
Early Access Release : 01/2002

User's Guide

Early Access Release : 01/2002

Legal Notices

The information contained in this document is subject to change without notice.
Reproduction, adaptation, or translation without prior written permissions is prohibited,
except as allowed under the copyright laws.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for direct, indirect, special,
incidental, or consequential damages in connection with the furnishing, performance, or use
of this material.

Copyright © 2002 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights are
reserved.

Corporate Offices:

Hewlett-Packard Co.
3000 Hanover St.
Palo Alto, CA 94304

Early Access Release : 01/2002 c - i

Contents

About this Guide........................... p-1
Who Should Read This Guide.............p-2

What You Should Know....................... p-2
Web Services Documentationp-2

Documentation Conventions p-2
Product Information and Support.......p-3

The HP Middleware Website................ p-3
HP Middleware Technical Support p-3

Introduction to the HP Web Services
Platform 1-1

What is a Web Service?.........................1-1
What is the HP Web Services
Platform? ..1-2
An Architecture Designed for Web
 Services..1-2
Compliant with Web Service
Standards..1-2

HP-SOAP Server Architecture......... 2-1
HP-SOAP Server 2-2

HP-SOAP Messaging Layer...................2-2
HP-SOAP Server Pipeline2-3

HP-SOAP Server Pipeline Processing 2-4
SOAP Header Processing2-4
SOAP Payload Processing2-6

Digital Signatures................................ 2-7
HP – XML Digital Signature API.........2-8
HP-SOAP Client – Interceptor.............2-9
SOAP Envelope Signer/Verifier2-9

Exposing a Web Service................ 3-1
Processing SOAP Messages................ 3-2
Payload Processing 3-3
Exposing a Web Service through an
RPC Java Adapter................................ 3-4
Exposing a Web Service through an
RPC EJB Adapter................................ 3-5

Exposing a Web Service through a
Document Exchange Adapter3-7

Writing a Document Handler................3-7
Header Processing...............................3-9

Determine the Types of Header
Blocks Needed for Your Service(s)3-10
Implement the Header Processor3-11
Register the Header Processor and
Deploy ...3-12

Using Digital Signatures in
HP-SOAP... 3-12

Signing the Document on the Client
Side...3-13
Configuring HP-SOAP to Verify
Signed SOAP Messages........................3-13

Data Types in the HP Web Services
Platform..4-1

Data Type Support4-2
Supported Data Types4-2

Type Management...............................4-3
Type Management at the Global Level –
Global Type Registry (soap-type.xml)..4-3
Type Management at the Service Level
(WebServiceName.xml)4-4
Type Management at the WSDL Operation
level (WebServiceName.wsdl)4-4

Complex Type Support........................4-4
The HP-SOAP Server and the Exolab
Castor Project...4-4
The Castor Converter in Action4-5

Deserializing from a Text Value to a
 Java Object..4-5
Deserializing with a Converter4-6
Deserializing with a Formatter............4-6
Serializing from a Java Object to a
Text Value..4-6
Overriding the Service Configuration..4-7

HP Web Services Platform User's Guide

c - ii Early Access Release: 01/2002

Configuring a Formatter or Converter
at the Service Level..................................4-7
Configuring a Formatter or Converter
at the Message Level4-8

Invoking the Service4-8
Method Overloading............................4-8

WSDL Validation4-9
Using Castor for Complex Data Types
in the HP-SOAP Server........................4-9

Mapping XML Tags to Fields in an
Existing Java Class.................................4-10
Generating Classes for Schema Types4-10

Deploying & Configuring Web
Services ..5-1

Deploying Web Services5-2
Deploying Web Services5-2

Web Service Deployment Descriptor ..5-2
Web Service URL Structure...................5-2
Setting Up an RPC-style Service Using
a Java Class ...5-3
Setting Up an RPC-style Service Using
an EJB Adapter..5-4
Setting Up a Document Exchange
Service Using a Java Class5-5

Configuring Services............................5-5
Configuring a Service to Use a Type
Converter ..5-5
Configuring a Service to Use an
Input/Output Converter........................5-6
Configuring a Service to Use a Result
Converter ..5-7

Customizing the HP-SOAP WebApp
Configuration.......................................5-8

Configuring the JAXM Inbox Servlet ..5-8
Servlet Mapping5-8

Setting Global Logging Parameters5-9
Configuring Adapters5-9
Testing Your Deployed Web
Services .. 5-10

HP-SOAP Tools6-1
Introduction... 6-1
ClassToWebService6-2

Usage ...6-2
Output ...6-2
Example ..6-3

EJBToWebService6-3
Usage ...6-3
Output ...6-4
Example ..6-4

HandlerToWebService6-4

Usage ...6-4
Output ...6-5

WSDLToClientProxy 6-5
Usage ...6-5
Output ...6-6

ClassToWSDL..................................... 6-6
Usage ...6-6
Output ...6-7

WSDLToServerSkeleton...................... 6-7
Usage ...6-7

XML Digital SignaturesA-1
Need for XML-based Digital
Signature ...A-2

Structure of an XML SignatureA-3
Steps to Create XML Signature...........A-4

Identifying Data Objects to be
Signed ...A-4
Reference GenerationA-4
Creating the SignedInfo ElementA-4
Generating the Signature.......................A-5

Verifying the SignatureA-6
HP XML Digital Signature LibraryA-6

Creating the Signature............................A-6
Verifying the SignatureA-7

List of Figures c-iii
Code Listings c-iii
List of Tables................................. c-iv

Table of Contents

Early Access Release : 01/2002 c - iii

List of Figures
Figure 2-1: HP-SOAP message processing ...2-2
Figure 2-2: HP Web services messaging framework ...2-2
Figure 2-3: SOAP Pipeline...2-3
Figure 2-4: SOAP nodes ..2-5
Figure 3-1: Possible processing paths for SOAP messages ..3-2
Figure 3-2: Payload pipeline stage...3-4
Figure 3-3: SOAP Header processing ... 3-10
Figure 4-1: Default deserialization sequence...4-5
Figure 4-2: Deserialization sequence with a converter ..4-6
Figure 4-3: Deserialization sequence with a formatter ..4-6
Figure 4-4: Serialization sequence with a converter and a formatter...4-6

Code Listings
Listing 2-1: Sample of header entry for Dsig extension..2-8
Listing 3-1: MathService example file (MathService.xml) ...3-5
Listing 3-2: LoanCalcService example file (LoanCalcService.xml) ..3-7
Listing 3-3: Sample code for defining a custom handler in the <WebServiceName>.xml

file ...3-9
Listing 3-4: Example of a header block in a SOAP message... 3-10
Listing 3-5: Sample header-group element in the header-adapter.xconf file......................... 3-11
Listing 3-6: Sample header-group element in the header-adapter.xconf file......................... 3-13
Listing 4-1: Serialization/Deserialization related methods ...4-2
Listing 4-2: Meta data methods...4-2
Listing 4-3: Type converters and formatters related methods..4-2
Listing 4-4: XML file showing property referencess ...4-4
Listing 4-5: Serialization/deserialization-related methods ..4-7
Listing 4-6: wsdl-validation in web service configuration file ..4-9
Listing 4-7: Sample soap-type.xml file showing how to associate the map file to the

Java class... 4-10
Listing 4-8: Sample soap-type.xml file showing how to associate a class file with the

schema type.. 4-11
Listing 5-1: Directory of <install_dir>\WebApps\hpws\webservices5-2
Listing 5-2: Example of a service using a Java class...5-3
Listing 5-3: Example of a service using an EJB adapter ...5-5
Listing 5-4: Example of a service using document exchange...5-5
Listing 5-5: Example of a service using a type converter..5-6
Listing 5-6: Example of a service using an input/output converter..5-6
Listing 5-7: Example of a service using a result converter..5-7
Listing 5-8: Sample code for logging levels ...5-8
Listing 5-9: Sample code for custom prefixes...5-8
Listing 5-10: Sample code for mapping servlets...5-9
Listing 5-11: Sample code for global logging parameters in the logkit.xconf file....................5-9

HP Web Services Platform User's Guide

c - iv Early Access Release: 01/2002

Listing A-1: Structure of an XML Signature ..A-3
Listing A-2: Sample code for generating a reference element...A-4
Listing A-3: Sample code for creating the SignedInfo element ..A-5
Listing A-4: Sample code for signature generation ...A-5

List of Tables
Table p-1: Available Web Services Documentation ... p-2
Table p-2: Documentation Conventions.. p-2
Table 3-1: Possible combinations for RPC style documents..3-2
Table 3-2: Possible combinations for Document Exchange style documents3-3
Table 4-1: Supported data types..4-3
Table 5-1: XML file structure for a service using a Java class ..5-3
Table 5-2: Parameters for a service using an EJB adapter ..5-4
Table 5-3: Parameters for a service using document exchange..5-5
Table 6-1: Parameters for ClassToWebService utility ...6-2
Table 6-2: Parameters for EJBToWebService utility ...6-3
Table 6-3: Parameters for HandlerToWebService utility ..6-5
Table 6-4: Parameters for WSDLToClientProxy utility ..6-6
Table 6-5: Parameters for ClassToWSDL utility..6-6
Table 6-6: Parameters for WSDLToServerSkeleton utility...6-7
Table A-1: Elements of an XML signature ..A-3

Early Access Release : 01/2002 p-1

Preface

About this Guide

Introduction
The Hewlett-Packard Web Services Platform User's Guide presents a detailed view of the services, functions
and technologies implemented in this release.

Sample source code, XML files and Web Services Description Language (WSDL) documents are
located in the samples subdirectory of the installation directory for this product.

In this chapter
Who Should Read This Guide..p-2

What You Should Know..p-2
Web Services Early Access Documentation...p-2

Documentation Conventions ..p-2
Product Information and Support ...p-3

The HP Middleware Website ..p-3
HP Middleware Technical Support ..p-3

HP Web Services

p-2 Early Access Release : 01/2002

Who Should Read This Guide
This document provides information about the HP Web Services platform. It describes how to
expose an EJB or Java class as a web service, including deployment and configuration. It also
describes the architecture of the HP Web Services platform. Although this guide is specifically
intended for web service developers, it will be useful to anyone who would like to gain an
understanding of web services and how they functions.

What You Should Know
This guide assumes a basic familiarity with Java� development and object-oriented programming. A
fundamental level of understanding in the following areas will also be useful:

�� A working knowledge of Java 2 Platform, Enterprise Edition (J2EE), XML, Simple Object Access
Protocol (SOAP) and WSDL.

�� A general understanding of the Windows and/or UNIX operating systems.

Web Services Documentation
A set of documentation has been created for this Web Services Release, as follows:

Table p-1: Available Web Services Documentation

Document Description

Web Services User's Guide Contains fundamental information about the web services
available, including design and operation.

Web Services API Javadocs Describes the classes, inner classes, interfaces, constructors,
methods, and fields of the web service API.

Web Services Release Notes Contains the information needed to install this release of the
HP Web Services platform. It includes system requirements
and a list of the files that are installed.

Documentation Conventions
The following conventions are used in this guide:

Table p-2: Documentation Conventions

Convention Description

<install_dir> The installation directory of the web services product. The default installation
directory is c:\hpmw\hpsoap.

Bold Used to identify section references.

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described below,
italics identify a variable that should be replaced by the user with an actual
value.

HP Web Services Platform User's Guide

Early Access Release : 01/2002 p-3

Table p-2: Documentation Conventions

Convention Description
Code Text that represents programming code.

CTRL+X A combination of keystrokes used to complete a function. For example,
CTRL+C indicates that the user should press and hold the CTRL key while
simultaneously pressing the C key.

Function |
Function

A path to a function or dialog box within an interface. For example, “Select
File | Open” indicates that you should select the Open function from the
File menu.

[] and | Brackets enclose optional items in command syntax. A vertical bar separates
syntax items in a list of choices. For example, in the comand below, the last
parameter is optional:

ClassToWebService <Java Class Name> <Service
Endpoint URL> <Service Name> [<WSDL file>]

Note and
Caution

A note highlights important supplemental information.

A caution highlights procedures or information necessary to avoid damage
to equipment, damage to software, loss of data, or invalid test results.

Product Information and Support
Your comments and suggestions help us to provide accurate, quality documentation. If you have
comments about any of the Web Services documentation, or if you would like to find additional
information about our products, the following resources are available.

The HP Middleware Website
The starting point for all of HP Middleware’s customer support and training is our Website. Visit it
at www.hpmiddleware.com for information and support, including:

�� The knowledge base.
�� Support mailing lists.
�� Add-ons and patches.
�� Demos.
�� Product evaluation support.
�� Training.

HP Middleware Technical Support
If you need assistance or would like to send us your feedback, contact our Technical Support team.

Support Services
6000 Irwin Road
Mount Laurel, New Jersey 08054
Phone: 856.638.6000
www.hpmiddleware.com/support

http://www.hpmiddleware.com/

HP Web Services

p-4 Early Access Release : 01/2002

Additional support features are available for users with current maintenance contracts, such as a toll-
free, 24-hour customer support line. Visit HP Middleware’s website for details about our
maintenance contracts and the additional support we provide.

Java Developer Journal Release : 01/2002 1-1

Chapter 1

Introduction to the HP Web
Services Platform

What is a Web Service?
Web services are modular, reusable software components that are created by exposing a business application
through a web service interface. For example, a business might have an application that creates an
amortization schedule for any given mortgage amount. This application can be offered as a web service and
made available to anyone over the Internet.

Web service interfaces are published in Universal Description, Discovery Integration (UDDI) registries and
are described and discovered using the Web Services Description Language (WSDL). Businesses create
descriptions of their web services in a WSDL file and publish that file to a UDDI registry. Users examine
these WSDL file descriptions to discover available web services. Web services are accessed using the Simple
Object Access Protocol (SOAP) through request/response SOAP-based message exchanges over standard
transport protocols (primarily, HTTP).

Using standards based communication technologies, such as SOAP, UDDI, and WSDL, web services can
communicate directly with other web services. In other words, application components, implemented as web
services, can be accessed by customers, suppliers, and trading partners, independent of hardware operation
system or programming environment. The result is a vastly improved collaboration environment as compared
to today's Electronic Data Interchange (EDI) and Business-to-Business (B2B) solutions.

The HP Web Services platform creates an environment that enables users to leverage all of the functionality
described above.

In this chapter

What is a Web Service? .. 1-1
What is the HP Web Services Platform?... 1-2
An Architecture Designed for Web Services.. 1-2
Compliant with Web Service Standards .. 1-2

HP Web Services Platform User's Guide

1-2 Early Access Release : 01/2002

What is the HP Web Services Platform?
The HP Web Services platform is a software infrastructure for developing and deploying loosely coupled web
services. These web services can be any mixture of internal and external services, and may include
applications, business processes, computing resources, or information stores. The platform is extremely
flexible and can help users to complete tasks, solve problems, or perform transactions. The HP Web Services
platform is standards compliant, thereby making it widely accessible to users. Companies can also create
secure private networks to serve a more controlled community (e.g., a supply chain) using the HP Web
Services Registry Composer and the HP UDDI Registry.

The HP Web Services platform provides customers with the infrastructure and tools necessary for creating,
deploying, registering, discovering, and accessing web services. More specifically, HP's Web Services
platform includes support for the following:

�� Web Services Description Language (WSDL) support for describing web services.
�� An HP-SOAP server for responding to Simple Object Access Protocol (SOAP) requests from other

applications.
�� A Universal Description, Discovery and Integration (UDDI) browser tool (Registry Composer) for

registering web services and for discovering other services.
�� A UDDI registry for creating private networks of web services.

The HP Web Services platform provides all of the capabilities needed to create web services that expose new
or existing applications (Java applications in our case) as web services. These services can be registered in
either public or private UDDI registries, and invoked via SOAP servers.

This early access release of the platform does not include the UDDI Registry or the Registry Composer.
These tools will be included in the next release, which will be available in the very near future.

An Architecture Designed for Web Services
The HP Web Services platform provides a single architecture for creating and deploying web services, and for
publishing and discovering web services in public and private registries. It provides a consistent approach for
creating web services from existing Java classes, EJBs, and Cocoon applications. HP's goal is to provide a
plug-and-play platform that enables interoperability across a range of messaging profiles, from RosettaNet to
Biztalk and ebXML.

Service interfaces published in a registry are programmatically discoverable and loosely coupled, making it
easy for developers to locate and start using them immediately. This robust and modular web service
infrastructure runs on top of the J2EE-compliant HP application server and provides interoperability with
Microsoft .NET environments.

Compliant with Web Service Standards
The HP Web Services platform uses open Internet standards for peer-to-peer messaging. Its modular
structure facilitates extension to accommodate new standards as they emerge. XML and Java, the core
building blocks of the platform, are the dominant Internet standards for Web-based application development
and interoperability. HP employs emerging standards for the creation, registration, and discovery of web
services including:

�� SOAP
�� WSDL

Chapter 1- Introduction to the HP Web Services Platform

Early Access Release : 01/2002 1-3

�� UDDI
�� JAXM

SOAP
SOAP has emerged as the de-facto message format for XML-based communication in general, and web
services in particular. It is a lightweight protocol with a framework that allows the user to define the content
of a message and to provide processing hints. Although the design of the HP Web Services platform allows
the receipt and processing of any XML document, its focus is on SOAP.

SOAP messages can be divided into two main categories: Remote Procedure Call (RPC) and Document
Exchange (DE). The primary difference between the two categories is that the SOAP specification defines
encoding rules and conventions for RPC. The document exchange model allows the exchange of arbitrary
XML documents--a key ingredient of business-to-business (B2B) document exchange. The HP Web Services
platform accommodates both categories of SOAP messages.

