hp service composer

user’s guide

Technology Preview-
Version 0.2, January 2002

invent

Thisdocument iscopyrighted. No part of thisdocument may be reproduced, storedin aretrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of HP Middleware, except as
allowed under the copyright laws.

© Copyright Hewlett-Packard Company 2002. All rights reserved.

Javais atrademark of Sun Microsystems. All other brand names are trademarks of their
respective owners.

Theinformation in this document is subject to change without notice or obligation. If you find
any problems with this document, please report them to usin writing. The information
presented in this document is as accurate as possible at the time of printing, and we assume no
liability for its contents or use.

Version 0.2 January 2002

Version 0.2

About this Guidecoeeeeeiiiiiiiiiiii, 1
hp Service Composer Preview Edition 1
AUIENCE....oieecee e 1
Key FEALUIESccev et 1
XML Schema Descriptions of Documents 2
External Web Service Definitions 2
New WeD SErVICES ..o 2
Client ProXi€sccccceeevevvieeviie e see e 2

Skeleton Implementations of Web Services .. 2
hp Web Service Platform Deployment

DESCIIPLOrS ..o 3
Organizationcccceeeveveeveeciese e 3
Documentation Conventionscccccceeveeeneene 3

Chapter 1. User Interface................... 5
The DeSKIOP ...ccccoveeeeerere e 5
TheMenuBar ... 6

FIlE e 6

Edit oo 7

ODBJECE ..o 8

HElD o 0
TheProjeCt Tree ...ccovv et 11

The Message Windowccccceeveeveevceenienne 13

The Status Windowccceeevereneninennnn 13

The Schema EAitorccocvvvevininicienene 14

The Service EQItOrcooeevecniniiieinee 16

The PortType Editorcccoooveeeeiiiieee. 18

The Operation EAitorcccceeveeiveciennnne 19

The SOAP Binding Editor...........cccccceeuenneen. 20

The HTTP Binding Editorccceevene.... 22

The Port EAItorcccooevvenineneiencns 23
Javalmport Wizard.........ccccevevvevcceiecieen, 24

January2002

Contents

Step 1: Select the Service Source................. 24
Step 2: Select the Class or Jar File to be
IMPOIEd. ... 25
Step 3: Select the Methods or Beansto be
IMPOIted. ..o 27
Step 4: (Optional) Modify Model Properties 28
Java Proxy/Skeleton Generation Wizard......... 29
Step 1: Select the Operations to be Included in
the Implementationccccovoeeveirieeceeenne 29
Step 2: Select Implementation Generation
(@] 0] [0 8= J 30
Chapter 2: Concepts and
Terminologyccccoeeeen.. 31
Extensible Markup Language (XML)............. 31
Element ... 31
ALHDULE .o 31
NaMESPACEcoeveiirrir e 32
SIMPIE TYPE e 32
ComMPIEX TYPE ..ceveeeeeeeceee e 32
Simple Object Access Protocol (SOAP) 32
SOAP ACHON .o 33
SOAP HEAES ..o 33
SOAP BOQYcoviiieiriinierieeeeeese e 33
SOAP ENCOAiNG ...c.veovveeevieee e 33
SOAP RPC ..ot 34
Web Service Description Language (WSDL) .34
TYPES. ettt 34
MESSAQES ...oovveevieeeiier e 34
PO TYPES ..ottt 35
Bindingsccccovviieviieceesee e 35
SEIVICES oo 35
Universal Description, Discovery, and
Integration (UDDI)ccocovviviveceececeeeieneens 35
11

Contents

iv Version 0.2 January 2002

About this Guide

hp Service Composer Preview Edition

Version 0.2

Thank you for downloading this preview edition of the new hp Service Composer (HPSC)!

hp Service Composer is part of a new suite of tools from Hewlett-Packard that will assist the
developersin the daunting task of learning and applying Web Services.

Our continually growing tool suite consists of the following integrated tools:
+ hp Registry Composer, which assists developers and system administratorsin viewing,
updating, and maintaining UDDI registries.

« hp Service Composer, which facilitates the creation and maintenance of new and existing
Web Services.

« hp RadPak (future product), which facilitates the packaging and deployment of Web
Services to the hp Web Service's runtime.

Audience

This edition of the hp Service Composer is being made available in a preview release form to
give the developer community an early access to this exciting new technology, and to solicit
feedback and suggestionsfrom abroad spectrum of Web Service developerst. Sincethisedition
of hp Service Composer is an early release, it naturally suffers from certain deficiencies and
limitations. We encourage you to read the Readme file that accompanies this release for the
latest list of known issues and bugs.

Key Features

The hp Service Composer’s key features supported by this preview release are the abilities to
create, view, or edit the following:

1 Web Services is a new and evolving technology. Hewlett-Packard greatly values the feedback and suggestions of
its developer community. Please refer to the Readme file accompanying this release for feedback channels for this
product.

January2002 1

About this Guide hp Service Composer Preview Edition

XML Schema Descriptions of Documents

The hp Service Composer hasthe ability to create, view, and edit XML schema descriptions of
documents to be exchanged within a Web Service. The Schema Editor offers integrated
graphical and hierarchical editorsthat alow you, the developer, to create document
descriptionswithout requiring in-depth X SD knowledge or direct manipulation of XSD syntax.
HPSC can import existing X SD2 definitions and perform validation to simplify error
identification and correction. Additionally, to maximize flexibility and utility, HPSC will also
integrate with your favorite XML IDE if desired.

External Web Service Definitions

The hp Service Composer has the ability to create, view, and edit external Web Service
definitions without requiring an in-depth WSDL knowledge or direct manipulation of the
WSDL syntax.

The hp Service Composer provides complete support3 for WSDL constructs and semantics, but
allowsthe devel oper to mani pul ate these constructs using simpl e hierarchical displays, property
editors, and wizards. Additionally, HPSC can be integrated with the hp Registry Composer to
view and manipulate WSDL files stored as UDDI tModels. Imported WSDL s are validated so
that syntactic and semantic errors can be quickly identified and corrected.

New Web Services

The hp Service Composer has the ability to create new Web Services from existing Java class
methods and/or EJBs. By interacting with HPSC through a series of wizard pages, the developer
can create “ bottom-up” Web Service implementations, exposing some or all of a Javaclass or
EJB’s public methods through the Web Service interfaces.

Client Proxies

The hp Service Composer can create client proxies that can be used to implement applications
that access Web Services that conform to the external interface being viewed or edited by
HPSC. Such client applications can be used either to test aWeb Service being developed, or to
utilize the functionality of a Web Service as part of alarger application package.

Skeleton Implementations of Web Services

The hp Service Composer can create skeleton implementations of Web Services that can be
deployed to a Web Service' s runtime such as that provided by hp’s Web Service platform.

2 HPSC currently only supports XSD files that conform to the 2001 XML Schema specification.

3 Subject to certain limitations of this technology preview release, of course. Support is provided for most features
described in the current W3C note for WSDL service descriptions bound to HTTP and SMTP transports.

