
 NATIONAL COMPUTER

 SECURITY CENTER

 A GUIDE TO UNDERSTANDING CONFIGURATION MANAGEMENT

 IN TRUSTED SYSTEMS

 NCSC-TG-006-88 Library No. S-228,590

 FOREWORD

 This publication, "A Guide to Understanding Configuration Management in Trusted Systems", is being
issued by the National Computer Security Center (NCSC) under the authority of and in accordance with
Department of Defense (DoD) Directive 5215.1. The guidelines described in this document provide a set
of good practices related to configuration management in Automated Data Processing (ADP) systems
employed for processing classified and other sensitive information. Recommendations for revision to this
guideline are encouraged and will be reviewed biannually by the National Computer Security Center
through a formal review process. Address all proposals for revision through appropriate channels to:

 National Computer Security Center 9800 Savage Road Fort George G. Meade, MD 20755-6000

 Attention: Chief, Computer Security Technical Guidelines

____________________________ Patrick R. Gallagher, Jr. 28 March 1988 Director National Computer
Security Center

 i

 ACKNOWLEDGEMENTS

 Special recognition is extended to James N. Menendez, National Computer Security Center (NCSC), as
project manager and primary author of this document.

Special acknowledgement is given to Grant Wagner, NCSC, and Dana Nell Stigdon, NCSC, for their
constant help and guidance in the production of this document. Additionally, Dana Nell Stigdon, was
responsible for writing the section on the Ratings Maintenance Program. Acknowledgement is also given
to all those members of the computer security community who contributed their time and expertise by
actively participating in the review of this document.

 ii

 CONTENTS

FOREWORD .. i

ACKNOWLEDGEMENTS .. ii

CONTENTS .. iii

PREFACE ... v

1. PURPOSE ... 1

2. SCOPE ... 1

3. CONTROL OBJECTIVES 2

4. ORGANIZATION .. 3

5. OVERVIEW OF CONFIGURATION MANAGEMENT PRINCIPLES 4

 5.1 PURPOSE OF CONFIGURATION MANAGEMENT 4

6. MEETING THE CRITERIA REQUIREMENTS 5

 6.1 THE B2 CONFIGURATION MANAGEMENT REQUIREMENTS 5 6.2 THE B3
CONFIGURATION MANAGEMENT REQUIREMENTS 6 6.3 THE A1 CONFIGURATION
MANAGEMENT REQUIREMENTS 6

7. FUNCTIONS OF CONFIGURATION MANAGEMENT 7 7.1 CONFIGURATION
IDENTIFICATION 7 7.1.1 Configuration Items 8

 7.2 CONFIGURATION CONTROL 10 7.3 CONFIGURATION STATUS
ACCOUNTING 11 7.4 CONFIGURATION AUDIT 12 8. THE
CONFIGURATION MANAGEMENT PLAN 14

9. IMPLEMENTATION METHODS 16

 9.1 THE BASELINE CONCEPT 16 9.2 CONFIGURATION MANAGEMENT AT
MER, INC. 18 9.3 THE CONFIGURATION CONTROL BOARD 20

10. OTHER TOPICS .. 23

 10.1 TRUSTED DISTRIBUTION 23 10.2 FUNCTIONAL TESTING
................................. 24 10.3 CONFIGURATION MANAGEMENT TRAINING 24

 iii

 10.4 CONFIGURATION MANAGEMENT SUPERVISION 25 11. RATINGS
MAINTENANCE PROGRAM 26

12. CONFIGURATION MANAGEMENT SUMMARY 27

APPENDIX A: AUTOMATED TOOLS 29

 A.1 UNIX (1) SCCS 29 A.2 VAX DEC/CMS .. 30

GLOSSARY .. 32

REFERENCES .. 34

 (1) Unix is a registered trademark of Bell Laboratories

 iv

 PREFACE

Throughout this guideline there will be recommendations made that are not included in the Trusted
Computer System Evaluation Criteria (TCSEC) as requirements. Any recommendations that are not in the
TCSEC will be prefaced by the word "should," whereas all requirements will be prefaced by the word
"shall." It should be noted that a TCSEC rating will only be based upon meeting the TCSEC
requirements. Recommendations are made in order to provide additional ways of increasing assurance. It
is hoped that this will help to avoid any confusion.

 v

1. PURPOSE

The Trusted Computer System Evaluation Criteria (TCSEC) is the standard used for evaluating the
effectiveness of security controls built into ADP systems. The TCSEC is divided into four divisions: D, C,
B, and A, ordered in a hierarchical manner with the highest division, A, being reserved for systems
providing the best available level of assurance. Within divisions C through A are a number of subdivisions
known as classes, which are also ordered in a hierarchical manner to represent different levels of security
in these classes.

For TCSEC classes B2 through A1, the TCSEC requires that all changes to the Trusted Computing Base
(TCB) be controlled by configuration management. Configuration management of a trusted system
consists of identifying, controlling, accounting for, and auditing all changes made to the TCB during its
development, maintenance, and design. The primary purpose of this guideline is to provide guidance to
developers of trusted systems on what configuration management is and how it may be implemented in
the development and life-cycle of a trusted system. This guideline has also been designed to provide
guidance to developers of all systems on the importance of configuration management and how it may be
implemented. Examples in this document are not to be construed as the only implementation that will
satisfy the TCSEC requirement. The examples are merely suggestions of appropriate implementations.
The recommendations in this document are also not to be construed as supplementary requirements to the
TCSEC. The TCSEC is the only metric against which systems are to be evaluated.

This guideline is part of an on-going program to provide helpful guidance on TCSEC issues and the
features they address.

 2. SCOPE

An important security feature of TCSEC classes B2 through A1 is that there be configuration
management procedures to manage changes to the Trusted Computing Base (TCB) and all of the
documentation and tests affected by these changes. Additionally, it is recommended that such plans and
procedures exist for systems not being considered for an evaluation or whose target evaluation class may
be less than B2. The assurance provided by configuration management is beneficial to all systems. This
guideline will discuss configuration management and its features as they apply to computer systems and
products, with specific attention being given to those that are being built with the

 1

intention of meeting the requirements of the TCSEC, and to those systems planning to be re-evaluated
under the Ratings Maintenance Program (RAMP) (see Section 11. RAMP).

Except in cases where there is a distinction between the configuration management of a trusted system
and an untrusted system, the word "system" shall be used as the object of configuration management,
encompassing both the system and the TCB. It should be noted that the TCSEC only requires the TCB to
be controlled by configuration management, although it is recommended that the entire system be
maintained under configuration management.

 3. CONTROL OBJECTIVES

The TCSEC gives the following as the Assurance Control Objective:

 "Systems that are used to process or handle classified or other sensitive information must be designed to
guarantee correct and accurate interpretation of the security policy and must not distort the intent of that
policy. Assurance must be provided that correct implementation and operation of the policy exists
throughout the system's life-cycle."[1]

Configuration management maintains control of a system throughout its life-cycle, ensuring that the
system in operation is the correct system, implementing the correct security policy. The Assurance Control
Objective as it relates to configuration management leads to the following control objective that may be
applied to configuration management:

 "Computer systems that process and store sensitive or classified information depend on the hardware and
software to protect that information. It follows that the hardware and software themselves must be
protected against unauthorized changes that could cause protection mechanisms to malfunction or be
bypassed completely. [For this reason, changes to trusted computer systems, during their entire life-cycle,
must be carefully considered and controlled to ensure that the integrity of the protection mechanism is
maintained.] Only in this way can confidence be provided that the hardware and software interpretation
of the security policy is maintained accurately and without distortion."[1]

 2

4. ORGANIZATION

This document has been written to provide the reader with an understanding of what configuration
management is and how it may be implemented in an ADP system.

For developers of trusted systems, this document also relates the TCSEC requirements to the configuration
management practices that meet them. This document has been organized to illustrate the connection
between practices and requirements through the use of a numbering convention for the TCSEC
requirements. The configuration management requirements have been broken down into 19 separate
requirements in Section 6 of this document. The requirement number(s) will be located in parenthesis
following its appropriate discussion, e.g., (Requirements 2, 15), signifies that the previous discussion dealt
with TCSEC requirements 2 and 15 as stated in Section 6.

 3

5. OVERVIEW OF CONFIGURATION MANAGEMENT PRINCIPLES

Configuration management consists of four separate tasks: identification, control, status accounting, and
auditing. For every change that is made to an automated data processing (ADP) system, the design and
requirements of the changed version of the system should be identified. The control task of configuration
management is performed by subjecting every change to documentation, hardware, and software/firmware
to review and approval by an authorized authority. Configuration status accounting is responsible for
recording and reporting on the configuration of the product throughout the change. Finally, through the
process of a configuration audit, the completed change can be verified to be functionally correct, and for
trusted systems, consistent with the security policy of the system. Configuration management is a sound
engineering practice that provides assurance that the system in operation is the system that is supposed to
be in use. The assurance control objective as it relates to configuration management of trusted systems is
to "guarantee that the trusted portion of the system works only as intended."[1]

Procedures should be established and documented by a configuration management plan to ensure that
configuration management is performed in a specified manner. Any deviation from the configuration

management plan could contribute to the failure of the configuration management of a system entirely, as
well as the trust placed in a trusted system.

 5.1 Purpose of Configuration Management

Configuration management exists because changes to an existing ADP system are inevitable. The purpose
of configuration management is to ensure that these changes take place in an identifiable and controlled
environment and that they do not adversely affect any properties of the system, or in the case of trusted
systems, do not adversely affect the implementation of the security policy of the TCB. Configuration
management provides assurance that additions, deletions, or changes made to the TCB do not compromise
the trust of the originally evaluated system. It accomplishes this by providing procedures to ensure that the
TCB and all documentation are updated properly.

 4

6. MEETING THE CRITERIA REQUIREMENTS

This section lists the TCSEC requirements for configuration management. Each requirement for each
class has been listed separately and numbered. Each number may be referenced to the requirement
discussions that follow in this document. This section is designed to serve as a quick reference for TCSEC
class requirements.

 6.1 The B2 Configuration Management Requirements Requirement 1 - "During development and
maintenance of the TCB, a configuration management system shall be in place."[1]

Requirement 2 - The configuration management system shall maintain "control of changes to the
descriptive top-level specification (DTLS)."[1]

Requirement 3 - The configuration management system shall maintain control of changes to "other design
data."[1]

Requirement 4 - The configuration management system shall maintain control of changes to
"implementation documentation"[1] (e.g., user's manuals, operating procedures).

Requirement 5 - The configuration management system shall maintain control of changes to the "source
code."[1]

Requirement 6 - The configuration management system shall maintain control of changes to "the running
version of the object code."[1]

Requirement 7 - The configuration management system shall maintain control of changes to "test
fixtures."[1]

Requirement 8 - The configuration management system shall maintain control of changes to test
"documentation."[1]

Requirement 9 - "The configuration management system shall assure a consistent mapping among all
documentation and code associated with the current version of the TCB."[1]

Requirement 10 - The configuration management system shall provide tools "for generation of a new
version of the TCB from the source code."[1]

Requirement 11 - The configuration management system shall provide "tools for comparisons of a newly
generated TCB version

 5

with the previous version in order to ascertain that only the intended changes have been made in the code
that will actually be used as the new version of the TCB."[1]

6.2 The B3 Configuration Management Requirements

The requirements for configuration management at TCSEC class B3 are the same as the requirements for
TCSEC class B2. Although no additional requirements have been added, the configuration management
system shall change to reflect changes in the design documentation requirements at class B3. This means
that the additional documentation required for TCSEC class B3 shall also be maintained under
configuration management.