Note: For more information about SOAP and RPC, see sections four and five of the SOAP 1.2 Specification,
Part 2.

UDDI
Universal Description, Discovery and Integration (UDDI) is a repository-based registry service for the
automated lookup of web services. Think of UDDI as yellow pages that allow users to locate web services. A
registry stores information regarding the suppliers of web services, the services they offer, and the appropriate
contact information.

UDDI registries can be public or private. HP is one of three web service vendors that have agreed to provide
a public UDDI registry, and the HP Web Services platform will also provide out-of-the box private registries.
Private registries enable the creation of private networks of web services.

WSDL
WSDL (Web Services Description Language) is an XML-based language used to define web services and
describe how to access them. An application trying to use a web service uses a WSDL document to discover
the location (URL) of the service, the method calls available, and how to access them (for each method call,
WSDL describes the format that the client must follow). Therefore, the client must first obtain a copy of the
WSDL file from the server, and then use the information in this file to format the SOAP request.

JAXM
The Java API for XML Messaging (JAXM) is designed for the exchange of XML business documents over
the Internet. Examples of XML documents that might typically be exchanged are purchase orders, order
confirmations, and invoices. You can also send non-XML data by adding attachments to your message. The
HP Web Services platform uses the JAXM API to provide messaging functionality.

http://www.w3.org/TR/2001/WD-soap12-part2-20011002/
http://www.w3.org/TR/2001/WD-soap12-part2-20011002/

HP Web Services Platform User's Guide

1-4 Early Access Release : 01/2002

Early Access Release : 01/2002 2-1

Chapter 2

HP-SOAP Server Architecture

Introduction
The HP-SOAP server is designed to facilitate message exchanges according to the Simple Object
Access Protocol (SOAP), and it has plug and play architecture. The HP-SOAP server provides a
SOAP processing pipeline that handles both incoming and outgoing messages. The pipeline includes
a set of header processors, adapter/handlers, data type management features, and XML digital
signature security support. These features enable the HP-SOAP server to securely receive and route
the SOAP message's business payload to back-end applications for processing and return an
appropriate response. In addition, custom adapter/handlers can be created and added to the pipeline
to expand its functionality. This provides the user with the plug and play capability needed to create
and deploy a wide range of web services.

The current version of the HP-SOAP server uses the Apache Cocoon 2.0 framework; thus it takes
advantage of Cocoon's pipeline controller features and application server-neutral services, such as
component caching and error processing.

This chapter discusses the architecture of the HP-SOAP server.

In this chapter
HP-SOAP Server .. 2-2

HP-SOAP Messaging Layer... 2-2
HP-SOAP Server Pipeline ... 2-3

HP-SOAP Server Pipeline Processing... 2-4
SOAP Header Processing .. 2-4
SOAP Payload Processing ... 2-6

Digital Signatures .. 2-7
HP – XML Digital Signature API... 2-8
HP-SOAP Client – Interceptor... 2-9
SOAP Envelope Signer/Verifier .. 2-9

HP Web Services Platform User's Guide

2-2 Early Access Release : 01/2002

HP-SOAP Server
The HP-SOAP server consists of a single processing pipeline that supports both RPC and Document
Exchange services. The HP-SOAP server performs SOAP-header, SOAP-RPC body, and document
exchange synchronous response message processing. This includes messages that contain
attachments. Processing messages in HP-SOAP occurs in two places: the HP-SOAP Messaging
Layer and the HP-SOAP Server Pipeline.

Figure 2-1: HP-SOAP message processing

HP-SOAP Messaging Layer
The HP-SOAP Messaging Layer manages the association/binding of soap messages to a transport
protocol (e.g., HTTP, SMTP), the creation of a request context, and internal routing of the inbound
messages to the processing pipeline. These tasks are facilitated through a collection of protocol
specific listeners for transport level tasks, and an In-Box Servlet for context creation and internal
routing. This messaging infrastructure represents HP's implementation of what the JAXM
specification calls a JAXM Provider.

The HP-SOAP Messaging Layer uses the Java Services Framework™ (JSF) to implement the listener
components. The Java Services Framework is an open, standard mechanism for assembling service
components into Java server applications – more information can be obtained at
http://www.jcp.org/jsr/detail/111.jsp.

The SOAP specification defines bindings to the HTTP protocol and allows for additional transport
bindings. HP-SOAP supports SOAP over HTTP on all supported platforms. When HP-SOAP is
combined with HP's application server (HP-AS), other protocols can be supported - due to HP-AS’
implementation of the Java Services Framework. HP-AS can be extended and enable protocols such
as SMTP and FTP to be used. In addition, listeners may be combined with a Load Balance Broker
(LBB) to distribute the incoming requests among multiple application server instances, as seen in
Figure 2-2

Figure 2-2: HP Web services messaging framework

The server includes an implementation of the Java API for XML Messaging (JAXM) SOAP package
(i.e., java.xml.soap). It uses JAXM as the primary API for gaining access to the contents of the
incoming SOAP message (including attachments) and for manipulating the response message

Chapter 2- HP-SOAP Server Architecture

Early Access Release : 01/2002 2-3

(including fault messages in the event of an exception). The in-box manages dispatching the
incoming request to the pipeline. The server ships with a preconfigured in-box for both RPC and
Document Exchange SOAP messages.

The JAXM generator signifies the beginning of a processing pipeline. It is responsible for creating a
JAXM SOAPMessage object from input in the data stream and for creating an empty output
SOAPMessage object so that various pipeline components can have access to both the request and
response. After these objects are created, they are passed to the pipeline.

Note: All components in the server, except for the listener/LBB combination, are application server-
neutral. The listener/LBB combination requires the Java Services Framework, which is currently
implemented only in HP-AS.

HP-SOAP Server Pipeline
As shown in Figure 2-3, the HP-SOAP server pipeline consists of two stages: a SOAP header
processing stage and a SOAP payload processing stage. At the header processing stage, the SOAP
server parses the incoming request to determine which header processor contains the routing
information needed to identify the web service that will process the message's business payload. The
payload processing stage involves transforming the message payload from XML into a Java object so
it can be processed, and then transforming the output back into XML. The message is then sent to a
JAXM Serializer that transforms the response message to the HTTP protocol so that it can be sent
across the wire to its destination.

Figure 2-3: SOAP Pipeline

HP Web Services Platform User's Guide

2-4 Early Access Release : 01/2002

HP-SOAP Server Pipeline Processing

SOAP Header Processing
When an incoming XML message is received, the HP-SOAP server parses the message header to
obtain information describing what should be done with the message payload. Generally,
communicating parties have already agreed upon the semantics that govern the processing of the
header element. So the SOAP server knows what to do with the message depending upon what it
finds specified in the header.

SOAP provides an extensible header schema that allows communicating parties to embed their
header extensions. These extensions are implemented as SOAP header blocks. An incoming SOAP
message contains one or more <header-block> elements that specify which header processor(s)
should handle the message. The HP-SOAP server maps the <header-block> values from the
request to <header-block> values in a configuration file on the server and invokes the appropriate
header processor.

For example, both ebXML and BizTalk define header blocks that are specific to their protocols.
SOAP security extensions, such as SOAP-DSIG and the Business Transaction Protocol (BTP),
define protocol-neutral header blocks. If a message is received that specifies one of these protocols,
that header processor will be invoked.

The HP-SOAP server can facilitate both ebXML and BizTalk header blocks in its header processing
stage. All header processors have access to the input and output JAXM SOAPMessage objects.

Header Processors
The header processing stage in the HP-SOAP server provides a configuration based dispatch
mechanism to register header processors with the server. The header configuration file (header-
adapter.xconf), maps the incoming SOAP message header blocks to their corresponding header
processors.

The header configuration file contains the following elements:

�� Global SOAP Actor - The global <soap-actor> element contains a URI that defines the global
configuration information for all web services within a WAR file (a Web Archive file containing all of
the web services being deployed. You can override these global settings at the web service level in the
configuration file. See Web Service Specific Configuration below.

�� Header Groups - Header Groups <header-group> are a convenient way to group related header
blocks and associate them to a single header processor. In other words, there may be different header
blocks specified in an incoming message that can be satisfied by the same header processor. The
header-group tag makes it easy to list these blocks and assign them all to a single header processor.
The className attribute identifies the header processor designated to process the group.
Header Blocks – Header blocks <header-block> are child elements of header groups and contain
the look-up information used to match the <header-block> elements contained within the
incoming message. Each header block is identified by a name and URI attribute combination that tell
the server which header processor to use and where it can be found. If the header block information
does not match, header processing will not occur.

�� Web Service Specific Configuration – The header configuration file allows you to make web
service specific entries that can override the global soap-actor, header-group, and header-block
configurations. The <service> element may contain a service specific <soap-actor> attribute that
takes precedence over the global <soap-actor>. The <service> element can specify <header-
group> and <header-block> elements that override the global <header-group> and <header-
block> specifications.

Chapter 2- HP-SOAP Server Architecture

Early Access Release : 01/2002 2-5

Note: If you specify header processors at the web service level, they completely override the processors
defined at the global level. In other words, global and service level configurations are not
merged. For more information on the web service configuration files, refer to Chapter 5,
Deploying & Configuring Web Services.

SOAP Node
A SOAP message may specify one or more recipients. These recipients are referred to in the SOAP
specification as SOAP nodes. A SOAP node can be a server that contains many web services. A
SOAP node’s role can be the initial sender, the ultimate receiver, or an intermediary. What role it
plays depends upon its position in the messages' path toward final processing. In other words, if the
node is the final receiver of a message, its role is the ultimate receiver. If a node receives a message
and will process it and then forwarding it to another receiver, it is acting as both an intermediary and
a sender. If it is merely passing the message to the next node it is an intermediary.

In the diagram below, if at node 2 a web service performed some processing on the request and then
forwarded it to the next node, node 2 is acting as an intermediary and as a sender.

Figure 2-4: SOAP nodes

The idea of a SOAP node is important because it forms the basis for controlling the processing flow
of the message. This greatly expands the ways a message can be handled and the types of services
that can be performed on the message payload.

SOAP Actor
A SOAP node’s role is defined by the <SOAP-ENV:actor="…"> attribute in the SOAP message.

<SOAP-ENV:Header>
<h:echoMeStringRequest xmlns:h="http://soapinterop.org/echoheader/"
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">hello world
</h:echoMeStringRequest>

The SOAP actor attribute contains a Uniform Resource Identifier (URI) that identifies the next
recipient of the SOAP message.

HP Web Services Platform User's Guide

2-6 Early Access Release : 01/2002

<SOAP-ENV:Header>
<h:echoMeStructRequest xmlns:h="http://soapinterop.org/echoheader/"
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"
 SOAP-ENV:mustUnderstand="1">
</h:echoMeStructRequest>

If there is no actor attribute in the SOAP message, then the default URI,
http://schemas.xmlsoap.org/SOAP/actor/next, is used. This causes the SOAP message to be
passed to the next recipient in the pipeline.

For a more detailed discussion of the SOAP actor attribute, see the SOAP specification 1.2, part 1,
sections 1.4, 2.2, and 4.2.

SOAP Payload Processing
The HP-SOAP server is capable of processing SOAP messages with attachments and SOAP
messages sent with content type set to plain text/xml. The business payload portion of the message
can be embedded directly in the body portion of the message and/or delivered as attachment(s). The
payload itself may represent either an RPC request or Document Exchange request. The payload
processing stage of the pipeline allows you to process both types of requests through a single
pipeline.

The payload processing stage of the pipeline can dynamically select one of three adapters: an EJB
adapter, a Java class adapter or a Document Exchange adapter. The EJB adapter and the Java class
adapter are designed to process SOAP-RPC requests mapped to an EJB or a Java class through a
web service configuration file. These adapters perform the necessary serialization and deserialization
of RPC parameters as well as method invocation. The Document Exchange adapter allows
developers to take control of any SOAP request through a Document Handler.

If the SOAP message contains attachments, you can access them via the JAXM API.

Adapter/Handlers
Message Handler Interface

The message handler interface is the primary API between the processing pipeline and the
adapter/handlers. All RPC handlers shipped with the HP-SOAP server have been implemented using
this interface.

public interface SOAPMessageHandler {
 public void setWebServiceContext (WebServiceContext context) throws
Exception;
 public WebServiceContext getWebServiceContext ();
 public void processMessage(SOAPMessage input, SOAPMessage output)
throws Exception;
}

A handler can access the attachments and SOAP envelope information using the standard JAXM
API. Note, that the header processing stage of the pipeline may have already removed certain header
blocks from the input message.

Our current implementation of SOAP payload processing includes four ready-to-use
adapters/handlers:

�� A header-processing adapter.
�� An RPC Java adapter/handler.
�� An RPC EJB adapter/handler.
�� A document exchange adapter.

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

Chapter 2- HP-SOAP Server Architecture

Early Access Release : 01/2002 2-7

The header-processor adapter extracts header information from the incoming message, reads the
header configuration file, and tells the server which header processors to load. A header processor
creates the context object that contains information needed to route the message to the processing
application.

An adapter/handler is a software component that is responsible for receiving the business payload
and passing it to the application that will process it. It also takes the processed message and passes it
to its next destination. Adapter/handlers also deserialize the RPC parameters of the incoming XML
message into Java objects so they can be processed, and then they serialize them from Java objects
back into an XML response message. They also perform method invocation.

The Document Exchange adapter is different from the RPC adapter/handler. In RPC, the
processing logic is contained in the adapter/handler component. In the document exchange
paradigm, the adapter is a separate component from the handler. The document exchange adapter is
only responsible for passing the message to the specified document handler. The document handler
contains all of the processing logic. This model allows developers to take control of any SOAP
request by writing custom document handlers that plug into a single document exchange adapter. If
the SOAP message contains attachments, you can access them via the JAXM API.

To learn how to write your own custom handler, see Writing a Document Handler in Chapter 3.

SOAP Payload Processing in Action
After header processing is completed, the SOAP message body is dispatched to an appropriate
adapter/handler for additional preprocessing and for routing to the business application that will
satisfy the request. The server extracts the relevant payload information from the
WebServiceContext object and passes it to the correct adapter. At this point, formatting can be
applied to the text values and then converted into a Java object. The adapter invokes the handler,
which passes the business payload to the business application that will process it.

After the payload is processed, the adapter/handler retrieves the message; it is converted back into an
XML element, formatted, and dispatched to the JAXM Serializer. The Serializer transforms the data
into a string so that it can be returned to the requester. The HP-SOAP server uses standard RPC
formatters to format the input/output and Castor Converter classes to convert the SOAP
input/output message into the desired formats.

Data Type Support
The HP-SOAP server provides extensive support for data types, including complex data types. Type
converters are used to deserialize data from XML into Java objects and to serialize the Java objects
back into XML. Value formatters are used to modify the value associated with a parameter or a
return value. For more information, see Chapter 4, Data Types in HP Web Services Platform.

Digital Signatures
Secure and reliable exchange of SOAP messages is critical to the success of web services in the
business world. SOAP messages have to be authenticated and possibly encrypted so that both the
sender and receiver have assurance of secure message exchange. Authentication in this environment
includes authentication of the sender and authentication of the message itself. While the former
guarantees that the sender and recipient are who they say they are, the later ensures that the message
was not modified by anyone during transmission. Digital signatures ensure authentication of the
message and should be used in conjunction with other technologies, like SSL, to ensure the
authentication of the sender.

The XML Signature specification at http://www.w3.org/TR/xmldsig-core/ is the core standard that
allows digital signatures in the SOAP message. This standard defines the syntax and processing rules

http://www.w3.org/TR/xmldsig-core/

HP Web Services Platform User's Guide

2-8 Early Access Release : 01/2002

for creating and representing digital signatures that can be applied to any digital content, including
XML. The SOAP Security Extensions specification at http://www.w3.org/TR/SOAP-dsig/
proposes a standard way to use XML Digital Signature to sign a SOAP document. In particular, the
SOAP-Dsig extension defines a header entry <SOAP-SEC:Signature> that can specify the SOAP
actor and the mustUnderstand attributes. In addition, the extension specifies the use of XML
identifiers to refer to the signed part of the SOAP Envelope.

The following example shows the header entry along with the ds:Reference element that refers to
the Body portion of the SOAP Envelope via the ID reference.

Listing 2-1: Sample of header entry for Dsig extension

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <SOAP-SEC:Signature
 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
 SOAP-ENV:actor="some-URI"
 SOAP-ENV:mustUnderstand="1">
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026">
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:Reference URI="#Body">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-
20001026"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>MC0CFFrVLtRlk=...</ds:SignatureValue>
 </ds:Signature>
 </SOAP-SEC:Signature>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body
 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
 SOAP-SEC:id="Body">
 <m:GetLastTradePrice xmlns:m="some-URI">
 <m:symbol>IBM</m:symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HP – XML Digital Signature API
HP provides an implementation of XML Digital signatures in the form of a library and an out-of-box
integration of this library with the HP-SOAP server and client. On the client side, HP-SOAP client
API provides the concept of an interceptor interface that can be used in conjunction with the SOAP
client API to sign the document. The digital signature library itself can be used with any SOAP client
implementation as long as you have access to the SOAP message before sending the request. For
more information on the HP-XML Digital Signature API please consult XML Digital Signatures in
HP-SOAP in Appendix A.

http://www.w3.org/TR/SOAP-dsig/

Chapter 2- HP-SOAP Server Architecture

Early Access Release : 01/2002 2-9

HP-SOAP Client – Interceptor
The HP-SOAP client library defines an interface
com.hp.soap.client.RequestMsgInterceptorIntf that allows the users to intercept an outgoing
SOAP message. This interface defines a transform method that allows you to get access to the
outgoing message byte array and possibly transform it. The client side integration of digital signatures
uses this interface to sign an outgoing message.