2 Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

hp Web Service Platform Deployment Descriptors

The hp Service Composer can generate hp Web Service platform deployment descriptorsfor a
Web Service. These deployment descriptors, combined with generated WSDL and skeleton
files, can then be packaged and deployed using atool such as RakPak to create afully
functional Web Serviceimplementation. The hp Registry Composer can then be used to register
the newly created and deployed service with a developer, enterprise, or global UDDI registry.

Organization

This manual contains the following chapters:

o “User Interface”, which describes the HPSC user interface in some detail. The user is
referred to thetrail mapsthat accompany thisreleasefor tutorial-level instruction on the use
of the hp Service Composer tool.

« “Conceptsand Terminology“, which givesabrief description of the key termsand concepts
integral to understanding Web Services and the hp Service Composer product. This chapter
is provided mostly for the users who are new to the Web Services.

Documentation Conventions

The following conventions are used in this guide:

Table 1 Documentation Conventions

Convention Description

Bold Used to identify menu selections, toolbar selections, and section references.

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described below,
italics identify a variable that should be replaced by the user with an actual
value.

Bold Italic Used to identify a term that is defined in the Glossary. Readers should
reference the Glossary when they are unsure of the complete meaning of a
term.

Code Text that represents programming code.

CTRL+X A combination of keystrokes that is used to complete a function.

For example, CTRL+C indicates that the CTRL key should be held down while
the C key is pressed.

Function | Function A path to a function or dialog box within an interface. For example, “Select File
| Open” indicates that you should select the Open function from the File menu.

January 2002

About this Guide hp Service Composer Preview Edition

Convention Description

()and| Parentheses enclose optional items in command syntax.
The vertical bar separates syntax items in a list of choices.
For example, any of the following four items can be entered in this syntax:

per si st Pol i cy(Never | OnTi mer | OnUpdat e| NoMbr e t enThan)

Note and Caution A Note highlights important supplemental information.

A Caution highlights procedures or information that is necessary to avoid
damage to equipment, damage to software, loss of data, or invalid test results.

4 Version 0.2 January 2002

User Interface

The hp Service Composer tool follows a “toolbox” approach to user-interface design,
allowing the devel oper to select and operate on any Web Service el ement in any order desired.
The Web Service elements are items such as Types, Services, and Operations, which are
contained within the current Web Service project.

A project represents one or more services that make up a coherent set of functionality that the
user isoperating on. Projectsare saved in fileswith the extensions .scpj. Projects may also be
exported asWSDL files.

The Desktop

Version 0.2

The hp Service Composer’s “desktop” isshown in Figure 1: "The Desktop". It consists of the
following parts:

The Menu Bar runs across the top of the HPSC desktop, and contains all the contextually
relevant commands that can be invoked.

The Project Tree takes up most of the left side of the HPSC desktop and displays a
hierarchical view of al the service elements that make up the Web Service project. Inthe
example below, the Project Tree paneis labeled “Project — demo_scpj”.

The Content Pane takes up most of the right side of the HPSC desktop and displays an
appropriate editor for the service element that is currently selected in the project tree. In
the figure below, the Operation Editor is currently displayed in the Content Pane.

The M essage Pane lies horizontally near the bottom of the HPSC desktop and displays
informational, warning, and error messages that occur during the user session. Inthefigure
below, the Message Paneis labeled “Messages’.

The Status Pane lines horizontally below the Message Pane, and displays status
information and progress bars during long-running operations such asfile reads and writes.

Each part is described in more detail in subsequent sections.

January2002 5

User Interface The Desktop

Qperation - cancelPO

Mame: }:EHCEIPO Documentstion: |This serwice cancels ;I
;I an existing PO

Interaction Mocel: IRequest-respnnse

—Reguest Document

Al | Retnove |

[Marme Schemna Type Documentation

requestiD =hitt-in=

Documentation: I

—Rezponse Document

Add | Femove |

Matme Schema Type Documentation

=huift-in=

Documentstion: I

—Fault

Add | Remove |

Matme Schema Type Documentation

FautPart =huift-in= =tring The passed requestiD is. .

Figure 1: The Desktop

The Menu Bar

TheMenu Bar liesacrossthetop of the HPSC desktop and contains all the contextually relevant
commands that can be invoked by the developer. Contextually relevant means that the set of
commands available viathe menu bar may change depending on the state of the project and the
Service Element that is selected.

The menu bar contains the following menus:

6 Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

File
Asshownin Figure 2: "The File Menu", the file menu contains the following commands.

ST Ecit Ohject Help

ET'.{;, Mesy Project —
[Z* Cpen...

Close
E Save |

Save As..

Import YWshL. .
Export] Import XS0
Exit Import Java Implementation. ..

Figure 2: The File Menu

+ New Project: create anew empty project.
+ Open...: alowsyou to open an existing project (i.e., afile with a.scpj extension).
« Close: closesthe current project.

« Save: savesthe current project using the current pathname for the project. If the project
has never been saved, the user is asked for a pathname.

+ SaveAs...: alowsyou to save the current project under adifferent name.

« Import: contains commands that will build new projects from other files and sources.
— Import WSDL ... allowsyou to create a new project from an existing WSDL file.
— Import XSD... alowsyou to create anew project from an existing XSD file.

— Import Java Implementation... allows you to create a new project from an existing
javaclassfile or EJB. Thiscommand will cause the Java Import Wizard to appear.

— Export Project as WSDL ...: allows you to export the projevct asaWSDL file.

S Ecit Okject Help

ET'.{;, Mesy Project
[Z* Cpen...

Cloze

E Save

Save &z,

Import]

Export Project as WaDL .. |
Exit { || |

Figure 3: Export Project as WSDL

Exit: exits the HPSC application.

January 2002 7

User Interface

The Desktop

Edit

Asshown in Figure 3: "The Edit Menu", the Edit menu contains the following commands.

STl Edit Object Help

[Open.

Close

Ec"-}, e Project
E Save
Save Az,

Impart WW=DL . ..
Export k Import XS0
Exit Impart Java Implementation. ..
Figure 4: The Edit Menu
« Options... displaysthe Options dialog.
€5 Options 4
HTRIL *iesver: IC:'I.F‘ru:ugram Files\nternet ExploreriEXPLORE EXE Browse. ..

FML Editor: IC:'I.F‘ru:ugram Files\akovaixML Spy Sute Wkl Spy exe

i Browse...

(034 | Cancel |

Figure 5: The Options Dialog

The Options dialog permits the devel oper to change the following HPSC properties:

HTML Viewer isthe application that should be executed to view the HTML
formatted documents. Examples of applicable viewers are Internet Explorer and
Netscape. A text editor can also be used asan HTML viewer if desired.

XML Editor istheapplication that should be used asthe external XML schemaeditor.
Currently, an external XML editor’s useis entirely optional since HPSC hasits own
built-in schema editor. Examples of applicable applicationsinclude Tibco Turbo XML
and XML Spy. A text editor can also be used asthe XML schema editor if desired.

Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

Object

The Object menu displays commands that can be applied to the currently selected Web Service
Element. The menu displayed is always identical to the pop-up menu which can be seen by
right-clicking on the Web Service Element which is currently selected in the Project Tree. For
example, Figure 4: "The Object Menu" below shows the object menu for a Service object.

Ohject BlEE
Mesny Ciperation
Mewy SOAP Binding
Mewy HTTP Binding

Figure 6: The Object Menu

These are the object menu commands for each class of the Web Service Elements:
« Attribute

— Set Type changesthe type of the attribute to the selected X SD built-in type. Note that
only the most common built-in types are currently available in the submenu. Usethe
schema editor’ s property dialog for a complete list of available smple types.

— Optional togglesthe optional property of the attribute.
— Delete deletes the attribute from the project.

+ Complex Type
— New attribute adds a new attribute to the complex type.
— New dement adds a new element to the complex type.
— Delete deletes the complex type from the project.

+ Element

— Set Type changes the type of the element to the selected XSD built-in type. Notethat
only the most common built-in types are currently available in the submenu. Usethe
schema editor’ s property dialog for a complete list of available simple and complex

types.

— Optional toggles the optional property of the element. Optiona elements have amin
occurs setting of 0, while required elements have a min occurs setting of 1.

— Bounded togglesthe bounded property of the element. Bounded elementshave amax
occur s setting of 1, while unbounded elements have an infinite max occurs value.

— Delete deletes the element from the project.
« Group

— New dement adds a new element to the group.
+ Operation

— Delete deletes the operation from the project.
« Port

— Delete deletes the port from the project.

January 2002 9

User Interface

The Desktop

10

Port Type

New Operation adds a new operation to the port type.
New SOAP Binding adds a new SOAP service binding to the port type.
New HTTP Binding adds a new HTTP service binding to the port type.

Export asWSDL ... allowsyou to export this port typeasaWSDL file. Theresultant
WSDL will only contain the selected port type and any supporting service elements.
This can be used to extract a portion of an overall project for reuse, etc.

Delete del etes the port type from the project.

Schema

Edit with external editor launches the external XML editor specified in the Edit-
>Optionsdialog. The current schemaiswritten out to atemporary file and the external
editor islaunched with the temporary file as an argument. Y ou can modify the schema
and saveit asusudl, i.e., overwriting the temp file. When the desktop is reactivated,
HPSC will notice that the temporary file is modified and will reload the schema.

Export as XSD schema... alows you to save the schemaout to a XSD file.
New attribute adds a new global attribute to the schema.

New complex type adds a new global complex type to the schema.

New element adds a new global element to the schema.

New simple type adds a new global simple type to the schema. The simple type
submenu is used to specify the built-in type that the new simple typeisto extend.
Note that only the most common built-in types are currently listed.

Delete del etes the schema from the project.

Schema Folder

New Schema creates a new empty schemain the project.

Import Schema... allowsyou to load an existing XSD file into the current project. A
new schema element is created.

Service

New Port Type creates a new port type interface in the project.
Export asWSDL ... allows you to export the service asaWSDL file.

Delete deletes the service from the project.

Service Binding (HTTP/SOAP)

New Port addsanew port to the servicebinding. Thiscan beused to add anew service
access point to a given service binding.

Export asWSDL ... allows you to export this service binding asaWSDL file. The
resultant WSDL filewill only contain the selected service binding and any supporting
service elements. This can be used to extract a portion of an overall project for reuse,
etc.

Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

— Generate Implementation... allows you to create client proxies and/or service
skeletons for the service binding via the “ Java Proxy/Skeleton Generation Wizard”.

— Deploy Service Binding... creates aweb service deployment file suitable for
deploying the service described by the current service binding. Thiscommand isonly
available when implementation files are associated with the binding.

— Delete deletes the service binding from the project.
+ Service Folder

— New Service creates a new empty service in the project.
+ Simple Type

— Delete deletes the simple type from the project.

Help

The Help menu offersanumber of resourcesfor better understanding hp Service Composer and
Web Services technology (see Figure 5: "The Help Menu™).

WSDL Specification... |
HP Service Composer User Guide... SOAP Spec (part 1.
Updated Yersion... SOAP Spec (part 21...
Ahout HP Service Composer ... SOAPR with Aftachmerts ...

XhL Schema...

Figure 7: The Help Menu

Thetechnical referenceslisted and the HPSC User’ sguideall requirethat avalid HTML viewer
be specified in the Edit->Options dial og.

The About menu item displays the HPSC splash screen. Click the mouse once to dismiss the
About screen.

January 2002 11

User Interface

The Desktop

12

The Project Tree

The project tree displays dl the moded elements that make up the current web services project.

Project- PO Service.scpj
EI--- Schemsa
El MewSchemal
-G8 AddressType
- [=-[BE Sequence
b ﬁ City: string
[State:string

- StreetMame:string
[T StreetMumber:irteger
-8B POType
=-[B8| Sequence
- amaurt: flost
- from AddressType
L[toAddressType
(- prepaid: boolean
El--- POService
El[b 'Ointerface
-8 s0aPBazedPOService
- [3) cancelPO(requestiD)
- [B inguireStatus(requestin
@ postPOPO)

Figure 8: The Project Tree

Thetreeis organized in asimple hierarchy to show the containment relationship between the
different elements. For example, Sequences contain zero or more Elements and/or
Attributes; Port types contain zero or more Oper ations and/or Service Bindings; etc.

Table 1: "Project Treelcons' shows the mapping between icons used in the project tree and the

associated web service model element.

Table 1 Project Tree Icons

Icon Model Element

o

Attribute

Complex type

G
Element
&
- Group (sequence)

Version 0.2

January 2002

user'sguide

hp service composer

Version 0.2

Icon

Model Element

Java Implementation File

Operation

[

Dﬂ' Port

[5 Port Type or Interface
Schema
Schema Folder
Service Bindi

- Vi inding

[=_=]
Service Definition

(e

Service Folder

When you click on a service model element in the project tree, that element becomes sel ected
and the content pane updates to display an appropriate editor. For example, if you click on
Operation the Project Tree will display the Operation Editor in the content area. Through the
displayed editor, you can modify properties of the selected model element, create new model

e ements, etc.

In addition, the Object menu in the menu bar will display commands that can be applied to the
selected item. The Object menu for amodel element can also be accessed by right-clicking on
that model element to expose the Object pop-up menu. Seethe*Object” section above for more

details.

The name of any service model element can be edited via the project tree by triple-clicking on

that element.

January 2002

13

User Interface The Desktop

14

The Message Window

The Message Window displays information, warnings, and errors that occur during a HPSC
session. |If additional information is available about an error (such as the context of the error),
the error messageis prefixed with an arrow icon. Such messages are said to have an associated
message context. Clicking on the message will cause the content pane to display the associate
message context.

For example, the first line shown in Figure 7: "The Message Window" indicates that a read
WSDL file contained errorsthat prevented a correct parse of thefile. Clicking onthat linewill
cause the WSDL fileto be displayed in the content pane with the problem area highlighted.

