
textutils

textutils ii

COLLABORATORS

TITLE :

textutils

ACTION NAME DATE SIGNATURE

WRITTEN BY January 15, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

textutils iii

Contents

1 textutils 1

1.1 textutils.guide . 1

1.2 textutils.guide/Introduction . 2

1.3 textutils.guide/Common options . 2

1.4 textutils.guide/Output of entire files . 3

1.5 textutils.guide/cat invocation . 3

1.6 textutils.guide/tac invocation . 4

1.7 textutils.guide/nl invocation . 5

1.8 textutils.guide/od invocation . 7

1.9 textutils.guide/Formatting file contents . 10

1.10 textutils.guide/fmt invocation . 11

1.11 textutils.guide/pr invocation . 12

1.12 textutils.guide/fold invocation . 14

1.13 textutils.guide/Output of parts of files . 15

1.14 textutils.guide/head invocation . 15

1.15 textutils.guide/tail invocation . 16

1.16 textutils.guide/split invocation . 18

1.17 textutils.guide/csplit invocation . 19

1.18 textutils.guide/Summarizing files . 20

1.19 textutils.guide/wc invocation . 21

1.20 textutils.guide/sum invocation . 22

1.21 textutils.guide/cksum invocation . 22

1.22 textutils.guide/md5sum invocation . 23

1.23 textutils.guide/Operating on sorted files . 24

1.24 textutils.guide/sort invocation . 25

1.25 textutils.guide/uniq invocation . 29

1.26 textutils.guide/comm invocation . 30

1.27 textutils.guide/Operating on fields within a line . 31

1.28 textutils.guide/cut invocation . 31

1.29 textutils.guide/paste invocation . 32

textutils iv

1.30 textutils.guide/join invocation . 33

1.31 textutils.guide/Operating on characters . 34

1.32 textutils.guide/tr invocation . 35

1.33 textutils.guide/Character sets . 36

1.34 textutils.guide/Translating . 38

1.35 textutils.guide/Squeezing . 39

1.36 textutils.guide/Warnings in tr . 39

1.37 textutils.guide/expand invocation . 40

1.38 textutils.guide/unexpand invocation . 41

1.39 textutils.guide/Opening the software toolbox . 41

1.40 textutils.guide/Toolbox introduction . 42

1.41 textutils.guide/I-O redirection . 43

1.42 textutils.guide/The `who’ command . 44

1.43 textutils.guide/The `cut’ command . 44

1.44 textutils.guide/The `sort’ command . 45

1.45 textutils.guide/The `uniq’ command . 45

1.46 textutils.guide/Putting the tools together . 45

1.47 textutils.guide/Index . 51

textutils 1 / 72

Chapter 1

textutils

1.1 textutils.guide

GNU text utilities

This manual minimally documents version 1.19 of the GNU text
utilities.

Introduction
Caveats, overview, and authors.

Common options
Common options.

Output of entire files
cat tac nl od

Formatting file contents
fmt pr fold

Output of parts of files
head tail split csplit

Summarizing files
wc sum cksum md5sum

Operating on sorted files
sort uniq comm

Operating on fields within a line
cut paste join

Operating on characters
tr expand unexpand

Opening the software toolbox
The software tools philosophy.

textutils 2 / 72

Index
General index.

1.2 textutils.guide/Introduction

Introduction

This manual is incomplete: No attempt is made to explain basic
concepts in a way suitable for novices. Thus, if you are interested,
please get involved in improving this manual. The entire GNU community
will benefit.

The GNU text utilities are mostly compatible with the POSIX.2
standard.

Please report bugs to ‘bug-gnu-utils@prep.ai.mit.edu’. Remember to
include the version number, machine architecture, input files, and any
other information needed to reproduce the bug: your input, what you
expected, what you got, and why it is wrong. Diffs are welcome, but
please include a description of the problem as well, since this is
sometimes difficult to infer. See Bugs.

This manual is based on the Unix man pages in the distribution, which
were originally written by David MacKenzie and updated by Jim Meyering.
The original ‘fmt’ man page was written by Ross Paterson. Franc,ois
Pinard did the initial conversion to Texinfo format. Karl Berry did
the indexing, some reorganization, and editing of the results. Richard
Stallman contributed his usual invaluable insights to the overall
process.

1.3 textutils.guide/Common options

Common options

Certain options are available in all these programs. Rather than
writing identical descriptions for each of the programs, they are
described here. (In fact, every GNU program accepts (or should accept)
these options.)

A few of these programs take arbitrary strings as arguments. In
those cases, ‘--help’ and ‘--version’ are taken as these options only
if there is one and exactly one command line argument.

‘--help’
Print a usage message listing all available options, then exit
successfully.

textutils 3 / 72

‘--version’
Print the version number, then exit successfully.

1.4 textutils.guide/Output of entire files

Output of entire files

These commands read and write entire files, possibly transforming
them in some way.

cat invocation
Concatenate and write files.

tac invocation
Concatenate and write files in reverse.

nl invocation
Number lines and write files.

od invocation
Write files in octal or other formats.

1.5 textutils.guide/cat invocation

‘cat’: Concatenate and write files
==================================

‘cat’ copies each FILE (‘-’ means standard input), or standard input
if none are given, to standard output. Synopsis:

cat [OPTION] [FILE]...

The program accepts the following options. Also see See

Common options
.

‘-A’
‘--show-all’

Equivalent to ‘-vET’.

‘-b’
‘--number-nonblank’

Number all nonblank output lines, starting with 1.

‘-e’

textutils 4 / 72

Equivalent to ‘-vE’.

‘-E’
‘--show-ends’

Display a ‘$’ after the end of each line.

‘-n’
‘--number’

Number all output lines, starting with 1.

‘-s’
‘--squeeze-blank’

Replace multiple adjacent blank lines with a single blank line.

‘-t’
Equivalent to ‘-vT’.

‘-T’
‘--show-tabs’

Display TAB characters as ‘^I’.

‘-u’
Ignored; for Unix compatibility.

‘-v’
‘--show-nonprinting’

Display control characters except for LFD and TAB using ‘^’
notation and precede characters that have the high bit set with
‘M-’.

1.6 textutils.guide/tac invocation

‘tac’: Concatenate and write files in reverse
===

‘tac’ copies each FILE (‘-’ means standard input), or standard input
if none are given, to standard output, reversing the records (lines by
default) in each separately. Synopsis:

tac [OPTION]... [FILE]...

"Records" are separated by instances of a string (newline by
default). By default, this separator string is attached to the end of
the record that it follows in the file.

The program accepts the following options. Also see See

Common options
.

‘-b’
‘--before’

The separator is attached to the beginning of the record that it

textutils 5 / 72

precedes in the file.

‘-r’
‘--regex’

Treat the separator string as a regular expression.

‘-s SEPARATOR’
‘--separator=SEPARATOR’

Use SEPARATOR as the record separator, instead of newline.

1.7 textutils.guide/nl invocation

‘nl’: Number lines and write files
==================================

‘nl’ writes each FILE (‘-’ means standard input), or standard input
if none are given, to standard output, with line numbers added to some
or all of the lines. Synopsis:

nl [OPTION]... [FILE]...

‘nl’ decomposes its input into (logical) pages; by default, the line
number is reset to 1 at the top of each logical page. ‘nl’ treats all
of the input files as a single document; it does not reset line numbers
or logical pages between files.

A logical page consists of three sections: header, body, and footer.
Any of the sections can be empty. Each can be numbered in a different
style from the others.

The beginnings of the sections of logical pages are indicated in the
input file by a line containing exactly one of these delimiter strings:

‘\:\:\:’
start of header;

‘\:\:’
start of body;

‘\:’
start of footer.

The two characters from which these strings are made can be changed
from ‘\’ and ‘:’ via options (see below), but the pattern and length of
each string cannot be changed.

A section delimiter is replaced by an empty line on output. Any text
that comes before the first section delimiter string in the input file
is considered to be part of a body section, so ‘nl’ treats a file that
contains no section delimiters as a single body section.

The program accepts the following options. Also see See

textutils 6 / 72

Common options
.

‘-b STYLE’
‘--body-numbering=STYLE’

Select the numbering style for lines in the body section of each
logical page. When a line is not numbered, the current line number
is not incremented, but the line number separator character is
still prepended to the line. The styles are:

‘a’
number all lines,

‘t’
number only nonempty lines (default for body),

‘n’
do not number lines (default for header and footer),

‘pREGEXP’
number only lines that contain a match for REGEXP.

‘-d CD’
‘--section-delimiter=CD’

Set the section delimiter characters to CD; default is ‘\:’. If
only C is given, the second remains ‘:’. (Remember to protect ‘\’
or other metacharacters from shell expansion with quotes or extra
backslashes.)

‘-f STYLE’
‘--footer-numbering=STYLE’

Analogous to ‘--body-numbering’.

‘-h STYLE’
‘--header-numbering=STYLE’

Analogous to ‘--body-numbering’.

‘-i NUMBER’
‘--page-increment=NUMBER’

Increment line numbers by NUMBER (default 1).

‘-l NUMBER’
‘--join-blank-lines=NUMBER’

Consider NUMBER (default 1) consecutive empty lines to be one
logical line for numbering, and only number the last one. Where
fewer than NUMBER consecutive empty lines occur, do not number
them. An empty line is one that contains no characters, not even
spaces or tabs.

‘-n FORMAT’
‘--number-format=FORMAT’

Select the line numbering format (default is ‘rn’):

‘ln’
left justified, no leading zeros;

‘rn’

textutils 7 / 72

right justified, no leading zeros;

‘rz’
right justified, leading zeros.

‘-p’
‘--no-renumber’

Do not reset the line number at the start of a logical page.

‘-s STRING’
‘--number-separator=STRING’

Separate the line number from the text line in the output with
STRING (default is TAB).

‘-v NUMBER’
‘--starting-line-number=NUMBER’

Set the initial line number on each logical page to NUMBER
(default 1).

‘-w NUMBER’
‘--number-width=NUMBER’

Use NUMBER characters for line numbers (default 6).

1.8 textutils.guide/od invocation

‘od’: Write files in octal or other formats
===

‘od’ writes an unambiguous representation of each FILE (‘-’ means
standard input), or standard input if none are given. Synopsis:

od [OPTION]... [FILE]...
od -C [FILE] [[+]OFFSET [[+]LABEL]]

Each line of output consists of the offset in the input, followed by
groups of data from the file. By default, ‘od’ prints the offset in
octal, and each group of file data is two bytes of input printed as a
single octal number.

The program accepts the following options. Also see See

Common options
.

‘-A RADIX’
‘--address-radix=RADIX’

Select the base in which file offsets are printed. RADIX can be
one of the following:

‘d’
decimal;

‘o’

textutils 8 / 72

octal;

‘x’
hexadecimal;

‘n’
none (do not print offsets).

The default is octal.

‘-j BYTES’
‘--skip-bytes=BYTES’

Skip BYTES input bytes before formatting and writing. If BYTES
begins with ‘0x’ or ‘0X’, it is interpreted in hexadecimal;
otherwise, if it begins with ‘0’, in octal; otherwise, in decimal.
Appending ‘b’ multiplies BYTES by 512, ‘k’ by 1024, and ‘m’ by
1048576.

‘-N BYTES’
‘--read-bytes=BYTES’

Output at most BYTES bytes of the input. Prefixes and suffixes on
‘bytes’ are interpreted as for the ‘-j’ option.

‘-s [N]’
‘--strings[=N]’

Instead of the normal output, output only "string constants": at
least N (3 by default) consecutive ASCII graphic characters,
followed by a null (zero) byte.

‘-t TYPE’
‘--format=TYPE’

Select the format in which to output the file data. TYPE is a
string of one or more of the below type indicator characters. If
you include more than one type indicator character in a single TYPE
string, or use this option more than once, ‘od’ writes one copy of
each output line using each of the data types that you specified,
in the order that you specified.

