		COLLABORATORS	
	TITLE:		
ACTION	NAME	DATE	SIGNATURE
WRITTEN BY		January 15, 2023	

		REVISION HISTORY	
NUMBER	DATE	DESCRIPTION	NAME

Contents

1	gcc		1
	1.1	gcc.guide	1
	1.2	gcc.guide/Copying	2
	1.3	gcc.guide/Contributors	9
	1.4	gcc.guide/Funding	11
	1.5	gcc.guide/Look and Feel	12
	1.6	gcc.guide/G++ and GCC	15
	1.7	gcc.guide/Invoking GCC	16
	1.8	gcc.guide/Option Summary	18
	1.9	gcc.guide/Overall Options	23
	1.10	gcc.guide/Invoking G++	25
	1.11	gcc.guide/C Dialect Options	26
	1.12	gcc.guide/C++ Dialect Options	30
	1.13	gcc.guide/Warning Options	34
	1.14	gcc.guide/Debugging Options	41
	1.15	gcc.guide/Optimize Options	46
	1.16	gcc.guide/Preprocessor Options	50
	1.17	gcc.guide/Assembler Options	53
	1.18	gcc.guide/Link Options	53
	1.19	gcc.guide/Directory Options	56
	1.20	gcc.guide/Target Options	57
	1.21	gcc.guide/Submodel Options	58
	1.22	gcc.guide/M680x0 Options	59
	1.23	gcc.guide/VAX Options	61
	1.24	gcc.guide/SPARC Options	61
	1.25	gcc.guide/Convex Options	64
	1.26	gcc.guide/AMD29K Options	66
		gcc.guide/ARM Options	
		gcc.guide/M88K Options	
	1.29	gcc.guide/RS-6000 and PowerPC Options	71

1.30	gcc.guide/RT Options
1.31	gcc.guide/MIPS Options
1.32	gcc.guide/i386 Options
1.33	gcc.guide/HPPA Options
1.34	gcc.guide/Intel 960 Options
1.35	gcc.guide/DEC Alpha Options
1.36	gcc.guide/Clipper Options
1.37	gcc.guide/H8-300 Options
1.38	gcc.guide/System V Options
1.39	gcc.guide/Code Gen Options
1.40	gcc.guide/Environment Variables
1.41	gcc.guide/Running Protoize
1.42	gcc.guide/Installation
1.43	gcc.guide/Configurations
1.44	gcc.guide/Other Dir
1.45	gcc.guide/Cross-Compiler
1.46	gcc.guide/Steps of Cross
	gcc.guide/Configure Cross
1.48	gcc.guide/Tools and Libraries
1.49	gcc.guide/Cross Runtime
1.50	gcc.guide/Cross Headers
1.51	gcc.guide/Build Cross
1.52	gcc.guide/Sun Install
1.53	gcc.guide/VMS Install
1.54	gcc.guide/Collect2
1.55	gcc.guide/Header Dirs
1.56	gcc.guide/C Extensions
1.57	gcc.guide/Statement Exprs
1.58	gcc.guide/Local Labels
1.59	gcc.guide/Labels as Values
1.60	gcc.guide/Nested Functions
1.61	gcc.guide/Constructing Calls
1.62	gcc.guide/Naming Types
1.63	gcc.guide/Typeof
1.64	gcc.guide/Lvalues
1.65	gcc.guide/Conditionals
1.66	gcc.guide/Long Long
1.67	gcc.guide/Complex
1.68	gcc.guide/Zero Length

1.108gcc.guide/Incompatibilities
1.109gcc.guide/Fixed Headers
1.110gcc.guide/Standard Libraries
1.111 gcc.guide/Disappointments
1.112gcc.guide/C++ Misunderstandings
1.113gcc.guide/Static Definitions
1.114gcc.guide/Temporaries
1.115 gcc.guide/Protoize Caveats
1.116gcc.guide/Non-bugs
1.117gcc.guide/Warnings and Errors
1.118gcc.guide/Bugs
1.119gcc.guide/Bug Criteria
1.120gcc.guide/Bug Lists
1.121 gcc.guide/Bug Reporting
1.122gcc.guide/Sending Patches
1.123gcc.guide/Service
1.124gcc.guide/VMS
1.125 gcc.guide/Include Files and VMS
1.126gcc.guide/Global Declarations
1.127gcc.guide/VMS Misc
1.128gcc.guide/Portability
1.129gcc.guide/Interface
1.130gcc.guide/Passes
1.131 gcc.guide/RTL
1.132gcc.guide/RTL Objects
1.133gcc.guide/Accessors
1.134gcc.guide/Flags
1.135 gcc.guide/Machine Modes
1.136gcc.guide/Constants
1.137gcc.guide/Regs and Memory
1.138gcc.guide/Arithmetic
1.139gcc.guide/Comparisons
1.140gcc.guide/Bit Fields
1.141 gcc.guide/Conversions
1.142 gcc. guide/RTL Declarations
1.143 gcc. guide/Side Effects
1.144gcc.guide/Incdec
1.145 gcc. guide/Assembler
1.146gcc.guide/Insns

1.147gcc.guide/Calls
1.148gcc.guide/Sharing
1.149gcc.guide/Reading RTL
1.150gcc.guide/Machine Desc
1.151 gcc.guide/Patterns
1.152gcc.guide/Example
1.153gcc.guide/RTL Template
1.154gcc.guide/Output Template
1.155gcc.guide/Output Statement
1.156gcc.guide/Constraints
1.157gcc.guide/Simple Constraints
1.158gcc.guide/Multi-Alternative
1.159gcc.guide/Class Preferences
1.160gcc.guide/Modifiers
1.161 gcc.guide/Machine Constraints
1.162gcc.guide/No Constraints
1.163 gcc.guide/Standard Names
1.164gcc.guide/Pattern Ordering
1.165 gcc.guide/Dependent Patterns
1.166gcc.guide/Jump Patterns
1.167gcc.guide/Insn Canonicalizations
1.168gcc.guide/Peephole Definitions
1.169gcc.guide/Expander Definitions
1.170gcc.guide/Insn Splitting
1.171 gcc.guide/Insn Attributes
1.172 gcc. guide/Defining Attributes
1.173 gcc. guide/Expressions
1.174gcc.guide/Tagging Insns
1.175 gcc.guide/Attr Example
1.176gcc.guide/Insn Lengths
1.177 gcc.guide/Constant Attributes
1.178gcc.guide/Delay Slots
1.179gcc.guide/Function Units
1.180gcc.guide/Target Macros
1.181 gcc.guide/Driver
1.182gcc.guide/Run-time Target
1.183 gcc.guide/Storage Layout
1.184gcc.guide/Type Layout
1.185gcc.guide/Registers

1.186gcc.guide/Register Basics
1.187 gcc.guide/Allocation Order
1.188 gcc.guide/Values in Registers
1.189gcc.guide/Leaf Functions
1.190gcc.guide/Stack Registers
1.191 gcc.guide/Obsolete Register Macros
1.192gcc.guide/Register Classes
1.193 gcc.guide/Stack and Calling
1.194gcc.guide/Frame Layout
1.195gcc.guide/Frame Registers
1.196gcc.guide/Elimination
1.197gcc.guide/Stack Arguments
1.198gcc.guide/Register Arguments
1.199gcc.guide/Scalar Return
1.200gcc.guide/Aggregate Return
1.201gcc.guide/Caller Saves
1.202gcc.guide/Function Entry
1.203gcc.guide/Profiling
1.204gcc.guide/Varargs
1.205 gcc.guide/Trampolines
1.206gcc.guide/Library Calls
1.207 gcc.guide/Addressing Modes
1.208gcc.guide/Condition Code
1.209gcc.guide/Costs
1.210gcc.guide/Sections
1.211gcc.guide/PIC
1.212gcc.guide/Assembler Format
1.213gcc.guide/File Framework
1.214gcc.guide/Data Output
1.215gcc.guide/Uninitialized Data
1.216gcc.guide/Label Output
1.217gcc.guide/Initialization
1.218gcc.guide/Macros for Initialization
1.219gcc.guide/Instruction Output
1.220gcc.guide/Dispatch Tables
1.221gcc.guide/Alignment Output
1.222gcc.guide/Debugging Info
1.223gcc.guide/All Debuggers
1.224gcc.guide/DBX Options

1.225 gcc.guide/DBX Hooks
1.226gcc.guide/File Names and DBX
1.227 gcc.guide/SDB and DWARF
1.228 gcc. guide/Cross-compilation
1.229gcc.guide/Misc
1.230gcc.guide/Config
1.231 gcc. guide/Fragments
1.232 gcc. guide/Target Fragment
1.233 gcc.guide/Host Fragment
1.234 acc quide/Index

gcc 1 / 551

Chapter 1

gcc

1.1 gcc.guide

Introduction

Copying

This manual documents how to run, install and port the GNU compiler, as well as its new features and incompatibilities, and how to report bugs. It corresponds to GNU CC version 2.7.2.

