
hp service composer

user’s guide

Technology Preview-
Version 0.2, January 2002

This document is copyrighted. No part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of HP Middleware, except as
allowed under the copyright laws.

© Copyright Hewlett-Packard Company 2002. All rights reserved.

Java is a trademark of Sun Microsystems. All other brand names are trademarks of their
respective owners.

The information in this document is subject to change without notice or obligation. If you find
any problems with this document, please report them to us in writing. The information
presented in this document is as accurate as possible at the time of printing, and we assume no
liability for its contents or use.
ii Version 0.2 January 2002

Contents
About this Guide 1

hp Service Composer Preview Edition 1

Audience ... 1

Key Features ... 1

XML Schema Descriptions of Documents 2
External Web Service Definitions 2
New Web Services ... 2
Client Proxies .. 2
Skeleton Implementations of Web Services .. 2
hp Web Service Platform Deployment
Descriptors ... 3

Organization .. 3

Documentation Conventions 3

Chapter 1: User Interface 5

The Desktop ... 5

The Menu Bar ... 6

File ... 6
Edit ... 7
Object ... 8
Help ... 0

The Project Tree .. 11

The Message Window 13
The Status Window 13
The Schema Editor 14
The Service Editor 16
The PortType Editor 18
The Operation Editor 19
The SOAP Binding Editor 20
The HTTP Binding Editor 22
The Port Editor .. 23

Java Import Wizard... 24

Step 1: Select the Service Source................. 24
Step 2: Select the Class or Jar File to be
Imported. .. 25
Step 3: Select the Methods or Beans to be
Imported. ..27
Step 4: (Optional) Modify Model Properties 28

Java Proxy/Skeleton Generation Wizard......... 29

Step 1: Select the Operations to be Included in
the Implementation29
Step 2: Select Implementation Generation
Options ... 30

Chapter 2: Concepts and
Terminology31

Extensible Markup Language (XML) 31

Element ..31
Attribute ...31
Namespace ... 32
Simple Type ...32
Complex Type ..32

Simple Object Access Protocol (SOAP)32

SOAP Action ..33
SOAP Header ...33
SOAP Body ..33
SOAP Encoding ... 33
SOAP RPC... 34

Web Service Description Language (WSDL) .34

Types .. 34
Messages ..34
Port Types .. 35
Bindings ...35
Services ..35

Universal Description, Discovery, and
Integration (UDDI) ..35
Version 0.2 January 2002 ii i

Contents
iv Vers ion 0.2 January 2002

About this Guide
hp Service Composer Preview Edition

Thank you for downloading this preview edition of the new hp Service Composer (HPSC)!

hp Service Composer is part of a new suite of tools from Hewlett-Packard that will assist the
developers in the daunting task of learning and applying Web Services.

Our continually growing tool suite consists of the following integrated tools:

• hp Registry Composer, which assists developers and system administrators in viewing,
updating, and maintaining UDDI registries.

• hp Service Composer, which facilitates the creation and maintenance of new and existing
Web Services.

• hp RadPak (future product), which facilitates the packaging and deployment of Web
Services to the hp Web Service’s runtime.

Audience

This edition of the hp Service Composer is being made available in a preview release form to
give the developer community an early access to this exciting new technology, and to solicit
feedback and suggestions from a broad spectrum of Web Service developers1. Since this edition
of hp Service Composer is an early release, it naturally suffers from certain deficiencies and
limitations. We encourage you to read the Readme file that accompanies this release for the
latest list of known issues and bugs.

Key Features

The hp Service Composer’s key features supported by this preview release are the abilities to
create, view, or edit the following:

1 Web Services is a new and evolving technology. Hewlett-Packard greatly values the feedback and suggestions of
its developer community. Please refer to the Readme file accompanying this release for feedback channels for this
product.
Version 0.2 January 2002 1

About this Guide hp Service Composer Preview Edition
XML Schema Descriptions of Documents

The hp Service Composer has the ability to create, view, and edit XML schema descriptions of
documents to be exchanged within a Web Service. The Schema Editor offers integrated
graphical and hierarchical editors that allow you, the developer, to create document
descriptions without requiring in-depth XSD knowledge or direct manipulation of XSD syntax.
HPSC can import existing XSD2 definitions and perform validation to simplify error
identification and correction. Additionally, to maximize flexibility and utility, HPSC will also
integrate with your favorite XML IDE if desired.

External Web Service Definitions

The hp Service Composer has the ability to create, view, and edit external Web Service
definitions without requiring an in-depth WSDL knowledge or direct manipulation of the
WSDL syntax.

The hp Service Composer provides complete support3 for WSDL constructs and semantics, but
allows the developer to manipulate these constructs using simple hierarchical displays, property
editors, and wizards. Additionally, HPSC can be integrated with the hp Registry Composer to
view and manipulate WSDL files stored as UDDI tModels. Imported WSDLs are validated so
that syntactic and semantic errors can be quickly identified and corrected.

New Web Services

The hp Service Composer has the ability to create new Web Services from existing Java class
methods and/or EJBs. By interacting with HPSC through a series of wizard pages, the developer
can create “bottom-up” Web Service implementations, exposing some or all of a Java class or
EJB’s public methods through the Web Service interfaces.

Client Proxies

The hp Service Composer can create client proxies that can be used to implement applications
that access Web Services that conform to the external interface being viewed or edited by
HPSC. Such client applications can be used either to test a Web Service being developed, or to
utilize the functionality of a Web Service as part of a larger application package.