SOAP Envelope Signer/Verifier
HP-XML Digital Signature API includes the following utility class:

com.hp.security.xml.soap.hpsoap.EnvelopeSignerVerifier

This class provides utility methods to sign a SOAP envelope, sign the entire document, verify the
signature embedded in a document, etc. Both the client and the server side signature integration use
the EnvelopeSignerVerifier utility.

HP Web Services Platform User's Guide

2-10 Early Access Release : 01/2002

Early Access Release : 01/2002 3-1

Chapter 3

Exposing a Web Service

Introduction
To expose a web service, you need to associate the Java class, EJB or Document Exchange handler
with the appropriate adapter and describe your service. This can be accomplished by generating two
files:

�� a service description file.
�� a service configuration file.

In order for the HP-SOAP server to recognize a web service as valid, the service description and
configuration files must be contained in a predefined directory structure. To access a web service,
you need to know the structure of the URL end point that corresponds to that web service.

Note: The description and configuration files for a web service as well as the directory and URL structure
are described in detail in Chapter 5, Deploying & Configuring Web Services. Please refer to that
chapter to learn more about the files and their content.

HP Web Services platform contains several command-line tools to help you generate and deploy the
service description and configuration files.

The HP-SOAP server is equipped with several ready-to-use adapter/handler combinations, making
the process of exposing a Java class or stateless session EJB as a web service fairly simple. RPC
requests, in fact, do not require you to write any additional server code—you are able to use the
adapter/handler combinations included in the HP Web Services platform package. For Document
Exchange requests, you need to perform a few more tasks to expose the web service. HP Web
Services platform ships with the following adapters:

�� rpc-java adapter
�� rpc-ejb adapter
�� doc-handler adapter
�� header adapter

In either case, the key to defining your web service lies in defining the payload processing. Header
processing is optional; it does require some additional coding. If you define a header processor but
don't define payload processing, your web service will not be exposed.

HP Web Services Platform User's Guide

3-2 Early Access Release : 01/2002

In this chapter
Processing SOAP Messages .. 3-2
Payload Processing ... 3-3
Exposing a Web Service through an RPC Java Adapter .. 3-4
Exposing a Web Service through an RPC EJB Adapter .. 3-5
Exposing a Web Service through a Document Exchange Adapter.. 3-7

Writing a Document Handler.. 3-7
Header Processing .. 3-9

Determine the Types of Header Blocks Needed for Your Service(s)3-10
Implement the Header Processor...3-11
Register the Header Processor and Deploy ..3-12

Using Digital Signatures in HP-SOAP..3-12
Signing the Document on the Client Side ...3-13
Configuring HP-SOAP to Verify Signed SOAP Messages ..3-13

Processing SOAP Messages
HP Web Services platform defines the way in which SOAP messages are processed. There are several
possible processing paths that you can follow.

Figure 3-1: Possible processing paths for SOAP messages

Table 3-1 lists the possible paths that can be used to process a SOAP message for a web service.

Table 3-1: Possible combinations for RPC style documents

Payload RPC style processing Path Header Processing

EJB Java

1 — — �

2 — � —

Chapter 3- Exposing a Web Service

Early Access Release : 01/2002 3-3

Table 3-1: Possible combinations for RPC style documents

Payload RPC style processing Path Header Processing

EJB Java

3 � — �

4 � � —

The shaded cells in both tables indicate an out-of-box implementation. The unshaded cells require
some custom code to complete the implementation.

Table 3-2: Possible combinations for Document Exchange style documents

Path Header Processing Payload Doc Exchange-style processing

5 — �

6 � �

�� Path 1 in Table 3-1 illustrates an RPC style web Service implemented as a Java class without header
processing. Path 3 is similar but includes header processing.

�� Path 2 in Table 3-1 illustrates an RPC style web Service implemented as an EJB without header
processing. Path 4 is similar but includes header processing.

�� Path 5 in Table 3-2 illustrates Document Exchange-style web service without header processing.
Path 6 is similar but includes header processing.
The following sections of this chapter explain the steps necessary to expose a web service. The
complexity of this task depends on your needs and on the structure of your web service. For
example, if your web service can be represented by Path 1, follow the steps outlined in the section
titled Exposing a Web Service through an RPC Java Adapter. If instead your web service is represented by
Path 3, you need to also perform the steps outlined in the Header Processing section. If your web
service is represented by Paths 5 or 6, you need to perform the steps outlined in the section titled
Exposing a Web Service through a Document Exchange Adapter and for Path 6 you also need to perform
the steps outlined in the Header Processing section.

Payload Processing
When you define the way in which the payload is processed, you also create the web service itself.
The payload can be processed in one of three general ways: using a Java class, using an EJB, or using
a document exchange model.

HP Web Services Platform User's Guide

3-4 Early Access Release : 01/2002

Figure 3-2: Payload pipeline stage

An incoming SOAP request is sequentially processed by pipeline stages. The pipeline stage
dynamically loads the appropriate adapter/handler combination on a per-service basis and delegates
the processing to the adapter. The adapter then delegates processing to the handler, which knows
how to load the web services implementation object and how to process the specific type of request.

Exposing a Web Service through an RPC Java Adapter
To expose a Java class as a web service managed by the HP-SOAP server, you need to perform four
steps:

1. Select a unique name for the new Service (<WebServiceName>).
2. Create and deploy a service description file (<WebServiceName>.wsdl).
3. Create and deploy a service configuration file (<WebServiceName>.xml).
4. Deploy the implementation object.
First, determine a name for your web service (e.g., MyService). To automatically generate and deploy
the deployment descriptors for your web service, use the ClasstoWebService.bat command line tool
located in the <install_dir>\bin directory. The syntax for using the tool is:

ClassToWebService <JavaClassName> <ServiceEndPoint> <ServiceName>
[<WSDLFile>]

Note: All dependencies for the Java class need to be in the classpath.

Chapter 3- Exposing a Web Service

Early Access Release : 01/2002 3-5

The ClassToWebService tool creates the directory structure needed to use the web service
(<install_dir>\WebApps\hpws\webservices\<serviceName>)and copies the WSDL and XML
files it creates to that directory.

Note: The WSDL file contents follow WSDL specification. The XML service configuration file is specific to
the HP-SOAP server.

 For more information about the classToWebService tool, refer to Chapter 6, Tools.

The web service configuration file the tool creates maps a web service to a specific adapter, which is
dynamically loaded while a request is being processed. The file also maps the web service to the
service implementation Java class. For a service implementing a Java class, the rpc-adapter is used.

The last step in the process is to deploy the Java class to the HP-SOAP server. There are two
possible ways to deploy the class:

�� If the Java class implementation is packaged as a JAR, place the implementation JAR in the
<install_dir>\WebApps\hpws\WEB-INF\lib directory.

�� If the Java class is in the form of a class(es), you need to place all implementation classes with their
package structure in the <install_dir>\WebApps\hpws\WEB-INF\classes directory.

Example Java class-based Service
You can review a sample web service exposing a Java class by looking at the MathService sample
shipped with the product. The MathService exposes two methods, add and subtract, with the
following signature:

public int add(int arg1,int arg2)
public int subtract(int arg1,int arg2)

You can inspect the MathService.wsdl and MathService.xml files located in
<install_dir>\WebApps\hpws\webservices\MathService.

Listing 3-1: MathService example file (MathService.xml)

<?xml version="1.0"?>
 <service-descriptor version="1.0">
 <webservice adapter="rpc-java" wsdl-validation="false">
 <param name = "lookup-name"
 value = "com.hp.mw.soap.samples.rpc.MathService"/>
 </webservice>
</service-descriptor>

Note: For a detailed walk-through of this feature, visit the Exposing a Java Class as an RPC-style Service
in the Exploring the HP-SOAP Server trailmap included with the platform.

Exposing a Web Service through an RPC EJB Adapter
To expose a stateless session EJB as a web service managed by the HP-SOAP server, you need to
perform four steps:

1. Select a unique name for the new Service (<WebServiceName>).
2. Create and deploy a service description file (<WebServiceName>.wsdl).
3. Create and deploy a service configuration file (<WebServiceName>.xml).
4. Deploy the implementation object.

HP Web Services Platform User's Guide

3-6 Early Access Release : 01/2002

HP-SOAP server can manage the web service implemented by an EJB deployed locally or in a
remote location. During design, when exposing an EJB as a web service, you need an EJB client JAR
file. For runtime, you also need to have the EJB deployed in the J2EE application server.

Note: For more information about deploying an EJB and creating an EJB client JAR, refer to the
documentation for the application server.

The EJB adapter shipped with the HP Web Services platform is configurable. The adapter is
configured to recognize application server-specific JNDI lookup information needed to locate the
EJB. Currently, the HP Web Services platform allows you to deploy an EJB under HP-AS or JBoss
application servers.

Note: The adapter configuration file is named ejbadapter.xconf and is located in
<install_dir>\WebApps\hpws\webservices\adapters directory.

The process of exposing an EJB as a web service is very similar to the process of exposing a Java
class as a Service. Use the command line tool EJBtoWebService.bat located in the
<install_dir>\bin directory to automatically generate and deploy web service configuration files.
The syntax for using the tool is:

EJBtoWebService <EJBRemoteInterface> <ServiceEndPoint> <ServiceName>
<EJBWellKnownName> <EJBHomeInterface> <jndi-vendor> <ejbClient>.jar>
[<WSDLFile>]

Note: For more information about the EJBtoWebService tool, refer to Chapter 6.

The EJBtoWebService tool creates the directory structure needed to use the web services
(<install_dir>\WebApps\hpws\webservices\<WebServiceName>) and copies the WSDL and
XML files it creates to that directory.

Note: The WSDL file contents follow WSDL specification. The XML service configuration file is specific to
the HP-SOAP server.

The web service configuration file for an EJB is more complex than that for a Java class. It contains
more EJB specific information needed for loading EJBs and processing a request. For a service
implemented by an EJB, the rpc-ejb adapter is used.

The last step in the process is to deploy the EJB client JAR to the HP-SOAP server. To deploy it,
copy the <ejbclient>.jar to the <install_dir>\WebApps\hpws\WEB-INF\lib directory.

Example of EJB-based Service
You can review a sample web service exposing an EJB by looking at the LoanCalcService sample
web service shipped with HP Web Services platform. The EJB used for this example exposes two
public methods:

Double getTotalAmt (doubleloan, double interest, int years)
Double getMonthlyPayments (double loan, double interest, int years)

You can inspect the LoanCalcService.WSDL and LoanCalcService.XML files located in
<install_dir>\WebApps\hpws\webservices\LoanCalcService. To see the Loan Calculator in
action, go to: <HostName>:<PortNumber>\hpws\soap\LoanCalcService. If you enter the
parameter values, the service will return the SOAP message containing the results.

Note: Make sure you deployed LoanCalcEJB in HP-AS application server prior to invoking this request.

Chapter 3- Exposing a Web Service

Early Access Release : 01/2002 3-7

Listing 3-2: LoanCalcService example file (LoanCalcService.xml)

<?xml version="1.0" encoding="UTF-8" ?>
 <service-descriptor version="1.0">
 <webservice adapter="rpc-ejb" wsdl-validation="false">
 <param name="lookup-name" value="LoanCalc"/>
 <param name="home"
 value="com.hp.mwlabs.wso.examples.ejb.LoanCalcHome"/>
 <param name="remote" value="com.hp.mwlabs.wso.examples.ejb.LoanCalc"/>
 <param name="ejb-type" value="ejb-stateless"/>
 <param name="jndi-vendor" value="HP"/>
 </webservice>
</service-descriptor>

The information in the web service configuration file is used to dynamically load an adapter and then
look up the required EJB and perform the required RPC operations.

Note: For a detailed walk-through of this feature, visit the Exposing an EJB as an RPC-style Service in the
Exploring the HP-SOAP Server trailmap included with the platform.

Exposing a Web Service through a Document Exchange Adapter
For RPC requests, the HP Web Service platform provides you with the full solution required to
process messages. For Document Exchange requests, the HP Web Services platform requires
additional steps in order to process message. For Document Exchange, then, you need to create a
document handler that defines how to process messages. The document handler you write needs to
work with the Document Exchange adapter (doc-handler) provided with the Web Services platform
for seamless integration of Document Exchange requests.

Writing a Document Handler
A document handler is required for processing Document Exchange requests through the HP-SOAP
server. The current version of the HP-SOAP server is designed to processes synchronous and
asynchronous SOAP message requests.

To create a custom handler, you need to complete two steps:

1. Create an implementation object for the handler.
2. Map the custom handler to the web service of interest.

 Creating an Implementation Object
HP Web Services platform uses both an adapter and a handler to process Document Exchange
requests. In general, an adapter is a component able to load a document handler, while the handler is
able process a message. The Web Services platform provides a generic adapter for Document
Exchange called doc-handler adapter. There is one-to-one correspondence between an adapter and
a handler. Basically, an adapter acquires an instance of a handler. When the request is dispatched, it
extracts relevant JAXM messages from the context, initializes the web service context appropriately,
and invokes the handler.

Developing a Document Handler
If you are developing a new handler to process the incoming request, you should place most of your
logic in the handler. At the very least, the handler must implement:

com.hp.mw.soap.handler.SOAPMessageHandler
This interface contains three methods:

public void setWebServiceContext (WebServiceContext context) throws Exception;

HP Web Services Platform User's Guide

3-8 Early Access Release : 01/2002

public WebServiceContext getWebServiceContext ();
public void processMessage(SOAPMessage input, SOAPMessage output) throws Exception;

For both synchronous and asynchronous requests, you need to implement the processMessage method.
The document handler always receives incoming messages and typically responds by processing them
and sending the result as the outgoing message. For synchronous messages, write the response
messages to the output SOAPMessage object. The web service context is passed to the handler
through the setWebServiceContext method.

The EchoDocument Web Service example demonstrates a custom handler working together with the
Document Exchange adapter. You can use the implementation of:

com.hp.mw.pipeline.soap.samples.doc.EchoDocument.java
as a prototype for the custom handler.

Compiling the Handler
To compile the new custom handler, you will need the following JAR files as dependencies:

�� hpws.jar for SOAPMessageHandler definition
�� jaxm.jar for SOAPMessage

The JAR files are located in the <install_dir>\WebApps\hpws\webservices\WEB-INF\lib
directory.

Note: Please refer to the JAXM documentation at java.sun.com/xml/jaxm to learn more about the JAXM
API.

Note: If you are using NetBeans to compile, you may need to include the avalon-excalibur-4.0.jar and
avalon-framework-4.0.jar files.

Deploying the Handler
The compiled handler code needs to be part of the HP-SOAP Server application. The simplest way
to achieve this is to deploy the classes to the
<install_dir>\WebApps\hpws\webservices\WEB-INF\classes directory.

Note: All dependencies for the Java class need to be in the classpath.

Mapping the Custom Handler to the Adapter
The next step in setting up the custom handler is to map it to the appropriate web service. The
Document Exchange adapter allows the server to dynamically load the handler for the specified
service and delegate further processing to that handler.

To automatically generate and deploy the deployment descriptors for your web service, use the
HandlerWebService.bat command-line tool located in the <install_dir>\bin directory. The syntax
for using the tool is:
HandlerToWebService.bat <Handler Class Name> <Service Endpoint
URL> <service name> <WSDL file>

To use the command-line tool, you must first create the service description file
<WebServiceName>.wsdl. The tools that come with the platform cannot generate the WSDL file
for Document Exchange-style processing. When passing parameters for
HandlerToWebService.bat, the <WSDL file> parameter is the fully qualified path of the file you
created.

http://java.sun.com/xml/jaxm/

Chapter 3- Exposing a Web Service

Early Access Release : 01/2002 3-9

The HandlerToWebService tool creates the directory structure needed to use the web service
(<install_dir>\WebApps\hpws\webservices\<serviceName>) and copies the WSDL and
XML files it creates to that directory.

Note: The WSDL file contents follows WSDL specification. The XML service configuration file is specific
to the HP-SOAP server.

 For more information about the HandlerToWebService tool, refer to Chapter 6.

You can inspect the EchoDocService.wsdl and EchoDocService.xml files located in
<install_dir>\WebApps\hpws\webservices\EchoDocService

Listing 3-3 shows example code for registering a custom handler named EchoDocument and the
doc-handler adapter. The handler is defined in the web service configuration file.

Listing 3-3: Sample code for defining a custom handler in the <WebServiceName>.xml file

<?xml version="1.0"?>
 <service-descriptor version="1.0">
 <webservice adapter="doc-handler“ wsdl-validation="false">
 <param name=”lookup-name”
 value=”com.hp.mw.pipeline.soap.samples.doc.EchoDocument”/>
 </webservice>
 </service-descriptor>

Note: For a detailed walk-through of this feature, visit the Developing your own Document Exchange-
style Service in the Exploring the HP-SOAP Server trailmap included with the platform.

Header Processing
If your web service requires header processing, you need to write Java code that encapsulates the
logic necessary to process the header. The header processor you need may not be included in the HP
Web Services platform and you will need to write the processor yourself. This section explains how
to create a header processor.

HP Web Services Platform User's Guide

3-10 Early Access Release : 01/2002

Figure 3-3: SOAP Header processing

To create a header processor, you need to complete three steps:

1. Determine the types of header blocks needed for the Service(s).
2. Implement the header processor.
3. Register the header processor and deploy.