6.3 The A1 Configuration Management Requirements

Requirements 2 through 11 are the same as those described in Section 6.1 for a class B2 rating. In
addition the following requirements are added for class A1:

Requirement 12 - "During the entire life-cycle, i.e., during the design, development, and maintenance of
the TCB, a configuration management system shall be in place for all security-relevant hardware,
firmware, and software."[1]

Requirement 13 - The configuration management system shall maintain control of changes to the TCB
hardware.

Requirement 14 - The configuration management system shall maintain control of changes to the TCB
software.

Requirement 15 - The configuration management system shall maintain control of changes to the TCB
firmware.

Requirement 16 - The configuration management system shall "maintain control of changes to the formal
model."[1]

Requirement 17 - The configuration management system shall maintain control of changes to the "formal
top-level specifications."[1]

Requirement 18 - The tools available for configuration management shall be "maintained under strict
configuration control."[1]

Requirement 19 - "A combination of technical, physical, and procedural safeguards shall be used to
protect from unauthorized modification or destruction the master copy or copies of all material used to
generate the TCB."[1]

 6

7. FUNCTIONS OF CONFIGURATION MANAGEMENT

7.1 Configuration Identification Configuration management procedures should enable a person to
"identify the configuration of a system at discrete points in time for the purpose of systematically
controlling changes to the configuration and maintaining the integrity and traceability of this
configuration throughout the system life cycle."[4] The basic function of configuration identification is to
identify the components of the design and implementation of a system. When it concerns trusted systems,
this specifically means the design and implementation of the TCB. This task may be accomplished
through the use of identifiers and baselines (see Section 9.1 The Baseline Concept). By establishing
configuration items and baselines, the configuration of the system and its TCB can be accurately identified
throughout the system life-cycle.

At TCSEC class B2, the TCSEC requires that "changes to the descriptive top-level specification, other
design data, implementation documentation, source code, the running version of the object code, and test
fixtures and documentation"[1] of the TCB be controlled by configuration management (Requirements 2,
3, 4, 5, 6, 7, 8). Configuration identification helps achieve this control. The TCSEC requires that each
change to the TCB shall be individually identifiable so that a history of the TCB may be generated at any
time. At TCSEC class A1, the requirements are extended to include that the "formal model...and formal
top-level specifications" of the TCB shall also be maintained under the configuration management system
(Requirements 16, 17).

The following is a sample list of what shall be identified and maintained under configuration
management:

 * the baseline TCB including hardware, software, and firmware

 * any changes to the TCB hardware, software, and firmware since the previous baseline

 * design and user documentation

 * software tests including functional and system integrity tests

 * tools used for generating current configuration items (required at TCSEC class A1 only)

Configuration management procedures should make it possible to accurately reproduce any past TCB
configuration. In the event a

 7

security vulnerability is discovered in a version of the TCB other than the most current one, analysts will
need to be able to reconstruct the past environment. This reconstruction will be possible to perform if
proper configuration identification has been performed throughout the system life-cycle.

The TCSEC also requires at class B2 and above, that tools shall be provided "for generation of a new
version of the TCB from the source code" and that there "shall be tools for comparing a newly generated
version with the previous TCB version in order to ascertain that only the intended changes have been
made in the code that will actually be used as the new version of the TCB"[1] (Requirements 10, 11).

These tools are responsible for providing assurance that no additional changes have been inserted into the
TCB that were not intended by the system designer. Automated tools are available that make it possible to
identify changes to a system online (see APPENDIX A: AUTOMATED TOOLS). Any changes, or
suggested changes to a system should be entered into an online library. This data can later be used to
compare any two versions of a system. Such online configuration libraries may even provide the capability
for line-by-line comparison of software modules and documentation. At Class A1, the tools used to
perform this function shall be "maintained under strict configuration control"[1] (Requirement 18). These
tools shall not be changed without having to undergo a strict review process by an authorized authority.

 7.1.1 Configuration Items

A configuration item is an uniquely identifiable subset of the system configuration that represents the
smallest portion of the system to be subject to independent configuration management change control
procedures. Configuration items need to be individually controlled because any change to a configuration
item may have some effect upon the properties of the system or the security policy of the TCB.

Configuration items as they relate to the TCB, are subsets of the TCB's hardware, firmware, software,
documentation, tests, and at class A1, development tools. Each module of TCB software for example, may
constitute a separate configuration item. Configuration items should be assigned unique identifiers (e.g.,
serial numbers, names) to make them easier to identify throughout the system life-cycle. Proper
identification plays a vital role in meeting the TCSEC requirement for class B2 that requires the
configuration management system to "assure a consistent mapping among all documentation and code
associated with the current version of the TCB"[1] (Requirement 9). Used in conjunction with

 8

a configuration audit, a consistent labeling system helps tie documentation to the code it describes. Not
only does labeling each configuration item make them easier to identify, but it also increases the level of
control that may be maintained over the entire system by making these items more traceable.

Configuration items may be given an identifier through a random distribution process, but, it is more
useful for the configuration identifier to describe the item it identifies. Selecting different fields of the
configuration identifier to represent characteristics of the configuration item is one method of
accomplishing this. The United States Social Security number is a "configuration identifier" we all have
that uses such a system. The different fields of the number identify where we applied for the Social
Security card, hence describing a little bit about ourselves. As the configuration identifier relates to
computer systems, one field should identify the system version the item belongs to, the version of software
that it is, or its interface with other configuration items. When using a numbering scheme like this, a
change to a configuration item should result in the production of a new configuration identifier. This new
identifier should be produced by an alteration or addition to the existing configuration identifier. A new
version of a software program should not be identified by the same configuration item number as the
original program. By treating the two versions as distinct configuration items, line- by-line comparisons
are possible to perform.

Identifying configuration items is a task that should be performed early in the development of the system,
and once something is designated as a configuration item, the design of that item should not change
without the knowledge and permission of the party controlling the item. Early identification of
configuration items increases the level of control that may be maintained over the item and allows the
item to be traced back through all stages of the system development. In the event that a configuration item
is not identified until late in the development process, accountability for that item in the early stages of the
system development would be non-existent.

Configuration items may vary widely in complexity, size, and type, and it is important to choose
configuration items with appropriate granularity. If the items are too large, the data identifying each one
will overwhelm anyone trying to audit the system. If the items are too small, the amount of total
identification data will overwhelm the system auditors.[2] The appropriate granularity for configuration
items should be identified by each vendor and documented in the configuration management plan.

 9

 7.2 Configuration Control

"Configuration control involves the systematic evaluation, coordination, approval, or disapproval of
proposed changes to the design and construction of a configuration item whose configuration has been
formally approved."[5] Configuration control should begin in the earliest stages of the design and
development of the system and extend over the full life of the configuration items included in the design
and development stages. Early initiation of configuration control procedures provides increased
accountability for the system by making its development more traceable. The traceability function of
configuration control serves a dual purpose. It makes it possible to evaluate the impact of a change to the
system and controls the change as it is being made. With configuration control in place, there is less
chance of making undesirable changes to a system that may later adversely affect the security of the
system.

Initial phases of configuration control are directed towards control of the system configuration as defined
primarily in design documents. For these, the Configuration Management plan shall specify procedures to
ensure that all documentation is updated properly and presents an accurate description of the system and
TCB configuration. Often a change to one area of a system may necessitate a change to another area. It is
not acceptable to only write documentation for new code or newly modified code, but rather
documentation for all parts of the TCB that were affected by the addition or change shall be updated
accordingly. Although documentation may be available, unless it is kept under configuration management
and updated properly it will be of little, if any use. In the event that the system is found to be deficient in
documentation, efforts should be made to create new documentation for areas of the system where it is
presently inadequate or non-existent.

To meet the TCSEC requirements though, configuration control shall cover a broader area than just
documentation, and at Class B2 shall also maintain control of "design data, source code, the running
version of the object code, and test fixtures"[1] of the TCB (Requirements 3, 5, 6, 7). A change to any of
these shall be subject to review and approval by an authorized authority.

For TCB configuration items, those items shall not be able to change without the permission of the
controlling party. At TCSEC class A1, this requirement is strengthened to require "procedural
safeguards"[1] to protect against unauthorized modification of the materials used in the TCB
(Requirement 19). These procedures should require that not only does the

 10

controlling party need to give permission to have a change performed, but that the controlling party
performs the change on the master copy of the TCB that will be released. This ensures against changes
being made to the master copy that are different than the approved changes.

The degree of configuration control that is exercised over the TCB will affect whether or not it meets the
TCSEC requirements for configuration management. The configuration management requirements in the
TCSEC require that a configuration management system be in place during the "development and
maintenance of the TCB" at Class B2 (Requirement 1), and at Class A1, "during the entire life-cycle"[1]

of the TCB (Requirement 12). A minimal configuration control system that would not be sufficient in
meeting the TCSEC requirements, may only provide for review after a change has been made to the
system. A system such as this may ensure that the change is complete and acceptable and may control the
release of the change, but for the most part, the control exercised is little more than an after-the-fact
quality assurance check. This system is certainly better than having no control system in place, but it
would not meet the TCSEC requirements for configuration management. What is missing from this
system that would bring it closer to the B2 requirements is control over the change as it is being made.
The configuration control required by the TCSEC should provide for constant checking and approval of a
change from its inception, through implementation and testing, to release. The level of control exercised
over the TCB may exceed that of the rest of the system, but it is recommended that all parts of the system
be under configuration control.

In the case of a change to hardware or software/firmware that will be used at multiple sites, configuration
control is also responsible for ensuring that each site receives the appropriate version of the system.

The point behind configuration control of the TCB is that all changes to the TCB shall be approved,
monitored, and evaluated to provide assurance that the TCB functions properly and that all security
policies are maintained.

 7.3 Configuration Status Accounting

Configuration status accounting is charged with reporting on the progress of the development in very
specific ways. It accomplishes this task through the processes of data recording, data storing, and data
reporting. The main objective of configuration status accounting is to record and report all information
that is of significance to the configuration

 11

management process. What is of significance should be outlined in the Configuration Management Plan.
The establishment of a new baseline (see Section 9.1 THE BASELINE CONCEPT) or the meeting of a
milestone is an example of what should be recorded as configuration status accounting information. The
requirements in the configuration management plan should be viewed as the minimum and any events
that seem relevant to configuration management should be captured and recorded in that they may prove
to be useful in the future.

The configuration accounting system may consist of tracing through documentation manually to find the
status of a change or it may consist of a database that can automatically track a change. As long as the
information exists accurately in some form though, it will serve its purpose. The benefit of an online status
accounting system is that the information may be kept in a more structured fashion, which would facilitate
keeping it up to date. Being able to query a database for information concerning the status of a
configuration change or configuration item would also be less cumbersome than sorting through notebook
pages. Finally, the durability of a diskette or hard disk for storage outweighs that of a spiral notebook or
folder, provided that it is properly backed up to avoid data loss in the event of a system failure.

Whichever system is used, it should be possible to quickly locate all authorized versions of a configuration
item, add together all authorized changes with comments about the reason for the change, and arrive at
either the current status of that configuration item, or some intermediate status of the requested item. The
status of all authorized changes being performed should be formulated into a System Status Report that
will be presented at a Configuration Control Board meeting (see Section 9.3 THE CONFIGURATION
CONTROL BOARD).

Configuration status accounting "establishes records and reports which enable proper logistics support,
i.e., the supplying of spares, instruction manuals, training and maintenance facilities, etc. to be
established."[5] The records and reports produced through configuration status accounting should include
a current configuration list, an historical change list, the original designs, the status of change requests
and their implementation, and should provide the ability to trace all changes.

 7.4 Configuration Audit

Configuration auditing involves checking for top to bottom completeness of the configuration accounting
information "to

 12

ascertain that only the [authorized] changes have been made in the code that will actually be used as the
new version of the TCB."[1] (Requirement 11) When a change has been made to a system, it should be
reviewed and audited for its effect on the rest of the system. This should include reviewing and testing all
software to ensure that the change has been performed correctly.