Skeleton Implementations of Web Services

The hp Service Composer can create skeleton implementations of Web Services that can be
deployed to a Web Service’s runtime such as that provided by hp’s Web Service platform.

2 HPSC currently only supports XSD files that conform to the 2001 XML Schema specification.

3 Subject to certain limitations of this technology preview release, of course. Support is provided for most features
described in the current W3C note for WSDL service descriptions bound to HTTP and SMTP transports.
2 Version 0.2 January 2002

user’s guide hp service composer
hp Web Service Platform Deployment Descriptors

The hp Service Composer can generate hp Web Service platform deployment descriptors for a
Web Service. These deployment descriptors, combined with generated WSDL and skeleton
files, can then be packaged and deployed using a tool such as RakPak to create a fully
functional Web Service implementation. The hp Registry Composer can then be used to register
the newly created and deployed service with a developer, enterprise, or global UDDI registry.

Organization

This manual contains the following chapters:

• “User Interface“, which describes the HPSC user interface in some detail. The user is
referred to the trail maps that accompany this release for tutorial-level instruction on the use
of the hp Service Composer tool.

• “Concepts and Terminology“, which gives a brief description of the key terms and concepts
integral to understanding Web Services and the hp Service Composer product. This chapter
is provided mostly for the users who are new to the Web Services.

Documentation Conventions

The following conventions are used in this guide:

Table 1 Documentation Conventions

Convention Description

Bold Used to identify menu selections, toolbar selections, and section references.

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described below,
italics identify a variable that should be replaced by the user with an actual
value.

Bold Italic Used to identify a term that is defined in the Glossary. Readers should
reference the Glossary when they are unsure of the complete meaning of a
term.

Code Text that represents programming code.

CTRL+X A combination of keystrokes that is used to complete a function.

For example, CTRL+C indicates that the CTRL key should be held down while
the C key is pressed.

Function | Function A path to a function or dialog box within an interface. For example, “Select File
| Open” indicates that you should select the Open function from the File menu.
Version 0.2 January 2002 3

About this Guide hp Service Composer Preview Edition
() and | Parentheses enclose optional items in command syntax.

The vertical bar separates syntax items in a list of choices.

For example, any of the following four items can be entered in this syntax:

persistPolicy(Never|OnTimer|OnUpdate|NoMoreOftenThan)

Note and Caution A Note highlights important supplemental information.

A Caution highlights procedures or information that is necessary to avoid
damage to equipment, damage to software, loss of data, or invalid test results.

Convention Description
4 Version 0.2 January 2002

User Interface
The hp Service Composer tool follows a “toolbox” approach to user-interface design,
allowing the developer to select and operate on any Web Service element in any order desired.
The Web Service elements are items such as Types, Services, and Operations, which are
contained within the current Web Service project.

A project represents one or more services that make up a coherent set of functionality that the
user is operating on. Projects are saved in files with the extensions .scpj. Projects may also be
exported as WSDL files.

The Desktop

The hp Service Composer’s “desktop” is shown in Figure 1: "The Desktop". It consists of the
following parts:

• The Menu Bar runs across the top of the HPSC desktop, and contains all the contextually
relevant commands that can be invoked.

• The Project Tree takes up most of the left side of the HPSC desktop and displays a
hierarchical view of all the service elements that make up the Web Service project. In the
example below, the Project Tree pane is labeled “Project – demo_scpj”.

• The Content Pane takes up most of the right side of the HPSC desktop and displays an
appropriate editor for the service element that is currently selected in the project tree. In
the figure below, the Operation Editor is currently displayed in the Content Pane.

• The Message Pane lies horizontally near the bottom of the HPSC desktop and displays
informational, warning, and error messages that occur during the user session. In the figure
below, the Message Pane is labeled “Messages”.

• The Status Pane lines horizontally below the Message Pane, and displays status
information and progress bars during long-running operations such as file reads and writes.

Each part is described in more detail in subsequent sections.
Version 0.2 January 2002 5

User Interface The Desktop
Figure 1: The Desktop

The Menu Bar

The Menu Bar lies across the top of the HPSC desktop and contains all the contextually relevant
commands that can be invoked by the developer. Contextually relevant means that the set of
commands available via the menu bar may change depending on the state of the project and the
Service Element that is selected.

The menu bar contains the following menus:
6 Version 0.2 January 2002

user’s guide hp service composer
File

As shown in Figure 2: "The File Menu", the file menu contains the following commands.

Figure 2: The File Menu

• New Project: create a new empty project.

• Open…: allows you to open an existing project (i.e., a file with a .scpj extension).

• Close: closes the current project.

• Save: saves the current project using the current pathname for the project. If the project
has never been saved, the user is asked for a pathname.

• Save As…: allows you to save the current project under a different name.

• Import: contains commands that will build new projects from other files and sources.

— Import WSDL… allows you to create a new project from an existing WSDL file.

— Import XSD… allows you to create a new project from an existing XSD file.

— Import Java Implementation… allows you to create a new project from an existing
java class file or EJB. This command will cause the Java Import Wizard to appear.

— Export Project as WSDL...: allows you to export the projevct as a WSDL file.

Figure 3: Export Project as WSDL

Exit: exits the HPSC application.
Version 0.2 January 2002 7

User Interface The Desktop
Edit

As shown in Figure 3: "The Edit Menu", the Edit menu contains the following commands:

Figure 4: The Edit Menu

• Options… displays the Options dialog.

