable

transport protocol is being used. It is probably a bad idea to have two reliability mechanisms on top of each other,

although the RTSP RTT estimate is likely to be larger than the TCP estimate.

Each request carries a sequence number, which is incremented by one for each request transmitted. If a

request is repeated because of lack of acknowledgement, the sequence number is incremented.

This avoids ambiguities when computing round-trip time estimates.

[TBD: An initial sequence number negotiation needs to be added for UDP; otherwise, a new stream connec-

tion may see a request be acknowledged by a delayed response from an earlier “connection”. This handshake

can be avoided with a sequence number containing a timestamp of sufficiently high resolution.]

The reliability mechanism described here does not protect against reordering. This may cause problems

in some instances. For example, a CLOSE followed by a PLAY has quite a different effect than the reverse.

Similarly, if a PLAY request arrives before all parameters are set due to reordering, the media server would

have to issue an error indication. Since sequence numbers for retransmissions are incremented (to allow

easy RTT estimation), the receiver cannot just ignore out-of-order packets. [TBD: This problem could be

fixed by including both a sequence number that stays the same for retransmissions and a timestamp for RTT

estimation.]

Systems implementing RTSP MUST support carrying RTSP over TCP and MAY support UDP. The

default port for the RTSP server is 554 for both UDP and TCP.

A number of RTSP packets destined for the same control end point may be packed into a single lower-

layer PDU or encapsulated into a TCP stream. RTSP data MAY be interleaved with RTP and RTCP packets.

Unlike HTTP, an RTSP method header MUST contain a Content-Length whenever that method contains a

payload. Otherwise, an RTSP packet is terminated with an empty line immediately following the method

header.

9 Method Definitions

The method token indicates the method to be performed on the resource identified by the Request-URI.

The method is case-sensitive. New methods may be defined in the future. Method names may not start with

a $ character (decimal 24) and must be a token.

HS: PAUSE is recommend, but not required in that a fully functional server can be built that does not support

this method, for example, for live feeds. Similarly, SETUP is not needed for a server that only handles multicast

events with transport parameters set outside of RTSP. GET and BYE are controversial.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 20]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

method direction requirement

GET C ! S recommended

SETUP C ! S recommended

PLAY C ! S required

PAUSE C ! S recommended

CLOSE C ! S required

REDIRECT S ! C optional

SESSION S ! C optional

RECORD C ! S optional

BYE C ! S required?

SET PARAMETER C ! S, S ! C optional

GET PARAMETER C ! S, S ! C optional

Table 3: Overview of RTSP methods

9.1 HELLO

RTSP sessions MAY be initiated by a HELLO message. The request URI is ”*” to indicate that the request

pertains to the session itself. The primary use of the HELLO message is to verify the identity of the sender

to the receiver; both sides must authorize one another to enable full access to server resources. Unauthorized

clients may be disconnected or restricted to a subset of server resources.

In addition, if the optional Require header is present, option tags within the header indicate features

needed by the requestor that are not required at the version level of the protocol.

Example 1:

C->S: HELLO * RTSP/1.0 1
Require: implicit-play, record-feature
Transport-Require: switch-to-udp-control, gzipped-messages

Note that these are fictional features (though we may want to make them real one day).

Example 2 (using RFC2069-style authentication only as an example):

S->C: HELLO * RTSP/1.0 1
Authenticate: Digest realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

Response:

Possible errors: 401, Parameter Not Understood

Examples:

S->C: RTSP/1.0 200 1 OK
Date: 23 Jan 1997 15:35:06 GMT
Nack-Transport-Require: switch-to-udp-control

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 21]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Note that these are fictional features (though we may want to make them real one day).

Example 2 (using RFC2069-style authentication only as an example):

C->S: RTSP/1.0 401 1 Unauthorized
Authorization: Digest username="Mufasa",

realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/dir/index.html",
response="e966c932a9242554e42c8ee200cec7f6",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

HS: I consider HELLO superfluous, not fully specified and just complicating client and server. It is also not

clear how this is supposed to work when a client connects to the server, since it can’t know ahead of time whether

the server will issus a HELLO request. So it may connect, issue a SETUP, be refused and then somehow guess

that it’s supposed to wait for HELLO. Authentication of the client can be readily achieved by standard HTTP-like

methods. On either retrieving the session description or the first SETUP, the server would refuse with 401, supply

the authentication methods (and nonces) it is willing to accept and wait for the request to be re-issued with proper

authentication. As with standard web browser, a client can cache the authentication message for efficiency.

Similarly, the client can ask the server to authenticate itself with the first request.

Feature announcement can be done using standard HTTP mechanism, with a well-defined registration mecha-

nism for feature names.

RL: HELLO offers the opportunity to negotiate server features prior to actually needing them. A client may

wish to poll a server for its features without actually causing any action to occur, and HELLO offers that opportunity.

9.2 GET

The GET method retrieves a session description from a server. It may use the Accept header to specify the

session description formats that the client understands.

If the media server has previously been invited to a conference by the client, the GET request SHOULD

contain the Conference header field. If the GET request contains a conference identifier, the media server

MAY locate the conference description and use the multicast addresses and port numbers supplied in that

description. The media server SHOULD only offer media types corresponding to the media types currently

active within the conference. If the media server has no local reference to this conference, it returns status

code 452.

The conference invitation should also contain an indication whether the media server is expected to

receive or generate media, or both. (A VCR-like device would support both directions.) If the invitation

does not contain an indication of the operations to be performed, the media server should accept and then

reject inappropriate operations.

The server responds with a description of the requested resource.