GNU General Public License says how you can copy and share GNU CC. Contributors People who have contributed to GNU CC. Funding How to help assure funding for free software. Look and Feel Protect your freedom--fight "look and feel". G++ and GCC You can compile C or C++ programs. Invoking GCC Command options supported by gcc. Installation How to configure, compile and install GNU CC. C Extensions GNU extensions to the C language family. C++ Extensions

GNU extensions to the C++ language.

gcc 2 / 551

Trouble

If you have trouble installing GNU CC.

Bugs

How, why and where to report bugs.

Service

How to find suppliers of support for GNU CC.

VMS

Using GNU CC on VMS.

Portability

Goals of GNU CC's portability features.

Interface

Function-call interface of GNU CC output.

Passes

Order of passes, what they do, and what each file is for.

RTL

The intermediate representation that most passes work on.

Machine Desc

How to write machine description instruction patterns.

Target Macros

How to write the machine description C macros.

Config

Writing the xm-MACHINE.h file.

Fragments

Writing the t-TARGET and x-HOST files.

Index

Index of concepts and symbol names.

1.2 gcc.guide/Copying

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

gcc 3 / 551

Preamble

=======

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

O. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program",

gcc 4 / 551

below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

- 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
 - a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
 - b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
 - c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate

gcc 5 / 551

works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

- 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
 - a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 - b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 - c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

gcc 6 / 551

except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

- 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
- 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
- 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

gcc 7 / 551

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

- 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
 - Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.
- 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

- 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
- 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

gcc 8 / 551

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. Copyright (C) 19YY NAME OF AUTHOR

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19YY NAME OF AUTHOR Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.

This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than show w and show c; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision' (which makes passes at compilers) written by James Hacker.

SIGNATURE OF TY COON, 1 April 1989 Ty Coon, President of Vice gcc 9 / 551

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

1.3 gcc.guide/Contributors

Contributors to GNU CC *********

In addition to Richard Stallman, several people have written parts of $\ensuremath{\mathsf{GNU}}$ CC.

- * The idea of using RTL and some of the optimization ideas came from the program PO written at the University of Arizona by Jack Davidson and Christopher Fraser. See "Register Allocation and Exhaustive Peephole Optimization", Software Practice and Experience 14 (9), Sept. 1984, 857-866.
- * Paul Rubin wrote most of the preprocessor.
- * Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of the Vax machine description.
- * Ted Lemon wrote parts of the RTL reader and printer.
- * Jim Wilson implemented loop strength reduction and some other loop optimizations.
- * Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for the Sony NEWS machine.
- * Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
- * Michael Tiemann of Cygnus Support wrote the front end for C++, as well as the support for inline functions and instruction scheduling. Also the descriptions of the National Semiconductor 32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.
- * Gerald Baumgartner added the signature extension to the C++ front-end.
- * Jan Stein of the Chalmers Computer Society provided support for Genix, as well as part of the 32000 machine description.
- * Randy Smith finished the Sun FPA support.
- * Robert Brown implemented the support for Encore 32000 systems.
- * David Kashtan of SRI adapted GNU CC to VMS.

gcc 10 / 551

- * Alex Crain provided changes for the 3b1.
- \star Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000 series 300.
- * William Schelter did most of the work on the Intel 80386 support.
- * Christopher Smith did the port for Convex machines.
- * Paul Petersen wrote the machine description for the Alliant FX/8.
- * Dario Dariol contributed the four varieties of sample programs that print a copy of their source.
- * Alain Lichnewsky ported GNU CC to the Mips cpu.
- \star Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the Tahoe.
- * Jonathan Stone wrote the machine description for the Pyramid computer.
- * Gary Miller ported GNU CC to Charles River Data Systems machines.
- * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for instruction attributes. He also made changes to better support RISC processors including changes to common subexpression elimination, strength reduction, function calling sequence handling, and condition code support, in addition to generalizing the code for frame pointer elimination.
- * Richard Kenner and Michael Tiemann jointly developed reorg.c, the delay slot scheduler.
- \star Mike Meissner and Tom Wood of Data General finished the port to the Motorola 88000.
- * Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the Tron architecture (specifically, the Gmicro).
- * NeXT, Inc. donated the front end that supports the Objective C language.
- \star James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register stack.
- * Mike Meissner at the Open Software Foundation finished the port to the MIPS cpu, including adding ECOFF debug support, and worked on the Intel port for the Intel 80386 cpu.
- * Ron Guilmette implemented the protoize and unprotoize tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support.

gcc 11 / 551

- * Torbjorn Granlund implemented multiply- and divide-by-constant optimization, improved long long support, and improved leaf function register allocation.
- * Mike Stump implemented the support for Elxsi 64 bit CPU.
- * John Wehle added the machine description for the Western Electric 32000 processor used in several 3b series machines (no relation to the National Semiconductor 32000 processor).
- * Holger Teutsch provided the support for the Clipper cpu.
- * Kresten Krab Thorup wrote the run time support for the Objective C language.
- * Stephen Moshier contributed the floating point emulator that assists in cross-compilation and permits support for floating point numbers wider than 64 bits.
- * David Edelsohn contributed the changes to RS/6000 port to make it support the PowerPC and POWER2 architectures.
- * Steve Chamberlain wrote the support for the Hitachi SH processor.
- \star Peter Schauer wrote the code to allow debugging to work on the Alpha.
- \star Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
- * Michael K. Gschwind contributed the port to the PDP-11.

1.4 gcc.guide/Funding

If you want to have more free software a few years from now, it makes sense for you to help encourage people to contribute funds for its development. The most effective approach known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee distributors to donate part of their selling price to free software developers--the Free Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by how much they give to free software development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project for each disk sold." Don't be satisfied with a vague promise, such as

gcc 12 / 551

"A portion of the profits are donated," since it doesn't give a basis for comparison.

Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions can greatly alter what fraction of the sales price counts as profit. If the price you pay is \$50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone honest, you need to inquire how much they do, and what kind. Some kinds of development make much more long-term difference than others. For example, maintaining a separate version of a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ports such as adding a new CPU to the GNU C compiler contribute more; major new features or packages contribute the most.

By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can assure a steady flow of resources into making more free software.

Copyright (C) 1994 Free Software Foundation, Inc. Verbatim copying and redistribution of this section is permitted without royalty; alteration is not permitted.

1.5 gcc.guide/Look and Feel

This section is a political message from the League for Programming Freedom to the users of GNU CC. We have included it here because the issue of interface copyright is important to the GNU project.

Apple, Lotus, and now CDC have tried to create a new form of legal monopoly: a copyright on a user interface.

An interface is a kind of language—a set of conventions for communication between two entities, human or machine. Until a few years ago, the law seemed clear: interfaces were outside the domain of copyright, so programmers could program freely and implement whatever interface the users demanded. Imitating de—facto standard interfaces, sometimes with improvements, was standard practice in the computer field. These improvements, if accepted by the users, caught on and became the norm; in this way, much progress took place.