Figure 5: The Options Dialog

The Options dialog permits the developer to change the following HPSC properties:

— HTML Viewer is the application that should be executed to view the HTML
formatted documents. Examples of applicable viewers are Internet Explorer and
Netscape. A text editor can also be used as an HTML viewer if desired.

— XML Editor is the application that should be used as the external XML schema editor.
Currently, an external XML editor’s use is entirely optional since HPSC has its own
built-in schema editor. Examples of applicable applications include Tibco Turbo XML
and XML Spy. A text editor can also be used as the XML schema editor if desired.
8 Version 0.2 January 2002

user’s guide hp service composer
Object

The Object menu displays commands that can be applied to the currently selected Web Service
Element. The menu displayed is always identical to the pop-up menu which can be seen by
right-clicking on the Web Service Element which is currently selected in the Project Tree. For
example, Figure 4: "The Object Menu" below shows the object menu for a Service object.

Figure 6: The Object Menu

These are the object menu commands for each class of the Web Service Elements:

• Attribute

— Set Type changes the type of the attribute to the selected XSD built-in type. Note that
only the most common built-in types are currently available in the submenu. Use the
schema editor’s property dialog for a complete list of available simple types.

— Optional toggles the optional property of the attribute.

— Delete deletes the attribute from the project.

• Complex Type

— New attribute adds a new attribute to the complex type.

— New element adds a new element to the complex type.

— Delete deletes the complex type from the project.

• Element

— Set Type changes the type of the element to the selected XSD built-in type. Note that
only the most common built-in types are currently available in the submenu. Use the
schema editor’s property dialog for a complete list of available simple and complex
types.

— Optional toggles the optional property of the element. Optional elements have a min
occurs setting of 0, while required elements have a min occurs setting of 1.

— Bounded toggles the bounded property of the element. Bounded elements have a max
occurs setting of 1, while unbounded elements have an infinite max occurs value.

— Delete deletes the element from the project.

• Group

— New element adds a new element to the group.

• Operation

— Delete deletes the operation from the project.

• Port

— Delete deletes the port from the project.
Version 0.2 January 2002 9

User Interface The Desktop
• Port Type

— New Operation adds a new operation to the port type.

— New SOAP Binding adds a new SOAP service binding to the port type.

— New HTTP Binding adds a new HTTP service binding to the port type.

— Export as WSDL… allows you to export this port type as a WSDL file. The resultant
WSDL will only contain the selected port type and any supporting service elements.
This can be used to extract a portion of an overall project for reuse, etc.

— Delete deletes the port type from the project.

• Schema

— Edit with external editor launches the external XML editor specified in the Edit-
>Options dialog. The current schema is written out to a temporary file and the external
editor is launched with the temporary file as an argument. You can modify the schema
and save it as usual, i.e., overwriting the temp file. When the desktop is reactivated,
HPSC will notice that the temporary file is modified and will reload the schema.

— Export as XSD schema… allows you to save the schema out to a XSD file.

— New attribute adds a new global attribute to the schema.

— New complex type adds a new global complex type to the schema.

— New element adds a new global element to the schema.

— New simple type adds a new global simple type to the schema. The simple type
submenu is used to specify the built-in type that the new simple type is to extend.
Note that only the most common built-in types are currently listed.

— Delete deletes the schema from the project.

• Schema Folder

— New Schema creates a new empty schema in the project.

— Import Schema… allows you to load an existing XSD file into the current project. A
new schema element is created.

• Service

— New Port Type creates a new port type interface in the project.

— Export as WSDL… allows you to export the service as a WSDL file.

— Delete deletes the service from the project.

• Service Binding (HTTP/SOAP)

— New Port adds a new port to the service binding. This can be used to add a new service
access point to a given service binding.

— Export as WSDL… allows you to export this service binding as a WSDL file. The
resultant WSDL file will only contain the selected service binding and any supporting
service elements. This can be used to extract a portion of an overall project for reuse,
etc.
10 Version 0.2 January 2002

user’s guide hp service composer
— Generate Implementation… allows you to create client proxies and/or service
skeletons for the service binding via the “Java Proxy/Skeleton Generation Wizard“.

— Deploy Service Binding… creates a web service deployment file suitable for
deploying the service described by the current service binding. This command is only
available when implementation files are associated with the binding.

— Delete deletes the service binding from the project.

• Service Folder

— New Service creates a new empty service in the project.

• Simple Type

— Delete deletes the simple type from the project.

Help

The Help menu offers a number of resources for better understanding hp Service Composer and
Web Services technology (see Figure 5: "The Help Menu").

Figure 7: The Help Menu

The technical references listed and the HPSC User’s guide all require that a valid HTML viewer
be specified in the Edit->Options dialog.

The About menu item displays the HPSC splash screen. Click the mouse once to dismiss the
About screen.
Version 0.2 January 2002 11

User Interface The Desktop
The Project Tree

The project tree displays all the model elements that make up the current web services project.

Figure 8: The Project Tree

The tree is organized in a simple hierarchy to show the containment relationship between the
different elements. For example, Sequences contain zero or more Elements and/or
Attributes; Port types contain zero or more Operations and/or Service Bindings; etc.

Table 1: "Project Tree Icons" shows the mapping between icons used in the project tree and the
associated web service model element.

