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 Status of this Memo

   This RFC is being distributed to members of the Internet community    in order to solicit comments on
the Implementors Guide. While this    document may not be directly relevant to the research problems    of
the Internet, it may be of some interest to a number of researchers    and implementors. Distribution of
this memo is unlimited.

             IMPLEMENTATION GUIDE FOR THE ISO TRANSPORT PROTOCOL

1   Interpretation of formal description.

   It is assumed that the reader is familiar with both the formal    description technique, Estelle [ISO85a],
and the transport protocol    as described in IS 8073 [ISO84a] and in N3756 [ISO85b].

1.1   General interpretation guide.

   The development of the formal description of the ISO Transport    Protocol was guided by the three
following assumptions.

                      1. A generality principle

   The formal description is intended to express all of the behavior    that any implementation is to
demonstrate, while not being bound    to the way that any particular implementation would realize that
behavior within its operating context.

                      2. Preservation of the deliberate                          nondeterminism of IS 8073

   The text description in the IS 8073 contains deliberate expressions    of nondeterminism and
indeterminism in the behavior of the    transport protocol for the sake of flexibility in application.
(Nondeterminism in this context means that the order of execution    for a set of actions that can be taken
is not specified.    Indeterminism means that the execution of a given action cannot be    predicted on the
basis of system state or the executions of other    actions.)
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                       3. Discipline in the usage of Estelle

   A given feature of Estelle was to be used only if the nature of    the mechanism to be described strongly
indicates its usage,    or to adhere to the generality principle, or to retain the    nondeterminism of IS
8073.

   Implementation efficiency was not a particular goal nor was there    an attempt to directly correlate
Estelle mechanisms and features    to implementation mechanisms and features.  Thus, the description
does not represent optimal behavior for the implemented protocol.

   These assumptions imply that the formal description contains higher    levels of abstraction than would
be expected in a description for    a particular operating environment.  Such abstraction is essential,
because of the diversity of networks and network elements by which    implementation and design
decisions are influenced.  Even when    operating environments are essentially identical, design choice
and    originality in solving a technical problem must be allowed.    The same behavior may be expressed
in many different ways.  The    goal in producing the transport formal description was to attempt    to
capture this equivalence.  Some mechanisms of transport are not    fully described or appear to be overly
complicated because of the    adherence to the generality principle.  Resolution of these    situations may
require significant effort on the part of the    implementor.

   Since the description does not represent optimal behavior for the    implemented protocol, implementors
should take the three assumptions    above into account when using the description to implement the
protocol.  It may be advisable to adapt the standard description in    such a way that:

      a.   abstractions (such as modules, channels, spontaneous           transitions and binding comments)
are interpreted and realized           as mechanisms appropriate to the operating environment and
service requirements;

     b.   modules, transitions, functions and procedures containing           material irrelevant to the classes
or options to be supported           are reduced or eliminated as needed; and

     c.   desired real-time behavior is accounted for.

   The use in the formal description of an Estelle feature (for    instance, "process"), does not imply that an
implementation must    necessarily realize the feature by a synonymous feature of the    operating context.
Thus, a module declared to be a "process" in an    Estelle description need not represent a real process as
seen by a    host operating system; "process" in Estelle refers to the
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    synchronization properties of a set of procedures (transitions).

   Realizations of Estelle features and mechanisms are dependent in an    essential way upon the
performance and service an implementation is    to provide.  Implementations for operational usage have
much more    stringent requirements for optimal behavior and robustness than do    implementations used
for simulated operation (e.g., correctness or    conformance testing).  It is thus important that an
operational    implementation realize the abstract features and mechanisms of a    formal description in an
efficient and effective manner.

   For operational usage, two useful criteria for interpretation of    formal mechanisms are:

        [1] minimization of delays caused by the mechanism             itself; e.g.,

               --transit delay for a medium that realizes a                  channel

               --access delay or latency for channel medium

               --scheduling delay for timed transitions                  (spontaneous transitions with delay clause)

               --execution scheduling for modules using                  exported variables (delay in accessing
variable)

        [2] minimization of the "handling" required by each             invocation of the mechanism; e.g.,

               --module execution scheduling and context                  switching

               --synchronization or protocols for realized                  channel

               --predicate evaluation for spontaneous                  transitions

   Spontaneous transitions represent nondeterminism and indeterminism,    so that uniform realization of
them in an implementation must be    questioned as an implementation strategy.  The time at which the
action described by a spontaneous transition will actually take    place cannot be specified because of one
or more of the following    situations:

      a.   it is not known when, relative to any specific event defining           the protocol (e.g., input
network, input from user, timer
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           expirations), the conditions enabling the transition will           actually occur;

     b.   even if the enabling conditions are ultimately deterministic,           it is not practical to describe all
the possible ways this           could occur, given the different ways in which implementations           will
examine these conditions; and

      c.   a particular implementation may not be concerned with the           enabling conditions or will
account for them in some other           way; i.e., it is irrelevant when the action takes place, if           ever.

   As an example of a), consider the situation when splitting over the    network connection, in Class 4, in
which all of the network    connections to which the transport connection has been assigned have    all
disconnected, with the transport connection still in the OPEN    state.  There is no way to predict when
this will happen, nor is    there any specific event signalling its occurrence.  When it does    occur, the
transport protocol machine may want to attempt to obtain    a new network connection.

   As an example of b), consider that timers may be expressed    succinctly in Estelle by transitions similar
to the following:

                  from A to B                  provided predicate delay( timer_interval )

                 begin                  (* action driven by timeout *)                  end;

    But there are operations for which the timer period may need to    be very accurate (close to real time)
and others in which some    delay in executing the action can be tolerated.  The implementor    must
determine the optimal behavior desired for each instance    and use an appropriate mechanism to realize
it, rather than    using a uniform approach to implementing all spontaneous    transitions.

   As an example of the situation in c), consider the closing of an    unused network connection.  If the
network is such that the cost    of letting the network connection remain open is small compared    cost of
opening it, then an implementation might not want to    consider closing the network connection until,
say, the weekend.    Another implementation might decide to close the network    connection within 30
msec after discovering that the connection    is not busy.  For still another implementation, this could be
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    meaningless because it operates over a connectionless network    service.

   If a description has only a very few spontaneous transitions, then    it may be relatively easy to
implement them literally (i.e., to    schedule and execute them as Estelle abstractly does) and not    incur
the overhead from examining all of the variables that occur    in the enabling conditions.  However, the
number and complexity of    the enabling conditions for spontaneous transitions in the transport
description strongly suggests that an implementation which realizes    spontaneous transitions literally
will suffer badly from such    overhead.

1.2   Guide to the formal description.

   So that implementors gain insight into interpretation of the    mechanisms and features of the formal
description of transport, the    following paragraphs discuss the meanings of such mechanisms and
features as intended by the editors of the formal description.

1.2.1   Transport Protocol Entity.

1.2.1.1   Structure.

   The diagram below shows the general structure of the Transport    Protocol Entity (TPE) module, as
given in the formal description.    >From an abstract operational viewpoint, the transport protocol
Machines (TPMs) and the Slaves operate as child processes of the the    TPE process.  Each TPM
represents the endpoint actions of the    protocol on a single transport connection.  The Slave represents
control of data output to the network.  The internal operations of    the TPMs and the Slave are discussed
below in separate sections.

   This structure permits describing multiple connections, multiplexing    and splitting on network
connections, dynamic existence of endpoints    and class negotiation.  In the diagram, interaction points
are    denoted by the symbol "O", while (Estelle) channels joining these    interaction points are denoted by
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              *              *              *

   The symbol "X" represents a logical association through variables,    and the denotations

           <<<<<<<

           >>>>>>>

              V               V               V

   indicate the passage of data, in the direction of the symbol    vertices, by way of these associations.  The
acronyms TSAP and    NSAP denote Transport Service Access Point and Network Service    Access Point,
respectively.  The structure of the TSAPs and    NSAPs shown is discussed further on, in Parts 1.2.2.1 and
1.2.2.2.

              |<-----------------TSAP---------------->|    ----------O---------O---------O---------O---------O---------    |
TPE    *                   *         *                  |    |         *                   *         *                  |    |     ____O____
____O____ ____O____              |    |     |       |           |       | |       |              |    |     |  TPM  |           |  TPM  | |
TPM  |              |    |     |       |           |       | |       |              |    |     |___X___|           |__X_X__| |___X___|
|    |         V                  V V        V                  |    |         V   multiplex      V V        V                  |    |
>>>>>>>> <<<<<<<<<<< V        V                  |    |                V V     split V        V                  |    |
V V           V        V                  |    |              ---X----     ---X---- ---X----              |    |              |Slave |
|Slave | |Slave |              |    |              |__O___|     |__O___| |__O___|              |    |                 V            V
V                  |    |                 V            V        V                  |    |-----------------O------------O--------O----------
--------|                    NSAP           |<------>|

                                NSAP
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    The structuring principles of Estelle provide a formal means of    expressing and enforcing certain
synchronization properties between    communicating processes.  It must be stressed that the scheduling
implied by Estelle descriptions need not and in some cases should    not be implemented.  The intent of
the structure in the transport    formal description is to state formally the synchronization of    access
tovariables shared by the transport entity and the transport    connection endpoints and to permit
expression of dynamic objects    within the entity.  In nearly all aspects of operation except these,    it may
be more efficient in some implementation environments to    permit the TPE and the TPMs to run in
parallel (the Estelle    scheduling specifically excludes the parallel operation of the TPE    and the TPMs).
This is particularly true of internal management    ("housekeeping") actions and those actions not directly
related to    communication between the TPE and the TPMs or instantiation of TPMs.    Typical actions of
this latter sort are: receipt of NSDUs from the    network, integrity checking and decoding of TPDUs, and
network    connection management. Such actions could have been collected into    other modules for
scheduling closer to that of an implementation,    but surely at the risk of further complicating the
description.    Consequently, the formal description structure should be understood    as expressing
relationships among actions and objects and not    explicit implementation behavior.

1.2.1.2   Transport protocol entity operation.

   The details of the operation of the TPE from a conceptual point of    view are given in the SYS section
of the formal description.    However, there are several further comments that can be made    regarding the
design of the TPE.  The Estelle body for the TPE    module has no state variable.  This means that any
transition of    the TPE may be enabled and executed at any time.  Choice of    transition is determined
primarily by priority.  This suggests    that the semantics of the TPE transitions is that of interrupt    traps.

   The TPE handles only the T-CONNECT-request from the user and the TPM    handle all other user
input.  All network events are handled by the    TPE, in addition to resource management to the extent
defined in the    description.  The TPE also manages all aspects of connection    references, including
reference freezing.  The TPE does not    explicitly manage the CPU resource for the TPMs, since this is
implied by the Estelle scheduling across the module hierarchy.    Instantiation of TPMs is also the
responsibility of the TPE, as is    TPM release when the transport connection is to be closed.  Once a
TPM is created, the TPE does not in general interfere with TPM's    activities, with the following
exceptions:  the TPE may reduce credit    to a Class 4 TPM without notice;  the TPE may dissociate a
Class 4    TPM from a network connection when splitting is being used.    Communication between the
TPE and the TPMs is through a set of    exported variables owned by the TPMs, and through a channel
which
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    passes TPDUs to be transmitted to the remote peer.  This channel is    not directly connected to any
network connection, so each    interaction on it carries a reference number indicating which network
connection is to be used. Since the reference is only a reference,    this permits usage of this mechanism
when the network service is    connectionless, as well.  The mechanism provides flexibility for    both
splitting and multiplexing on network connections.

   One major function that the TPE performs for all its TPMs is that of    initial processing of received
TPDUs.  First, a set of integrity    checks is made to determine if each TPDU in an NSDU is decodable:

      a.   PDU length indicators and their sums are checked against the           NSDU length for consistency;

     b.   TPDU types versus minimum header lengths for the types are           checked, so that if the TPDU
can be decoded, then proper           association to TPMs can be made without any problem;

     c.   TPDUs are searched for checksums and the local checksum is           computed for any checksum
found; and

      d.   parameter codes in variable part of headers are checked where           applicable.

   These integrity checks guarantee that an NSDU passing the check can    be separated as necessary into
TPDUs, these TPDUs can be associated    to the transport connections or to the Slave as appropriate and
they    can be further decoded without error.

   The TPE next decodes the fixed part of the TPDU headers to determine    the disposition of the TPDU.
The Slave gets TPDUs that cannot be    assigned to a TPM (spurious TPDU).  New TPMs are created in
response    to CR TPDUs that correspond to a TSAP for this TPE.

   All management of NSAPs is done by the TPE.  This consists of keeping    track of all network
connections, their service quality    characteristics and their availability, informing the TPMs associated
with these network connections.

   The TPE has no timer module as such.  Timing is handled by using the    DELAY feature of Estelle,
since this feature captures the essence of    timing without specifying how the actual timing is to be
achieved    within the operating environment.  See Part 1.2.5 for more details.

1.2.2   Service Access Points.

   The service access points (SAP) of the transport entity are modeled    using the Estelle
channel/interaction point formalism.  (Note: The
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    term "channel" in Estelle is a keyword that denotes a set of    interactions which may be exchanged at
interaction points [LIN85].    However, it is useful conceptually to think of "channel" as denoting    a
communication path that carries the interactions between modules.)    The abstract service primitives for a
SAP are interactions on    channels entering and leaving the TPE.  The transport user is    considered to
be at the end of the channel connected to the transport    SAP (TSAP) and the network service provider is
considered to be at    the end of the channel connected to the network SAP (NSAP).  An    interaction put
into a channel by some module can be considered to    move instantaneously over the channel onto a
queue at the other end.    The sender of such an interaction no longer has access to the    interaction once
it has been put into the channel.  The operation of    the system modeled by the formal description has
been designed with    this semantics in mind, rather than the equivalent but much more    abstract Estelle
semantics.  (In the Estelle semantics, each    interaction point is considered to have associated with it an
unbounded queue.  The "attach" and "connect" primitives bind two    interaction points, such that an
action, implied by the keyword    "out", at one interaction point causes a specified interaction to be
placed onto the queue associated with the other interaction point.)    The sections that follow discuss the
TSAP and the NSAP and the way    that these SAPs are described in the formal description.

1.2.2.1   Transport Service Access Point.

   The international transport standard allows for more than one TSAP to    be associated with a transport
entity, and multiple users may be    associated with a given TSAP.  A situation in which this is useful is
when it is desirable to have a certain quality of service correlated    with a given TSAP.  For example, one
TSAP could be reserved for    applications requiring a high throughput, such as file transfer.  The
operation of transport connections associated with this TSAP could    then be designed to favor
throughput.  Another TSAP might serve users    requiring short response time, such as terminals.  Still
another TSAP    could be reserved for encryption reasons.

   In order to provide a way of referencing users associated with TSAPs,    the user access to transport in
the formal description is through an    array of Estelle interaction points.  This array is indexed by a TSAP
address (T_address) and a Transport Connection Endpoint Identifier    (TCEP_id).  Note that this
dimensional object (TSAP) is considered    simply to be a uniform set of abstract interfaces.  The indices
must    be of (Pascal) ordinal type in Estelle.  However, the actual address    structure of TSAPs may not
conform easily to such typing in an    implementation.  Consequently, the indices as they appear in the
formal description should be viewed as an organizational mechanism    rather than as an explicit way of
associating objects in an    operational setting.  For example, actual TSAP addresses might be    kept in
some kind of table, with the table index being used to    reference objects associated with the TSAP.

McCoy                                                           [Page 9]



 RFC 1008                                                       June 1987

    One particular issue concerned with realizing TSAPs is that of making    known to the users the means
of referencing the transport interface,    i.e., somehow providing the T_addresses and TCEP_ids to the
users.    This issue is not considered in any detail by either IS 7498 [ISO84b]    or IS 8073.  Abstractly, the
required reference is the    T_address/TCEP_id pair.  However, this gives no insight as to how the
mechanism could work.  Some approaches to this problem are discussed    in Part 5.

   Another issue is that of flow control on the TSAP channels.  Flow    control is not part of the semantics
for the Estelle channel, so the    problem must be dealt with in another way.  The formal description
gives an abstract definition of interface flow control using Pascal    and Estelle mechanisms.  This
abstraction resembles many actual    schemes for flow control, but the realization of flow control will
still be dependent on the way the interface is implemented.  Part 3.2    discusses this in more detail.

1.2.2.2   Network Service Access Point.

   An NSAP may also have more than one network connection associated    with it.  For example, the
virtual circuits of X.25 correspond with    this notion.  On the other hand, an NSAP may have no network
connection associated with it, for example when the service at the    NSAP is connectionless.  This
certainly will be the case when    transport operates on a LAN or over IP.  Consequently, although the
syntactical appearance of the NSAP in the formal description is    similar to that for the TSAP, the
semantics are essentially distinct    [NTI85].