Computer users, and most software developers, were happy with this state of affairs. However, large companies such as Apple and Lotus would prefer a different system—one in which they can own interfaces and thereby rid themselves of all serious competitors. They hope that interface copyright will give them, in effect, monopolies on major classes of software.

gcc 13 / 551

Other large companies such as IBM and Digital also favor interface monopolies, for the same reason: if languages become property, they expect to own many de-facto standard languages. But Apple and Lotus are the ones who have actually sued. Apple's lawsuit was defeated, for reasons only partly related to the general issue of interface copyright.

Lotus won lawsuits against two small companies, which were thus put out of business. Then Lotus sued Borland; Lotus won in the trial court (no surprise, since it was the same court that had ruled for Lotus twice before), but the court of appeals ruled in favor of Borland, which was assisted by a friend-of-the-court brief from the League for Programming Freedom.

Lotus appealed the case to the Supreme Court, which heard the case but was unable to reach a decision. This failure means that the appeals court decision stands, in one portion of the United States, and may influence the other appeals courts, but it does not set a nationwide precedent. The battle is not over, and it is not limited to the United States.

The battle is extending into other areas of software as well. In 1995 a company that produced a simulator for a CDC computer was shut down by a copyright lawsuit, in which CDC charged that the simulator infringed the copyright on the manuals for the computer.

If the monopolists get their way, they will hobble the software field:

- * Gratuitous incompatibilities will burden users. Imagine if each car manufacturer had to design a different way to start, stop, and steer a car.
- * Users will be "locked in" to whichever interface they learn; then they will be prisoners of one supplier, who will charge a monopolistic price.
- * Large companies have an unfair advantage wherever lawsuits become commonplace. Since they can afford to sue, they can intimidate smaller developers with threats even when they don't really have a case.
- * Interface improvements will come slower, since incremental evolution through creative partial imitation will no longer occur.

If interface monopolies are accepted, other large companies are waiting to grab theirs:

- * Adobe is expected to claim a monopoly on the interfaces of various popular application programs, if Lotus ultimately wins the case against Borland.
- * Open Computing magazine reported a Microsoft vice president as threatening to sue people who imitate the interface of Windows.

Users invest a great deal of time and money in learning to use computer interfaces. Far more, in fact, than software developers

gcc 14 / 551

invest in developing and even implementing the interfaces. Whoever can own an interface, has made its users into captives, and misappropriated their investment.

To protect our freedom from monopolies like these, a group of programmers and users have formed a grass-roots political organization, the League for Programming Freedom.

The purpose of the League is to oppose monopolistic practices such as interface copyright and software patents. The League calls for a return to the legal policies of the recent past, in which programmers could program freely. The League is not concerned with free software as an issue, and is not affiliated with the Free Software Foundation.

The League's activities include publicizing the issues, as is being done here, and filing friend-of-the-court briefs on behalf of defendants sued by monopolists.

The League's membership rolls include Donald Knuth, the foremost authority on algorithms, John McCarthy, inventor of Lisp, Marvin Minsky, founder of the MIT Artificial Intelligence lab, Guy L. Steele, Jr., author of well-known books on Lisp and C, as well as Richard Stallman, the developer of GNU CC. Please join and add your name to the list. Membership dues in the League are \$42 per year for programmers, managers and professionals; \$10.50 for students; \$21 for others.

Activist members are especially important, but members who have no time to give are also important. Surveys at major ACM conferences have indicated a vast majority of attendees agree with the League on both issues (interface copyrights and software patents). If just ten percent of the programmers who agree with the League join the League, we will probably triumph.

To join, or for more information, phone (617) 243-4091 or write to:

League for Programming Freedom 1 Kendall Square #143 P.O. Box 9171 Cambridge, MA 02139

You can also send electronic mail to lpf@uunet.uu.net.

In addition to joining the League, here are some suggestions from the League for other things you can do to protect your freedom to write programs:

- * Tell your friends and colleagues about this issue and how it threatens to ruin the computer industry.
- * Mention that you are a League member in your .signature, and mention the League's email address for inquiries.
- * Ask the companies you consider working for or working with to make statements against software monopolies, and give preference to those that do.
- \star When employers ask you to sign contracts giving them copyright on

gcc 15 / 551

your work, insist on a clause saying they will not claim the copyright covers imitating the interface.

- * When employers ask you to sign contracts giving them patent rights, insist on clauses saying they can use these rights only defensively. Don't rely on "company policy," since that can change at any time; don't rely on an individual executive's private word, since that person may be replaced. Get a commitment just as binding as the commitment they get from you.
- * Write to Congress to explain the importance of these issues.

House Subcommittee on Intellectual Property 2137 Rayburn Bldg Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights United States Senate Washington, DC 20510

(These committees have received lots of mail already; let's give them even more.)

Democracy means nothing if you don't use it. Stand up and be counted!

1.6 gcc.guide/G++ and GCC

The C, C++, and Objective C versions of the compiler are integrated; the GNU C compiler can compile programs written in C, C++, or Objective C.

"GCC" is a common shorthand term for the GNU C compiler. This is both the most general name for the compiler, and the name used when the emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler "G++". Since there is only one compiler, it is also accurate to call it "GCC" no matter what the language context; however, the term "G++" is more useful when the emphasis is on compiling C++ programs.

We use the name "GNU CC" to refer to the compilation system as a whole, and more specifically to the language-independent part of the compiler. For example, we refer to the optimization options as affecting the behavior of "GNU CC" or sometimes just "the compiler".

Front ends for other languages, such as Ada 9X, Fortran, Modula-3, and Pascal, are under development. These front-ends, like that for C++, are built in subdirectories of GNU CC and link to it. The result is an integrated compiler that can compile programs written in C, C++, Objective C, or any of the languages for which you have installed front

gcc 16 / 551

ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers and those of the GNU CC core. Consult the documentation of the other front ends for the options to use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your C++ program source. There is no intermediate C version of the program. (By contrast, for example, some other implementations use a program that generates a C program from your C++ source.) Avoiding an intermediate C representation of the program means that you get better object code, and better debugging information. The GNU debugger, GDB, works with this information in the object code to give you comprehensive C++ source-level editing capabilities (see C and C++).

1.7 gcc.guide/Invoking GCC

GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and linking. The "overall options" allow you to stop this process at an intermediate stage. For example, the -c option says not to run the linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other options control the assembler and linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are useful for C programs; when an option is only useful with another language (usually C++), the explanation says so explicitly. If the description for a particular option does not mention a source language, you can use that option with all supported languages.

See

Compiling C++ Programs
, for a summary of special options for compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multiletter names; therefore multiple single-letter options may not be grouped: -dr is very different from -d -r.

You can mix options and other arguments. For the most part, the order you use doesn't matter. Order does matter when you use several options of the same kind; for example, if you specify -L more than once, the directories are searched in the order specified.

Many options have long names starting with -f or with -W--for

gcc 17 / 551

example, -fforce-mem, -fstrength-reduce, -Wformat and so on. Most of these have both positive and negative forms; the negative form of -ffoo would be -fno-foo. This manual documents only one of these two forms, whichever one is not the default.

Option Summary
Brief list of all options, without explanations.

Overall Options
Controlling the kind of output:
 an executable, object files, assembler files, or preprocessed source.

Invoking G++
Compiling C++ programs.

C Dialect Options
Controlling the variant of C language compiled.

C++ Dialect Options
Variations on C++.

Warning Options
How picky should the compiler be?

Debugging Options
Symbol tables, measurements, and debugging dumps.

Optimize Options
How much optimization?

Preprocessor Options
Controlling header files and macro definitions.
Also, getting dependency information for Make.

Assembler Options
Passing options to the assembler.

Link Options
Specifying libraries and so on.

Directory Options
Where to find header files and libraries.
Where to find the compiler executable files.

Target Options
Running a cross-compiler, or an old version of GNU CC.