‘a’
named character,

‘c’
ASCII character or backslash escape,

‘d’
signed decimal,

‘f’
floating point,

‘o’
octal,

‘u’
unsigned decimal,

‘x’

textutils 9 / 72

hexadecimal.

The type ‘a’ outputs things like ‘sp’ for space, ‘nl’ for newline,
and ‘nul’ for a null (zero) byte. Type ‘c’ outputs ‘ ’, ‘\n’, and
‘\0’, respectively.

Except for types ‘a’ and ‘c’, you can specify the number of bytes
to use in interpreting each number in the given data type by
following the type indicator character with a decimal integer.
Alternately, you can specify the size of one of the C compiler’s
built-in data types by following the type indicator character with
one of the following characters. For integers (‘d’, ‘o’, ‘u’,
‘x’):

‘C’
char,

‘S’
short,

‘I’
int,

‘L’
long.

For floating point (‘f’):

F
float,

D
double,

L
long double.

‘-v’
‘--output-duplicates’

Output consecutive lines that are identical. By default, when two
or more consecutive output lines would be identical, ‘od’ outputs
only the first line, and puts just an asterisk on the following
line to indicate the elision.

‘-w[N]’
‘--width[=N]’

Dump ‘n’ input bytes per output line. This must be a multiple of
the least common multiple of the sizes associated with the
specified output types. If N is omitted, the default is 32. If
this option is not given at all, the default is 16.

The next several options map the old, pre-POSIX format specification
options to the corresponding POSIX format specs. GNU ‘od’ accepts any
combination of old- and new-style options. Format specification
options accumulate.

‘-a’

textutils 10 / 72

Output as named characters. Equivalent to ‘-ta’.

‘-b’
Output as octal bytes. Equivalent to ‘-toC’.

‘-c’
Output as ASCII characters or backslash escapes. Equivalent to
‘-tc’.

‘-d’
Output as unsigned decimal shorts. Equivalent to ‘-tu2’.

‘-f’
Output as floats. Equivalent to ‘-tfF’.

‘-h’
Output as hexadecimal shorts. Equivalent to ‘-tx2’.

‘-i’
Output as decimal shorts. Equivalent to ‘-td2’.

‘-l’
Output as decimal longs. Equivalent to ‘-td4’.

‘-o’
Output as octal shorts. Equivalent to ‘-to2’.

‘-x’
Output as hexadecimal shorts. Equivalent to ‘-tx2’.

‘-C’
‘--traditional’

Recognize the pre-POSIX non-option arguments that traditional ‘od’
accepted. The following syntax:

od --traditional [FILE] [[+]OFFSET[.][b] [[+]LABEL[.][b]]]

can be used to specify at most one file and optional arguments
specifying an offset and a pseudo-start address, LABEL. By
default, OFFSET is interpreted as an octal number specifying how
many input bytes to skip before formatting and writing. The
optional trailing decimal point forces the interpretation of
OFFSET as a decimal number. If no decimal is specified and the
offset begins with ‘0x’ or ‘0X’ it is interpreted as a hexadecimal
number. If there is a trailing ‘b’, the number of bytes skipped
will be OFFSET multiplied by 512. The LABEL argument is
interpreted just like OFFSET, but it specifies an initial
pseudo-address. The pseudo-addresses are displayed in parentheses
following any normal address.

1.9 textutils.guide/Formatting file contents

textutils 11 / 72

Formatting file contents

These commands reformat the contents of files.

fmt invocation
Reformat paragraph text.

pr invocation
Paginate or columnate files for printing.

fold invocation
Wrap input lines to fit in specified width.

1.10 textutils.guide/fmt invocation

‘fmt’: Reformat paragraph text
==============================

‘fmt’ fills and joins lines to produce output lines of (at most) a
given number of characters (75 by default). Synopsis:

fmt [OPTION]... [FILE]...

‘fmt’ reads from the specified FILE arguments (or standard input if
none are given), and writes to standard output.

By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced on
output.

‘fmt’ prefers breaking lines at the end of a sentence, and tries to
avoid line breaks after the first word of a sentence or before the last
word of a sentence. A "sentence break" is defined as either the end of
a paragraph or a word ending in any of ‘.?!’, followed by two spaces or
end of line, ignoring any intervening parentheses or quotes. Like TeX,
‘fmt’ reads entire "paragraphs" before choosing line breaks; the
algorithm is a variant of that in "Breaking Paragraphs Into Lines"
(Donald E. Knuth and Michael F. Plass, ‘Software--Practice and
Experience’, 11 (1981), 1119-1184).

The program accepts the following options. Also see See

Common options
.

‘-c’
‘--crown-margin’

"Crown margin" mode: preserve the indentation of the first two
lines within a paragraph, and align the left margin of each

textutils 12 / 72

subsequent line with that of the second line.

‘-t’
‘--tagged-paragraph’

"Tagged paragraph" mode: like crown margin mode, except that if
indentation of the first line of a paragraph is the same as the
indentation of the second, the first line is treated as a one-line
paragraph.

‘-s’
‘--split-only’

Split lines only. Do not join short lines to form longer ones.
This prevents sample lines of code, and other such "formatted"
text from being unduly combined.

‘-u’
‘--uniform-spacing’

Uniform spacing. Reduce spacing between words to one space, and
spacing between sentences to two spaces.

‘-WIDTH’
‘-w WIDTH’
‘--width=WIDTH’

Fill output lines up to WIDTH characters (default 75). ‘fmt’
initially tries to make lines about 7% shorter than this, to give
it room to balance line lengths.

‘-p PREFIX’
‘--prefix=PREFIX’

Only lines beginning with PREFIX (possibly preceded by whitespace)
are subject to formatting. The prefix and any preceding whitespace
are stripped for the formatting and then re-attached to each
formatted output line. One use is to format certain kinds of
program comments, while leaving the code unchanged.

1.11 textutils.guide/pr invocation

‘pr’: Paginate or columnate files for printing
==

‘pr’ writes each FILE (‘-’ means standard input), or standard input
if none are given, to standard output, paginating and optionally
outputting in multicolumn format. Synopsis:

pr [OPTION]... [FILE]...

By default, a 5-line header is printed: two blank lines; a line with
the date, the file name, and the page count; and two more blank lines.
A five line footer (entirely) is also printed.

Form feeds in the input cause page breaks in the output.

The program accepts the following options. Also see See

textutils 13 / 72

Common options
.

‘+PAGE’
Begin printing with page PAGE.

‘-COLUMN’
Produce COLUMN-column output and print columns down. The column
width is automatically decreased as COLUMN increases; unless you
use the ‘-w’ option to increase the page width as well, this option
might well cause some input to be truncated.

‘-a’
Print columns across rather than down.

‘-b’
Balance columns on the last page.

‘-c’
Print control characters using hat notation (e.g., ‘^G’); print
other unprintable characters in octal backslash notation. By
default, unprintable characters are not changed.

‘-d’
Double space the output.

‘-e[IN-TABCHAR[IN-TABWIDTH]]’
Expand tabs to spaces on input. Optional argument IN-TABCHAR is
the input tab character (default is TAB). Second optional
argument IN-TABWIDTH is the input tab character’s width (default
is 8).

‘-f’
‘-F’

Use a formfeed instead of newlines to separate output pages.

‘-h HEADER’
Replace the file name in the header with the string HEADER.

‘-i[OUT-TABCHAR[OUT-TABWIDTH]]’
Replace spaces with tabs on output. Optional argument OUT-TABCHAR
is the output tab character (default is TAB). Second optional
argument OUT-TABWIDTH is the output tab character’s width (default
is 8).

‘-l N’
Set the page length to N (default 66) lines. If N is less than
10, the headers and footers are omitted, as if the ‘-t’ option had
been given.

‘-m’
Print all files in parallel, one in each column.

‘-n[NUMBER-SEPARATOR[DIGITS]]’
Precede each column with a line number; with parallel files (‘-m’),
precede each line with a line number. Optional argument

textutils 14 / 72

NUMBER-SEPARATOR is the character to print after each number
(default is TAB). Optional argument DIGITS is the number of
digits per line number (default is 5).

‘-o N’
Indent each line with N (default is zero) spaces wide, i.e., set
the left margin. The total page width is ‘n’ plus the width set
with the ‘-w’ option.

‘-r’
Do not print a warning message when an argument FILE cannot be
opened. (The exit status will still be nonzero, however.)

‘-s[C]’
Separate columns by the single character C. If C is omitted, the
default is space; if this option is omitted altogether, the
default is TAB.

‘-t’
Do not print the usual 5-line header and the 5-line footer on each
page, and do not fill out the bottoms of pages (with blank lines or
formfeeds).

‘-v’
Print unprintable characters in octal backslash notation.

‘-w N’
Set the page width to N (default is 72) columns.

1.12 textutils.guide/fold invocation

‘fold’: Wrap input lines to fit in specified width
==

‘fold’ writes each FILE (‘-’ means standard input), or standard
input if none are given, to standard output, breaking long lines.
Synopsis:

fold [OPTION]... [FILE]...

By default, ‘fold’ breaks lines wider than 80 columns. The output is
split into as many lines as necessary.

‘fold’ counts screen columns by default; thus, a tab may count more
than one column, backspace decreases the column count, and carriage
return sets the column to zero.

The program accepts the following options. Also see See

Common options
.

‘-b’

textutils 15 / 72

‘--bytes’
Count bytes rather than columns, so that tabs, backspaces, and
carriage returns are each counted as taking up one column, just
like other characters.

‘-s’
‘--spaces’

Break at word boundaries: the line is broken after the last blank
before the maximum line length. If the line contains no such
blanks, the line is broken at the maximum line length as usual.

‘-w WIDTH’
‘--width=WIDTH’

Use a maximum line length of WIDTH columns instead of 80.

1.13 textutils.guide/Output of parts of files

Output of parts of files

These commands output pieces of the input.

head invocation
Output the first part of files.

tail invocation
Output the last part of files.

split invocation
Split a file into fixed-size pieces.

csplit invocation
Split a file into context-determined pieces.

1.14 textutils.guide/head invocation

‘head’: Output the first part of files
======================================

‘head’ prints the first part (10 lines by default) of each FILE; it
reads from standard input if no files are given or when given a FILE of
‘-’. Synopses:

head [OPTION]... [FILE]...
head -NUMBER [OPTION]... [FILE]...

textutils 16 / 72

If more than one FILE is specified, ‘head’ prints a one-line header
consisting of

==> FILE NAME <==

before the output for each FILE.

‘head’ accepts two option formats: the new one, in which numbers are
arguments to the options (‘-q -n 1’), and the old one, in which the
number precedes any option letters (‘-1q’).

The program accepts the following options. Also see See

Common options
.

‘-COUNTOPTIONS’
This option is only recognized if it is specified first. COUNT is
a decimal number optionally followed by a size letter (‘b’, ‘k’,
‘m’) as in ‘-c’, or ‘l’ to mean count by lines, or other option
letters (‘cqv’).

‘-c BYTES’
‘--bytes=BYTES’

Print the first BYTES bytes, instead of initial lines. Appending
‘b’ multiplies BYTES by 512, ‘k’ by 1024, and ‘m’ by 1048576.

‘-n N’
‘--lines=N’

Output the first N lines.

‘-q’
‘--quiet’
‘--silent’

Never print file name headers.

‘-v’
‘--verbose’

Always print file name headers.

1.15 textutils.guide/tail invocation

‘tail’: Output the last part of files
=====================================

‘tail’ prints the last part (10 lines by default) of each FILE; it
reads from standard input if no files are given or when given a FILE of
‘-’. Synopses:

tail [OPTION]... [FILE]...
tail -NUMBER [OPTION]... [FILE]...
tail +NUMBER [OPTION]... [FILE]...

If more than one FILE is specified, ‘tail’ prints a one-line header

textutils 17 / 72

consisting of
==> FILE NAME <==

before the output for each FILE.