   Distinct NSAPs can correspond or not to physically distinct networks.    Thus, one NSAP could access
X.25 service, another might access an    IEEE 802.3 LAN, while a third might access a satellite link.  On
the    other hand, distinct NSAPs could correspond to different addresses on    the same network, with no
particular rationale other than facile    management for the distinction.  There are performance and system
design issues that arise in considering how NSAPs should be managed    in such situations.  For example,
if distinct NSAPs represent    distinct networks, then a transport entity which must handle all    resource
management for the transport connections and operate these    connections as well may have trouble
keeping pace with data arriving    concurrently from two LANs and a satellite link.  It might be a    better
design solution to separate the management of the transport    connection resources from that of the NSAP
resources and inputs, or    even to provide separate transport entities to handle some of the    different
network services, depending on the service quality to be    maintained.  It may be helpful to think of the
(total) transport    service as not necessarily being provided by a single monolithic    entity--several
distinct entities can reside at the transport layer    on the same end-system.
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    The issues of NSAP management come primarily from connection-oriented    network services.  This is
because a connectionless service is either    available to all transport connections or it is available to none,
representing infinite degrees of multiplexing and splitting. In the    connection-oriented case, NSAP
management is complicated by    multiplexing, splitting, service quality considerations and the
particular character of the network service.  These issues are    discussed further in Part 3.4.1.  In the
formal description, network    connection management is carried out by means of a record associated
with each possible connection and an array, associated with each TPM,    each array member
corresponding to a possible network connection.    Since there is, on some network services, a very large
number of    possible network connections, it is clear that in an implementation    these data structures
may need to be made dynamic rather than static.    The connection record, indexed by NSAP and
NCEP_id, consists of a    Slave module reference, virtual data connections to the TPMs to be    associated
with the network connection, a data connection (out) to    the NSAP, and a data connection to the Slave.
There is also a    "state" variable for keeping track of the availability of the    connection, variables for
managing the Slave and an internal    reference number to identify the connection to TPMs.  A member of
the    network connection array associated with a TPM provides the TPM with    status information on the
network connection and input data (network)    events and TPDUs).  A considerable amount of
management of the    network connections is provided by the formal description, including    splitting,
multiplexing, service quality (when defined), interface    flow control, and concatenation of TPDUs. This
management is carried    out solely by the transport entity, leaving the TPMs free to handle    only the
explicit transport connection issues.  This management    scheme is flexible enough that it can be
simplified and adapted to    handle the NSAP for a connectionless service.

   The principal issue for management of connectionless NSAPs is that of    buffering, particularly if the
data transmission rates are high, or    there is a large number of transport connections being served.  It
may also be desirable for the transport entity to monitor the service    it is getting from the network.  This
would entail, for example,    periodically computing the mean transmission delays for adjusting    timers
or to exert backpressure on the transport connections if    network access delay rises, indicating loading.
(In the formal    description, the Slave processor provides a simple form of output    buffer management:
when its queue exceeds a threshold, it shuts off    data from the TPMs associated with it.  Through
primitive functions,    the threshold is loosely correlated with network behavior.  However,    this
mechanism is not intended to be a solution to this difficult    performance problem.)
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 1.2.3   Transport Protocol Machine.

   Transport Protocol Machines (TPM) in the formal description are in    six classes: General, Class 0,
Class 1, Class 2, Class 3 and Class 4.    Only the General, Class 2 and Class 4 TPMs are discussed here.
The    reason for this diversity is to facilitate describing class    negotiations and to show clearly the
actions of each class in the    data transfer phase.  The General TPM is instantiated when a    connection
request is received from a transport user or when a CR    TPDU is received from a remote peer entity.
This TPM is replaced by    a class-specific TPM when the connect response is received from the
responding user or when the CC TPDU is received from the responding    peer entity.

   The General, Class 2 and Class 4 TPMs are discussed below in more    detail.  In an implementation, it
probably will be prudent to merge    the Class 2 and Class 4 operations with that of the General TPM,
with    new variables selecting the class-specific operation as necessary    (see also Part 9.4 for information
on obtaining Class 2 operation    from a Class 4 implementation).  This may simplify and improve the
behavior of the implemented protocol overall.

1.2.3.1   General Transport Protocol Machine.

   Connection negotiation and establishment for all classes can be    handled by the General Transport
Protocol Machine.  Some parts of the    description of this TPM are sufficiently class dependent that they
can safely be removed if that class is not implemented.  Other parts    are general and must be retained for
proper operation of the TPM. The    General TPM handles only connection establishment and negotiation,
so    that only CR, CC, DR and DC TPDUs are sent or received (the TPE    prevents other kinds of TPDUs
from reaching the General TPM).

   Since the General TPM is not instantiated until a T-CONNECT-request    or a CR TPDU is received,
the TPE creates a special internal    connection to the module's TSAP interaction point to pass the    T-
CONNECT-request event to the TPM.  This provides automaton    completeness according to the
specfication of the protocol.  When the    TPM is to be replaced by a class-specific TPM, the sent or
received    CC is copied to the new TPM so that negotiation information is not    lost.

   In the IS 8073 state tables for the various classes, the majority of    the behavioral information for the
automaton is contained in the    connection establishment phase.  The editors of the formal    description
have retained most of the information contained in the    state tables of IS 8073 in the description of the
General TPM.

1.2.3.2   Class 2 Transport Protocol Machine.

   The formal description of the Class 2 TPM closely resembles that of
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    Class 4, in many respects.  This is not accidental, in that: the    conformance statement in IS 8073 links
Class 2 with Class 4; and the    editors of the formal description produced the Class 2 TPM    description
by copying the Class 4 TPM description and removing    material on timers, checksums, and the like that
is not part of the    Class 2 operation.  The suggestion of obtaining Class 2 operation    from a Class 4
implementation, described in Part 9.4, is in fact    based on this adaptation.

   One feature of Class 2 that does not appear in Class 4, however, is    the option to not use end-to-end
flow control.  In this mode of    operation, Class 2 is essentially Class 0 with multiplexing.  In    fact, the
formal description of the Class 0 TPM was derived from    Class 2 (in IS 8073, these two classes have
essentially identical    state tables).  This implies that Class 0 operation could be obtained    from Class 2
by not multiplexing, not sending DC TPDUs, electing not    to use flow control and terminating the
network connection when a DR    TPDU is received (expedited data cannot be used if flow control is    not
used).  When Class 2 is operated in this mode, a somewhat    different procedure is used to handle data
flow internal to the TPM    than is used when end-to-end flow control is present.

1.2.3.3   Class 4 Transport Protocol Machine.

   Dynamic queues model the buffering of TPDUs in both the Class 4 and    Class 2 TPMs.  This provides
a more general model of implementations    than does the fixed array representation and is easier to
describe.    Also, the fixed array representation has semantics that, carried    into an implementation,
would produce inefficiency.  Consequently,    linked lists with queue management functions make up the
TPDU    storage description, despite the fact that pointers have a very    implementation-like flavor.  One
of the queue management functions    permits removing several TPDUs from the head of the send queue,
to    model the acknowledgement of several TPDUs at once, as specified in    IS 8073.  Each TPDU record
in the queue carries the number of    retransmissions tried, for timer control (not present in the Class 2
TPDU records).

   There are two states of the Class 4 TPM that do not appear in IS    8073. One of these was put in solely
to facilitate obtaining credit    in case no credit was granted for the CR or CC TPDU.  The other state
was put in to clarify operations when there is unacknowledged    expedited data outstanding (Class 2 does
not have this state).

   The timers used in the Class 4 TPM are discussed below, as is the    description of end-to-end flow
control.

   For simplicity in description, the editors of the formal description    assumed that no queueing of
expedited data would occur at the user    interface of the receiving entity.  The user has the capability to
block the up-flow of expedited data until it is ready.  This
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    assumption has several implications. First, an ED TPDU cannot be    acknowledged until the user is
ready to accept it.  This is because    the receipt of an EA TPDU would indicate to the sending peer that
the    receiver is ready to receive the next ED TPDU, which would not be    true.  Second, because of the
way normal data flow is blocked by the    sending of an ED TPDU, normal data flow ceases until the
receiving    user is ready for the ED TPDU.  This suggests that the user    interface should employ separate
and noninterfering mechanisms    for passing normal and expedited data to the user.  Moreover,    the
mechanism for expedited data passage should be blocked only in    dire operational conditions.  This
means that receipt of expedited    data by the user should be a procedure (transition) that operates    at
nearly the highest priority in the user process.  The alternative    to describing the expedited data handling
in this way would entail a    scheme of properly synchronizing the queued ED TPDUs with the DT
TPDUs received.  This requires some intricate handling of DT and ED    sequence numbers. While this
alternative may be attractive for    implementations, for clarity in the formal description it provides    only
unnecessary complication.

   The description of normal data TSDU processing is based on the    assumption that the data the T-
DATA-request refers to is potentially    arbitrarily long.  The semantic of the TSDU in this case is
analogous    to that of a file pointer, in the sense that any file pointer is a    reference to a finite but
arbitrarily large set of octet-strings.    The formation of TPDUs from this string is analogous to reading
the    file in  fixed-length segments--records or blocks, for example.  The    reassembly of TPDUs into a
string is analogous to appending each TPDU    to the tail of a file; the file is passed when the end-of-
TSDU    (end-of-file) is received.  This scheme permits conceptual buffering    of the entire TSDU in the
receiver and avoids the question of whether    or not received data can be passed to the user before the
EOT is    received.  (The file pointer may refer to a file owned by the user,    so that the question then
becomes moot.)

   The encoding of TPDUs is completely described, using Pascal functions    and some special data
manipulation functions of Estelle (these are    not normally part of Pascal).  There is one encoding
function    corresponding to each TPDU type, rather than a single parameterized    function that does all
of them.  This was done so that the separate    structures of the individual types could be readily discerned,
since    the purpose of the functions is descriptive and not necessarily    computational.

   The output of TPDUs from the TPM is guarded by an internal flow    control flag.  When the TPDU is
first sent, this flag is ignored,    since if the TPDU does not get through, a retransmission may take    care
of it.  However, when a retransmission is tried, the flag is    heeded and the TPDU is not sent, but the
retransmission count is    incremented.  This guarantees that either the TPDU will eventually    be sent or
the connection will time out (this despite the fact that
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    the peer will never have received any TPDU to acknowledge).    Checksum computations are done in
the TPM rather than by the TPE,    since the TPE must handle all classes.  Also, if the TPMs can be
made to truly run in parallel, the performance may be greatly    enhanced.

   The decoding of received TPDUs is partially described in the Class 4    TPM description.  Only the CR
and CC TPDUs present any problems in    decoding, and these are largely due to the nondeterministic
order of    parameters in the variable part of the TPDU headers and the    locality-and class-dependent
content of this variable part.  Since    contents of this variable part (except the TSAP-IDs) do not affect
the association of the TPDU with a transport connection, the    decoding of the variable part is not
described in detail.  Such a    description would be very lengthy indeed because of all the    possibilities
and would not contribute measurably to understanding    by the reader.

1.2.4   Network Slave.

   The primary functions of the Network Slave are to provide downward    flow control in the TPE, to
concatenate TPDUs into a single NSDU and    to respond to the receipt of spurious TPDUs.  The Slave
has an    internal queue on which it keeps TPDUs until the network is ready to    accept them for
transmission.  The TPE is kept informed as to the    length of queue, and the output of the TPMs is
throttled if the    length exceeds this some threshold.  This threshold can be adjusted    to meet current
operating conditions.  The Slave will concatenate    the TPDUs in its queue if the option to concatenate is
exercised and    the conditions for concatenating are met.  Concatenation is a TPE    option, which may be
exercised or not at any time.

1.2.5   Timers.

   In the formal description timers are all modeled using a spontaneous    transition with delay, where the
delay parameter is the timer period.    To activate the timer, a timer identifier is placed into a set,
thereby satisfying a predicate of the form

   provided timer_x in active_timers

   However, the transition code is not executed until the elapsed time    ;from the placement of the
identifier in the set is at least equal    to the delay parameter.  The editors of the formal description chose
to model timers in this fashion because it provided a simply    expressed description of timer behavior and
eliminated having to    consider how timing is done in a real system or to provide special    timer modules
and communication to them.  It is thus recommended that    implementors not follow the timer model
closely in implementations,    considering instead the simplest and most efficient means of timing
permitted by the implementation environment.  Implementors should
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    also note that the delay parameter is typed "integer" in the formal    description. No scale conversion
from actual time is expressed in the    timer transition, so that this scale conversion must be considered
when timers are realized.

1.2.5.1   Transport Protocol Entity timers.

   There is only one timer given in the formal description of the    TPE--the reference timer.  The reference
timer was placed here ;so    that it can be used by all classes and all connections, as needed.    There is
actually little justification for having a reference timer    within the TPM--it wastes resources by holding
the transport    endpoint, even though the TPM is incapable of responding to any    input.  Consequently,
the TPE is responsible for all aspects of    reference management, including the timeouts.

1.2.5.2   Transport Protocol Machine timers.

   Class 2 transport does not have any timers that are required by IS    8073.  However, the standard does
recommend that an optional timer be    used by Class 2 in certain cases to avoid deadlock.  The formal
description provides this timer, with comments to justify its usage.    It is recommended that such a timer
be provided for Class 2    operation.  Class 4 transport has several timers for connection    control, flow
control and retransmissions of unacknowledged data.    Each of these timers is discussed briefly below in
terms of how they    were related to the Class 4 operations in the formal description.    Further discussion
of these timers is given in Part 8.

1.2.5.2.1   Window timer.

   The window timer is used for transport connection control as well as    providing timely updates of flow
control credit information.  One of    these timers is provided in each TPM.   It is reset each time an AK
TPDU is sent, except during fast retransmission of AKs for flow    control confirmation, when it is
disabled.

1.2.5.2.2   Inactivity timer.

   The primary usage of the inactivity timer is to detect when the    remote peer has ceased to send
anything (including AK TPDUs).  This    timer is mandatory when operating over a connectionless
network    service, since there is no other way to determine whether or not the    remote peer is still
functioning.  On a connection-oriented network    service it has an additional usage since to some extent
the continued    existence of the network connection indicates that the peer host has    not crashed.

   Because of splitting, it is useful to provide an inactivity timer on    each network connection to which a
TPM is assigned.  In this manner,    if a network connection is unused for some time, it can be released,
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   even though a TPM assigned to it continues to operate over other    network connections. The formal
description provides this capability    in each TPM.

1.2.5.2.3   Network connection timer.

   This timer is an optional timer used to ensure that every network    connection to which a TPM is
assigned gets used periodically.  This    prevents the expiration of the peer entity's inactivity timer for a
network connection.  There is one timer for each network connection    to which the TPM is assigned.  If
there is a DT or ED TPDU waiting to    be sent, then it is chosen to be sent on the network connection.  If
no such TPDU is waiting, then an AK TPDU is sent.  Thus, the NC timer    serves somewhat the same
purpose as the window timer, but is broader    in scope.

1.2.5.2.4   Give-up timer.

   There is one give-up timer for a TPM which is set whenever the    retransmission limit for any CR, CC,
DT, ED or DR TPDU is reached.    Upon expiration of this timer, the transport connection is closed.

1.2.5.2.5   Retransmission timers.

   Retransmission timers are provided for CR, CC, DT, ED and DR TPDUs.    The formal description
provides distinct timers for each of these    TPDU types, for each TPM.  However, this is for clarity in the
description, and Part 8.2.5 presents arguments for other strategies    to be used in implementations.  Also,
DT TPDUs with distinct sequence    numbers are each provided with timers, as well.  There is a primitive
function which determines the range within the send window for which    timers will be set.  This has
been done to express flexibility in the    retransmission scheme.

   The flow control confirmation scheme specified in IS 8073 also    provides for a "fast" retransmission
timer to ensure the reception of    an AK TPDU carrying window resynchronization after credit reduction
or when opening a window that was previously closed.  The formal    description permits one such timer
for a TPM.  It is disabled after    the peer entity has confirmed the window information.

1.2.5.2.6   Error transport protocol data unit timer.

   In IS 8073, there is a provision for an optional timeout to limit the    wait for a response by the peer
entity to an ER TPDU.  When this    timer expires, the transport connection is terminated.  Each Class 2
or Class 4 TPM is provided with one of these timers in N3756.

1.2.6   End-to-end Flow Control.

   Flow control in the formal description has been written in such a way
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    as to permit flexibility in credit control schemes and    acknowledgement strategies.

1.2.6.1   Credit control.

   The credit mechanism in the formal description provides for actual    management of credit by the TPE.
This is done through variables    exported by the TPMs which indicate to the TPE when credit is needed
and for the TPE to indicate when credit has been granted.  In this    manner, the TPE has control over the
credit a TPM has.  The mechanism    allows for reduction in credit (Class 4 only) and the possibility of
precipitous window closure.  The mechanism does not preclude the use    of credit granted by the user or
other sources, since credit need is    expressed as current credit being less than some threshold.  Setting
the threshold to zero permits these other schemes.  An AK TPDU is    sent each time credit is updated.

   The end-to-end flow control is also coupled to the interface flow    control to the user.  If the user has
blocked the interface up-flow,    then the TPM is prohibited from requesting more credit when the
current window is used up.

1.2.6.2   Acknowledgement.

   The mechanism for acknowledging normal data provides flexibility    sufficient to send an AK TPDU in
response to every Nth DT TPDU    received where N > 0 and N may be constant or dynamically
determined.    Each TPM is provided with this, independent of all other TPMs, so    that
acknowledgement strategy can be determined separately for each    transport connection.  The capability
of altering the acknowledgement    strategy is useful in operation over networks with varying error    rates.

1.2.6.3  Sequencing of received data.

   It is not specified in IS 8073 what must be done with out-of-sequence    but within-window DT TPDUs
received, except that an AK TPDU with    current window and sequence information be sent.  There are
performance reasons why such DT TPDUs should be held (cached): in    particular, avoidance of
retransmissions.  However, this buffering    scheme is complicated to implement and worse to describe
formally    without resorting to mechanisms too closely resembling    implementation.  Thus, the formal
description mechanism discards such    DT TPDUs and relies on retransmission to fill the gaps in the
window    sequence, for the sake of simplicity in the description.

1.2.7   Expedited data.

   The transmission of expedited data, as expressed by IS 8073, requires    the blockage of normal data
transmission until the acknowledgement is    received.  This is handled in the formal description by
providing a
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    special state in which normal data transmission cannot take place.    However, recent experiments with
Class 4 transport over network    services with high bandwidth, high transit delay and high error    rates,
undertaken by the NBS and COMSAT Laboratories, have shown that    the protocol suffers a marked
decline in its performance in such    conditions.  This situation has been presented to ISO, with the
result that the the protocol will be modified to permit the sending    of normal data already accepted by the
transport entity from the user    before the expedited data request but not yet put onto the network.    When
the modification is incorporated into IS 8073, the formal    description will be appropriately aligned.