Submodel Options

Specifying minor hardware or convention variations, such as 68010 vs 68020.

Code Gen Options
Specifying conventions for function calls, data layout
 and register usage.

gcc 18 / 551

```
Environment Variables
Env vars that affect GNU CC.
```

Running Protoize
Automatically adding or removing function prototypes.

1.8 gcc.guide/Option Summary

```
Option Summary
_____
  Here is a summary of all the options, grouped by type. Explanations
are in the following sections.
Overall Options
    See
               Options Controlling the Kind of Output
         -c -S -E -o FILE -pipe -v -x LANGUAGE
C Language Options
    See
               Options Controlling C Dialect
         -ansi -fallow-single-precision -fcond-mismatch -fno-asm
         -fno-builtin -fsigned-bitfields -fsigned-char
         -funsigned-bitfields -funsigned-char -fwritable-strings
         -traditional -traditional-cpp -trigraphs
C++ Language Options
    See
               Options Controlling C++ Dialect
         -fall-virtual -fdollars-in-identifiers -felide-constructors
         -fenum-int-equiv -fexternal-templates -ffor-scope -fno-for-scope
         -fhandle-signatures -fmemoize-lookups -fno-default-inline -fno-gnu- ←
             keywords
         -fnonnull-objects -foperator-names -fstrict-prototype
         -fthis-is-variable -nostdinc++ -traditional +eN
Warning Options
    See
               Options to Request or Suppress Warnings
         -fsyntax-only -pedantic -pedantic-errors
         -w -W -Wall -Waggregate-return -Wbad-function-cast
         -Wcast-align -Wcast-qual -Wchar-subscript -Wcomment
         -Wconversion -Wenum-clash -Werror -Wformat
         -Wid-clash-LEN -Wimplicit -Wimport -Winline
         -Wlarger-than-LEN -Wmissing-declarations
         -Wmissing-prototypes -Wnested-externs
         -Wno-import -Woverloaded-virtual -Wparentheses
```

gcc 19 / 551

```
-Wpointer-arith -Wredundant-decls -Wreorder -Wreturn-type -Wshadow
         -Wstrict-prototypes -Wswitch -Wsynth -Wtemplate-debugging
         -Wtraditional -Wtrigraphs -Wuninitialized -Wunused
         -Wwrite-strings
Debugging Options
    See
               Options for Debugging Your Program or GCC
            -dLETTERS -fpretend-float
         -g -gLEVEL -gcoff -gdwarf -gdwarf+
         -ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
         -p -pg -print-file-name=LIBRARY -print-libgcc-file-name
         -print-prog-name=PROGRAM -print-search-dirs -save-temps
Optimization Options
    See
               Options that Control Optimization
         -fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
         -fdelayed-branch -fexpensive-optimizations
         -ffast-math -ffloat-store -fforce-addr -fforce-mem
         -finline-functions -fkeep-inline-functions
         -fno-default-inline -fno-defer-pop -fno-function-cse
         -fno-inline -fno-peephole -fomit-frame-pointer
         -frerun-cse-after-loop -fschedule-insns
         -fschedule-insns2 -fstrength-reduce -fthread-jumps
         -funroll-all-loops -funroll-loops
         -0 -00 -01 -02 -03
Preprocessor Options
    See
               Options Controlling the Preprocessor
         -AQUESTION (ANSWER) -C -dD -dM -dN
         -DMACRO[=DEFN]
                        -E -H
         -idirafter DIR
         -include FILE -imacros FILE
         -iprefix FILE -iwithprefix DIR
         -iwithprefixbefore DIR -isystem DIR
         -M -MD -MM -MMD -MG -nostdinc -P -trigraphs
         -undef -UMACRO -Wp,OPTION
Assembler Option
    See
               Passing Options to the Assembler
         -Wa, OPTION
Linker Options
    See
               Options for Linking
         OBJECT-FILE-NAME - LLIBRARY
         -nostartfiles -nodefaultlibs -nostdlib
         -s -static -shared -symbolic
         -Wl, OPTION -Xlinker OPTION
```

gcc 20 / 551

```
-u SYMBOL
Directory Options
    See
               Options for Directory Search
         -BPREFIX -IDIR -I- -LDIR
Target Options
    See
               Target Options
          -b MACHINE -V VERSION
Machine Dependent Options
    See
               Hardware Models and Configurations
         M680x0 Options
          -m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
         -mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
         -mrtd -mshort -msoft-float
         VAX Options
          -mg -mgnu -munix
         SPARC Options
         -mapp-regs -mcypress -mepilogue -mflat -mfpu -mhard-float
         -mhard-quad-float -mno-app-regs -mno-flat -mno-fpu
         -mno-epilogue -mno-unaligned-doubles
         -msoft-float -msoft-quad-float
          -msparclite -msupersparc -munaligned-doubles -mv8
          SPARC V9 compilers support the following options
          in addition to the above:
         -mmedlow -mmedany
          -mint32 -mint64 -mlong32 -mlong64
          -mno-stack-bias -mstack-bias
         Convex Options
         -mc1 -mc2 -mc32 -mc34 -mc38
         -margcount -mnoargcount
          -mlong32 -mlong64
          -mvolatile-cache -mvolatile-nocache
         AMD29K Options
         -m29000 -m29050 -mbw -mnbw -mdw -mndw
         -mlarge -mnormal -msmall
          -mkernel-registers -mno-reuse-arg-regs
         -{\tt mno-stack-check} \quad -{\tt mno-storem-bug}
         -mreuse-arg-regs -msoft-float -mstack-check
         -mstorem-bug -muser-registers
         ARM Options
         -mapcs -m2 -m3 -m6 -mbsd -mxopen -mno-symrename
```

gcc 21 / 551

```
M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-NUM -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs
RS/6000 and PowerPC Options
-mcpu=CPU TYPE
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mno-powerpc
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mno-new-mnemonics
-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable -mno-relocatable
-mtoc -mno-toc -mtraceback -mno-traceback
-mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mprototype
RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return
MIPS Options
-mabicalls -mcpu=CPU TYPE -membedded-data
-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64
-mgpopt -mhalf-pic -mhard-float -mint64 -mips1
-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-embedded-pic
-mno-gpopt -mno-long-calls
-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float
-m4650 -msingle-float -mmad
-mstats -EL -EB -G NUM -nocpp
i386 Options
-m486 -m386 -mieee-fp -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mreg-alloc=LIST -mregparm=NUM
-malign-jumps=NUM -malign-loops=NUM
-malign-functions=NUM
HPPA Options
-mdisable-fpregs -mdisable-indexing -mfast-indirect-calls
-mgas -mjump-in-delay -mlong-millicode-calls -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
```

gcc 22 / 551

```
-mno-jump-in-delay -mno-millicode-long-calls
          -mno-portable-runtime -mno-soft-float -msoft-float
          -mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime -mschedule=LIST
          Intel 960 Options
          -mCPU TYPE -masm-compat -mclean-linkage
          -mcode-align -mcomplex-addr -mleaf-procedures
          -mic-compat -mic2.0-compat -mic3.0-compat
          -mintel-asm -mno-clean-linkage -mno-code-align
          -mno-complex-addr -mno-leaf-procedures
          -mno-old-align -mno-strict-align -mno-tail-call
          -mnumerics -mold-align -msoft-float -mstrict-align
          -mtail-call
          DEC Alpha Options
          -mfp-regs -mno-fp-regs -mno-soft-float
          -msoft-float
          Clipper Options
          -mc300 -mc400
         H8/300 Options
          -mrelax -mh
          System V Options
          -Qy -Qn -YP, PATHS -Ym, DIR
Code Generation Options
     See
                Options for Code Generation Conventions
          -fcall-saved-REG -fcall-used-REG
          -ffixed-REG -finhibit-size-directive
          -fno-common -fno-ident -fno-gnu-linker
          -fpcc-struct-return -fpic -fPIC
          -freg-struct-return -fshared-data
                                            -fshort-enums
          -fshort-double -fvolatile -fvolatile-global
          -fverbose-asm -fpack-struct +e0 +e1
                 Overall Options
                  Controlling the kind of output:
                        an executable, object files, assembler files,
                        or preprocessed source.
                 C Dialect Options
                  Controlling the variant of C language compiled.
                 C++ Dialect Options
                 Variations on C++.
                Warning Options
                 How picky should the compiler be?
                 Debugging Options
                  Symbol tables, measurements, and debugging dumps.
```

gcc 23 / 551

Optimize Options
How much optimization?