GNU ‘tail’ can output any amount of data (some other versions of
‘tail’ cannot). It also has no ‘-r’ option (print in reverse), since
reversing a file is really a different job from printing the end of a
file; BSD ‘tail’ (which is the one with ‘-r’) can only reverse files
that are at most as large as its buffer, which is typically 32k. A
more reliable and versatile way to reverse files is the GNU ‘tac’
command.

‘tail’ accepts two option formats: the new one, in which numbers are
arguments to the options (‘-n 1’), and the old one, in which the number
precedes any option letters (‘-1’ or ‘+1’).

If any option-argument is a number N starting with a ‘+’, ‘tail’
begins printing with the Nth item from the start of each file, instead
of from the end.

The program accepts the following options. Also see See

Common options
.

‘-COUNT’
‘+COUNT’

This option is only recognized if it is specified first. COUNT is
a decimal number optionally followed by a size letter (‘b’, ‘k’,
‘m’) as in ‘-c’, or ‘l’ to mean count by lines, or other option
letters (‘cfqv’).

‘-c BYTES’
‘--bytes=BYTES’

Output the last BYTES bytes, instead of final lines. Appending
‘b’ multiplies BYTES by 512, ‘k’ by 1024, and ‘m’ by 1048576.

‘-f’
‘--follow’

Loop forever trying to read more characters at the end of the file,
presumably because the file is growing. Ignored if reading from a
pipe. If more than one file is given, ‘tail’ prints a header
whenever it gets output from a different file, to indicate which
file that output is from.

‘-n N’
‘--lines=N’

Output the last N lines.

‘-q’
‘-quiet’
‘--silent’

Never print file name headers.

‘-v’
‘--verbose’

textutils 18 / 72

Always print file name headers.

1.16 textutils.guide/split invocation

‘split’: Split a file into fixed-size pieces
==

‘split’ creates output files containing consecutive sections of
INPUT (standard input if none is given or INPUT is ‘-’). Synopsis:

split [OPTION] [INPUT [PREFIX]]

By default, ‘split’ puts 1000 lines of INPUT (or whatever is left
over for the last section), into each output file.

The output files’ names consist of PREFIX (‘x’ by default) followed
by a group of letters ‘aa’, ‘ab’, and so on, such that concatenating
the output files in sorted order by file name produces the original
input file. (If more than 676 output files are required, ‘split’ uses
‘zaa’, ‘zab’, etc.)

The program accepts the following options. Also see See

Common options
.

‘-LINES’
‘-l LINES’
‘--lines=LINES’

Put LINES lines of INPUT into each output file.

‘-b BYTES’
‘--bytes=BYTES’

Put the first BYTES bytes of INPUT into each output file.
Appending ‘b’ multiplies BYTES by 512, ‘k’ by 1024, and ‘m’ by
1048576.

‘-C BYTES’
‘--line-bytes=BYTES’

Put into each output file as many complete lines of INPUT as
possible without exceeding BYTES bytes. For lines longer than
BYTES bytes, put BYTES bytes into each output file until less than
BYTES bytes of the line are left, then continue normally. BYTES
has the same format as for the ‘--bytes’ option.

‘--verbose=BYTES’
Write a diagnostic to standard error just before each output file
is opened.

textutils 19 / 72

1.17 textutils.guide/csplit invocation

‘csplit’: Split a file into context-determined pieces
===

‘csplit’ creates zero or more output files containing sections of
INPUT (standard input if INPUT is ‘-’). Synopsis:

csplit [OPTION]... INPUT PATTERN...

The contents of the output files are determined by the PATTERN
arguments, as detailed below. An error occurs if a PATTERN argument
refers to a nonexistent line of the input file (e.g., if no remaining
line matches a given regular expression). After every PATTERN has been
matched, any remaining input is copied into one last output file.

By default, ‘csplit’ prints the number of bytes written to each
output file after it has been created.

The types of pattern arguments are:

‘N’
Create an output file containing the input up to but not including
line N (a positive integer). If followed by a repeat count, also
create an output file containing the next LINE lines of the input
file once for each repeat.

‘/REGEXP/[OFFSET]’
Create an output file containing the current line up to (but not
including) the next line of the input file that contains a match
for REGEXP. The optional OFFSET is a ‘+’ or ‘-’ followed by a
positive integer. If it is given, the input up to the matching
line plus or minus OFFSET is put into the output file, and the
line after that begins the next section of input.

‘%REGEXP%[OFFSET]’
Like the previous type, except that it does not create an output
file, so that section of the input file is effectively ignored.

‘{REPEAT-COUNT}’
Repeat the previous pattern REPEAT-COUNT additional times.
REPEAT-COUNT can either be a positive integer or an asterisk,
meaning repeat as many times as necessary until the input is
exhausted.

The output files’ names consist of a prefix (‘xx’ by default)
followed by a suffix. By default, the suffix is an ascending sequence
of two-digit decimal numbers from ‘00’ and up to ‘99’. In any case,
concatenating the output files in sorted order by filename produces the
original input file.

By default, if ‘csplit’ encounters an error or receives a hangup,
interrupt, quit, or terminate signal, it removes any output files that
it has created so far before it exits.

The program accepts the following options. Also see See

textutils 20 / 72

Common options
.

‘-f PREFIX’
‘--prefix=PREFIX’

Use PREFIX as the output file name prefix.

‘-b SUFFIX’
‘--suffix=SUFFIX’

Use SUFFIX as the output file name suffix. When this option is
specified, the suffix string must include exactly one
‘printf(3)’-style conversion specification, possibly including
format specification flags, a field width, a precision
specifications, or all of these kinds of modifiers. The format
letter must convert a binary integer argument to readable form;
thus, only ‘d’, ‘i’, ‘u’, ‘o’, ‘x’, and ‘X’ conversions are
allowed. The entire SUFFIX is given (with the current output file
number) to ‘sprintf(3)’ to form the file name suffixes for each of
the individual output files in turn. If this option is used, the
‘--digits’ option is ignored.

‘-n DIGITS’
‘--digits=DIGITS’

Use output file names containing numbers that are DIGITS digits
long instead of the default 2.

‘-k’
‘--keep-files’

Do not remove output files when errors are encountered.

‘-z’
‘--elide-empty-files’

Suppress the generation of zero-length output files. (In cases
where the section delimiters of the input file are supposed to
mark the first lines of each of the sections, the first output
file will generally be a zero-length file unless you use this
option.) The output file sequence numbers always run
consecutively starting from 0, even when this option is specified.

‘-s’
‘-q’
‘--silent’
‘--quiet’

Do not print counts of output file sizes.

1.18 textutils.guide/Summarizing files

Summarizing files

These commands generate just a few numbers representing entire
contents of files.

textutils 21 / 72

wc invocation
Print byte, word, and line counts.

sum invocation
Print checksum and block counts.

cksum invocation
Print CRC checksum and byte counts.

md5sum invocation
Print or check message-digests.

1.19 textutils.guide/wc invocation

‘wc’: Print byte, word, and line counts
=======================================

‘wc’ counts the number of bytes, whitespace-separated words, and
newlines in each given FILE, or standard input if none are given or for
a FILE of ‘-’. Synopsis:

wc [OPTION]... [FILE]...

‘wc’ prints one line of counts for each file, and if the file was
given as an argument, it prints the file name following the counts. If
more than one FILE is given, ‘wc’ prints a final line containing the
cumulative counts, with the file name ‘total’. The counts are printed
in this order: newlines, words, bytes.

By default, ‘wc’ prints all three counts. Options can specify that
only certain counts be printed. Options do not undo others previously
given, so

wc --bytes --words

prints both the byte counts and the word counts.

The program accepts the following options. Also see See

Common options
.

‘-c’
‘--bytes’
‘--chars’

Print only the byte counts.

‘-w’
‘--words’

Print only the word counts.

textutils 22 / 72

‘-l’
‘--lines’

Print only the newline counts.

1.20 textutils.guide/sum invocation

‘sum’: Print checksum and block counts
======================================

‘sum’ computes a 16-bit checksum for each given FILE, or standard
input if none are given or for a FILE of ‘-’. Synopsis:

sum [OPTION]... [FILE]...

‘sum’ prints the checksum for each FILE followed by the number of
blocks in the file (rounded up). If more than one FILE is given, file
names are also printed (by default). (With the ‘--sysv’ option,
corresponding file name are printed when there is at least one file
argument.)

By default, GNU ‘sum’ computes checksums using an algorithm
compatible with BSD ‘sum’ and prints file sizes in units of 1024-byte
blocks.

The program accepts the following options. Also see See

Common options
.

‘-r’
Use the default (BSD compatible) algorithm. This option is
included for compatibility with the System V ‘sum’. Unless ‘-s’
was also given, it has no effect.

‘-s’
‘--sysv’

Compute checksums using an algorithm compatible with System V
‘sum’’s default, and print file sizes in units of 512-byte blocks.

‘sum’ is provided for compatibility; the ‘cksum’ program (see next
section) is preferable in new applications.

1.21 textutils.guide/cksum invocation

‘cksum’: Print CRC checksum and byte counts
===

textutils 23 / 72

‘cksum’ computes a cyclic redundancy check (CRC) checksum for each
given FILE, or standard input if none are given or for a FILE of ‘-’.
Synopsis:

cksum [OPTION]... [FILE]...

‘cksum’ prints the CRC checksum for each file along with the number
of bytes in the file, and the filename unless no arguments were given.

‘cksum’ is typically used to ensure that files transferred by
unreliable means (e.g., netnews) have not been corrupted, by comparing
the ‘cksum’ output for the received files with the ‘cksum’ output for
the original files (typically given in the distribution).

The CRC algorithm is specified by the POSIX.2 standard. It is not
compatible with the BSD or System V ‘sum’ algorithms (see the previous
section); it is more robust.

The only options are ‘--help’ and ‘--version’. See
Common options
.

1.22 textutils.guide/md5sum invocation

‘md5sum’: Print or check message-digests
==

‘md5sum’ computes a 128-bit checksum (or "fingerprint" or
"message-digest") for each specified FILE. If a FILE is specified as
‘-’ or if no files are given ‘md5sum’ computes the checksum for the
standard input. ‘md5sum’ can also determine whether a file and
checksum are consistent. Synopsis:

md5sum [OPTION]... [FILE]...
md5sum [OPTION]... --check [FILE]
md5sum [OPTION]... --string=STRING ...

For each FILE, ‘md5sum’ outputs the MD5 checksum, a flag indicating
a binary or text input file, and the filename. If FILE is omitted or
specified as ‘-’, standard input is read.

The program accepts the following options. Also see See

Common options
.

‘-b’
‘--binary’

Treat all input files as binary. This option has no effect on Unix
systems, since they don’t distinguish between binary and text
files. This option is useful on systems that have different
internal and external character representations.

textutils 24 / 72

‘-c’
‘--check’

Read filenames and checksum information from the single FILE (or
from stdin if no FILE was specified) and report whether each named
file and the corresponding checksum data are consistent. The
input to this mode of ‘md5sum’ is usually the output of a prior,
checksum-generating run of ‘md5sum’. Each valid line of input
consists of an MD5 checksum, a binary/text flag, and then a
filename. Binary files are marked with ‘*’, text with ‘ ’. For
each such line, ‘md5sum’ reads the named file and computes its MD5
checksum. Then, if the computed message digest does not match the
one on the line with the filename, the file is noted as having
failed the test. Otherwise, the file passes the test. By
default, for each valid line, one line is written to standard
output indicating whether the named file passed the test. After
all checks have been performed, if there were any failures, a
warning is issued to standard error. Use the ‘--status’ option to
inhibit that output. If any listed file cannot be opened or read,
if any valid line has an MD5 checksum inconsistent with the
associated file, or if no valid line is found, ‘md5sum’ exits with
nonzero status. Otherwise, it exits successfully.

‘--status’
This option is useful only when verifying checksums. When
verifying checksums, don’t generate the default one-line-per-file
diagnostic and don’t output the warning summarizing any failures.
Failures to open or read a file still evoke individual diagnostics
to standard error. If all listed files are readable and are
consistent with the associated MD5 checksums, exit successfully.
Otherwise exit with a status code indicating there was a failure.