 2   Environment of implementation.

   The following sections describe some general approaches to    implementing the transport protocol and
the advantages and    disadvantages of each.  Certain commercial products are identified    throughout the
rest of this document.  In no case does such    identification imply the recommendation or endorsement of
these    products by the Department of Defense, nor does it imply that the    products identified are the best
available for the purpose described.    In all cases such identification is intended only to illustrate the
possibility of implementation of an idea or approach.  UNIX is a    trademark of AT&T Bell Laboratories.

   Most of the discussions in the remainder of the document deal with    Class 4 exclusively, since there are
far more implementation issues    with Class 4 than for Class 2.  Also, since Class 2 is logically a
special case of Class 4, it is possible to implement Class 4 alone,    with special provisions to behave as
Class 2 when necessary.

2.1   Host operating system program.

   A common method of implementing the OSI transport service is to    integrate the required code into the
specific operating system    supporting the data communications applications.  The particular    technique
for integration usually depends upon the structure and    facilities of the operating system to be used.  For
example, the    transport software might be implemented in the operating system    kernel, accessible
through a standard set of system calls.  This    scheme is typically used when implementing transport for
the UNIX    operating system.  Class 4 transport has been implemented using this    technique for System
V by AT&T and for BSD 4.2 by several    organizations.  As another example, the transport service might
be    structured as a device driver.  This approach is used by DEC for the    VAX/VMS implementation of
classes 0, 2, and 4 of the OSI transport    protocol.  The Intel iRMX-86 implementation of Class 4
transport is    another example.  Intel implements the transport software as a first    level job within the
operating system.  Such an approach allows the    software to be linked to the operating system and loaded
with every
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    boot of the system.

   Several advantages may accrue to the communications user when    transport is implemented as an
integral part of the operating system.    First,  the interface to data communications services is well known
to the application programmer since the same principles are followed    as for other operating system
services.  This allows the fast    implementation of communications applications without the need for
retraining of programmers.  Second, the operating system can support    several different suites of
protocols without the need to change    application programs.  This advantage can be realized only with
careful engineering and control of the user-system call interface to    the transport services.  Third, the
transport software may take    advantage of the normally available operating system services such as
scheduling, flow control, memory management, and interprocess    communication.  This saves time in
the development and maintenance of    the transport software.

   The disadvantages that exist with operating system integration of the    TP are primarily dependent
upon the specific operating system.    However, the major disadvantage, degradation of host application
performance, is always present.  Since the communications software    requires the attention of the
processor to handle interrupts and    process protocol events, some degradation will occur in the
performance of host applications.  The degree of degradation is    largely a feature of the hardware
architecture and processing    resources required by the protocol.  Other disadvantages that may    appear
relate to limited performance on the part of the    communications service.  This limited performance is
usually a    function of the particular operating system and is most directly    related to the method of
interprocess communication provided with the    operating system.  In general, the more times a message
must be    copied from one area of memory to another, the poorer the    communications software will
perform.  The method of copying and the    number  of copies is often a function of the specific operating
system.  For example, copying could be optimized if true shared    memory is supported in the operating
system.  In this case, a    significant amount of copying can be reduced to pointer-passing.

2.2   User program.

   The OSI transport service can be implemented as a user job within any    operating system provided a
means of multi-task communications is    available or can be implemented.  This approach is almost
always a    bad one.  Performance problems will usually exist because the    communication task is
competing for resources like any other    application program.  The only justification for this approach is
the    need to develop a simple implementation of the transport service    quickly.  The NBS implemented
the transport protocol using this    approach as the basis for a transport protocol correctness testing
system.  Since performance was not a goal of the NBS implementation,
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    the ease of development and maintenance made this approach    attractive.

2.3   Independent processing element attached to a system bus.

   Implementation of the transport service on an independent processor    that attaches to the system bus
may provide substantial performance    improvements over other approaches.  As computing power and
memory    have become cheaper this approach has become realistic.  Examples    include the Intel
implementation of iNA-961 on a variety of multibus    boards such as the iSBC 186/51 and the iSXM 554.
Similar products    have been developed by Motorola and by several independent vendors of    IBM PC
add-ons.  This approach requires that the transport software    operate on an independent hardware set
running under operating system    code developed to support the communications software environment.
Communication with the application programs takes place across the    system bus using some simple,
proprietary vendor protocol.  Careful    engineering can provide the application programmer with a
standard    interface to the communications processor that is similar to the    interface to the input/output
subsystem.

   The advantages of this approach are mainly concentrated upon enhanced    performance both for the
host applications and the communications    service.  Depending on such factors as the speed of the
communications processor and the system bus, data communications    throughput may improve by one or
two orders of magnitude over that    available from host operating system integrated implementations.
Throughput for host applications should also improve since the    communications processing and
interrupt handling for timers and data    links have been removed from the host processor.  The
communications    mechanism used between the host and communication processors is    usually
sufficiently simple that no real burden is added to either    processor.

   The disadvantages for this approach are caused by complexity in    developing the communications
software.  Software development for the    communications board cannot be supported with the standard
operating    system tools.  A method of downloading the processor board and    debugging the
communications software may be required; a trade-off    could be to put the code into firmware or
microcode.  The    communications software must include at least a hardware monitor and,    more
typically, a small operating system to support such functions as    interprocess communication, buffer
management, flow control, and task    synchronization.  Debugging of the user to communication
subsystem    interface may involve several levels of system software and hardware.

   The design of the processing element can follow conventional lines,    in which a single processor
handling almost all of the operation of    the protocol.  However, with inexpensive processor and memory
chips    now available, a multiprocessor design is economically viable.  The    diagram below shows one
such design, which almost directly
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    corresponds to the structure of the formal description.  There are    several advantages to this design:

    1) management of CPU and memory resources is at a minimum;

    2) essentially no resource contention;

    3) transport connection operation can be written in microcode,        separate from network service
handling;

    4) transport connections can run with true parallelism;

    5) throughput is not limited by contention of connections for CPU        and network access; and

    6) lower software complexity, due to functional separation.

   Possible disadvantages are greater inflexibility and hardware    complexity.  However, these might be
offset by lower development    costs for microcode, since the code separation should provide overall
lower code complexity in the TPE and the TPM implementations.

   In this system, the TPE instantiates a TPM by enabling its clock.    Incoming Outgoing are passed to the
TPMs along the memory bus.  TPDUs    TPDUs from a TPM are sent on the output data bus.  The user
interface    controller accepts connect requests from the user and directs them to    the TPE.  The TPE
assigns a connection reference and informs the    interface controller to direct further inputs for this
connection to    the designated TPM.  The shared TPM memory is analogous to the    exported variables of
the TPM modules in the formal description, and    is used by the TPE to input TPDUs and other
information to the TPM.

   In summary, the off-loading of communications protocols onto    independent processing systems
attached to a host processor across a    system bus is quite common.  As processing power and memory
become    cheaper, the amount of software off-loaded grows.  it is now typical    to fine transport service
available for several system buses with    interfaces to operating systems such as UNIX, XENIX, iRMX,
MS-DOS,    and VERSADOS.

McCoy                                                          [Page 22]



 RFC 1008                                                       June 1987

    Legend:    ****  data channel               ....  control channel               ====  interface i/o bus                O
channel or bus connection point

                   user                   input                     *                     *           __________V_________           |
user interface  |       input bus           |    controller
|=================O==============O=======           |__________________|                 *
*                     *                          *              *                     *                          *       _______*_______
*                          *       | data buffers|                     *                          *    ...|     TPM1    |                     *
*    :  |_____________|                     *                          *    :         *                     *                          *    :
*    _________   _____*__________   ________   __*____:______   *    |  TPE  |   | TPE processor|
|shared|   |    TPM1    |   *    |buffers|***|              |   | TPM1 |***|  processor |   *    |_______|
|______________|   | mem. |   |____________|   *        *         :    :    *      |______|        :           *        *
:    :    *          *           :           *        *         :    :    ***********O***********:********************
*         :    :       memory bus          :           *        *         :    :                           :           *        *         :
:...........................O...........*........    ____*_________:___         clock enable                    *    |    network
|                                         *    |   interface
|=========================================O========    |   controller   |         output data
bus    |________________|            *            *            V       to network        interface

 2.4   Front end processor.

   A more traditional approach to off-loading communications protocols    involves the use of a free-
standing front end processor, an approach    very similar to that of placing the transport service onto a
board    attached to the system bus.  The difference is one of scale.  Typical    front end p interface locally
as desirable, as long as such additions    are strictly local (i.e., the invoking of such services does not
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    result in the exchange of TPDUs with the peer entity).

   The interface between the  user  and  transport  is  by nature    asynchronous (although some
hypothetical implementation that is    wholly synchronous could be conjectured).  This characteristic  is
due  to two factors: 1) the interprocess communications (IPC)    mechanism--used  between  the  user  and
transport--decouples the    two, and to avoid blocking the user process (while waiting for a    response)
requires  an  asynchronous response  mechanism,  and  2)    there are some asynchronously-generated
transport indications that    must  be handled (e.g.,  the  arrival of user data or the abrupt    termination of
the  transport  connection  due  to  network errors).

   If it is assumed that the user interface to transport is    asynchronous,  there are other aspects of the
interface that are also    predetermined.  The most important of these is that transport    service  requests
are confirmed twice.  The first confirmation occurs    at the time  of  the  transport  service request
initiation.  Here,    interface routines can be used to identify invalid sequences of    requests, such as a
request to  send  data  on  a  connection that is    not yet open.  The second confirmation occurs when the
service    request crosses the interface into the transport entity.  The entity    may accept or reject the
request, depending on its resources and its    assessment of connection (transport and network) status,
priority,    service quality.

   If the interface is to be asynchronous, then some mechanism must be    provided to handle the
asynchronous (and sometimes unexpected)    events.  Two ways this is commonly achieved are: 1) by
polling, and    2) by a software interrupt mechanism.  The first of these can be    wasteful of host resources
in a multiprogramming environment, while    the second may be complicated to implement.  However, if
the    interface is a combination of hardware and software, as in the cases    discussed in Parts 2.3 and 2.4,
then hardware interrupts may be    available.

   One way of implementing the abstract services is to associate with    each service primitive an actual
function that is invoked.  Such    functions could be held in a special interface library with other
functions and procedures that realize the interface.  Each service    primitive function would access the
interprocess communication (IPC)    mechanism as necessary to pass parameters to/from the transport
entity.

   The description of the abstract service in IS 8073 and N3756 implies    that the interface must handle
TSDUs of arbitrary length.  This    situation suggests that it may be useful to implement a TSDU as an
object such as a file-pointer rather than as the message itself.  In    this way, in the sending entity, TPDUs
can be formed by reading    segments of TPDU-size from the file designated, without regard for    the
actual length of the file.  In the receiving entity, each new
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    TPDU could be buffered in a file designated by a file-pointer, which    would then be passed to the user
when the EOT arrives.  In the formal    description of transport, this procedure is actually described,
although explicit file-pointers and files are not used in the    description.  This method of implementing
the data interface is not    essentially different from maintaining a linked list of buffers.  (A    disk file is
arranged in precisely this fashion, although the file    user is usually not aware of the structure.)

   The abstract service definition describes  the  set  of parameters    that must be passed in each of the
service primitives so that    transport can act properly on  behalf  of  the user.   These    parameters are
required for the transport protocol to operate    correctly (e.g., a called address  must  be passed  with  the
connect  request and the connect response must contain a responding    address).   The  abstract  service
defintion does not preclude,    however, the inclusion of local parameters.  Local parameters may be
included in the implementation  of  the  service  interface  for use    by the local entity.  One example is a
buffer management parameter    passed from  the  user  in connect requests and confirms, providing    the
transport entity with expected buffer  usage  estimates.  The    local  entity  could  use  this  in
implementing a more efficient    buffer management strategy than would otherwise be possible.

   One issue that is  of  importance  when  designing  and implementing    a transport entity is the
provision of a registration mechanism for    transport users.  This facility provides a means of identifying
to    the transport entity those users who are willing to participate in    communications with remote users.
An example of such a user is a    data base management system, which ordinarily responds to connections
requests rather than to initiate them.  This procedure of user    identification is sometimes called a
"passive open".  There are    several ways in which registration can be implemented.  One is to    install
the set of users that  provide services  in  a table at    system generation time.  This method may have the
disadvantage of    being  inflexible.   A  more flexible  approach is to implement a    local transport service
primitive, "listen", to indicate a waiting    user.   The  user then  registers  its transport suffix with the
transport entity via the listen primitive.  Another possibility is a    combination of predefined table and
listen primitive.  Other    parameters may also be included,  such  as a partially or fully    qualified
transport address from which the user is willing  to    receive  connections.  A  variant  on  this  approach
is  to    provide  an ACTIVE/PASSIVE local parameter on the connect  request    service primitive.  Part 5
discusses this issue in more detail.

3.2   Flow control.

   Interface flow control is generally considered to be a local    implementation issue.  However, in order to
completely specify the    behavior of the transport entity, it was necessary to include in the
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    formal description a model of the control of data flow across the    service boundaries of transport.  The
international standards for    transport and the OSI reference model state only that interface flow    control
shall be provided but give no guidance on its features.

   The actual mechanisms used to accomplish flow control, which need not    explicitly follow the model in
the formal description, are dependent    on the way in which the interface itself is realized, i.e., what
TSDUs and service primitives really are and how the transport entity    actually communicates with its
user, its environment, and the network    service.  For example, if the transport entity communicates with
its    user by means of named (UNIX) pipes, then flow control can be    realized using a special interface
library routine, which the    receiving process invokes, to control the pipe.  This approach also    entails
some consideration for the capacity of the pipe and blocking    of the sending process when the pipe is full
(discussed further in    Part 3.3).  The close correspondence of this interpretation to the    model is clear.
However, such an interpretation is apparently not    workable if the user process and the transport entity
are in    physically separate processors.  In this situation, an explicit    protocol between the receiving
process and the sending process must    be provided, which could have the complexity of the data transfer
portion of the Class 0 transport protocol (Class 2 if flow    controlled).  Note that the formal model, under
proper    interpretation, also describes this mechanism.

3.3   Interprocess communication.

   One of the most important elements of a data communication system is    the approach to interprocess
communication (IPC).  This is true    because suites of protocols are often implemented as groups of
cooperating tasks.  Even if the protocol suites are not implemented    as task groups, the communication
system is a funnel for service    requests from multiple user processes.  The services are normally
communicated through some interprocess pathway.  Usually, the    implementation environment places
some restrictions upon the    interprocess communications method that can be used.  This section
describes the desired traits of IPC for use in data communications    protocol implementations, outlines
some possible uses for IPC, and    discusses three common and generic approaches to IPC.

   To support the implementation of data communications protocols, IPC    should possess several
desirable traits.  First,  IPC should be    transaction based.  This permits sending a message without the
overhead of establishing and maintaining a connection.  The    transactions should be confirmed so that a
sender can detect and    respond to non-delivery.  Second,  IPC should support both the    synchronous and
the asynchronous modes of message exchange.  An IPC    receiver should be able to ask for delivery of any
pending messages    and not be blocked from continuing if no messages are present.    Optionally, the
receiver should be permitted to wait if no messages
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    are present, or to continue if the path to the destination is    congested.  Third, IPC should preserve the
order of messages sent to    the same destination.  This allows the use of the IPC without    modification to
support protocols that preserve user data sequence.    Fourth, IPC should provide a flow control
mechanism to allow pacing    of the sender's transmission speed to that of the receiver.

   The uses of IPC in implementation of data communication systems are    many and varied.  A common
and expected use for IPC is that of    passing user messages among the protocol tasks that are cooperating
to perform the data communication functions.  The user messages may    contain the actual data or, more
efficiently, references to the    location of the user data.  Another common use for the IPC is
implementation and enforcement of local interface flow control.  By    limiting the number of IPC
messages queued on a particular address,    senders can be slowed to a rate appropriate for the IPC
consumer.  A    third typical use for IPC is the synchronization of processes.  Two    cooperating tasks can
coordinate their activities or access to shared    resources by passing IPC messages at particular events in
their    processing.

   More creative uses of IPC include buffer, timer, and scheduling    management.  By establishing buffers
as a list of messages available    at a known address at system initialization time, the potential    exists to
manage buffers simply and efficiently.  A process requiring    a buffer would simply read an IPC message
from the known address.  If    no messages (i.e., buffers) are available, the process could block    (or
continue, as an option).  A process that owned a buffer and    wished to release it would simply write a
message to the known    address, thus unblocking any processes waiting for a buffer.

   To manage timers, messages can be sent to a known address that    represents the timer module.  The
timer module can then maintain the    list of timer messages with respect to a hardware clock.  Upon
expiration of a timer, the associated message can be returned to the    originator via IPC.  This provides a
convenient method to process the    set of countdown timers required by the transport protocol.

   Scheduling management can be achieved by using separate IPC addresses    for message classes.  A
receiving process can enforce a scheduling    discipline by the order in which the message queues are read.
For    example, a transport process might possess three queues:  1) normal    data from the user, 2)
expedited data from the user, and 3) messages    from the network.  If the transport process then wants to
give top    priority to network messages, middle priority to expedited user    messages, and lowest priority
to normal user messages, all that is    required is receipt of IPC messages on the highest priority queue
until no more messages are available.  Then the receiver moves to the    next lower in priority and so on.
More sophistication is possible by    setting limits upon the number of consecutive messages received from
each queue and/or varying the order in which each queue is examined.
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    It is easy to see how a round-robin scheduling discipline could be    implemented using this form of
IPC.