Example:

C->S: GET rtsp://server.example.com/fizzle/foo RTSP/1.0 312
Accept: application/sdp, application/sdf, application/mheg
Bandwidth: 4000

S->C: RTSP/1.0 200 312 OK
Date: 23 Jan 1997 15:35:06 GMT

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 22]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

Content-Type: application/sdp
Content-Length: 376

v=0
o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e=mjh@isi.edu (Mark Handley)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 3456 RTP/AVP 0
m=video 2232 RTP/AVP 31
m=whiteboard 32416 UDP WB
a=orient:portrait

or

S->C: RTSP/1.0 200 312 OK
Date: 23 Jan 1997 15:35:06 GMT
Content-Type: application/x-rtsp-mh
Content-Length: 2782

<2782 octets of data containing stream descriptions and
headers for the requested presentation>

The authors disagree amongst themselves as to whether having an GET method within RTSP is appropriate.

The alternative would be that the stream header would be done as an HTTP GET, and then RTSP would be used for

SETUP, PLAY, etc. RL believes there are a number of reasons why a GET method is appropriate within RTSP:

� An RTSP GET is a request for header information, while an HTTP GET is a request for the entire file. For

instance, an RTSP GET on a Quicktime file with the name foo.mov would mean ”please send me the header

and packetization information for foo.mov”, whereas an HTTP GET for that file would mean ”please send

me foo.mov”.

� Assuming the client only has an URL to a resource, it is highly desireable to get to the point where the client

is actually receiving data all over one connection. Though this would be possible if one assumed that one can

multiplex RTSP and HTTP on the same connection, there is a question of how much of a web server would

have to be supported in order to fulfill this simpler requirement.

� Since the RTSP GET contains information such as codec, packetization, total size, and whether the clip is

live or stored, it is important to insure integrity between the session description and the media it represents.

This information may be cached by HTTP proxies, but it would be needed by caching RTSP proxies.

RL and AR feel that the scope and applicability of this message should be limited, and therefore, it may be

appropriate to come up with another name for this message.

HS believes that this only works if GET is required. Otherwise, the client has no way of knowing whether

to first send a GET or SETUP. The easy alternative is to have any further descriptive information that is necessary

encoded in the session description. Thus, the naming does not matter; the resource description can either have a

separate name or the same name if the server can distinguish variants based on the requested type, as modern web

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 23]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

servers can. (A single URL can return different objects depending on the content of the Accept fields.) It appears

likely that the RTSP GET will over time acquire all the functionality of the HTTP GET and thus lead to unnecessary

duplication. If the description is lengthy, the ability to use HTTP caches is likely to compensate for any additional

latency due to having to open two streams. Also, note that relying on HTTP get does not mean that this has to be a

separate server.

9.3 SETUP

The SETUP request for a URI specifies the transport mechanism to be used for the streamed media. Note

that SETUP makes sense only for an individual media stream, rather than an aggregate. A client can issue a

SETUP request for a stream that is already playing to change transport parameters.

If the optional Require header is present, option tags within the header indicate features needed by

the requestor that are not required at the version level of the protocol. The Transport-Require header is

used to indicate proxy-sensitive features that MUST be stripped by the proxy to the server if not supported.

Furthermore, any Transport-Require header features that are not supported by the proxy MUST be negatively

acknowledged by the proxy to the client if not supported.

HS: In my opinion, the Require header should be replaced by PEP since PEP is standards-track, has more

functionality and somebody already did the work.

The Transport header specifies the transports acceptable to the client for data transmission; the response

will contain the transport selected by the server.

C->S: SETUP foo/bar/baz.rm RTSP/1.0 302
Transport: rtp/udp;port=458

S->C: RTSP/1.0 200 302 OK
Date: 23 Jan 1997 15:35:06 GMT
Transport: cush/udp;port=458

9.4 PLAY

The PLAY method tells the server to start sending data via the mechanism specified in SETUP. A client

MUST NOT issue a PLAY request until any outstanding SETUP request have been acknowledged as suc-

cessful.

A PLAY request without a Range header is legal. It starts playing a stream from the beginning unless

the stream has been paused. If a stream has been paused via PAUSE, stream delivery resumes at the pause

point. If a stream is playing, such a PLAY request causes no further action and can be used by the client to

test server liveness.

The following example plays the whole session starting at SMPTE time code 0:10:20 until the end of

the clip.

C->S: PLAY rtsp://audio.example.com/twister.en RTSP/1.0 833
Range: smpte=0:10:20-

For playing back a recording of a live event, it may be desirable to use clock units:

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 24]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

C->S: PLAY rtsp://audio.example.com/meeting.en RTSP/1.0 835
Range: clock=19961108T142300Z-19961108T143520Z

S->C: RTSP/1.0 200 833 OK
Date: 23 Jan 1997 15:35:06 GMT

A media server only supporting playback MUST support the smpte format and MAY support the clock

format.

RL says: We had considered optionally overloading PLAY with SETUP information. This would have poten-

tially allowed a case where one could implement a minimal RTSP server that only handles the PLAY command.

However, we decided that supporting that minimal of a server was problematic for a couple of reasons:

� We must be able to negotiate the transport (i.e. have server acknowledgment) prior to actually needing to deal

with the data. We don’t want to have a server start spewing packets at us before we are ready to deal with

them. The server acknowledgment with setup information MUST arrive before the first packet.

� We need make sure that we aren’t dealing with an allocation method every time we are dealing with PLAY.

We anticipate the potential of dealing with PLAY frequently when a client chooses to issue several seeks, and

so simplifying this message is imperative.

HS says: PLAY without SETUP is useful and possible, in particular if the session description contains all

necessary information, without options. The client knows whether it needs to configure transport parameters or not.

For multicast delivery, for example, it likely would not have to set additional parameters. I doubt that allowing one

additional parameter is going to greatly complicate or slow down a server.

9.5 PAUSE

The PAUSE request causes the stream delivery to be interrupted (halted) temporarily. If the request URL

names a track, only playback and recording of that track is halted. If the request URL names a presentation,

delivery of all currently active tracks is halted. After resuming playback or recording, synchronization of

the tracks MUST be maintained. Any server resources are kept.