‘--string=STRING’
Compute the message digest for STRING, instead of for a file. The
result is the same as for a file that contains exactly STRING.

‘-t’
‘--text’

Treat all input files as text files. This is the reverse of
‘--binary’.

‘-w’
‘--warn’

When verifying checksums, warn about improperly formated MD5
checksum lines. This option is useful only if all but a few lines
in the checked input are valid.

1.23 textutils.guide/Operating on sorted files

Operating on sorted files

These commands work with (or produce) sorted files.

textutils 25 / 72

sort invocation
Sort text files.

uniq invocation
Uniqify files.

comm invocation
Compare two sorted files line by line.

1.24 textutils.guide/sort invocation

‘sort’: Sort text files
=======================

‘sort’ sorts, merges, or compares all the lines from the given
files, or standard input if none are given or for a FILE of ‘-’. By
default, ‘sort’ writes the results to standard output. Synopsis:

sort [OPTION]... [FILE]...

‘sort’ has three modes of operation: sort (the default), merge, and
check for sortedness. The following options change the operation mode:

‘-c’
Check whether the given files are already sorted: if they are not
all sorted, print an error message and exit with a status of 1.
Otherwise, exit successfully.

‘-m’
Merge the given files by sorting them as a group. Each input file
must always be individually sorted. It always works to sort
instead of merge; merging is provided because it is faster, in the
case where it works.

A pair of lines is compared as follows: if any key fields have been
specified, ‘sort’ compares each pair of fields, in the order specified
on the command line, according to the associated ordering options,
until a difference is found or no fields are left.

If any of the global options ‘Mbdfinr’ are given but no key fields
are specified, ‘sort’ compares the entire lines according to the global
options.

Finally, as a last resort when all keys compare equal (or if no
ordering options were specified at all), ‘sort’ compares the lines byte
by byte in machine collating sequence. The last resort comparison
honors the ‘-r’ global option. The ‘-s’ (stable) option disables this
last-resort comparison so that lines in which all fields compare equal
are left in their original relative order. If no fields or global
options are specified, ‘-s’ has no effect.

textutils 26 / 72

GNU ‘sort’ (as specified for all GNU utilities) has no limits on
input line length or restrictions on bytes allowed within lines. In
addition, if the final byte of an input file is not a newline, GNU
‘sort’ silently supplies one.

Upon any error, ‘sort’ exits with a status of ‘2’.

If the environment variable ‘TMPDIR’ is set, ‘sort’ uses its value
as the directory for temporary files instead of ‘/tmp’. The ‘-T
TEMPDIR’ option in turn overrides the environment variable.

The following options affect the ordering of output lines. They may
be specified globally or as part of a specific key field. If no key
fields are specified, global options apply to comparison of entire
lines; otherwise the global options are inherited by key fields that do
not specify any special options of their own.

‘-b’
Ignore leading blanks when finding sort keys in each line.

‘-d’
Sort in "phone directory" order: ignore all characters except
letters, digits and blanks when sorting.

‘-f’
Fold lowercase characters into the equivalent uppercase characters
when sorting so that, for example, ‘b’ and ‘B’ sort as equal.

‘-g’
Sort numerically, but use strtod(3) to arrive at the numeric
values. This allows floating point numbers to be specified in
scientific notation, like ‘1.0e-34’ and ‘10e100’. Use this option
only if there is no alternative; it is much slower than ‘-n’ and
numbers with too many significant digits will be compared as if
they had been truncated. In addition, numbers outside the range
of representable double precision floating point numbers are
treated as if they were zeroes; overflow and underflow are not
reported.

‘-i’
Ignore characters outside the printable ASCII range 040-0176 octal
(inclusive) when sorting.

‘-M’
An initial string, consisting of any amount of whitespace, followed
by three letters abbreviating a month name, is folded to UPPER
case and compared in the order ‘JAN’ < ‘FEB’ < ... < ‘DEC’.
Invalid names compare low to valid names.

‘-n’
Sort numerically: the number begins each line; specifically, it
consists of optional whitespace, an optional ‘-’ sign, and zero or
more digits, optionally followed by a decimal point and zero or
more digits.

‘sort -n’ uses what might be considered an unconventional method
to compare strings representing floating point numbers. Rather

textutils 27 / 72

than first converting each string to the C ‘double’ type and then
comparing those values, sort aligns the decimal points in the two
strings and compares the strings a character at a time. One
benefit of using this approach is its speed. In practice this is
much more efficient than performing the two corresponding
string-to-double (or even string-to-integer) conversions and then
comparing doubles. In addition, there is no corresponding loss of
precision. Converting each string to ‘double’ before comparison
would limit precision to about 16 digits on most systems.

Neither a leading ‘+’ nor exponential notation is recognized. To
compare such strings numerically, use the ‘-g’ option.

‘-r’
Reverse the result of comparison, so that lines with greater key
values appear earlier in the output instead of later.

Other options are:

‘-o OUTPUT-FILE’
Write output to OUTPUT-FILE instead of standard output. If
OUTPUT-FILE is one of the input files, ‘sort’ copies it to a
temporary file before sorting and writing the output to
OUTPUT-FILE.

‘-t SEPARATOR’
Use character SEPARATOR as the field separator when finding the
sort keys in each line. By default, fields are separated by the
empty string between a non-whitespace character and a whitespace
character. That is, given the input line ‘ foo bar’, ‘sort’
breaks it into fields ‘ foo’ and ‘ bar’. The field separator is
not considered to be part of either the field preceding or the
field following.

‘-u’
For the default case or the ‘-m’ option, only output the first of
a sequence of lines that compare equal. For the ‘-c’ option,
check that no pair of consecutive lines compares equal.

‘-k POS1[,POS2]’
The recommended, POSIX, option for specifying a sort field. The
field consists of the line between POS1 and POS2 (or the end of
the line, if POS2 is omitted), inclusive. Fields and character
positions are numbered starting with 1. See below.

‘-z’
Treat the input as a set of lines, each terminated by a zero byte
(ASCII NUL (Null) character) instead of a ASCII LF (Line Feed.)
This option can be useful in conjunction with ‘perl -0’ or ‘find
-print0’ and ‘xargs -0’ which do the same in order to reliably
handle arbitrary pathnames (even those which contain Line Feed
characters.)

‘+POS1[-POS2]’
The obsolete, traditional option for specifying a sort field. The
field consists of the line between POS1 and up to but *not
including* POS2 (or the end of the line if POS2 is omitted).

textutils 28 / 72

Fields and character positions are numbered starting with 0. See
below.

In addition, when GNU ‘sort’ is invoked with exactly one argument,
options ‘--help’ and ‘--version’ are recognized. See

Common options
.

Historical (BSD and System V) implementations of ‘sort’ have
differed in their interpretation of some options, particularly ‘-b’,
‘-f’, and ‘-n’. GNU sort follows the POSIX behavior, which is usually
(but not always!) like the System V behavior. According to POSIX, ‘-n’
no longer implies ‘-b’. For consistency, ‘-M’ has been changed in the
same way. This may affect the meaning of character positions in field
specifications in obscure cases. The only fix is to add an explicit
‘-b’.

A position in a sort field specified with the ‘-k’ or ‘+’ option has
the form ‘F.C’, where F is the number of the field to use and C is the
number of the first character from the beginning of the field (for
‘+POS’) or from the end of the previous field (for ‘-POS’). If the ‘.C’
is omitted, it is taken to be the first character in the field. If the
‘-b’ option was specified, the ‘.C’ part of a field specification is
counted from the first nonblank character of the field (for ‘+POS’) or
from the first nonblank character following the previous field (for
‘-POS’).

A sort key option may also have any of the option letters ‘Mbdfinr’
appended to it, in which case the global ordering options are not used
for that particular field. The ‘-b’ option may be independently
attached to either or both of the ‘+POS’ and ‘-POS’ parts of a field
specification, and if it is inherited from the global options it will
be attached to both. If a ‘-n’ or ‘-M’ option is used, thus implying a
‘-b’ option, the ‘-b’ option is taken to apply to both the ‘+POS’ and
the ‘-POS’ parts of a key specification. Keys may span multiple fields.

Here are some examples to illustrate various combinations of options.
In them, the POSIX ‘-k’ option is used to specify sort keys rather than
the obsolete ‘+POS1-POS2’ syntax.

* Sort in descending (reverse) numeric order.

sort -nr

Sort alphabetically, omitting the first and second fields. This
uses a single key composed of the characters beginning at the
start of field three and extending to the end of each line.

sort -k3

* Sort numerically on the second field and resolve ties by sorting
alphabetically on the third and fourth characters of field five.
Use ‘:’ as the field delimiter.

sort -t : -k 2,2n -k 5.3,5.4

Note that if you had written ‘-k 2’ instead of ‘-k 2,2’ ‘sort’

textutils 29 / 72

would have used all characters beginning in the second field and
extending to the end of the line as the primary *numeric* key.
For the large majority of applications, treating keys spanning
more than one field as numeric will not do what you expect.

Also note that the ‘n’ modifier was applied to the field-end
specifier for the first key. It would have been equivalent to
specify ‘-k 2n,2’ or ‘-k 2n,2n’. All modifiers except ‘b’ apply
to the associated *field*, regardless of whether the modifier
character is attached to the field-start and/or the field-end part
of the key specifier.

* Sort the password file on the fifth field and ignore any leading
white space. Sort lines with equal values in field five on the
numeric user ID in field three.

sort -t : -k 5b,5 -k 3,3n /etc/passwd

An alternative is to use the global numeric modifier ‘-n’.

sort -t : -n -k 5b,5 -k 3,3 /etc/passwd

* Generate a tags file in case insensitive sorted order.
find src -type f -print0 | sort -t / -z -f | xargs -0 etags --append

The use of ‘-print0’, ‘-z’, and ‘-0’ in this case mean that
pathnames that contain Line Feed characters will not get broken up
by the sort operation.

Finally, to ignore both leading and trailing white space, you
could have applied the ‘b’ modifier to the field-end specifier for
the first key,

sort -t : -n -k 5b,5b -k 3,3 /etc/passwd

or by using the global ‘-b’ modifier instead of ‘-n’ and an
explicit ‘n’ with the second key specifier.

sort -t : -b -k 5,5 -k 3,3n /etc/passwd

1.25 textutils.guide/uniq invocation

‘uniq’: Uniqify files
=====================

‘uniq’ writes the unique lines in the given ‘input’, or standard
input if nothing is given or for an INPUT name of ‘-’. Synopsis:

uniq [OPTION]... [INPUT [OUTPUT]]

By default, ‘uniq’ prints the unique lines in a sorted file, i.e.,
discards all but one of identical successive lines. Optionally, it can
instead show only lines that appear exactly once, or lines that appear

textutils 30 / 72

more than once.

The input must be sorted. If your input is not sorted, perhaps you
want to use ‘sort -u’.

If no OUTPUT file is specified, ‘uniq’ writes to standard output.

The program accepts the following options. Also see See

Common options
.

‘-N’
‘-f N’
‘--skip-fields=N’

Skip N fields on each line before checking for uniqueness. Fields
are sequences of non-space non-tab characters that are separated
from each other by at least one spaces or tabs.

‘+N’
‘-s N’
‘--skip-chars=N’

Skip N characters before checking for uniqueness. If you use both
the field and character skipping options, fields are skipped over
first.

‘-c’
‘--count’

Print the number of times each line occurred along with the line.

‘-i’
‘--ignore-case’

Ignore differences in case when comparing lines.

‘-d’
‘--repeated’

Print only duplicate lines.

‘-u’
‘--unique’

Print only unique lines.

‘-w N’
‘--check-chars=N’

Compare N characters on each line (after skipping any specified
fields and characters). By default the entire rest of the lines
are compared.