   Approaches to IPC can be placed into one of three classes:  1) shared    memory, 2) memory-memory
copying, and 3) input/output channel    copying. Shared memory is the most desirable of the three classes
because the amount of data movement is kept to a minimum.  To pass    IPC messages using shared
memory, the sender builds a small message    referencing a potentially large amount of user data.  The
small    message is then either copied from the sender's process space to the    receiver's process space or
the small message is mapped from one    process space to another using techniques specific to the
operating    system and hardware involved.  These approaches to shared memory are    equivalent since
the amount of data movement is kept to a minimum.    The price to be paid for using this approach is due
to the    synchronization of access to the shared memory.  This type of sharing    is well understood, and
several efficient and simple techniques exist    to manage the sharing.

   Memory-memory copying is an approach that has been commonly used for    IPC in UNIX operating
system implementations.  To pass an IPC message    under UNIX data is copied from the sender's buffer to
a kernel buffer    and then from a kernel buffer to the receiver's buffer.  Thus two    copy operations are
required for each IPC message. Other methods    might only involve a single copy operation.  Also note
that if one of    the processes involved is the transport protocol implemented in the    kernel, the IPC
message must only be copied once.  The main    disadvantage of this approach is inefficiency.  The major
advantage    is simplicity.

   When the processes that must exchange messages reside on physically    separate computer systems
(e.g., a host and front end), an    input/output channel of some type must be used to support the IPC.    In
such a case, the problem is similar to that of the general problem    of a transport protocol.  The sender
must provide his IPC message to    some standard operating system output mechanism from where it will
be    transmitted via some physical medium to the receiver's operating    system.  The receiver's operating
system will then pass the message    on to the receiving process via some standard operating system input
mechanism.  This set of procedures can vary greatly in efficiency and    complexity depending upon the
operating systems and hardware    involved.  Usually this approach to IPC is used only when the
circumstances require it.

3.4   Interface to real networks.

   Implementations of the class 4 transport protocol have been operated    over a wide variety of networks
including:  1) ARPANET, 2) X.25    networks, 3) satellite channels, 4) CSMA/CD local area networks, 5)
token bus local area networks, and  6) token ring local area    networks.  This section briefly describes
known instances of each use
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    of class 4 transport and provides some quantitative evaluation of the    performance expectations for
transport over each network type.

3.4.1   Issues.

   The interface of the transport entity to the network service in    general will be realized in a different
way from the user interface.    The network service processor is often separate from the host CPU,
connected to it by a bus, direct memory access (DMA), or other link.    A typical way to access the
network service is by means of a device    driver.  The transfer of data across the interface in this instance
would be by buffer-copying.  The use of double-buffering reduces some    of the complexity of flow
control, which is usually accomplished by    examining the capacity of the target buffer.  If the transport
processor and the network processor are distinct and connected by a    bus or external link, the network
access may be more complicated    since copying will take place across the bus or link rather than    across
the memory board.  In any case, the network service    primitives, as they appear in the formal description
and IS 8073 must    be carefully correlated to the actual access scheme, so that the    semantics of the
primitives is preserved.  One way to do this is to    create a library of routines, each of which corresponds
to one of the    service primitives.  Each routine is responsible for sending the    proper signal to the
network interface unit, whether this    communication is directly, as on a bus, or indirectly via a device
driver.  In the case of a connectionless network service, there is    only one primitive, the
N_DATA_request (or N_UNIT_DATA_request),    which has to be realized.

   In the formal description, flow control to the NSAP is controlled by    by a Slave module, which exerts
the "backpressure" on the TPM if its    internal queue gets too long.  Incoming flow, however, is
controlled    in much the same way as the flow to the transport user is controlled.    The implementor is
reminded that the formal description of the flow    control is specified for completeness and not as an
implementation    guide.  Thus, an implementation should depend upon actual interfaces    in the
operating environment to realize necessary functions.

3.4.2   Instances of operation.

3.4.2.1   ARPANET

   An early implementation of the class 4 transport protocol was    developed by the NBS as a basis for
conformance tests [NBS83].  This    implementation was used over the ARPANET to communicate
between NBS,    BBN, and DCA.  The early NBS implementation was executed on a    PDP-11/70.  A
later revision of the NBS implementation has been moved    to a VAX-11/750 and VAX-11/7;80. The
Norwegian Telecommunication    Administration (NTA) has implemented class 4 transport for the UNIX
BSD 4.2 operating system to run on a VAX [NTA84].  A later NTA    implementation runs on a Sun 2-
120 workstation.  The University of
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    Wisconsin has also implemented the class 4 transport protocol on a    VAX-11/750 [BRI85]. The
Wisconsin implementation is embedded in the    BSD 4.2 UNIX kernel.  For most of these
implementations class 4    transport runs above the DOD IP and below DOD application protocols.

3.4.2.2   X.25 networks

   The NBS implementations have been used over Telenet, an X.25 public    data network (PDN).  The
heaviest use has been testing of class 4    transport between the NBS and several remotely located vendors,
in    preparation for a demonstration at the 1984 National Computing    Conference and the 1985 Autofact
demonstration.  Several approaches    to implementation were seen in the vendors' systems, including ones
similar to those discussed in Part 6.2.  At the Autofact    demonstration many vendors operated class 4
transport and the ISO    internetwork protocol across an internetwork of CSMA/CD and token bus    local
networks and Accunet, an AT&T X.25 public data network.

3.4.2.3   Satellite channels.

   The COMSAT Laboratories have implemented class 4 transport for    operation over point-to-point
satellite channels with data rates up    to 1.544 Mbps [CHO85].  This implementation has been used for
experiments between the NBS and COMSAT.  As a result of these    experiments several improvements
have been made to the class 4    transport specification within the international standards arena    (both
ISO and CCITT). The COMSAT implementation runs under a    proprietary multiprocessing operating
system known as COSMOS.  The    hardware base includes multiple Motorola 68010 CPUs with local
memory    and Multibus shared memory for data messages.

3.4.2.4   CSMA/CD networks.

   The CSMA/CD network as defined by the IEEE 802.3 standard is the most    popular network over
which the class 4 transport has been    implemented. Implementations of transport over CSMA/CD
networks have    been demonstrated by: AT&T, Charles River Data Systems,    Computervision, DEC,
Hewlitt-Packard, ICL, Intel, Intergraph, NCR and    SUN.  Most of these were demonstrated at the 1984
National Computer    Conference [MIL85b] and again at the 1985 Autofact Conference.    Several of these
vendors are now delivering products based on the    demonstration software.

3.4.2.5   Token bus networks.

   Due to the establishment of class 4 transport as a mandatory protocol    within the General Motor's
manufacturing automation protocol (MAP),    many implementations have been demonstrated operating
over a token    bus network as defined by the IEEE 802.4 standard.  Most past    implementations relied
upon a Concord Data Systems token interface    module (TIM) to gain access to the 5 Mbps broadband
802.4 service.
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    Several vendors have recently announced boards supporting a 10 Mbps    broadband 802.4 service.  The
newer boards plug directly into    computer system buses while the TIM's are accessed across a high
level data link control (HDLC) serial channel.  Vendors demonstrating    class 4 transport over IEEE
802.4 networks include Allen-Bradley,    AT&T, DEC, Gould, Hewlett-Packard, Honeywell, IBM, Intel,
Motorola,    NCR and Siemens.

3.4.2.6   Token ring networks.

   The class 4 transport implementations by the University of Wisconsin    and by the NTA run over a 10
Mbps token ring network in addition to    ARPANET.  The ring used is from Proteon rather than the
recently    finished IEEE 802.5 standard.

3.4.3   Performance expectations.

   Performance research regarding the class 4 transport protocol has    been limited.  Some work has been
done at the University of    Wisconsin, at NTA, at Intel, at COMSAT, and at the NBS.  The material
presented below draws from this limited body of research to provide    an implementor with some
quantitative feeling for the performance    that can be expected from class 4 transport implementations
using    different network types.  More detail is available from several    published reports [NTA84,
BRI85, INT85, MIL85b, COL85].  Some of the    results reported derive from actual measurements while
other results    arise from simulation.  This distinction is clearly noted.

3.4.3.1   Throughput.

   Several live experiments have been conducted to determine the    throughput possible with
implementations of class 4 transport.    Achievable throughput depends upon many factors including:  1)
CPU    capabilities, 2) use or non-use of transport checksum, 3) IPC    mechanism, 4) buffer management
technique, 5) receiver resequencing,    6) network error properties, 7) transport flow control, 8) network
congestion and 9) TPDU size.  Some of these are specifically    discussed elsewhere in this document.  The
reader must keep in mind    these issues when interpreting the throughput measures presented    here.

   The University of Wisconsin implemented class 4 transport in the UNIX    kernel for a VAX-11/750
with the express purpose of measuring the    achievable throughput.  Throughputs observed over the
ARPANET ranged    between 10.4 Kbps and 14.4 Kbps.  On an unloaded Proteon ring local    network,
observed throughput with checksum ranged between 280 Kbps    and 560 Kbps.  Without checksum,
throughput ranged between 384 Kbps    and 1 Mbps.

   The COMSAT Laboratories implemented class 4 transport under a    proprietary multiprocessor
operating system for a multiprocessor
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    68010 hardware architecture.  The transport implementation executed    on one 68010 while the traffic
generator and link drivers executed on    a second 68010.  All user messages were created in a global
shared    memory and were copied only for transmission on the satellite link.    Throughputs as high as 1.4
Mbps were observed without transport    checksumming while up to 535 Kbps could be achieved when
transport    checksums were used.  Note that when the 1.4 Mbps was achieved the    transport CPU was
idle 20% of the time (i.e., the 1.544 Mbps    satellite link was the bottleneck).  Thus, the transport
implementation used here could probably achieve around 1.9 Mbps user    throughput with the experiment
parameters remaining unchanged.    Higher throughputs are possible by increasing the TPDU size;
however,    larger messages stand an increased chance of damage during    transmission.

   Intel has implemented a class 4 transport product for operation over    a CSMA/CD local network (iNA-
960 running on the iSBC 186/51 or iSXM    552).  Intel has measured throughputs achieved with this
combination    and  has published the results in a technical analysis comparing    iNA-960 performance on
the 186/51 with iNA-960 on the 552.  The CPU    used to run transport was a 6 MHz 80186.  An 82586
co-processor was    used to handle the medium access control.  Throughputs measured    ranged between
360 Kbps and 1.32 Mbps, depending on the parameter    values used.

   Simulation of class 4 transport via a model developed at the NBS has    been used to predict the
performance of the COMSAT implementation and    is now being used to predict the performance of a
three processor    architecture that includes an 8 MHz host connected to an 8 MHz front    end over a
system bus.  The third processor provides medium access    control for the specific local networks  being
modeled.  Early model    results predict throughputs over an unloaded CSMA/CD local network of    up to
1.8 Mbps.  The same system modeled over a token bus local    network with the same transport parameters
yields throughput    estimates of up to 1.6 Mbps.  The token bus technology, however,    permits larger
message sizes than CSMA/CD does.  When TPDUs of 5120    bytes are used, throughput on the token bus
network is predicted to    reach 4.3 Mbps.

3.4.3.2   Delay.

   The one-way delay between sending transport user and receiving    transport user is determined by a
complex set of factors.  Readers    should also note that, in general, this is a difficult measure to    make
and little work has been done to date with respect to expected    one-way delays with class 4 transport
implementations.  In this    section a tutorial is given to explain the factors that determine the    one-way
delay to be expected by a transport user.  Delay experiments    performed by Intel are reported [INT85], as
well as some simulation    experiments conducted by the NBS [MIL85a].
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    The transport user can generally expect one-way delays to be    determined by the following equation.

      D = TS + ND + TR + [IS] + [IR]        (1)

    where:

      [.] means the enclosed quantity may be 0

      D is the one-way transport user delay,

      TS is the transport data send processing time,

      IS is the internet datagram send processing time,

      ND is the network delay,

      IR is the internet datagram receive processing       time, and

      TR is the transport data receive processing time.

    Although no performance measurements are available for the ISO    internetwork protocol (ISO IP), the
ISO IP is so similar to the DOD    IP that processing times associated with sending and receiving
datagrams should be the about the same for both IPs.  Thus, the IS    and IR terms given above are ignored
from this point on in the    discussion.  Note that many of these factors vary depending upon the
application traffic pattern and loads seen by a transport    implementation.  In the following discussion,
the transport traffic    is assumed to be a single message.

   The value for TS depends upon the CPU used, the IPC mechanism, the    use or non-use of checksum,
the size of the user message and the size    of TPDUs, the buffer management scheme in use, and the
method chosen    for timer management.  Checksum processing times have been observed    that include
3.9 us per octet for a VAX-11/750, 7.5 us per octet on a    Motorola 68010, and 6 us per octet on an Intel
80186.  The class 4    transport checksum algorithm has considerable effect on achievable    performance.
This is discussed further in Part 7.  Typical values for    TS, excluding the processing due to the
checksum, are about 4 ms for    CPUs such as the Motorola 68010 and the Intel 80186.  For 1024 octet
TPDUs, checksum calculation can increase the TS value to about 12 ms.

   The value of TR depends upon similar details as TS.  An additional    consideration is whether or not
the receiver caches (buffers) out of    order TPDUs.  If so, the TR will be higher when no packets are lost
(because of the overhead incurred by the resequencing logic).  Also,
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    when packets are lost, TR can appear to increase due to transport    resequencing delay.  When out of
order packets are not cached, lost    packets increase D because each unacknowledged packet must be
retransmitted (and then only after a delay waiting for the    retransmission timer to expire).  These details
are not taken into    account in equation 1.  Typical TR values that can be expected with    non-caching
implementations on Motorola 68010 and Intel 80186 CPUs    are approximately 3 to 3.5 ms.  When
transport checksumming is used    on these CPUs, TR becomes about 11 ms for 1024 byte TPDUs.

   The value of ND is highly variable, depending on the specific network    technology in use and on the
conditions in that network.  In general,    ND can be defined by the following equation.

      ND = NQ + MA + TX + PD + TQ   (2)

    where:

     NQ is network queuing delay,

     MA is medium access delay,

     TX is message transmission time,

     PD is network propagation delay, and

     TQ is transport receive queuing delay.

   Each term of the equation is discussed in the following paragraphs.

   Network queuing delay (NQ) is the time that a TPDU waits on a network    transmit queue until that
TPDU is the first in line for transmission.    NQ depends on the size of the network transmit queue, the
rate at    which the queue is emptied, and the number of TPDUs already on the    queue.  The size of the
transmit queue is usually an implementation    parameter and is generally at least two messages.  The rate
at which    the queue empties depends upon MA and TX (see the discussion below).    The number of
TPDUs already on the queue is determined by the traffic    intensity (ratio of mean arrival rate to mean
service rate).  As an    example, consider an 8 Kbps point-to-point link serving an eight    message queue
that contains 4 messages with an average size of 200    bytes per message.  The next message to be placed
into the transmit    queue would experience an NQ of 800 ms (i.e., 4 messages times 200    ms).  In this
example, MA is zero.  These basic facts permit the    computation of NQ for particular environments.
Note that if the    network send queue is full, back pressure flow control will force    TPDUs to queue in
transport transmit buffers and cause TS to appear    to increase by the amount of the transport queuing
delay.  This    condition depends on application traffic patterns but is ignored for
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    the purpose of this discussion.

   The value of MA depends upon the network access method and on the    network congestion or load.
For a point-to-point link MA is zero.    For CSMA/CD networks MA depends upon the load, the number
of    stations, the arrival pattern, and the propagation delay.  For    CSMA/CD networks MA has values
that typically range from zero (no    load) up to about 3 ms (80% loads).  Note that the value of MA as
seen by individual stations on a CSMA/CD network is predicted (by NBS    simulation studies) to be as
high as 27 ms under 70% loads.  Thus,    depending upon the traffic patterns, individual stations may see
an    average MA value that is much greater than the average MA value for    the network as a whole. On
token bus networks MA is determined by the    token rotation time (TRT) which depends upon the load,
the number of    stations, the arrival pattern, the propagation delay, and the values    of the token holding
time and target rotation times at each station.

   For small networks of 12 stations with a propagation delay of 8 ns,    NBS simulation studies predict
TRT values of about 1 ms for zero load    and 4.5 ms for 70% loads for 200 byte messages arriving with
exponential arrival distribution.  Traffic patterns also appear to be    an important determinant of target
rotation time.  When a pair of    stations performs a continuous file transfer, average TRT for the
simulated network is predicted to be 3 ms for zero background load    and 12.5 ms for 70% background
load (total network load of 85%).

   The message size and the network transmission speed directly    determine TX.  Typical transmission
speeds include 5 and 10 Mbps for    standard local networks;  64 Kbps, 384 Kbps, or 1.544 Mbps for
point-to-point satellite channels;  and 9.6 Kbps or 56 Kbps for    public data network access links.

   The properties of the network in use determine the values of PD. On    an IEEE 802.3 network, PD is
limited to 25.6 us.  For IEEE 802.4    networks, the signal is propagated up-link to a head end and then
down-link from the head end.  Propagation delay in these networks    depends on the distance of the
source and destination stations from    the head end and on the head end latency. Because the maximum
network    length is much greater than with IEEE 802.3 networks, the PD values    can also be much
greater.  The IEEE 802.4 standard requires that a    network provider give a value for the maximum
transmission path    delay.  For satellite channels PD is typically between 280 and 330    ms.  For the
ARPANET, PD depends upon the number of hops that a    message makes between source and destination
nodes.  The NBS and NTIA    measured ARPANET PD average values of about 190 ms [NTI85].  In the
ARPA internet system the PD is quite variable, depending on the    number of internet gateway hops and
the PD values of any intervening    networks (possibly containing satellite channels).  In experiments on
an internetwork containing a a satellite link to Korea, it was    determined by David Mills [RFC85] that
internet PD values could range    from 19 ms to 1500 ms.  Thus, PD values ranging from 300 to 600 ms
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    can be considered as typical for ARPANET internetwork operation.