Table 1 Project Tree Icons

Icon Model Element

Attribute

Complex type

Element

Group (sequence)
12 Version 0.2 January 2002

user’s guide hp service composer
When you click on a service model element in the project tree, that element becomes selected
and the content pane updates to display an appropriate editor. For example, if you click on
Operation the Project Tree will display the Operation Editor in the content area. Through the
displayed editor, you can modify properties of the selected model element, create new model
elements, etc.

In addition, the Object menu in the menu bar will display commands that can be applied to the
selected item. The Object menu for a model element can also be accessed by right-clicking on
that model element to expose the Object pop-up menu. See the “Object” section above for more
details.

The name of any service model element can be edited via the project tree by triple-clicking on
that element.

Java Implementation File

Operation

Port

Port Type or Interface

Schema

Schema Folder

Service Binding

Service Definition

Service Folder

Icon Model Element
Version 0.2 January 2002 13

User Interface The Desktop
The Message Window

The Message Window displays information, warnings, and errors that occur during a HPSC
session. If additional information is available about an error (such as the context of the error),
the error message is prefixed with an arrow icon. Such messages are said to have an associated
message context. Clicking on the message will cause the content pane to display the associate
message context.

For example, the first line shown in Figure 7: "The Message Window" indicates that a read
WSDL file contained errors that prevented a correct parse of the file. Clicking on that line will
cause the WSDL file to be displayed in the content pane with the problem area highlighted.

Right clicking on the message area will display a pop-up menu containing a single command
“clear all”. This command will clear the message pane contents. The message pane will also
be cleared automatically when a new project is created or loaded.

Figure 9: The Message Window

The Status Window

The Status window displays status and progress information during long-running activities such
as file loading. The example shown in Figure 8: "The Status Window" shows that a WSDL file
is a little more than halfway parsed. Clicking on the cancel button will terminate the current
long-running activity.

Figure 10: The Status Window
14 Version 0.2 January 2002

user’s guide hp service composer
The Schema Editor

The Schema Editor is displayed when any schema element is selected in the project tree. It
displays a UML-like, graphical view of a schema and its components. Using the vertical
toolbar displayed on the left side of the schema editor, the developer can manipulate the
graphical layout, create new schema components (attributes, elements, complex types, simple
types), and connect components together into reference and type hierarchies (has-a and is-a).
For example, in Figure 9: "The Schema Editor" below, the complex type POType is shown to
contain two elements that have AddressType type. The “has-a” links between the two complex
types makes this relationship explicit.

Figure 11: The Schema Editor

Table 2: "Toolbar Buttons" below describes the actions performed by each button in the toolbar.
In addition, a property editor for a schema component can be exposed by double clicking on
that component in the graphical view. Through the property editor, you can change the
components name, change type information, and add/remove subcomponents.
Version 0.2 January 2002 15

User Interface The Desktop
Table 2 Toolbar Buttons

At any time during the viewing or editing of a schema, the associated XSD file can be prefixed
by clicking on the XSD tab of the schema editor. See Figure 10: "An XSD Example" for an
example of this XSD preview feature.

Icon Operation

New complex type

New simple type

New attribute

New element

Select the Move/Select mode

Connect with IS-A mode

Connect with HAS-A mode

schema_autolayout

Edit properties
16 Version 0.2 January 2002

user’s guide hp service composer
Figure 12: An XSD Example

The Service Editor

When a Service is selected in the project tree, the service editor is displayed in the content pane.
Through this editor, the developer can change the service name, assign/view a target prefix for
model elements within that service, and designate/view prefixes associated with namespaces
that are referenced within the Service definition.

In Figure 11: "The Service Editor" below, the POService is being edited, with service model
elements such as port types and bindings being placed into the http://www.hp.com/test target
namespace. In addition, the prefix “hp” is also associated with this target namespace. In new
projects, HPSC automatically assigns default prefixes to namespaces that are commonly
referenced within a WSDL definition.
Version 0.2 January 2002 17

User Interface The Desktop
Figure 13: The Service Editor

At any time during the viewing or editing of a service definition, the associated WSDL file can
be previewed by clicking on the WSDL tab of the service editor. Figure 12: "WSDL File
Preview" shows an example of such as WSDL file view.
18 Version 0.2 January 2002

user’s guide hp service composer
Figure 14: WSDL File Preview

The PortType Editor

When a Port Type is selected in the project tree, the port type editor is displayed in the content
pane. This simple editor allows the developer to change/view the port type’s name, and edit/
view any associated port type documentation string.

Figure 15: The PortType Editor
Version 0.2 January 2002 19

User Interface The Desktop
The Operation Editor

When an operation is selected in the Project Tree, the Operation Editor is displayed in the
Content Pane.

Figure 16: The Operation Editor

Properties of the Operation

The Operation Editor allows the developer to view and edit properties of the operation
including:

• The operation’s name.

• The operation’s interaction model. This can be one of the following:

— Request-response, in which the service receives and then responds to a request. This
is the default interaction model and the most commonly used for synchronous services
accessed across HTTP.

— One-way, in which the service receives a request that it processes without responding.
Note that there is no response document in this model.

— Solicit-response, in which the service sends out a solicitation message to an end-point
and expects a response in return.

— Notification, in which the service sends out a notification message, but doesn’t expect
any response from the end-point. Note that there is not request document in this model.
20 Version 0.2 January 2002

user’s guide hp service composer
Documentation About the Operation

The following are the various documents that follow the operation of the Operation Editor:

• The Request Document is expected to be received by the service. Note that not all
interaction models involve a request document. When applicable, however, the request
document may contain one or more named parts, each part having an assigned type (simple
or complex) and documentation string. Parts may then be bound to different Mime parts
and may receive different encoding within a service binding. See the sections on “The
HTTP Binding Editor” and “The SOAP Binding Editor“ for details. Finally note that the
request document as a whole may also have an associated documentation string.