Configuration auditing is concerned with examining the control process of the system and ensuring that it
actually occurs the way it should. Configuration auditing for trusted systems verifies that after a change
has been made to the TCB, the security features and assurances are maintained. Configuration audits
should be performed periodically to verify the configuration status accounting information. The
configuration audit minimizes the likelihood that unapproved changes have been inserted without going
unnoticed and that the status accounting information adequately demonstrates that the configuration
management assurance is valid.

"A complete audit should include tracing each requirement down through all functions that implement it
to see if that requirement is met."[2] Furthermore, the configuration audit should also ensure that no
additions were made that were not required. For the audit to provide a useful form of technical review, it
should be predictable and as foolproof as possible, i.e., there should be specific desired results.

The configuration audit should verify that:

* the architectural design satisfies the requirements

* the detailed design satisfies the architectural design

* the code implements the detailed design

* the item/product performs per the requirements

* the configuration documentation and the item/product match

The main emphasis of configuration auditing is on providing the user with reasonable assurance that the
version of a system in use is the same version that the user expects to be in use. Configuration audits
ensure that the configuration control procedures of the configuration management system are being
followed. The assurance feature of configuration auditing is provided through reasonable and consistent
accountability procedures. All code audits should follow roughly the same procedures and perform the
same set of checks for every change to the system.

 13

8. THE CONFIGURATION MANAGEMENT PLAN

Effective configuration management should include a well-thought- out plan that should be prepared
immediately after project initiation. This plan should describe, in simple, positive statements, what is to be
done to implement configuration management in the system and TCB. A minimal configuration
management plan may be limited to simply defining how configuration management will be implemented
as it relates to the identification, control, accounting, and auditing tasks. The configuration management
plan described in the following paragraphs is an example of a plan that goes into more detail and contains
documentation on all aspects of configuration management, such as examples of documents to be used for
configuration management, procedures for any automated tools available, or a Configuration Control
Board roster (see Section 9.3 THE CONFIGURATION CONTROL BOARD). The configuration
management plan should contain documentation that describes how the configuration management "tasks
are to be carried out in sufficient detail that anyone involved with the project can consult them to
determine how each specific development task relates to CM."[2]

One portion of the configuration management plan should define the roles played by designers,
developers, management, the Configuration Control Board, and all of the personnel involved with any
part of the life-cycle of the system. The responsibilities required by all those involved with the system
should be established and documented in the configuration management plan to ensure that the human
element functions properly during configuration management. A list of Configuration Control Board
members, or the titles of the members should also be included in this section.

Any tools that will be available and used for configuration management should be documented in the
configuration management plan. At TCSEC class A1, it is required that these tools shall be "maintained
under strict configuration control"[1] (Requirement 18). These tools may include forms used for change
control, conventions for labeling configuration items, software libraries, as well as any automated tools
that may be available to support the configuration management process. Samples of any documents to be
used for reporting should also be contained in the configuration management plan with a description of
each.

A section of the Configuration Management Plan should deal with procedures. Since the main thrust of
configuration management consists of the following of procedures, there needs to be thorough
documentation on what procedures one should follow

 14

during configuration management. The configuration management plan should provide the procedures to
take to ensure that both user and design documentation are updated in synchrony with all changes to the
system. It should include the guidelines for creating and maintaining functional tests and documentation
throughout the life of the system. The configuration management plan should describe the procedures for
how the design and implementation of changes are proposed, evaluated, coordinated, and approved or
disapproved. The configuration management plan should also include the steps to take to ensure that only
those approved changes are actually included and that the changes are included in all of the necessary
areas.

Another portion of the configuration management plan should define any existing "emergency"
procedures, e.g., procedures for performing a time sensitive change without going through a full review
process, that may override the standard procedure. These procedures should define the steps for
retroactively implementing configuration management after the emergency change has been completed.

The configuration management plan is a living document and should remain flexible during design and
development phases. Although the configuration management plan is in place to impose control on a
project, it should still be open to additions and changes as designers and developers see fit. This is not to
say that the configuration management plan is only a guide and need not be followed, but that
modifications should be able to occur. If the plan is not followed, there is no way it will be able to provide
the appropriate assurances. In the event that a change is needed to the configuration management plan,
the change should be carefully evaluated and approved. In changes to the configuration management plan
of a trusted system this evaluation shall ensure that the security features and assurances supported by the
plan are still maintained after the change has been implemented.

 15

9. IMPLEMENTATION METHODS

This section discusses implementation methods for configuration management that may be used to meet
some of the requirements of the TCSEC. Section 9.1 discusses the baseline concept as a method of
configuration identification. The baseline concept utilizes the features of configuration management
spoken of previously, but divides the life-cycle of the system into different baselines.

Section 9.2 illustrates how a fictitious company, MER, Inc., conducts configuration management. They
are attempting to meet the TCSEC requirements for a B2 system.

Section 9.3 discusses the concept of a Configuration Control Board (CCB) for carrying out configuration
control. A CCB is a body of people responsible for configuration control. This concept is widely used by
many computer vendors.

 9.1 The Baseline Concept

Baselines are established at pre-selected design points in the system life-cycle. One baseline may be used
to describe a specific version of a system, or in some configuration management systems a single baseline
may be defined at each of several major milestones. Baselines should be established at the discretion of the
Configuration Control Board and outlined in the configuration management plan. In cases where several
baselines are established, each baseline serves as a cutoff point for one segment of development, while
simultaneously acting as the step off point for another segment. The characteristics common to all
baselines are that the design of the system will be approved at the point of their establishment and it is
believed that any changes to this design will have some impact on the future development of the system.

Baseline management is one technique for performing configuration identification. It identifies the system
and TCB design and development as a series of phases or baselines that are subject to configuration

control. Used in conjunction with configuration items, this is another effective way to identify the system
and its TCB configuration throughout its life-cycle.

"For each different type of baseline, the individual components to be controlled should be identified, and
any changes that update the current configuration should be approved and documented. For each
intermediate product in the development [life-cycle] there is only one baseline. The current

 16

configuration can be found by applying all approved changes to the baseline."[2]

In a system defining several baselines for different stages of development, these baselines or milestones
should be established at the system inception to serve as guides throughout the development process.
Although specific baselines are established in this case, alternatives may be recommended to promote
greater design flexibility or efficiency. The number of baselines that may be established for a system will
vary depending upon the size and complexity of the system and the methods supported by the designers
and developers. It is possible to establish multiple baselines existing at the same time so long as
configuration management practices are applied properly to each baseline. The following example will
discuss the baseline concept using three common baseline categories: functional, allocated, and product. It
should be emphasized that these are simply basic milestones and baselines should be established
depending upon the decisions of the designers and developers.

The first baseline, the functional baseline, is established at the system inception. It is derived from the
performance and objectives criteria documentation that consists of specifications defining the system
requirements. Once these specifications have been established, any changes to them should be approved.

The requirements produced in the functional baseline may be divided and subdivided into various
configuration items. Once it has been decided what the configuration items will be, each of the items
should be given a configuration identifier. From the analysis of the system requirements the allocated
baseline will be established. This baseline identifies all of the required functions with a specific
configuration item that is responsible for the function. In this baseline, an individual should be charged
with the responsibility for each configuration item. All changes affecting specifications defining design
requirements for the system or its configuration items as stated in the allocated baseline should require
approval of the responsible individual.

The final baseline, the product baseline, should contain that version of the system that will be turned over
for integration testing. This baseline signifies the end of the development phase and should contain a
releasable version of the system.

The baseline example mention earlier in which one baseline is established for a single version of a system
entails the same reasoning as the functional, allocated, and product baseline

 17

example. The system established as a baseline in the single baseline example will need to have an
approved design before being placed under configuration control. Prior to the design approval, the system
design will have to have undergone some type of functional review and a process that would allocate these
functions to various configuration items. Although the early processes of the design will not be as formal
in the single baseline example as they are when the early tasks are individually defined, the system will
still benefit from being under the control of configuration management as a baseline. The main point of

establishing any baseline is controlling changes to that baseline by requiring any changes to it to have to
undergo an established change control process.

 9.2 Configuration Management at MER, Inc.

MER, Inc., is a manufacturer of computer systems. Their latest project consists of building a system that
will meet the B2 requirements of the TCSEC. In the past, their configuration management has only
consisted of quality assurance checks, but to meet the B2 requirements they realize that they will need to
have specific configuration management procedures in place during the development and maintenance of
the system.

The project manager was assigned the task of writing the configuration management procedures and
elected to present them in a configuration management plan. After doing some research on what should be
contained in the configuration management plan, he proceeded to write a plan for MER, Inc. The
configuration management plan that was written listed all of the steps to be followed when carrying out
configuration management for the system. It described the procedures to be followed by the development
team and described the automated tools that were going to be used at MER, Inc. for configuration
management. These tools consisted of an online tracking data base to be used for status accounting, an
online data base that contained a listing of all of the items under configuration control, and automated
libraries used for storing software. Before development began, all of the development team was
responsible for reading the configuration management plan to ensure that they were aware of the
procedures to be followed for configuration management.

As the system was developed, the TCB hardware, software, and firmware were labeled using a
configuration item numbering scheme that had been explained in the configuration management plan. In
addition, the documentation and tests accompanying these items were also given configuration item
numbers to assure a consistent

 18

mapping between TCB code and these items. All of the configuration item numbers and a description of
the items were stored in a data base that could be queried at any time to derive the configuration of the
entire system. Software and documentation were stored in a software library where they could be retrieved
and worked on without affecting the master versions. The master copies of all software were stored in a
master library that contained the releasable versions of the software. Both of these libraries are protected
by a discretionary access control mechanism to prevent any unauthorized personnel from tampering with
the software.

During the development of the system, changes were required. The procedures for performing a change
under configuration control are described in the configuration management plan. These are the same
procedures that will remain in effect throughout the life-cycle of the system. For each proposed change, a
decision has to be made by management whether or not the change is feasible and necessary. MER, Inc.
has an online forum for reviewing suggested changes. This forum makes it possible for all of the members
of the development team to comment on how the proposed change may affect their work. Management
would often consult this forum to help arrive at their final decision.

After a decision was made, a programmer was assigned to perform the change. The programmer would
retrieve the most recent version of the software from the software library and proceed to change it. As the
change was being performed, the changes were entered into the online tracking data base. This made it
possible for members of the development team to query this data base to find the current status of the
change at any time. After the change had been performed it was tested and documented, and upon
successful completion it was forwarded to a reviewer. This reviewer was the software manager, who was

the only person authorized to approve a changed version for release. After the change was approved for
release, the changed version was stored in the master library and a second copy was stored in the software
library. Each change stored in these libraries was given a new configuration identification number. A tool
was available at MER, Inc. that made it possible to identify changes made to software. It compared any
two versions of the software and provided a line-by-line listing of the differences between the two.

It was realized at the beginning of the development process that there would be times when critical
changes would need to be performed that would not be able to undergo this review process. For these
changes, emergency procedures had been listed in the configuration management plan and a critical fix
library was

 19

available to record critical changes that had occurred since a release.

A control process for changes to the TCB hardware was also provided for in the configuration
management plan. The procedures ensured that changes to the TCB hardware were traceable and did not
violate the security assumptions made by the TCB software. Similar to software changes, all hardware
changes were reviewed by the project manager before being implemented.

After a change is made to the TCB software, MER, Inc. performs a configuration audit to verify the
information that exists in the tracking data base. Whether or not a change is performed, the configuration
management plan at MER, Inc. specifies that a configuration audit be performed at least once a month.
This audit compares the current master version with the status accounting information to verify that no
changes have been inserted that were not approved.

This configuration management plan encompasses the descriptive top-level specification (DTLS),
implementation documentation, source code, object code, test fixtures, and test documentation, and has
been found to satisfy the TCSEC requirements for configuration management at class B2.