Example:

C->S: PAUSE /fizzle/foo RTSP/1.0 834

S->C: RTSP/1.0 200 834 OK
Date: 23 Jan 1997 15:35:06 GMT

9.6 CLOSE

Stop the stream delivery for the given URI, freeing the resources associated with it. If the URI is the root

node for this session, any session identifier associated with the session is no longer valid. Unless all transport

parameters are defined by the session description, a SETUP request has to be issued before the session can

be played again.

Example:

C->S: CLOSE /fizzle/foo RTSP/1.0 892

S->C: RTSP/1.0 200 892 OK

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 25]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

9.7 BYE

Terminate the session.

Example:

C->S: BYE /movie RTSP/1.0 894

S->C: RTSP/1.0 200 894 OK
Date: 23 Jan 1997 15:35:06 GMT

HS: I believe BYE to be unnecessary since CLOSE already frees resources and session descriptor.

9.8 GET PARAMETER

The requests retrieves the value value of a parameter of a session component specified in the URI. Multiple

parameters can be requested in the message body using the content type text/rtsp-parameters. Note

that parameters include server and client statistics. [HS: registry of parameter names for statistics and other

purposes, possibly using the HTTP feature registration mechanism.] A GET PARAMETER with no entity

body may be used to test client or server liveness (“ping”).

Example:

S->C: GET_PARAMETER /fizzle/foo RTSP/1.0 431
Content-Type: text/rtsp-parameters
Session: 1234
Content-Length: 15

packets_received
jitter

C->S: RTSP/1.0 200 431 OK
Content-Length: 46
Content-Type: text/rtsp-parameters

packets_received: 10
jitter: 0.3838

9.9 SET PARAMETER

This method requests to set the value of a parameter for a session component specified by the URI.

A request SHOULD only contain a single parameter to allow the client to determine why a particular

request failed. A server MUST allow a parameter to be set repeatedly to the same value, but it MAY disallow

changing parameter values.

Note: transport parameters for the media stream MUST only be set with the SETUP command.

Restricting setting transport parameters to SETUP is for the benefit of firewalls.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 26]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

The parameters are split in a fine-grained fashion so that there can be more meaningful error indications. How-

ever, it may make sense to allow the setting of several parameters if an atomic setting is desirable. Imagine device

control where the client does not want the camera to pan unless it can also tilt to the right angle at the same time.

A SET PARAMETER request without parameters can be used as a way to detect client or server live-

ness.

Example:

C->S: SET_PARAMETER /fizzle/foo RTSP/1.0 421
Content-type: text/rtsp-parameters

fooparam: foostuff
barparam: barstuff

S->C: RTSP/1.0 450 421 Invalid Parameter
Content-Length: 6

barparam

9.10 REDIRECT

A redirect request informs the client that it must connect to another server location. It contains the mandatory

header Location, which indicates that the client should issue a GET for that URL. It may contain the

parameter Range, which indicates when the redirection takes effect.

Mandatory header: Location [XXX: add this to table if accepted]

Example: This request redirects traffic for this URI to the new server at the given play time:

S->C: REDIRECT /fizzle/foo RTSP/1.0 732
Location: rtsp://bigserver.com:8001
Range: clock=19960213T143205Z-

9.11 SESSION

This request is used by a media server to send new media information to the client. If a new media type is

added to a session (e.g., during a live event), the whole session description should be sent again, rather than

just the additional components.

This allows the deletion of session components.

Example:

S->C: SESSION /twister RTSP/1.0 902
Session: 1234
Content-Type: application/sdp

Session Description

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 27]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

9.12 RECORD

This method initiates recording a range of media data according to the session description. The timestamp

reflects start and end time (UTC). If no time range is given, use the start or end time provided in the session

description. If the session has already started, commence recording immediately. The Conference header

is mandatory.

A media server supporting recording of live events MUST support the clock range format; the smpte

format does not make sense.

In this example, the media server was previously invited to the conference indicated.

C->S: RECORD /meeting/audio.en RTSP/1.0 954
Session: 1234
Conference: 128.16.64.19/32492374

9.13 Embedded Binary Data

Binary packets such as RTP data are encapsulated by an ASCII dollar sign (24 decimal), followed by a one-

byte session identifier, followed by the length of the encapsulated binary data as a binary, two-byte integer

in network byte order. The binary data follows immediately afterwards, without a CRLF.

10 Status Codes Definitions

Where applicable, HTTP status [H10] codes are re-used. Status codes that have the same meaning are not

repeated here. See Tables 1 and 2 for a listing of which status codes may be returned by which request.

10.1 Client Error 4xx

10.1.1 451 Parameter Not Understood

The recipient of the request does not support one or more parameters contained in the request.

10.1.2 452 Conference Not Found

The conference indicated by a Conference header field is unknown to the media server.

10.1.3 453 Not Enough Bandwidth

The request was refused since there was insufficient bandwidth. This may, for example, be the result of a

resource reservation failure.

10.1.4 45x Session Not Found

10.1.5 45x Method Not Valid in This State

10.1.6 45x Header Field Not Valid for Resource

The server could not act on a required request header. For example, if PLAY contains the Range header

field, but the stream does not allow seeking.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 28]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

10.1.7 45x Invalid Range

The Range value given is out of bounds, e.g., beyond the end of the presentation.

10.1.8 45x Parameter Is Read-Only

The parameter to be set by SET PARAMETER can only be read, but not modified.

11 Header Field Definitions

HTTP/1.1 or other, non-standard header fields not listed here currently have no well-defined meaning and

SHOULD be ignored by the recipient.

Tables 4 and 5 summarize the header fields used by RTSP. Type “R” designates requests, type “r”

responses. Fields marked with “x” MUST be implemented by the recipient. If the field content does not

apply to the particular resource, the server MUST return status 45x (Header Field Not Valid for Resource).

type HELLO GET SETUP PLAY RECORD PAUSE

Accept R x

Accept-Encoding R x

Accept-Language R x o o

Authorization R o o o o o o

Bandwidth R o

Blocksize R o

Conference R o o ? ? ?