• The Response Document is expected to be sent by the service. Note that not all interaction
models involve a response document. When applicable, however, the response document
may contain one or more named parts, each part having an assigned type (simple or
complex) and documentation string. Parts may then be bound to different MIME parts and
may receive different encoding within a service binding. See the sections on “The HTTP
Binding Editor“ and “The SOAP Binding Editor“ for details. Finally, note that the response
document as a whole may also have an associated documentation string.

• Zero or more Fault Documents that may be sent by the service if some application-level
exception is encountered.
Version 0.2 January 2002 21

User Interface The Desktop
The SOAP Binding Editor

When a SOAP Binding is selected in the project tree, the SOAP Binding editor is displayed in
the content area.

Figure 17: The SOAP Binding Editor

Properties of the SOAP Service Binding

This editor allows the developer to view and edit properties of the SOAP Service Binding
including:

• The Name for the binding.

• The Transport to be used to access the service (either HTTP or SMTP).

• Whether SOAP RPC encoding should be used or not when communicating with the
service. As discussed briefly in “Simple Object Access Protocol (SOAP)” in the Chapter
"Concepts and Terminology", SOAP-RPC is an optional protocol used with SOAP for
encoding remote procedural calls. Essentially, request documents that are meant to invoke
an operation within a service that uses SOAP-RPC will be wrapped in an element named
after the operation to be invoked. This wrapper can be used by the receiving SOAP server
to invoke the appropriate back-end operation.
22 Version 0.2 January 2002

user’s guide hp service composer
In addition, for each operation defined by the binding (or more specifically, by the port type that
contains the binding), the following binding properties can be set:

• The SOAP Action that is expected to accompany service requests for that operation. This
string is sent in an HTTP request using the SOAP-Action HTTP header extension. As
discussed briefly in “SOAP Action” in Chapter "Concepts and Terminology", this string
can be used to program firewalls to improve security.

• The location to be used to transport each Request and Response Document Parts. By
default, each part will be located in the body of the SOAP envelope being used to transport
the message. However, by using the binding editor, the developer can specify that one or
more parts should instead be transmitted in one or more MIME parts. In this case, the
resulting document will potentially be a MIME Multipart document. To provide alternate
potential MIME types for a part, type each part into the MIME type(s) column, separating
the types with a comma. For example, to indicate that the “myPicture” part may be
transmitted as a “gif” or a “jpeg”, you would type “image/gif, image/jpeg” as the MIME
type for the “myPicture” part.

• The Encoding to be used (if any) for parts transmitted within the SOAP Body. Selecting
the Transmit SOAP Body: Encoded option will require that the part contents in the
SOAP body be encoded using the designated encoding style and namespace. Selecting the
Transmit SOAP Body: Literally option will cause the part's data to be transported
“literally”, without additional encoding. When encoding is specified, the default encoding
scheme is SOAP, and the default namespace is the same as the target namespace for the
service definition. These defaults can be overridden as needed.

• The type of encoding to be used to transport any Fault Documents. At most one fault
document will be sent in response to a service invocation, and Fault documents are always
transported in the body of a SOAP message. However, the encoding style and namespace
that will be used during transmission can be specified in the Fault Document section of this
editor.
Version 0.2 January 2002 23

User Interface The Desktop
The HTTP Binding Editor

When an HTTP Binding is selected in the project tree, the HTTP Binding editor is displayed in
the content area.

Figure 18: The HTTP Binding Editor

This editor allows you to view and edit properties of the HTTP Service Binding including:

• The Name for the binding.

• Whether the GET or POST HTTP Verb is expected to be used to request the service.

In addition, for each operation defined by the binding (or more specifically, by the port type that
contains the binding), the following binding properties can be set:

• The Encoding style to be used when transmitting the request document parts.
Accompanying this encoding style is a Location/Pattern String, which forms a relative
address that is appended to an access point URL to invoke the service request. The format
of the location/pattern string depends on the encoding style used:

— If urlEncoded is specified, then document parts are sent using standard URI encoding
rules (partName0=partValue0&partName1=partValue1…).
When used with HTTP GET, the encoded string is transmitted at the end of the URL.
When used with HTTP POST, the encoded string is transmitted in the HTTP content
(just as HTML form data would be). For example, a message with parts named A and
B and having values of “foo” and 42 respectively would be transmitted during a HTTP
GET by appending the string “A=foo&B=42” to the end of the relative URL indicated
by the location string.
24 Version 0.2 January 2002

user’s guide hp service composer
— If urlReplacement is specified, the document parts are sent in the request URI using a
replacement algorithm on the indicated pattern string. Each message part to be
transmitted should appear once in the pattern string using the form “(partName)”.
During transmission, each part pattern string will be replaced with actual part values.
For example, in Figure 16: "The HTTP Binding Editor", a relative address of
“cancelPO/ID4” is used for a requestID of 4.

The Port Editor

When a Port is selected in the project tree, the port editor is displayed in the content pane.

Figure 19: The Port Editor

This simple editor allows you to view and edit properties of the port including:

• The Name for the port.

• The access point URL that can be used to access the port’s services.