 9.3 The Configuration Control Board (CCB)

Configuration control may be performed in different ways. One method of configuration control that is in
use by systems already evaluated at TCSEC Class B2 and above is to have the control carried out by a
body of qualified individuals known as the Configuration Control Board (CCB), also known as the
Configuration Change Board. The Board is headed by a chairperson, who is responsible for scheduling
meetings and for giving the final approval on any proposed changes. The membership of the CCB may
vary in size and composition from organization to organization, but it should include members from any
or all of the following areas of the system team:

 * Program Management

 * System Engineering

 * Quality Assurance

 * Technical Support

 20

 * Integration and Test

 * System Installation

 * Technical Documentation

 * Hardware and Software/Firmware Acquisition

 * Program Development

 * Security Engineering

 * User Groups

The members of the CCB should interact periodically, either through formal meetings, electronic forums,
or any other available means, to discuss configuration management topics such as proposed changes,
configuration status accounting reports, and other topics that may be of interest to the different areas of
the system development. These interactions should be held at periodic intervals to keep the entire system
team up-to-date with all advancements or alterations in the system. The Board serves to control changes to
the system and ensures that only approved changes are implemented into the system. The CCB carries out
this function by considering all proposals for modifications and new acquisitions and by making decisions
regarding them.

An important part of having cross representation in the CCB from various groups involved in the system
development is to prevent "unnecessary and contradictory changes to the system while allowing changes
that are responsive to new requirements, changed functional allocations, and failed tests."[2] All of the
members of the Board should have a chance to voice their opinions on proposed changes. For example, if
system engineering proposes a change that will affect security, both sides should be able to present their
case at a CCB meeting. If diversity did not exist in the CCB, changes may be performed, and upon
implementation may be found to be incompatible with the rest of the system.

The configuration control process begins with the documentation of a change request. This change request
should include justification for the proposed change, all of the affected items and documents, and the
proposed solution. The change request should be recorded, either manually or online in order to provide a
way of tracking all proposed changes to the system and to ensure against duplicate change requests being
processed.

When the change request is recorded, it should be distributed for analysis by the CCB who will review and
approve or disapprove the

 21

change request. An analysis of the total impact of the change will decide whether or not the change should
be performed. The CCB will approve or disapprove the change request depending upon whether or not the
change is viewed as a necessary and feasible change that will further the design goals of the system. In
situations where trusted systems are involved, the CCB shall also ensure that the change will not affect the
security policy of the system.

Once a decision has been reached regarding any modifications, the CCB is responsible for prioritizing the
approved modifications to ensure that those that are most important are developed first. When prioritizing
changes, an effort should be made to have the changes performed in the most logical order whenever
possible. The CCB is also responsible for assigning an authority to perform the change and for ensuring

that the configuration documentation is updated properly. The person assigned to do the change should
have the proper authorization to modify the system, and in trusted systems processing sensitive
information, this authorization shall be required. During the development of any enhancements and new
developments, the CCB continues to exert control over the system by determining the level of testing
required for all developments.

Upon completion of the change, the CCB is responsible for verifying that the change has been properly
incorporated and that only the approved change has been incorporated. Tests should be performed on the
modified system or TCB to ensure that they function properly after the change is completed. The CCB
should review the test results of any developments and should be the final voice on release decisions.

The use of a CCB is one way of performing configuration control, but not every vendor may have the
desire or resources to establish one. Whatever the preference, there should still be some way of performing
the control processes described previously.

 22

10. OTHER TOPICS

10.1 Trusted Distribution

Related to the configuration management requirements for trusted systems is the TCSEC requirement for
trusted distribution at class A1 which states:

 "A trusted ADP system control and distribution facility shall be provided for maintaining the integrity of
the mapping between the master data describing the current version of the TCB and the on-site master
copy of the code for the current version. Procedures (e.g., site security acceptance testing) shall exist for
assuring that the TCB software, firmware, and hardware updates distributed to a customer are exactly as
specified by the master copies."[1]

Two questions that the trusted distribution process should answer are: (a) Did the product received come
from the organization who was supposed to have sent it? and (b) Did the recipient receive exactly what the
sender intended?

Configuration management assists trusted distribution by ensuring that no alterations are made to the
TCB from the time of approved modification to the time of release. The additional configuration
management requirement at A1 that supports this is, "A combination of technical, physical and
procedural safeguards shall be used to protect from unauthorized modification or destruction the master
copy or copies of all material used to generate the TCB"[1] (Requirement 19). This requirement calls for
strict control over changes made to any versions of the TCB. The possibility that a change may not be

performed as specified, or that a harmful modification may be inserted into the TCB should be considered
and the authority to perform changes to the master copy should be restricted. A single master copy
authority should be made responsible for ensuring that only approved and acceptable changes are
implemented into the master copy.

Configuration status accounting records and auditing reports can provide accountability for all TCB
versions in use. In the event of altered copies being distributed or "bogus" copies being distributed that
were not manufactured by the vendor, configuration management records will be able to assess the validity
and accuracy of all TCB versions. Trusted distribution displays the need for configuration control over all
changes to the TCB. Without configuration control there would be no accountability for the TCB versions
distributed to the customer.

 23

10.2 Functional Testing

"The system developer shall provide to the evaluators a document that describes the test plan, test
procedures that show how the security mechanisms were tested, and results of the security mechanisms'
functional testing."[1] The creation and maintenance of these functional tests is required to be part of the
configuration management procedures. Test results and any affected test documentation shall be
maintained under configuration management and updated wherever necessary (Requirements 7, 8). The
tests should be repeatable, and include sufficient documentation so that any knowledgeable programmer
will be able to figure out how to run them. The test plan for the system should be described in the
functional specification (or other design documentation) for the TCB, along with descriptions of the test
programs. The test plan and programs should be reviewed and audited along with the programs they test,
although the coding standards need not be as strict as those of the tested programs.

It is not acceptable to only generate tests for code that was opened or replaced, but all of the portions of
the TCB that were affected by the change should also be tested. The NCSC evaluators can provide a
description of the security functional tests required to meet the TCSEC testing requirements, including the
testing required as stated above for configuration management.

 10.3 Configuration Management Training

Each new technical employee should receive training in the configuration management procedures that a
particular installation follows. Experienced programmers, although they may be familiar with some form
of configuration management, will also require training in any new procedures, i.e., an automated
accounting system, that will be required to be followed. Training should be conducted either "by holding
formal classes or by setting aside sufficient time for the reading of the company wide configuration
standards."[2] New programmers should become familiar with the Configuration Management Plan
before being allowed to incorporate any changes into the design baseline. It should be stressed that a
failure to maintain the configuration management standards resulting from untrained employees, could
prevent the system from receiving a rating.[2]

 24

10.4 Configuration Management Supervision A successful configuration management system requires the
following of many procedures. Considering the demands made on the system staff, errors may occur and
shortcuts may be sought which will jeopardize the entire configuration management plan. A review
process should be present to ensure that no single person can create a change to the system and implement
it without being subject to some type of approval process. Supervisors, who are responsible for the
personnel performing the change should be required to sign an official record that the change is the
correct change.[2]

Proper supervision also provides assurance that whoever performs the change has the proper authorization
to do so. Changes should not be performed by personnel that are not qualified to perform the change.
Also, in systems that process sensitive information, the programmer performing the change shall possess
the proper security clearance to perform the change.

Management itself must directly support the configuration management plan in order for it to work. It
should not encourage cutting configuration management corners under any circumstances, e.g., due to
scheduling or budgeting. Management should be willing to support the expenditure of money, people, and
time to allow for proper configuration management.

 25

11. RATINGS MAINTENANCE PROGRAM

The Ratings Maintenance Program (RAMP) has been developed by the NCSC in an effort to keep the
Evaluated Products List (EPL) current. By training vendor personnel to recognize which changes may
adversely affect the implemetation of the security policy of the system, and to track these changes to the
evaluated product through the use of configuration management, RAMP will permit a vendor to maintain
the rating of the evaluated product without having to re-evaluate the new version. Because changes from
one version of an operating system to the next version may affect the security features and assurances of
that operating system, configuration management is an integral part of RAMP. For a system to maintain
its rating under this program, the NCSC shall be assured, through the vendor's configuration management

procedures, that the changes made have not adversely affected the implementation of the security
mechanisms and assurances of the system.

Each RAMP participant shall develop an NCSC approved Rating Maintenance Plan (RMPlan) which
includes a detailed Configuration Management Plan (CMP) to support the rating maintenance process.
This requirement applies to all systems participating in RAMP, regardless of class. For further
information about the RAMP program and about configuration management requirements for RAMP,
contact:

 National Computer Security Center 9800 Savage Road Fort George G. Meade, MD 20755©6000
Attention: Chief, Requirements and Resources Division

 26

12. CONFIGURATION MANAGEMENT SUMMARY

The assurance provided by configuration management is beneficial to all systems. It is a requirement for
trusted systems for classes B2 and above that a configuration management system "be in place that
maintains control of changes to the descriptive top-level specification, other design data, implementation
documentation, source code, the running version of the object code, and test fixtures and
documentation"[1] (Requirements 1, 2, 3, 4, 5, 6, 7, 8). Although configuration management is a
requirement for trusted systems for classes B2 and above, it should be in place in all systems regardless of
class rating, or if the system has a rating at all.

Successful configuration management is built around four main objectives: control, identification,
accounting, and auditing. Through the accomplishment of these objectives, configuration management is
able to maintain control over the TCB and protect it against "unauthorized changes that could cause
protection mechanisms to malfunction or be bypassed completely."[1] Even for those aspects of the system
which are not security-relevant, configuration management is still a valuable method of ensuring that all
of the properties of a system are maintained after a change. It is very important to the success of
configuration management that a formal configuration management plan be adhered to during the life-
cycle of the system.

A successful configuration management plan should begin with early and complete definition of
configuration management goals, scope, and procedures. The success of configuration management is

dependent upon accuracy. Changes should be identified and accounted for accurately, and after the change
is completed, the change, and all affected parts of the system should be thoroughly documented and tested.

Configuration management provides control and traceability for all changes made to the system. Changes
in progress are able to be monitored through configuration status accounting information in order to
control the change and to evaluate its impact on other parts of the system.

An important part of having a successful configuration management plan is that the people involved with
it must adhere to its procedures in order to keep all documentation current and the status of changes up-to-
date.

With a firm and well documented configuration management plan in place, the occurrence of any
unnecessary or duplicate changes will be reduced greatly and any necessary changes that are

 27

required should be able to be identified with great ease. An effective configuration management system
should be able to show what was supposed to have been built, what was built, and what is presently being
built.

 28

APPENDIX A: AUTOMATED TOOLS

Automated tools may be used to perform some of the configuration management functions that previously
had to be performed manually. A data base management system, even with just a limited query system,
may be used to perform the configuration audit and status accounting functions of configuration
management. The principle behind using automated systems is that text, both from source code and other
documents involved in the development of the system, can be entered into a Master Library and modified
only through the use of the automated system. This prevents anyone from performing a change without
having the proper authorization to access the configuration data base. "In general, only one program
librarian, who should be the project manager or someone directly responsible to the manager, should have
write access to the Master Library during development."[2]

A number of software developers have created software control facilities that are currently available to be
used for configuration status accounting. A brief discussion of two of these systems follows.