Connection Rr x x x x x

Content-Encoding Rr x

Content-Length Rr x

Content-Type Rr x

Date Rr o o o o o o

If-Modified-Since R o

Last-Modified r o

Public r o o o o o o

Range R x x

Referer R o o o o o o

Require R x o x o o o

Retry-After r o o o o o o

Session Rr x x x x

Server r o o o o o o

Speed Rr o o

Transport Rr x

Transport-Require R x o x o o o

User-Agent R o o o o o o

Via Rr o o o o o o

WWW-Authenticate r o o o o o o

Table 4: Overview of RTSP header fields for GET, SETUP, PLAY, RECORD and PAUSE

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 29]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

CLOSE REDIRECT GET PARAMETER SET PARAMETER

Accept

Accept-Encoding

Accept-Language

Authorization o o o o

Bandwidth

Blocksize

Conference

Connection x x x x

Content-Encoding x x x x

Content-Length x x x x

Content-Type x x x x

Date o o o o

If-Modified-Since

Last-Modified

Public o o o o

Range

Referer o o o o

Retry-After o o o o

Session x x x x

Server o o o o

Speed

Transport

User-Agent o o o o

Via o o o o

WWW-Authenticate o o o o

Table 5: Overview of RTSP header fields for PAUSE, CLOSE, GET PARAMETER and

SET PARAMETER

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 30]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

11.1 Accept

The Accept request-header field can be used to specify certain session description content types which are

acceptable for the response.

The “level” parameter for session descriptions is properly defined as part of the MIME type registration, not

here.

See [H14.1] for syntax.

Example of use:

Accept: application/sdf, application/sdp;level=2

11.2 Accept-Encoding

See [H14.3]

11.3 Accept-Language

See [H14.4]. Note that the language specified applies to the session description, not the media content.

11.4 Allow

The Allow response header field lists the methods supported by the resource identified by the request-URI.

The purpose of this field is to strictly inform the recipient of valid methods associated with the resource. An

Allow header field must be present in a 405 (Method not allowed) response.

Example of use:

Allow: SETUP, PLAY, RECORD, SET_PARAMETER

11.5 Authorization

See [H14.8]

11.6 Bandwidth

The Bandwidth request header field describes the estimated bandwidth available to the client, expressed as

a positive integer and measured in bits per second.

Bandwidth = "Bandwidth" ":" 1*DIGIT

Example:

Bandwidth: 4000

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 31]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

11.7 Blocksize

This request header field is sent from the client to the media server asking the server for a particular media

packet size. This packet size does not include lower-layer headers such as IP, UDP, or RTP. The server is

free to use a blocksize which is lower than the one requested. The server MAY truncate this packet size to

the closest multiple of the minimum media-specific block size or overrides it with the media specific size

if necessary. The block size is a strictly positive decimal number and measured in octets. The server only

returns an error (416) if the value is syntactically invalid.

11.8 Conference

This request header field establishes a logical connection between a conference, established using non-RTSP

means, and an RTSP stream.

Conference = "Conference" ":" conference-id

Example:

Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

11.9 Content-Encoding

See [H14.12]

11.10 Content-Length

This field contains the length of the content of the method (i.e. after the double CRLF following the last

header). Unlike HTTP, it MUST be included in all messages that carry content beyond the header portion

of the message. It is interpreted according to [H14.14].

11.11 Content-Type

See [H14.18]. Note that the content types suitable for RTSP are likely to be restricted in practice to session

descriptions and parameter-value types.

11.12 Date

See [H14.19].

11.13 If-Modified-Since

See [H14.24]. If the request URL refers to a presentation rather than a track, the server is to return the

presentation if any of the track has been modified since the time stated in the header field.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 32]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

11.14 Last-modified

The Last-Modified entity-header field indicates the date and time at which the origin server believes the

variant was last modified. See [H14.29]. If the request URI refers to an aggregate, the field indicates the last

modification time across all leave nodes of that aggregate.

11.15 Location

See [H14.30].

11.16 Range

This request header field specifies a range of time. The range can be specified in a number of units. This

specification defines the smpte (see Section 3.4) and clock (see Section 3.5) range units. Within RTSP, byte

ranges [H14.36.1] are not meaningful and MUST NOT be used.

Range = "Range" ":" 1#ranges-specifier

ranges-specifier = utc-range | smpte-range

Example:

Range: clock=19960213T143205Z-

11.17 Require

The Require header is used by clients to query the server about features that it may or may not support. The

server MUST respond to this header by negatively acknowledging those features which are NOT supported

in the Unsupported header.

HS: Naming of features – yet another name space. I believe this header field to be redundant. PEP should be

used instead.

For example

C->S: SETUP /foo/bar/baz.rm RTSP/1.0 302
Require: funky-feature
Funky-Parameter: funkystuff

S->C: RTSP/1.0 200 506 Option not supported
Unsupported: funky-feature

C->S: SETUP /foo/bar/baz.rm RTSP/1.0 303

S->C: RTSP/1.0 200 303 OK

This is to make sure that the client-server interaction will proceed optimally when all options are un-

derstood by both sides, and only slow down if options aren’t understood (as in the case above). For a

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 33]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

well-matched client-server pair, the interaction proceeds quickly, saving a round-trip often required by ne-

gotiation mechanisms. In addition, it also removes state ambiguity when the client requires features that the

server doesn’t understand.

11.18 Unsupported

See Section 11.17 for a usage example.

HS: same caveat as for Require applies.

11.19 Nack-Transport-Require

Negative acknowledgement of features not supported by the server. If there is a proxy on the path between

the client and the server, the proxy MUST insert a message reply with an error message 506 (Feature not

supported).

HS: Same caveat as for Require applies.