Right clicking on the message area will display a pop-up menu containing a single command
“clear al”. Thiscommand will clear the message pane contents. The message pane will also
be cleared automatically when anew project is created or loaded.

£ ={> WEDLReader (41325 PM) Parse Taled: The content of elemerts must consist of wall-Tormead character data or markup
RS0 (401 325 PR WSDL read Tailed
o

Figure 9: The Message Window

The Status Window

The Statuswindow displays status and progressinformation during long-running activitiessuch
asfileloading. The example shownin Figure 8: "The Status Window" showsthat aWSDL file
isalittle more than halfway parsed. Clicking on the cancel button will terminate the current
long-running activity.

Fromessina sporryees s | NUNNNNNNNNNNNNNNNE =]

Figure 10: The Status Window

Version 0.2 January 2002

user'sguide hp service composer

The Schema Editor

The Schema Editor is displayed when any schema element is selected in the project tree. It
displaysaUML-like, graphical view of a schema and its components. Using the vertical
toolbar displayed on the |eft side of the schema editor, the developer can manipulate the
graphical layout, create new schema components (attributes, elements, complex types, simple
types), and connect components together into reference and type hierarchies (has-a and is-a).
For example, in Figure 9: "The Schema Editor" below, the complex type POType is shown to
contain two elementsthat have AddressTypetype. The*has-a” links between the two complex
types makes this relationship explicit.

Schema- MewSchemal

AddressType
@ Streetharne : string
@ Streethurnber : integer
—Create——
@ City : string
B @ State ; string
&
@
Cht
has a has a
—Mizo.
= @ amount : float
o JAddressType

&2 from cAddressType
@ prepaid : boolean

e Ed'rtu:url #30 |

Figure 11: The Schema Editor

Table2: "Toolbar Buttons" below describesthe actions performed by each buttonin thetoolbar.
In addition, a property editor for a schema component can be exposed by double clicking on
that component in the graphical view. Through the property editor, you can change the
components name, change type information, and add/remove subcomponents.

Version 0.2 January 2002 15

User Interface

The Desktop

16

Table 2

Toolbar Buttons

Icon

Operation

New complex type

&

Qs New simple type

@5 New attribute

& New element

E&'}' Select the Move/Select mode
|E| Connect with IS-A mode

II] Connect with HAS-A mode
schema_autolayout

Edit properties

At any time during the viewing or editing of a schema, the associated X SD file can be prefixed
by clicking on the X SD tab of the schema editor. See Figure 10: "An XSD Example" for an
example of this XSD preview feature.

Version 0.2

January 2002

user'sguide hp service composer

<%xml wersion="1_0" encoding="UTF-8"71> L:J
=xsd: schema xmlns:xsd="http://vevw_ w3 org/Z00L/XMLSchema"
®ulns:htotpe'http: f/schenas, xnlsoap. org/wsdl fhtep /"
xmlns nime="http: /fschemas_ xmlsoap.org/wsdl /mime /"
¥nlns: soap="http: //schanas. xmlsoap.org/wsdl soap /"
xmlns: soapenc="http: //schemss_ zmlsoap.org/soap/encoding/" xmlhns:wsdl="
“xsd:complaxType name="Address">
=xsd: sequence
“xsd:element neme="5trestHeme” type="xsd:string" />
2xsd:element name="Stcrestlumber” type=s"xsd:int" /=
“xsd:element neme="5taete” type="xsd:string" />
< /x=d: sequence>
< frsd:complexTypes=
“xzd:conplexType nane="PO">
=x=sd: sequence>
“xsd:elamant nama="to" type="Addraess"/>
=x=sd:elenent name="from" type="Address"/ =
=< /xsd: sagquence>
2xsd:attribute name="prepaid® type="xsd:boolean" />
=fxsd: complexType>
=/ x=sd: schenas>

o | of

Schemea Editor | ¥sD |

Figure 12: An XSD Example

The Service Editor

When a Serviceis selected in the project tree, the service editor isdisplayed in the content pane.
Through this editor, the developer can change the service name, assign/view atarget prefix for
model elements within that service, and designate/view prefixes associated with namespaces
that are referenced within the Service definition.

In Figure 11: "The Service Editor" below, the POService is being edited, with service model
elements such as port types and bindings being placed into the http://www.hp.com/test target
namespace. In addition, the prefix “hp” is also associated with this target namespace. In new
projects, HPSC automatically assigns default prefixes to namespaces that are commonly
referenced within aWSDL definition.

Version 0.2 January 2002 17

User Interface The Desktop

Semice - POSenice

Mame: F‘OService

Targst Mamespace: http:ﬂ'\-vwwm.cummwnest

—Prefix Namespaces
Acld | Remove |
Prefix Mamespace
bt Mo hipocomfey st e st
ttp Hitp: ischemas xmisoap.orghe sdittps
riime http: Mschemas xmlsoap orghe sdifmime!
z0ap hittp: schemas =mlsoap orgfesdisospd
SOApEnc htip: ifschemas =misoap orgfsoapfencoding’
sl Hiip: Mischemas xmlsoap.orghesdl
s bt A e 3 0rgf2000 ML SCheme
% it A w3 02001 ML Scheme-instance:

- Properties | WSOL |

Figure 13: The Service Editor

At any time during the viewing or editing of a service definition, the associated WSDL file can
be previewed by clicking on the WSDL tab of the service editor. Figure 12: "WSDL File
Preview" shows an example of such asWSDL file view.

18 Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

Sendce - P

“Txml wersion="1.0" encoding="UTF-8" 7=
“l== Generated by HP Service Composer =--»

“wsdl:definitions targetNemespace="http: f/umnr, hp. comnfwsdlcest” amlns:hp="http: /
“usdl:types>
<xsd: schemar
“xsd:complexType neame="AddressType">=
«xsd: sequence>
<xsd: element neme="Stcreecleme” cype="xusd:scring”/ =
<xsd: element neme="S5trestNumber" type="xsd:integer"/~
“<ysd: elanant name="City" type="xsd:string"/ =
<ysd: element nemes="Stcace” type="ksd:scring” />
< fxsd: sequencer
=fxsd: complexType>
“ysd: complexType name="PO0Type"»
“=xsd: sequence
<ysd: element neme="amount" type="xsd: float" />
“<psd:elenent name="to" types"AddressType" />
<xsd: elenent neme="from" type="AddressType" />
<fusd: sequencer
zxsd: attribute name="prepaid" type="xsd:boolean" />
=jxsd: comnplexTypes
</xsd: schena>
“fusdl:cypes=
“wsdl: message name="cancelP0 Input"s>
<wsdl ipart name="regquestID" tcype="inc" />
</usdl:message> JLI
4] r

Properties | wapL I

Figure 14: WSDL File Preview

The PortType Editor

When a Port Typeis selected in the project tree, the port type editor is displayed in the content
pane. This simple editor allows the developer to change/view the port type’s name, and edit/
view any associated port type documentation string.