 A.1 UNIX (1) SCCS

"Under the Unix (1) system, the make utility, and the elements admin, get, prs, and delta, which comprise
the Source Code Control System, provide a basic configuration accounting system. Initially a directory is
created using the mkdir function. At this point, it is possible to use the owner, group, world protection
scheme provided by Unix (1) to protect the directory. In addition a list of login identifiers is created which
specifies who may update each element to be processed by SCCS." [2]

Following directory initiation, each document is entered using the admin -n function. Each entry that is
made is referred to as an element. As each update is made to a new element, a new generation of that
element, known as a delta, is created. The name of each element that is stored in a file by SCCS is
preceded by "s.". If a file is added to the directory that does not contain this prefix, it is ignored by the
SCCS function calls. When the admin function is called, a number of arguments may be specified that
"specify parameters that may affect the file, and may be changed by a subsequent call to admin. The
alogin argument is used to create the equivalent of an access control list by listing the login names of
users who can apply the delta function to the element, thus creating either a new generation

(1) UNIX is a registered trademark of AT&T Bell Laboratories 29

(delta) or variant branch."[2]

The initial release, or initial delta, of each code module is entered into the SCCS directory through the
admin -n function, thus creating the Master Library. The programmer may update each module in the
Master Library by using the get -e function "which indicates that the module will be edited and then the
completed document will be reentered into the directory using the delta function. As long as the module
being edited was extracted from the SCCS directory using get -e, it can be returned to the library using
delta, and all necessary update information will be entered with it. The get function can be used to extract
a copy of any document, but after it is edited it cannot be reentered into the library."[2]

"SCCS provides the capability to specify a software build by the way it assigns an SCCS Identification
Number (SID) to each output of the delta function."[2] One can get any version of a text or source code by
specifying the appropriate SID. "There are straightforward rules regarding how to specify the particular
SID desired when get is called. If no SID is specified, the latest release and level is provided." The SID of
the resulting call to delta is affected by the SID used when get -e is called.[2]

"The function prs allows for configuration accounting, since it extracts information from the s. files in the
SCCS directory and prints them out for the user. Prs can be used to quickly create reports, listing one or
two important values such as the last modified date for many SCCS files, or many values for one or two
file. Larger reports can also be processed and created using an editor."[2]

 A.2 VAX DEC/CMS

"VAX DEC/CMS [7] is also used to track a history of each text file stored in a CMS directory, but CMS
does significantly more auditing and cross-checking than admin does. For example, if an editor is used
directly to modify a file in a CMS directory, any further use by CMS of that file generates a warning
meassage. Any files entered into a CMS directory by other than the CMS utility will cause CMS itself to
issue a warning message when it is invoked for that directory. Otherwise, the process of configuration
accounting is similar to SCCS.

The CMS CREATE LIBRARY function causes a directory to be set up, and initial logging to start. The
project manager enters each element into the directory by using the CMS CREATE ELEMENT function.
One must RESERVE an element of a library to modify it,

 30

and it can only be put back into the library using the REPLACE function. If someone else has RESERVEd
an element between the original programmer's RESERVE and REPLACE calls, a warning is issued to
both programmers and the occurrence is logged. To get a sample copy of the text, such as a program
source, the FETCH function will generate the latest generation or any specified generation of an element,
but will not allow an edited copy to be reinserted into the library. The SHOW function can be used to audit
the information about each element in the library.

Differences between SCCS and DEC/CMS appear concerning software builds. In Unix (1) a build must be
either described in a makefile, or else each element to be used in a build must be retrieved from the SCCS
directory using get, placed in another directory, and the makefile then may refer to these source files to
create the executable build. In CMS, the process of selecting only a subset of source files, including some
which are not the most current, is automated by the use of class and group mechanisms. To explain how
this works, one must understand the CMS concepts of generations and variants. Each generation of a file
corresponds to a Unix (1) delta. Generations are normally numbered in ascending order. CMS also has the
capability of creating a variant development line to any generation by specifying in the REPLACE
function a variant name. For example, if one RESERVEs generation 3 of an element, then performs a
REPLACE/VARIANT = T, this will create generation 3T1 which may then be developed separately from

generation 3. The first time this is used, the equivalent of an SCCS branch delta is created. Branches
themselves can have branches, a capability that SCCS does not have.

A group can be defined within a CMS directory, using the CMS CREATE GROUP, and CMS INSERT
ELEMENT functions. A group is composed of all generations, including variant generations, of all
elements inserted into the group. Groups can be included within other groups. Groups can be defined with
a non-empty intersection so that they have overlapping membership.

The CMS CREATE CLASS function, together with the CMS INSERT GENERATION function, can be
used to specify the exact elements of a software build, and the DESCRIPTION file can then refer to the
entire class by using the /GENERATION=classname qualifier on either the source or action line of a
dependency rule. The makefile required by Unix (1) SCCS can be much more complex when it is required
to describe a software build for intermediate testing."[2]

 (1) Unix is a registered trade mark of Bell Laboratories 31

GLOSSARY

Automatic Data Processing (ADP) System - An assembly of computer hardware, firmware, and software
configured for the purpose of classifying, sorting, calculating, computing, summarizing, transmitting and
receiving, storing, and retrieving data with a minimum of human intervention.[1]

Baseline - A set of critical observations or data used for a comparison or a control. A baseline indicates a
cutoff point in the design and development of a configuration item beyond which configuration does not
evolve without undergoing strict configuration control policies and procedures.

Configuration Accounting - The recording and reporting of configuration item descriptions and all
departures from the baseline during design and production.[2]

Configuration Audit - An independent review of computer software for the purpose of assessing
compliance with established requirements, standards, and baselines.[2]

Configuration Control - The process of controlling modifications to the system's design, hardware,
firmware, software, and documentation which provides sufficient assurance the system is protected against
the introduction of improper modification prior to, during, and after system implementation.

Configuration Control Board (CCB) - An established committee that is the final authority on all proposed
changes to the ADP system.

Configuration Identification - The identifying of the system configuration throughout the design,
development, test, and production tasks.

Configuration Item - The smallest component of hardware, software, firmware, documentation, or any of
its discrete portions, which is tracked by the configuration management system.

Configuration Management - The management of changes made to a system's hardware, software,
firmware, documentation, tests, test fixtures, and test documentation throughout the development and
operational life of the system.

Descriptive Top-Level Specification (DTLS) - A top-level specification that is written in a natural
language (e.g., English), an informal program design notation, or a combination of the two.[1]

 32

Firmware - Equipments or devices within which computer programming instructions necessary to the
performance of the device's discrete functions are electrically embedded in such a manner that they cannot
be electrically altered during normal device operations.[3]

Formal Security Policy Model - An accurate and precise description, in a formal, mathematical language,
of the security policy supported by the system.

Formal Top-Level Specification - A top-level specification that is written in a formal mathematical
language to allow theorems showing the correspondence of the system specifications to its formal
requirements to be hypothesized and formally proven.[1]

Granularity - The relative fineness or courseness by which a mechanism can be adjusted. The phrase "the
granularity of a single user" means the access control mechanism can be adjusted to include or exclude
any single user.[1]

Hardware - The electric, electronic, and mechanical equipment used for processing data.[3]

Informal Security Policy Model - An accurate and precise description, in a natural language (e.g.,
English), of the security policy supported by the system.

Software - Various programming aids that are frequently supplied by the manufacturers to facilitate the
purchaser's efficient operation of the equipment. Such software items include various assemblers,
generators, subroutine libraries, compilers, operating systems, and industry application programs.[6]
Tools - The means for achieving an end result. The tools referred to in this guideline are documentation,
procedures, and the organizational body, i.e., the CCB, which all contribute to achieving the control
objective of configuration management.

Trusted Computing Base (TCB) - The totality of protection mechanisms within a computer system --
including hardware, firmware, and software -- the combination of which is responsible for enforcing a
security policy. A TCB consists of one or more components that together enforce a unified security policy
over a product or system. The ability of a TCB to correctly enforce a security policy depends solely on the
mechanisms within the TCB and on the correct input by system administrative personnel of parameters
(e.g., a user's clearance) related to the security policy.[1]

 33

REFERENCES

1. National Computer Security Center, DOD Trusted Computer System Evaluation Criteria, DOD, DOD
5200.28-STD, 1985.

2. Brown, R. Leonard, "Configuration Management for Development of a Secure Computer System",
ATR-88(3777-12)-1, The Aerospace Corporation, 1987.

3. Subcommittee on Automated Information System Security, Working Group #3, "Dictionary of
Computer Security Terminology", 23 November 1986.

4. Bersoff, Edward H., Henderson, Vilas D., Siegal, Stanley G., Software Configuration Management,
Prentice Hall, Inc., 1980.

5. Samaras, Thomas T., Czerwinski, Frank L., Fundamentals of Configuration Management, Wiley-
Interscience, 1971.

6. Sipple, Charles J., Computer Dictionary, Fourth Edition, Howard W. Sams & Co., 1985.

7. Digital Equipment Corporation, VAX DEC/CMS Reference Manual, AA-L372B-TE, Digital
Equipment Corporation, 1984.

 34 NCSC-TG-001 Library No. S-228,470 FOREWORD This publication, "A Guide to Understanding
Audit in Trusted Systems," is being issued by the National Computer Security Center (NCSC) under the
authority of and in accordance with Department of Defense (DoD) Directive 5215.1. The guidelines
described in this document provide a set of good practices related to the use of auditing in automatic data
processing systems employed for processing classified and other sensitive information. Recommendations
for revision to this guideline are encouraged and will be reviewed biannually by the National Computer
Security Center through a formal review process. Address all proposals for revision through appropriate
channels to: National Computer Security Center 9800 Savage Road Fort George G. Meade, MD 20755-
6000 Attention: Chief, Computer Security Technical Guidelines _________________________________
Patrick R. Gallagher, Jr. 28 July 1987 Director National Computer Security Center i
ACKNOWLEDGEMENTS Special recognition is extended to James N. Menendez, National Computer
Security Center (NCSC), as project manager of the preparation and production of this document.
Acknowledgement is also given to the NCSC Product Evaluations Team who provided the technical
guidance that helped form this document and to those members of the computer security community who
contributed their time and expertise by actively participating in the review of this document. ii
CONTENTS FOREWORD ... i ACKNOWLEDGEMENTS
... ii

CONTENTS ... iii

PREFACE ... v 1. INTRODUCTION ... 1 1.1
HISTORY OF THE NATIONAL COMPUTER SECURITY CENTER 1 1.2 GOAL OF THE
NATIONAL COMPUTER SECURITY CENTER 1 2. PURPOSE .. 2
3. SCOPE .. 3 4. CONTROL OBJECTIVES 4
5. OVERVIEW OF AUDITING PRINCIPLES 8 5.1 PURPOSE OF THE AUDIT
MECHANISM....................... 8 5.2 USERS OF THE AUDIT MECHANISM......................... 8 5.3
ASPECTS OF EFFECTIVE AUDITING 9 5.3.1 Identification/Authentication
9 5.3.2 Administrative 10 5.3.3 System Design 10

 5.4 SECURITY OF THE AUDIT 10

6. MEETING THE CRITERIA REQUIREMENTS 12 6.1 THE C2 AUDIT
REQUIREMENT 12

 6.1.1 Auditable Events 12 6.1.2 Auditable Information 12 6.1.3
Audit Basis 13

 6.2 THE B1 AUDIT REQUIREMENT 13 6.2.1 Auditable Events
13 6.2.2 Auditable Information 13 6.2.3 Audit Basis 14

 iii CONTENTS (Continued) 6.3 THE B2 AUDIT REQUIREMENT 14

 6.3.1 Auditable Events 14 6.3.2 Auditable Information 14 6.3.3
Audit Basis 14

 6.4 THE B3 AUDIT REQUIREMENT 15

 6.4.1 Auditable Events 15 6.4.2 Auditable Information 15 6.4.3
Audit Basis 15

 6.5 THE A1 AUDIT REQUIREMENT 16

 6.5.1 Auditable Events 16 6.5.2 Auditable Information 16 6.5.3
Audit Basis 16 7. POSSIBLE IMPLEMENTATION METHODS
17

 7.1 PRE/POST SELECTION OF AUDITABLE EVENTS 17 7.1.1 Pre-Selection
................................ 17 7.1.2 Post-Selection 18