1.26 textutils.guide/comm invocation

‘comm’: Compare two sorted files line by line
===

textutils 31 / 72

‘comm’ writes to standard output lines that are common, and lines
that are unique, to two input files; a file name of ‘-’ means standard
input. Synopsis:

comm [OPTION]... FILE1 FILE2

The input files must be sorted before ‘comm’ can be used.

With no options, ‘comm’ produces three column output. Column one
contains lines unique to FILE1, column two contains lines unique to
FILE2, and column three contains lines common to both files. Columns
are separated by TAB.

The options ‘-1’, ‘-2’, and ‘-3’ suppress printing of the
corresponding columns. Also see See

Common options
.

1.27 textutils.guide/Operating on fields within a line

Operating on fields within a line

cut invocation
Print selected parts of lines.

paste invocation
Merge lines of files.

join invocation
Join lines on a common field.

1.28 textutils.guide/cut invocation

‘cut’: Print selected parts of lines
====================================

‘cut’ writes to standard output selected parts of each line of each
input file, or standard input if no files are given or for a file name
of ‘-’. Synopsis:

cut [OPTION]... [FILE]...

In the table which follows, the BYTE-LIST, CHARACTER-LIST, and
FIELD-LIST are one or more numbers or ranges (two numbers separated by
a dash) separated by commas. Bytes, characters, and fields are

textutils 32 / 72

numbered from starting at 1. Incomplete ranges may be given: ‘-M’
means ‘1-M’; ‘N-’ means ‘N’ through end of line or last field.

The program accepts the following options. Also see See

Common options
.

‘-b BYTE-LIST’
‘--bytes=BYTE-LIST’

Print only the bytes in positions listed in BYTE-LIST. Tabs and
backspaces are treated like any other character; they take up 1
byte.

‘-c CHARACTER-LIST’
‘--characters=CHARACTER-LIST’

Print only characters in positions listed in CHARACTER-LIST. The
same as ‘-b’ for now, but internationalization will change that.
Tabs and backspaces are treated like any other character; they
take up 1 character.

‘-f FIELD-LIST’
‘--fields=FIELD-LIST’

Print only the fields listed in FIELD-LIST. Fields are separated
by a TAB by default.

‘-d DELIM’
‘--delimiter=DELIM’

For ‘-f’, fields are separated by the first character in DELIM
(default is TAB).

‘-n’
Do not split multi-byte characters (no-op for now).

‘-s’
‘--only-delimited’

For ‘-f’, do not print lines that do not contain the field
separator character.

1.29 textutils.guide/paste invocation

‘paste’: Merge lines of files
=============================

‘paste’ writes to standard output lines consisting of sequentially
corresponding lines of each given file, separated by TAB. Standard
input is used for a file name of ‘-’ or if no input files are given.

Synopsis:

paste [OPTION]... [FILE]...

The program accepts the following options. Also see See

textutils 33 / 72

Common options
.

‘-s’
‘--serial’

Paste the lines of one file at a time rather than one line from
each file.

‘-d DELIM-LIST’
‘--delimiters DELIM-LIST’

Consecutively use the characters in DELIM-LIST instead of TAB to
separate merged lines. When DELIM-LIST is exhausted, start again
at its beginning.

1.30 textutils.guide/join invocation

‘join’: Join lines on a common field
====================================

‘join’ writes to standard output a line for each pair of input lines
that have identical join fields. Synopsis:

join [OPTION]... FILE1 FILE2

Either FILE1 or FILE2 (but not both) can be ‘-’, meaning standard
input. FILE1 and FILE2 should be already sorted in increasing order
(not numerically) on the join fields; unless the ‘-t’ option is given,
they should be sorted ignoring blanks at the start of the join field,
as in ‘sort -b’. If the ‘--ignore-case’ option is given, lines should
be sorted without regard to the case of characters in the join field,
as in ‘sort -f’.

The defaults are: the join field is the first field in each line;
fields in the input are separated by one or more blanks, with leading
blanks on the line ignored; fields in the output are separated by a
space; each output line consists of the join field, the remaining
fields from FILE1, then the remaining fields from FILE2.

The program accepts the following options. Also see See

Common options
.

‘-a FILE-NUMBER’
Print a line for each unpairable line in file FILE-NUMBER (either
‘1’ or ‘2’), in addition to the normal output.

‘-e STRING’
Replace those output fields that are missing in the input with
STRING.

‘-i’

textutils 34 / 72

‘--ignore-case’
Ignore differences in case when comparing keys. With this option,
the lines of the input files must be ordered in the same way. Use
‘sort -f’ to produce this ordering.

‘-1 FIELD’
‘-j1 FIELD’

Join on field FIELD (a positive integer) of file 1.

‘-2 FIELD’
‘-j2 FIELD’

Join on field FIELD (a positive integer) of file 2.

‘-j FIELD’
Equivalent to ‘-1 FIELD -2 FIELD’.

‘-o FIELD-LIST...’
Construct each output line according to the format in FIELD-LIST.
Each element in FIELD-LIST is either the single character ‘0’ or
has the form M.N where the file number, M, is ‘1’ or ‘2’ and N is
a positive field number.

A field specification of ‘0’ denotes the join field. In most
cases, the functionality of the ‘0’ field spec may be reproduced
using the explicit M.N that corresponds to the join field.
However, when printing unpairable lines (using either of the ‘-a’
or ‘-v’ options), there is no way to specify the join field using
M.N in FIELD-LIST if there are unpairable lines in both files. To
give ‘join’ that functionality, POSIX invented the ‘0’ field
specification notation.

The elements in FIELD-LIST are separated by commas or blanks.
Multiple FIELD-LIST arguments can be given after a single ‘-o’
option; the values of all lists given with ‘-o’ are concatenated
together. All output lines - including those printed because of
any -a or -v option - are subject to the specified FIELD-LIST.

‘-t CHAR’
Use character CHAR as the input and output field separator.

‘-v FILE-NUMBER’
Print a line for each unpairable line in file FILE-NUMBER (either
‘1’ or ‘2’), instead of the normal output.

In addition, when GNU ‘join’ is invoked with exactly one argument,
options ‘--help’ and ‘--version’ are recognized. See

Common options
.

1.31 textutils.guide/Operating on characters

Operating on characters

textutils 35 / 72

This commands operate on individual characters.

tr invocation
Translate, squeeze, and/or delete characters.

expand invocation
Convert tabs to spaces.

unexpand invocation
Convert spaces to tabs.

1.32 textutils.guide/tr invocation

‘tr’: Translate, squeeze, and/or delete characters
==

Synopsis:

tr [OPTION]... SET1 [SET2]

‘tr’ copies standard input to standard output, performing one of the
following operations:

* translate, and optionally squeeze repeated characters in the
result,

* squeeze repeated characters,

* delete characters,

* delete characters, then squeeze repeated characters from the
result.

The SET1 and (if given) SET2 arguments define ordered sets of
characters, referred to below as SET1 and SET2. These sets are the
characters of the input that ‘tr’ operates on. The ‘--complement’
(‘-c’) option replaces SET1 with its complement (all of the characters
that are not in SET1).

Character sets
Specifying sets of characters.

Translating
Changing one characters to another.

Squeezing
Squeezing repeats and deleting.

textutils 36 / 72

Warnings in tr
Warning messages.

1.33 textutils.guide/Character sets

Specifying sets of characters

The format of the SET1 and SET2 arguments resembles the format of
regular expressions; however, they are not regular expressions, only
lists of characters. Most characters simply represent themselves in
these strings, but the strings can contain the shorthands listed below,
for convenience. Some of them can be used only in SET1 or SET2, as
noted below.

Backslash escapes.
A backslash followed by a character not listed below causes an
error message.

‘\a’
Control-G,

‘\b’
Control-H,

‘\f’
Control-L,

‘\n’
Control-J,

‘\r’
Control-M,

‘\t’
Control-I,

‘\v’
Control-K,

‘\OOO’
The character with the value given by OOO, which is 1 to 3
octal digits,

‘\’
A backslash.

Ranges.
The notation ‘M-N’ expands to all of the characters from M through
N, in ascending order. M should collate before N; if it doesn’t,
an error results. As an example, ‘0-9’ is the same as
‘0123456789’. Although GNU ‘tr’ does not support the System V
syntax that uses square brackets to enclose ranges, translations

textutils 37 / 72

specified in that format will still work as long as the brackets
in STRING1 correspond to identical brackets in STRING2.

Repeated characters.
The notation ‘[C*N]’ in SET2 expands to N copies of character C.
Thus, ‘[y*6]’ is the same as ‘yyyyyy’. The notation ‘[C*]’ in
STRING2 expands to as many copies of C as are needed to make SET2
as long as SET1. If N begins with ‘0’, it is interpreted in
octal, otherwise in decimal.

Character classes.
The notation ‘[:CLASS:]’ expands to all of the characters in the
(predefined) class CLASS. The characters expand in no particular
order, except for the ‘upper’ and ‘lower’ classes, which expand in
ascending order. When the ‘--delete’ (‘-d’) and
‘--squeeze-repeats’ (‘-s’) options are both given, any character
class can be used in SET2. Otherwise, only the character classes
‘lower’ and ‘upper’ are accepted in SET2, and then only if the
corresponding character class (‘upper’ and ‘lower’, respectively)
is specified in the same relative position in SET1. Doing this
specifies case conversion. The class names are given below; an
error results when an invalid class name is given.

‘alnum’
Letters and digits.

‘alpha’
Letters.

‘blank’
Horizontal whitespace.

‘cntrl’
Control characters.

‘digit’
Digits.

‘graph’
Printable characters, not including space.

‘lower’
Lowercase letters.

‘print’
Printable characters, including space.

‘punct’
Punctuation characters.

‘space’
Horizontal or vertical whitespace.

‘upper’
Uppercase letters.

‘xdigit’

textutils 38 / 72

Hexadecimal digits.

Equivalence classes.
The syntax ‘[=C=]’ expands to all of the characters that are
equivalent to C, in no particular order. Equivalence classes are
a relatively recent invention intended to support non-English
alphabets. But there seems to be no standard way to define them
or determine their contents. Therefore, they are not fully
implemented in GNU ‘tr’; each character’s equivalence class
consists only of that character, which is of no particular use.

1.34 textutils.guide/Translating

Translating

‘tr’ performs translation when SET1 and SET2 are both given and the
‘--delete’ (‘-d’) option is not given. ‘tr’ translates each character
of its input that is in SET1 to the corresponding character in SET2.
Characters not in SET1 are passed through unchanged. When a character
appears more than once in SET1 and the corresponding characters in SET2
are not all the same, only the final one is used. For example, these
two commands are equivalent:

tr aaa xyz
tr a z

A common use of ‘tr’ is to convert lowercase characters to
uppercase. This can be done in many ways. Here are three of them:

tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ
tr a-z A-Z
tr ’[:lower:]’ ’[:upper:]’

When ‘tr’ is performing translation, SET1 and SET2 typically have
the same length. If SET1 is shorter than SET2, the extra characters at
the end of SET2 are ignored.

On the other hand, making SET1 longer than SET2 is not portable;
POSIX.2 says that the result is undefined. In this situation, BSD ‘tr’
pads SET2 to the length of SET1 by repeating the last character of SET2
as many times as necessary. System V ‘tr’ truncates SET1 to the length
of SET2.

By default, GNU ‘tr’ handles this case like BSD ‘tr’. When the
‘--truncate-set1’ (‘-t’) option is given, GNU ‘tr’ handles this case
like the System V ‘tr’ instead. This option is ignored for operations
other than translation.

Acting like System V ‘tr’ in this case breaks the relatively common
BSD idiom:

tr -cs A-Za-z0-9 ’\012’

textutils 39 / 72

because it converts only zero bytes (the first element in the
complement of SET1), rather than all non-alphanumerics, to newlines.

1.35 textutils.guide/Squeezing

Squeezing repeats and deleting

When given just the ‘--delete’ (‘-d’) option, ‘tr’ removes any input
characters that are in SET1.