   The amount of time a TPDU waits in the network receive queue before    being processed by the
receiving transport is represented by TQ,    similar to NQ in that the value of TQ depends upon the size of
the    queue, the number of TPDUs already in the queue, and the rate at    which the queue is emptied by
transport.

   Often the user delay D will be dominated by one of the components. On    a satellite channel the
principal component of D is PD, which implies    that ND is a principal component by equation (2).  On
an unloaded    LAN, TS and TR might contribute most to D.  On a highly loaded LAN,    MA may cause
NQ to rise, again implying that ND is a major factor in    determining D.

   Some one-way delay measures have been made by Intel for the iNA-960    product running on a 6 MHz
80186.  For an unloaded 10 Mbps CSMA/CD    network the Intel measures show delays as low as 22 ms.
The NBS has    done some simulations of class 4 transport over 10 Mbps CSMA/CD and    token bus
networks.  These (unvalidated) predictions show one-way    delays as low as 6 ms on unloaded LANs and
as high as 372 ms on    CSMA/CD LANs with 70% load.

3.4.3.3   Response time.

   Determination of transport user response time (i.e., two-way delay)    depends upon many of the same
factors discussed above for one-way    delay.  In fact, response time can be represented by equation 3 as
shown below.

      R = 2D + AS + AR     (3)

   where:

     R is transport user response time,

     D is one-way transport user delay,

     AS is acknowledgement send processing time, and

     AR is acknowledgement receive processing time.

   D has been explained above.  AS and AR deal with the acknowledgement    sent by transport in
response to the TPDU that embodies the user    request.

   AS is simply the amount of time that the receiving transport must    spend to generate an AK TPDU.
Typical times for this function are    about 2 to 3 ms on processors such as the Motorola 68010 and the
Intel 80186.  Of course the actual time required depends upon factors    such as those explained for TS
above.
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    The amount of time, AR, that the sending transport must spend to    process a received AK TPDU.
Determination of the actual time    required depends upon factors previously described.  Note that for AR
and AS, processing when the checksum is included takes somewhat    longer. However, AK TPDUs are
usually between 10 and 20 octets in    length and therefore the increased time due to checksum processing
is    much less than for DT TPDUs.

   No class 4 transport user response time measures are available;    however, some simulations have been
done at the NBS.  These    predictions are based upon implementation strategies that have been    used by
commercial vendors in building microprocessor-based class 4    transport products.  Average response
times of about 21 ms on an    unloaded 10 Mbps token bus network, 25 ms with 70% loading, were
predicted by the simulations.  On a 10 Mbps CSMA/CD network, the    simulations predict response times
of about 17 ms for no load and 54    ms for a 70% load.

3.5   Error and status reporting.

   Although the abstract service definition for the  transport protocol    specifies  a set of services to be
offered, the actual set of    services  provided  by  an  implementation need  not  be limited to    these.  In
particular, local status and error information can be    provided as a confirmed service (request/response)
and as an    asynchronous "interrupt" (indication).  One use for this service  is    to  allow  users  to query
the transport entity about the status of    their connections.  An example of information  that  could  be
returned from the entity is:

        o  connection state         o  current send sequence number         o  current receive and transmit credit
windows         o  transport/network interface status         o  number of retransmissions         o  number of
DTs and AKs sent and received         o  current timer values

   Another use for the local status and error reporting service is  for    administration  purposes.   Using
the  service, an administrator can    gather information such as described above for  each open connection.
In addition, statistics concerning the transport entity as a whole    can be obtained, such as number of
transport connections open,    average number of connections open over a  given  reporting  period,
buffer  use statistics, and total number of retransmitted DT TPDUs.    The administrator might also be
given the  authority  to  cancel    connections,  restart  the  entity,  or  manually  set timer values.
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 4   Entity resource management.

4.1   CPU management.

   The formal description has implicit scheduling of TPM modules, due to    the semantics of the Estelle
structuring principles.  However, the    implementor should not depend on this scheduling to obtain
optimal    behavior, since, as stated in Part 1, the structures in the formal    description were imposed for
purposes other than operational    efficiency.

   Whether by design or by default,  every  implementation of the    transport protocol embodies some
decision about allocating the CPU    resource among transport connections.   The resource may be
monolithic, i.e. a single CPU, or it may be distributed, as in the    example design given in Part 2.3.  In
the former, there are  two    simple techniques  for apportioning CPU processing time  among    transport
connections.   The first of these,    first-come/first-served, consists of the transport entity handling    user
service requests in the order in which they arrive.  No    attempt  is  made  to  prevent one transport
connection from using    an inordinate amount of the CPU.

   The second simple technique is  round-robin  scheduling of    connections.   Under this method, each
transport connection is    serviced in turn.  For  each  connection,  transport processes one    user service
request, if there is one present at the interface,    before proceeding to the next connection.

   The quality of service parameters provided in the connection request    can be used to provide a finer-
grained strategy for managing the CPU.    The CPU could be allocated to connections requiring low delay
more    often while those requiring high throughput would be served less    often but for longer periods
(i.e., several connections requiring    high throughput might be serviced in a concurrent cluster).

   For example, in the service sequence below, let "T" represent    m > 0 service requests, each requiring
high throughput, let "D"    represent one service request requiring low delay and let the suffix    n = 1,2,3
represent a connection identifier, unique only within a    particular service requirement type (T,D).  Thus
T1 represents a set    of service requests for connection 1 of the service requirement type    T, and D1
represents a service set (with one member) for connection 1    of service requirement type D.

   D1___D2___D3___T1___D1___D2___D3___T2___D1___D2___D3___T1...

    If m = 4 in this service sequence, then service set D1 will get    worst-case service once every seventh
service request processed.    Service set T1 receives service on its four requests only once in
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    fourteen requests processed.

   D1___D2___D3___T1___D1___D2___D3___T2___D1___D2___D3___T1...    |              |    |              |
|              |    |  3 requests  |  4 |       3      |  4 |       3      |

   This means that the CPU is allocated to T1 29% ( 4/14 ) of the    available time, whereas D1 obtains
service 14% ( 1/7 ) of the time,    assuming processing requirements for all service requests to be    equal.
Now assume that, on average, there is a service request    arriving for one out of three of the service
requirement type D    connections.  The CPU is then allocated to the T type 40% ( 4/10 )    while the D
type is allocated 10% ( 1/10 ).

4.2   Buffer management.

   Buffers are used as temporary storage areas for data on its  way to    or arriving from the network.
Decisions must be made about buffer    management in two areas.  The first is the overall  strategy  for
managing  buffers in a multi-layered protocol environment.  The    second  is  specifically  how  to
allocate buffers within the    transport entity.

   In the formal description no details of buffer strategy are given,    since such strategy depends so heavily
on the implementation    environment.  Only a general mechanism is discussed in the formal    description
for allocating receive credit to a transport connection,    without any expression as to how this resource is
managed.

   Good buffer management should correlate to the traffic presented by    the applications using the
transport service.  This traffic has    implications as well for the performance of the protocol. At present,
the relationship of buffer strategy to optimal service for a given    traffic distribution is not well
understood.  Some work has been    done, however, and the reader is referred to the work of Jeffery
Spirn [SPI82, SPI83] and to the experiment plan for research by the    NBS [HEA85] on the effect of
application traffic patterns on the    performance of Class 4 transport.

4.2.1   Overall buffer strategy.

   Three schemes for management of  buffers  in  a  multilayered    environment  are described here.
These represent a spectrum of    possibilities available to the implementor.  The first  of these is a
strictly layered approach in which each entity in the protocol    hierarchy, as a process, manages its own
pool of buffers    independently  of  entities  at  other layers.  One advantage of this    approach  is
simplicity;   it is not necessary for an entity  to    coordinate  buffer  usage with a resource manager which
is serving    the needs of numerous  protocol entities.  Another advantage is    modularity.  The interface
presented to entities in other layers is
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    well  defined; protocol  service  requests and responses are passed    between layers by value (copying)
versus by reference (pointer    copying). In particular, this is a strict interpretation of the OSI    reference
model, IS 7498 [ISO84b], and the protocol entities hide    message details from each other, simplifying
handling at the entity    interfaces.

   The single disadvantage to a  strictly  layered  scheme derives  from    the  value-passing  nature  of the
interface.  Each time protocol    data and control  information  is  passed from  one layer to another    it
must be copied from one layer's buffers to those of another layer.    Copying  between  layers in  a  multi-
layered  environment is    expensive and imposes a severe penalty on the performance of the
communications system, as  well as the computer system on which it is    running as a whole.     The
second scheme for managing buffers  among  multiple protocol    layers  is  buffer  sharing.   In  this
approach, buffers are a    shared resource among multiple protocol  entities; protocol data and    control
information contained in the buffers is exchanged by passing    a buffer pointer, or  reference, rather  than
the  values  as in the    strictly layered approach  described  above.   The  advantage  to    passing buffers
by reference is that only a small amount of    information, the buffer pointer, is copied  from  layer  to
layer.    The  resulting  performance  is much better than that of the strictly    layered approach.

   There are several requirements  that  must  be  met  to implement    buffer sharing.  First, the host
system architecture must allow    memory sharing among protocol entities  that are  sharing the    buffers.
This can be achieved in a variety of ways:  multiple    protocol entities may be  implemented  as one
process, all sharing    the same process space (e.g., kernel space),  or  the  host  system    architecture  may
allow processes  to  map portions of their address    space to common buffer areas at some known location
in physical    memory.

   A buffer manager is another requirement for implementing shared    buffers.  The buffer manager has
the responsibility of providing    buffers  to  protocol entities when needed from a list of free    buffers and
recycling used buffers  back into  the  free  list. The    pool may consist of one or more lists, depending on
the level of    control desired.  For example, there  could be separate lists of    buffers for outgoing and
incoming messages.

   The protocol entities must be implemented in such a way as to    cooperate with the buffer manager.
While this appears to be an    obvious condition, it has important implications for the strategy    used by
implementors to develop the communications system.  This    cooperation can be described as follows:  an
entity at layer N    requests and is allocated a buffer by the manager; each such buffer
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    is returned to the manager by some entity at layer N - k (outgoing    data) or N + k (incoming data).

   Protocol  entities also must be designed to cooperate with each    other.  As buffers are allocated and sent
towards the  network  from    higher  layers, allowance must be made for protocol control    information to
be added at lower layers.  This usually means    allocating  oversized buffers to allow space for headers to
be    prepended at lower layers.  Similarly, as buffers move upward from    the network, each protocol
entity processes its headers before    passing the buffer on.  These  manipulations  can  be handled by
managing pointers into the buffer header space.

   In their pure forms, both strictly layered  and  shared buffer    schemes are not practical.  In the former,
there is a performance    penalty for copying buffers.  On the other hand, it  is not practical    to
implement buffers that are shared by entities in all layers of the    protocol hierarchy: the  lower protocol
layers (OSI layers 1 - 4)    have essentially static buffer requirements, whereas the upper    protocol layers
(OSI layers 5 - 7) tend to be dynamic in their buffer    requirements.  That is, several different applications
may be running    concurrently, with buffer requirements varying as the set of    applications varies.
However, at the transport layer, this latter    variation is not visible and variations in buffer requirements
will    depend more on service quality considerations than on the specific    nature of the applications
being served.  This suggests a hybrid    scheme in which the entities in OSI layers 1 - 4 share buffers
while    the entities in each of the OSI layers 5 - 7 share in a buffer pool    associated with each layer.
This approach provides most of the    efficiency of a pure shared buffer scheme and allows for simple,
modular interfaces where they are most appropriate.

4.2.2   Buffer management in the transport entity.

   Buffers are allocated in the transport entity  for  two purposes:    sending and receiving data.  For
sending data, the decision of how    much buffer space to allocate is  relatively simple;  enough  space
should be allocated for outgoing data to hold the maximum number of    data messages that the  entity will
have outstanding (i.e., sent but    unacknowledged) at any time.  The send buffer space is determined  by
one  of  two values,  whichever  is lower:  the send credit received    from the receiving transport entity, or
a maximum  value  imposed by    the  local  implementation,  based  on  such  factors as overall    buffer
capacity.

   The allocation of receive buffers is a more interesting problem    because  it is directly related to the
credit value transmitted the    peer transport entity in CR (or CC) and AK TPDUs.  If the total    credit
offered to the peer entity exceeds the total available buffer    space and credit reduction  is  not
implemented, deadlock  may    occur, causing termination of one or more transport connections.  For
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    the purposes of  this discussion,  offered  credit  is assumed to be    equivalent to available buffer space.

   The simplest scheme for receive buffer  allocation  is allocation of    a fixed amount per transport
connection.  This amount is allocated    regardless of how the connection  is  to be  used.   This  scheme is
fair in that all connections are treated equally.  The implementation    approach in Part 2.3, in which each
transport connection is handled    by a physically separate processor, obviously could use this scheme,
since the allocation would be in the form of memory chips assigned by    the system designer when the
system is built.

   A more flexible method  of  allocating  receive  buffer space  is    based  on the connection quality of
service (QOS) requested by the    user.  For instance, a QOS indicating  high throughput would be given
more send and receive buffer space than one a QOS indicating low    delay.  Similarly, connection priority
can  be  used  to  determine    send and receive buffer allocation, with important (i.e., high    priority)
connections  allocated  more buffer space.

   A slightly more complex scheme is to apportion send and receive    buffer  space using both QOS and
priority.  For each connection, QOS    indicates a general category of  operation  (e.g., high throughput or
low delay).  Within the general category, priority determines the    specific  amount  of  buffer  space
allocated  from  a range of    possible values.  The general categories may well overlap, resulting,    for
example, in a high priority connection with low throughput    requirements being allocated more buffer
space than low priority    connection requiring a high throughput.

5   Management of Transport service endpoints.

   As mentioned in Part 1.2.1.1, a transport entity needs some way of    referencing a transport connection
endpoint within the end system: a    TCEP_id.  There are several factors influencing the management of
TCEP_ids:

    1)  IPC mechanism between the transport entity and the session         entity (Part 3.3);

    2)  transport entity resources and resource management (Part 4);

    3)  number of distinct TSAPs supported by the entity (Part 1.2.2.1);         and

    4)  user process rendezvous mechanism (the means by which session         processes identify themselves
to the transport entity, at a         given TSAP, for association with a transport connection);

   The IPC mechanism and the user process rendezvous mechanism have more    direct influence than the
other two factors on how the TCEP_id
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    management is implemented.

   The number of TCEP_ids available should reflect the resources that    are available to the transport
entity, since each TCEP_id in use    represents a potential transport connection.  The formal description
assumes that there is a function in the TPE which can decide, on the    basis of current resource
availability, whether or not to issue a    TCEP_id for any connection request received.  If the TCEP_id is
issued, then resources are allocated for the connection endpoint.    However, there is a somewhat different
problem for the users of    transport.  Here, the transport entity must somehow inform the    session entity
as to the TCEP_ids available at a given TSAP.

   In the formal description, a T-CONNECT-request is permitted to enter    at any TSAP/TCEP_id.  A
function in the TPE considers whether or not    resources are availble to support the requested connection.
There is    also a function which checks to see if a TSAP/TCEP_id is busy by    seeing if there is a TPM
allocated to it.  But this function is not    useful to the session entity which does not have access to the
transport entity's operations.  This description of the procedure is    clearly too loose for an
implementation.

   One solution to this problem is to provide a new (abstract) service,    T-REGISTER, locally, at the
interface between transport and session.

   ___________________________________________________________________    |           Primitives
Parameters           |    |_________________________________________________________________|    |
T-REGISTER        request     |  Session process  identifier   |
|________________________________|________________________________|    |  T-REGISTER
indication  |  Transport endpoint identifier,|    |                                |  Session process  identifier   |
|________________________________|________________________________|    |  T-REGISTER
refusal     |  Session process  identifier   |
|________________________________|________________________________|

   This service is used as follows:

      1)   A session process is identified to the transport entity by a           T-REGISTER-request event.  If a
TCEP_id is available,  the           transport entity selects a TCEP_id and places it into a table
corresponding to the TSAP at which the T-REGISTER-request           event occurred, along with the
session process identifier. The           TCEP_id and the session process identifier are then
transmitted to the session entity by means of the T-REGISTER-           indication event. If no TCEP_id is
available, then a T-           REGISTER-refusal event carrying the session process identifier           is
returned.  At any time that an assigned TCEP_id is not           associated with an active transport
connection process           (allocated TPM), the transport entity can issue a T-REGISTER-

McCoy                                                          [Page 43]



 RFC 1008                                                       June 1987

           refusal to the session entity to indicate, for example, that           resources are no longer available to
support a connection,           since TC resources are not allocated at registration time.

      2)   If the session entity is to initiate the transport connection,           it issues a T-CONNECT-request
with the TCEP_id as a parameter.           (Note that this procedure is at a slight variance to the
procedure in N3756, which specifies no such parameter, due to           the requirement of alignment of the
formal description with           the service description of transport and the definition of the           session
protocol.) If the session entity is expecting a           connection request from a remote peer at this TSAP,
then the           transport does nothing with the TCEP_id until a CR TPDU           addressed to the TSAP
arrives.  When such a CR TPDU arrives,           the transport entity issues a T-CONNECT-indication to
the           session entity with a TCEP_id as a parameter.  As a management           aid, the table entry for
the TCEP_id can be marked "busy" when           the TCEP_id is associated with an allocated TPM.