11.20 Transport-Require

The Transport-Require header is used to indicate proxy-sensitive features that MUST be stripped by the

proxy to the server if not supported. Furthermore, any Transport-Require header features that are not sup-

ported by the proxy MUST be negatively acknowledged by the proxy to the client if not supported.

See Section 11.17 for more details on the mechanics of this message and a usage example.

HS: Same caveat as for Require applies.

11.21 Retry-After

See [H14.38].

11.22 Speed

This request header fields parameter requests the server to deliver data to the client at a particular speed,

contingent on the server’s ability and desire to serve the media stream at the given speed. Implementation

by the server is OPTIONAL. The default is the bit rate of the stream.

The parameter value is expressed as a decimal ratio, e.g., a value of 2.0 indicates that data is to be

delivered twice as fast as normal. A speed of zero is invalid. A negative value indicates that the stream is to

be played back in reverse direction.

speed = "Speed" ":" ["-"]1*DIGIT ["." *DIGIT]

Example:

Speed: 2.5

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 34]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

11.23 Server

See [H14.39]

11.24 Session

This request and response header field identifies a session, started by the media server in a SETUP or PLAY

response and concluded by CLOSE on the session URL (presentation). The session identifier is chosen

by the media server and has the same syntax as a conference identifier. Once a client receives a Session

identifier, it MUST return it for any request related to that session.

HS: This may be redundant with the standards-track HTTP state maintenance mechanism [1]. The equiv-

alent way of doing this would be for the server to send Set-Cookie: Session="123"; Version=1;

Path = "/twister" and for the client to return later Cookie: Session = "123"; $Version=1;

$Path = "/twister". In the response to the CLOSE message, the server would simply send Set-Cookie:

Session="123"; Version=1; Max-Age=0 to get rid of the cookie on the client side. Cookies also have a

time-out, so that a server may limit the lifetime of a session at will. Unlike a web browser, a client would not store

these states on disk.

11.25 Transport

This request header indicates which transport protocol is to be used and configures its parameters such as

multicast, compression, multicast time-to-live and destination port for a single stream. It sets those values

not already determined by a session description. In some cases, the session description contains all necessary

information. In those cases, a Transport header field (and the SETUP request containing it) are not needed.

’Interleaved’ implies mixing the media stream with the control stream, in whatever protocol is being

used by the control stream. Currently, the next-layer protocols RTP is defined. Parameters may be added

to each protocol, separated by a semicolon. For RTP, the boolean parameter compressed is defined,

indicating compressed RTP according to RFC XXXX. For multicast UDP, the integer parameter ttl defines

the time-to-live value to be used. For UDP and TCP, the parameter port defines the port data is to be sent to.

The SSRC parameter indicates the RTP SSRC value that should be (request)i or will be (response) used

by the media server. This parameter is only valid for unicast transmission. It identifies the synchronization

source to be associated with the media stream.

The Transport header MAY also be used to change certain transport parameters. A server MAY refuse

to change parameters of an existing stream.

The server MAY return a Transport response header in the response to indicate the values actually

chosen.

A Transport request header field may contain a list of transport options acceptable to the client. In that

case, the server MUST return a single option which was actually chosen. The Transport header field makes

sense only for an individual media stream, not a session.

Transport = "Transport" ":"
1#transport-protocol/upper-layer *parameter

transport-protocol = "UDP" | "TCP"
upper-layer = "RTP"
parameters = ";" "multicast" |

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 35]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

";" "compressed" |
";" "interleaved" |
";" "ttl" "=" ttl |
";" "port" "=" port |
";" "ssrc" "=" ssrc

ttl = 1*3(DIGIT)
port = 1*5(DIGIT)
ssrc = 8*8(HEX)

Example:

Transport: udp/rtp;compressed;ttl=127;port=3456

11.26 User-Agent

See [H14.42]

11.27 Via

See [H14.44].

11.28 WWW-Authenticate

See [H14.46].

12 Caching

In HTTP, response-request pairs are cached. RTSP differs significantly in that respect. Typically, re-

sponses are not cachable (except maybe for the GET response), rather it is desirable for the media data

(that is typically delivered outside of RTSP) to be cached. Since the responses for anything but GET and

GET PARAMETER do not return any data, caching is not an issue for these requests.

HS: A proxy cache for RTSP would look not much different from an HTTP cache. To the client, the

proxy cache would appear like a regular media server, to the media server like a client. Just like an HTTP

cache has to store the content type, content language, etc. for the objects it caches, a media cache has to

store the session description. Typically, a cache would eliminate all transport-references (that is, multicast

information) from the session description, since these are independent of the data delivery from the cache to

the client. Information on the encodings remains the same. If the cache is able to translate the cached media

data, it would create a new session description with all the encoding possibilities it can offer.

13 Examples

To emphasize that RTSP is independent of the session description format, the following examples use a

fictional session description language which is chosen to be sufficiently self-explanatory.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 36]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

13.1 Media on Demand (Unicast)

ClientC requests a movie from media serversA (audio.example.com) and V (video.example.com).

The media description is stored on a web server W . This, however, is transparent to the client. The client

is only interested in the last part of the movie. The server requires authentication for this movie. The audio

track can be dynamically switched between between two sets of encodings. The URL with scheme rtpsu

indicates the media servers want to use UDP for exchanging RTSP messages.