When given just the ‘--squeeze-repeats’ (‘-s’) option, ‘tr’ replaces
each input sequence of a repeated character that is in SET1 with a
single occurrence of that character.

When given both ‘--delete’ and ‘--squeeze-repeats’, ‘tr’ first
performs any deletions using SET1, then squeezes repeats from any
remaining characters using SET2.

The ‘--squeeze-repeats’ option may also be used when translating, in
which case ‘tr’ first performs translation, then squeezes repeats from
any remaining characters using SET2.

Here are some examples to illustrate various combinations of options:

* Remove all zero bytes:

tr -d ’\000’

* Put all words on lines by themselves. This converts all
non-alphanumeric characters to newlines, then squeezes each string
of repeated newlines into a single newline:

tr -cs ’[a-zA-Z0-9]’ ’[\n*]’

* Convert each sequence of repeated newlines to a single newline:

tr -s ’\n’

1.36 textutils.guide/Warnings in tr

Warning messages

Setting the environment variable ‘POSIXLY_CORRECT’ turns off the
following warning and error messages, for strict compliance with
POSIX.2. Otherwise, the following diagnostics are issued:

1. When the ‘--delete’ option is given but ‘--squeeze-repeats’ is
not, and SET2 is given, GNU ‘tr’ by default prints a usage message

textutils 40 / 72

and exits, because SET2 would not be used. The POSIX
specification says that SET2 must be ignored in this case.
Silently ignoring arguments is a bad idea.

2. When an ambiguous octal escape is given. For example, ‘\400’ is
actually ‘\40’ followed by the digit ‘0’, because the value 400
octal does not fit into a single byte.

GNU ‘tr’ does not provide complete BSD or System V compatibility.
For example, it is impossible to disable interpretation of the POSIX
constructs ‘[:alpha:]’, ‘[=c=]’, and ‘[c*10]’. Also, GNU ‘tr’ does not
delete zero bytes automatically, unlike traditional Unix versions,
which provide no way to preserve zero bytes.

1.37 textutils.guide/expand invocation

‘expand’: Convert tabs to spaces
================================

‘expand’ writes the contents of each given FILE, or standard input
if none are given or for a FILE of ‘-’, to standard output, with tab
characters converted to the appropriate number of spaces. Synopsis:

expand [OPTION]... [FILE]...

By default, ‘expand’ converts all tabs to spaces. It preserves
backspace characters in the output; they decrement the column count for
tab calculations. The default action is equivalent to ‘-8’ (set tabs
every 8 columns).

The program accepts the following options. Also see See

Common options
.

‘-TAB1[,TAB2]...’
‘-t TAB1[,TAB2]...’
‘--tabs=TAB1[,TAB2]...’

If only one tab stop is given, set the tabs TAB1 spaces apart
(default is 8). Otherwise, set the tabs at columns TAB1, TAB2,
... (numbered from 0), and replace any tabs beyond the last
tabstop given with single spaces. If the tabstops are specified
with the ‘-t’ or ‘--tabs’ option, they can be separated by blanks
as well as by commas.

‘-i’
‘--initial’

Only convert initial tabs (those that precede all non-space or
non-tab characters) on each line to spaces.

textutils 41 / 72

1.38 textutils.guide/unexpand invocation

‘unexpand’: Convert spaces to tabs
==================================

‘unexpand’ writes the contents of each given FILE, or standard input
if none are given or for a FILE of ‘-’, to standard output, with
strings of two or more space or tab characters converted to as many
tabs as possible followed by as many spaces as are needed. Synopsis:

unexpand [OPTION]... [FILE]...

By default, ‘unexpand’ converts only initial spaces and tabs (those
that precede all non space or tab characters) on each line. It
preserves backspace characters in the output; they decrement the column
count for tab calculations. By default, tabs are set at every 8th
column.

The program accepts the following options. Also see See

Common options
.

‘-TAB1[,TAB2]...’
‘-t TAB1[,TAB2]...’
‘--tabs=TAB1[,TAB2]...’

If only one tab stop is given, set the tabs TAB1 spaces apart
instead of the default 8. Otherwise, set the tabs at columns
TAB1, TAB2, ... (numbered from 0), and leave spaces and tabs
beyond the tabstops given unchanged. If the tabstops are specified
with the ‘-t’ or ‘--tabs’ option, they can be separated by blanks
as well as by commas. This option implies the ‘-a’ option.

‘-a’
‘--all’

Convert all strings of two or more spaces or tabs, not just initial
ones, to tabs.

1.39 textutils.guide/Opening the software toolbox

Opening the software toolbox

This chapter originally appeared in ‘Linux Journal’, volume 1,
number 2, in the ‘What’s GNU?’ column. It was written by Arnold Robbins.

Toolbox introduction

I-O redirection

textutils 42 / 72

The ‘who’ command

The ‘cut’ command

The ‘sort’ command

The ‘uniq’ command

Putting the tools together

1.40 textutils.guide/Toolbox introduction

Toolbox introduction
====================

This month’s column is only peripherally related to the GNU Project,
in that it describes a number of the GNU tools on your Linux system and
how they might be used. What it’s really about is the "Software Tools"
philosophy of program development and usage.

The software tools philosophy was an important and integral concept
in the initial design and development of Unix (of which Linux and GNU
are essentially clones). Unfortunately, in the modern day press of
Internetworking and flashy GUIs, it seems to have fallen by the
wayside. This is a shame, since it provides a powerful mental model
for solving many kinds of problems.

Many people carry a Swiss Army knife around in their pants pockets
(or purse). A Swiss Army knife is a handy tool to have: it has several
knife blades, a screwdriver, tweezers, toothpick, nail file, corkscrew,
and perhaps a number of other things on it. For the everyday, small
miscellaneous jobs where you need a simple, general purpose tool, it’s
just the thing.

On the other hand, an experienced carpenter doesn’t build a house
using a Swiss Army knife. Instead, he has a toolbox chock full of
specialized tools--a saw, a hammer, a screwdriver, a plane, and so on.
And he knows exactly when and where to use each tool; you won’t catch
him hammering nails with the handle of his screwdriver.

The Unix developers at Bell Labs were all professional programmers
and trained computer scientists. They had found that while a
one-size-fits-all program might appeal to a user because there’s only
one program to use, in practice such programs are

a. difficult to write,

b. difficult to maintain and debug, and

c. difficult to extend to meet new situations.

Instead, they felt that programs should be specialized tools. In
short, each program "should do one thing well." No more and no less.
Such programs are simpler to design, write, and get right--they only do

textutils 43 / 72

one thing.

Furthermore, they found that with the right machinery for hooking
programs together, that the whole was greater than the sum of the
parts. By combining several special purpose programs, you could
accomplish a specific task that none of the programs was designed for,
and accomplish it much more quickly and easily than if you had to write
a special purpose program. We will see some (classic) examples of this
further on in the column. (An important additional point was that, if
necessary, take a detour and build any software tools you may need
first, if you don’t already have something appropriate in the toolbox.)

1.41 textutils.guide/I-O redirection

I/O redirection
===============

Hopefully, you are familiar with the basics of I/O redirection in the
shell, in particular the concepts of "standard input," "standard
output," and "standard error". Briefly, "standard input" is a data
source, where data comes from. A program should not need to either
know or care if the data source is a disk file, a keyboard, a magnetic
tape, or even a punched card reader. Similarly, "standard output" is a
data sink, where data goes to. The program should neither know nor
care where this might be. Programs that only read their standard
input, do something to the data, and then send it on, are called
"filters", by analogy to filters in a water pipeline.

With the Unix shell, it’s very easy to set up data pipelines:

program_to_create_data | filter1 | | filterN > final.pretty.data

We start out by creating the raw data; each filter applies some
successive transformation to the data, until by the time it comes out
of the pipeline, it is in the desired form.

This is fine and good for standard input and standard output. Where
does the standard error come in to play? Well, think about ‘filter1’ in
the pipeline above. What happens if it encounters an error in the data
it sees? If it writes an error message to standard output, it will just
disappear down the pipeline into ‘filter2’’s input, and the user will
probably never see it. So programs need a place where they can send
error messages so that the user will notice them. This is standard
error, and it is usually connected to your console or window, even if
you have redirected standard output of your program away from your
screen.

For filter programs to work together, the format of the data has to
be agreed upon. The most straightforward and easiest format to use is
simply lines of text. Unix data files are generally just streams of
bytes, with lines delimited by the ASCII LF (Line Feed) character,
conventionally called a "newline" in the Unix literature. (This is
‘’\n’’ if you’re a C programmer.) This is the format used by all the
traditional filtering programs. (Many earlier operating systems had

textutils 44 / 72

elaborate facilities and special purpose programs for managing binary
data. Unix has always shied away from such things, under the
philosophy that it’s easiest to simply be able to view and edit your
data with a text editor.)

OK, enough introduction. Let’s take a look at some of the tools, and
then we’ll see how to hook them together in interesting ways. In the
following discussion, we will only present those command line options
that interest us. As you should always do, double check your system
documentation for the full story.

1.42 textutils.guide/The `who’ command

The ‘who’ command
=================

The first program is the ‘who’ command. By itself, it generates a
list of the users who are currently logged in. Although I’m writing
this on a single-user system, we’ll pretend that several people are
logged in:

$ who
arnold console Jan 22 19:57
miriam ttyp0 Jan 23 14:19(:0.0)
bill ttyp1 Jan 21 09:32(:0.0)
arnold ttyp2 Jan 23 20:48(:0.0)

Here, the ‘$’ is the usual shell prompt, at which I typed ‘who’.
There are three people logged in, and I am logged in twice. On
traditional Unix systems, user names are never more than eight
characters long. This little bit of trivia will be useful later. The
output of ‘who’ is nice, but the data is not all that exciting.

1.43 textutils.guide/The `cut’ command

The ‘cut’ command
=================

The next program we’ll look at is the ‘cut’ command. This program
cuts out columns or fields of input data. For example, we can tell it
to print just the login name and full name from the ‘/etc/passwd file’.
The ‘/etc/passwd’ file has seven fields, separated by colons:

arnold:xyzzy:2076:10:Arnold D. Robbins:/home/arnold:/bin/ksh

To get the first and fifth fields, we would use cut like this:

$ cut -d: -f1,5 /etc/passwd
root:Operator
...

textutils 45 / 72

arnold:Arnold D. Robbins
miriam:Miriam A. Robbins
...

With the ‘-c’ option, ‘cut’ will cut out specific characters (i.e.,
columns) in the input lines. This command looks like it might be
useful for data filtering.

1.44 textutils.guide/The `sort’ command

The ‘sort’ command
==================

Next we’ll look at the ‘sort’ command. This is one of the most
powerful commands on a Unix-style system; one that you will often find
yourself using when setting up fancy data plumbing. The ‘sort’ command
reads and sorts each file named on the command line. It then merges
the sorted data and writes it to standard output. It will read
standard input if no files are given on the command line (thus making
it into a filter). The sort is based on the machine collating sequence
(ASCII) or based on user-supplied ordering criteria.

1.45 textutils.guide/The `uniq’ command

The ‘uniq’ command
==================

Finally (at least for now), we’ll look at the ‘uniq’ program. When
sorting data, you will often end up with duplicate lines, lines that
are identical. Usually, all you need is one instance of each line.
This is where ‘uniq’ comes in. The ‘uniq’ program reads its standard
input, which it expects to be sorted. It only prints out one copy of
each duplicated line. It does have several options. Later on, we’ll
use the ‘-c’ option, which prints each unique line, preceded by a count
of the number of times that line occurred in the input.

