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Abstract

RTP, the Real Time Transport Protocol, has gained widespread acceptance as the transport proto-

col for voice and video on the Internet. It provides services such as timestamping, sequence num-

bering, and payload identi�cation. It also contains a control component, the Real Time Control

Protocol (RTCP), which is used for loose session control, QoS reporting, and media synchroniza-

tion, among other functions. The RTP speci�cation describes an algorithm for determining the

RTCP packet transmission rate at a host participating in a multicast RTP session. This algorithm

was designed to allow RTP to be used in sessions with anywhere from one to a million members.

However, we have discovered several problems with this algorithm when used with very large groups

with rapidly changing group membership. One problem is the ood of RTCP packets which occurs

when many users join a multicast RTP session at nearly the same time. To solve this problem, we

present a novel adaptive timer algorithm called reconsideration. We present a mathematical anal-

ysis of this algorithm, and demonstrate that it performs extremely well, reducing the congestion

problem by several orders of magnitude. We also back up these results with simulation.
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1 Introduction

There has recently been a ood of interest in the delivery of multimedia services on the Internet.

The growing popularity of Internet telephony, streaming audio and video services (such as those

provided by Real Audio) and the Mbone are all indicators of this trend. To support these applica-

tions, standards are being developed to insure interoperability. The ITU-T H.323 [1] speci�cation

for Internet telephony is gaining widespread acceptance among software vendors. The IETF is

developing protocols such as SIP [2] for multimedia session initiation, and RTSP [3] for controlling

multimedia servers on the Internet.

Interwoven with all of the above protocols is the Real Time Transport Protocol (RTP) [4]. It is used

by H.323 terminals as the transport pprotocol for multimedia; both SIP and RTSP were designed

to control multimedia sessions delivered over RTP. Its main function is to carry real time services,

such as voice and video, over an IP network. It provides payload type identi�cation so that the

receiver can determine the media type contained in the packet. Sequence numbers and timestamps

are also provided, so that packets can be reordered, losses can be detected, and data can be played

out at the right speeds. RTP was designed to be easily used in multicast conferences. To this end,

it guarantees that each participant in a session has a unique identi�er called the synchronization

source (SSRC). This identi�er is carried in each packet, providing applications a way to de-multiplex

packets from di�erent users.

RTP also contains a control component, called the Real Time Control Protocol (RTCP). It is

multicast to the same multicast group as RTP, but on a di�erent port number. Both data senders

and receivers periodically multicast RTCP messages. RTCP packets provide many services. First,

they are used to identify the users in a session. One RTCP packet type, the Source Descriptor

(SDES) contains the name, email address, telephone number, fax, and location of the participant.

Another, the receiver report, contains reception quality reporting. This information can be used

by senders to adapt their transmission rates or encodings dynamically during a session [5]. It can

also be used by network administrators to monitor network quality [6]. It could potentially be

used by receivers to decide which multicast groups to join in a layered multimedia session; such an

application is similar to RLM [7]. Yet another RTCP packet type, the sender report (SR), is used

to aid receivers in inter-media synchronization (lip sync), and to indicate transmitted bit rates,

among other functions.

Since RTP was designed for multicast, it was engineered to work well with both large and small

sessions. A typical \small" session might be a teleconference among �ve business executives, while

a typical \large" session might be an Mbone broadcast of a shuttle launch, where group sizes of

two hundred listeners have been reported [8]. As the demand for multimedia continues to grow,

larger and larger group sizes will become commonplace. It is not di�cult to envision Mbone concert

broadcasts with thousands of members. It has even been suggested that RTP might be the transport

protocol of choice for multicast distribution of multimedia in future cable networks, where tens of

thousands of users might be the norm.

The principle di�culty in achieving scalability to large group sizes is the rate of RTCP packet

transmissions from a host. If each host sends packets at some �xed interval, the total packet rate
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sent to the multicast group increases linearly with the group size, N . This tra�c would quickly

congest the network, and be particularly problematic for hosts connected through low speed dialup

modems. To counter this, the RTP speci�cation requires that end systems utilizing RTP listen

to the multicast group, and count the number of distinct RTP end systems which have sent an

RTCP packet. This results in a group size estimate, L computed locally at each host. The interval

between packet transmissions is then set to scale linearly with L. This has the e�ect of keeping the

total tra�c in the multicast group constant, independent of the number of group members.

The above scaling mechanism works well for small to medium sized groups (up to perhaps a few

hundred members). However, it su�ers from problems when applied to larger groups, particularly

ones whose group membership is dynamic. We have identi�ed three inter-related problems which

arise with large, dynamic multicast groups:

� Congestion: In many cases, the access bandwidths for users will be small compared to network

bandwidths (28.8 kb/s modems, for example, can now handle multimedia RTP sessions when

RTP header compression [9] is used). We also anticipate that many multicast RTP sessions

will exhibit rapid increases in group membership at certain points in time. This can happen

for a number of reasons. Many sessions have precise start times. Multimedia tools such

as vat and vic can be programmed to join a session at the instant of its inception. Even

without automation, users are likely to �re up their applications around the time the session

is scheduled to begin. Such phenomena are common in current cable networks, where people

change channels when shows begin and end. Studies have been performed to look at the group

membership over time of some of the popular sessions on the Mbone [10][8]. These studies

show exactly this kind of \step-join" behavior. The result of these step joins are inaccuracies

in the group size estimates obtained by listening to the group. Each newly joined member

believes that they are the only member, at least initially, and begins to send packets at a

relatively fast rate. Combined with slow access links, the result is a ood of RTCP reports,

causing access link congestion and loss.