Preprocessor Options

Controlling header files and macro definitions.

Also, getting dependency information for Make.

Assembler Options
Passing options to the assembler.

Link Options
Specifying libraries and so on.

Directory Options
Where to find header files and libraries.
Where to find the compiler executable files.

Target Options
Running a cross-compiler, or an old version of GNU CC.

1.9 gcc.guide/Overall Options

Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. The first three stages apply to an individual source file, and end by producing an object file; linking combines all the object files (those newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

FILE.c

C source code which must be preprocessed.

FILE.i

C source code which should not be preprocessed.

FILE.ii

C++ source code which should not be preprocessed.

FILE.m

Objective-C source code. Note that you must link with the library libobjc.a to make an Objective-C program work.

 ${\tt FILE.h}$

C header file (not to be compiled or linked).

FILE.cc

FILE.cxx

gcc 24 / 551

FILE.cpp

FILE.C

C++ source code which must be preprocessed. Note that in .cxx, the last two letters must both be literally x. Likewise, .C refers to a literal capital C.

FILE.s

Assembler code.

FILE.S

Assembler code which must be preprocessed.

OTHER

An object file to be fed straight into linking. Any file name with no recognized suffix is treated this way.

You can specify the input language explicitly with the -x option:

-x LANGUAGE

Specify explicitly the LANGUAGE for the following input files (rather than letting the compiler choose a default based on the file name suffix). This option applies to all following input files until the next -x option. Possible values for LANGUAGE are:

c objective-c c++
c-header cpp-output c++-cpp-output assembler assembler-with-cpp

-x none

Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if -x has not been used at all).

If you only want some of the stages of compilation, you can use -x (or filename suffixes) to tell gcc where to start, and one of the options -c, -S, or -E to say where gcc is to stop. Note that some combinations (for example, -x cpp-output -E instruct gcc to do nothing at all.

-c

Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix .c, .i, .s, etc., with .o.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S

Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the suffix .c, .i, etc., with .s.

gcc 25 / 551

Input files that don't require compilation are ignored.

-E

Stop after the preprocessing stage; do not run the compiler proper. The output is in the form of preprocessed source code, which is sent to the standard output.

Input files which don't require preprocessing are ignored.

-o FILE

Place output in file FILE. This applies regardless to whatever sort of output is being produced, whether it be an executable file, an object file, an assembler file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use -o when compiling more than one input file, unless you are producing an executable file as output.

If -o is not specified, the default is to put an executable file in a.out, the object file for SOURCE.SUFFIX in SOURCE.o, its assembler file in SOURCE.s, and all preprocessed C source on standard output.

-v

Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the compiler driver program and of the preprocessor and the compiler proper.

-pipe

Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble.

1.10 gcc.guide/Invoking G++

Compiling C++ Programs

C++ source files conventionally use one of the suffixes .C, .cc, cpp, or .cxx; preprocessed C++ files use the suffix .ii. GNU CC recognizes files with these names and compiles them as C++ programs even if you call the compiler the same way as for compiling C programs (usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that understands the C++ language--and under some circumstances, you might want to compile programs from standard input, or otherwise without a suffix that flags them as C++ programs. g++ is a program that calls GNU CC with the default language set to C++, and automatically specifies linking against the GNU class library libg++.

(1) On many systems, the script g++ is also installed with the name c++.

gcc 26 / 551

When you compile C++ programs, you may specify many of the same command-line options that you use for compiling programs in any language; or command-line options meaningful for C and related languages; or options that are meaningful only for C++ programs. See

Options Controlling C Dialect
, for explanations of options for languages related to C. See
Options Controlling C++ Dialect

, for explanations of options that are meaningful only for C++ programs.

----- Footnotes -----

(1) Prior to release 2 of the compiler, there was a separate g++ compiler. That version was based on GNU CC, but not integrated with it. Versions of g++ with a 1.XX version number--for example, g++ version 1.37 or 1.42--are much less reliable than the versions integrated with GCC 2. Moreover, combining G++ 1.XX with a version 2 GCC will simply not work.

1.11 gcc.guide/C Dialect Options

Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++ and Objective C) that the compiler accepts:

-ansi

Support all ANSI standard ${\tt C}$ programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as the asm, inline and typeof keywords, and predefined macros such as unix and vax that identify the type of system you are using. It also enables the undesirable and rarely used ANSI trigraph feature, disallows \$ as part of identifiers, and disables recognition of C++ style // comments.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to work despite -ansi. You would not want to use them in an ANSI C program, of course, but it is useful to put them in header files that might be included in compilations done with -ansi. Alternate predefined macros such as __unix__ and __vax__ are also available, with or without -ansi.

The -ansi option does not cause non-ANSI programs to be rejected gratuitously. For that, -pedantic is required in addition to -ansi. See

Warning Options

The macro __STRICT_ANSI__ is predefined when the -ansi option is

gcc 27 / 551

used. Some header files may notice this macro and refrain from declaring certain functions or defining certain macros that the ANSI standard doesn't call for; this is to avoid interfering with any programs that might use these names for other things.

The functions alloca, abort, exit, and _exit are not builtin functions when -ansi is used.

-fno-asm

Do not recognize asm, inline or typeof as a keyword, so that code can use these words as identifiers. You can use the keywords __asm__, __inline__ and __typeof__ instead. -ansi implies -fno-asm.

In C++, this switch only affects the typeof keyword, since asm and inline are standard keywords. You may want to use the -fno-gnu-keywords flag instead, as it also disables the other, C++-specific, extension keywords such as headof.

-fno-builtin

Don't recognize builtin functions that do not begin with two leading underscores. Currently, the functions affected include abort, abs, alloca, cos, exit, fabs, ffs, labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin functions more efficiently; for instance, calls to alloca may become single instructions that adjust the stack directly, and calls to memcpy may become inline copy loops. The resulting code is often both smaller and faster, but since the function calls no longer appear as such, you cannot set a breakpoint on those calls, nor can you change the behavior of the functions by linking with a different library.

The -ansi option prevents alloca and ffs from being builtin functions, since these functions do not have an ANSI standard meaning.

-trigraphs

Support ANSI C trigraphs. You don't want to know about this brain-damage. The -ansi option implies -trigraphs.

-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

- * All extern declarations take effect globally even if they are written inside of a function definition. This includes implicit declarations of functions.
- * The newer keywords typeof, inline, signed, const and volatile are not recognized. (You can still use the alternative keywords such as __typeof__, __inline__, and so on.)
- \star Comparisons between pointers and integers are always allowed.
- * Integer types unsigned short and unsigned char promote to

gcc 28 / 551

unsigned int.

* Out-of-range floating point literals are not an error.

- * Certain constructs which ANSI regards as a single invalid preprocessing number, such as 0xe-0xd, are treated as expressions instead.
- * String "constants" are not necessarily constant; they are stored in writable space, and identical looking constants are allocated separately. (This is the same as the effect of -fwritable-strings.)
- * All automatic variables not declared register are preserved by longjmp. Ordinarily, GNU C follows ANSI C: automatic variables not declared volatile may be clobbered.
- * The character escape sequences \x and \a evaluate as the literal characters x and a respectively. Without -traditional, \x is a prefix for the hexadecimal representation of a character, and \a produces a bell.
- * In C++ programs, assignment to this is permitted with -traditional. (The option -fthis-is-variable also has this effect.)

You may wish to use -fno-builtin as well as -traditional if your program uses names that are normally GNU C builtin functions for other purposes of its own.