1.46 textutils.guide/Putting the tools together

Putting the tools together
==========================

Now, let’s suppose this is a large BBS system with dozens of users
logged in. The management wants the SysOp to write a program that will
generate a sorted list of logged in users. Furthermore, even if a user
is logged in multiple times, his or her name should only show up in the
output once.

textutils 46 / 72

The SysOp could sit down with the system documentation and write a C
program that did this. It would take perhaps a couple of hundred lines
of code and about two hours to write it, test it, and debug it.
However, knowing the software toolbox, the SysOp can instead start out
by generating just a list of logged on users:

$ who | cut -c1-8
arnold
miriam
bill
arnold

Next, sort the list:

$ who | cut -c1-8 | sort
arnold
arnold
bill
miriam

Finally, run the sorted list through ‘uniq’, to weed out duplicates:

$ who | cut -c1-8 | sort | uniq
arnold
bill
miriam

The ‘sort’ command actually has a ‘-u’ option that does what ‘uniq’
does. However, ‘uniq’ has other uses for which one cannot substitute
‘sort -u’.

The SysOp puts this pipeline into a shell script, and makes it
available for all the users on the system:

cat > /usr/local/bin/listusers
who | cut -c1-8 | sort | uniq
^D
chmod +x /usr/local/bin/listusers

There are four major points to note here. First, with just four
programs, on one command line, the SysOp was able to save about two
hours worth of work. Furthermore, the shell pipeline is just about as
efficient as the C program would be, and it is much more efficient in
terms of programmer time. People time is much more expensive than
computer time, and in our modern "there’s never enough time to do
everything" society, saving two hours of programmer time is no mean
feat.

Second, it is also important to emphasize that with the

combination of the tools, it is possible to do a special purpose job
never imagined by the authors of the individual programs.

Third, it is also valuable to build up your pipeline in stages, as
we did here. This allows you to view the data at each stage in the
pipeline, which helps you acquire the confidence that you are indeed
using these tools correctly.

textutils 47 / 72

Finally, by bundling the pipeline in a shell script, other users can
use your command, without having to remember the fancy plumbing you set
up for them. In terms of how you run them, shell scripts and compiled
programs are indistinguishable.

After the previous warm-up exercise, we’ll look at two additional,
more complicated pipelines. For them, we need to introduce two more
tools.

The first is the ‘tr’ command, which stands for "transliterate." The
‘tr’ command works on a character-by-character basis, changing
characters. Normally it is used for things like mapping upper case to
lower case:

$ echo ThIs ExAmPlE HaS MIXED case! | tr ’[A-Z]’ ’[a-z]’
this example has mixed case!

There are several options of interest:

‘-c’
work on the complement of the listed characters, i.e., operations
apply to characters not in the given set

‘-d’
delete characters in the first set from the output

‘-s’
squeeze repeated characters in the output into just one character.

We will be using all three options in a moment.

The other command we’ll look at is ‘comm’. The ‘comm’ command takes
two sorted input files as input data, and prints out the files’ lines
in three columns. The output columns are the data lines unique to the
first file, the data lines unique to the second file, and the data
lines that are common to both. The ‘-1’, ‘-2’, and ‘-3’ command line
options omit the respective columns. (This is non-intuitive and takes a
little getting used to.) For example:

$ cat f1
11111
22222
33333
44444
$ cat f2
00000
22222
33333
55555
$ comm f1 f2

00000
11111

22222
33333

44444
55555

textutils 48 / 72

The single dash as a filename tells ‘comm’ to read standard input
instead of a regular file.

Now we’re ready to build a fancy pipeline. The first application is
a word frequency counter. This helps an author determine if he or she
is over-using certain words.

The first step is to change the case of all the letters in our input
file to one case. "The" and "the" are the same word when doing
counting.

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | ...

The next step is to get rid of punctuation. Quoted words and
unquoted words should be treated identically; it’s easiest to just get
the punctuation out of the way.

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | tr -cd ’[A-Za-z0-9_ \012]’ | ...

The second ‘tr’ command operates on the complement of the listed
characters, which are all the letters, the digits, the underscore, and
the blank. The ‘\012’ represents the newline character; it has to be
left alone. (The ASCII TAB character should also be included for good
measure in a production script.)

At this point, we have data consisting of words separated by blank
space. The words only contain alphanumeric characters (and the
underscore). The next step is break the data apart so that we have one
word per line. This makes the counting operation much easier, as we
will see shortly.

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | tr -cd ’[A-Za-z0-9_ \012]’ |
> tr -s ’[]’ ’\012’ | ...

This command turns blanks into newlines. The ‘-s’ option squeezes
multiple newline characters in the output into just one. This helps us
avoid blank lines. (The ‘>’ is the shell’s "secondary prompt." This is
what the shell prints when it notices you haven’t finished typing in
all of a command.)

We now have data consisting of one word per line, no punctuation,
all one case. We’re ready to count each word:

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | tr -cd ’[A-Za-z0-9_ \012]’ |
> tr -s ’[]’ ’\012’ | sort | uniq -c | ...

At this point, the data might look something like this:

60 a
2 able
6 about
1 above
2 accomplish
1 acquire
1 actually
2 additional

textutils 49 / 72

The output is sorted by word, not by count! What we want is the most
frequently used words first. Fortunately, this is easy to accomplish,
with the help of two more ‘sort’ options:

‘-n’
do a numeric sort, not an ASCII one

‘-r’
reverse the order of the sort

The final pipeline looks like this:

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | tr -cd ’[A-Za-z0-9_ \012]’ |
> tr -s ’[]’ ’\012’ | sort | uniq -c | sort -nr
156 the
60 a
58 to
51 of
51 and
...

Whew! That’s a lot to digest. Yet, the same principles apply. With
six commands, on two lines (really one long one split for convenience),
we’ve created a program that does something interesting and useful, in
much less time than we could have written a C program to do the same
thing.

A minor modification to the above pipeline can give us a simple
spelling checker! To determine if you’ve spelled a word correctly, all
you have to do is look it up in a dictionary. If it is not there, then
chances are that your spelling is incorrect. So, we need a dictionary.
If you have the Slackware Linux distribution, you have the file
‘/usr/lib/ispell/ispell.words’, which is a sorted, 38,400 word
dictionary.

Now, how to compare our file with the dictionary? As before, we
generate a sorted list of words, one per line:

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | tr -cd ’[A-Za-z0-9_ \012]’ |
> tr -s ’[]’ ’\012’ | sort -u | ...

Now, all we need is a list of words that are *not* in the
dictionary. Here is where the ‘comm’ command comes in.

$ tr ’[A-Z]’ ’[a-z]’ < whats.gnu | tr -cd ’[A-Za-z0-9_ \012]’ |
> tr -s ’[]’ ’\012’ | sort -u |
> comm -23 - /usr/lib/ispell/ispell.words

The ‘-2’ and ‘-3’ options eliminate lines that are only in the
dictionary (the second file), and lines that are in both files. Lines
only in the first file (standard input, our stream of words), are words
that are not in the dictionary. These are likely candidates for
spelling errors. This pipeline was the first cut at a production
spelling checker on Unix.

There are some other tools that deserve brief mention.

textutils 50 / 72

‘grep’
search files for text that matches a regular expression

‘egrep’
like ‘grep’, but with more powerful regular expressions

‘wc’
count lines, words, characters

‘tee’
a T-fitting for data pipes, copies data to files and to standard
output

‘sed’
the stream editor, an advanced tool

‘awk’
a data manipulation language, another advanced tool

The software tools philosophy also espoused the following bit of
advice: "Let someone else do the hard part." This means, take something
that gives you most of what you need, and then massage it the rest of
the way until it’s in the form that you want.

To summarize:

1. Each program should do one thing well. No more, no less.

2. Combining programs with appropriate plumbing leads to results where
the whole is greater than the sum of the parts. It also leads to
novel uses of programs that the authors might never have imagined.

3. Programs should never print extraneous header or trailer data,
since these could get sent on down a pipeline. (A point we didn’t
mention earlier.)

4. Let someone else do the hard part.

5. Know your toolbox! Use each program appropriately. If you don’t
have an appropriate tool, build one.

As of this writing, all the programs we’ve discussed are available
via anonymous ‘ftp’ from ‘prep.ai.mit.edu’ as
‘/pub/gnu/textutils-1.9.tar.gz’ directory.(1)

None of what I have presented in this column is new. The Software
Tools philosophy was first introduced in the book ‘Software Tools’, by
Brian Kernighan and P.J. Plauger (Addison-Wesley, ISBN 0-201-03669-X).
This book showed how to write and use software tools. It was written
in 1976, using a preprocessor for FORTRAN named ‘ratfor’ (RATional
FORtran). At the time, C was not as ubiquitous as it is now; FORTRAN
was. The last chapter presented a ‘ratfor’ to FORTRAN processor,
written in ‘ratfor’. ‘ratfor’ looks an awful lot like C; if you know C,
you won’t have any problem following the code.

In 1981, the book was updated and made available as ‘Software Tools
in Pascal’ (Addison-Wesley, ISBN 0-201-10342-7). Both books remain in

textutils 51 / 72

print, and are well worth reading if you’re a programmer. They
certainly made a major change in how I view programming.

Initially, the programs in both books were available (on 9-track
tape) from Addison-Wesley. Unfortunately, this is no longer the case,
although you might be able to find copies floating around the Internet.
For a number of years, there was an active Software Tools Users Group,
whose members had ported the original ‘ratfor’ programs to essentially
every computer system with a FORTRAN compiler. The popularity of the
group waned in the middle ’80s as Unix began to spread beyond
universities.

With the current proliferation of GNU code and other clones of Unix
programs, these programs now receive little attention; modern C
versions are much more efficient and do more than these programs do.
Nevertheless, as exposition of good programming style, and evangelism
for a still-valuable philosophy, these books are unparalleled, and I
recommend them highly.

Acknowledgment: I would like to express my gratitude to Brian
Kernighan of Bell Labs, the original Software Toolsmith, for reviewing
this column.

---------- Footnotes ----------

(1) Version 1.9 was current when this column was written. Check the
nearest GNU archive for the current version.