• A Documentation string describing the port.
Version 0.2 January 2002 25

User Interface The Desktop
Java Import Wizard

The Java Import Wizard is exposed when the developer selects the file->import->import
java implementation… menu item from the Menu bar. The wizard walks you through a
simple four-step process that will result in the creation of a new Web Service project built on
an existing Java class or EJB implementation. Through the dialog, a new Web Service model
will be created for selected Java methods or Beans. The resultant model can then be deployed
to a Web Services platform.

The following steps describe the dialog process:

Step 1: Select the Service Source

• Select “Java Class File” if the source to be read is a class file.

• Select “Enterprise Java Bean” if the source to be read is an EJB definition within a JAR file.

• Click on the Next button to continue.

Figure 20: Select the Service Source, Introduction
26 Version 0.2 January 2002

user’s guide hp service composer
Step 2: Select the Class or Jar File to be Imported.

Figure 19: "Select the Java Class" shows the wizard screen displayed for importing a Java class
implementation.

• Use this screen to enter the path name of a .class file to be read and the name of the package
that contains the class. In this example, the Test.class file contains the class
testPackage.Test.

• Click on the Next button to continue.

Figure 21: Select the Java Class
Version 0.2 January 2002 27

User Interface The Desktop
Figure 20: "Select the EJB Jar File" shows the wizard screen for importing EJB
implementations.

• Use this screen to select the jar file containing the target EJB. HPSC will parse this file and
display a list of available EJBs.

• Select the target EJB from this list and click on the Next button.

Figure 22: Select the EJB Jar File
28 Version 0.2 January 2002

user’s guide hp service composer
Step 3: Select the Methods or Beans to be Imported.

The wizard will now examine the Java class file or jar file and extract names of methods that
can be imported. Select the methods that should be imported and then click the "Next" button
(see Figure 21: "Select the Methods" for an example).

If you want to use default values for the generated model elements, you can instead click on
"Finish" at this point.

Figure 23: Select the Methods
Version 0.2 January 2002 29

User Interface The Desktop
Step 4: (Optional) Modify Model Properties

This last step can be used to modify the default properties of the model elements that are created
by the wizard. Finally, click "Finish" to actually generate the new project. When the wizard
completes, the new project will be loaded into the HPSC project tree.

Figure 24: Modify Model Properties
30 Version 0.2 January 2002

user’s guide hp service composer
Java Proxy/Skeleton Generation Wizard

To run the Java proxy/skeleton generation wizard, select a Service Binding and choose the
Object->Generate Implementation… menu item. This command is also available on the
Service Binding popup menu. The wizard will assist you in the process of creating client proxy
and/or server skeleton code for the service being modeled. A client proxy is a class that
implements the interface of the web service by transparently making web service calls to a
selected end-point. A server skeleton is a framework implementation of a service that only
requires the addition of business logic to form a complete service implementation. The
following paragraphs describe the steps involved in the wizard process:

Step 1: Select the Operations to be Included in the Implementation

By default, all operations of the binding are selected. If desired, you can deselect operations
that are not of interest. Click the "Next" button to move to the next and final pane.

Figure 25: Select the Operations to be Included in the Implementation
Version 0.2 January 2002 31

User Interface The Desktop
Step 2: Select Implementation Generation Options

Specify the directory and package name for the generated code. Use the check boxes to select
whether client proxy stubs, server skeletons, or both should be generated. Finally click "Finish"
to cause the wizard to invoke the code generator.

Figure 26: Select Implementation Generation Options
32 Version 0.2 January 2002

Concepts and Terminology
This section gives a brief description of the key terms and concepts that are integral to an
understanding of Web Services and the hp Service Composer. This section is not meant to be
a tutorial of Web Service technology. Please refer to applicable white papers such as those
published on hp’s DSPP site for more details and tutorials.

Extensible Markup Language (XML)

XML is a widely used standard for defining markup languages that can be used to express
application-specific data. It defines a simple and regular grammar that facilitates the
communication, processing, and storage of application data. XML uses textual encoding
(usually UTF-8) which allows it to be used with text-based transports like HTTP and simplifies
application debugging. The structure of a particular class of XML documents is generally
described through the XML Schema Language using a special XML dialect called XSD.

The following are some of the key terms that should be understood to take advantage of XML
and XSD. Note that the following descriptions, while not technically precise, do convey the
general meaning of the terms.

Element

An element is the basic unit for organizing content using XML. Elements can contain attributes,
other elements, character data, or some combination of the three to express content. Elements
can also be “empty”, containing no information beyond the mere presence or absence of the
element itself. In an XML document, elements are delimited by start and end tags containing
the name of the element. For example, the following element has a name of “Address” and
contains one sub-element named “Street” that contains a string:

<Address>

<Street>Main Street</Street>

</Address>

Attribute

An attribute is a name-value pair within an element. Attributes can only “hold” simple atomic
values such as strings, integers, etc, although in fact attribute values are always expressed as
strings. The following element has one attribute called Color which contains a string value:

<Dog color=”blue”>…
Version 0.2 January 2002 31

Concepts and Terminology
Namespace

To prevent collisions between element names in one document with identical names in another,
elements within XML documents can be associated with namespaces. The assignment of a
namespace to a name is done by mapping “prefixes” to namespaces, and then using those
prefixes when referring to the symbol. By convention, namespaces are named using URI’s. In
the following example, the elements abc:flavor and xyz:flavor are of the same type because abc
and xyz map to the same namespace. However pdq:flavor is in a different namespace and thus
refers to a different type of “flavor”.