Determine the Types of Header Blocks Needed for Your Service(s)
Before you develop a header processor, you need to determine what types of header blocks your
service(s) requires. A header block is identified by its local name and a URI; it appears as a child node
of the SOAP Header element. You need to create a header processor for each type of header block
so that all services that use a particular type of header block can share a single header processor. For
example, if you intend to develop a Digital Signature header processor, the header block in the
SOAP message may look similar to the example in Listing 3-4.

Listing 3-4: Example of a header block in a SOAP message

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <SOAP-SEC:Signature
 xmlns:SOAP-SEC=
 "http://schemas.xmlsoap.org/soap/security/2000-12"
 SOAP-ENV:mustUnderstand="1">
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 <ds:SignatureMethod

Chapter 3- Exposing a Web Service

Early Access Release : 01/2002 3-11

 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:Reference URI="#Body">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>MC0CFFrVLtRlk=...</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:KeyName>Michael</ds:KeyName>
 </ds:KeyInfo>
 </ds:Signature>
 </SOAP-SEC:Signature>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body
 xmlns:SOAP-SEC=
 "http://schemas.xmlsoap.org /soap/security/2000-12" SOAP-
SEC:id="Body">
 ……….
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this example, the local name of the SOAP-SEC header block is Signature and the URI is
http://schemas.xmlsoap.org/soap/security/2000-12.

To develop and register a header processor for a particular type of header block, make note of the
local name and URI. You will need this when configuring the HP-SOAP server.

In some cases, you may have a group of related header blocks. In such situations, you may wish to
handle the entire group through a single header processor. The HP-SOAP server allows you to group
related header blocks using a <header-group> element in the header adapter configuration file.

Listing 3-5: Sample header-group element in the header-adapter.xconf file

<header-group className="com.hp.mwlabs.soap.security.SOAPDSigProcessor">
 <header-block name="Signature"
uri="http://www.w3.org/2000/09/xmldsig#"/>
</header-group>

Implement the Header Processor
All header processors must implement the following Java interface:

com.hp.mw.soap.HeaderElementProcessor
This interface contains only one method:

public void processHeaderGroup(ArrayList elements,
 SOAPMessage input,
 SOAPMessage output,
 WebServiceContext context) throws SoapFaultException;

The API uses the JAXM API to provide standards-based access to the incoming SOAP message.

Note: Please refer to the JAXM documentation at java.sun.com/xml/jaxm to learn more about the JAXM
API.

Create a Java class that implements this method and place your header processing logic in the body
of the processHeaderGroup method. The first argument, elements, represents a collection of
javax.xml.soap.SOAPHeaderElement objects, one per header block defined in the header

http://schemas.xmlsoap.org/soap/security/2000-12
http://java.sun.com/xml/jaxm/

HP Web Services Platform User's Guide

3-12 Early Access Release : 01/2002

configuration file (for an example of the complete header adapter file, see Chapter 2, Architecture). If
you intend to process a single header block, you still need to create a group that includes a single
header block definition, where elements is a single instance of the
javax.xml.soap.SOAPHeaderElement object. The header block has already been extracted using
the API extractHeaderBlocks (String actor) on the input javax.xml.soap.SOAPHeaderElement
object.

When you write your header processor logic, you can access not only the block in which you are
interested but also both the input and output messages. While the JAXM API allows you to manipulate
these message objects, a header processor is not expected to modify the input message.

For example, if you were creating a header processor for Digital signature, the header processor
would be tasked to extract and verify the embedded digital signature.

Defining the SOAP-actor Attribute for the SOAP Node
A SOAP header block may contain an optional <SOAP-actor> attribute that identifies the target
SOAP node for which the header block is intended. If no actor is specified, the final recipient of the
SOAP message is expected to process the block. An additional <mustUnderstand> attribute
indicates that the designated SOAP node must process the block.

Note: For more information about the attributes required by SOAP, refer to the SOAP specification at
http://www.w3.org/TR/SOAP/.

The deployment unit in the HP-SOAP server, a WAR file, represents the notion of a SOAP node.
The HP-SOAP server allows you to configure a SOAP actor for either the entire WAR (and the
services that it contains) or at a specific Service level. However, if you define a SOAP actor URI
value (e.g., http://mysoapserver/Order Processing), any clients invoking the Order Processing
Services must supply the <SOAP-actor> attribute in the SOAP request. Hence, the expected setting
for the <SOAP-actor> attribute is an empty string.

Register the Header Processor and Deploy
The final step is to register your header processor within the context of the deployment WAR file (or
within the context of an expanded WAR file on the file system). All header processors should be
registered through the following configuration file:

<install_dir>\WebApps\hpws\webservices\adapters\ header-adapter.xconf

Specify a complete path to your header processor Java class via the className attribute of the header-
group element as shown:

<header-group className="com.hp.mwlabs.soap.handler.SOAPHeaderEchoProcessor">

Deploy your directory or WAR file. For more information about configuring and deploying web
services, refer to Chapter 5 of this manual.

Using Digital Signatures in HP-SOAP
If you need to process digital signatures (Dsig), the HP Web Services platform includes a Dsig
Header Processor for your use. To use digital signatures in the HP-SOAP server, you need to
complete two steps:

1. Sign the document on the client side.
2. Configure HP-SOAP to verify signed SOAP messages.

http://www.w3.org/TR/SOAP/

Chapter 3- Exposing a Web Service

Early Access Release : 01/2002 3-13

Signing the Document on the Client Side
HP-SOAP ships with a client-side interceptor
(com.hp.security.xml.soap.hpsoap.RequestMsgSignerIceptor) that signs just the Body
portion of a SOAP message using the Envelope Signer/Verifier utility. If you are developing a client
application using the HP-SOAP client API, you simply need to register the interceptor with the
SoapClient object:

 m_soapClient.setRequestMsgInterceptor(
 new RequestMsgSignerIceptor());

where m_soapClient is an instance of com.hp.soap.client.SoapClient class.

For a complete example of a SOAP client using the interceptor, see Chapter 2, Architecture and look at
com.hp.security.xml.soap.hpsoap.EchoStringClient.

Note: You could also sign other portions of the SOAP message using the HP-XML Digital Signature API.
In such situations, you may want to implement your own interceptor and use the HP-XML Digital
Signature API directly. Source code for both the RequestMsgSignerIceptor and EnvelopeSignerVerifier
is included in the <install_dir>/samples directory.

Configuring HP-SOAP to Verify Signed SOAP Messages
HP-SOAP also ships with a header processor
(com.hp.security.xml.soap.hpsoap.SOAPSignatureProcessor). See the previous section for
more information about header processors in the HP-SOAP server look at
com.hp.security.xml.soap.hpsoap.EchoStringClient and see Chapter 2, Architecture. To enable
digital signature verification, you need to configure the HP-SOAP server through the header adapter
configuration file:

<install dir>\WebApps\hpws\webservices\adapters\ header-adapter.xconf

To process signature header blocks that use the default setting for the SOAP Actor attribute
(http://schemas.xmlsoap.org/soap/actor/next), you simply need to include the following
entry in your header-adapter.xconf file.

Listing 3-6: Sample header-group element in the header-adapter.xconf file

<!-- ************************** -->
<!-- Global SOAP actor -->
<!-- ************************** -->
 <soap-actor name=""/>
 <header-group
 className=”com.hp.security.xml.soap.hpsoap.SOAPSignatureProcessor ">
 <header-block name="Signature"
 uri="http://www.w3.org/2000/09/xmldsig#"/>
 </header-group>

The empty string value for the name attribute in <soap-actor name=""/> is interpreted by the
SOAP server as the default SOAP actor (http://schemas.xmlsoap.org/soap/actor/next).

http://schemas.xmlsoap.org/soap/actor/next
http://schemas.xmlsoap.org/soap/actor/next

HP Web Services Platform User's Guide

3-14 Early Access Release : 01/2002

Early Access Release : 01/2002 4-1

Chapter 4

Data Types in the HP Web
Services Platform

Introduction
The serialization and deserialization of data between an incoming SOAP message and its target web
service is executed by the HP Web Services platform data type system. Support for the various input
and output data types of a web service are implemented through the SoapType base class and all of
its derived classes. Each data type supported in the HP Web Services platform is implemented by its
own SoapType derived class (StringType, IntType, FloatType, etc.).

The SoapType classes can also be configured to use converters and/or formatters to manipulate the
data in the incoming or outgoing SOAP message. An input converter would be used to change the
data type of a parameter in the incoming SOAP message before the parameter is passed to the web
service, while an output converter would be used to change the return value from the web service to
a different data type before being returned in the outgoing SOAP message. A formatter would be
used to manipulate a value in the incoming or outgoing SOAP message without changing its data
type.

In this chapter

Data Type Support ... 4-2
Supported Data Types.. 4-2

Type Management .. 4-3
Type Management at the Global Level – Global Type Registry (soap-type.xml)................... 4-3
Type Management at the Service Level (WebServiceName.xml) .. 4-4
Type Management at the WSDL Operation level (WebServiceName.wsdl) 4-4

Complex Type Support.. 4-4
The HP-SOAP Server and the Exolab Castor Project.. 4-4
The Castor Converter in Action ... 4-5

Deserializing from a Text Value to a Java Object ...4-5
Deserializing with a Converter.. 4-6
Deserializing with a Formatter.. 4-6
Serializing from a Java Object to a Text Value .. 4-6

HP Web Services Platform User's Guide

4-2 Early Access Release : 01/2002

Overriding the Service Configuration.. 4-7
Configuring a Formatter or Converter at the Service Level... 4-7
Configuring a Formatter or Converter at the Message Level... 4-8

Invoking the Service... 4-8
Method Overloading .. 4-8

WSDL Validation .. 4-9
Using Castor for Complex Data Types in the HP-SOAP Server ... 4-9

Mapping XML Tags to Fields in an Existing Java Class...4-10
Generating Classes for Schema Types ...4-10

Data Type Support
The HP Web Services platform supports various SOAP encoding schemes through a type
abstraction. This includes an abstract base class, SoapType, which amongst other methods, includes
the following:

Listing 4-1: Serialization/Deserialization related methods

String serialize();
Object deserialize();
Element serializeAsElement();

 Listing 4-2: Meta data methods

Class getPrimitveClass();
String getTagName();
String getXSIType();

Listing 4-3: Type converters and formatters related methods

public void setConverter(TypeConverter converter);
public void setFormatter(Formatter formatter);

The HP-SOAP server enables you to convert data types in the incoming and outgoing messages into
different data types. Type converters are used to deserialize data from XML into Java objects and to
serialize the Java objects back into XML. Value formatters are used to modify the value associated
with a parameter or a return value.

Supported Data Types
There is a consortium of SOAP server vendors that determines a set of data types to be
implemented. The primary objective is to ensure a certain level of interoperability amongst various
SOAP implementations. These data types cover all the native types specified in the SOAP encoding
as well as some additional types. The HP-SOAP implementation closely tracks these data type
requirements. The following list shows the current level of data type support.

Note: For more information on interoperability and data types go to www.whitemesa.com.

http://www.whitemesa.com/

Chapter 4- Data Types in the HP Web Services Platform

Early Access Release : 01/2002 4-3

Table 4-1: Supported data types

�� String �� StringArray �� 2DstringArray(Row-majored, non-ragged)

�� Integer �� IntegerArray �� Float

�� FloatArray �� Void �� Base64

�� HexBinary �� Date �� Decimal

�� Boolean �� Struct �� StructArray

�� NestedStruct �� NestedArray

Type Management
The HP-SOAP server facilitates type management at three different levels.

�� A global type registry - global to a deployment unit (currently a WAR file)
�� At a specific service level
�� At a specific WSDL operation level

Type Management at the Global Level – Global Type Registry
(soap-type.xml)

The Global Type Registry (soap-type.xml) contains mappings for all type-related configuration for
the HP-SOAP server.

The root element is <soap-type-registry> and it contains the following child elements:

�� <type-maping>

�� <type-formatters>

�� <type-converters>

�� <output-converters>
The <type-maping> child elements contain the mappings for soap-type/java-class types to the
deserialization/serialization implementations. These types are specified as attributes of the <type-
mapings> element.

The <type-formatters> element contains the global Input/Output formatter registry. Configured
formatters format the text value of an XML element. Input formatters modify the text values before
they are deserialized into a Java object. Output formatters reformat the text values after they have
been serialized from a Java object back into an XML element. Formatters always act upon soap-type
XML elements.

The <type-converters> element contains the global Input/Output converter registry. Configured
converters convert the XML element to a Java object or another XML element. Input converters
take effect when deserializing the input soap-type XML element (after formatting). Output
converters take effect when serializing the output Java object (before formatting).

By default, two converters are configured at the global level:

�� org.apache.cocoon.processing.soap.conversion.ArrayRowMajorConverter - Transforms
the incoming SOAP encoding array, which is in row-major, to a Java array object, and vice versa.

�� org.apache.cocoon.processing.soap.conversion.CastorConverter -Transforms all
complex types that are not addressed by the type-mapings configuration.

HP Web Services Platform User's Guide

4-4 Early Access Release : 01/2002

The <output-converters> element is different from <type-converters> in that it is only used if
the data type of the output message specified on the WSDL is different from the type attribute on
the serialized XML element of the returned Java object. For example, by default <type-maping>
byte array byte is serialized in Base64Type, but the echoHexBinary on the WSDL specifies output
in a Hexadecimal encoded byte array. Thus, if a parameter in an output message is hexBinary, the
<output-converter> named HexBinaryConverter is used to serialize the output as a
hexadecimal rather than as Base64Type. The intent is to provide some level of fault tolerance.

Type Management at the Service Level (WebServiceName.xml)
Each web service has a configuration file, <WebServiceName>.xml. This file enables you to register
converters and formatters for a specific web service. If you specify a converter or formatter at this
level, it overrides the converter or formatter defined in the Global Type Registry. To view an
example of a web service registration file with a type converter and a value formatter specified at the
service level, look at <install_dir>/docs/samples/service-example.xml.

Type Management at the WSDL Operation level
(WebServiceName.wsdl)

The service configuration file also allows you to register type converters and formatters at the
operation level. If a type converter or value formatter is specified at this level, it overrides the
corresponding converter or formatter at both the global and service level. To view an example of a
web service registration file with a type converter and a value formatter specified at the operation
level, look at <install_dir>/docs/samples/service-example.xml.

Complex Type Support
If a service exposes complex data types, the server needs to support an extensible type system to
address serialization and deserialization of such types. The HP-SOAP server is designed to address
the following capabilities:

�� Ability to map an XML schema type (global/service/operation level) to an existing Java class.
�� Generate Java classes from a given XML schema.

The HP-SOAP Server and the Exolab Castor Project
The HP-SOAP server uses Exolab’s Castor project to deserialize/serialize complex data types
between Java objects and XML elements. The server defines the CastorConverter class to serialize
and deserialize the data. The CastorConverter may be used to serialize either existing Java classes
or schema data types.

This converter depends on configuration information in the soap-type.xml file to convert the data
correctly. There must be a <converter> element that points to the CastorConverter class and
contains property references to the map files that Castor uses to make its type conversions. An
example of this is shown in the XML fragment below:

Listing 4-4: XML file showing property referencess

<type-converters>
 ………………
 <converter name="struct"
 class="org.apache.cocoon.processing.soap.conversion.CastorConverter">
 <property name="http://soapinterop.org/xsd:SOAPStruct:map"
 value="soapstruct.xml" />

Chapter 4- Data Types in the HP Web Services Platform

Early Access Release : 01/2002 4-5

 <property name="http://soapinterop.org/xsd:SOAPStructStruct:class"
 value="org.apache.cocoon.processing.soap.types.SOAPStructStruct" />
 <property name="http://soapinterop.org/xsd:SOAPArrayStruct:map"
 value="soapstruct.xml" />
 </converter>
 ………………
</type-converters>

The Castor Converter in Action
After the configuration has been edited, the CastorConverter is ready to be used on the new data
type. When the HP-SOAP server receives an XML request that contains a custom or complex data
type, the CastorConverter is created to deserialize (deserialize) this data to its Java class
representation. The converter checks its property settings to determine if a map file name has been
specified for this data type. The converter always searches for a map file first, because it can be used
to override the default class mappings. If a map file name exists, it is used to deserialize the XML
node. If the map file name is not specified, the converter checks its properties for the class name. If
the class name exists, it is used for the deserializeing. If neither property exists, an exception is
thrown. Otherwise, the newly created Java class object is returned from the converter and the
payload can be passed to the web service to be processed.

After the payload is processed, a custom data object is returned and the CastorConverter is used to
serialize this data to its XML node representation. The converter looks in its properties for the map
file name referencing the class to use. If it exists, the map file is used to serialize the class. If the
map file name does not exist, the converter attempts to use Castor’s default serializeing functionality
on the class to generate the XML node. The new node is returned from the converter to the caller.

Deserializing from a Text Value to a Java Object
Deserialization is the process of converting the incoming parameter to a Java object and initializing
the object with the parameter value. The default sequence is to identify the xsi:type of a parameter in
the incoming message and creating an instance of the appropriate derived class (of the abstract
SoapType class). To complete the deserialization of a parameter, the deserialize() method is invoked.
The xsi:type attribute is an optional attribute as per the SOAP encoding rules. Hence, HP-SOAP
server uses the WSDL file to determine the data type if the incoming parameter does not contain this
attribute.

Figure 4-1: Default deserialization sequence

HP Web Services Platform User's Guide

4-6 Early Access Release : 01/2002

Deserializing with a Converter

Figure 4-2: Deserialization sequence with a converter

Figure 4-2 illustrates how one could use a converter to create a Java class that best represents the
underlying parameter value. In this example, a date value is encoded as a xsi:string type in the
SOAP message. However, if the Java method that implements the operation takes a java.uil.Date
type, the appropriate conversion is needed. In the HP-SOAP server, this is simply a matter of
registering a type converter that performs the conversion from a value to java.util.Date type.