C->W: GET /twister HTTP/1.1
Host: www.example.com
Accept: application/sdf; application/sdp

W->C: 200 OK
Content-Type: application/sdf

(session
(all
(media (t audio) (oneof

((e PCMU/8000/1 89 DVI4/8000/1 90) (id lofi))
((e DVI4/16000/2 90 DVI4/16000/2 91) (id hifi))

)
(language en)
(id rtspu://audio.example.com/twister/audio.en)
)
(media (t video) (e JPEG)
(id rtspu://video.example.com/twister/video)

)
)

)

C->A: SETUP rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 1
Transport: rtp/udp;compression;port=3056

A->C: RTSP/1.0 200 1 OK
Session: 1234

C->V: SETUP rtsp://video.example.com/twister/video RTSP/1.0 1
Transport: rtp/udp;compression;port=3058

V->C: RTSP/1.0 200 1 OK
Session: 1235

C->V: PLAY rtsp://video.example.com/twister/video RTSP/1.0 2
Session: 1235
Range: smpte 0:10:00-

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 37]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

V->C: RTSP/1.0 200 2 OK

C->A: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 2
Session: 1234
Range: smpte 0:10:00-

A->C: 200 2 OK

C->A: CLOSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 3
Session: 1234

A->C: 200 3 OK

C->V: CLOSE rtsp://video.example.com/twister/video RTSP/1.0 3
Session: 1235

V->C: 200 3 OK

Even though the audio and video track are on two different servers, may start at slightly different times

and may drift with respect to each other, the client can synchronize the two using standard RTP methods, in

particular the time scale contained in the RTCP sender reports.

13.2 Live Media Event Using Multicast

The media server M chooses the multicast address and port. Here, we assume that the web server only

contains a pointer to the full description, while the media server M maintains the full description. During

the session, a new subtitling stream is added.

C->W: GET /concert HTTP/1.1
Host: www.example.com

W->C: HTTP/1.1 200 OK
Content-Type: application/sdf

(session
(id rtsp://live.example.com/concert)

)

C->M: GET rtsp://live.example.com/concert RTSP/1.0 1

M->C: RTSP/1.0 200 1 OK
Content-Type: application/sdf

(session (all

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 38]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

(media (t audio) (id music) (a IP4 224.2.0.1) (p 3456))
))

C->M: PLAY rtsp://live.example.com/concert/music RTSP/1.0 2
Range: smpte 1:12:0

M->C: RTSP/1.0 405 2 No positioning possible

M->C: SESSION concert RTSP/1.0
Content-Type: application/sdf

(session (all
(media (t audio) (id music))
(media (t text) (id lyrics))

))

C->M: PLAY rtsp://live.example.com/concert/lyrics RTSP/1.0

Since the session description already contains the necessary address information, the client does not set

the transport address. The attempt to position the stream fails since this is a live event.

13.3 Playing media into an existing session

A conference participant C wants to have the media server M play back a demo tape into an existing con-

ference. When retrieving the session description, C indicates to the media server that the network addresses

and encryption keys are already given by the conference, so they should not be chosen by the server. The

example omits the simple ACK responses.

C->M: GET /demo HTTP/1.1
Host: www.example.com
Accept: application/sdf, application/sdp

M->C: HTTP/1.1 200 1 OK
Content-type: application/sdf

(session
(id 548)
(media (t audio) (id sound)

)

C->M: SETUP rtsp://server.example.com/demo/548/sound RTSP/1.0 2
Conference: 218kadjk

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 39]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

13.4 Recording

Conference participant C asks the media server M to record a session. If the session description contains

any alternatives, the server records them all.

C->M: SESSION rtsp://server.example.com/meeting RTSP/1.0 89
Content-Type: application/sdp

v=0
s=Mbone Audio
i=Discussion of Mbone Engineering Issues

M->C: 415 89 Unsupported Media Type
Accept: application/sdf

C->M: SESSION rtsp://server.example.com/meeting RTSP/1.0 90
Content-Type: application/sdf

M->C: 200 90 OK

C->M: RECORD rtsp://server.example.com/meeting RTSP/1.0 91
Range: clock 19961110T1925-19961110T2015

14 Syntax

The RTSP syntax is described in an augmented Backus-Naur form (BNF) as used in RFC 2068 (HTTP/1.1).

14.1 Base Syntax

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US-ASCII uppercase letter "A".."Z">
LOALPHA = <any US-ASCII lowercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DIGIT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<"> = <US-ASCII double-quote mark (34)>
CRLF = CR LF
LWS = [CRLF] 1*(SP | HT)
TEXT = <any OCTET except CTLs>

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 40]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

tspecials = "(" | ")" | "<" | ">" | "@"
| "," | ";" | ":" | "\" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

token = 1*<any CHAR except CTLs or tspecials>
quoted-string = (<"> *(qdtext) <">)
qdtext = <any TEXT except <">>
quoted-pair = "\" CHAR

message-header = field-name ":" [field-value] CRLF
field-name = token
field-value = *(field-content | LWS)
field-content = <the OCTETs making up the field-value and consisting
of either *TEXT or combinations of token, tspecials,
and quoted-string>

14.2 Internet Media Type Syntax

media-type = type "/" subtype *(";" parameter)
type = token
subtype = token
parameter = attribute "=" value
attribute = token
value = token | quoted-string

14.3 Universal Resource Identifier Syntax

uri = (absoluteURI | relativeURI) ["#" fragment]
absoluteURI = scheme ":" *(uchar | reserved)
relativeURI = net-path | abs-path | rel-path
net-path = "//" net-loc [abs-path]
abs-path = "/" rel-path
rel-path = [path] [";" params] ["?" query]
path = fsegment *("/" segment)
fsegment = 1*pchar
segment = *pchar
params = param *(";" param)
param = *(pchar | "/")
scheme = 1*(ALPHA | DIGIT | "+" | "-" | ".")
net_loc = *(pchar | ";" | "?")
query = *(uchar | reserved)
fragment = *(uchar | reserved)
pchar = uchar | ":" | "@" | "&" | "=" | "+"
uchar = unreserved | escape
unreserved = ALPHA | DIGIT | safe | extra | national
escape = "%" HEX HEX