For example, consider an RTP session where the total RTCP rate is to be limited to 1 kb/s.

If all RTCP packets are 1 kbit, packets should be sent at a total rate of one per second. Under

steady state conditions, if there are 100 group members, each member will send a packet once

every 100 seconds, and everything works. However, if 100 group members all join the session

at about the same time, each thinks they are initially the only group member. Each therefore

sends packets at a rate of 1 per second, yielding an aggregate rate of 100 packets per second,

or 100 kb/s, into the group.

� State Storage: In order to estimate the group size, hosts must listen to the multicast group

and count the number of distinct end systems which send an RTCP packet. To make sure

an end system is counted only once, its unique identi�er (SSRC) must be stored. Clearly,

this does not scale well to extremely large groups, which would require megabytes of memory

just to track users. Alternate solutions must be found, particularly for set top boxes, where

memory is limited.

� Delay: As the group sizes grow, the time between RTCP reports from any one particular user
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becomes very large (in the example above, with 3000 group members, each would get to send

an RTCP packet about once an hour). This interval may easily exceed the duration of group

membership. This means that timely reporting of QoS problems from a speci�c user will not

occur, and the value of the actual reports is lost.

In this paper, we consider only the �rst problem, that of congestion. It is our aim to solve this

problem with a single mechanism, applicable to large groups and small alike. It is possible to

develop solutions which work well for speci�c applications. For example, RTCP reporting can be

disabled completely [11]. This, in fact, solves all three of the above problems. However, many

applications require RTCP, and therefore this approach is not a general one. Another alternative is

to use hierarchical summarizers. This helps improve convergence time, and may relieve congestion,

but it requires special servers to be deployed. It is also not appropriate for small groups, and

therefore does not work well as a universal solution to the congestion problem.

There has been a small amount of prior work on resolving di�culties with timers in Internet

protocols. Most prominent among this work is [12] and [13]. Sharma et. al. consider how to scale

soft state timers to varying link capacities and state quantities. Their work considers only the

point to point case. In that scenario, any sharp increases in the amount of state to send (which

is equivalent to the sharp increases of group membership we consider here) are known instantly

by the sender, since all of the state resides there. The congestion problem which we treat here

arises due to the distributed nature of the system and the multicast interconnect. In that scenario,

a rapid change in group membership is represented by a change in group state distributed across

many nodes. As such, our work can be viewed as a generalization of their's to distributed multicast

groups.

In fact, our algorithm for controlling the congestion problem in RTP is applicable to other protocols

and systems. An extension to the Service Location Protocol [14] has been proposed [15] which uses

the reconsideration algorithm to control congestion in the multicast group used to disseminate

information on network services. The algorithm is generally applicable to distributed systems

where (1) control of bandwidth is desirable, (2) the bandwidth is used to transmit state, (3) the

state is used to determine end system transmission rates, and (4) the state is dynamic. These

constraints apply to BGP [16], for example, when a route server is used and update rates are to be

controlled.

The remainder of the paper is organized as follows. In Section 2, we detail the current RTCP

packet transmission algorithm. Section 3 describes the desired ideal behavior. Section 4 describes

our solution, an algorithm called timer reconsideration, and shows its performance. Section 5

then analyzes the algorithm to provide more insight into its performance. Section 6 discusses the

algorithms performance under steady state conditions, and Section 7 summarizes our work.
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2 Current RTCP Algorithm

Each user i in a multicast group using RTP maintains a single state variable, the learning curve,

which we denote by L(t). This variable represents the number of other users that have been heard

from at time t. The state is initialized to L(0) = 1 when the user joins the group.

Each user multicasts RTCP reports periodically to the group. In order to avoid network congestion,

the total rate of RTCP reports multicast to the group, summed across all users, is set at 5% of the

total multicast session bandwidth (it is assumed in RTP that this quantity is known apriori). We

de�ne C as the average interval between arrivals of RTCP packets, across all users, into the group,

so that C is the average RTCP packet size divided by 5% of the session bandwidth. To meet this

criteria, each user computes a deterministic interval, which represents the nominal interval between

their own packet transmissions required to meet the 5% constraint. This interval is given by

2

:

T

d

= max(T

min

; CL(t));

where T

min

is 2.5 s for the initial packet from the user, and 5 s for all other packets. To avoid

synchronization, the actual interval is then computed as a random number uniformly distributed

between 0:5 and 1:5 times T

d

.

The algorithm for sending RTCP packets follows directly. Assume a user joins at time t = 0. The

�rst packet from that user is scheduled at a time uniformly distributed between 1=2 and 3=2 of

T

min

(which is 2.5 s for the �rst packet), putting the �rst packet transmission time between 1:25

and 3:75 seconds. We denote this time as t

0

. All subsequent packets are sent at a time t

n

equal to:

t

n

= t

n�1

+R(�)max(5; CL(t

n�1

)); (1)

where we have de�ned R(�) as a random variable uniformly distributed between (1��) and (1+�).

(� equals 1=2 in the current algorithm; we generalize because � has a strong impact on transient

behavior). A pseudo-code algorithm describing the behavior upon expiration of the interval timer

is given in Figure 1.