FOInterfal:e

Cocumertation: |This is the PO interface. ﬁ

Figure 15: The PortType Editor

January 2002 19

User Interface

The Desktop

20

The Operation Editor

When an operation is selected in the Project Tree, the Operation Editor is displayed in the
Content Pane.

Operation - cancelPO

Matme:

Interaction Model: IRequest-response

Al

—Reguest Document

In:an-:eIPO Documentstion! |This service cancels an AI
vI existing PO request.

-

Remove |

requestiD

Documentation: I

Mame Schema Type Documentation
=huitt-in=

Al

~Response Document

| Remove |

Documentation: I

Mame Schema Type Crocumentation

=built-in=

—Fault

Al

| Remove |

FaultPart

Mame Schema Type Dacumentation
=built-in= =tring The passed reguestiD is unk...

Figure 16: The Operation Editor

Properties of the Operation

The Operation Editor allows the developer to view and edit properties of the operation
including:

« The operation’s name.

« Theoperation’sinteraction model. This can be one of the following:

Request-response, in which the service receives and then respondsto arequest. This
isthe default interaction model and the most commonly used for synchronous services
accessed across HTTP.

One-way, inwhich the service receives arequest that it processes without responding.
Note that there is no response document in this model.

Soalicit-response, in which the service sends out a solicitation message to an end-point
and expects aresponse in return.

Notification, in which the service sends out a notification message, but doesn’t expect
any response from the end-point. Notethat thereisnot request document in thismodel.

Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

Documentation About the Operation

The following are the various documents that follow the operation of the Operation Editor:

The Request Document is expected to be received by the service. Note that not all
interaction models involve a request document. When applicable, however, the request
document may contain one or more named parts, each part having an assigned type (simple
or complex) and documentation string. Parts may then be bound to different Mime parts
and may receive different encoding within a service binding. See the sections on “The
HTTP Binding Editor” and “The SOAP Binding Editor” for details. Finaly note that the
regquest document as a whole may also have an associated documentation string.

The Response Document isexpected to be sent by the service. Notethat not all interaction
models involve aresponse document. When applicable, however, the response document
may contain one or more named parts, each part having an assigned type (smple or
complex) and documentation string. Parts may then be bound to different MIME parts and
may receive different encoding within a service binding. See the sectionson “The HTTP
Binding Editor” and “ The SOAP Binding Editor for details. Finally, notethat the response
document as awhole may also have an associated documentation string.

Zero or more Fault Documents that may be sent by the service if some application-level
exception is encountered.

January 2002 21

User Interface The Desktop

The SOAP Binding Editor

When a SOAP Binding is selected in the project tree, the SOAP Binding editor isdisplayed in
the content area.

SOAP Binding - S0OAPBasedP Of
Binding Mame: FOAPBasedPOService Transpart: &+ HTTP { SMTP [Use SOLP RPC
Operation; IcanceIPO(requestID) ;l SOAP Action: |:anceIPO

—Request Documernt

Part Mame Lacation in Docurm... Mime Type(s) Tranzmit SO&P hody: Literally % Encoced
requestiD SOAP Body TEXT ML ~Style

 soap hﬂp:fﬁwww.hp.eomi&ncode

—Mamespace

" Target 1 "vttp:.l’.l"www.hp.cnmhwsdmestl

—Response Document

Part Marme Location in Docurm... Mitme Typels) Transmit SOAP body: (¢ Literally ¢ Encoded
SOAP Body TEXT/ ML ~Style

@ sone O

—Mamespace

= Taroet © |

rFault Documernt

Fault Mame Location in Docurm... Mitme Typels) Transmit SOAP body: (¢ Literally ¢ Encoded
MewySOLPFaultBi... [SOAP Body TEXT/ ML ~Style

@ sone O

—Mamespace

= Taroet © |

Figure 17: The SOAP Binding Editor

Properties of the SOAP Service Binding

This editor allows the developer to view and edit properties of the SOAP Service Binding
including:

« The Name for the binding.
« TheTransport to be used to access the service (either HTTP or SMTP).

+ Whether SOAP RPC encoding should be used or not when communicating with the
service. Asdiscussed briefly in“Simple Object Access Protocol (SOAP)” in the Chapter
"Concepts and Terminology", SOAP-RPC is an optional protocol used with SOAP for
encoding remote procedural calls. Essentially, request documents that are meant to invoke
an operation within a service that uses SOAP-RPC will be wrapped in an element named
after the operation to be invoked. Thiswrapper can be used by the receiving SOAP server
to invoke the appropriate back-end operation.

22 Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

In addition, for each operation defined by the binding (or more specifically, by the port typethat
contains the binding), the following binding properties can be set:

The SOAP Action that is expected to accompany service requests for that operation. This
string is sent in an HT TP request using the SOAP-Action HTTP header extension. As
discussed briefly in “SOAP Action” in Chapter "Concepts and Terminology"”, this string
can be used to program firewalls to improve security.

The location to be used to transport each Request and Response Document Parts. By
default, each part will be located in the body of the SOAP envel ope being used to transport
the message. However, by using the binding editor, the developer can specify that one or
more parts should instead be transmitted in one or more MIME parts. In this case, the
resulting document will potentially be a MIME Multipart document. To provide aternate
potential MIME types for a part, type each part into the MIME type(s) column, separating
the types with acomma. For example, to indicate that the “myPicture” part may be
transmitted asa“gif” or a“jpeg”, you would type “image/gif, image/jpeg”’ asthe MIME
type for the “myPicture” part.

The Encoding to be used (if any) for parts transmitted within the SOAP Body. Selecting
the Transmit SOAP Body: Encoded option will require that the part contents in the
SOAP body be encoded using the designated encoding style and namespace. Selecting the
Transmit SOAP Body: Literally option will cause the part's data to be transported
“literally”, without additional encoding. When encoding is specified, the default encoding
scheme is SOAP, and the default namespace is the same as the target namespace for the
service definition. These defaults can be overridden as needed.

Thetype of encoding to be used to transport any Fault Documents. At most one fault
document will be sent in response to a service invocation, and Fault documents are always
transported in the body of a SOAP message. However, the encoding style and namespace
that will be used during transmission can be specified in the Fault Document section of this
editor.

January 2002 23

User Interface The Desktop

The HTTP Binding Editor

When an HTTP Binding is selected in the project tree, the HT TP Binding editor isdisplayed in
the content area.

HTTP Binding - HTTPBasedP OService

Mame: "iTTPEIaSE:dPOSEWiCE werhs: GET ﬁ'

Operation: IcancelPO[requestle ;I

Reguest Document

LocationiPatterm: | Encoding: * urlEncoded UrReplacement

~Responze Document

Part hame Mime Typels)
TEXTAML

Figure 18: The HTTP Binding Editor

This editor allows you to view and edit properties of the HTTP Service Binding including:
« TheNamefor the binding.
+ Whether the GET or POST HTTP Verb is expected to be used to request the service.