1.47 textutils.guide/Index

Index

+COUNT
tail invocation

+N
uniq invocation

-address-radix
od invocation

-all
unexpand invocation

-before
tac invocation

-binary
md5sum invocation

-body-numbering
nl invocation

textutils 52 / 72

-bytes <1>
split invocation

-bytes <2>
head invocation

-bytes <3>
fold invocation

-bytes <4>
tail invocation

-bytes <5>
wc invocation

-bytes
cut invocation

-characters
cut invocation

-chars
wc invocation

-check-chars
uniq invocation

-count
uniq invocation

-crown-margin
fmt invocation

-delimiter
cut invocation

-delimiters
paste invocation

-digits
csplit invocation

-elide-empty-files
csplit invocation

-fields
cut invocation

-follow
tail invocation

-footer-numbering
nl invocation

-format
od invocation

textutils 53 / 72

-header-numbering
nl invocation

-help
Common options

-ignore-case <1>
uniq invocation

-ignore-case
join invocation

-initial
expand invocation

-join-blank-lines
nl invocation

-keep-files
csplit invocation

-line-bytes
split invocation

-lines <1>
split invocation

-lines <2>
head invocation

-lines <3>
tail invocation

-lines
wc invocation

-no-renumber
nl invocation

-number
cat invocation

-number-format
nl invocation

-number-nonblank
cat invocation

-number-separator
nl invocation

-number-width
nl invocation

-only-delimited
cut invocation

textutils 54 / 72

-output-duplicates
od invocation

-page-increment
nl invocation

-prefix
csplit invocation

-quiet <1>
tail invocation

-quiet <2>
head invocation

-quiet
csplit invocation

-read-bytes
od invocation

-regex
tac invocation

-repeated
uniq invocation

-section-delimiter
nl invocation

-separator
tac invocation

-serial
paste invocation

-show-all
cat invocation

-show-ends
cat invocation

-show-nonprinting
cat invocation

-show-tabs
cat invocation

-silent <1>
tail invocation

-silent <2>
head invocation

-silent
csplit invocation

textutils 55 / 72

-skip-bytes
od invocation

-skip-chars
uniq invocation

-skip-fields
uniq invocation

-spaces
fold invocation

-split-only
fmt invocation

-squeeze-blank
cat invocation

-starting-line-number
nl invocation

-status
md5sum invocation

-string
md5sum invocation

-strings
od invocation

-suffix
csplit invocation

-sysv
sum invocation

-tabs <1>
unexpand invocation

-tabs
expand invocation

-tagged-paragraph
fmt invocation

-text
md5sum invocation

-traditional
od invocation

-uniform-spacing
fmt invocation

-unique
uniq invocation

textutils 56 / 72

-verbose <1>
tail invocation

-verbose <2>
head invocation

-verbose
split invocation

-version
Common options

-warn
md5sum invocation

-width <1>
od invocation

-width <2>
fmt invocation

-width
fold invocation

-words
wc invocation

-1 <1>
join invocation

-1
comm invocation

-2 <1>
comm invocation

-2
join invocation

-3
comm invocation

-COLUMN
pr invocation

-COUNT <1>
head invocation

-COUNT
tail invocation

-N
uniq invocation

-TAB <1>
unexpand invocation

textutils 57 / 72

-TAB
expand invocation

-WIDTH
fmt invocation

-a <1>
unexpand invocation

-a
join invocation

-A <1>
cat invocation

-A
od invocation

-a <1>
pr invocation

-a
od invocation

-b <1>
csplit invocation

-b <2>
split invocation

-b <3>
cat invocation

-b <4>
fold invocation

-b <5>
cut invocation

-b <6>
pr invocation

-b <7>
nl invocation

-b <8>
md5sum invocation

-b <9>
tac invocation

-b <10>
sort invocation

-b
od invocation

textutils 58 / 72

-c <1>
fmt invocation

-c <2>
cut invocation

-c <3>
od invocation

-c <4>
pr invocation

-c <5>
wc invocation

-c <6>
tail invocation

-c
sort invocation

-C
split invocation

-c <1>
head invocation

-c
uniq invocation

-d <1>
nl invocation

-d <2>
sort invocation

-d <3>
uniq invocation

-d <4>
cut invocation

-d <5>
pr invocation

-d <6>
paste invocation

-d
od invocation

-e <1>
join invocation

-e <2>
cat invocation

textutils 59 / 72

-e
pr invocation

-E
cat invocation

-f <1>
cut invocation

-f <2>
csplit invocation

-f <3>
pr invocation

-f
uniq invocation

-F
pr invocation

-f <1>
nl invocation

-f <2>
tail invocation

-f <3>
sort invocation

-f
od invocation

-g
sort invocation

-h <1>
od invocation

-h <2>
nl invocation

-h
pr invocation

-i <1>
od invocation

-i <2>
nl invocation

-i <3>
sort invocation

-i <4>
pr invocation

textutils 60 / 72

-i <5>
join invocation

-i <6>
expand invocation

-i
uniq invocation

-j
od invocation

-j1
join invocation

-j2
join invocation

-k <1>
csplit invocation

-k
sort invocation

-l <1>
od invocation

-l <2>
split invocation

-l <3>
nl invocation

-l <4>
pr invocation

-l
wc invocation

-m <1>
sort invocation

-m
pr invocation

-n <1>
sort invocation

-n <2>
pr invocation

-n <3>
tail invocation

-n <4>
head invocation

textutils 61 / 72

-n
nl invocation

-N
od invocation

-n <1>
csplit invocation

-n <2>
cat invocation

-n
cut invocation

-o <1>
pr invocation

-o <2>
sort invocation

-o
od invocation

-p
nl invocation

-q <1>
head invocation

-q <2>
tail invocation

-q
csplit invocation

-r <1>
sort invocation

-r <2>
tac invocation

-r <3>
sum invocation

-r
pr invocation

-s <1>
cut invocation

-s <2>
uniq invocation

-s <3>
paste invocation

textutils 62 / 72

-s <4>
cat invocation

-s <5>
csplit invocation

-s <6>
od invocation

-s <7>
pr invocation

-s <8>
fmt invocation

-s <9>
fold invocation

-s <10>
sum invocation

-s <11>
tac invocation

-s
nl invocation

-T
cat invocation

-t <1>
pr invocation

-t <2>
cat invocation

-t <3>
sort invocation

-t <4>
md5sum invocation

-t <5>
expand invocation

-t <6>
fmt invocation

-t <7>
od invocation

-t
unexpand invocation

-u <1>
cat invocation

textutils 63 / 72

-u <2>
fmt invocation

-u <3>
sort invocation

-u
uniq invocation

-v <1>
od invocation

-v <2>
head invocation

-v <3>
tail invocation

-v <4>
cat invocation

-v <5>
pr invocation

-v
nl invocation

-w <1>
uniq invocation

-w <2>
wc invocation

-w <3>
md5sum invocation

-w <4>
pr invocation

-w <5>
od invocation

-w <6>
nl invocation

-w <7>
fold invocation

-w
fmt invocation

-x
od invocation

-z <1>
sort invocation

textutils 64 / 72

-z
csplit invocation

128-bit checksum
md5sum invocation

16-bit checksum
sum invocation

across columns
pr invocation

alnum
Character sets

alpha
Character sets

ASCII dump of files
od invocation

backslash escapes
Character sets

balancing columns
pr invocation

binary input files
md5sum invocation

blank
Character sets

blank lines, numbering
nl invocation

blanks, ignoring leading
sort invocation

body, numbering
nl invocation

BSD sum
sum invocation

BSD tail
tail invocation

bugs, reporting
Introduction

byte count
wc invocation

case folding
sort invocation

textutils 65 / 72

cat
cat invocation

characters classes
Character sets

checking for sortedness
sort invocation

checksum, 128-bit
md5sum invocation

checksum, 16-bit
sum invocation

cksum
cksum invocation

cntrl
Character sets

comm
comm invocation

common field, joining on
join invocation

common lines
comm invocation

common options
Common options

comparing sorted files
comm invocation

concatenate and write files
cat invocation

context splitting
csplit invocation

converting tabs to spaces
expand invocation

copying files
cat invocation

CRC checksum
cksum invocation

crown margin
fmt invocation

csplit
csplit invocation

textutils 66 / 72

cut
cut invocation

cyclic redundancy check
cksum invocation

deleting characters
Squeezing

differing lines
comm invocation

digit
Character sets

double spacing
pr invocation

duplicate lines, outputting
uniq invocation

empty lines, numbering
nl invocation

entire files, output of
Output of entire files

equivalence classes
Character sets

expand
expand invocation

field separator character
sort invocation

file contents, dumping unambiguously
od invocation

file offset radix
od invocation

fingerprint, 128-bit
md5sum invocation

first part of files, outputting
head invocation

fmt
fmt invocation

fold
fold invocation

folding long input lines
fold invocation

textutils 67 / 72

footers, numbering
nl invocation

formatting file contents
Formatting file contents

general numeric sort
sort invocation

graph
Character sets

growing files
tail invocation

head
head invocation

headers, numbering
nl invocation

help, online
Common options

hex dump of files
od invocation

indenting lines
pr invocation

initial part of files, outputting
head invocation

initial tabs, converting
expand invocation

input tabs
pr invocation

introduction
Introduction

join
join invocation

Knuth, Donald E.
fmt invocation

last part of files, outputting
tail invocation

left margin
pr invocation

line count
wc invocation

textutils 68 / 72

line numbering
nl invocation

line-breaking
fmt invocation

line-by-line comparison
comm invocation

ln format for nl
nl invocation

logical pages, numbering on
nl invocation

lower
Character sets

md5sum
md5sum invocation

merging files
paste invocation

merging sorted files
sort invocation

message-digest, 128-bit
md5sum invocation

months, sorting by
sort invocation

multicolumn output, generating
pr invocation

nl
nl invocation

numbering lines
nl invocation

numeric sort
sort invocation

octal dump of files
od invocation

od
od invocation

operating on characters
Operating on characters

operating on sorted files
Operating on sorted files

textutils 69 / 72

output file name prefix <1>
split invocation

output file name prefix
csplit invocation

output file name suffix
csplit invocation

output of entire files
Output of entire files

output of parts of files
Output of parts of files

output tabs
pr invocation

overwriting of input, allowed
sort invocation

paragraphs, reformatting
fmt invocation

parts of files, output of
Output of parts of files

paste
paste invocation

phone directory order
sort invocation

pieces, splitting a file into
split invocation

Plass, Michael F.
fmt invocation

POSIX.2
Introduction

POSIXLY_CORRECT
Warnings in tr

pr
pr invocation

print
Character sets

printing, preparing files for
pr invocation

punct
Character sets

textutils 70 / 72

radix for file offsets
od invocation

ranges
Character sets

reformatting paragraph text
fmt invocation

repeated characters
Character sets

reverse sorting
sort invocation

reversing files
tac invocation

rn format for nl
nl invocation

rz format for nl
nl invocation

screen columns
fold invocation

section delimiters of pages
nl invocation

sentences and line-breaking
fmt invocation

sort
sort invocation

sort field
sort invocation

sort zero-terminated lines
sort invocation

sorted files, operations on
Operating on sorted files

sorting files
sort invocation

space
Character sets

specifying sets of characters
Character sets

split
split invocation

textutils 71 / 72

splitting a file into pieces
split invocation

splitting a file into pieces by context
csplit invocation

squeezing blank lines
cat invocation

squeezing repeat characters
Squeezing

string constants, outputting
od invocation

sum
sum invocation

summarizing files
Summarizing files

System V sum
sum invocation

tabs to spaces, converting
expand invocation

tabstops, setting
expand invocation

tac
tac invocation

tagged paragraphs
fmt invocation

tail
tail invocation

telephone directory order
sort invocation

text input files
md5sum invocation

text utilities Top

text, reformatting
fmt invocation

TMPDIR
sort invocation

total counts
wc invocation

tr

textutils 72 / 72

tr invocation

translating characters
Translating

type size
od invocation

unexpand
unexpand invocation

uniq
uniq invocation

uniqify files
uniq invocation

uniqifying output
sort invocation

unique lines, outputting
uniq invocation

unprintable characters, ignoring
sort invocation

upper
Character sets

utilities for text handling Top

verifying MD5 checksums
md5sum invocation

version number, finding
Common options

wc
wc invocation

word count
wc invocation

wrapping long input lines
fold invocation

xdigit
Character sets

	textutils
	textutils.guide
	textutils.guide/Introduction
	textutils.guide/Common options
	textutils.guide/Output of entire files
	textutils.guide/cat invocation
	textutils.guide/tac invocation
	textutils.guide/nl invocation
	textutils.guide/od invocation
	textutils.guide/Formatting file contents
	textutils.guide/fmt invocation
	textutils.guide/pr invocation
	textutils.guide/fold invocation
	textutils.guide/Output of parts of files
	textutils.guide/head invocation
	textutils.guide/tail invocation
	textutils.guide/split invocation
	textutils.guide/csplit invocation
	textutils.guide/Summarizing files
	textutils.guide/wc invocation
	textutils.guide/sum invocation
	textutils.guide/cksum invocation
	textutils.guide/md5sum invocation
	textutils.guide/Operating on sorted files
	textutils.guide/sort invocation
	textutils.guide/uniq invocation
	textutils.guide/comm invocation
	textutils.guide/Operating on fields within a line
	textutils.guide/cut invocation
	textutils.guide/paste invocation
	textutils.guide/join invocation
	textutils.guide/Operating on characters
	textutils.guide/tr invocation
	textutils.guide/Character sets
	textutils.guide/Translating
	textutils.guide/Squeezing
	textutils.guide/Warnings in tr
	textutils.guide/expand invocation
	textutils.guide/unexpand invocation
	textutils.guide/Opening the software toolbox
	textutils.guide/Toolbox introduction
	textutils.guide/I-O redirection
	textutils.guide/The `who' command
	textutils.guide/The `cut' command
	textutils.guide/The `sort' command
	textutils.guide/The `uniq' command
	textutils.guide/Putting the tools together
	textutils.guide/Index