The di�culy arises when a large number (say, N) of users all join the group at the same time. We

call this a step-join. Since all users start out with L(t) = 1, all schedule their �rst packet to be

sent between t = 1:25 and t = 3:75, a �xed, 2.5 second interval. The result is a ood of N packets

for 2.5 s, many of which are lost if the access bandwidth is low. Since group size estimates are

based on the reception of these packets, losing them will continue to cause each user to have a low

estimate of the actual group size. This will cause continued congestion until enough packets get

through to make the group size estimates correct.

2

In actuality, the RTP speci�cation allocates 75% of the RTCP bandwidth to data senders, and the remaining

25% to listeners. In the remainder of the paper, we assume that everyone is a listener. This simpli�es the analysis

and simulations, all of which can be trivially extended to include the case where there are senders.

Rosenberg, Schulzrinne [Page 5]



INTERNET DRAFT Timer Reconsideration July 1997

new interval = C * current group size estimate;

new interval = max(new interval, T

min

);

new interval = new interval * random factor;

send packet();

schedule timer(current time + new interval);

Figure 1: Current RTCP Algorithm

3 Ideal Behavior

The ood of packets caused by the current RTCP algorithm with a step join has both good and bad

consequences. Clearly, the congestion which results is not desirable. However, the ood allows the

end systems to very rapidly learn about the group sizes and group membership, which is desireable.

There is a fundamental and unavoidable tradeo� between the convergence time (i.e., the time until

the observed group size L(t) equals the actual group size) and the bandwidth used to achieve

convergence. What, then, represents the behavior which is desirable?

Our approach is to de�ne the ideal behavior as the one where feedback into the group never exceeds

its speci�ed threshold (5% for RTCP). This implies that convergence times will grow as the group

sizes grow. However, it is the most social solution, in the sense that it will never congest the network,

no matter how large the group sizes become. If we de�ne the ideal behavior as convergence within

any amount of time that grows less than linearly with the group size, the result is a protocol that

does not scale and can eventually result in congestion.

We also consider congestion avoidance to be more important because we expect many users to be

connected via low speed dialup lines. In that case, bandwidth is at a premium, and it is in the

self-interest of users to make the best use of it. Most users probably consider RTCP feedback much

less important than the video or audio data itself, and therefore it is important to keep the feedback

below the required 5%.

We now state the desired ideal behavior:

1. The learning curve L(t) grows linearly at a rate of C users per second, until it reaches the

group size N , at which point it becomes at, and remains at N .

2. The bandwidth used by all feedback is always equal to C packets per second during the

convergence period.
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new interval = C * current group size estimate;

new interval = max(new interval, T

min

);

new interval = new interval * random factor;

if ((last transmission + new interval < current time) k

(current group size estimate � previous group size estimate)) f

send packet();

schedule timer(current time + new interval);

last transmission = current time;

previous group size estimate = current group size estimate;

g

else f

schedule timer(last transmission + new interval);

previous group size estimate = current group size estimate;

g

Figure 2: Conditional Reconsideration

4 Reconsideration

Our contribution is a new solution which we call reconsideration. The e�ect of the algorithm is

to reduce the initial ood of packets which occur when a number of users simultaneously join the

group. This algorithm operates in two modes, conditional and unconditional. We �rst discuss

conditional reconsideration.

At time t

n

, as de�ned above, instead of sending the packet, the user checks if the group size estimate

L(t) has changed since t

n�1

. If it has, the user reconsiders. This means that the user recomputes

the RTCP interval (including the randomization factor) based on the current state (call this new

interval T

0

), and adds it to t

n�1

. If the result is a time before the current time t

n

, the packet is

sent, else it is rescheduled for t

n�1

+ T

0

. In other words, the state at time t

n

gives us potentially

new information about the group size, compared to the state at time t

n�1

. Therefore, we redo

the interval computation that was done previously at time t

n�1

, but using the new state. If the

resulting interval would have caused the packet to be scheduled before the current time, we know

that our interval estimate was not too low. If, however, the recomputation pushes the timer o�

into the future, we know that our initial timer estimate was computed incorrectly, and we delay

transmission based on our new timer. A pseudo-code speci�cation of the algorithm is given in

Figure 2.

Intuitively, this mechanism should help alleviate congestion by restricting the transmission of pack-

ets during the convergence periods, where the perceived group sizes L(t) are rapidly increasing.

In unconditional reconsideration, the user reconsiders independently of whether the number of per-
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new interval = C * current group size estimate;

new interval = max(new interval, T

min

);

new interval = new interval * random factor;

if (last transmission + new interval < current time)

f

send packet;

schedule timer(current time + new interval);

last transmission = current time;

g

else f

schedule timer(last transmission + new interval);

g

Figure 3: Unconditional Reconsideration

ceived users has changed since the last report time. Thus, the RTCP interval is always recomputed,

added to the last transmission time t

n�1

, and the packet is only sent if the resulting time is before

the current time. Clearly, when the group sizes are increasing, this algorithm behaves identically to

conditional reconsideration. However, its behavior di�ers in two respects. First, consider the case

where we have converged, and group sizes are no longer changing. In conditional reconsideration,

no timer recomputation is done. But for unconditional, it is redone. Since group sizes have not

changed, the deterministic part of the interval remains the same. However, the random factor is

redrawn each time. This means that packets will be transmitted when the recomputed random

factor is smaller than the previous factor, and packets will be delayed when the recomputed ran-

dom factor is greater than the previous one. Note that since the random factor is of �nite extent

(between 1=2 and 3=2), packets are guaranteed to eventually be sent. However, the result is an

average increase in the interval between RTCP packets.