<doc>

xmlns:abc=”http://food”

xmlns:xyz=”http://food”

xmlns:pdq=”http://physics”>

<abc:flavor>strawberry</abc:flavor>

<xyz:flavor>chocolate</xyz:flavor>

<pdq:flavor>charm</pdq:flavor>

</doc>

As suggested by this example, namespaces also support the assignment of a shared
understanding of “semantics” to document elements. For example, the element “flavor” in the
namespace “http://food” might always refer the flavor of a food item. In contrast, the element
“flavor” in the namespace “http://physics” might refer to a class of sub-atomic particles. The
structure and semantics of each element may be quite different even though the element name
is the same.

Simple Type

Attributes and elements can contain simple text strings as their content. How that text string is
interpreted is generally specified in an XML schema which defines the “type” of that content.
The XML schema specification also defines “built-in” types such as String and Integer. User-
defined types within a schema (XSD) document can extend those built-in types using a number
of mechanisms such as type restriction and enumeration. These mechanisms can be used to
define new simple types such as “Zipcode”, “State”, and “SSN”. Note that simple types are
always atomic, i.e., they don’t contain subdividable parts.

Complex Type

Unlike Attributes, Elements can contain content with named parts such as attributes and other
Elements. Such Elements are said to have “Complex Type”. User defined Complex Types are
used to define the structure of complex documents like “Purchase Order”, “Address”, and
“Receipt”.

Simple Object Access Protocol (SOAP)

SOAP is a standardized protocol for XML messaging. It defines a packaging scheme that
makes explicit the separation of messaging information (i.e., header information which is
processed by the SOAP messaging layer) and the application-level content to be communicated
(i.e., the “body” of the message). It also describes approaches to encoding and serializing
computer language constructs (i.e., procedures and data types such as strings and arrays).
32 Version 0.2 January 2002

user’s guide hp service composer
However, the use of SOAP RPC and SOAP type encoding is not a prerequisite for the use of
SOAP messaging. SOAP servers (i.e., SOAP 1.1 end-points) implement the SOAP messaging
layer, processing SOAP headers, throwing SOAP transport errors if necessary, encoding/
decoding content, and dispatching that content to back-end processing applications. Dispatch
is based on entries in the SOAP server’s configuration files and some server-specific criteria,
such as the content root node or the access point URL. Because SOAP uses XML and a shared
server architecture, it is useful for communicating across firewalls. SOAP can also be used with
MIME to exchange multi-part and non-textual information (like gifs and encrypted data). It is
important to understand that basic SOAP is a fairly simple protocol that doesn’t dictate
constructs for things like transationality, sessionality, security, etc. However, SOAP provides
extension mechanisms for describing and communicating such concepts

The following are some of the key terms that should be understood to take advantage of SOAP:

SOAP Action

As part of a measure to extend the security of SOAP servers when used using the HTTP
transport, SOAP defines a HTTP header extension called SOAPAction. Before dispatching a
SOAP message to a back-end processor, the SOAP server is required to check if an appropriate
SOAPAction for that back-end has been specified and throw an error if this is not the case. This
allows system administrators to confidently configure their firewalls using this HTTP header
without having to extend the firewall to understand the SOAP protocol. To support this, HPSC
and WSDL allow the developer to specify a SOAPAction string to be associated with each
operation within a SOAP binding. The use of SOAPAction is optional and is only enforced by
a SOAP server if specified in the service definition.

SOAP Header

SOAP messages can optionally contain zero or more headers that communicate information
that should be processed by the SOAP server itself. Header information can also form a context
which can be accessed by SOAP applications just as HTTP headers form a context which can
be accessed by servlets and CGI scripts. Headers can be marked as being mandatory or optional
for correct processing of the message. If a SOAP server receives a mandatory header (marked
as “must-understand”) that it doesn’t understand, it must return an error back to the requestor.
This mechanism allows applications to ensure that they are talking to a SOAP-server that has
been extended to understand transactionality, for example.

SOAP Body

Application data is communicated in the SOAP body as an XML fragment. SOAP messages
that use MIME can also put information in different MIME parts, and refer to those parts from
within the SOAP body.

SOAP Encoding

SOAP encoding describes a processes for serializing common programming language data
types such as strings, structures, and arrays as XML fragments. The use of SOAP encoding is
optional, and is contrasted by the use of a “literal” style where the “on-the-wire” format of data
to be exchanged is described explicitly by a particular XML schema.
Version 0.2 January 2002 33

Concepts and Terminology
SOAP RPC

SOAP RPC is a way of explicitly encoding and serializing a remote procedure call using SOAP.
Again, the use of SOAP RPC is optional depending on the capabilities and requirements of the
SOAP server.

Web Service Description Language (WSDL)

WSDL is an XML language that is commonly used to describe the public interface of a Web
Service. It provides a machine-readable description of the document formats, public interfaces,
operations, technology bindings, and service access points that can be used to access and
interact with a Web Service. Note that WSDL does not describe or expose any details of the
underlying implementation of the Web Service. This allows service implementers complete
flexibility in the selection of their back-end implementations, and facilitates the “plug-and-
play” characteristic of Web Service based architectures.