In addition, for each operation defined by the binding (or more specifically, by the port type that
contains the binding), the following binding properties can be set:

« TheEncoding styleto be used when transmitting the request document parts.
Accompanying this encoding style is aL ocation/Pattern String, which forms arelative
addressthat is appended to an access point URL to invoke the service request. The format
of the location/pattern string depends on the encoding style used:

— If urlEncoded is specified, then document parts are sent using standard URI encoding
rules (partNameO=partV alue0& partNamel=partValuel...).
When used with HTTP GET, the encoded string is transmitted at the end of the URL.
When used with HTTP POST, the encoded string is transmitted in the HTTP content
(just asHTML form datawould be). For example, amessage with parts named A and
B and having values of “foo” and 42 respectively would be transmitted duringaHTTP
GET by appending the string “ A=foo& B=42" to the end of the relative URL indicated
by the location string.

24 Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

— If urlReplacement is specified, the document parts are sent in the request URI using a
replacement algorithm on the indicated pattern string. Each message part to be
transmitted should appear once in the pattern string using the form “(partName)”.
During transmission, each part pattern string will be replaced with actual part values.
For example, in Figure 16: "The HTTP Binding Editor", arelative address of
“cancelPO/ID4” is used for arequestiD of 4.

The Port Editor
When a Port is selected in the project tree, the port editor is displayed in the content pane.

Port - POServicePort

Matme: POServicePDrt
LRL: hﬁp:IMww.hp.comIPOService
Documentation: |prowides the address for POService ;I

Figure 19: The Port Editor

This simple editor allows you to view and edit properties of the port including:
« TheNamefor the port.
« Theaccess point URL that can be used to access the port’s services.

« A Documentation string describing the port.

January 2002 25

User Interface The Desktop

26

Java Import Wizard

The Java Import Wizard is exposed when the developer selects the file->import->import
java implementation... menu item from the Menu bar. The wizard walks you through a
simple four-step process that will result in the creation of a new Web Service project built on
an existing Java class or EJB implementation. Through the dialog, a new Web Service model

will be created for selected Java methods or Beans. The resultant model can then be deployed
to aWeb Services platform.

The following steps describe the dialog process:

Step 1: Select the Service Source
+ Sdlect “JavaClass File” if the sourceto be read is aclassfile.

+ Select “Enterprise JavaBean” if the sourceto bereadisan EJB definition withinaJARfile.
+ Click on the Next button to continue.

Java Class To Service Wizard - x|
: This wizard will guide you through using a Java Class file and
L generaling a Semce Model based an the methods of the Java

Class

i,

Click Mext to continue. ..

Salact the Service Sourcs;
+" Java Class File

(" Enterprize Javwa Bean

[ﬁ] @
Steps:

1. Introciuction

2. Select the Java Classi EJB

3. Select the Methods

=iar Mewt == | Fimsh |

Figure 20: Select the Service Source, Introduction

Version 0.2 January 2002

user'sguide hp service composer

Step 2: Select the Class or Jar File to be Imported.
Figure 19: "Select the Java Class' showsthe wizard screen displayed for importing a Javaclass
implementation.

+ Usethisscreento enter the path name of a.classfileto be read and the name of the package
that contains the class. In this example, the Test.class file contains the class
t est Package. Test .

« Click on the Next button to continue.

£h Java Class To Service Wiz -
; Select the Java Class thatyou wish to comnven

Ifthe class belongs to 3 package please enterthe package
name,

2

Jawa Clas= File: IeDucsuestP&ckag&lTechlass |

Package Mame: testpactage

D
Ste ps:

1. Introchuction

2. Select the Java Classi EJB

3. Select the Methods:

4. Edit Properties

Cancel == Back FFmEt

Figure 21: Select the Java Class

Version 0.2 January 2002 27

User Interface The Desktop

28

Figure 20: "Select the EJB Jar File" shows the wizard screen for importing EJB
implementations.

+ Usethisscreento select thejar file containing thetarget EJB. HPSC will parsethisfileand
display alist of available EJBs.

« Select the target EJB from thislist and click on the Next button.
. :"-' x|

FPlease select the EJB Jar File and then selectthe Bean
Hame

EJB Jar File: | Browse.., I
Biean Name; I vl

£k Java Class To Service Wizard
w £, W I

]

Steps:

1. Introciuction

2. select the Java Clazss EJB
3. Select the Methods

4. Edit Properties

Cancel == Back

Firish

Figure 22: Select the EJB Jar File

Version 0.2 January 2002

user’sguide hp service composer

Step 3: Select the Methods or Beans to be Imported.

The wizard will now examine the Java classfile or jar file and extract names of methods that
can beimported. Select the methods that should be imported and then click the "Next" button
(see Figure 21: "Select the Methods' for an example).

If you want to use default values for the generated model elements, you can instead click on
"Finish" at this paint.

£k Java Class To Service Wizard ? 5-' x|
9 : LR Following are the public methods ofthe class thatyou
: selected. Flease select the methods that you wish to publish
as awebservice.
Mlote; All methods are selected by default.
mMethods with unsupported parameters are disabled

[+

Public Methos
[v byte byteFun (byte param1)

[« Byte byteFun2 (Byie pararmi)
[v short shortFun (short param1)

= [¥ Short shaortFun2 (Short param1)
F [0 char chiaracterEun ehar pararni)

Steps: [# intintegerFun {int param1}
1. Introciuction
"
2. select the Java Class) EJB [float floalF un oat param1) —
3. Select the Methods LI | » I

4. Edit Properties
Salect All | Urm=alest All |

Cancel | == Back |

Figure 23: Select the Methods

Version 0.2 January 2002

29

User Interface

The Desktop

Step 4: (Optional) Modify Model Properties

Thislast step can be used to modify the default properties of the model elementsthat are created
by thewizard. Finally, click "Finish" to actually generate the new project. When the wizard
compl etes, the new project will be loaded into the HPSC project tree.

Steps:
1. Introsciuction

0]

Following are the proparies ofthe san.rica created. Please
edit any property value thatyouwish and click Finish

3 |

serviceDocumentation

rService Properties :
Property alue [
Servicehams Test
PortType TestPortType
Bindingame TestSOAPBinding

2. Select the Java Class/ EJB
3. Select the Methods
4. Edit Properties

Cancel

[Ext ==

== Back

Finizh [

Figure 24:

30

Modify Model Properties

Version 0.2

January 2002

user'sguide hp service composer

Java Proxy/Skeleton Generation Wizard

To run the Java proxy/skeleton generation wizard, select a Service Binding and choose the
Object->Generate Implementation... menu item. Thiscommand is also available on the
Service Binding popup menu. Thewizard will assist you in the process of creating client proxy
and/or server skeleton code for the service being modeled. A client proxy is a class that
implements the interface of the web service by transparently making web service calsto a
selected end-point. A server skeleton is aframework implementation of a service that only
requires the addition of businesslogic to form a complete service implementation. The
following paragraphs describe the stepsinvolved in the wizard process:

Step 1: Select the Operations to be Included in the Implementation

By default, all operations of the binding are selected. If desired, you can deselect operations
that are not of interest. Click the "Next" button to move to the next and final pane.