The behavior of unconditional reconsideration di�ers during the initial transient as well. Consider

N users who simultaneously join the group at time 0. They all schedule their �rst RTCP packets

to be sent between t = 1:25 and t = 3:75. The users whose packets were scheduled earliest (at

a time a little bit after t = 1:25) will not reconsider with conditional reconsideration, and will

always send their packets. This is because no one else has sent any packets yet, and thus they

have not perceived the group size to have changed. In fact, because of network delays, many users

may send packets without reconsidering. Once the �rst transmitted packet has reached the end

systems, conditional reconsideration \kicks in", since users will perceive a change in group size only

then. With unconditional reconsideration, those �rst few users do not wait for the �rst packet to

arrive before using the reconsideration algorithm. They will all recompute the timer. Obviously,

the group size estimate hasn't changed, but the random variable will be redrawn. For the �rst few

users, the random factor was initially extremely small (that's why they are the �rst few users to
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send). In all likelihood, when the factor is redrawn, it will be larger than the initial factor, and thus

the resulting interval will be larger. This will delay transmission of RTCP packets for those users.

As time goes on, it becomes less likely than the new random factor will be greater than the initial

one. However, by then, any RTCP packets which may have been sent will begin to arrive, increasing

the group size estimates for each user. In this fashion, unconditional reconsideration alleviates the

initial spike of packets which are present in conditional reconsideration. These arguments are all

quanti�ed in later sections.

Both modes of the algorithm are advantageous in that they do not require any modi�cations to

the current RTCP protocol structure. In fact, they operate properly even when only a subset of

the multicast group utilizes them. As more and more members of a group use the algorithm, the

amount of congestion is lessened in proportion. This leaves open a smooth migration path which

is absent for most of the other proposed solutions.

4.1 Simulations

We ran a number of simulations to examine the performance of the reconsideration algorithms.

In our simulation model each user is connected to the network via an access link of 28.8 kb/s

downstream (i.e., from the network to the user). We assume upstream links are in�nitely fast,

since congestion occurs only downstream. This congestion is due to the RTCP reports from all

of the other users being sent to any particular user. Multicast join latencies are ignored; this is

reasonable in protocols such as DVMRP [17] since initial packets are ooded. We assume that the

network introduces a delay of D seconds, where D is uniformly distributed between 0 and 600 ms.

Each user has a 100 kB bu�er on the downstream access link. We assume all RTCP packets are

128 bytes in size.

Figure 4 and Figure 5 depict state evolution for a single user when 10,000 users simultaneously

join a multicast group at t = 0. The �gures depict the system with no reconsideration (the current

speci�cation), conditional reconsideration, unconditional reconsideration, and the ideal behavior.

The graphs are plotted on a log-log scale to emphasize the beginning and complete evolution of the

system. Figure 4 depicts the learning curve, and Figure 5 shows the integral of r(t), i.e., the total

number of packets sent, given that r(t) is the packet transmission rate into the multicast group.

Note the burst of packets sent in the beginning by the current algorithm. Exactly 10,000 packets

are sent out in a 2.5 s interval. This is almost 3000 times the desired RTCP packet rate. However,

this burst is reduced substantially by the reconsideration mechanisms. Conditional reconsideration

causes only 197 packets to be sent over a 210 ms interval, and unconditional reconsideration causes

merely 75 packets to be sent over a 327 ms interval. We also observed similar improvements with

a variety of di�erent link speeds, delays, and group memberships.

We noted that the startup burst with reconsideration was particularly disturbing when network

delays were deterministic instead of uniformly distributed. This is demonstrated in Figure 6,

which looks at the cumulative number of packets sent when 10; 000 users simultaneously join at

t = 0, using conditional reconsideration. In all cases, the mean network delay was 300ms, but the

distribution varies. Exponentially distributed network delays exhibited nearly identical performance
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Figure 4: Learning Curve, step join with N=10,000
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Figure 6: E�ect of Delay Distribution on Transient for Conditional Reconsideration

to a uniform distribution. Later sections will demonstrate that the spike is dependent on the amount

of time until the �rst packet arrives. As the number of users in the step join becomes large, the

number of users who send their packets within the �rst � seconds after t = 1:25 grows large for

any �. Consider an � much smaller than typical network delays, say 10 �s. As far as computing

arrival times at end stations, these packets can be treated as though they were all sent at the same

time. The amount of time until the �rst of these packets arrives at any end system is thus the

minimum network delay experienced by all of those packets. If the network delays are exponential,

the expected minimum of N exponential random variables goes to zero as N grows. The same

is also true for a uniform random variable. For a deterministic variable, this is not the case; the

minimum is always the same. Therefore, the performance is worse for network delays which are

�xed.

We have also observed that the reconsideration mechanisms cause a complete pause in packet

transmissions after the initial spike. This pause (which we call the \plateau e�ect") lasts for a

time proportional to the number of packets in the spike. This has both positive and negative

implications. On the plus side, it gives network bu�ers time to clear. However, it also causes

the send rate to deviate from our desired �xed 1=C packets per second. The phenomenon occurs

because the spike of packets in the beginning causes the system to reconsider, and not send, all

packets after the spike. A more detailed explanation of the phenomenon is given in Section 5.