Deserializing with a Formatter

Figure 4-3: Deserialization sequence with a formatter

Figure 4-3 shows the use of a formatter to convert a date value from mm/dd/yyyy format to a more
verbose format, as shown.

Serializing from a Java Object to a Text Value

Figure 4-4: Serialization sequence with a converter and a formatter

Chapter 4- Data Types in the HP Web Services Platform

Early Access Release : 01/2002 4-7

The steps involved in the serialization sequence are the reverse of deserialization. If the Java object
does not represent a native type, the initial type is determined based on the Java object or WSDL. In
some cases, conversion may be needed in order to comply with the type specified in WSDL. You
may also specify a formatter to reformat the return value.

Overriding the Service Configuration
As mentioned earlier in this guide, the HP-SOAP server allows you to configure formatters and
converters at the global, service, and operation level. The following is an example of a service
configuration:

Listing 4-5: Serialization/deserialization-related methods

<webservice-descriptor version="1.0">
 <webservice adapter="rpc-adapter" wsdl-validation="false">
 <param name="lookup-name" value
="com.hp.mw.pipeline.soaprpc.services.MyService"/>
 <soap-type>
 <type-formatters>
 <formatter name="string"
class="org.apache.cocoon.soap.formation.StringFormatter"/>
 </type-formatters>
 <type-converters>
 <converter name="string"
class="org.apache.cocoon.processing.soap.conversion.MyConverter"/>
 </type-converters>
 <messages>
<message name="someOperationRequest">
 <formatter name="string"
 class="org.apache.cocoon.processing.soap.formation.StringFormatter"/>
 <converter name="string"
 class="org.apache.cocoon.processing.soap.conversion.MyConverter"/>
 </message>
 <message name="someOperationResponse">
 <formatter name="java.lang.String"

class="org.apache.cocoon.processing.soap.formation.StringFormatter"/>
 <converter name="java.lang.String"

class="org.apache.cocoon.processing.soap.conversion.MyConverter"/>
 </message>
 </soap-type>
 </webservice>
</webservice-descriptor>

For each specific service, you can configure formatters and converters at two levels: at the inidividual
service level and for a specific message.

Configuring a Formatter or Converter at the Service Level
You configure formatters and converters by adding the <type-formatters> element and the
<type-converters> element under <soap-type> element, which is a child of root element
<webservice>. This configuration applies to all operations in this service. Using the sample
configuration file above, any incoming parameter with a string type is formatted by
StringFormatter, and then deserialized by MyConverter. Any returned Java object, which is an
instance of String, is serialized by MyConverter and then formatted by StringFormatter.

HP Web Services Platform User's Guide

4-8 Early Access Release : 01/2002

Configuring a Formatter or Converter at the Message Level
At the message level, a <soap-type> element may have <messages> child elements. Furthermore,
<messages> elements may have <message> child elements that are required to have the same name
as a message declared in the WSDL. Under the <message> element formatter and converter, elements
can be configured that apply to this message only. For example, someOperationRequest may be an
input message of some operation in this service. If any of the parameter (part) is string type, it is
formatted by StringFormatter and then deserialized by MyConverter.

While the service-level configuration of formatters and converters overrides the global-level
configurations, message-level configuration overrides service level configuration. These overrides
include any properties that are a part of the service or message elements. For example, suppose you
configured a StringFormatter with a property name=“prefix” and a value=“global", at the
global level; and at the service level, you also have a StringFormatter with a property
name=“prefix” and a value=“service”. Any incoming parameter for this service of type string
is formatted by the StringFormatter using the prefix property with value of “service”, rather
than of “global”. Any other service not having a service level formatter configuration would use the
StringFormatter with the prefix property having the value “global”.

Invoking the Service
Both EJB and Java class adapters use a common set of classes to evaluate the RPC body, create an
instance of a Java class and invoke the appropriate method corresponding to the operation or
method specified in the SOAP message. The adapters rely on these helper classes to provide
metadata, as well as serialization and deserialization capabilities. The SoapRPCBody class, in the
org.apache.cocoon.processing.soap package, and other classes located in the subpackages
(config, types, etc.,) make up the helper classes used by the RPC adapters.

When a SOAP message arrives, adapters extract the body portion of the message and initialize the
SoapRPCBody class. The SoapRPCBody class extracts the parameters and makes an attempt to
resolve the operation/method. If the incoming message contains the data type information, the
method resolution is relatively straightforward. However, if the data type information is missing
(partially or entirely), this information is looked up in the WSDL file.

Method Overloading
Method overloading occurs when two operations are allowed to have the same name but different
input messages. These two operations can be mapped to two methods (of this service’s Java
implementation) with the same name but different input parameters. Merging the data type
information in the SOAP message with type information from the WSDL file allows the HP-SOAP
Server to support method overloading.

However, in the ROUND 2 SOAP Interoperability Tests Specification, explicit typing information is
not required for incoming messages. This may cause ambiguity for the method lookup (operation
resolution). For example, consider the following RPC request:

<SOAP-ENV:Body>
 <echo>
 <input>1234</input>
 </echo>
</SOAP-ENV:Body>

Now, consider a corresponding service implementation that has the following methods, and both
methods are exposed through the WSDL:

public int echo(int i)

Chapter 4- Data Types in the HP Web Services Platform

Early Access Release : 01/2002 4-9

{
 return i;
}

public String echo(String s)
{
 return s;
}

The service implementation has two methods named echo; one is an integer and the other is a string.
When the SOAP request comes in, the server recognizes the <echo> tag and must decide whether to
treat the data in this parameter as an integer or a string. So, there is an ambiguity in resolving the
method to be invoked, even after using the information in WSDL. The incoming parameter 1234
can be deserialized to either an integer or a string. The HP-SOAP server resolves this problem by
sequentially evaluating the parameters and the methods and selecting the first match.

In contrast, the request below is not ambiguous. The text 'ABCD' must be a string.
<SOAP-ENV:Body>
 <echo>
 <input>ABCD</input>
 </echo>
</SOAP-ENV:Body>

In this case, the server will first try to deserialize the string as an integer and fail. Then it will
deserialize it as a string and succeed.

The above example highlights the fact that in order to avoid ambiguity and to ensure an efficient
method lookup, clients should be required to supply type information in SOAP requests. One way to
enforce this is through WSDL validation.

WSDL Validation
In the web service configuration file, there is an attribute called wsdl-validation.

Listing 4-6: wsdl-validation in web service configuration file
<webservice-descriptor version="1.0">

 <webservice adapter="rpc-java" wsdl-validation="false">

…………………

</webservice>

The default value for this attribute is false. If this value is set to true, explicit data type information is
required for this service. If set to true and a request is submitted without data type information in the
parameters, the request will be rejected. This can avoid possible ambiguity and force strong type
checking.

In addition, this validation requires that the namespace URI specified in the incoming message be
exactly the same as the one declared in WSDL. If a service has a namespace declaration,
xmlns:xsd=http://www.w3.org/2001/XMLSchema, any incoming request with a different
namespace, such as xmlns:xsd=http://www.w3.org/1999/XMLSchema, will be rejected.

Using Castor for Complex Data Types in the HP-SOAP Server
The HP SOAP server uses Exolab’s Castor project to serialize data between Java objects and XML
elements. The server defines the CastorConverter class to serialize and deserialize the data. The
CastorConverter may be used to serialize either existing Java classes or schema data types. This
converter depends on configuration information in the soap-type.xml file to serialize and deserialize
the data correctly. The following two sections explain how to configure the CastorConverter.

http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/XMLSchema

HP Web Services Platform User's Guide

4-10 Early Access Release : 01/2002

Mapping XML Tags to Fields in an Existing Java Class

Note: For a detailed walk-through of this feature, visit the Using complex data types defined by an
existing Java Class in the Complex Data Type trailmap included with the platform.

To use the CastorConverter for an existing Java class, a Castor map file must be created for the class.
Castor provides a MappingTool utility class that will generate a basic map file for a specified Java
class. Run the mapping tool using the following command:

java org.exolab.castor.tools.MappingTool -i class_name -o output_map_file

This map file specifies the mapping between the XML tags and the fields in the user’s Java class.
The user should closely examine the generated map file to verify that the XML tags created are the
tags you want the mapping file to require of the incoming SOAP message.

Note: These values can be edited, but users are strongly encouraged to read the Castor documentation
about mapping files before attempting to edit this file by hand. You can find Castor
documentation at: http://www.castor.org/xml-mapping.html.

Once this map file is ready, it must be associated with the class in the soap-type.xml file.

1. Locate the <type-converters> tag in the soap-type.xml file.
2. Within the <type-converters> tag, attempt to locate the <converter> tag with the name

attribute set to struct.
3. If that <converter> tag does not exist, create it as follows:

<converter name=”struct”
 class="org.apache.cocoon.processing.soap.conversion.CastorConverter">
</converter>

4. For each class to configure, add a <property> tag to the <converter> tag specified above. Set
the name attribute of the tag to the namespace qualified Java class name, concatenated with the
:map string. Set the value property to the map file name.

5. Copy the map file to <install_dir>\WebApps\hpws.
6. Copy the class to <install_dir>\WebApps\hpws\WEB-INF\classes.
Listing 4-7: Sample soap-type.xml file showing how to associate the map file to the Java class

<type-converters>
 <converter name="struct"
 class="org.apache.cocoon.processing.soap.conversion.CastorConverter">
 <property name = "http://soapinterop.org/xsd:SOAPStruct:map"
 value = "soapstruct.xml" />
 ….. …
 </converter>
</type-converters>

7. Copy the generated classes to <install_dir>/WebApps/hpws/WEB-INF/classes.

Generating Classes for Schema Types

Note: For a detailed walk-through of this feature, visit the Using complex data types defined by an XML
Schema in the Complex Data Type trailmap included with the platform.

http://www.castor.org/xml-mapping.html

Chapter 4- Data Types in the HP Web Services Platform

Early Access Release : 01/2002 4-11

To use the CastorConverter for a schema-defined type, the user must first generate a Java class to
represent this type. Castor provides the SourceGenerator utility class to accomplish this goal. Run
the SourceGenerator using the following command:

java org.exolab.castor.builder.SourceGenerator -i schema_file -f -types j2 -
package output_package_name

The SourceGenerator will produce two classes for each schema type: the descriptor class and the
actual implementation class. Both of these classes must be made visible to the HP-SOAP server in
order for the CastorConverter to function properly.

Once the class files have been generated, they must be associated with the schema type in the soap-
type.xml file. Only the implementation classes must be specified in the configuration file. The
descriptor classes are only needed for the actual serializeing and deserializeing.

1. Locate the <type-converters> tag in the soap-type.xml file.
2. Within the <type-converters> tag, attempt to locate the <converter> tag with the name

attribute set to struct.
3. If that <converter> tag does not exist, create it as follows:

<converter name=”struct”
class="org.apache.cocoon.processing.soap.conversion.CastorConverter">
</converter>

4. For each class to configure, add a <property> tag to the <converter> tag specified above. Set
the name attribute of the tag to the namespace qualified java class name, concatenated with the
:class string. Set the value property to the fully qualified java class name.
The completed soap-type.xml <type-converters> section should look similar to this:

Listing 4-8: Sample soap-type.xml file showing how to associate a class file with the schema type.

<type-converters>
 <converter name="struct"
 class="org.apache.cocoon.processing.soap.conversion.CastorConverter">
 <property name ="http://soapinterop.org/xsd:SOAPStruct:class"
 value = "org.apache.cocoon.processing.soap.types.SOAPStruct" />
 .. …
 </converter>
</type-converters>

HP Web Services Platform User's Guide

4-12 Early Access Release : 01/2002

Early Access Release : 01/2002 5-1

Chapter 5

Deploying & Configuring
Web Services

Introduction
In order to use a web service in an application, you need to deploy it and configure any features that
may be needed. There are several configuration files used to configure HP web services components.

Note: The keywords in the configuration files shown in this chapter are case sensitive. Comments are
included between the <!-- comment--> tags. Values relative to the file system are relative to the
working directory from which the server is launched.

In this chapter
Deploying Web Services .. 5-2

Web Service Deployment Descriptor .. 5-2
Web Service URL Structure... 5-2
Setting Up an RPC-style Service Using a Java Class.. 5-3
Setting Up an RPC-style Service Using an EJB Adapter .. 5-4
Setting Up a Document Exchange Service Using a Java Class .. 5-5

Configuring Services... 5-5
Configuring a Service to Use a Type Converter... 5-5
Configuring a Service to Use an Input/Output Converter .. 5-6
Configuring a Service to Use a Result Converter... 5-7

Customizing the HP-SOAP WebApp Configuration... 5-8
Configuring the JAXM Inbox Servlet .. 5-8
Servlet Mapping... 5-8

Setting Global Logging Parameters ... 5-9
Configuring Adapters ... 5-9
Testing Your Deployed Web Services...5-10

HP Web Services Platform User's Guide

5-2 Early Access Release : 01/2002

Deploying Web Services
For HP Web Services platform, a web service is defined by its unique name and by two configuration
files (an XML file and a WSDL file) which must bear the same name as the service. For instance, the
MathService service must have a MathService.xml file and a MathService.wsdl file. These files
provide information about the adapter(s) and handler(s) used by the service and also define other
aspects of the service.

If you have your own Java class, EJB or Document Exchange handler and want to deploy it as a web
service, follow these steps:

1. Select a name for the service you wish to create.
2. Using the tools shipped with HP's Web Services platform, create the deployment descriptor in

the form of a WSDL file and XML file with the same name as the service you are creating. For
more information about the tools, see Chapter 6 of this Guide. For more information about the
deployment descriptor, see the next section of this chapter.

3. Make sure the deployment descriptor files are in the
<install_dir>\WebApp\hpws\webservices\<WebServiceName> directory.

Web Service Deployment Descriptor
A web service deployment descriptor consists of two files:

1. A WSDL file for the web service, in the form <WebServiceName>.wsdl
2. A web service configuration file, in the form <WebServiceName>.xml

Web Service URL Structure
The context path for the web service URL is determined by the name of Web Application directory
deployed to HP-AS (by default, the hpws directory). The web.xml file shipped within the WEB-INF
subdirectory contains a servlet mapping to the SOAP in-box (i.e., /soap).

Note: For more information about customization of web.xml, please see the section titled Customizing
the HP-SOAP Server WebApp Configuration.

The rest of the URL is driven by the structure of the webservices subdirectory hierarchy. For
example, all of the sample web services are deployed under the webservices directory as follows:

Listing 5-1: Directory of <install_dir>\WebApps\hpws\webservices

10/17/2001 01:49p <DIR> .
10/17/2001 01:49p <DIR> ..
10/17/2001 01:49p <DIR> adapters
10/17/2001 01:49p <DIR> dispatchers
10/17/2001 01:49p <DIR> EchoService
10/17/2001 01:49p <DIR> ExampleEJB
10/17/2001 01:49p <DIR> getDate
10/17/2001 01:49p <DIR> MathService
10/17/2001 01:49p <DIR> stocks

The structure of a web services URL should look like:
http://<HostName>:<PortNumber>/<ContextPath>/<ServletMapping>/<WebServiceName>

For example, the URL of for the getDate service may look like:
 http://localhost:9090/hpws/soap/getDate

http://localhost:9090/hpws/rpc/getDate

Chapter 5- Deploying & Configuring Web Services

Early Access Release : 01/2002 5-3

where

�� /hpws is the context path
�� /soap represents the servlet mapping in the web.xml
�� /getDate is the name of the service directory

As part of the sample files shipped with HP Web Services platform, the two stock-related web
services are grouped under a subdirectory named stocks. Hence, the URLs for these web services
will reflect the subhierarchy as follows:

http://localhost:9090/hpws/soap/stocks/getNASDAQStock
http://localhost:9090/hpws/soap/stocks/getStock

This features allows you to logically group and organize services but does require that your service
name match the name of a physical directory. You may use servlet mapping capability to map a
logical URL to this physical structure.

Setting Up an RPC-style Service Using a Java Class
At the very least, the service's XML file contains the adapter name, the class that implements the
service and whether or not the message structure should be validated.

Table 5-1: XML file structure for a service using a Java class

Tag Attribute Value Description

webservice adapter rpc-java Name of the adapter used by the
service.

 wsdl-validation true or false Validates SOAP incoming message, if
needed. For RPC requests, if this is
true, type information is required in
each request to avoid invocation
ambiguity if the target
operation/method is overloaded.
Default is false.

param name "lookup-name" For all services with RPC requests, the
parameter name is required and is
expected to be this.

 value fully qualified
name of Java
class

The Java class that implements the
service.

Listing 5-2: Example of a service using a Java class

<?xml version="1.0"?>
<service-descriptor version="1.0">
 <webservice adapter="rpc-java" wsdl-validation="false" >
 <param name = "lookup-name"
 value = "com.hp.mw.soap.samples.rpc.DateService"/>
 </webservice>
</service-descriptor>

The deployment descriptor for a web service includes a WSDL file as well as the XML file discussed
here. However, the contents of the WSDL file are dependent upon to the Java class being exposed
and, in the interest of conserving space, a sample file is not shown here.

HP Web Services Platform User's Guide

5-4 Early Access Release : 01/2002

Setting Up an RPC-style Service Using an EJB Adapter
If the service you are configuring uses an EJB adapter, there are a few additional parameters that
must be defined in the XML file.