      3)   If a CR TPDU is received and no TCEP_id is in the table for           the TSAP addressed, then the
transport selects a TCEP_id,           includes it as a parameter in the T-CONNECT-indication sent to
the session entity, and places it in the table. The T-           CONNECT-response returned by the session
entity will carry the           TCEP_id and the session process identifier.  If the session           process
identifier is already in the table, the new one is           discarded; otherwise it is placed into the table. This
procedure is also followed if the table has entries but they           are all marked busy or are empty.  If the
table is full and           all entries ar marked busy, then the transport entity           transmits a DR TPDU to
the peer transport entity to indicate           that the connection cannot be made.  Note that the transport
entity can disable a TSAP by marking all its table entries           busy.

    The realization of the T-REGISTER service will depend on the IPC    mechanisms available between
the transport and session entities. The    problem of user process rendezvous is solved in general by the T-
REGISTER service, which is based on a solution proposed by Michael    Chernik of the NBS [CHK85].

6   Management of Network service endpoints in Transport.

6.1   Endpoint identification.

   The identification of endpoints at an NSAP is different from that for    the TSAP.  The nature of the
services at distinct TSAPs is    fundamentally the same, although the quality could vary, as a local
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    choice.  However, it is possible for distinct NSAPs to represent    access to essentially different network
services.  For example, one    NSAP may provide access to a connectionless network service by means    of
an internetwork protocol.  Another NSAP may provide access to a    connection-oriented service, for use
in communicating on a local    subnetwork.  It is also possible to have several distinct NSAPs on    the
same subnetwork, each of which provides some service features of    local interest that distinguishes it
from the other NSAPs.

   A transport entity accessing an X.25 service could use the logical    channel numbers for the virtual
circuits as NCEP_ids.  An NSAP    providing access only to a permanent virtual circuit would need only
a single NCEP_id to multiplex the transport connections.  Similarly,    a CSMA/CD network would need
only a single NCEP_id, although the    network is connectionless.

6.2   Management issues.

   The Class 4 transport protocol has been succesfully operated over    both connectionless and connection-
oriented network services.  In    both modes of operation there exists some information about the
network service that a transport implementation could make use of to    enhance performance.  For
example, knowledge of expected delay to a    destination would permit optimal selection of retransmission
timer    value for a connection instance.  The information that transport    implementations could use and
the mechanisms for obtaining and    managing that information are, as a group, not well understood.
Projects are underway within ISO committees to address the management    of OSI as an architecture and
the management of the transport layer    as a layer.

   For operation of the Class 4 transport protocol over    connection-oriented network service several issues
must be addressed    including:

      a.   When should a new network connection be opened to support a           transport connection (versus
multiplexing)?

     b.   When a network connection is no longer being used by any           transport connection, should the
network connection be closed           or remain open awaiting a new transport connection?

     c.   When a network connection is aborted, how should the peer           transport entities that were
using the connection cooperate to           re-establish it?  If splitting is not to be used, how can this
re-establishment be achieved such that one and only one           network connection results?

   The Class 4 transport specification permits a transport entity to    multiplex several transport
connections (TCs) over a single network
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    connection (NC) and to split a single TC across several NCs.  The    implementor must decide whether
to support these options and, if so,    how.  Even when the implementor decides never to initiate splitting
or multiplexing the transport entity must be prepared to accept this    behavior from other transport
implementations.  When multiplexing is    used TPDUs from multiple TCs can be concatenated into a
single    network service data unit (NSDU).  Therefore, damage to an NSDU may    effect several TCs.  In
general, Class 2 connections should not be    multiplexed with Class 4 connections.  The reason for this is
that if    the error rate on the network connection is high enough that the    error recovery capability of
Class 4 is needed, then it is too high    for Class 2 operation.  The deciding criterion is the tolerance of
the user for frequent disconnection and data errors.

   Several issues in splitting must be considered:

    1) maximum number of NCs that can be assigned to a given TC;

    2) minimum number of NCs required by a TC to maintain the "quality        of service" expected (default
of 1);

    3) when to split;

    4) inactivity control;

    5) assignment of received TPDU to TC; and

    6) notification to TC of NC status (assigned, dissociated, etc ).

   All of these except 3) are covered in the formal description.  The    methods used in the formal
description need not be used explicitly,    but they suggest approaches to implementation.

   To support the possibility of multiplexing and splitting the    implementor must provide a common
function below the TC state    machines that maps a set of TCs to a set of NCs.  The formal    description
provides a general means of doing this, requiring mainly    implementation environment details to
complete the mechanism.    Decisions about when network connections are to be opened or closed    can
be made locally using local decision criteria.  Factors that may    effect the decision include costs of
establishing an NC, costs of    maintaining an open NC with little traffic flowing, and estimates of    the
probability of data flow between the source node and known    destinations.  Management of this type is
feasible when a priori    knowledge exists but is very difficult when a need exists to adapt to    dynamic
traffic patterns and/or fluctuating network charging    mechanisms.

   To handle the issue of re-establishment of the NC after failure, the    ISO has proposed an addendum
N3279 [ISO85c] to the basic transport    standard describing a network connection management
subprotocol
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    (NCMS) to be used in conjunction with the transport protocol.

7   Enhanced checksum algorithm.

7.1   Effect of checksum on transport performance.

   Performance experiments with Class 4 transport at the NBS have    revealed that straightforward
implementation of the Fletcher checksum    using the algorithm recommended in the ISO transport
standard leads    to severe reduction of transport throughput.  Early modeling    indicated throughput
drops of as much as 66% when using the checksum.    Work by Anastase Nakassis [NAK85] of the NBS
led to several improved    implementations.  The performance degradation due to checksum is now    in
the range of 40-55%, when using the improved implementations.

   It is possible that transport may be used over a network that does    not provide error detection.  In such
a case the transport checksum    is necessary to ensure data integrity. In many instances, the    underlying
subnetwork provides some error checking mechanism.  The    HDLC frame check sequence as used by
X.25, IEEE 802.3 and 802.4 rely    on a 32 bit cyclic redundancy check and satellite link hardware
frequently provides the HDLC frame check sequence.  However, these    are all link or physical layer error
detection mechanisms which    operate only point-to-point and not end-to-end as the transport    checksum
does.  Some links provide error recovery while other links    simply discard damaged messages.  If
adequate error recovery is    provided, then the transport checksum is extra overhead, since    transport
will detect when the link mechanism has discarded a message    and will retransmit the message.  Even
when the IP fragments the    TPDU, the receiving IP will discover a hole in the reassembly buffer    and
discard the partially assembled datagram (i.e., TPDU).  Transport    will detect this missing TPDU and
recover by means of the    retransmission mechanism.

7.2   Enhanced algorithm.

   The Fletcher checksum algorithm given in an annex to IS 8073 is not    part of the standard, and is
included in the annex as a suggestion to    implementors.  This was done so that as improvements or new
algorithms came along, they could be incorporated without the    necessity to change the standard.

   Nakassis has provided three ways of coding the algorithm, shown    below, to provide implementors
with insight rather than universally    transportable code.  One version uses a high order language (C).  A
second version uses C and VAX assembler, while a third uses only VAX    assembler.  In all the versions,
the constant MODX appears.  This    represents the maximum number of sums that can be taken without
experiencing overflow.  This constant depends on the processor's word    size and the arithmetic mode, as
follows:
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     Choose n such that

     (n+1)*(254 + 255*n/2) <= 2**N - 1

    where N is the number of usable bits for signed (unsigned)    arithmetic.  Nakassis shows [NAK85] that
it is sufficient    to take

     n <= sqrt( 2*(2**N - 1)/255 )

    and that n = sqrt( 2*(2**N - 1)/255 ) - 2 generally yields    usable values.  The constant MODX then is
taken to be n.

    Some typical values for MODX are given in the following table.

     BITS/WORD                MODX          ARITHMETIC         15                     14             signed         16
21           unsigned         31                   4102             signed         32                   5802           unsigned

   This constant is used to reduce the number of times mod 255 addition    is invoked, by way of speeding
up the algorithm.

   It should be noted that it is also possible to implement the checksum    in separate hardware.  However,
because of the placement of the    checksum within the TPDU header rather than at the end of the TPDU,
implementing this with registers and an adder will require    significant associated logic to access and
process each octet of the    TPDU and to move the checksum octets in to the proper positions in the
TPDU. An alternative to designing this supporting logic is to use a    fast, microcoded 8-bit CPU to handle
this access and the computation.    Although there is some speed penalty over separate logic, savings
may be realized through a reduced chip count and development time.

7.2.1   C language algorithm.

   #define MODX 4102

      encodecc( mess,len,k )      unsigned char mess[] ;    /* the TPDU to be checksummed */      int      len,
k;               /* position of first checksum octet                                   as an offset from mess[0]  */
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      { int ip,            iq,            ir,            c0,            c1;        unsigned char *p,*p1,*p2,*p3 ;

       p = mess ; p3 = mess + len ;

       if ( k > 0) { mess[k-1] = 0x00 ; mess[k] = 0x00 ; }             /* insert zeros for checksum octets */

       c0 = 0 ; c1 = 0  ; p1 = mess ;        while (p1 < p3)    /* outer sum accumulation loop */        {         p2
= p1 + MODX ; if (p2 > p3) p2 = p3 ;         for (p = p1 ; p < p2 ; p++) /*  inner sum accumulation loop */
{ c0 = c0 + (*p) ; c1 = c1 + c0 ;         }         c0 = c0%255 ; c1 = c1%255 ; p1 = p2 ;             /* adjust
accumulated sums to mod 255 */         }         ip = (c1 << 8) + c0 ;     /* concatenate c1 and c0 */

        if (k > 0)         {     /* compute and insert checksum octets */

         iq = ((len-k)*c0 - c1)%255 ; if (iq <= 0) iq = iq + 255 ;          mess[k-1] = iq ;          ir = (510 - c0 -
iq) ;          if (ir > 255) ir = ir - 255 ; mess[k] = ir ;        }        return(ip) ;      }

7.2.2   C/assembler algorithm.

   #include <math>

     encodecm(mess,len,k)      unsigned char *mess ;      int      len,k      ;      {        int i,ip,c0,c1 ;

       if (k > 0) { mess[k-1] = 0x00 ; mess[k] = 0x00 ; }        ip = optm1(mess,len,&c0,&c1) ;        if (k > 0)
{ i = ( (len-k)*c0 - c1)%255 ; if (i <= 0) i = i + 255 ;          mess[k-1] = i ;          i = (510 - c0 - i) ; if (i >
255) i = i - 255 ;
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          mess[k] = i ;        }        return(ip) ;      }     ;       calling sequence optm(message,length,&c0,&c1)
where     ;       message is an array of bytes     ;       length   is the length of the array     ;       &c0 and &c1
are the addresses of the counters to hold the     ;       remainder of; the first and second order partial sums
;       mod(255).

            .ENTRY   optm1,^M<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11>             movl     4(ap),r8      ; r8--->
message             movl     8(ap),r9      ; r9=length             clrq     r4            ; r5=r4=0             clrq     r6
; r7=r6=0             clrl     r3            ; clear high order bytes of r3             movl     #255,r10      ; r10 holds
the value 255             movl     #4102,r11     ; r11= MODX     xloop:  movl     r11,r7        ; if r7=MODX
cmpl     r9,r7         ; is r9>=r7 ?             bgeq     yloop         ; if yes, go and execute the inner
; loop MODX times.             movl     r9,r7         ; otherwise set r7, the inner loop                                    ;
counter,     yloop:  movb     (r8)+,r3      ;             addl2    r3,r4         ; sum1=sum1+byte             addl2
r4,r6         ; sum2=sum2+sum1             sobgtr   r7,yloop      ; while r7>0 return to iloop
; for mod 255 addition       ediv     r10,r6,r0,r6  ; r6=remainder       ediv     r10,r4,r0,r4  ;       subl2
r11,r9        ; adjust r9       bgtr     xloop         ; go for another loop if necessary       movl     r4,@12(ap)    ;
first argument       movl     r6,@16(ap)    ; second argument       ashl     #8,r6,r0      ;       addl2    r4,r0
;       ret

7.2.3  Assembler algorithm.

   buff0:  .blkb   3              ; allocate 3 bytes so that aloop is                           ; optimally aligned    ;
macro implementation of Fletcher's algorithm.    ;       calling sequence ip=encodemm(message,length,k)
where    ;       message is an array of bytes    ;       length   is the length of the array    ;       k        is the
location of the check octets if >0,    ;                an indication not to encode if 0.    ;
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    movl     4(ap),r8      ; r8---> message    movl     8(ap),r9      ; r9=length    clrq     r4            ; r5=r4=0
clrq     r6            ; r7=r6=0    clrl     r3            ; clear high order bytes of r3    movl     #255,r10      ; r10
holds the value 255    movl     12(ap),r2     ; r2=k    bleq     bloop         ; if r2<=0, we do not encode
subl3    r2,r9,r11     ; set r11=L-k    addl2    r8,r2         ; r2---> octet k+1    clrb     (r2)          ; clear check
octet k+1    clrb     -(r2)         ; clear check octet k, r2---> octet k.    bloop:  movw     #4102,r7   ; set r7
(inner loop counter) = to MODX    cmpl     r9,r7         ; if r9>=MODX, then go directly to adjust r9    bgeq
aloop         ; and execute the inner loop MODX times.    movl     r9,r7         ; otherwise set r7, the inner
loop counter,                           ; equal to r9, the number of the                           ; unprocessed characters
aloop:  movb     (r8)+,r3      ;    addl2    r3,r4         ; c0=c0+byte    addl2    r4,r6         ; sum2=sum2+sum1
sobgtr   r7,aloop      ; while r7>0 return to iloop                                   ; for mod 255 addition    ediv
r10,r6,r0,r6  ; r6=remainder    ediv     r10,r4,r0,r4  ;    subl2    #4102,r9      ;    bgtr     bloop         ; go for
another loop if necessary    ashl     #8,r6,r0      ; r0=256*r6    addl2    r4,r0         ; r0=256*r6+r4    cmpl
r2,r7         ; since r7=0, we are checking if r2 is    bleq     exit          ; zero or less: if yes we bypass
; the encoding.    movl     r6,r8         ; r8=c1    mull3    r11,r4,r6     ; r6=(L-k)*c0    ediv     r10,r6,r7,r6  ;
r6 = (L-k)*c0 mod(255)    subl2    r8,r6         ; r6= ((L-k)*c0)%255 -c1 and if negative,    bgtr     byte1
; we must    addl2    r10,r6        ; add 255    byte1:  movb     r6,(r2)+ ; save the octet and let r2---> octet
k+1    addl2    r6,r4         ; r4=r4+r6=(x+c0)    subl3    r4,r10,r4     ; r4=255-(x+c0)    bgtr     byte2         ;
if >0 r4=octet (k+1)    addl2    r10,r4        ; r4=255+r4    byte2:  movb     r4,(r2)       ; save y in octet k+1
exit:   ret

8   Parameter selection.

8.1   Connection control.

   Expressions for timer values used to control the general transport
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    connection behavior are given in IS 8073.  However, values for the    specific factors in the expressions
are not given and the expressions    are only estimates.  The derivation of timer values from these
expressions is not mandatory in the standard.  The timer value    expressions in IS 8073 are for a
connection-oriented network service    and may not apply to a connectionless network service.

   The following symbols are used to denote factors contributing to    timer values, throughout the
remainder of this Part.

    Elr = expected maximum transit delay, local to remote

    Erl = expected maximum transit delay, remote to local

    Ar  = time needed by remote entity to generate an acknowledgement

    Al  = time needed by local entity to generate an acknowledgement

    x   = local processing time for an incoming TPDU

    Mlr = maximum NSDU lifetime, local to remote

    Mrl = maximum NSDU lifetime, remote to local

    T1  = bound for maximum time local entity will wait for           acknowledgement before retransmitting
a TPDU

    R   = bound for maximum local entity will continue to transmit a           TPDU that requires
acknowledgment

    N   = bound for maximum number of times local entity  will transmit           a TPDU requiring
acknowledgement

    L   = bound for the maximum time between the transmission of a           TPDU and the receipt of any
acknowledgment relating to it.

    I   = bound for the time after which an entity will initiate           procedures to terminate a transport
connection if a TPDU is           not received from the peer entity

    W   = bound for the maximum time an entity will wait before           transmitting up-to-date window
information

   These symbols and their definitions correspond to those given in    Clause 12 of IS 8073.

8.1.1   Give-up timer.

   The give-up timer determines the  amount  of  time  the transport    entity  will continue to await an
acknowledgement (or other    appropriate reply) of a transmitted message  after the  message
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    has  been  retransmitted the maximum number of times.    The    recommendation given in IS 8073 for
values of this timer is    expressed by

    T1 + W + Mrl, for DT and ED TPDUs

    T1 + Mrl, for CR, CC, and DR TPDUs,

   where

    T1 = Elr + Erl + Ar + x.

   However, it should be noted that Ar will not be known for either the    CR or the CC TPDU, and that Elr
and Erl may vary considerably due to    routing in some conectionless network services.  In Part 8.3.1, the
determination of values for T1 is discussed in more detail.  Values    for Mrl generally are relatively fixed
for a given network service.    Since Mrl is usually much larger than expected values of T1, a    rule-of-
thumb for the give-up timer value is 2*Mrl + Al + x for the    CR, CC and DR TPDUs and 2*Mrl + W for
DT and ED TPDUs.

8.1.2   Inactivity timer.

   This timer measures  the  maximum  time  period  during which a    transport connection can be
inactive, i.e., the maximum time an    entity can wait without receiving incoming messages.  A usable
value    for the inactivity timer is

    I = 2*( max( T1,W )*N ).

   This accounts for the possibility that the remote peer is using a    window timer value different from that
of the local peer.  Note that    an inactivity timer is important for operation over connectionless    network
services, since the periodic receipt of AK TPDUs is the only    way that the local entity can be certain that
its peer is still    functioning.