However, after the spike and plateau, the packet rate behaves fairly well, sending packets at a

nearly constant rate.

We also ran simulations to observe performance in linear joins, where groups of users join the

system at time � seconds apart, for some small �. The results are shown in Figure 7 and Figure 8.

Both plots depict the cumulative number of packets sent by all users. The simulation parameters
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Figure 7: Linear Joins: Conditional Reconsideration

are identical to the above cases, except network delays are deterministic 300 ms. The �rst plot

depicts conditional reconsideration, and the second, unconditional. In all cases, 2500 users join the

system, but the rate that they do so is varied. Both plots depict the step join, and joins at a rate

of 5000, 2500, and 500 users per second. The plots indicate that linear joins quickly eliminate the

initial transient of packets and the plateau period, with the reduction being better for unconditional

reconsideration.

We have done some analysis to examine how the behavior of reconsideration changes under linear

joins. Our analysis has shown that as soon as the number of users who join, times �, exceeds the

network delays, the initial bursts in the reconsideration algorithms begin to disappear, whereas

they remain for the current speci�cation. All other aspects of the system performance (including

long term growth of L(t)) are identical to the step-join case.

5 Analysis

In this section, we present a mathematical analysis of the reconsideration mechanism. We �rst

consider the case where there are no network delays. This results in a di�erential equation which

describes the learning curve. The analysis also applies to networks with delay, but only models

the post-transient behavior of the system. However, this is su�cient to compute the post-transient

packet rate and system convergence times. We then extend this analysis to the case of network

delays, and derive expressions which describe the transient spikes and plateaus in the learning

curve. We also analytically demonstrate the reasons for improved performance from unconditional

reconsideration, which only exists in the presence of network delays.
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Figure 8: Linear Joins: Unconditional Reconsideration

5.1 No Delay

We consider a system where all of the users join the network at the same time, t = 0. It is assumed

that the network introduces neither delay nor loss, and that access links have in�nite bandwidth.

The result is that when a user sends an RTCP packet, it is received by all of the users simultaneously

at the time it was transmitted.

In the model considered here, all users will have exactly the same state (in terms of L(t)) at all

times. Thus, we trace state evolution as seen by a particular user. The user estimate has converged

when L(t) = N , the number of users actually in the group.

Whenever a packet is reconsidered, it is either sent, or it is not, depending on whether the newly

computed send time is before or after the current time. We can therefore view the reconsideration

mechanism as causing any packet to be sent with some probability P . In the most general case,

P is a function of the current time t, the time of the last RTCP report, and the number of users

observed at t, L(t). Fortunately, the learning curve is only a�ected by packets which are initial,

that is, sent by users which have not yet sent a packet. For all such users, the last report time is

initialized to t = 0, so that the send probability is a function of t and L(t) only.

If we consider some small interval of time, the change in L(t) is equal to the number of initial

packets scheduled to be sent during this interval, times the probability of sending a packet in that

interval. Based on this, we can immediately write the di�erential equation:

dL

dt

= d(t)P (t; L(t)); (2)

where d(t) is the rate of packets scheduled for transmission during some time interval. What

remains is the evaluation of the scheduled rate d(t) and probability P (t; L(t)). We �rst consider
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(1−α) CL(t) (1+α) CL(t)
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send reconsider

Figure 9: Computing P

send

with reconsideration

the send probability.

Consider an initial packet scheduled to be transmitted by a user at time t. Since the number of

perceived users, L(t) has surely changed over any time interval, this packet is reconsidered

3

. At

time t, the user perceives L(t) other users in the system. It thus calculates a new packet interval,

which is equal to:

T = R(�)max(T

min

; CL(t))

Since CL(t) is larger than T

min

most of the time, we ignore the max operator. Keeping in mind

that the previous report time is always t = 0, we can immediately write the probability of sending

a packet using Equation (1):

P

send

=

t�(1��)CL(t)

2�CL(t)

(1� �)CL(t) < t < (1 + �)CL(t) (3)

The numerator represents the range of times in the interval widow which fall below the current

time t, while the denominator represents the total range over which the times for the interval are

selected. This is illustrated in Figure 9. Note that this probability only makes sense when t is

between (1 � �) and (1 + �) of CL(t). When t is to the left of the reconsideration window, the

probability is zero, and when t is to the right of the window, it is one.

An important implication of this equation is that the send probability is zero when t < (1��)CL(t).

This places an upper bound on the learning curve; if the learning curve should reach this bound,

no initial packets would be sent, and the curve would remain at until it fell back below this upper

bound. We therefore de�ne the maximum learning curve L

max

(t) to be:

L

max

(t) =

1

(1� �)C

t (4)

The actual learning curve L(t) is always below L

max

(t).

The next step is to compute the scheduled rate, which is signi�cantly harder. In the ideal case,

the rate that packets have been scheduled at should equal the number of users in the system, N ,

divided by the average RTCP interval size perceived by those users at time t, namely CL(t). At

any point in time the fraction of packets to be sent which are initial is (N � L)=N . Thus, the

3

It is for this reason that we make no distinction between conditional and unconditional reconsideration here
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scheduled rate of initial packets is roughly given by:

d(t) =

N � L(t)

CL(t)

The curves of Figure 4 show that the reconsideration algorithms exhibit linear behavior between

roughly t = 100 and t = 9000 (thus ignoring the transient behavior in the beginning few seconds).