Table 5-2: Parameters for a service using an EJB adapter

Tag Attribute Value Description

webservice adapter rpc-ejb Name of the adapter used by the
service.

 wsdl-validation true or false Validates SOAP incoming message, if
needed. For RPC requests, if this is true,
type information is required in each
request to avoid invocation ambiguity if
the target operation/method is
overloaded. Default is false.

param name "lookup-name" For all services with RPC requests, the
parameter name is expected to be this.

 value name of the EJB The value should be set to the name of
the EJB bean that implements the service.

param name "home" For all services with EJB-RPC requests,
this parameter is required and the name
is expected to be this.

 value fully qualified
name of home
interface

The fully qualified home interface.

param name "remote" For all services with EJB-RPC requests,
this parameter is required and the name
is expected to be this.

 value fully qualified
name of remote
interface

The fully qualified remote interface.

param name "ejb-type" For all services with EJB-RPC requests,
this parameter is required and the name
is expected to be this.

 value ejb-stateless The value of this parameter should be set
to ejb-stateless.

param name "jndi-vendor" For all services with EJB-RPC requests,
this parameter is required and the name
is expected to be this.

 value HP or JBOSS The value can currently be set to HP or
JBOSS.

Chapter 5- Deploying & Configuring Web Services

Early Access Release : 01/2002 5-5

Listing 5-3: Example of a service using an EJB adapter

<?xml version="1.0" encoding="UTF-8" ?>
 <service-descriptor version="1.0">
 <webservice adapter="rpc-ejb" wsdl-validation="false">
 <param name="lookup-name" value="LoanCalc"/>
 <param name="home" value="com.hp.mwlabs.wso.examples.ejb.LoanCalcHome"/>
 <param name="remote" value="com.hp.mwlabs.wso.examples.ejb.LoanCalc"/>
 <param name="ejb-type" value="ejb-stateless"/>
 <param name="jndi-vendor" value="HP"/>
 </webservice>
 </service-descriptor>

Setting Up a Document Exchange Service Using a Java Class
You can also set up a service based on document exchange. Parameters are listed in Table 5-3:

Table 5-3: Parameters for a service using document exchange

Tag Attribute Value Description

webservice adapter doc-handler Name of the adapter used by the
service. For implementations using
document exchange, the adapter is
defined as doc-handler.

 wsdl-validation true or false Values are true or false. If true, all
messages are checked by the
service to ensure that they follow
the structure outlined in the WSDL
specification.

param name "lookup-name" For all services with Document
Exchange requests, the parameter
name is expected to be this.

 value Fully qualified
Java class.

The name of the handler class.

Listing 5-4: Example of a service using document exchange

<?xml version="1.0"?>
 <service-descriptor version="1.0">
 <webservice adapter="doc-handler" wsdl-validation="false">
 <param name = "lookup-name"
 value = "com.hp.mw.pipeline.soap.samples.doc.EchoDocument"/>
 </webservice>
 </service-descriptor>

Configuring Services
In addition to the tasks you must perform to deploy a Java class or EJB as a web service, there are
several other features you can set in the configuration files.

Configuring a Service to Use a Type Converter
You can also configure a service that requires conversion of the incoming data from the incoming
XML data to the data actually required by a back-end application. Type converters are used when all

HP Web Services Platform User's Guide

5-6 Early Access Release : 01/2002

data of the specified type must be converted before it is sent to the web service. For instance, a
complex data type represented by an XML node will need to be converted to the actual Java class of
the data type before being sent to the back-end application.

Listing 5-5: Example of a service using a type converter

<?xml version="1.0" encoding="UTF-8" ?>
 <service-descriptor version="1.0">
 <webservice adapter="rpc-java" wsdl-validation="false">
 <param name = "lookup-name"
 value = "com.hp.mw.pipeline.soaprpc.services.ConverterService"/>
 <soap-type>
 <type-converters>
 <converter name="struct"
 class="org.apache.cocoon.processing.soap.conversion.CastorConverter">
 <property name=http://soapinterop.org/xsd:SOAPStruct:map
 value="soapstruct.xml" />
 </converter>
 </type-converters>
 <result-converters>
 …
 </result-converters>

 <messages>
 <message name="s0:echoFormatConvertRequestInput1">
 …
 </message>
 </messages>
 </soap-type>
</webservice>
</service-descriptor>

Configuring a Service to Use an Input/Output Converter
You can also configure type converters for any message that is an input/output message of some
operation(s) on the WSDL. This overrides the service level and global Type Converter registry.

Listing 5-6: Example of a service using an input/output converter

<?xml version="1.0" encoding="UTF-8" ?>
 <service-descriptor version="1.0">
 <webservice adapter="rpc-java" wsdl-validation="false">
 <param name = "lookup-name"
 value = "com.hp.mw.soap.samples.rpc.services.ConverterService"/>
 <soap-type>
 <type-converters>
 …
 </type-converters>

 <result-converters>
 …
 </result-converters>

 <!--
 Message level I/O formatter/converter registry: This overrides the
 service level and global registry
 Because WSDL use input/output messages to specify the I/O parameters,
 using message-level registry is more suitable the operation level.
 2 different operation may share the same input or output message
 -->
 <messages>
 <message name="s0:echoFormatConvertRequestInput1">
 <converter name="string"

Chapter 5- Deploying & Configuring Web Services

Early Access Release : 01/2002 5-7

 class="org.apache.cocoon.processing.soap.conversion.ToIntConverter">
 </converter>
 </message>
 </messages>
 </soap-type>
</webservice>
</service-descriptor>

Configuring a Service to Use a Result Converter
You can also configure a service that requires conversion of the outgoing XML message generated
from serialization of the data returned from a back-end application to the required WSDL structure.
For instance, a value identified in WSDL as a list of simple types may actually need to be converted
from a complex data type that is returned by the back-end application.

Listing 5-7: Example of a service using a result converter

<?xml version="1.0" encoding="UTF-8" ?>
 <service-descriptor version="1.0">
 <webservice adapter="rpc-java" wsdl-validation="false">
 <param name = "lookup-name"
 value = "com.hp. mw.soap.samples.rpc.services.ConverterService"/>
 <soap-type>
 <type-converters>
 …
 </type-converters>

 <!--
 Return element conversion registry: this converter applies to whole
 return xml element of the operation with the specified signature.
 For example:
 <m:echoStructAsSimpleTypesResponse>
 <return>
 <varString>hello world</varString>
 <varInt>42</varInt>
 <varFloat>0.005</varFloat>
 </return>
 </m: echoStructAsSimpleTypesResponse>

 Can be converted to:

 <m:echoStructAsSimpleTypesResponse>
 <outputString>hello world</outputString>
 <outputInteger>42</outputInteger>
 <outputFloat>0.005</outputFloat>
 </m:echoStructAsSimpleTypesResponse>
 -->
 <result-converters>

 <result-converter
 operation-name="echoStructAsSimpleTypesResponse"
 input-message="s0:echoStructAsSimpleTypesResponseInput"
 output-message="s0:echoStructAsSimpleTypesResponseOutput"
 class="org.apache.cocoon.processing.soap.conversion.ResultConverter"/>

 </result-converters>
 <messages>
 <message name="s0:echoFormatConvertRequestInput1">

 …
 </message>
 </messages>

 </soap-type>

HP Web Services Platform User's Guide

5-8 Early Access Release : 01/2002

</webservice>
</service-descriptor>

Customizing the HP-SOAP WebApp Configuration
HP-SOAP server is implemented as a servlet web application. The file web.xml, located in
<install_dir>\WebApps\hpws\WEB-INF directory, is used to configure the basic features of the
HP-SOAP Server, including the definition and mapping of the servlets. It is defined by the
http://java.sun.com/j2ee/dtds/web-app_2_2.dtd schema.

Configuring the JAXM Inbox Servlet
There are only two parameters in the JAXM inbox servlet section (identified by servlet-name
JAXMRPCInbox) that can be modified: logging and custom prefixes for outgoing messages. All
other parameters for the JAXM servlet should not be modified.

Note: If modified, HP cannot guarantee that the servlet will function as expected.

Logging
You can specify two levels of logging: debug or none. If you don't specify a level, the default level is
none.

Listing 5-8: Sample code for logging levels

<init-param>
 <param-name>log-level</param-name>
 <param-value>NONE</param-value>
</init-param>

Using Custom Prefixes for Outgoing Messages
You can specify whether you want to include a custom prefix in messages going out from the server.
Values are true or false.

�� If false (default), the server uses its own default SOAP prefixes (envelope, header, body) in the
message. If false, the <response-prefix> value is not used.

�� If true, the value specified by the <response-prefix> is used as the prefix.
�� If true and the <response-prefix> section has been commented out, the server uses the incoming

message's prefix as the prefix for the outgoing message as well.
Listing 5-9: Sample code for custom prefixes

<init-param>
 <param-name>use-custom-prefix</param-name>
 <param-value>true</param-value>
</init-param>
<init-param>
 <param-name>response-prefix</param-name>
 <param-value>SOAP-HP</param-value>
</init-param>

Servlet Mapping
For each servlet available, you need a <servlet-mapping> tag that contains information about
mapping URLs for incoming HTTP requests to specific servlets. The default configuration indicates
that all requests containing /soap/* will be processed by JAXMRPCInbox.

http://java.sun.com/j2ee/dtds/web-app_2_2.dtd

Chapter 5- Deploying & Configuring Web Services

Early Access Release : 01/2002 5-9

If you need to create a custom URL to invoke the JAXMRPCInbox, add the appropriate servlet
mapping in this section.

Note: We recommend that your installation directory is the default hpmw directory. If you deploy to a
different directory, the default URL settings shipped with this product won't match and must be
reset.

The tags for the Cocoon server are set up correctly and should not be modified.

Note: If modified, HP cannot guarantee that the servlet will function as expected.

Listing 5-10: Sample code for mapping servlets

<servlet-mapping>
 <servlet-name>JAXMRPCInbox</servlet-name>
 <url-pattern>/soap/*</url-pattern>
</servlet-mapping>

Setting Global Logging Parameters
You can control logging of errors and other information globally through the logkit.xconf file,
located in the <install_dir>\WebApps\hpws\WEB-INF directory. In that file, there are two
sections that contain information about logging: <priority-filter> and <categories>. The log-
level value for all of these sections can be either debug (logging is on) or error (logging is off). By
default, log files are kept in the WEB-INF\logs directory.

Listing 5-11: Sample code for global logging parameters in the logkit.xconf file

.

.

.
<priority-filter id="filter" log-level="ERROR">
 <servlet>
 <format type="extended">%7.7{priority} %5.5{time}:
%{message}\n%{throwable}</format>
 </servlet>
</priority-filter>
 </targets>

 <categories>
 <category name="cocoon" log-level="ERROR">
 <log-target id-ref="cocoon"/>
 </category>
 <category name="root" log-level="ERROR">
 <log-target id-ref="root"/>
 <category name="store" log-level="ERROR">
 <log-target id-ref="components"/>
 <log-target id-ref="filter"/>
 </category>

Configuring Adapters
An adapter can have its own configuration file. Currently, the EJB adapter and the Header adapter
have their own files (ejbadapter.xconf and header-adapter.xconf), which contain adapter-
specific information. The EJB adapter file contains vendor-specific JNDI lookup information. Files
shipped with the product contain HP and JBoss settings. The Header adapter file contains mappings
of tags and processors responsible for processing the corresponding tag blocks. The adapter

HP Web Services Platform User's Guide

5-10 Early Access Release : 01/2002

configuration files shipped with the web services platform are configured correctly and should not
be modified.

Note: If modified, HP cannot guarantee that the servlet will function as expected.

Testing Your Deployed Web Services
Now that you've deployed your web services, you can test them in one of two ways:

�� Open an HTML browser and, in the Address field, type
http://localhost:9090\hpws\soap\<WebServiceName>.wsdl. If the service has been
successfully deployed, the browser should display the service's WSDL.

�� Create a proxy using the WSDLtoClientProxyform. Pass in the endpoint URL for your service and
optionally a package name for the generate class, in the form:

WSDLtoClientProxy <ServiceEndpointURL>[-package <PackageName>]

The utility will attempt to issue an HTTP get request to the URL, retrieve the WSDL and generate
the client proxy.

Note: Before generating the client proxy, set the classpath using <install_dir>\bin\hpwsenv.bat, which
includes the appropriate JAR files in the classpath.

Example
WSDLtoClientProxy http://localhost:9090/hpws/soap/<webServiceName>.WSDL -
package com.hp

Early Access Release : 01/2002 6-1

Chapter 6

HP-SOAP Tools

Introduction
As described in the architecture and configuration sections of this document, the HP-SOAP server
uses a web application for deployment of a group of web services. The HP-SOAP server tools are
designed to facilitate easy creation, deployment, and UDDI registration of web services from existing
business logic. This chapter introduces the command-line tools available and describes their usage.

The HP-SOAP server command line tools are shipped in the bin subdirectory of the product
installation directory. Make sure that this directory is in your path.

Note: The early access release of the HP-SOAP server expands the WAR file template upon installation,
along with sample web services. Users may use the expanded directory
<install_dir>\WebApps\hpws as a template to create their own WAR files and deploy them to
one of the supported application servers.

In this chapter
Introduction... 6-1
ClassToWebService .. 6-2

Usage ... 6-2
Output... 6-2
Example .. 6-3

EJBToWebService .. 6-3
Usage ... 6-3
Output... 6-4
Example .. 6-4

HandlerToWebService... 6-4
Usage ... 6-4
Output... 6-5

WSDLToClientProxy... 6-5
Usage ... 6-5
Output... 6-6

ClassToWSDL... 6-6
Usage ... 6-6

HP Web Services Platform User's Guide

6-2 Early Access Release : 01/2002

Output... 6-7
WSDLToServerSkeleton.. 6-7

Usage ... 6-7

ClassToWebService
ClassToWebService is a command-line utility that generates the files that make up the HP-SOAP
server deployment descriptor for a specified Java class. The deployment descriptor is made up of a
WSDL file with a correct endpoint URL, and a web service configuration file. If necessary, the utility
creates a subdirectory for the service in a default webservices directory and places the generated
files in that directory. It provides a simple way to enable a Java class to be deployed as a web service
on the HP-SOAP server.

Usage
ClassToWebService <Java Class Name> <Service Endpoint URL> <WebServiceName>
[<WSDL file>]

where

Table 6-1: Parameters for ClassToWebService utility

Parameter Description

<Java Class Name> The complete path to the Java class that you wish to expose as a
web service. This class must be in the classpath.

Note: Since the HP-SOAP server needs to dynamically load this
class at run-time, we recommend that you place your Java classes in
the classes subdirectory of WEB-INF directory. If your class is in a
JAR, then simply place the jar file in the lib subdirectory.

<Service Endpoint URL> This is the URL to a deployed service. It should be of the form:
http://<HostName>:<Port>/hpws/soap/ <WebServiceName>

Host and Port should represent your web server host and port. If you
are using the HP Application Server (HP-AS) and the built-in HTTP
listener, the default value for the port is 9090.

<WebServiceName> The name of the web service. This must qualify as a directory name.

<WSDL file> Optional. If this argument is not specified, a WSDL will be
automatically generated. If you do specify this argument, provide a
full path to the file.

Output
The utility creates a subdirectory for the service in the webservices subdirectory, under the root
directory of the WAR file.

<WebServiceName>.wsdl in the service directory

<WebServiceName>.xml in the service directory

Chapter 6- HP-SOAP Tools

Early Access Release : 01/2002 6-3

Example
<install_dir>\bin\ClassToWebService com.hp.mw.soap.samples.rpc.MathService
http://localhost:9090/hpws/soap/MathService MathService

This invocation will generate a web service configuration file and a WSDL file for
com.hp.mw.soap.samples.rpc.MathService and place the two files in a MathService
subdirectory under the webservices directory.

EJBToWebService
EJBToWebService is a command-line utility that generates the files that make up the HP-SOAP
server deployment descriptor for a specified Enterprise Java Bean (EJB) class. The deployment
descriptor is made up of a WSDL file with a correct endpoint URL, and a web service configuration
file. If necessary, the utility creates a subdirectory for the service in a default webservices directory,
and places the generated files in that directory. It provides a simple way for enabling an EJB class to
be deployed as a web service on the HP SOAP server.

Usage
EJBToWebService <EJB Remote Interface Class Name> <Service Endpoint URL>
<WebServiceName> <EJB Well known name> <Home Interface Class Name> <jndi-
vendor> <ejb client jar> [<WSDL file>]

where

Table 6-2: Parameters for EJBToWebService utility

Parameter Description

<EJB Remote Interface Class Name> The fully qualified Java class that represents the remote
interface to the EJB.

<Service Endpoint URL> The URL to a deployed service. It should be of the form:
http://<Host>:<Port>/hpws/soap/<WebServiceName>.

<Host> and <Port> should represent your web server host
and port. If you are using the HP Application Server and
the built-in HTTP listener, the default value for the port is
9090.

<WebServiceName> The name of the web service. This must qualify as a
directory name.

<EJB Well Known Name> The JNDI lookup name for the EJB.

<Home Interface Class Name> Full path to the EJB home interface class.

<jndi-vendor> Enter one of the supported vendor names. Currently, HP
or JBoss.

http://localhost:9090/hpws/soap/MathService

HP Web Services Platform User's Guide

6-4 Early Access Release : 01/2002

Table 6-2: Parameters for EJBToWebService utility

Parameter Description

<EJB Client Jar> The complete file path and name of the EJB client jar
generated by the application server deployment tool. This
utility adds it to the internal classpath so that WSDL
generation succeeds.

Note: Since HP-SOAP server needs to dynamically load
this class at run-time, we recommend that you place your
Java classes in the classes subdirectory of WEB-INF
directory. If your class is in a JAR, then simply place the
jar file in the lib subdirectory.