8.1.3   Window timer.

   The window timer has two purposes.  It is used to assure that the    remote peer entity periodically
receives the current state of the    local entity's flow control, and it ensures that the remote peer    entity is
aware that the local entity is still functioning.  The    first purpose is necessary to place an upper bound on
the time    necessary to resynchronize the flow control should an AK TPDU which    notifies the remote
peer of increases in credit be lost.  The second    purpose is necessary to prevent the inactivity timer of the
remote    peerfrom expiring.  The value for the window timer, W, depends on    several factors, among
which are the transit delay, the    acknowledgement strategy, and the probability of TPDU loss in the
network.  Generally, W should satisfy the following condition:
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      W > C*(Erl + x)

   where C is the maximum amount of credit offered.  The rationale for    this condition is that the right-
hand side represents the maximum    time for receiving the entire window.  The protocol requires that all
data received be acknowledged when the upper edge of the window is    seen as a sequence number in a
received DT TPDU.  Since the window    timer is reset each time an AK TPDU is transmitted, there is
usually    no need to set the timer to any less than the value on the right-hand    side of the condition.  An
exception is when both C and the maximum    TPDU size are large, and Erl is large.

   When the probability that a TPDU will be lost is small, the value of    W can be quite large, on the order
of several minutes.  However, this    increases the delay the peer entity will experience in detecting the
deactivation of the local transport entity.  Thus, the value of W    should be given some consideration in
terms of how soon the peer    entity needs to detect inactivity.  This could be done by placing    such
information into a quality of service record associated with the    peer's address.

   When the expected network error rate is high, it may be necessary to    reduce the value of W to ensure
that AK TPDUs are being received by    the remote entity, especially when both entities are quiescent for
some period of time.

8.1.4   Reference timer.

   The reference timer measures  the  time  period  during which a    source reference must not be
reassigned to another transport    connection, in order that spurious duplicate  messages not    interfere
with a new connection.  The value for this timer    given in IS 8073 is

    L = Mlr + Mrl + R + Ar

   where

    R = T1*N + z

   in which z is a small tolerance quantity to allow for factors    internal to the entity.  The use of L as a
bound, however, must be    considered carefully.  In some cases, L may be very large, and not    realistic as
an upper or a lower bound.  Such cases may be    encountered on routes over several catenated networks
where R is set    high to provide adequate recovery from TPDU loss.  In other cases L    may be very small,
as when transmission is carried out over a LAN and    R is set small due to low probability of TPDU loss.
When L is    computed to be very small, the reference need not be timed out at    all, since the probability
of interference is zero.  On the other    hand, if L is computed to be very large a smaller value can be used.
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    One choice for the value  might be

    L = min( R,(Mrl + Mlr)/2 )

   If the reference number assigned to  a  new  connection  by  an    entity  is monotonically incremented
for each new connection through    the entire available reference space (maximum 2**16 - 1), the timer
is not critical: the sequence space is large enough that it is likely    that there will be no spurious messages
in  the network by the time    reference numbers are reused.

8.2   Flow control.

   The peer-to-peer flow control mechanism  in  the  transport protocol    determines  the  upper bound on
the pace of data exchange that occurs    on  transport  connections.   The transport  entity  at  each end of
a connection offers a credit to its peer representing the number of    data  messages it  is  currently willing
to accept.  All received    data messages are acknowledged,  with  the  acknowledgement  message
containing  the  current  receive  credit  information.  The three    credit allocation schemes discussed
below  present  a diverse  set    of  examples  of  how one might derive receive credit values.

8.2.1   Pessimistic credit allocation.

   Pessimistic credit allocation is perhaps the simplest form of flow    control.  It is similar in concept to X-
on/X-off control.  In this    method, the receiver always offers a credit of one TPDU.  When the DT
TPDU is received, the receiver responds with an AK TPDU carrying a    credit of zero.  When the DT
TPDU has been processed by the receiving    entity, an additional AK TPDU carrying a credit of one will
be sent.    The advantage to this approach is  that  the data  exchange  is  very    tightly controlled by the
receiving entity.  The disadvantages are:    1) the  exchange  is  slow, every data  message requiring at
least    the time of two round trips to complete the transfer transfer, and 2)    the ratio of acknowledgement
to data messages sent is 2:1.  While not    recommeneded, this scheme illustrates one extreme method of
credit    allocation.

8.2.2   Optimistic credit allocation.

   At the other extreme from pessimistic credit allocation is optimistic    credit  allocation,  in  which  the
receiver offers more credit than    it has buffers.  This scheme  has  two  dangers.  First, if the    receiving
user is not accepting data at a fast enough rate, the    receiving transport's  buffers  will  become filled.
Since  the    credit  offered  was optimistic, the sending entity will continue to    transmit data, which must
be dropped  by the receiving entity for    lack of buffers. Eventually,  the  sender  may  reach  the
maximum    number   of retransmissions and terminate the connection.

 McCoy                                                          [Page 55]



 RFC 1008                                                       June 1987

    The second danger in using optimistic flow  control  is that the    sending entity may transmit faster
than the receiving entity can    consume.  This could result from  the  sender being  implemented  on    a
faster machine or being a more efficient implementation.  The    resultant behavior is essentially the same
as described above:    receive buffer saturation, dropped data messages, and connection    termination.

   The two dangers  cited  above  can  be  ameliorated  by implementing    the credit reduction scheme as
specified in the protocol.  However,    optimistic credit allocation works  well only  in  limited
circumstances.   In most situations it is inappropriate and    inefficient even when using credit reduction.
Rather  than seeking    to avoid congestion, optimistic allocation causes it, in most cases,    and credit
reduction simply allows  one to recover from congestion    once it has happened.  Note that optimistic
credit allocation    combined with caching out-of-sequence messages requires a    sophisticated buffer
management scheme to avoid reasssembly deadlock    and subsequent loss of the transport connection.

8.2.3   Buffer-based credit allocation.

   Basing the receive  credit  offered  on  the  actual availability  of    receive  buffers  is  a  better method
for achieving flow control.    Indeed, with few exceptions, the implementations that have been    studied
used this method.  It continuous  flow  of  data  and    eliminating the need for the credit-restoring
acknowledgements.    Since  only  available buffer space is offered, the dangers of    optimistic credit
allocation are also avoided.

   The amount of buffer space needed to  maintain  a  continuous bulk    data  transfer,  which represents
the maximum buffer requirement, is    dependent on round trip  delay  and network  speed.  Generally,
one    would want the buffer space, and hence the credit, large enough to    allow  the  sender  to send
continuously, so that incremental credit    updates arrive just prior to the sending entity  exhausting  the
available credit.   One example is a single-hop satellite link    operating at 1.544  Mbits/sec.   One  report
[COL85]  indicates  that    the buffer requirement necessary for continuous flow is approximately    120
Kbytes.  For 10 Mbits/sec. IEEE 802.3 and 802.4 LANs, the figure    is on the order of 10K to 15K bytes
[BRI85, INT85, MIL85].

   An interesting modification to the buffer-based  credit allocation    scheme is suggested by R.K. Jain
[JAI85].  Whereas the approach    described above is based strictly on the available buffer space, Jain
suggests a scheme in which credit is reduced  voluntarily  by  the    sending  entity  when  network
congestion  is  detected.  Congestion    is implied by the occurrence of retransmissions.  The sending
entity,  recognizing retransmissions,  reduces  the local value of    credit to one, slowly raising it to the
actual receive credit    allocation as error-free transmissions continue to occur.  This
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    technique can overcome various types of network congestion occurring    when a fast sender overruns a
slow receiver when no link level flow    control is available.

8.2.4   Acknowledgement policies.

   It is useful first to  review the four uses of the acknowledgement    message in Class 4 transport.  An
acknowledgement message:

          1) confirms correct receipt of data messages,

          2) contains a credit allocation, indicating how  many              data  messages  the  entity  is willing
to receive              from the correspondent entity,

          3) may  optionally  contain  fields   which   confirm              receipt   of  critical  acknowledgement
messages,              known as flow control confirmation (FCC), and

          4) is sent upon expiration of  the  window  timer  to              maintain  a minimum level of traffic
on an              otherwise quiescent connection.

   In choosing an acknowledgement strategy, the first and  third uses    mentioned  above,  data
confirmation and FCC, are the most relevant;    the second, credit allocation, is  determined according  to
the    flow  control  strategy  chosen, and the fourth,  the  window    acknowledgement,  is  only
mentioned briefly in the discussion on    flow control confirmation.

8.2.4.1   Acknowledgement of data.

   The primary purpose of the acknowledgement  message  is to  confirm    correct  receipt  of  data
messages.  There are several choices that    the implementor must make when  designing a  specific
implementation.   Which  choice to make is based largely on the    operating  environment  (e.g.,  network
error  characteristics).    The issues to be decided upon are discussed in the sections below.

8.2.4.1.1  Misordered data messages.

   Data messages received out  of  order  due  to  network misordering    or loss can be cached or
discarded.  There is no single determinant    that guides the implementor to one or  the  other choice.
Rather,    there are a number of issues to be considered.

   One issue is the importance of maintaining a low  delay as  perceived    by  the user.  If transport data
messages are lost or damaged in    transit, the absence of a  positive acknowledgement  will trigger a
retransmission at the sending entity.  When the retransmitted data    message arrives at  the receiving
transport,  it  can be delivered
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    to the user.  If subsequent data messages had  been  cached,  they    could  be delivered  to  the user at
the same time.  The delay    between the sending  and  receiving  users  would,  on  average, be    shorter
than  if messages subsequent to a lost message were    dependent on retransmission for recovery.

   A second factor that influences the caching choice is  the cost of    transmission.  If transmission costs
are high, it is more economical    to cache  misordered  data,  in  conjunction with the use of    selective
acknowledgement (described below), to avoid    retransmissions.

   There are two resources that are conserved by not caching misordered    data: design and
implementation time for the transport entity and CPU    processing time during execution.  Savings  in
both  categories    accrue  because a non-caching implementation is simpler in its buffer    management.
Data TPDUs are discarded rather than being reordered.    This avoids the overhead of managing the gaps
in  the  received    data  sequence space, searching of sequenced message lists, and    inserting
retransmitted data messages into the lists.

8.2.4.1.2   Nth acknowledgement.

   In general, an acknowledgement message  is  sent  after receipt of    every N data messages on a
connection. If N is small compared to the    credit offered, then a finer granularity of buffer  control  is
afforded  to  the  data sender's buffer management function.  Data    messages are confirmed in small
groups,  allowing buffers to be    reused sooner than if N were larger.  The cost of having N small is
twofold.  First, more acknowledgement  messages must be generated by    one transport entity and
processed by another, consuming some of  the    CPU resource  at  both  ends  of a connection.  Second,
the    acknowledgement messages consume transmission bandwidth,  which may    be expensive or
limited.

   For larger  N,  buffer  management  is  less  efficient because the    granularity with which buffers are
controlled is N times the maximum    TPDU size.  For example, when data  messages are  transmitted to a
receiving entity employing this strategy with large N, N data    messages must be  sent  before an
acknowledgement  is  returned    (although the window timer causes the acknowledgement to  be  sent
eventually regardless  of  N).  If the minimum credit allocation for    continuous operation is actually  a
fraction  of  N,  a credit  of N    must still be offered, and N receive buffers reserved, to achieve a
continuous  flow  of  data  messages.  Thus,  more  receive  buffers    are used than are actually needed.
(Alternatively, if one relies on    the timer,  which  must  be adjusted to the receipt time for N and    will
not expire until some time after the fraction of N has been    sent,  there  may be idle time.)

   The choice of values for N depends on several factors.  First, if the
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    rate at which DT TDPUs are arriving is relatively low, then there is    not much justification for using a
value for N that exceeds 2.  On    the other hand, if the DT TPDU arrival rates is high or the TPDU's
arrive in large groups (e.g., in a frame from a satellite link), then    it may be reasonable to use a larger
value for N, simply to avoid the    overhead of generating and sending the acknowledgements while
procesing the DT TPDUs.  Second, the value of N should be related to    the maximum credit to be
offered. Letting C be the maximum credit to    be offered, one should choose N < C/2, since the receipt of
C TPDUs    without acknowledging will provoke sending one in any case. However,    since the extended
formats option for transport provides max C =    2**16 - 1, a choice of N = 2**15 - 2 is likely to cause
some of the    sender's retransmission timers to expire.  Since the retransmitted    TPDU's will arrive out
of sequence, they will provoke the sending of    AK TPDU's.  Thus, not much is gained by using an N
large.  A better    choice is N = log C (base 2).  Third, the value of should be related    to the maximum
TPDU size used on the connection and the overall    buffer management. For example, the buffer
management may be tied to    the largest TPDU that any connection will use, with each connection
managing the actual way in which the negotiated TPDU size relates to    this buffer size.  In such case, if a
connection has negotiated a    maximum TPDU size of 128 octets and the buffers are 2048 octets, it    may
provide better management to partially fill a buffer before    acknowledging.  If the example connection
has two buffers and has    based offered credit on this, then one choice for N could be 2*log(    2048/128 )
= 8.  This would mean that an AK TPDU would be sent when a    buffer is half filled ( 2048/128 = 16 ),
and a double buffering    scheme used to manage the use of the two buffers.  the use of the t    There are
two studies which indicate that, in many cases, 2 is a good    choice for N [COL85, BRI85].  The
increased granularity in buffer    management is reasonably small when compared to the credit
allocation, which ranges from 8K to 120K octets in the studies cited.    The benefit is that the number of
acknowledgements generated (and    consumed) is cut approximately in half.

8.2.4.1.3   Selective acknowledgement.

   Selective acknowledgement is an option that allows misordered data    messages to be confirmed even in
the presence of gaps in the received    message sequence.   (Note that selective  acknowledgement  is  only
meaningul whe caching out-of-orderdata messags.)  The  advantage  to    using  this mechanism  is hat i
grealy reduces the number of    unnecessary retransmissions, thus saving both  computing  time  and
transmission bandwidth [COL85] (see the discussion in Part 8.2.4.1.1    for  more  details).

8.2.4.2   Flow control confirmation and fast retransmission.

   Flow control confirmation (FCC) is a mechanism of the transport    protocol whereby acknowledgement
messages containing critical flow    control information are confirmed.  The critical  acknowledgement
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    messages are those  that open a closed flow control window and    certain ones that occur subsequent  to
a credit reduction.  In    principle, if these critical messages are lost, proper    resynchroniztion of the flow
control relies on the window timer,    which is generally of relatively long duration.   In order to reduce
delay in resynchronizing the flow control, the receiving entity can    repeatedly send, within short
intervals, AK TPDUs carrying a request    for confirmation of the flow control state, a procedure known as
"fast" retransmission (of the acknowledgement).  If the sender    responds with an AK TPDU carrying an
FCC parameter, fast    retransmission is halted.  If no AK TPDU carrying the FCC parameter    is
received, the fast transmission halts after having reached a    maximum number of retransmissions, and
the window timer resumes    control of AK TPDU transmission.  It should be noted that FCC is an
optional mechanism of transport and the data sender is not required    to respond to a request for
confirmation of the flow control state    wih an AK TPDU carrying the FCC parameter.

   Some considerations for deciding whether or not to use FCC and fast    retransmisson procedures are as
follows:

    1) likelihood of credit reduction on a given transport connection;

    2) probability of TPDU loss;

    3) expected window timer period;

    4) window size; and

    5) acknowledgement strategy.

   At this time, there is no reported experience with using FCC and fast    retransmission.  Thus, it is not
known whether or not the procedures    produce sufficient reduction of resynchronization delay to warrant
implementing them.

   When implementing fast retransmission, it is suggested that the timer    used for the window timer be
employed as the fast timer, since the    window is disabled during fast retransmission in any case.  This
will    avoid having to manage another timer.  The formal description    expressed the fast retransmission
timer as a separate timer for    clarity.

8.2.4.3   Concatenation of acknowledgement and data.

   When full duplex communication is being operated by two transport    entities, data and
acknowledgement TPDUs from each one of the    entities travel in the same direction.  The transport
protocol    permits concatenating AK TPDUs in the same NSDU as a DT TPDU.  The    advantage of
using this feaure in an implementation is that fewer    NSDUs will be transmitted, and, consequently,
fewer total octets will
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    be sent, due to the reduced number of network headers transmitted.    However, when operating over
the IP, this advantage may not    necessarily be recognized, due to the possible fragmentation of the
NSDU by the IP.  A careful analysis of the treatment of the NSDU in    internetwork environments should
be done to determine whether or not    concatenation of TPDUs is of sufficient benefit to justify its use in
that situation.

8.2.5   Retransmission policies.

   There are primarily two  retransmission  policies  that can be    employed in a transport implementation.
In the first of these, a    separate retransmission timer  is  initiated  for each  data  message    sent by the
transport entity.  At first glance, this approach appears    to be simple and  straightforward to implement.
The deficiency of    this scheme is that it is inefficient.  This derives from two    sources.  First,  for each
data message transmitted, a timer must be    initiated and cancelled, which consumes a significant amount
of  CPU    processing  time  [BRI85].   Second, as the list of outstanding    timers grows, management of
the list also  becomes  increasingly    expensive.   There  are  techniques  which  make list management
more    efficient, such as a list per connection and hashing,  but    implementing  a  policy of one
retransmission timer per transport    connection is a superior choice.

   The second retransmission policy, implementing one retransmission    timer for each transport
conenction, avoids some of the    inefficiencies cited above: the  list  of  outstanding  timers  is    shorter
by approximately an order of magnitude.  However, if the    entity receiving the data is generating an
acknowledgement for    every  data message, the timer must still be cancelled and restarted    for each
data/acknowledgement  message pair  (this is an additional    impetus for implementing an Nth
acknowledgement policy with N=2).

   The rules governing the  single  timer  per  connection scheme are    listed below.

          1) If  a  data  message  is   transmitted   and   the              retransmission  timer  for  the  connection
is not              already running, the timer is started.

          2) If an acknowledgement for previously unacknowledged              data is received, the
retransmission timer is restarted.