We therefore attempt to determine the slope a of this line based on the di�erential equation.

Substituting L(t) = at into (2):

a =

N � L(t)

CL(t)

1� (1� �)Ca

2�Ca

For small t, L(t) < N , so we can ignore the L in the �rst term's numerator. Thus:

2�C

2

L(t)

N

a

2

+ a(1� �)C � 1 = 0

Thus, for large N and small t, L(t)� N , and we can neglect the a

2

term, and obtain the desired

result:

a =

1

(1� �)C

(5)

Not coincidentally, this is also the slope of the maximum learning curve. The equation indicates,

therefore, that L(t) grows at its maximum rate until the approximation is no longer valid, at which

point its growth tapers o�.

As mentioned previously, the equation for the scheduled rate d(t) is very approximate. We have

done some more extensive analysis, and found that a slightly better approximation is given by:

d(t) =

N � L(t)

C

1��

2��

L(t)

(6)

This is of the same form as the previous equation, but tends to model the nonlinearities of the

system better.

Now, with the density and send probabilities computed, we can write the �nal di�erential equation,

which is:

dL

dt

=

N � L(t)

C

1��

2��

L(t)

t� (1� �)CL(t)

2�CL(t)

This ODE allows us to compute a numerical solution, which can be compared against the simula-

tions. Figure 10 shows the learning curve, with 10,000 users joining at t = 0, for both analysis and

simulation. In the simulation, however, we take into account non-zero delays and �nite link speeds;

network delays are a deterministic 300 ms, and link speeds are 28.8 kbps. Note that despite this

change in assumptions, the analytical expression still comes extremely close to the experimental
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Figure 10: Experimental vs. analytical learning curve

for a large portion of the convergence period. In particular, it is very close during the period of

linearity of L(t) and less accurate afterwards. In addition, the di�erential equation does not capture

the behavior of L(t) for 0 � t � 20, where the experimental curve exhibits the spike and plateau

(this is di�cult to see in Figure 10 because of the x axis scale).

We believe that network delays only impact the behavior of L(t) when they are on the order of

CL(t). This is somewhat intuitive; the timescale of transmission events for any particular user

is CL(t). If network delays are much smaller than this, they are almost instantaneous as far as

sending packets goes, and therefore do not a�ect the system behavior. It is for this reason that

network delays only impact the learning curve during the �rst minute or so.

With an understanding of the behavior of L(t), we are now in a position to discuss the real quantity

of interest; the aggregate bit rate generated by these sources as they move towards convergence.

We call this quantity r(t). Since the integral of this quantity is the total number of packets sent,

we have, as an immediate consequence:

r(t) �

d

dt

L(t)

Experimentally, we have observed that r(t) is actually equal to the derivative of L(t) for a large

fraction of the time until convergence. The reason for this is that the reconsideration mechanism

favors packets from users who have not yet sent a packet (initial packets). Consider two packets,

both scheduled to be sent at some time t. One is an initial packet, and the other is from a user

who has sent a packet previously. For the initial packet, the last report time is at t = 0, whereas

for the other packet, the last report time is at some time t

�

, not equal to zero. In the latter case,

the bottom edge of the interval window is at t

�

+C(1��)L(t). Thus, the probability of sending a
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non-initial packet at time t is:

P

sendold

=

t� t

�

� C(1� �)L(t)

2�CL(t)

(7)

This quantity is always less than the send probability for initial packets as given in (3). In fact,

for small t, L(t) is equal to t=C(1� �). Plugging this in to (7), we get that the numerator of the

fraction is negative, so the send probability is exactly zero.

4

. Therefore, r(t) is exactly equal to the

derivative of L(t) while L(t) is linear. We expect it to continue to track the derivative closely even

as L(t) tapers o�.

Once L(t) has converged to N , packets are sent at a rate of 1=C with conditional reconsideration.

With unconditional reconsideration, this rate is somewhat less. Therefore, r(t) exhibits a dual-

constant behavior; it starts at 1=(1 � �)C, stays there for some time, then reduces to 1=C, where

it remains from then on.

The �nal step is to approximate the convergence time. Unfortunately, the precise time depends on

the non-linear regime of L(t), which we cannot capture adequately. However, we can bound the

convergence time by assuming linear behavior until L(t) equals N . Since the actual L(t) is less

than this curve, the convergence time T

c

is easily bounded on the left by:

T

c

� NC(1� �)

This bound grows linearly with the group size, as expected.

It is possible to compute an upper bound as well. Consider the last initial packet to be sent.

Before it is sent, L(t) = N � 1. As long as the send probability is less than one, it is possible that

this last initial packet will not be sent. But, according to (3), the send probability is one when

t > (1+�)CL(t). This means that the last initial packet must be sent as soon as t = (1+�)C(N�1).

This gives us an upper bound of:

T

c

� NC(1 + �)

5.2 Modeling Delay and Loss

In this section, we consider the reconsideration algorithm in the presence of network delay and link

bottlenecks. We compute the size of the spike during the initial transient, and the duration of the

plateau. We also demonstrate the superiority of unconditional reconsideration in reducing these

startup e�ects.

The spike and plateau are easily explained. At t = 0, all N users join the system. They schedule

their packets to be sent between (1��)T

min

and (1 +�)T

min

. At time (1��)T

min

, packets begin

to be sent. Lets say the network introduces a delay of D seconds. This means that no packets will

4

Note that plugging in L(t) = t=C(1 � �) to equation (3) yields a numerator of zero, and thus a probability of

zero also. In fact, the send probability is zero only in the limit for N = 1; it is slightly positive for all real cases.