 7.2 DATA COMPRESSION 18 7.3 MULTIPLE AUDIT TRAILS
............................... 19 7.4 PHYSICAL STORAGE 19 7.5 WRITE-ONCE
DEVICE 20 7.6 FORWARDING AUDIT DATA 21

8. OTHER TOPICS ... 22

 8.1 AUDIT DATA REDUCTION 22 8.2 AVAILABILITY OF AUDIT DATA
.......................... 22 8.3 AUDIT DATA RETENTION 22 8.4 TESTING
... 23 8.5 DOCUMENTATION 23 8.6
UNAVOIDABLE SECURITY RISKS 24

 8.6.1 Auditing Administrators/Insider Threat 24 8.6.2 Data Loss 25

9. AUDIT SUMMARY ... 26

GLOSSARY

REFERENCES .. 27

 PREFACE Throughout this guideline there will be recommendations made that are not included in the
Trusted Computer System Evaluation Criteria (the Criteria) as requirements. Any recommendations that
are not in the Criteria will be prefaced by the word "should," whereas all requirements will be prefaced by
the word "shall." It is hoped that this will help to avoid any confusion.

 v 1

 1. INTRODUCTION 1.1 History of the National Computer Security Center The DoD Computer Security
Center (DoDCSC) was established in January 1981 for the purpose of expanding on the work started by
the DoD Security Initiative. Accordingly, the Director, National Computer Security Center, has the
responsibility for establishing and publishing standards and guidelines for all areas of computer security.
In 1985, DoDCSC's name was changed to the National Computer Security Center to reflect its
responsibility for computer security throughout the federal government. 1.2 Goal of the National
Computer Security Center The main goal of the National Computer Security Center is to encourage the
widespread availability of trusted computer systems. In support of that goal a metric was created, the DoD
Trusted Computer System Evaluation Criteria (the Criteria), against which computer systems could be
evaluated for security. The Criteria was originally published on 15 August 1983 as CSC- STD-001-83. In
December 1985 the DoD adopted it, with a few changes, as a DoD Standard, DoD 5200.28-STD. DoD
Directive 5200.28, "Security Requirements for Automatic Data Processing (ADP) Systems" has been
written to, among other things, require the Department of Defense Trusted Computer System Evaluation
Criteria to be used throughout the DoD. The Criteria is the standard used for evaluating the effectiveness
of security controls built into ADP systems. The Criteria is divided into four divisions: D, C, B, and A,
ordered in a hierarchical manner with the highest division (A) being reserved for systems providing the
best available level of assurance. Within divisions C and B there are a number of subdivisions known as
classes, which are also ordered in a hierarchical manner to represent different levels of security in these
classes. 2. PURPOSE For Criteria classes C2 through A1 the Criteria requires that a user's actions be open
to scrutiny by means of an audit. The audit process of a secure system is the process of recording,
examining, and reviewing any or all security-relevant activities on the system. This guideline is intended
to discuss issues involved in implementing and evaluating an audit mechanism. The purpose of this
document is twofold. It provides guidance to manufacturers on how to design and incorporate an effective
audit mechanism into their system, and it provides guidance to implementors on how to make effective
use of the audit 1

capabilities provided by trusted systems. This document contains suggestions as to what information
should be recorded on the audit trail, how the audit should be conducted, and what protective measures
should be accorded to the audit resources. Any examples in this document are not to be construed as the
only implementations that will satisfy the Criteria requirement. The examples are merely suggestions of
appropriate implementations. The recommendations in this document are also not to be construed as
supplementary requirements to the Criteria. The Criteria is the only metric against which systems are to
be evaluated. This guideline is part of an on-going program to provide helpful guidance on Criteria issues
and the features they address. 3. SCOPE An important security feature of Criteria classes C2 through A1
is the ability of the ADP system to audit any or all of the activities on the system. This guideline will
discuss auditing and the features of audit facilities as they apply to computer systems and products that are
being built with the intention of meeting the requirements of the Criteria. 2 4. CONTROL OBJECTIVES
The Trusted Computer System Evaluation Criteria gives the following as the Accountability Control

Objective: "Systems that are used to process or handle classified or other sensitive information must assure
individual accountability whenever either a mandatory or discretionary security policy is invoked.
Furthermore, to assure accountability the capability must exist for an authorized and competent agent to
access and evaluate accountability information by a secure means, within a reasonable amount of time
and without undue difficulty."(1) The Accountability Control Objective as it relates to auditing leads to the
following control objective for auditing: "A trusted computer system must provide authorized personnel
with the ability to audit any action that can potentially cause access to, generation of, or effect the release
of classified or sensitive information. The audit data will be selectively acquired based on the auditing
needs of a particular installation and/or application. However, there must be sufficient granularity in the
audit data to support tracing the auditable events to a specific individual (or process) who has taken the
actions or on whose behalf the actions were taken."(1) 3 5. OVERVIEW OF AUDITING PRINCIPLES
Audit trails are used to detect and deter penetration of a computer system and to reveal usage that
identifies misuse. At the discretion of the auditor, audit trails may be limited to specific events or may
encompass all of the activities on a system. Although not required by the TCSEC, it should be possible for
the target of the audit mechanism to be either a subject or an object. That is to say, the audit mechanism
should be capable of monitoring every time John accessed the system as well as every time the nuclear
reactor file was accessed; and likewise every time John accessed the nuclear reactor file. 5.1 Purpose of the
Audit Mechanism The audit mechanism of a computer system has five important security goals. First, the
audit mechanism must "allow the review of patterns of access to individual objects, access histories of
specific processes and individuals, and the use of the various protection mechanisms supported by the
system and their effectiveness."(2) Second, the audit mechanism must allow discovery of both users' and
outsiders' repeated attempts to bypass the protection mechanisms. Third, the audit mechanism must allow
discovery of any use of privileges that may occur when a user assumes a functionality with privileges
greater than his or her own, i.e., programmer to administrator. In this case there may be no bypass of
security controls but nevertheless a violation is made possible. Fourth, the audit mechanism must act as a
deterrent against perpetrators' habitual attempts to bypass the system protection mechanisms. However, to
act as a deterrent, the perpetrator must be aware of the audit mechanism's existence and its active use to
detect any attempts to bypass system protection mechanisms. The fifth goal of the audit mechanism is to
supply "an additional form of user assurance that attempts to bypass the protection mechanisms are
recorded and discovered."(2) Even if the attempt to bypass the protection mechanism is successful, the
audit trail will still provide assurance by its ability to aid in assessing the damage done by the violation,
thus improving the system's ability to control the damage. 5.2. Users of the Audit Mechanism "The users
of the audit mechanism can be divided into two groups. The first group consists of the auditor, who is an
individual with administrative duties, who selects the events to be audited on the system, sets up the audit
flags which enable the recording

 4

of those events, and analyzes the trail of audit events."(2) In some systems the duties of the auditor may be
encompassed in the duties of the system security administrator. Also, at the lower classes, the auditor role
may be performed by the system administrator. This document will refer to the person responsible for
auditing as the system security administrator, although it is understood that the auditing guidelines may
apply to system administrators and/or system security administrators and/or a separate auditor in some
ADP systems. "The second group of users of the audit mechanism consists of the system users themselves;
this group includes the administrators, the operators, the system programmers, and all other users. They
are considered users of the audit mechanism not only because they, and their programs, generate audit
events,"(2) but because they must understand that the audit mechanism exists and what impact it has on
them. This is important because otherwise the user deterrence and user assurance goals of the audit
mechanism cannot be achieved. 5.3 Aspects of Effective Auditing 5.3.1. Identification/Authentication
Logging in on a system normally requires that a user enter the specified form of identification (e.g., login
ID, magnetic strip) and a password (or some other mechanism) for authentication. Whether this
information is valid or invalid, the execution of the login procedure is an auditable event and the

identification entered may be considered to be auditable information. It is recommended that
authentication information, such as passwords, not be forwarded to the audit trail. In the event that the
identification entered is not recognized as being valid, the system should also omit this information from
the audit trail. The reason for this is that a user may have entered a password when the system expected a
login ID. If the information had been written to the audit trail, it would compromise the password and the
security of the user. There are, however, environments where the risk involved in recording invalid
identification information is reduced. In systems that support formatted terminals, the likelihood of
password entry in the identification field is markedly reduced, hence the recording of identification
information would pose no major threat. The benefit of recording the identification information is that
break-in attempts would be easier to detect and identifying the perpetrator would also be assisted. The

 5

information gathered here may be necessary for any legal prosecution that may follow a security violation.
5.3.2 Administrative All systems rated at class C2 or higher shall have audit capabilities and personnel
designated as responsible for the audit procedures. For the C2 and B1 classes, the duties of the system
operators could encompass all functions including those of the auditor. Starting at the B2 class, there is a
requirement for the TCB to support separate operator and administrator functions. In addition, at the B3
class and above, there is a requirement to identify the system security administrator functions. When one
assumes the system security administrator role on the system, it shall be after taking distinct auditable
action, e.g., login procedure. When one with the privilege of assuming the role is on the system, the act of
assuming that role shall also be an auditable event. 5.3.3 System Design The system design should include
a mechanism to invoke the audit function at the request of the system security administrator. A
mechanism should also be included to determine if the event is to be selected for inclusion as an audit trail
entry. If pre-selection of events is not implemented, then all auditable events should be forwarded to the
audit trail. The Criteria requirement for the administrator to be able to select events based on user identity
and/or object security classification must still be able to be satisfied. This requirement can be met by
allowing post-selection of events through the use of queries. Whatever reduction tool is used to analyze the
audit trail shall be provided by the vendor. 5.4 Security of the Audit Audit trail software, as well as the
audit trail itself, should be protected by the Trusted Computing Base and should be subject to strict access
controls. The security requirements of the audit mechanism are the following: (1) The event recording
mechanism shall be part of the TCB and shall be protected from unauthorized modification or
circumvention. (2) The audit trail itself shall be protected by the TCB from

 6

 unauthorized access (i.e., only the audit personnel may access the audit trail). The audit trail shall also be
protected from unauthorized modification. (3) The audit-event enabling/disabling mechanism shall be part
of the TCB and shall remain inaccessible to the unauthorized users.(2) At a minimum, the data on the
audit trail should be considered to be sensitive, and the audit trail itself shall be considered to be as
sensitive as the most sensitive data contained in the system. When the medium containing the audit trail is
physically removed from the ADP system, the medium should be accorded the physical protection
required for the highest sensitivity level of data contained in the system. 7

6. MEETING THE CRITERIA REQUIREMENTS This section of the guideline will discuss the audit
requirements in the Criteria and will present a number of additional recommendations. There are four
levels of audit requirements. The first level is at the C2 Criteria class and the requirements continue
evolving through the B3 Criteria class. At each of these levels, the guideline will list some of the events
which should be auditable, what information should be on the audit trail, and on what basis events may be
selected to be audited. All of the requirements will be prefaced by the word "shall," and any additional

recommendations will be prefaced by the word "should." 6.1 The C2 Audit Requirement 6.1.1 Auditable
Events The following events shall be subject to audit at the C2 class: * Use of identification and
authentication mechanisms * Introduction of objects into a user's address space * Deletion of objects from
a user's address space * Actions taken by computer operators and system administrators and/or system
security administrators * All security-relevant events (as defined in Section 5 of this guideline)

 * Production of printed output 6.1.2 Auditable Information The following information shall be recorded
on the audit trail at the C2 class: * Date and time of the event * The unique identifier on whose behalf the
subject generating the event was operating * Type of event * Success or failure of the event