          3) If an acknowledgement message is received for  the              last  outstanding  data  message on
the connection              then the timer is cancelled.

          4) If the retransmission timer expires, one  or  more              unacknowledged  data  messages  are
retransmitted,              beginning with the one sent earliest.  (Two

McCoy                                                          [Page 61]



 RFC 1008                                                       June 1987

              reports [HEA85, BRI85] suggest that the number              to retransmit is one.)

8.3   Protocol control.

8.3.1   Retransmission timer values.

8.3.1.1   Data retransmission timer.

   The value for the reference timer may have a significant impact on    the performance of the transport
protocol [COL85].  However,    determining the proper value to use is sometimes difficult.    According to
IS 8073, the value for the timer is computed using the    transit delays, Erl and Elr, the acknowledgement
delay, Ar, and the    local TPDU processing time, x:

    T1 = Erl + Elr + Ar + x

   The  difficulty  in  arriving at a good retransmission timer value is    directly related to the variability of
these  factors Of the two,    Erl and Elr are the most susceptible to variation, and therefore have    the most
impact on  determining a  good  timer  value.   The    following  paragraphs  discuss methods for choosing
retransmission    timer  values  that  are appropriate in several network environments.

   In a single-hop satellite environment, network delay (Erl or Elr) has    small variance because of the
constant propagation delay of about 270    ms., which overshadows the other components  of network
delay.    Consequently, a fixed retransmission timer provides good performance.    For example, for a 64K
bit/sec.  link  speed and network queue size    of four, 650 ms. provides good performance [COL85].

   Local area  networks  also  have  constant  propagation delay.    However, propagation delay is a
relatively unimportant factor in    total network delay for a local area network.  Medium  access  delay
and  queuing delay are the significant components of network delay,    and (Ar + x) also plays a
significant  role  in determining an    appropriate retransmission timer.  From the discussion presented in
Part 3.4.3.2 typical numbers for (Ar + x) are on the order of 5 - 6.5    ms and for Erl or Elr, 5 - 35 ms.
Consequently, a reasonable value    for  the  retransmission  timer is 100 ms.  This value works well for
local area networks, according to one cited report [INT85] and    simulation work performed at the NBS.

   For better performance in an environment with long propagation    delays and significant variance, such
as an internetwork an adaptive    algorithm is preferred, such as the one suggested value  for  TCP/IP
[ISI81].  As analyzed by Jain [JAI85], the algorithm uses an    exponential averaging scheme to  derive  a
round trip delay estimate:

               D(i)  = b * D(i-1)  +  (1-b) * S(i)
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    where D(i) is the update of the delay estimate, S(i) is  the sample    round  trip  time measured between
transmission of a given packet and    receipt of its acknowledgement, and b is  a weighting   factor
between  0  and  1,  usually  0.5.   The retransmission timer is    expressed as some multiplier, k,  of D.
Small values of k cause    quick detection of lost packets, but result in a higher number of    false timeouts
and,  therefore, unnecessary   retransmissions.    In    addition,  the retransmission timer should  be
increased    arbitrarily  for each case of multiple transmissions; an exponential    increase is suggested,
such that

               D(i) = c * D(i-1)

   where c is a dimensionless parameter greater than one.

   The remaining parameter for the adaptive  algorithm  is the  initial    delay  estimate,  D(0).   It  is
preferable to choose a slightly    larger value than needed, so that unnecessary retransmissions  do    not
occur at the beginning.  One possibility is to measure the round    trip delay  during connection
establishment.   In  any  case, the    timer converges except under conditions of sustained congestion.

8.3.1.2   Expedited data retransmission timer.

   The timer which  governs  retransmission  of  expedited data should    be set using the normal data
retransmission timer value.

8.3.1.3   Connect-request/confirm retransmission timer.

   Connect request and confirm  messages  are  subject  to Erl + Elr,    total network delay, plus
processing  time  at  the receiving    transport entity, if these values are known.  If an accurate estimate
of the round trip time is not known, two  views  can be espoused in    choosing the value for this timer.
First,  since  this  timer    governs  connection establishment, it is desirable to minimize delay    and so a
small value can be chosen, possibly resulting in unnecessary    retransmissions.  Alternatively, a larger
value can be used, reducing    the possibility of unnecessary retransmissions, but resulting in    longer
delay in connection establishment should the connect request    or confirm message be lost.  The choice
between these two views is    dictated largely by local requirements.

8.3.1.4  Disconnect-request retransmission timer.

   The timer which governs retransmission of  the  disconnect request    message  should  be  set from the
normal data retransmission timer    value.

8.3.1.5   Fast retransmission timer.

   The fast  retransmission  timer  causes  critical acknowledgement
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    messages to be retransmitted avoiding delay in resynchronizing    credit.  This timer should be set to
approximately Erl + Elr.

8.3.2   Maximum number of retransmissions.

   This transport parameter determines the maximum  number of  times  a    data message will be
retransmitted.  A typical value is eight.  If    monitoring of network service is performed then this value
can be    adjusted according to observed error rates.  As a high error rate    implies a high probability of
TPDU loss, when it is desirable to    continue sending despite the decline in quality of service, the
number of TPDU retransmissions (N) should be increased and the    retransmission interval (T1) reduced.

8.4   Selection of maximum Transport Protocol data unit size.

   The choice of maximum size for TPDUs in negotiation proposals depends    on the application to be
served and the service quality of the    supporting network.  In general, an application which produces
large    TSDUs should use as large TPDUs as can be negotiated, to reduce the    overhead due to a large
number of small TPDUs.  An application which    produces small TSDUs should not be affected by the
choice of a large    maximum TPDU size, since a TPDU need not be filled to the maximum    size to be
sent.  Consequently, applications such as file transfers    would need larger TPDUs while terminals would
not.  On a high    bandwidth network service, large TPDUs give better channel    utilization than do
smaller ones.  However, when error rates are    high, the likelihood for a given TPDU to be damaged is
correlated to    the size and the frequency of the TPDUs.  Thus, smaller TPDU size in    the condition of
high error rates will yield a smaller probability    that any particular TPDU will be lost.

   The implementor must choose whether or not to apply a uniform maximum    TPDU size to all
connections.  If the network service is uniform in    service quality, then the selection of a uniform
maximum can simplify    the implementation.  However, if the network quality is not uniform    and it is
desirable to optimize the service provided to the transport    user as much as possible, then it may be better
to determine the    maximum size on an individual connection basis.  This can be done at    the time of the
network service access if the characteristics of the    subnetwork are known.

   NOTE: The maximum TPDU size is important in the calculation of the    flow control credit, which is
in numbers of TPDUs offered.  If buffer    space is granted on an octet base, then credit must be granted as
buffer space divided by maximum TPDU size.  Use of a smaller TPDU    size can be equivalent to
optimistic credit allocation and can lead    to the expected problems, if proper analysis of the management
is not    done.
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 9   Special options.

   Special options may be obtained by taking advantage of the manner in    which IS 8073 and N3756 have
been written.  It must be emphasized    that these options in no way violate the intentions of the standards
bodies that produced the standards.  Flexibility was deliberately    written into the standards to ensure that
they do not constrain    applicability to a wide variety of situations.

9.1   Negotiations.

   The negotiation procedures in IS 8073 have deliberate ambiguities in    them to permit flexibility of
usage within closed groups of    communicants (the standard defines explicitly only the behavior among
open communicants).  A closed group of communicants in an open system    is one which, by reason of
organization, security or other special    needs, carries on certain communication among its members
which is    not of interest or not accessible to other open system members.    Examples of some closed
groups within DOD might be:  an Air Force    Command, such as the SAC; a Navy base or an Army post;
a ship;    Defense Intelligence; Joint Chiefs of Staff. Use of this    characteristic does not constitute
standard behavior, but it does not    violate conformance to the standard, since the effects of such usage
are not visible to non-members of the closed group.  Using the    procedures in this way permits options
not provided by the standard.    Such options might permit,for example, carrying special protection
codes on protocol data units or for identifying DT TPDUs as carrying    a particular kind of message.

   Standard negotiation procedures state that any parameter in a    received CR TPDU that is not defined
by the standard shall be    ignored.  This defines only the behavior that is to be exhibited    between two
open systems.  It does not say that an implementation    which recognizes such non-standard parameters
shall not be operated    in networks supporting open systems interconnection.  Further, any    other type
TPDU containing non-standard parameters is to be treated    as a protocol error when received.  The
presumption here is that the    non-standard parameter is not recognized, since it has not been    defined.
Now consider the following example:

   Entity A sends Entity B a CR TPDU containing a non-standard    parameter.

   Entity B has been implemented to recognize the non-standard parameter    and to interpret its presence
to mean that Entity A will be sending    DT TPDUs to Entity B with a special protection identifier
parameter    included.

   Entity B sends a CC TPDU containing the non-standard parameter to    indicate to Entity A that it has
received and understood the    parameter, and is prepared to receive the specially marked DT TPDUs
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    from Entity A.  Since Entity A originally sent the non-standard    parameter, it recognizes the
parameter in the CC TPDU and does not    treat it as a protocol error.

   Entity A may now send the specially marked DT TPDUs to Entity B and    Entity B will not reject them
as protocol errors.

    Note that Entity B sends a CC TPDU with the non-standard parameter    only if it receives a CR TPDU
containing the parameter, so that it    does not create a protocol error for an initiating entity that does
not use the parameter.  Note also that if Entity B had not recognized    the parameter in the CR TPDU, it
would have ignored it and not    returned a CC TPDU containing the parameter.  This non-standard
behavior is clearly invisible and inaccessible to Transport entities    outside the closed group that has
chosen to implement it, since they    are incapable of distinguishing it from errors in protocol.

9.2   Recovery from peer deactivation.

   Transport does not directly support the recovery of the transport    connection from a crashed remote
transport entity.  A partial    recovery is possible, given proper interpretation of the state tables    in Annex
A to IS 8073 and implementation design.  The interpretation    of the Class 4 state tables necessary to
effect this operation is as    follows:

   Whenever a CR TPDU is received in the state OPEN, the entity is    required only to record the new
network connection and to reset the    inactivity timer.  Thus, if the initiator of the original connection    is
the peer which crashed, it may send a new CR TPDU to the surviving    peer, somehow communicating to
it the original reference numbers    (there are several ways that this can be done).

       Whenever a CC TPDU is received in the

   state OPEN, the receiver is required only to record the new network    connection, reset the inactivity
timer and send either an AK, DT or    ED TPDU.  Thus, if the responder for the original connection is the
peer which crashed, it may send a new CC TPDU to the surviving peer,    communicating to it the original
reference numbers.

   In order for this procedure to operate properly, the situation in a.,    above, requires a CC TPDU to be
sent in response.  This could be the    original CC TPDU that was sent, except for new reference numbers.
The original initiator will have sent a new reference number in the    new CR TPDU, so this would go
directly into the CC TPDU to be    returned.  The new reference number for the responder could just be a
new assignment, with the old reference number frozen.  In the    situation in b., the originator could retain
its reference number (or
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    assign a new one if necessary), since the CC TPDU should carry both    old reference numbers and a
new one for the responder (see below).    In either situation, only the new reference numbers need be
extracted    from the CR/CC TPDUs, since the options and parameters will have been    previously
negotiated.  This procedure evidently requires that the CR    and CC TPDUs of each connection be stored
by the peers in nonvolatile    memory, plus particulars of the negotiations.

   To transfer the new reference numbers, it is suggested that the a new    parameter in the CR and CC
TPDU be defined, as in Part 9.1, above.    This parameter could also carry the state of data transfer, to aid
in    resynchronizing, in the following form:

    1) the last DT sequence number received by the peer that crashed;

    2) the last DT sequence number sent by the peer that        crashed;

    3) the credit last extended by the peer that crashed;

    4) the last credit perceived as offered by the surviving peer;

    5) the next DT sequence number the peer that crashed expects to        send (this may not be the same as
the last one sent, if the last        one sent was never acknowledged);

    6) the sequence number of an unacknowledged ED TPDU, if any;

    7) the normal data sequence number corresponding to the        transmission of an unacknowledged ED
TPDU, if any (this is to        ensure the proper ordering of the ED TPDU in the normal data        flow);

   A number of other considerations must be taken into account when    attempting data transfer
resynchronization.  First, the recovery will    be greatly complicated if subsequencing or flow control
confirmation    is in effect when the crash occurs.  Careful analysis should be done    to determine whether
or not these features provide sufficient benefit    to warrant their inclusion in a survivable system.  Second,
non-volatile storage of TPDUs which are unacknowledged must be used    in order that data loss at the
time of recovery can be minimized.    Third, the values for the retranmsission timers for the
communicating    peers must allow sufficient time for the recovery to be attempted.    This may result in
longer delays in retransmitting when TPDUs are    lost under normal conditions. One way that this might
be achieved is    for the peers to exchange in the original CR/CC TPDU exchange, their    expected lower
bounds for the retransmission timers, following the    procedure in Part 9.1.  In this manner, the peer that
crashed may be    determine whether or not a new connection should be attempted. Fourth,    while the
recovery involves directly only the transport peers when    operating over a connectionless network
service, recovery when
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    operating over a connection-oriented network service requires some    sort of agreement as to when a
new network connection is to be    established (if necessary) and which peer is responsible for doing    it.
This is required to ensure that unnecessary network    connections are not opened as a result of the
recovery.  Splitting    network connections may help to ameliorate this problem.

9.3   Selection of transport connection reference numbers.

   In N3756, when the reference wait period for a connection begins, the    resources associated with the
connection are released and the    reference number is placed in a set of frozen references.  A timer
associated with this number is started, and when it expires, the    number is removed from the set.  A
function which chooses reference    numbers checks this set before assigning the next reference number.
If it is desired to provide a much longer period by the use of a    large reference number space, this can be
met by replacing the    implementation dependent function "select_local_ref" (page TPE-17 of    N3756)
by the following code:

    function select_local_ref : reference_type;

    begin     last_ref := (last_ref + 1) mod( N+1 ) + 1;     while last_ref in frozen_ref[class_4] do
last_ref := (last_ref + 1) mod( N+1 ) + 1;     select_local_ref := last_ref;     end;

   where "last_ref" is a new variable to be defined in declarations    (pages TPE-10 - TPE-11), used to keep
track of the last reference    value assigned, and N is the length of the reference number cycle,    which
cannot exceed 2**16 - 1 since the reference number fields in    TPDUs are restricted to 16 bits in length.

9.4   Obtaining Class 2 operation from a Class 4 implementation.

   The operation of Class 4 as described in IS 8073 logically contains    that of the Class 2 protocol.  The
formal description, however, is    written assuming Class 4 and Class 2 to be distinct.  This was done
because the description must reflect the conformance statement of IS    8073, which provides that Class 2
alone may be implemented.

   However, Class 2 operation can be obtained from a Class 4    implementation, which would yield the
advantages of lower complexity,    smaller memory requirements, and lower implementation costs as
compared to implementing the classes separately.  The implementor    will have to make the following
provisions in the transport entity    and the Class 4 transport machine to realize Class 2 operation.
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      1)   Disable all timers.  In the formal description, all Class 4           timers except the reference timer
are in the Class 4 TPM.           These timers can be designed at the outset to be enabled or           not at the
instantiation of the TPM.  The reference timer is           in the Transport Entity module (TPE) and is
activated by the           TPE recognizing that the TPM has set its "please_kill_me"           variable to
"freeze".  If the TPM sets this variable instead           to "now", the reference timer for that transport
connection is           never started.  However, IS 8073 provides that the reference           timer can be used,
as a local entity management decision, for           Class 2.

          The above procedure should be used when negotiating from Class           4 to Class 2.  If Class 2 is
proposed as the preferred class,           then it is advisable to not disable the inactivity timer, to
avoid the possibility of deadlock during connection           establishment if the peer entity never responds
to the CR           TPDU.  The inactivity timer should be set when the CR TPDU is           sent and
deactivated when the CC TPDU is received.

     2)   Disable checksums.  This can be done simply by ensuring that           the boolean variable
"use_checksums" is always set to "false"           whenever Class 2 is to be proposed or negotiated.

     3)   Never permit flow control credit reduction. The formal           description makes flow control credit
management a function of           the TPE operations and such management is not reflected in the
operation of the TPM.  Thus, this provision may be handled by           always making the "credit-granting"
mechanism aware of the           class of the TPM being served.

     4)   Include Class 2 reaction to network service events.  The Class           4 handling of network service
events is more flexible than           that of Class 2 to provide the recovery behavior           characteristic of
Class 4.  Thus, an option should be provided           on the handling of N_DISCONNECT_indication and
N_RESET_indication for Class 2 operation.  This consists of           sending a
T_DISCONNECT_indication to the Transport User,           setting "please_kill_me" to "now" (optionally
to "freeze"),           and transitioning to the CLOSED state, for both events.  (The           Class 4 action in
the case of the N_DISCONNECT is to remove           the network connection from the set of those
associated with           the transport connection and to attempt to obtain a new           network connection if
the set becomes empty.  The action on           receipt of the N_RESET is to do nothing, since the TPE has
already issued the N_RESET_response.)

     5)   Ensure that TPDU parameters conform to Class 2.  This implies           that subsequence numbers
should not be used on AK TPDUs, and           no flow control confirmation parameters should ever appear
in           an AK TPDU.  The checksum parameter is prevented from
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           appearing by the "false" value of the "use_checksums"           variable.  (The acknowledgement
time parameter in the CR and           CC TPDUs will not be used, by virtue of the negotiation
procedure.  No special assurance for its non-use is           necessary.)

          The TPE management of network connections should see to it           that splitting is never
attempted with Class 4 TPMs running as           Class 2.  The handling of multiplexing is the same for
both           classes, but it is not good practice to multiplex Class 4 and           Class 2 together on the same
network connection.
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