This is in contrast to the send probability for non-initial packets, which is exactly zero for �nite N.
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arrive at any end system until time (1 � �)T

min

+D. During these D seconds, many packets will

be sent by end-systems, causing the initial spike of packets. After D seconds, this burst of packets

will arrive. This causes a sharp increase in the perceived group size L(t). This, in turn, increases

the packet transmission interval, and moves the left hand side of the interval window well beyond

the current time, so that P

send

= 0. The result is a complete halt in transmissions until real time

catches up with the left hand side of the reconsideration window.

This qualitative description of the system is easily quanti�ed. For a large enough N , the ood of

packets starting at time (1 � �)T

min

will saturate the access links D seconds later, independent

of whether conditional or unconditional reconsideration is used. While the links remain saturated,

packets arrive at a continuous rate at the link speed, which we denote as m packets per second.

We can therefore express the arrival time of the n

th

packet as:

t

n

= (1� �)T

min

+D +

n

m

(8)

Since each packet arrival increases L(t) by one, we can set n equal to L(t) in the above equation

and solve for L(t):

L(t) =m(t� (1� �)T

min

�D) (9)

This ood of packets will cause the learning curve L(t) to advance very quickly, beyond its maximum

as given in (4). When the learning curve exceeds this maximum, all sending will stop. Call this

stopping time t

stop

. It can be obtained as the solution to:

(1� �)CL(t

stop

) = t

stop

(10)

t

stop

= (1� �)T

min

+D +

(1� �)T

min

+D

(1� �)Cm� 1

(11)

We can then plug this into (9) and solve for the number of packets which have arrived at this point,

n

stop

:

n

stop

=

(1� �)T

min

+D

(1� �)C � 1=m

(12)

The next step is to determine the number of packets sent up to this point. This �gure di�ers

based on whether the reconsideration mechanism is conditional or unconditional. We �rst look at

conditional.

The number of packets sent consists of two terms. Before the arrival of the �rst packet (at time

(1 � �)T

min

+ D + 1=m), all packets scheduled to be sent are actually sent, since no users have

observed a change in the group size (which would activate the reconsideration mechanism). The

number of packets sent is then the density of packets scheduled to be sent (which is N=2�T

min

)

times the amount of time until the �rst packet arrives. We call this quantity n

senta

, and it is:

n

senta

=

N

2�T

min

�

D +

1

m

�

(13)

Once the �rst packet arrives, reconsideration kicks in, and not all packets will be sent. Each will

be sent with some probability, P . Unfortunately, this is not the same probability P

send

as de�ned
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in Equation 3. That equation ignored the max operator, assuming L(t) was large most of the time.

This is not true in the very beginning, where it takes a few packets to increase CL(t) beyond T

min

.

We assume that once enough packets have arrived to do this, the result will be to move the left

hand side of the reconsideration window ahead of the current time (this is true when D < C). In

other words, we assume the left hand side of the reconsideration window is always at (1��)CT

min

until t

stop

.

With this in mind, the send probability between the arrival of the �rst packet, and the stopping of

transmission, is given by:

P

send

=

t� (1� �)T

min

2�T

min

(14)

The number of packets sent is given by the integral of the scheduled packet rate times the send

probability:

n

sentb

=

Z

t

stop

(1��)T

min

+D+1=m

d(t)P

send

dt (15)

Since the density is N=2�T

min

during this time period of interest, the number of packets sent is

obtained by:

n

sentb

=

Z

t

stop

(1��)T

min

+D+1=m

N

2�T

min

t� (1� �)T

min

2�T

min

dt (16)

This integral results in a growth in the number of sent packets as t

2

until complete cuto� at t

stop

.

The solution to the integral is:

n

sentb

=

N

8�

2

T

2

min

 

�

(1� �)T

min

+D

(1� �)Cm� 1

+D

�

2

�

�

D +

1

m

�

2

!

(17)

And the total number of packets sent, using conditional reconsideration, during this transient spike

is:

n

sent

= n

senta

+ n

sentb

(18)

These analytical results are compared with simulation in Figure 11. The �gure displays the cumu-

lative number of packets sent for a step join. For the simulation, 100,000 users join the system at

t = 0. Network delays are deterministic and equal to 300 ms, and link speeds are 28.8 kbps. The

plot shows only the initial transient. The linear and then t

2

behavior is clear from the simulation.

Our approximation for both n

senta

and n

sentb

is quite good. The analysis also predicts that sending

will stop at t

stop

= 1:72s, which agrees with the simulation. Also note that the number of packets

sent is dominated by the n

senta

term.