You cannot use -traditional if you include any header files that rely on ANSI C features. Some vendors are starting to ship systems with ANSI C header files and you cannot use -traditional on such systems to compile files that include any system headers.

In the preprocessor, comments convert to nothing at all, rather than to a space. This allows traditional token concatenation.

In preprocessing directive, the # symbol must appear as the first character of a line.

In the preprocessor, macro arguments are recognized within string constants in a macro definition (and their values are stringified, though without additional quote marks, when they appear in such a context). The preprocessor always considers a string constant to end at a newline.

The predefined macro __STDC__ is not defined when you use -traditional, but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are not affected by -traditional). If you need to write header files that work differently depending on whether -traditional is in use, by testing both of these predefined macros you can distinguish four situations: GNU C,

gcc 29 / 551

traditional GNU C, other ANSI C compilers, and other old C compilers. The predefined macro __STDC_VERSION__ is also not defined when you use -traditional. See Standard Predefined Macros, for more discussion of these and other predefined macros.

The preprocessor considers a string constant to end at a newline (unless the newline is escaped with \setminus). (Without -traditional, string constants can contain the newline character as typed.)

-traditional-cpp

Attempt to support some aspects of traditional C preprocessors. This includes the last five items in the table immediately above, but none of the other effects of -traditional.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when it depends on the signedness of an object. But many programs have been written to use plain char and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char, even though its behavior is always just like one of those two.

-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to -fno-unsigned-char, which is the negative form of -funsigned-char. Likewise, the option -fno-signed-char is equivalent to -funsigned-char.

- -fsigned-bitfields
- -funsigned-bitfields
- -fno-signed-bitfields
- -fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned, when the declaration does not use either signed or unsigned. By default, such a bitfield is signed, because this is consistent: the basic integer types such as int are signed types.

However, when -traditional is used, bitfields are all unsigned no matter what.

-fwritable-strings

gcc 30 / 551

Store string constants in the writable data segment and don't uniquize them. This is for compatibility with old programs which assume they can write into string constants. The option -traditional also has this effect.

Writing into string constants is a very bad idea; "constants" should be constant.

-fallow-single-precision

Do not promote single precision math operations to double precision, even when compiling with -traditional.

Traditional K&R C promotes all floating point operations to double precision, regardless of the sizes of the operands. On the architecture for which you are compiling, single precision may be faster than double precision. If you must use -traditional, but want to use single precision operations when the operands are single precision, use this option. This option has no effect when compiling with ANSI or GNU C conventions (the default).

1.12 gcc.guide/C++ Dialect Options

Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs; but you can also use most of the GNU compiler options regardless of what language your program is in. For example, you might compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

In this example, only -felide-constructors is an option meant only for C++ programs; you can use the other options with any language supported by $\mbox{GNU CC.}$

Here is a list of options that are only for compiling C++ programs:

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around bugs in the access control code.

-fall-virtual

Treat all possible member functions as virtual, implicitly. All member functions (except for constructor functions and new or delete member operators) are treated as virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made through the internal table of virtual functions. Under some circumstances, the compiler can determine that a call to a given virtual function can be made directly; in these cases the calls are direct in any case.

gcc 31 / 551

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting to modify the storage allocated. The current Working Paper requires that operator new never return a null pointer, so this check is normally unnecessary.

-fconserve-space

Put uninitialized or runtime-initialized global variables into the common segment, as C does. This saves space in the executable at the cost of not diagnosing duplicate definitions. If you compile with this flag and your program mysteriously crashes after main() has completed, you may have an object that is being destroyed twice because two definitions were merged.

-fdollars-in-identifiers

Accept \$ in identifiers. You can also explicitly prohibit use of \$ with the option -fno-dollars-in-identifiers. (GNU C++ allows \$ by default on some target systems but not others.) Traditional C allowed the character \$ to form part of identifiers. However, ANSI C and C++ forbid \$ in identifiers.

-fenum-int-equiv

Anachronistically permit implicit conversion of int to enumeration types. Current C++ allows conversion of enum to int, but not the other way around.

-fexternal-templates

Cause template instantiations to obey #pragma interface and implementation; template instances are emitted or not according to the location of the template definition. See

Template Instantiation , for more information.

-falt-external-templates

Similar to -fexternal-templates, but template instances are emitted or not according to the place where they are first instantiated. See

Template Instantiation , for more information.

-ffor-scope

-fno-for-scope

If -ffor-scope is specified, the scope of variables declared in a for-init-statement is limited to the for loop itself, as specified by the draft C++ standard. If -fno-for-scope is specified, the scope of variables declared in a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of gcc, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give a warning for old-style code that would otherwise be invalid, or have different behavior.

-fno-gnu-keywords

Do not recognize classof, headof, signature, sigof or typeof as a

gcc 32 / 551

keyword, so that code can use these words as identifiers. You can
use the keywords __classof__, __headof__, __signature__,
__sigof__, and __typeof__ instead. -ansi implies
-fno-gnu-keywords.

-fno-implicit-templates

Never emit code for templates which are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. See

Template Instantiation , for more information.

-fhandle-signatures

Recognize the signature and sigof keywords for specifying abstract types. The default (-fno-handle-signatures) is not to recognize them. See

Type Abstraction using Signatures

-fhuge-objects

Support virtual function calls for objects that exceed the size representable by a short int. Users should not use this flag by default; if you need to use it, the compiler will tell you so. If you compile any of your code with this flag, you must compile all of your code with this flag (including libg++, if you use it).

This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled by #pragma implementation. This will cause linker errors if these functions are not inlined everywhere they are called.

-fmemoize-lookups

-fsave-memoized

Use heuristics to compile faster. These heuristics are not enabled by default, since they are only effective for certain input files. Other input files compile more slowly.

The first time the compiler must build a call to a member function (or reference to a data member), it must (1) determine whether the class implements member functions of that name; (2) resolve which member function to call (which involves figuring out what sorts of type conversions need to be made); and (3) check the visibility of the member function to the caller. All of this adds up to slower compilation. Normally, the second time a call is made to that member function (or reference to that data member), it must go through the same lengthy process again. This means that code like this:

```
cout << "This " << p << " has " << n << " legs.\n";</pre>
```

makes six passes through all three steps. By using a software cache, a "hit" significantly reduces this cost. Unfortunately, using the cache introduces another layer of mechanisms which must be implemented, and so incurs its own overhead. -fmemoize-lookups

gcc 33 / 551

enables the software cache.

Because access privileges (visibility) to members and member functions may differ from one function context to the next, G++ may need to flush the cache. With the -fmemoize-lookups flag, the cache is flushed after every function that is compiled. The -fsave-memoized flag enables the same software cache, but when the compiler determines that the context of the last function compiled would yield the same access privileges of the next function to compile, it preserves the cache. This is most helpful when defining many member functions for the same class: with the exception of member functions which are friends of other classes, each member function has exactly the same access privileges as every other, and the cache need not be flushed.

The code that implements these flags has rotted; you should probably avoid using them.

-fstrict-prototype

Within an extern "C" linkage specification, treat a function declaration with no arguments, such as int foo ();, as declaring the function to take no arguments. Normally, such a declaration means that the function foo can take any combination of arguments, as in C. -pedantic implies -fstrict-prototype unless overridden with -fno-strict-prototype.

This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects

Don't assume that a reference is initialized to refer to a valid object. Although the current C++ Working Paper prohibits null references, some old code may rely on them, and you can use -fno-nonnull-objects to turn on checking.

At the moment, the compiler only does this checking for conversions to virtual base classes.

-foperator-names

Recognize the operator name keywords and, bitand, bitor, compl, not, or and xor as synonyms for the symbols they refer to. -ansi implies -foperator-names.

-fthis-is-variable

Permit assignment to this. The incorporation of user-defined free store management into C++ has made assignment to this an anachronism. Therefore, by default it is invalid to assign to this within a class member function; that is, GNU C++ treats this in a member function of class X as a non-lvalue of type X \star . However, for backwards compatibility, you can make it valid with -fthis-is-variable.