Stubs and Skeletons Genes

Following are the Operations within your Service. Please select the
operations that you wish to include inyour stubs,

Operations
[« postFO
[¥ inquiraStatus

[« cancelPO

. m

1. Select Operations

2. Select Generation Options

Salact All | Urizalact All |

e | Pext ==

Figure 25: Select the Operations to be Included in the Implementation

Version 0.2 January 2002 31

User Interface The Desktop

Step 2: Select Implementation Generation Options

Specify the directory and package name for the generated code. Use the check boxesto select
whether client proxy stubs, server skeletons, or both should be generated. Finally click "Finish"
to cause the wizard to invoke the code generator.

x|
Flease specify
1. Destination Dire ctony
2. The objects that you wish to create
3. Package information (optianal)
[Generation Information:
Root directary where the objects should be placed
ﬂﬂ] = ls'cv\fsh Services ProjectDevelopmentDemo Project
| Generate Stubs v Generate Skeletons
Steps:
1. Salect Operations Packags Information:
2. Select Generation Options
Package MName: anhp|
Cancel | == Back gt == | Finizh [

Figure 26: Select Implementation Generation Options

32 Version 0.2 January 2002

Version 0.2

Concepts and Terminology

This section gives a brief description of the key terms and concepts that are integral to an
understanding of Web Services and the hp Service Composer. This section is not meant to be
atutorial of Web Service technology. Please refer to applicable white papers such as those
published on hp’s DSPP site for more details and tutorials.

Extensible Markup Language (XML)

XML isawidely used standard for defining markup languages that can be used to express
application-specific data. It defines a simple and regular grammar that facilitates the
communication, processing, and storage of application data. XML usestextual encoding
(usually UTF-8) which alowsit to be used with text-based transportslike HTTP and simplifies
application debugging. The structure of a particular class of XML documentsis generally
described through the XML Schema Language using a special XML diaect called XSD.

Thefollowing are some of the key terms that should be understood to take advantage of XML
and XSD. Note that the following descriptions, while not technically precise, do convey the
general meaning of the terms.

Element

Anelement isthebasic unit for organizing content using XML. Elements can contain attributes,
other elements, character data, or some combination of the three to express content. Elements
can aso be “empty”, containing no information beyond the mere presence or absence of the
dement itself. In an XML document, elements are delimited by start and end tags containing
the name of the element. For example, the following element has aname of “Address’” and
contains one sub-element named “ Street” that contains a string:

<Addr ess>
<Street>Main Street</Street>

</ Addr ess>

Attribute

An attribute is aname-value pair within an element. Attributes can only “hold” simple atomic
values such as strings, integers, etc, athough in fact attribute values are always expressed as
strings. The following element has one attribute called Color which contains a string value:

<Dog col or="bl ue”>...

January2002 31

Concepts and Terminology

32

Namespace

To prevent collisions between element namesin one document with identical namesin another,
elements within XML documents can be associated with namespaces. The assignment of a
namespace to a name is done by mapping “prefixes’ to namespaces, and then using those
prefixes when referring to the symbol. By convention, namespaces are named using URI’s. In
the following example, the elements abc:flavor and xyz:flavor are of the same type because abc
and xyz map to the same namespace. However pdg:flavor isin adifferent namespace and thus
refersto a different type of “flavor”.

<doc>
xm ns:abc="http://food”
xm ns: xyz="http://food”
xm ns: pdgq="http://physics”>
<abc: fl avor >strawberry</ abc: f| avor >
<xyz: fl avor>chocol at e</ xyz: f| avor >
<pdq: f | avor >char nx/ pdq: f | avor >

</ doc>

As suggested by this example, namespaces also support the assignment of a shared
understanding of “semantics’ to document elements. For example, the element “flavor” in the
namespace “ http://food” might always refer the flavor of afood item. In contrast, the element
“flavor” in the namespace “ http://physics” might refer to a class of sub-atomic particles. The
structure and semantics of each element may be quite different even though the element name
isthe same.

Simple Type

Attributes and elements can contain simple text strings as their content. How that text string is
interpreted is generally specified in an XML schemawhich definesthe “type” of that content.
The XML schema specification also defines “ built-in” types such as Sring and Integer. User-
defined typeswithin a schema (X SD) document can extend those built-in types using anumber
of mechanisms such as type restriction and enumeration. These mechanisms can be used to
define new simple types such as “Zipcode’, “ State”, and “SSN”. Note that simple types are
always atomic, i.e., they don’'t contain subdividable parts.

Complex Type

Unlike Attributes, Elements can contain content with named parts such as attributes and other
Elements. Such Elementsare said to have“ Complex Type”'. User defined Complex Typesare
used to define the structure of complex documents like “ Purchase Order”, “Address’, and
“Receipt”.

Simple Object Access Protocol (SOAP)

SOAP is astandardized protocol for XML messaging. It defines a packaging scheme that
makes explicit the separation of messaging information (i.e., header information which is
processed by the SOAP messaging layer) and the application-level content to be communicated
(i.e., the “body” of the message). It also describes approaches to encoding and serializing
computer language constructs (i.e., procedures and data types such as strings and arrays).

Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

However, the use of SOAP RPC and SOAP type encoding is not a prerequisite for the use of
SOAP messaging. SOAP servers(i.e., SOAP 1.1 end-points) implement the SOA P messaging
layer, processing SOAP headers, throwing SOAP transport errors if necessary, encoding/
decoding content, and dispatching that content to back-end processing applications. Dispatch
is based on entries in the SOAP server’ s configuration files and some server-specific criteria,
such as the content root node or the access point URL. Because SOAP uses XML and ashared
server architecture, itisuseful for communicating acrossfirewalls. SOAP can also be used with
MIME to exchange multi-part and non-textual information (like gifs and encrypted data). Itis
important to understand that basic SOAP isafairly simple protocol that doesn’t dictate
constructs for things like transationality, sessionality, security, etc. However, SOAP provides
extension mechanisms for describing and communicating such concepts

Thefollowing are some of the key terms that should be understood to take advantage of SOAP:

SOAP Action

As part of ameasure to extend the security of SOAP servers when used using the HTTP
transport, SOAP definesa HTTP header extension called SOAPAction. Before dispatching a
SOAP message to a back-end processor, the SOAP server isrequired to check if an appropriate
SOAPAcction for that back-end has been specified and throw an error if thisisnot the case. This
allows system administrators to confidently configure their firewalls using this HTTP header
without having to extend the firewall to understand the SOAP protocol. To support this, HPSC
and WSDL allow the devel oper to specify a SOAPAction string to be associated with each
operation within a SOAP binding. The use of SOAPAction isoptional and isonly enforced by
a SOAP server if specified in the service definition.

SOAP Header

SOAP messages can optionally contain zero or more headers that communicate information
that should be processed by the SOAP server itself. Header information can also form acontext
which can be accessed by SOAP applications just as HT TP headers form a context which can
be accessed by servietsand CGI scripts. Headers can be marked as being mandatory or optional
for correct processing of the message. |If a SOAP server receives a mandatory header (marked
as “must-understand”) that it doesn’t understand, it must return an error back to the requestor.
This mechanism allows applications to ensure that they are talking to a SOAP-server that has
been extended to understand transactionality, for example.