WSDL defines Web Services using the following key constructs. Although HPSC uses a
syntax neutral internal model for manipulating web service descriptions, it currently uses
WSDL constructs and terms for building web service descriptions.1

Types

Types, generally described using XML Schema (using the XSD language), define the structure
of document that will be exchanged during a Web Service interaction. These document
descriptions can be used literally within a Web Service definition, or they can be mapped via
some selected encoding scheme to a particular “on-the-wire” format. In general, Complex
Types defined within a schema are streamed literally while simple types might be encoded
using SOAP encoding. HPSC supports the creation of document type descriptions using the
Schema Editor (see “The Schema Editor”).

Messages

Messages allow Web Service interactions to contain multiple named “parts”, where each part
is of some simple or complex type defined by some type system. These parts can then be
transported in different ways (e.g., different MIME parts) as specified in a particular service
binding. In HPSC, messages are defined as part of the signature of an operation within a Port
Type. Operation signatures are manipulated using the Operation Editor (see “The Operation
Editor“2

1 It is important to note, however, that HPSC does not attempt to precisely follow WSDL structure in its user interface.
HPSC will depart from WSDL when necessary to improve clarity, generality, and user-interface integrity. It is the goal
of HPSC, however, to provide complete support for importing and manipulating WSDL files, even those not generated
by HPSC.

2 WSDL permits message definitions to be shared among multiple operations. HPSC does not directly expose the
Message construct and consequently does not explicitly support Message definition sharing. In this release, each
operation will reference its own unique Message definition. HPSC does, however, support the importing of WSDL’s that
use this construct.
34 Version 0.2 January 2002

user’s guide hp service composer
Port Types

Port Types define the abstract interfaces that a concrete Web Service may implement. Such an
interface consists of zero or more Operations that represent potential interactions between end-
points (i.e., an exchange of one or more documents between a service client and a service
provider). It is important to note that a Port Type Operation does not necessarily have to map
one-to-one to a particular back-end method. Port Types are abstract and do not expose in any
way the back-end implementation details. (Because of this confusion, it might have been better
if a term like “Interaction” was used instead within the WSDL specification.)

Bindings

Bindings map abstract interfaces (a.k.a Port Types) to concrete serialization and transport
mechanisms that can be used to access a real web service that implements that interface.
Bindings specify how message parts (or equivalently, operation parameters) are marshaled (i.e.,
serialized or encoded for on-the-wire communication), and how the different parts are packaged
for transport. Bindings represent an agreement between end-points on how interaction
semantics (data types, relational data, sessionality, and Quality of Service constraints3) are to
be preserved and communicated. HPSC currently supports the two standard binding constructs
described by WSDL via the the HTTP Binding Editor (see “The HTTP Binding Editor”) and
the SOAP Binding Editor (see “The SOAP Binding Editor“).

HTTP bindings are always accessed using the HTTP transport using either a URL encoding
scheme (via HTTP-GET) or standard HTTP-POST form encoding. SOAP bindings can be
accessed via a number of different transports, although support is currently only provided for
HTTP-POST and SMTP.

Services

Services are collections of related Ports that represent concrete end-points (e.g., a URL) for
accessing the functionality implemented by a Web Service. Ports represent concrete
implementations of a particular Binding, and consequently expect that service clients that
interact with the Port will conform to the encoding and packaging constraints described by that
binding.

Universal Description, Discovery, and Integration (UDDI)

In order for a prospective clients to find a service, the service must be registered or advertised
in some well know location. UDDI is a standard SOAP-based interface for accessing registries
that can contain business and technical service information including references to WSDL
documents. When a service is deployed and an access point (URL) assigned, a developer or
administrator can register the service within a UDDI registry so that the access point and the
associated service information is available to client applications. The hp Registry Composer
can be used to view and manipulate UDDI registries such as the global federated registry being
run by Hewlett-Packard, IBM, and others.

3 Quality of Service issues such as transactionality security, non-repudiation, and transport reliability, as well as
issues of sessionality are not currently supported by standard WSDL extensions except by a generic SOAP header
capability. However, these issues when addressed will form part of the binding description of a service interface.
Version 0.2 January 2002 35

Concepts and Terminology
36 Version 0.2 January 2002

	About this Guide
	hp Service Composer Preview Edition
	Audience
	Key Features
	XML Schema Descriptions of Documents
	External Web Service Definitions
	New Web Services
	Client Proxies
	Skeleton Implementations of Web Services
	hp Web Service Platform Deployment Descriptors

	Organization
	Documentation Conventions

	User Interface
	The Desktop
	The Menu Bar
	File
	Edit
	Object
	Help

	The Project Tree
	The Message Window
	The Status Window
	The Schema Editor
	The Service Editor
	The PortType Editor
	The Operation Editor
	The SOAP Binding Editor
	The HTTP Binding Editor
	The Port Editor

	Java Import Wizard
	Step 1: Select the Service Source
	Step 2: Select the Class or Jar File to be Imported.
	Step 3: Select the Methods or Beans to be Imported.
	Step 4: (Optional) Modify Model Properties

	Java Proxy/Skeleton Generation Wizard
	Step 1: Select the Operations to be Included in the Implementation
	Step 2: Select Implementation Generation Options

	Concepts and Terminology
	Extensible Markup Language (XML)
	Element
	Attribute
	Namespace
	Simple Type
	Complex Type

	Simple Object Access Protocol (SOAP)
	SOAP Action
	SOAP Header
	SOAP Body
	SOAP Encoding
	SOAP RPC

	Web Service Description Language (WSDL)
	Types
	Messages
	Port Types
	Bindings
	Services

	Universal Description, Discovery, and Integration (UDDI)