 8

 * Origin of the request (e.g., terminal ID) for identification/authentication events * Name of object
introduced, accessed, or deleted from a user's address space * Description of modifications made by the
system administrator to the user/system security databases 6.1.3 Audit Basis At the C2 level, the ADP
System Administrator shall be able to audit based on individual identity. The ADP System Administrator
should also be able to audit based on object identity. 6.2 The B1 Audit Requirement 6.2.1 Auditable
Events The Criteria specifically adds the following to the list of events that shall be auditable at the B1
class: * Any override of human readable output markings (including overwrite of sensitivity label
markings and the turning off of labelling capabilities) on paged, hard-copy output devices * Change of
designation (single-level to/from multi-level) of any communication channel or I/O device * Change of
sensitivity level(s) associated with a single-level communication channel or I/O device * Change of range
designation of any multi-level communication channel or I/O device 6.2.2 Auditable Information The
Criteria specifically adds the following to the list of information that shall be recorded on the audit trail at
the B1 class: * Security level of the object 9

The following information should also be recorded on the audit trail at the B1 class: * Subject sensitivity
level 6.2.3 Audit Basis In addition to previous selection criteria, at the B1 level the Criteria specifically
requires that the ADP System Administrator shall be able to audit based on individual identity and/or
object security level. 6.3 The B2 Audit Requirement 6.3.1 Auditable Events The Criteria specifically adds
the following to the list of events that shall be auditable at the B2 class: * Events that may exercise covert
storage channels 6.3.2 Auditable Information No new requirements have been added at the B2 class. 6.3.3
Audit Basis In addition to previous selection criteria, at the B2 level the Criteria specifically requires that
"the TCB shall be able to audit the identified events that may be used in the exploitation of covert storage
channels." The Trusted Computing Base shall audit covert storage channels that exceed ten bits per
second.(1)

The Trusted Computing Base should also provide the capability to audit the use of covert storage
mechanisms with bandwidths that may exceed a rate of one bit in ten seconds. 6.4 The B3 Audit
Requirement 6.4.1 Auditable Events The Criteria specifically adds the following to the list of events that
shall be auditable at the B3 class: * Events that may indicate an imminent violation of the

 10

 system's security policy (e.g., exercise covert timing channels) 6.4.2 Auditable Information No new
requirements have been added at the B3 class. 6.4.3 Audit Basis In addition to previous selection criteria,
at the B3 level the Criteria specifically requires that "the TCB shall contain a mechanism that is able to
monitor the occurrence or accumulation of security auditable events that may indicate an imminent

violation of security policy. This mechanism shall be able to immediately notify the system security
administrator when thresholds are exceeded and, if the occurrence or accumulation of these security-
relevant events continues, the system shall take the least disruptive action to terminate the event."(1)
Events that would indicate an imminent security violation would include events that utilize covert timing
channels that may exceed a rate of ten bits per second and any repeated unsuccessful login attempts. Being
able to immediately notify the system security administrator when thresholds are exceeded means that the
mechanism shall be able to recognize, report, and respond to a violation of the security policy more
rapidly than required at lower levels of the Criteria, which usually only requires the System Security
Administrator to review an audit trail at some time after the event. Notification of the violation "should be
at the same priority as any other TCB message to an operator."(5) "If the occurrence or accumulation of
these security-relevant events continues, the system shall take the least disruptive action to terminate the
event."(1) These actions may include locking the terminal of the user who is causing the event or
terminating the suspect's process(es). In general, the least disruptive action is application dependent and
there is no requirement to demonstrate that the action is the least disruptive of all possible actions. Any
action which terminates the event is acceptable, but halting the system should be the last resort.

 11

7.5 The A1 Audit Requirement 7.5.1 Auditable Events No new requirements have been added at the A1
class. 7.5.2 Auditable Information No new requirements have been added at the A1 class. 7.5.3 Audit
Basis No new requirements have been added at the A1 class.

 12

 7. POSSIBLE IMPLEMENTATION METHODS The techniques for implementing the audit
requirements will vary from system to system depending upon the characteristics of the software,
firmware, and hardware involved and any optional features that are to be available. Technologically
advanced techniques that are available should be used to the best advantage in the system design to
provide the requisite security as well as cost-effectiveness and performance. 7.1 Pre/Post Selection of
Auditable Events There is a requirement at classes C2 and above that all security- relevant events be

auditable. However, these events may or may not always be recorded on the audit trail. Options that may
be exercised in selecting which events should be audited include a pre-selection feature and a post-
selection feature. A system may choose to implement both options, a pre-selection option only, or a post-
selection option only. If a system developer chooses not to implement a general pre/post selection option,
there is still a requirement to allow the administrator to selectively audit the actions of specified users for
all Criteria classes. Starting at the B1 class, the administrator shall also be able to audit based on object
security level. There should be options to allow selection by either individuals or groups of users. For
example, the administrator may select events related to a specified individual or select events related to
individuals included in a specified group. Also, the administrator may specify that events related to the
audit file be selected or, at classes B1 and above, that accesses to objects with a given sensitivity level,
such as Top Secret, be selected. 7.1.1 Pre-Selection For each auditable event the TCB should contain a
mechanism to indicate if the event is to be recorded on the audit trail. The system security administrator
or designee shall be the only person authorized to select the events to be recorded. Pre-selection may be by
user(s) identity, and at the B1 class and above, pre-selection may also be possible by object security level.
Although the system security administrator shall be authorized to select which events are to be recorded,
the system security administrator should not be able to exclude himself from being audited. 13

Although it would not be recommended, the system security administrator may have the capability to
select that no events be recorded regardless of the Criteria requirements. The intention here is to provide
flexibility. The purpose of designing audit features into a system is not to impose the Criteria on users that
may not want it, but merely to provide the capability to implement the requirements. A disadvantage of
pre-selection is that it is very hard to predict what events may be of security-relevant interest at a future
date. There is always the possibility that events not pre-selected could one day become security-relevant,
and the potential loss from not auditing these events would be impossible to determine. The advantage of
pre-selection could possibly be better performance as a result of not auditing all the events on the system.
7.1.2 Post-Selection If the post-selection option to select only specified events from an existing audit trail
is implemented, again, only authorized personnel shall be able to make this selection. Inclusion of this
option requires that the system should have trusted facilities (as described in section 9.1) to accept
query/retrieval requests, to expand any compressed data, and to output the requested data. The main
advantage of post-selection is that information that may prove useful in the future is already recorded on
an audit trail and may be queried at any time. The disadvantage involved in post-selection could possibly
be degraded performance due to the writing and storing of what could possibly be a very large audit trail.
7.2 Data Compression

"Since a system that selects all events to be audited may generate a large amount of data, it may be
necessary to encode the data to conserve space and minimize the processor time required" to record the
audit records.(3) If the audit trail is encoded, a complementary mechanism must be included to decode the
data when required. The decoding of the audit trail may be done as a preprocess before the audit records
are accessed by the database or as a postprocess after a relevant record has been

 14

found. Such decoding is necessary to present the data in an understandable form both at the administrators
terminal and on batch reports. The cost of compressing the audit trail would be the time required for the
compression and expansion processes. The benefit of compressing data is the savings in storage and the
savings in time to write the records to the audit trail. 7.3 Multiple Audit Trails All events included on the
audit trail may be written as part of the same audit trail, but some systems may prefer to have several
distinct audit trails, e.g., one would be for "user" events, one for "operator" events, and one for "system
security administrator" events. This would result in several smaller trails for subsequent analysis. In some
cases, however, it may be necessary to combine the information from the trails when questionable events

occur in order to obtain a composite of the sequence of events as they occurred. In cases where there are
multiple audit trails, it is preferred that there be some accurate, or at least synchronized, time stamps
across the multiple logs. Although the preference for several distinct audit trails may be present, it is
important to note that it is often more useful that the TCB be able to present all audit data as one
comprehensive audit trail. 7.4 Physical Storage A factor to consider in the selection of the medium to be
used for the audit trail would be the expected usage of the system. The I/O volume for a system with few
users executing few applications would be quite different from that of a large system with a multitude of
users performing a variety of applications. In any case, however, the system should notify the system
operator or administrator when the audit trail medium is approaching its storage capacity. Adequate
advance notification to the operator is especially necessary if human intervention is required. If the audit
trail storage medium is saturated before it is replaced, the operating system shall detect this and take some
appropriate action such as: 1. Notifying the operator that the medium is "full" and action is necessary. The
system should then stop and require rebooting. Although a valid option, this action creates a

 15

 severe threat of denial-of-service attacks. 2. Storing the current audit records on a temporary medium
with the intention of later migration to the normal operational medium, thus allowing auditing to
continue. This temporary storage medium should be afforded the same protection as the regular audit
storage medium in order to prevent any attempts to tamper with it. 3. Delaying input of new actions
and/or slowing down current operations to prevent any action that requires use of the audit mechanism.
4. Stopping until the administrative personnel make more space available for writing audit records. 5.
Stopping auditing entirely as a result of a decision by the system security administrator. Any action that is
taken in response to storage overflow shall be audited. There is, however, a case in which the action taken
may not be audited that deserves mention. It is possible to have the system security administrator's
decisions embedded in the system logic. Such pre-programmed choices, embedded in the system logic,
may be triggered automatically and this action may not be audited. Still another consideration is the speed
at which the medium operates. It should be able to accommodate the "worst case" condition such as when
there are a large number of users on the system and all auditable events are to be recorded. This worst case
rate should be estimated during the system design phase and (when possible) suitable hardware should be
selected for this purpose. Regardless of how the system handles audit trail overflow, there must be a way
to archive all of the audit data. 7.5 Write-Once Device For the lower Criteria classes (e.g., C2, B1) the
audit trail may be the major tool used in detecting security compromises. Implicit in this is that the audit
resources should provide the maximum protection possible. One technique that may be employed to
protect the audit trail is to record it on a mechanism designed to be a write-only device. Other choices
would be to set the designated device to write-once mode by disabling the

 16

read mechanism. This method could prevent an attacker from erasing or modifying the data already
written on the audit trail because the attacker will not be able to go back and read or find the data that he
or she wishes to modify.

If a hardware device is available that permits only the writing of data on a medium, modification of data
already recorded would be quite difficult. Spurious messages could be written, but to locate and modify an
already recorded message would be difficult. Use of a write-once device does not prevent a penetrator from
modifying audit resources in memory, including any buffers, in the current audit trail. If a write-once
device is used to record the audit trail, the medium can later be switched to a compatible read device to
allow authorized personnel to analyze the information on the audit trail in order to detect any attempts to
penetrate the system. If a penetrator modified the audit software to prevent writing records on the audit

trail, the absence of data during an extended period of time would indicate a possible security
compromise. The disadvantage of using a write-once device is that it necessitates a delay before the audit
trail is available for analysis by the administrator. This may be offset by allowing the system security
administrator to review the audit trail in real-time by getting copies of all audit records on their way to the
device. 7.6 Forwarding Audit Data If the facilities are available, another method of protecting the audit
trail would be to forward it to a dedicated processor. The audit trail should then be more readily available
for analysis by the system security administrator. 17

8. OTHER TOPICS 8.1 Audit Data Reduction Depending upon the amount of activity on a system and the
audit selection process used, the audit trail size may vary. It is a safe assumption though, that the audit
trail would grow to sizes that would necessitate some form of audit data reduction. The data reduction tool
would most likely be a batch program that would interface to the system security administrator. This batch
run could be a combination of database query language and a report generator with the input being a
standardized audit file. Although they are not necessarily part of the TCB, the audit reduction tools should
be maintained under the same configuration control system as the remainder of the system. 8.2
Availability of Audit Data In standard data processing, audit information is recorded as it occurs.
Although most information is not required to be immediately available for real-time analysis, the system
security administrator should have the capability to retreive audit information within minutes of its
recording. The delay between recording audit information and making it available for analysis should be
minimal, in the range of several minutes. For events which do require immediate attention, at the B3 class
and above, an alert shall be sent out to the system security administrator. In systems that store the audit
trail in a buffer, the system security administrator should have the capability to cause the buffer to be
written out. Regarding real-time alarms, where they are sent is system dependent. 8.3 Audit Data
Retention The exact period of time required for retaining the audit trail is site dependent and should be
documented in the site's operating procedures manual. When trying to arrive at the optimum time for
audit trail retention, any time restrictions on the storage medium should be considered. The storage
medium used must be able to reliably retain the audit data for the amount of time required by the site. The
audit trail should be reviewed at least once a week. It is very possible that once a week may be too long to
wait to review