-fvtable-thunks

Use thunks to implement the virtual function dispatch table (vtable). The traditional (cfront-style) approach to implementing vtables was to store a pointer to the function and two offsets for adjusting the this pointer at the call site. Newer implementations store a single pointer to a thunk function which

gcc 34 / 551

does any necessary adjustment and then calls the target function.

This option also enables a heuristic for controlling emission of vtables; if a class has any non-inline virtual functions, the vtable will be emitted in the translation unit containing the first one of those.

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do still search the other standard directories. (This option is used when building libg++.)

-traditional

For C++ programs (in addition to the effects that apply to both C and C++), this has the same effect as -fthis-is-variable. See

Options Controlling C Dialect

In addition, these optimization, warning, and code generation options have meanings only for C++ programs:

-fno-default-inline

Do not assume inline for functions defined inside a class scope. See

Options That Control Optimization

-Wenum-clash

-Woverloaded-virtual

-Wtemplate-debugging

Warnings that apply only to C++ programs. See

Options to Request or Suppress Warnings

+eN

Control how virtual function definitions are used, in a fashion compatible with cfront 1.x. See

Options for Code Generation Conventions

1.13 gcc.guide/Warning Options

Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W,

gcc 35 / 551

for example -Wimplicit to request warnings on implicit declarations. Each of these specific warning options also has a negative form beginning -Wno- to turn off warnings; for example, -Wno-implicit. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by $\ensuremath{\mathsf{GNU}}$ CC:

-fsyntax-only

Check the code for syntax errors, but ${\tt don't}$ do anything beyond that.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option (though a rare few will require -ansi). However, without this option, certain GNU extensions and traditional C features are supported as well. With this option, they are rejected.

-pedantic does not cause warning messages for use of the alternate keywords whose names begin and end with ___. Pedantic warnings are also disabled in the expression that follows __extension__. However, only system header files should use these escape routes; application programs should avoid them. See

Alternate Keywords

This option is not intended to be useful; it exists only to satisfy pedants who would otherwise claim that GNU CC fails to support the ANSI standard.

Some users try to use -pedantic to check programs for strict ANSI C conformance. They soon find that it does not do quite what they want: it finds some non-ANSI practices, but not all--only those for which ANSI C requires a diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some instances, but would require considerable additional work and would be quite different from -pedantic. We recommend, rather, that users take advantage of the extensions of GNU C and disregard the limitations of other compilers. Aside from certain supercomputers and obsolete small machines, there is less and less reason ever to use any other C compiler other than for bootstrapping GNU CC.

-pedantic-errors

Like -pedantic, except that errors are produced rather than warnings.

-w

Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of #import.

gcc 36 / 551

-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as programmers often forget that this type is signed on some machines.

-Wcomment

Warn whenever a comment-start sequence /* appears in a comment.

-Wformat

Check calls to printf and scanf, etc., to make sure that the arguments supplied have types appropriate to the format string specified.

-Wimplicit

Warn whenever a function or parameter is implicitly declared.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected, or when operators are nested whose precedence people often get confused about.

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int. Also warn about any return statement with no return-value in a function whose return-type is not void.

-Wswitch

Warn whenever a switch statement has an index of enumeral type and lacks a case for one or more of the named codes of that enumeration. (The presence of a default label prevents this warning.) case labels outside the enumeration range also provoke warnings when this option is used.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused

Warn whenever a variable is unused aside from its declaration, whenever a function is declared static but never defined, whenever a label is declared but not used, and whenever a statement computes a result that is explicitly not used.

To suppress this warning for an expression, simply cast it to void. For unused variables and parameters, use the unused attribute (see

Variable Attributes

-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data flow information that is computed only when optimizing. If you don't specify -O, you simply won't get these warnings.

gcc 37 / 551

These warnings occur only for variables that are candidates for register allocation. Therefore, they do not occur for a variable that is declared volatile, or whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a value that itself is never used, because such computations may be deleted by data flow analysis before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see all the reasons why the code might be correct despite appearing to have an error. Here is one example of how this can happen:

```
{
  int x;
  switch (y)
    {
    case 1: x = 1;
     break;
    case 2: x = 4;
     break;
    case 3: x = 5;
  }
  foo (x);
}
```

If the value of y is always 1, 2 or 3, then x is always initialized, but $GNU\ CC\ doesn't\ know\ this.$ Here is another common case:

```
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;
}
```

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functions you use that never return as noreturn. See

Function Attributes

-Wenum-clash

Warn about conversion between different enumeration types. (C++ only).

-Wreorder (C++ only)

Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance:

gcc 38 / 551

```
struct A {
  int i;
  int j;
  A(): j (0), i (1) { }
};
```

Here the compiler will warn that the member initializers for i and j will be rearranged to match the declaration order of the members.

-Wtemplate-debugging

When using templates in a C++ program, warn if debugging is not yet fully available (C++ only).

-Wall

All of the above -W options combined. These are all the options which pertain to usage that we recommend avoiding and that we believe is easy to avoid, even in conjunction with macros.

The remaining -W... options are not implied by -Wall because they warn about constructions that we consider reasonable to use, on occasion, in clean programs.

-W

Print extra warning messages for these events:

* A nonvolatile automatic variable might be changed by a call to longjmp. These warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be called; in fact, a signal handler could call it at any point in the code. As a result, you may get a warning even when there is in fact no problem because longjmp cannot in fact be called at the place which would cause a problem.

* A function can return either with or without a value. (Falling off the end of the function body is considered returning without a value.) For example, this function would evoke such a warning:

```
foo (a)
{
  if (a > 0)
    return a;
}
```

- * An expression-statement or the left-hand side of a comma expression contains no side effects. To suppress the warning, cast the unused expression to void. For example, an expression such as x[i,j] will cause a warning, but x[(void)i,j] will not.
- \star An unsigned value is compared against zero with < or <=.
- * A comparison like $x \le y \le z$ appears; this is equivalent to

gcc 39 / 551

(x<=y ? 1 : 0) <= z, which is a different interpretation from that of ordinary mathematical notation.

- * Storage-class specifiers like static are not the first things in a declaration. According to the C Standard, this usage is obsolescent.
- * If -Wall or -Wunused is also specified, warn about unused arguments.
- * An aggregate has a partly bracketed initializer. For example, the following code would evoke such a warning, because braces are missing around the initializer for x.h:

```
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };
```

-Wtraditional

Warn about certain constructs that behave differently in traditional and ${\tt ANSI}\ {\tt C.}$

- * Macro arguments occurring within string constants in the macro body. These would substitute the argument in traditional C, but are part of the constant in ANSI C.
- * A function declared external in one block and then used after the end of the block.
- * A switch statement has an operand of type long.

-Wshadow

Warn whenever a local variable shadows another local variable.

-Wid-clash-LEN

Warn whenever two distinct identifiers match in the first LEN characters. This may help you prepare a program that will compile with certain obsolete, brain-damaged compilers.

-Wlarger-than-LEN

Warn whenever an object of larger than LEN bytes is defined.

-Wpointer-arith

Warn about anything that depends on the "size of" a function type or of void. GNU C assigns these types a size of 1, for convenience in calculations with void * pointers and pointers to functions.

-Wbad-function-cast

Warn whenever a function call is cast to a non-matching type. For example, warn if int malloc() is cast to anything *.

-Wcast-qual

Warn whenever a pointer is cast so as to remove a type qualifier from the target type. For example, warn if a const char \ast is cast to an ordinary char \ast .

gcc 40 / 551

-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the target is increased. For example, warn if a char * is cast to an int * on machines where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

Give string constants the type const char[LENGTH] so that copying the address of one into a non-const char * pointer will get a warning. These warnings will help you find at compile time code that can try to write into a string constant, but only if you have been very careful about using const in declarations and prototypes. Otherwise, it will just be a nuisance; this is why we did not make -Wall request these warnings.