<WSDL file> Optional. If this argument is not specified, a WSDL is
automatically generated. If you do specify this argument,
provide a full path to the file.

Output
This utility creates a subdirectory for the service in the webservices subdirectory, under the root
directory of the WAR file.

<WebServiceName>.wsdl in the service directory

<WebServiceName>.xml in the service directory

Example
<install_dir>\bin\EJBToWebService com.hp.mwlabs.wso.examples.ejb.LoanCalc
http://localhost:9090/hpws/soap/MyEJBLoanCalc MyEJBLoanCalc LoanCalc
com.hp.mwlabs.wso.examples.ejb.LoanCalcHome HP client_dep.jar

This invocation will generate a web service configuration file, and a WSDL file for the
LoanCalc EJB. It will copy them to a MyEJBLoanCalc subdirectory under the webservices
directory.

HandlerToWebService
HandlerToWebService is a command-line utility that generates the web service configuration file for
a specified Document Handler class. The deployment descriptor in the HP-SOAP server is made up
of a WSDL file with a correct endpoint URL, and a web service configuration file. In the case of
Document Handlers, you should create a WSDL file for your service and include a correct endpoint
URL. As shown below, this file is one of the required arguments to this utility. If necessary, the
utility creates a subdirectory for the service in a default webservices directory and places the
relevant files in that directory.

Usage
HandlerToWebService <Handler Class Name> <Service Endpoint URL>
<WebServiceName> <WSDL file>

where

Chapter 6- HP-SOAP Tools

Early Access Release : 01/2002 6-5

Table 6-3: Parameters for HandlerToWebService utility

Parameter Description

<Handler Class Name> The complete path to the Java class that implements the
com.hp.mw.soap.handlerSOAPMessageHandler interface.

Note: Since the HP-SOAP server needs to dynamically load this
class at run-time, we recommend that you place your Java classes
in the classes subdirectory of WEB-INF directory. If your class is
in a JAR, then simply place the jar file in the lib subdirectory.

<Service Endpoint URL> The URL to a deployed service. It should be of the form:

http://<Host>:<Port>/hpws/soap/<WebServiceName>.
<Host> and <Port> should represent your web server host and
port. If you are using the HP Application Server and the built-in
HTTP listener, the default value for the port is 9090.

Note: This URL is not currently used by this utility

<WebServiceName> The name of the web service. This must qualify as a directory
name.

<WSDL file> Required. Specify the complete file path and name to your WSDL
file. Ensure that the endpoint and service name information in the
WSDL file is accurate. The format of the endpoint URL for a service
deployed in HP-SOAP is as follows:
This is the URL to a deployed service. It should be of the form:

http://<Host>:<Port>/hpws/soap/<WebServiceName>.

The <Host> and <Port> should represent your web server host and
port. If you are using the HP Application Server and the built-in
HTTP listener, the default value for the port is 9090.

Output
This utility creates a subdirectory for the service in the webservices subdirectory, under the root
directory of the web application.

It copies the WSDL file that was passed in by the user to the service subdirectory with a new name in
the service directory.

<WebServiceName>.wsdl
<WebServiceName>.xml

WSDLToClientProxy
WSDLToClientProxy is a command-line utility that reads the WSDL (Web Service Description
Language) for a given web service and generates Java source code for a "proxy" class This code can
be compiled and used as if the web service was a local class. It performs essentially the same task as
Java's rmic command, but for SOAP web services.

Usage
WSDLToClientProxy <Service Endpoint URL> [<PackageName>]

HP Web Services Platform User's Guide

6-6 Early Access Release : 01/2002

where

Table 6-4: Parameters for WSDLToClientProxy utility

Parameter Description

<Service Endpoint URL for WSDL> The URL to get the WSDL for a deployed service. It should
be of the form:

http://<Host>:<Port>/hpws/soap/<WebServiceName>w
sdl

The <Host> and <Port> should represent your web server
host and port. If you are using the HP Application Server
and the built-in HTTP listener, the default value for the port
is 9090.

<PackageName> Optional. If specified, the generated proxy class will have
the package included in its Java source file.

Output
This utility generates the client proxy Java class in the current directory.

ClassToWSDL
ClassToWSDL is a command-line utility that generates WSDL for a given Java class implementing a
web service. It provides a simple way for publishing the interface of a web service implemented as a
Java class over the Internet to potential users of the web service.

Usage
ClassToWSDL <Java Class Name> <Service Endpoint URL> <WebServiceName>

where

Table 6-5: Parameters for ClassToWSDL utility

Parameter Description

<Java Class Name> The complete path to the Java class that you wish to expose as a
web service. This class must be in classpath.

Note: Since HP-SOAP server needs to dynamically load this class
at run-time. We recommend that you place your Java classes in the
classes subdirectory of the WEB-INF directory. If your class is in a
JAR, then simply place the JAR file in the lib subdirectory.

<Service Endpoint URL> The URL to a deployed service. It should be of the form:
http://<Host>:<Port>/hpws/soap/<WebServiceName>

<Host> and <Port> should represent your web server host and
port. If you are using the HP Application Server and the built-in
HTTP listener, the default value for the port is 9090.

<WebServiceName> The name of the web service. This must qualify as a directory
name.

Chapter 6- HP-SOAP Tools

Early Access Release : 01/2002 6-7

Output
<WebServiceName>.wsdl in the current directory.

WSDLToServerSkeleton
WSDLToServerSkeleton is a command-line utility which reads the WSDL for a given web service. It
generates Java source code for the "skeleton" of a service that implements the interface. Users can
edit the file and implement each method. The tool is primarily used for porting a web service from
one language to another.

Usage
WSDLToServerSkeleton <Service Endpoint URL> <PackageName>

where

Table 6-6: Parameters for WSDLToServerSkeleton utility

Parameter Description

<Service Endpoint URL> The URL to a deployed service. It should be of the form:
http://<Host>:<Port>/hpws/soap/ <WebServiceName>

<Host> and <Port> should represent your web server host and
port. If you are using the HP Application Server and the built-in
HTTP listener, the default value for the port is 9090.

<PackageName> The Java package name to be used in the generated skeleton
service source file.

HP Web Services Platform User's Guide

6-8 Early Access Release : 01/2002

Early Access Release : 01/2002 i-1

Index

A
Adapter, 3-8, 5-9

Defining, 5-2
Architecture, 4-1

HP Web Services platform, 2-1

C
Castor, 4-9

CastorConverter, 4-11

classToWebService tool, 3-5, 3-9

Client proxy, 5-10

Compiling the Handler, 3-8

Complex Data Types, 4-9

Complex Type Support, 4-4

Castor Converter, 4-5
The HP-SOAP Server and the Exolab Castor

Project, 4-4
Configuration

Service Configuration Override, 4-7
Configuring a Web Service, 5-1

Configuring the HP-SOAP Server, 5-8

Configuring the JAXM Servlet, 5-8

Converter

Input, 5-6
Result, 5-7
Type, 5-5

Custom Document Handler, 3-7

Custom Prefixes, 5-8

D
Data Type Support, 4-2

Complex Type Support, 4-4
Supported Data Types, 4-2
Type Management, 4-3
Type Management at the Global level, 4-3
Type Management at the Service level, 4-4
Type Management at the WSDL Operation

level, 4-4
Deploying a Web Service, 5-1, 5-2

Deploying the Handler, 3-8

Deployment descriptor, 5-2

Deserialization, 4-5

doc-handler, 5-5

Document Exchange adapter, 3-8

Document Exchange requests, 3-7

Document Exchange service

Example using a Java class, 5-5
Using a Java Class, 5-5

Document Handler

Custom, 3-7
Writing a Document Handler, 3-7

E
EJB

as a Web Service, 3-5
EJB Adapter

HP Web Services Platform User's Guide

i-2 Early Access Release : 01/2002

Example of an RPC service, 5-5
Setting up an RPC service, 5-4

ejbadapter.xconf, 5-9

EJBtoWebService tool, 3-6

ejb-type, 5-4

Exolab, 4-9

F
figuring Web Services, 5-5

G
Global Type Registry, 4-3

H
Handler. See Document Handler

Defining, 5-2
Header blocks, 3-10

Header processor, 3-9, 3-10

Header Processors, 2-4

· Header Groups, 2-4
Global SOAP Actor, 2-4
Service Specific Configuration, 2-4

headerdapater.xconf, 5-9

Home interface, 5-4

HP, 5-4, 5-9

HP SOAP Server. See SOAP server

HP Web Services platform

Introduction, 1-1
HP Web Services Platform

What is it?, 1-2
HP-SOAP Server, 2-2

HTTP Get, 5-10

I
Implementation Object, 3-7

Input converter, 5-6

Invoking a Service, 4-8

J
Java class

as a Web Service, 3-4
Example of an RPC service, 2-8, 4-2, 4-4, 4-7,

5-2, 5-3
Mapping XML tags, 4-10
Setting up a Document Exchange service, 5-5
Setting up an RPC service, 5-3

Java Class

Example of a Document Exchange service, 5-5
JAXM, 3-7, 3-11

Configuring the servlet, 5-8
JAXMRPCInbox, 5-8

JBOSS, 3-6, 5-4, 5-9

jndi-vendor, 5-4

L
LoanCalcService, 3-6

Logging, 5-8

Setting global parameters, 5-9
logkit.xcof, 5-9

logkit.xcon, 5-9

lookup-name, 5-3, 5-4, 5-5

M
Mapping, 3-8

Servlets, 5-8
MappingTool, 4-10

Messaging

Synchronous, 3-7
Method

processMessage, 3-8
setWebServiceContext, 3-8

Method Overloading, 4-8

O
Outgoing Messages

Cusotm prefixes, 5-8

P
processMessage method, 3-8

Index

Early Access Release : 01/2002 i-3

R
remote interface, 5-4

Result converter, 5-7

RPC service

Example using a Java Class, 2-8, 4-2, 4-4, 4-7,
5-2, 5-3

Example using an EJB Adapter, 5-5
Using a Java Class, 5-3
Using an EJB, 5-4

rpc-ejb, 3-6, 5-4

rpc-java, 5-3

S
Schema Types, 4-10

Serialization, 4-6

Servlet mapping, 5-8

Setting Global Logging Parameters, 5-9

Setting up a Document Exchange service using a
Java class, 5-5

Setting up an RPC service using a Java class, 5-3

Setting up an RPC service using an EJB Adapter,
5-4

setWebServiceContext method, 3-8

SOAP Actor Attribute, 2-5

SOAP Header Processing, 2-4

SOAP Payload Processing, 2-6

SOAP processing pipelines, 2-1

SOAP server

Configure, 5-8
SOAP-Actor, 3-12

soap-type.xml, 4-10, 4-11

Synchronous Messaging, 3-7

T
Testing Deployed Web Services, 5-10

Tools

ClassToWebService, 6-2

ClassToWSDL, 6-6
EJBToWebService, 6-3
HandlerToWebService, 6-4
SOAP, 6-1
WSDLToClientProxy, 6-5
WSDLToServerSkeleton, 6-7

Type converter, 5-5

U
UDDI, 1-3

Universal Description, Discovery and Integration,
1-3

W
Web Service

Configure, 5-1
Configuring, 5-5
Deploy, 5-1, 5-2
Using a Result converter, 5-7
Using an Input converter, 5-6
Using an Type converter, 5-5

web service file, 5-2

Web services

Grouping, 5-3
Organizing, 5-3

Web Services

Testing, 5-10
What are they?, 1-1

Web Services Description Language, 1-3

Web Services Platform

Using, 3-1
web.xml file, 5-8

Writing a Document Handler, 3-7

WSDL, 1-3, 5-10

WSDL file, 5-2

WSDL Validation, 4-9

wsdl-validation, 5-3, 5-4, 5-5

X
XML file, 5-2

HP Web Services Platform User's Guide

i-4 Early Access Release : 01/2002

Early Access Release : 01/2002 g-1

Glossary

Adapter/Handler
A software component that receives the business payload of a SOAP message and passes it to the
application that will process it.

B2B
Refers to Business-to-Business online interactions. The HP Web Services platform facilitates
business-to-business interactions by enabling cross-platform communication and sharing of business
information using a SOAP based message exchange implementation.

BizTalk
The Microsoft BizTalk Application Server automates the exchange of internal business data enabling
companies to exchange business data with partners using EDI or XML. Primarily aimed at enabling
smaller companies to do electronic business with larger companies that have EDI servers.

BTP
Business Transaction Protocol (BTP) is an XML-based specification for representing and managing
complex, multi-step transactions over the Internet. BTP provides an open specification for XML
message interfaces to support coordination of web services from different Internet trading partners.

Castor Converter
The Castor converter is an open source, data-binding framework that enables you to convert an
XML document into a Java object, or the reverse, from a Java object back into an XML document.

Cocoon
Apache Cocoon is an XML publishing framework that is designed around pipelined SAX processing.
The HP-SOAP server takes advantage of Cocoon's pipeline controller features and application
server-neutral services.

Deserialize
The process of transforming XML data into a Java object that can be used by a back-end application.
In the HP-SOAP server, the Castor converter performs this action.

Digital Signature
A unique keycode that provides security for parties exchanging information across the Internet. This
keycode enables client/server authentication to occur before information is exchanged.

HP Web Services Platform User's Guide

g-2 Early Access Release : 01/2002

ebXML
ebXML is an international initiative established by UN/CEFACT and OASIS. "The United Nations
Centre for Trade Facilitation and Electronic Business (UN/CEFACT) and the Organization for the
Advancement of Structured Information Standards (OASIS) have joined forces to initiate a
worldwide project to standardize XML business specifications. UN/CEFACT and OASIS have
established the Electronic Business XML Working Group to develop a technical framework that will
enable XML to be utilized in a consistent manner for the exchange of all electronic business data.

EDI
Electronic Data Interchange is a set of standards for controlling the exchange of business documents
(such as purchase orders and invoices) between computers.

EJB
Enterprise JavaBeans is the server-side component architecture for the J2EE platform. EJB enables
simplified development of distributed, transactional, secure and portable Java applications.

Element
An element is another name for an XML tag that can contain other elements or tags.

Formatter
Formatters in the HP-SOAP server allow the user to reformat the data from an incoming SOAP
message before and after it has been processed.

GET
HTTP servers may serve GET requests as part of the HTTP protocol.

Handler
A Java object that implements one of the handler interfaces shipped with the HP-SOAP server that
serves as a plugin of functionality.

HP-AS
Hewlett-Packard's J2EE compliant application server.

Interoperability
The ability to handle translations between data formats, communications protocols, and security
mechanisms. The HP Web Services platform is built upon standards based technologies and
therefore enables interoperability between diverse business partners that utilize these standards.

JAXM
The Java API for XML Messaging is an optional package that enables applications to send and
receive document oriented XML messages using a pure Java API. JAXM implements the Simple
Object Access Protocol (SOAP) 1.1, with Attachments messaging.

JAXM Serializer
A component in the HP-SOAP server that converts the XML output into bytes for transmission
along the wire to a receiver.

JSF
The Java Services Framework (JSF) is an open, standard mechanism for assembling service
components into Java server applications.

http://www.unece.org/cefact/
http://www.oasis-open.org/

Glossary

Early Access Release : 01/2002 g-3

SOAP Pipeline
A pipeline refers to the various processing stages that a SOAP message undergoes from the time it is
received by the HP-SOAP server until it is sent to its ultimate destination in the form of a response.
The HP-SOAP server has consists of two stages in its pipeline: header processing and payload
processing.

POST
HTTP servers may serve POST requests as part of the HTTP protocol.

Registry Composer
The HP-Registry Composer is a browser tool that enables easy registration of web services and for
discovering existing web services on public or private UDDI servers.

RPC
Remote Procedure Call is a function call that takes place from a software client to a software server.
It maintains procedure call semantics despite the fact that the server is not in the same process space
as the client.

Serialize
The process of transforming a Java object into XML data. In the HP-SOAP server, the Castor
converter performs this action. Serialization is also performed in another context. After the data has
been converted to XML, the JAXM Serializer converts the XML data into a byte stream so that it can
be sent to a receiver across the wire.

SOAP
Simple Object Access Protocol is a connectionless protocol that is built around the model of passing
documents between objects on a network. SOAP also specifies RPC capabilities.

SOAP Actor
A SOAP actor has a server-side and client-side meaning. On the server-side, a SOAP actor defines
the location of a set of web services. This actor is defined by an element in a global web service
configuration file. On the client-side, an actor is an attribute in the <header-block> element of the
requesting SOAP message. This actor attribute maps to the location defined in the actor element
defined on the server-side.

SOAP Node
A SOAP node is the concept of a location of a set of web services. A SOAP message may traverse
one or more SOAP nodes as a part of its processing.

UDDI Registry
Universal Description, Discovery and Integration (UDDI) is a repository-based registry service for
the automated lookup of web services. It is a place where web service providers can publish their
services and users can discover the services that are available.

WAR
A WAR (web application archive) file is an archive file that contains web components, server-side
utility classes, and other needed files. The HP Web Services platform uses a WAR file to deploy its
SOAP server and web services.

HP Web Services Platform User's Guide

g-4 Early Access Release : 01/2002

WSDL
Web Services Description Language (WSDL) is an XML format for describing network services as a
set of endpoints operating on messages containing either document-oriented or procedure-oriented
information

Early Access Release : 01/2002 A-1

Appendix A

XML Digital Signatures

Introduction
Digital Signatures for XML Documents is a work in progress from the World Wide Web Consortium
(W3C) and the IETF--a work begun in 1999. The latest version of the candidate specification can be
found at http://www.w3.org/TR/xmldsig-core. Its goal is to describe how to sign web resources,
and in particular XML documents, to provide data integrity, signature assurance and non-
repudiatability over web resources.