 18

the audit trail. Depending on the amount of audit data expected by the system, this parameter should be
adjusted accordingly. The recommended time in between audit trail reviews should be documented in the
Trusted Facility Manual. 8.4 Testing The audit resources, along with all other resources protected by the
TCB, have increasing assurance requirements at each higher Criteria class. For the lower classes, an audit
trail would be a major factor in detecting penetration attempts. Unfortunately, at these lower classes, the
audit resources are more susceptible to penetration and corruption. "The TCB must provide some
assurance that the data will still be there when the administrator tries to use it."(3) The testing
requirement recognizes the vulnerability of the audit trail, and starting with the C2 class, shall include a
search for obvious flaws that would corrupt or destroy the audit trail. If the audit trail is corrupted or
destroyed, the existence of such flaws indicates that the system can be penetrated. Testing should also be
performed to uncover any ways of circumventing the audit mechanisms. The "flaws found in testing may
be neutralized in any of a number of ways. One way available to the system designer is to audit all uses of
the mechanism in which the flaw is found and to log such events."(3) An attempt should be made to
remove the flaw. At class B2 and above, it is required that all detected flaws shall be corrected or else a
lower rating will be given. If during testing the audit trail appears valid, analysis of this data can verify
that it does or does not accurately reflect the events that should be included on the audit trail. Even though
system assurances may increase at the higher classes, the audit trail is still an effective tool during the
testing phase as well as operationally in detecting actual or potential security compromises. 8.5
Documentation Starting at the C2 class, documentation concerning the audit requirements shall be
contained in the Trusted Facility Manual. The Trusted Facility Manual shall explain the procedures to

record, examine, and maintain audit files. It shall detail the audit record structure for each type of audit
event, and should include what each field is and what the size of the field is. The Trusted Facility Manual
shall also include a complete

 19

description of the audit mechanism interface, how it should be used, its default settings, cautions about the
trade-offs involved in using various configurations and capabilities, and how to set up and run the system
such that the audit data is afforded appropriate protection. If audit events can be pre- or post-selected, the
manual should also describe the tools and mechanisms available and how they are to be used. 8.6
Unavoidable Security Risks There are certain risks contained in the audit process that exist simply because
there is no way to prevent these events from ever occurring. Because there are certain unpredictable
factors involved in auditing, i.e., man, nature, etc., the audit mechanism may never be one hundred per
cent reliable. Preventive measures may be taken to minimize the likelihood of any of these factors
adversely affecting the security provided by the audit mechanism, but no audit mechanism will ever be
risk free. 8.6.1 Auditing Administrators/Insider Threat Even with auditing mechanisms in place to detect
and deter security violations, the threat of the perpetrator actually being the system security administrator
or someone involved with the system security design will always be present. It is quite possible that the
system security administrator of a secure system could stop the auditing of activities while entering the
system and corrupting files for personal benefit. These authorized personnel, who may also have access to
identification and authentication information, could also choose to enter the system disguised as another
user in order to commit crimes under a false identity. Management should be aware of this risk and should
be certain to exercise discretion when selecting the system security administrator. The person who is to be
selected for a trusted position, such as the system security administrator, should be subject to a background
check before being granted the privileges that could one day be used against the employer. The system
security administrator could also be watched to ensure that there are no unexplained variances in normal
duties. Any deviation from the norm of operations may indicate that a violation of security has occurred or
is about to occur.

 20

An additional security measure to control this insider threat is to ensure that the system administrator and
the person responsible for the audit are two different people. "The separation of the auditor's functions,
databases, and access privileges from those of the system administrator is an important application of the
separation of privilege and least privilege principles. Should such a separation not be performed, and
should the administrator be allowed to undertake auditor functions or vice-versa, the entire security
function would become the responsibility of a single, unaccountable individual."(2) Another alternative
may be to employ separate auditor roles. Such a situation may give one person the authority to turn off the
audit mechanism, while another person may have the authority to turn it back on. In this case no
individual would be able to turn off the audit mechanism, compromise the system, and then turn it back
on. 8.6.2 Data Loss Although the audit software and hardware are reliable security mechanisms, they are
not infallible. They, like the rest of the system, are dependent upon constant supplies of power and are
readily subject to interruption due to mechanical or power failures. Their failure can cause the loss or
destruction of valuable audit data. The system security administrator should be aware of this risk and
should establish some procedure that would ensure that the audit trail is preserved somewhere. The system
security administrator should duplicate the audit trail on a removable medium at certain points in time to
minimize the data loss in the event of a system failure. The Trusted Facility Manual should include what
the possibilities and nature of loss exposure are, and how the data may be recovered in the event that a
catastrophe does occur. If a mechanical or power failure occurs, the system security administrator should
ensure that audit mechanisms still function properly after system recovery. For example, any auditing

mechanism options pre-selected before the system malfunction must still be the ones in operation after the
system recovery. 21 9. AUDIT SUMMARY For classes C2 and above, it is required that the TCB "be
able to create, maintain, and protect from modification or unauthorized access or destruction an audit trail
of accesses to the objects it protects."(1) The audit trail plays a key role in performing damage assessment
in the case of a corrupted system. The audit trail shall keep track of all security-relevant events such as the
use of identification and authentication mechanisms, introduction of objects into a user's address space,
deletion of objects from the system, system administrator actions, and any other events that attempt to
violate the security policy of the system. The option should exist that either all activities be audited or that
the system security administrator select the events to be audited. If it is decided that all activities should be
audited, there are overhead factors to be considered. The storage space needed for a total audit would
generally require more operator maintenance to prevent any loss of data and to provide adequate
protection. A requirement exists that authorized personnel shall be able to read all events recorded on the
audit trail. Analysis of the total audit trail would be both a difficult and time-consuming task for the
administrator. Thus, a selection option is required which may be either a pre-selection or post-selection
option. The audit trail information should be sufficient to reconstruct a complete sequence of security-
relevant events and processes for a system. To do this, the audit trail shall contain the following
information: date and time of the event, user, type of event, success or failure of the event, the origin of
the request, the name of the object introduced into the user's address space, accessed, or deleted from the
storage system, and at the B1 class and above, the sensitivity determination of the object. It should be
remembered that the audit trail shall be included in the Trusted Computing Base and shall be accorded the
same protection as the TCB. The audit trail shall be subject to strict access controls. An effective audit
trail is necessary in order to detect and evaluate hostile attacks on a system.

 22

GLOSSARY

Administrator - Any one of a group of personnel assigned to supervise all or a portion of an ADP system.
Archive - To file or store records off-line. Audit - To conduct the independent review and examination of
system records and activities. Auditor - An authorized individual with administrative duties, whose duties
include selecting the events to be audited on the system, setting up the audit flags which enable the
recording of those events, and analyzing the trail of audit events.(2) Audit Mechanism - The device used
to collect, review, and/or examine system activities. Audit Trail - A set of records that collectively provide
documentary evidence of processing used to aid in tracing from original transactions forward to related
records and reports, and/or backwards from records and reports to their component source transactions.(1)
Auditable Event - Any event that can be selected for inclusion in the audit trail. These events should
include, in addition to security-relevant events, events taken to recover the system after failure and any
events that might prove to be security-relevant at a later time. Authenticated User - A user who has
accessed an ADP system with a valid identifier and authentication combination. Automatic Data
Processing (ADP) System - An assembly of computer hardware, firmware, and software configured for the
purpose of classifying, sorting, calculating, computing, summarizing, transmitting and receiving, storing,
and retrieving data with a minimum of human intervention.(1) Category - A grouping of classified or
unclassified sensitive information, to which an additional restrictive label is applied (e.g., proprietary,
compartmented information) to signify that personnel are granted access to the information only if they
have formal approval or other appropriate authorization.(4) Covert Channel - A communication channel
that allows a process to transfer information in a manner that violates the system's security policy.(1)

 23

Covert Storage Channel - A covert channel that involves the direct or indirect writing of a storage location
by one process and the direct or indirect reading of the storage location by another process. Covert storage
channels typically involve a finite resource (e.g., sectors on a disk) that is shared by two subjects at

different security levels.(1) Covert Timing Channel - A covert channel in which one process signals
information to another by modulating its own use of system resources (e.g., CPU time) in such a way that
this manipulation affects the real response time observed by the second process.(1) Flaw - An error of
commission, omission or oversight in a system that allows protection mechanisms to be bypassed.(1)
Object - A passive entity that contains or receives information. Access to an object potentially implies
access to the information it contains. Examples of objects are: records, blocks, pages, segments, files,
directories, directory trees and programs, as well as bits, bytes, words, fields, processors, video displays,
keyboards, clocks, printers, network nodes, etc.(1) Post-Selection - Selection, by authorized personnel, of
specified events that had been recorded on the audit trail. Pre-Selection - Selection, by authorized
personnel, of the auditable events that are to be recorded on the audit trail. Security Level - The
combination of a hierarchical classification and a set of non-hierarchical categories that represents the
sensitivity of information.(1) Security Policy - The set of laws, rules, and practices that regulate how an
organization manages, protects, and distributes sensitive information.(1) Security-Relevant Event - Any
event that attempts to change the security state of the system, (e.g., change discretionary access controls,
change the security level of the subject, change user password, etc.). Also, any event that attempts to
violate the security policy of the system, (e.g., too many attempts to login, attempts to violate the
mandatory access control limits of a device, attempts to downgrade a file, etc.).(1) Sensitive Information -
Information that, as determined by a competent authority, must be protected because its unauthorized
disclosure, alteration, loss, or destruction will at least cause perceivable damage to someone or
something.(1) 24

Subject - An active entity, generally in the form of a person, process, or device that causes information to
flow among objects or changes the system state. Technically, a process/domain pair.(1) Subject Sensitivity
Level - The sensitivity level of the objects to which the subject has both read and write access. A subject's
sensitivity level must always be less than or equal to the clearance of the user the subject is associated
with.(4) System Security Administrator - The person responsible for the security of an Automated
Information System and having the authority to enforce the security safeguards on all others who have
access to the Automated Information System.(4) Trusted Computing Base (TCB) - The totality of
protection mechanisms within a computer system -- including hardware, firmware, and software -- the
combination of which is responsible for enforcing a security policy. A TCB consists of one or more
components that together enforce a unified security policy over a product or system. The ability of a TCB
to correctly enforce a security policy depends solely on the mechanisms within the TCB and on the correct
input by system administrative personnel of parameters (e.g., a user's clearance) related to the security
policy.(1) User - Any person who interacts directly with a computer system.(1)

 25

REFERENCES 1. National Computer Security Center, DoD Trusted Computer System Evaluation
Criteria, DoD, DoD 5200.28-STD, 1985. 2. Gligor, Virgil D., "Guidelines for Trusted Facility
Management and Audit," University of Maryland, 1985. 3. Brown, Leonard R., "Guidelines for Audit Log
Mechanisms in Secure Computer Systems," Technical Report TR-0086A(2770-29)-1, The Aerospace
Corporation, 1986. 4. Subcommittee on Automated Information System Security, Working Group #3,
"Dictionary of Computer Security Terminology," 23 November 1986. 5. National Computer Security
Center, Criterion Interpretation, Report No. C1-C1-02-87, 1987.

 2 6 • `