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 41]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+"
extra = "!" | "*" | "’" | "(" | ")" | ","
safe = "$" | "-" | "_" | "."
unsafe = CTL | SP | <"> | "#" | "%" | "<" | ">"
national = <any OCTET excluding ALPHA, DIGIT, reserverd, extra,

safe, and unsafe>

14.4 RTSP-specific syntax

setup-response = response-line
date-type-header

*(nack-require-header
| nack-require-transport-header)
CRLF

redirect-response = response-line
date-type-header

session-response = response-line
date-type-header

play-response = response-line
date-type-header

pause-response = response-line
date-type-header

message-body = *OCTET

accept-header = "Accept" ":" 1#media-type
allow-header = "Allow" ":" 1#method
blocksize-header = "Blocksize" ":" 1*DIGIT
content-length-header = "Content-Length" ":" 1*DIGIT
content-type-header = "Content-Type" ":" media-type
date-type-header = "Date" ":" rfc1123-date
location-header = "Location" ":" request-uri
require-header = "Require" ":" #parameters
transport-require-header = "Transport-Require" ":" #parameters
nack-require-header = "Nack-Require" ":" #parameters
nack-transport-require-header = "Nack-Transport-Require" ":" #parameters

auth-scheme = token
ip-address = <IP address in dotted-decimal form per RFC 1123>
port-number = 1*DIGIT
blocksize-value = 1*DIGIT

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 42]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

credentials = auth-scheme ":" #parameter
rfc1123-date = wkday "," SP date SP time SP "GMT"
date = 2DIGIT SP month SP 4DIGIT ; day month year (e.g., 12 Dec 1998)
time = 2DIGIT ":" 2DIGIT ":" 2DIGIT ; 00:00:00 - 23:59:59
wkday = "Mon" | "Tue" | "Wed" | "Thu" | "Fri" | "Sat" | "Sun"
month = "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun"

| "Jul" | "Aug" | "Sep" | "Oct" | "Nov" | "Dec"

15 Experimental

This section gathers parts of the protocol which are less well understood and require extensive further dis-

cussion.

15.1 Header Field Definitions

The following additional HTTP headers may be useful for RTSP:

� Accept-Language

� Cache-Control

� From

� Max-Forwards

� Proxy-Authenticate

� Proxy-Authorization

� Public

� Referer

15.1.1 Address

Designates address to send multimedia data to.

It appears that in almost all cases, the destination address is the same one where the RTSP command originates

from. If TCP is used for control, this also eliminates the possibilities of pointing a data stream at an unsuspecting

third party.

16 Security Considerations

The protocol offers the opportunity for a remote-control denial-of-service attack. The attacker, using a

forged source IP address, can ask for a stream to be played back to that forged IP address.

Since there is no relation between a transport layer connection and an RTSP session, it is possible for a

malicious client to issue requests with random session identifiers which would affect unsuspecting clients.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 43]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

This does not require spoofing of network packet addresses. The server SHOULD use a large random

session identifier to make this attack more difficult.

Both problems can be be prevented by appropriate authentication.

In addition, the security considerations outlined in [H15] apply.

A State Machines

The RTSP client and server state machines describe the behavior of the protocol from session initialization

through session termination.

[TBD: should we allow for the trivial case of a server that only implements the PLAY message, with no

control.]

State is defined on a per object basis. An object is uniquely identified by the stream URL AND the

session identifier. (A server may choose to generate dynamic session descriptions where the URL is unique

for a particular session and thus may not need an explicit session identifier in the request header.) Any

request/reply using URLs denoting a session comprised of multiple streams will have an effect on the indi-

vidual states of all the substreams. For example:

Assuming the stream /coolmovie contains two substreams /coolmovie/audio and /coolmovie/video, then

the following command:

PLAY /coolmovie RTSP/1.0 559
Session: 12345

will have an effect on the states of coolmovie/audio and coolmovie/video.

This example does not imply a standard way to represent substreams in URLs or a relation to the filesystem.

See Section 3.2.

A.1 Client State Machine

A.1.1 Client States

These are defined as follows:

NULL: No state

INIT: GET or SETUP has been sent, waiting for reply.

READY: SETUP reply received OR after playing, PAUSE reply received.

PLAYING: PLAY reply received

A.1.2 Notes

In general, the client transitions state on receipt of specific replies. After a period of inactivity, state transi-

tions back to NULL. ”Inactivity” is defined as one of the following:

� For state PLAYING, no data being received and/or lack of wellness information from the server.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 44]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

� The client stays in any other state continuously for more than a specific interval. The choice of this

interval is left to the implementation.

If no explicit SETUP is required for the object (for example, it is available via a multicast group) , state

begins at READY. In this case, there are only two states, i.e READY and PLAYING.

A client MUST disregard messages with a sequence number less than the last one . If no message has

been received, the first received message’s sequence number will be the starting point.

A.1.3 State Table

In the NEXT STATE column, + indicates that the message was successful, -indicates that it was unsuccess-

ful.

STATE MESSAGES NEXT STATE(+) NEXT STATE(-)

INIT GET REPLY INIT NULL
SETUP REPLY READY INIT
REDIRECT NULL NULL
BYE NULL NULL
OTHER INIT INIT

READY PLAY REPLY PLAYING READY
SETUP REPLY READY INIT
BYE NULL NULL
OTHER READY READY

PLAYING PAUSE REPLY READY PLAYING
PLAY REPLY PLAYING CLOSED
BYE NULL NULL
CLOSE REPLY NULL PLAYING
OTHER PLAYING PLAYING

This assumes that a PLAY during state PLAYING is an implicit PAUSE, PLAY.

HS: BYE should be replaced by CLOSE.

A.2 Server State Machine

A.2.1 Server States

INIT: The initial state, no valid SETUP receieved.

READY: Last SETUP received was successful, reply sent or after playing, last PAUSE received was suc-

cessful, reply sent.

PLAYING: Last PLAY received was successful, reply sent. Data actually being sent.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 45]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

In general, server state transitions occur on receiving requests. On receiving a BYE, state transitions

back to INIT. After inactivity for a period, state also transitions back to INIT. ”Inactivity” is defined as:

� For states other than PLAYING, no messages for that object for a specific interval. The choice of

interval is left to the implementation.