For unconditional reconsideration, the number of packets sent during the transient is di�erent. In

the conditional case, the total consisted of two parts; one before the arrival of the �rst packet (as the

reconsideration mechanism had not \kicked in" yet), and one after. In the case of unconditional,

we do not need to wait for the arrival of a packet for the mechanism to activate. Therefore, the

number of packets sent is given by an equation similar to that for n

sentb

above. It is the integral of

the scheduled rate, times the send probability. In this case, the integral is between (1 � �)CT

min
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Figure 11: Transient with Conditional Reconsideration

and t

stop

, instead of just between the arrival of the �rst packet and t

stop

. The number of packets

sent for unconditional is therefore:

n

sent

=

Z

t

1

(1��)T

min

N

2�T

min

t� (1� �)T

min

2�T

min

dt (19)

Solving, we obtain:

n

sent

=

N

8�

2

T

2

min

�

(1� �)T

min

+D

(1� �)Cm� 1

+D

�

2

(20)

This quantity is small compared to n

senta

for conditional reconsideration, thus the improved perfor-

mance. These results are compared with simulation in Figure 12. The simulation model is identical

to that in Figure 11, except unconditional reconsideration is used. As the plot indicates, only the

t

2

behavior is present here. The total number of packets sent during the transient is much reduced,

and reasonably well predicted by our analysis.

The next step is to determine the duration of the plateau period. Packet sending will start again

when the current time catches up with the left hand side of the interval window, which will have

quickly advanced to (1� �)Cn

sent

. The time at which this happens, t

start

is:

t

start

= (1� �)Cn

sent

(21)

For conditional reconsideration, if we assume n

sent

� n

senta

, we obtain:

t

start

=

C(1� �)N

2�T

min

�

D +

1

m

�

(22)
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Conditional Unconditional

Group Size N n

sent

T

plat

n

sent

T

plat

1000 143 49 s 18 5 s

10000 1430 506 s 178 61 s

100000 14305 5083 s 1784 632 s

Table 1: Transient Behavior for Various Group Sizes

The duration of the plateau period itself is given by:

T

plat

= t

start

� t

stop

(23)

Table 1 lists the values of the parameters derived above for various group sizes. In all cases, � = 1=2,

T

min

= 2:5, C = :711s, and D = 300ms. The unconditional mechanism provides clear gains in

terms of reducing the number of packets sent during the transient, and the duration of the plateau

e�ect.

6 Steady State Behavior

It is important to consider the behavior of the reconsideration algorithms when the learning curve

has reached steady state (i.e., L(t) = N). The ideal behavior is for the total send rate of the group

to be 1=C RTCP packets per second, equally divided among all users.

There are actually two situations which can be reasonably deemed as steady state. The �rst of
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these is a group size which remains exactly �xed. However, in real systems, users come and go,

so a second de�nition of steady state is a group whose membership oscillates slightly about some

large value.

We ran simulations to examine performance of the algorithms under both of these conditions. In

�rst, �xed-group size scenario, both conditional reconsideration and the current RTCP algorithm

both generate packets at the desired rate of 1=C per second. We found, as expected, that the packet

rate was reduced in the unconditional case, and packets were sent at :82=C packets per second, a

reduction by 18%.

We also performed a stochastic analysis of the unconditional algorithm in steady state. The analysis

demonstrated that the packet intervals, instead of being uniformly distributed between 1=2 and 3=2

of the deterministic interval, were distributed with a density of (y� 1=2)e

y�1=2

dy between 1=2 and

3=2. The result is that the packet rates are reduced by 1�

1

e�3=2

, or 18%, matching our simulations

exactly.

In the second, slightly oscillating scenario, unconditional reconsideration and the current algorithm

performed identically to their behavior in the �rst scenario. Conditional reconsideration, however,

exhibited an average packet rate of :91=C, a reduction by 9%. This makes sense. When a user is

about to send an RTCP packet, half the time the group size is larger than when the last packet is

sent, activating the reconsideration. The other half of the time, the group size is slightly less, and

the packet is sent, as if there were no reconsideration. Thus, the packet rate should be halfway

between unconditional and the current algorithm.

We also ran some simulations to investigate the fairness properties of the algorithm. By fairness,

we mean the variation of the number of packets transmitted per user, across all users. In a perfectly

fair system, all users should have transmitted the same number of packets. We found all algorithms,

including the current RTCP algorithm, to be extremely fair, with coe�cients of variation below

0:005 after about an hour of running time.

Finally, we investigated the impact of reconsideration on synchronization. The problem of syn-

chronization in the Internet was studied by Van Jacobson and Sally Floyd in [18]. Their study

focused on the synchronization of periodic routing messages, such as those generated by RIP or

IGRP. However, they generalize their results to any system which is characterized by their periodic

messages model. Fortunately, the RTCP feedback mechanism �ts perfectly into this model, mak-

ing their results directly applicable here. Although reconsideration reduces the randomness of the

interval, the reduction is negligible compared to the amount required to induce synchronization.

7 Summary and Future Work

RTP was meant to support real-time communications ranging from two-party telephone calls to

broadcast applications with very large user populations. It incorporates an adaptive feedback

mechanism that allows scaling to moderately sized groups, but shows a number of de�ciencies

once the group size exceeds on the order of a thousand. The problems can be summarized as

congestion, convergence delays and state storage problems. We have solved the congestion problem
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via a simple algorithm called reconsideration. Both analysis and simulation have shown that the

algorithm reduces the initial congestion by orders of magnitude under a variety of conditions.

Furthermore, the algorithm is backwards compatible with the existing RTCP algorithm, allowing

for a simple migration path.

The reconsideration algorithm has been implemented as part of a generic RTP Library, and is now

operational in several common Mbone tools, such as rat and Nevot. It has also been proposed to

the IETF as an improvement to the RTP speci�cation, and is likely to be incorporated into the

next release.

Future work involves considering the problem of simultaneous leaves, to which reconsideration

cannot be directly applied. More work is also needed to solve the other RTP scalability problems.
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