SOAP Body

Application datais communicated in the SOAP body as an XML fragment. SOAP messages
that use MIME can also put information in different MIME parts, and refer to those parts from
within the SOAP body.

SOAP Encoding

SOAP encoding describes a processes for serializing common programming language data
types such as strings, structures, and arrays as XML fragments. The use of SOAP encoding is
optional, and is contrasted by the use of a“literal” stylewhere the“ on-the-wire” format of data
to be exchanged is described explicitly by aparticular XML schema.

January 2002 33

Concepts and Terminology

34

SOAP RPC

SOAPRPCisaway of explicitly encoding and seriaizing aremote procedure call using SOAP.
Again, the use of SOAP RPC isoptional depending on the capabilities and requirements of the
SOAP server.

Web Service Description Language (WSDL)

WSDL isan XML language that is commonly used to describe the public interface of aWeb
Service. It providesamachine-readabl e description of the document formats, public interfaces,
operations, technology bindings, and service access points that can be used to access and
interact with aWeb Service. Note that WSDL does not describe or expose any details of the
underlying implementation of the Web Service. This alows service implementers complete
flexibility in the selection of their back-end implementations, and facilitates the “ plug-and-
play” characteristic of Web Service based architectures.

WSDL defines Web Services using the following key constructs. Although HPSC uses a
syntax neutral internal model for manipulating web service descriptions, it currently uses

WSDL constructs and terms for building web service descriptions.t

Types

Types, generally described using XML Schema (using the X SD language), define the structure
of document that will be exchanged during a Web Service interaction. These document
descriptions can be used literally within aWeb Service definition, or they can be mapped via
some sel ected encoding scheme to a particular “on-the-wire” format. In general, Complex
Types defined within a schema are streamed literally while simple types might be encoded
using SOAP encoding. HPSC supports the creation of document type descriptions using the
Schema Editor (see “The Schema Editor”).

Messages

Messages allow Web Service interactions to contain multiple named “parts’, where each part
is of some simple or complex type defined by some type system. These parts can then be
transported in different ways (e.g., different MIME parts) as specified in a particular service
binding. In HPSC, messages are defined as part of the signature of an operation within a Port
Type. Operation signatures are manipulated using the Operation Editor (see“ The Operation
Editor“2

1 Itisimportant to note, however, that HPSC does not attempt to precisely follow WSDL structure in its user interface.
HPSC will depart from WSDL when necessary to improve clarity, generality, and user-interface integrity. It is the goal
of HPSC, however, to provide complete support for importing and manipulating WSDL files, even those not generated
by HPSC.

2 WSDL permits message definitions to be shared among multiple operations. HPSC does not directly expose the
Message construct and consequently does not explicitly support Message definition sharing. In this release, each
operation will reference its own unique Message definition. HPSC does, however, support the importing of WSDL's that
use this construct.

Version 0.2 January 2002

user'sguide hp service composer

Version 0.2

Port Types

Port Types define the abstract interfaces that a concrete Web Service may implement. Such an
interface consists of zero or more Oper ationsthat represent potential interactions between end-
points (i.e., an exchange of one or more documents between a service client and a service
provider). Itisimportant to note that a Port Type Operation does not necessarily have to map
one-to-one to a particular back-end method. Port Types are abstract and do not exposein any
way the back-end implementation details. (Because of this confusion, it might have been better
if aterm like“Interaction” was used instead within the WSDL specification.)

Bindings

Bindings map abstract interfaces (a.k.a Port Types) to concrete serialization and transport
mechanisms that can be used to access a real web service that implements that interface.
Bindings specify how message parts (or equivalently, operation parameters) aremarshaled (i.e.,
serialized or encoded for on-the-wire communication), and how the different partsare packaged
for transport. Bindings represent an agreement between end-points on how interaction
semantics (data types, relational data, sessionality, and Quality of Service constraints3) are to
be preserved and communicated. HPSC currently supportsthe two standard binding constructs
described by WSDL viathe the HTTP Binding Editor (see “The HTTP Binding Editor”) and
the SOAP Binding Editor (see “ The SOAP Binding Editor").

HTTP bindings are always accessed using the HT TP transport using either a URL encoding
scheme (viaHTTP-GET) or standard HTTP-POST form encoding. SOAP bindings can be
accessed viaa number of different transports, although support is currently only provided for
HTTP-POST and SMTP.

Services

Services are collections of related Ports that represent concrete end-points (e.g., aURL) for
accessing the functionality implemented by a Web Service. Ports represent concrete
implementations of a particular Binding, and consequently expect that service clients that
interact with the Port will conform to the encoding and packaging constraints described by that
binding.

Universal Description, Discovery, and Integration (UDDI)

In order for a prospective clients to find a service, the service must be registered or advertised
in somewell know location. UDDI isastandard SOAP-based interface for accessing registries
that can contain business and technical service information including references to WSDL
documents. When a service is deployed and an access point (URL) assigned, a developer or
administrator can register the service within a UDDI registry so that the access point and the
associated service information is available to client applications. The hp Registry Composer
can be used to view and manipulate UDDI registries such asthe global federated registry being
run by Hewlett-Packard, IBM, and others.

3 Quality of Service issues such as transactionality security, non-repudiation, and transport reliability, as well as
issues of sessionality are not currently supported by standard WSDL extensions except by a generic SOAP header
capability. However, these issues when addressed will form part of the binding description of a service interface.

January 2002 35

Concepts and Terminology

36 Version 0.2 January 2002

	About this Guide
	hp Service Composer Preview Edition
	Audience
	Key Features
	XML Schema Descriptions of Documents
	External Web Service Definitions
	New Web Services
	Client Proxies
	Skeleton Implementations of Web Services
	hp Web Service Platform Deployment Descriptors

	Organization
	Documentation Conventions

	User Interface
	The Desktop
	The Menu Bar
	File
	Edit
	Object
	Help

	The Project Tree
	The Message Window
	The Status Window
	The Schema Editor
	The Service Editor
	The PortType Editor
	The Operation Editor
	The SOAP Binding Editor
	The HTTP Binding Editor
	The Port Editor

	Java Import Wizard
	Step 1: Select the Service Source
	Step 2: Select the Class or Jar File to be Imported.
	Step 3: Select the Methods or Beans to be Imported.
	Step 4: (Optional) Modify Model Properties

	Java Proxy/Skeleton Generation Wizard
	Step 1: Select the Operations to be Included in the Implementation
	Step 2: Select Implementation Generation Options

	Concepts and Terminology
	Extensible Markup Language (XML)
	Element
	Attribute
	Namespace
	Simple Type
	Complex Type

	Simple Object Access Protocol (SOAP)
	SOAP Action
	SOAP Header
	SOAP Body
	SOAP Encoding
	SOAP RPC

	Web Service Description Language (WSDL)
	Types
	Messages
	Port Types
	Bindings
	Services

	Universal Description, Discovery, and Integration (UDDI)