The HP Digital Signature Library classes are contained in the files xml-dsig.jar, xml-
common.jar and xml-c14n.jar. These files are located in the <install_dir>\lib directory. The
library also relies on the Sun Java Cryptography extension, jce1_2_1.jar and XML parser
implementations jaxp.jar, xcerces.java and xalan.jar which are installed in the
<install_dir>\lib directory. All of these files must be in your CLASSPATH to use the HP Digital
Signature Library. This is done automatically for web services developed in the HP Web Services
platform and/or HP-SOAP server. For standalone use, you can use the HPWSenv.bat batch file (or
HPWSenv.sh shell script for Linux/UNIX users) which is provided in the <install_dir>\bin
directory to set the classpath correctly.

In this chapter
Need for XML-based Digital Signature ... A-2

Structure of an XML Signature .. A-3
Steps to Create XML Signature ... A-4

Identifying Data Objects to be Signed..A-4
Reference Generation.. A-4
Creating the SignedInfo Element .. A-4
Generating the Signature... A-5

Verifying the Signature.. A-6
HP XML Digital Signature Library... A-6

Creating the Signature.. A-6
Verifying the Signature .. A-7

http://www.w3.org/TR/xmldsig-core

HP Web Services Platform User's Guide

A-2 Early Access Release : 01/2002

Need for XML-based Digital Signature
Current security solutions for most web deployments are insufficient for securing business
transactions. For business transactions carried out over the web, it is important to verify authenticity
of the message (who sent this message?), check the integrity of the data contained in the message
(has message been modified in transit?) and support non-repudiation (message sender should not be
able to deny sending the message). In scenarios where an XML document is passed among multiple
parties, each party may want to sign only the portion for which the party is responsible.

Using digital signatures in XML applies some additional requirements. While two XML documents
can be logically equivalent for most applications (that is, they differ in Namespace or they are
transformed with a different entity structure, attribute ordering or character encoding), without some
sort of canonicalization the documents will generate different digital signature.

Following is an example scenario that shows how digital signature can be used. In this scenario,
Alice, a client, and Bob, her banker, communicate over the Internet. Alice wants Bob to transfer
$1000 from her account to Tom’s account.

1. Alice sends the following message (M) to Bob: “Bob, Transfer $1000 from my account to account
182376. Alice”

Bob cannot know from this message alone whether Alice was the author of the message or whether
someone else sent the message. To verify the author, digital signature can be used.
A digital signature is a mechanism that takes a key (K), an hash algorithm and a message (M) to
produce signature output SigM by using a signing function SK (SigM=SK(hash(M)). This signature
has a similar property as a seal. It is non-repudiation: Only the signer could generate the signature for
that document (not reusable). In addition, anyone is able to verify the signature, and the signed
document cannot be modified without breaking the signature.

In the PKI-based digital signature, Alice will use the private key to sign the hash (obtained from a
one-way hash function) of the document and send the result (SigM) along with the original
document. Once Alice has signed the document:

��Every person who has Alice's public key Pub can make sure that the pair M, SigM is a valid pair by
verifying SigM is the signature for message M.

��Only the owner of the private key can produce a digital signature that can be verified through the
public key.

2. Bob verifies the signature of the document as follows:
��Computes the hash of the document: H
��Bob verifies the signature using Alice's public key, recovering the original hash H' that Alice

signed.
�� Bob then compares H and H': they should be identical to verify the signature.
��The example below shows the need for using canonicalization for XML digital signature. XML

documents can undergo many mutations during the process of communication. For example, the
document could be modified when it is transferred from the client to Server B through Server A.

Client to Server A Server A to Server B
<Body>
 <Account>12345</Account>
 <Transfer>
 <Sum>1000</Sum>
 <Destination>
 <Account>62785</Account>

<Transaction ns="http://ServerB/bank>
 <Body>
 <Account>12345</Account>
 <Transfer>
 <Sum>1000</Sum>
 <Destination>

Appendix A- XML Digital Signatures

Early Access Release : 01/2002 A-3

 </Destination>
 <Transfer>
 <Today/>
<Body>

 <Account>62785</Account>
 </Destination>
 <Transfer>
 <Today></Today>
 <Body>
 <Approved/>
</Transaction>

The original document is embedded inside another one, which causes its nodes to belong to a new
namespace, and the element "Today" has been expanded.

The digital signature situation involving Alice yields a different value for a change of even one bit in
the message; therefore, it cannot be used as a solution. The expansion of "Today" does not change
the document from an XML standpoint, but it does change from a binary standpoint. A more
flexible scheme is required that would render the same signature valid under some acceptable
transformation. The XML digital signature specification provides a scheme for handling this type of
scenario and also provides an option for signing the selected elements of the XML document.

Structure of an XML Signature
Code Listing A-1: Structure of an XML Signature

<Signature>
 <SignedInfo>
 (CanonicalizatrionMethod)
 (SignatureMethod)
 (<Reference (URI=)?>
 (Transforms)?
 (DigestMethod)
 (DigestValue)
 (Reference>)+
 <SignedInfo>
 (SignatureValue)
 (KeyInfo)?
 (Object)*
</Signature>

The elements of the XML signature are explained in the following table.

Table A-1: Elements of an XML signature

Element Description

SignedInfo The information that is actually signed.

CanonicalizationMethod Represents the algorithm that is used to canonicalize the SignedInfo
element.

Reference Each resource to be signed has its own <Reference> element,
identified by the URI attribute. It includes the digest method and
resulting digest value calculated over the identified data object.

Transform Specifies an ordered list of processing steps that were applied to the
referenced resource’s content before it was digested.

DigestValue Carries the value of the digest of the reference resource.

SignatureValue Carries the value of the digest of the signedInfo element.

HP Web Services Platform User's Guide

A-4 Early Access Release : 01/2002

Table A-1: Elements of an XML signature

Element Description

KeyInfo Indicates the key to be used to validate the signature. Possible forms
for identification include certificates, keynames and key agreement
algorithms and information. Optional.

Steps to Create XML Signature
To create a digital signature, you need to complete the following steps:

1. Identify the data objects to be signed.
2. Generate the reference element(s).
3. Create the SignedInfo element.
4. Generate the signature.

Identifying Data Objects to be Signed
This step involves identifying all the data objects, which are identified through the Uniform Resource
Identifier (URI). The data objects can refer to a specific element in XML document, to the whole
XML document or to any web resource identified by a URI.

Reference Generation
In the signature, each data object is referenced by a reference element.

1. To generate a reference element, first apply any optional transform to the data object . For
example, you may want to use Base64 transformation for binary pages.

2. Next, feed the transformed stream into a digest algorithm. The algorithm is specified as value
for <DigestMethod> element (e.g., SHA-1). The result is placed as the value for the
<DigestValue> element. The transforms element contains the list of transforms applied on the
Data Object before calculating the digest.

3. Based on the above elements, a Reference element is created.
Code Listing A-2: Sample code for generating a reference element

<Reference URI="http://www.hp.com/purchase/purchase_order.xml">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>4JLaUVVmpdfobC3y+GxoqGUZlB0=</DigestValue>
</Reference>
<Reference
 URI=" http://www.hp.com/purchase/buy.xml">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>2jmj7l5rSw0yVb/vlWAYkK/YBwk=</DigestValue>
</Reference>

Creating the SignedInfo Element
The SignedInfo element is created using the <SignatureMethod> element (which is an algorithm
describing the digital signature algorithm), the <CanonicalizationMethod> element (which defines
the Canonicalization algorithm used for canonicalization of the SignedInfo element) and one or more
reference element(s).

Appendix A- XML Digital Signatures

Early Access Release : 01/2002 A-5

Code Listing A-3: Sample code for creating the SignedInfo element

<SignedInfo Id="DsigExample">
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />
 <Reference URI="http://www.hp.com/purchase/purchase_order.xml">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>4JLaUVVmpdfobC3y+GxoqGUZlB0=</DigestValue>
</Reference>
<Reference
 URI=" http://www.hp.com/purchase/buy.xml">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>2jmj7l5rSw0yVb/vlWAYkK/YBwk=</DigestValue>
</Reference>
</SignedInfo>

Generating the Signature
After the SignedInfo element is canonicalized, the next step is to calculate the digest of
canonicalized SignedInfo element and sign the digest using the <SignatureMethod> element value.
The result is then placed in the <SignatureValue> element.

If key information is needed, it can be placed in the <KeyInfo> element. <KeyInfo> contains the
public key corresponding to the private key used for signing. <SignedInfo>, <SignatureValue>
and optional <KeyInfo> elements are added into the <Signature> element to complete the XML
Signature.

A reference that contains a null URI attribute (URI=””) signs the entire document. Enveloped
signatures are over data within the same XML document as the signature; detached signatures are
over data external to the signature element.

Code Listing A-4: Sample code for signature generation

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
SignedInfo Id="DsigExample">
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />
 <Reference URI="http://www.hp.com/purchase/purchase_order.xml">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>4JLaUVVmpdfobC3y+GxoqGUZlB0=</DigestValue>
</Reference>
<Reference
 URI=" http://www.hp.com/purchase/buy.xml">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>2jmj7l5rSw0yVb/vlWAYkK/YBwk=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>h134^67</SignatureValue>
<KeyInfo>
<X509Data>
<X509SubjectName>CN=first Last,O=HP,L=Cupertino, S=CA,C=US</X509SubjectName>
<X509Certificate>
MDIOFJDD…DDD
</X509Certificate>
</X509Data>
</KeyInfo>
</Signature>

HP Web Services Platform User's Guide

A-6 Early Access Release : 01/2002

Verifying the Signature
Verification is a symmetrical process. To verify the digital signature, follow these steps:

1. For each reference element, recalculate the digests of the reference element and compare it to
the value in the <DigestValue> element of each <Reference> element.

2. Verify the Signature of the <SignedInfo> element. In this step, calculate the digest of
<SignedInfo> and use this and the public key to verify the value of the <SignatureValue>
element.

HP XML Digital Signature Library
HP XML Digital Signature provides the implementation in line with the current W3C specification.
The library is developed in Java and provides Java API for generating XML Signature and for
verification. This section provides the code sample for using the HP XML Digital Signature library.

Creating the Signature
To create the signature, follow the steps here:

1. Parse the XML document you would like to sign and Store in the Document object. Identify the
element object in which the signature will be added. The code below assumes that the Signature
will be added to sigParentElement.
Element sigParentElement = null;
sigParentElement = <Element to which Signature tag will be appended>

2. Select the name of the signature algorithm and the canonicalization and create KeyInfo element
if key is needed to be added to Signature.
// create a key info from the key pair.

KeyPair keyPairForSigning = (Generate RSA Based Key Pair…)
RSAPublicKey rsaPublicKey
= (RSAPublicKey) keyPairForSigning.getPublic();
KeyValue keyValue = new KeyValue(rsaPublicKey);
KeyInfo keyInfo = new KeyInfo(keyValue);

// create a signature object which will sign the xml document.
// the first argument is the element to which the <Signature> tag
//will be appended as child, after signing.

Signature signature = null;
signature = new Signature(sigParentElement,
"http://www.w3.org/2000/09/xmldsig# rsa-sha1”,
C14nAlgorithm.WITHOUT_COMMENTS, keyInfo);

where, in the Signature object constructor:

�� sigParentElement is the XML element to which Signature tag will be appended i.e. added as a
child element.

�� 2nd element represent the signature algorithm (Corresponding to <SignatureMethod> element
�� 3rd parameter represents Canonicalization Algorithm corresponding to

<CanonicalizationMethod>
3. Adding the reference element

// add the reference.
Reference reference = null;

Appendix A- XML Digital Signatures

Early Access Release : 01/2002 A-7

Reference = signature.addReference(refDigestMethod, refId,refURI
,refType);

where:

�� refDigestMethod refers to the Digest algorithm for Reference Element. (e.g.,
http://www.w3.org/2000/09/xmldsig#sha1)

�� refId is used to specify the ID for the reference.
�� refURI represents the reference URI.
�� RefType can be null other values are also possible. It allow the digest to be calculated regardless

of the SignatureElement.
4. Add the transform algorithm for the reference. It is important to specify the

ENVELOPED_SIGNATURE algorithm in the case of Enveloped Signature. This step should be
omitted in the case of detached signature.
// set the algorithm to be used for TRANSFORMation
reference.addTransform(TransformAlgorithm.ENVELOPED_SIGNATURE);

5. Sign the document using the private key in the keyinfo passed.
signature.sign(keyPairForSigning.getPrivate());

After this step is complete, the signature element is appended to sigParentElement object.

Verifying the Signature
To verify the digital signature, follow these steps:

1. For the verification process, in the received XML document, check the document to find
<Signature> element. The code sample assumes that <Signature> element is stored in the
element.
Element Sigelement = null;
SigElement = Signature.findFirst(docToVerify, Signature.getTagName());

Where findFirst method finds the first Signature element. DocToVerify is a Document
object which needs to be verified.

2. Create a signature element using the above element.
Signature signature = new Signature(siglement);

3. In the case <Signature> contains <KeyInfo> the public credentials in it can be used for
verification, otherwise external public key needs to be provided for verification.
Boolean verified = signature.verify().isSuccess();
// The above API assumes that key is specified in the <KeyInfo> element
 and will return true if the signature is verified.
OR
Boolean verified = signature.verify(pubKey).isSuccess();
// where pubKey refers to externally provided Key.

HP Web Services Platform User's Guide

A-8 Early Access Release : 01/2002

	About this Guide
	Who Should Read This Guide
	What You Should Know

	Web Services Documentation
	Documentation Conventions

	Product Information and Support
	The HP Middleware Website
	HP Middleware Technical Support

	Introduction to the HP Web Services Platform
	What is a Web Service?
	What is the HP Web Services Platform?
	An Architecture Designed for Web Services
	Compliant with Web Service Standards
	
	SOAP
	UDDI
	WSDL
	JAXM

	HP-SOAP Server Architecture
	HP-SOAP Server
	HP-SOAP Messaging Layer
	HP-SOAP Server Pipeline

	HP-SOAP Server Pipeline Processing
	SOAP Header Processing
	Header Processors
	SOAP Node
	SOAP Actor

	SOAP Payload Processing
	Adapter/Handlers
	SOAP Payload Processing in Action
	Data Type Support

	Digital Signatures
	HP – XML Digital Signature API
	HP-SOAP Client – Interceptor
	SOAP Envelope Signer/Verifier

	Exposing a Web Service
	Processing SOAP Messages
	Payload Processing
	Exposing a Web Service through an RPC Java Adapter
	
	Example Java class-based Service

	Exposing a Web Service through an RPC EJB Adapter
	
	Example of EJB-based Service

	Exposing a Web Service through a Document Exchange Adapter
	Writing a Document Handler
	Creating an Implementation Object
	Mapping the Custom Handler to the Adapter

	Header Processing
	Determine the Types of Header Blocks Needed for Your Service(s)
	Implement the Header Processor
	Defining the SOAP-actor Attribute for the SOAP Node

	Register the Header Processor and Deploy

	Using Digital Signatures in HP-SOAP
	Signing the Document on the Client Side
	Configuring HP-SOAP to Verify Signed SOAP Messages

	Data Types in the HP Web Services Platform
	Data Type Support
	Supported Data Types

	Type Management
	Type Management at the Global Level – Global Type
	Type Management at the Service Level (WebServiceName.xml)
	Type Management at the WSDL Operation level (WebServiceName.wsdl)

	Complex Type Support
	The HP-SOAP Server and the Exolab Castor Project
	The Castor Converter in Action

	Deserializing from a Text Value to a Java Object
	Deserializing with a Converter
	Deserializing with a Formatter
	Serializing from a Java Object to a Text Value
	Overriding the Service Configuration
	Configuring a Formatter or Converter at the Service Level
	Configuring a Formatter or Converter at the Message Level

	Invoking the Service
	Method Overloading
	WSDL Validation

	Using Castor for Complex Data Types in the HP-SOAP Server
	Mapping XML Tags to Fields in an Existing Java Class
	Generating Classes for Schema Types

	Deploying & Configuring Web Services
	Deploying Web Services
	Web Service Deployment Descriptor
	Web Service URL Structure
	Setting Up an RPC-style Service Using a Java Class
	Setting Up an RPC-style Service Using an EJB Adapter
	Setting Up a Document Exchange Service Using a Java Class

	Configuring Services
	Configuring a Service to Use a Type Converter
	Configuring a Service to Use an Input/Output Converter
	Configuring a Service to Use a Result Converter

	Customizing the HP-SOAP WebApp Configuration
	Configuring the JAXM Inbox Servlet
	Logging
	Using Custom Prefixes for Outgoing Messages

	Servlet Mapping

	Setting Global Logging Parameters
	Configuring Adapters
	Testing Your Deployed Web Services

	HP-SOAP Tools
	Introduction
	ClassToWebService
	Usage
	Output
	Example

	EJBToWebService
	Usage
	Output
	Example

	HandlerToWebService
	Usage
	Output

	WSDLToClientProxy
	Usage
	Output

	ClassToWSDL
	Usage
	Output

	WSDLToServerSkeleton
	Usage

	XML Digital Signatures
	Need for XML-based Digital Signature
	Structure of an XML Signature

	Steps to Create XML Signature
	Identifying Data Objects to be Signed
	Reference Generation
	Creating the SignedInfo Element
	Generating the Signature

	Verifying the Signature
	HP XML Digital Signature Library
	Creating the Signature
	Verifying the Signature