� In state PLAYING, lack of wellness information from the client.(This information could be either

RTCP or be requested by the server by other means)

The REDIRECT message, when sent, is effective immediately. If a similar change of location occurs at

a certain time in the future, this is assumed to be indicated by the session description. For purposes of this

table, a REDIRECT is considered an unsuccessful GET.

A server MUST disregard messages with a sequence number less than the last one. If no message has

been received, the first received message’s sequence number will be the starting point.

SETUP is valid in states INIT and READY only. An error message should be returned in other cases.

If no explicit SETUP is required for the object, state starts at READY, ie. there are only two states READY

and PLAYING.

A.2.2 State Table

In the NEXT STATE column, + indicates that the message was successful, -indicates that it was unsuccess-

ful.

STATE MESSAGES NEXT STATE(+) NEXT STATE(-)

INIT GET INIT INIT
SETUP READY INIT
BYE INIT INIT
OTHER - INIT

READY PLAY PLAYING READY
SETUP READY INIT
CLOSE INIT -
BYE INIT -
OTHER - READY

PLAYING PLAY PLAYING READY
PAUSE READY PLAYING
CLOSE INIT PLAYING
BYE INIT -
OTHER - PLAYING

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 46]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

B Open Issues

� Define text/rtsp-parameter MIME type.

� Lots of inconsistencies need to be fixed: naming of methods in state definition, syntax.

� Allow changing of transport for a stream that’s playing? May not be a great idea since the same can

be accomplished by tear down and re-setup.

� How does the server get back to the client unless a persistent connection is used? Probably cannot, in

general.

� Cache and proxy behavior?

� Session: or Set-Cookie: ?

� Behavior of all methods in state diagram.

� Error message for method

� When do relative RTSP URLs make sense?

� Nack-require, etc. are dubious. This is getting awfully close to the HTTP extension mechanisms [16]

in complexity, but is different.

� Suggestion (HS): shelve REDIRECT method for now, until necessity becomes clear.

� Use HTTP absolute path + Host field or do the right thing and carry full URL, including host in

request?

C Author Addresses

Henning Schulzrinne

Dept. of Computer Science

Columbia University

1214 Amsterdam Avenue

New York, NY 10027

USA

electronic mail: schulzrinne@cs.columbia.edu

Anup Rao

Netscape Communications Corp.

USA

electronic mail: anup@netscape.com

Robert Lanphier

Progressive Networks

1111 Third Avenue Suite 2900

Seattle, WA 98101

USA

electronic mail: robla@prognet.com

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 47]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

D Acknowledgements

This draft is based on the functionality of the RTSP draft. It also borrows format and descriptions from

HTTP/1.1.

This document has benefited greatly from the comments of all those participating in the MMUSIC-WG.

In addition to those already mentioned, the following individuals have contributed to this specification:

Rahul Agarwal Eduardo F. Llach

Bruce Butterfield Rob McCool

Martin Dunsmuir Sujal Patel

Mark Handley Igor Plotnikov

Peter Haight Pinaki Shah

Brad Hefta-Gaub Jeff Smith

John K. Ho Alexander Sokolsky

Ruth Lang Dale Stammen

Stephanie Leif John Francis Stracke

References

[1] D. Kristol and L. Montulli, “HTTP state management mechanism,” RFC 2109, Internet Engineering

Task Force, Feb. 1997.

[2] F. Yergeau, G. Nicol, G. Adams, and M. Duerst, “Internationalization of the hypertext markup lan-

guage,” RFC 2070, Internet Engineering Task Force, Jan. 1997.

[3] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Internet Draft, Internet Engi-

neering Task Force, Jan. 1997. Work in progress.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext transfer protocol –

HTTP/1.1,” RFC 2068, Internet Engineering Task Force, Jan. 1997.

[5] A. Freier, P. Karlton, and P. Kocher, “The TLS protocol,” Internet Draft, Internet Engineering Task

Force, Dec. 1996. Work in progress.

[6] J. Franks, P. Hallam-Baker, J. Hostetler, P. A. Luotonen, and E. L. Stewart, “An extension to HTTP:

digest access authentication,” RFC 2069, Internet Engineering Task Force, Jan. 1997.

[7] J. Postel, “User datagram protocol,” STD 6, RFC 768, Internet Engineering Task Force, Aug. 1980.

[8] R. Hinden and C. Partridge, “Version 2 of the reliable data protocol (RDP),” RFC 1151, Internet

Engineering Task Force, Apr. 1990.

[9] J. Postel, “Transmission control protocol,” STD 7, RFC 793, Internet Engineering Task Force, Sept.

1981.

[10] M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session initiation protocol,” Internet Draft, Internet

Engineering Task Force, Dec. 1996. Work in progress.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 48]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-02.ps February 22, 1997

[11] P. McMahon, “GSS-API authentication method for SOCKS version 5,” RFC 1961, Internet Engineer-

ing Task Force, June 1996.

[12] D. Crocker, “Augmented BNF for syntax specifications: ABNF,” Internet Draft, Internet Engineering

Task Force, Oct. 1996. Work in progress.

[13] R. Elz, “A compact representation of IPv6 addresses,” RFC 1924, Internet Engineering Task Force,

Apr. 1996.

[14] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),” RFC 1738, Inter-

net Engineering Task Force, Dec. 1994.

[15] International Telecommunication Union, “Visual telephone systems and equipment for local area net-

works which provide a non-guaranteed quality of service,” Recommendation H.323, Telecommunica-

tion Standardization Sector of ITU, Geneva, Switzerland, May 1996.

[16] D. Connolly, “PEP: an extension mechanism for http,” Internet Draft, Internet Engineering Task Force,

Jan. 1997. Work in progress.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 20, 1997 [Page 49]