-Wconversion

Warn if a prototype causes a type conversion that is different from what would happen to the same argument in the absence of a prototype. This includes conversions of fixed point to floating and vice versa, and conversions changing the width or signedness of a fixed point argument except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an unsigned type. For example, warn about the assignment x = -1 if x is unsigned. But do not warn about explicit casts like (unsigned) -1.

-Waggregate-return

Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted without a warning if preceded by a declaration which specifies the argument types.)

-Wmissing-prototypes

Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself provides a prototype. The aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations

Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a prototype. Use this option to detect global functions that are not declared in header files.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases where multiple declaration is valid and changes nothing.

-Wnested-externs

gcc 41 / 551

Warn if an extern declaration is encountered within an function.

-Winline

Warn if a function can not be inlined, and either it was declared as inline, or else the -finline-functions option was given.

-Woverloaded-virtual

Warn when a derived class function declaration may be an error in defining a virtual function (C++ only). In a derived class, the definitions of virtual functions must match the type signature of a virtual function declared in the base class. With this option, the compiler warns when you define a function with the same name as a virtual function, but with a type signature that does not match any declarations from the base class.

```
-Wsynth (C++ only)
    Warn when g++'s synthesis behavior does not match that of cfront.
For instance:
    struct A {
        operator int ();
        A& operator = (int);
    };
    main ()
    {
        A a,b;
        a = b;
    }
}
```

In this example, g++ will synthesize a default A& operator = (const A&);, while cfront will use the user-defined operator =.

-Werror

Make all warnings into errors.

1.14 gcc.guide/Debugging Options

Options for Debugging Your Program or GNU CC

 ${\tt GNU}$ CC has various special options that are used for debugging either your program or ${\tt GCC:}$

-g

Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, -g enables use of extra debugging information that only GDB can use; this extra information makes debugging work better in GDB but will probably make other debuggers crash or refuse to read the program. If you want to

gcc 42 / 551

control for certain whether to generate the extra information, use
-gstabs+, -gstabs, -gxcoff+, -gxcoff, -gdwarf+, or -gdwarf
(see below).

Unlike most other C compilers, GNU CC allows you to use -g with -O. The shortcuts taken by optimized code may occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where you did not expect it; some statements may not be executed because they compute constant results or their values were already at hand; some statements may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the capability for more than one debugging format.

-qqdb

Produce debugging information in the native format (if that is supported), including GDB extensions if at all possible.

-gstabs

Produce debugging information in stabs format (if that is supported), without GDB extensions. This is the format used by DBX on most BSD systems. On MIPS, Alpha and System V Release 4 systems this option produces stabs debugging output which is not understood by DBX or SDB. On System V Release 4 systems this option requires the GNU assembler.

-gstabs+

Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program.

-gcoff

Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems prior to System V Release 4.

-gxcoff

Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+

Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program, and may cause assemblers other than the GNU assembler (GAS) to fail with an error.

-gdwarf

gcc 43 / 551

Produce debugging information in DWARF format (if that is supported). This is the format used by SDB on most System V Release 4 systems.

-qdwarf+

Produce debugging information in DWARF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program.

- -qLEVEL
- -ggdbLEVEL
- -gstabsLEVEL
- -gcoffLEVEL
- -gxcoffLEVEL
- -gdwarfLEVEL

Request debugging information and also use LEVEL to specify how much information. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the program that you don't plan to debug. This includes descriptions of functions and external variables, but no information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro expansion when you use -g3.

-р

Generate extra code to write profile information suitable for the analysis program prof. You must use this option when compiling the source files you want data about, and you must also use it when linking.

-pg

Generate extra code to write profile information suitable for the analysis program gprof. You must use this option when compiling the source files you want data about, and you must also use it when linking.

-a

Generate extra code to write profile information for basic blocks, which will record the number of times each basic block is executed, the basic block start address, and the function name containing the basic block. If -g is used, the line number and filename of the start of the basic block will also be recorded. If not overridden by the machine description, the default action is to append to the text file bb.out.

This data could be analyzed by a program like tcov. Note, however, that the format of the data is not what tcov expects. Eventually GNU gprof should be extended to process this data.

-dletters

Says to make debugging dumps during compilation at times specified by LETTERS. This is used for debugging the compiler. The file names for most of the dumps are made by appending a word to the

gcc 44 / 551

source file name (e.g. foo.c.rtl or foo.c.jump). Here are the

possible letters for use in LETTERS, and their meanings: М Dump all macro definitions, at the end of preprocessing, and write no output. Ν Dump all macro names, at the end of preprocessing. D Dump all macro definitions, at the end of preprocessing, in addition to normal output. У Dump debugging information during parsing, to standard error. r Dump after RTL generation, to FILE.rtl. X Just generate RTL for a function instead of compiling it. Usually used with r. j Dump after first jump optimization, to FILE.jump. S Dump after CSE (including the jump optimization that sometimes follows CSE), to FILE.cse. L Dump after loop optimization, to FILE.loop. t Dump after the second CSE pass (including the jump optimization that sometimes follows CSE), to FILE.cse2. f Dump after flow analysis, to FILE.flow. Dump after instruction combination, to the file FILE.combine. S Dump after the first instruction scheduling pass, to FILE.sched. 1 Dump after local register allocation, to FILE.lreg. g Dump after global register allocation, to FILE.greg. R Dump after the second instruction scheduling pass, to FILE.sched2.

gcc 45 / 551

J Dump after last jump optimization, to FILE.jump2.

d
 Dump after delayed branch scheduling, to FILE.dbr.

bump after conversion from registers to stack, to FILE.stack.

Produce all the dumps listed above.

m
Print statistics on memory usage, at the end of the run, to
standard error.

Annotate the assembler output with a comment indicating which pattern and alternative was used.

-fpretend-float

When running a cross-compiler, pretend that the target machine uses the same floating point format as the host machine. This causes incorrect output of the actual floating constants, but the actual instruction sequence will probably be the same as GNU CC would make when running on the target machine.

-save-temps

Store the usual "temporary" intermediate files permanently; place them in the current directory and name them based on the source file. Thus, compiling foo.c with -c -save-temps would produce files foo.i and foo.s, as well as foo.o.

-print-file-name=LIBRARY

Print the full absolute name of the library file LIBRARY that would be used when linking—and don't do anything else. With this option, GNU CC does not compile or link anything; it just prints the file name.

-print-prog-name=PROGRAM

Like -print-file-name, but searches for a program such as cpp.

-print-libgcc-file-name

Same as -print-file-name=libgcc.a.

This is useful when you use -nostdlib or -nodefaultlibs but you do want to link with libgcc.a. You can do

gcc -nostdlib FILES... 'gcc -print-libgcc-file-name'

-print-search-dirs

Print the name of the configured installation directory and a list of program and library directories gcc will search—and don't do anything else.

This is useful when gcc prints the error message installation

gcc 46 / 551

problem, cannot exec cpp: No such file or directory. To resolve this you either need to put cpp and the other compiler components where gcc expects to find them, or you can set the environment variable GCC_EXEC_PREFIX to the directory where you installed them. Don't forget the trailing '/'. See

Environment Variables

1.15 gcc.guide/Optimize Options

Options That Control Optimization

These options control various sorts of optimizations:

-0 -01

Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function.

Without -O, the compiler's goal is to reduce the cost of compilation and to make debugging produce the expected results. Statements are independent: if you stop the program with a breakpoint between statements, you can then assign a new value to any variable or change the program counter to any other statement in the function and get exactly the results you would expect from the source code.

Without -0, the compiler only allocates variables declared register in registers. The resulting compiled code is a little worse than produced by PCC without -0.

With -O, the compiler tries to reduce code size and execution time.

When you specify -O, the compiler turns on -fthread-jumps and -fdefer-pop on all machines. The compiler turns on -fdelayed-branch on machines that have delay slots, and -fomit-frame-pointer on machines that can support debugging even without a frame pointer. On some machines the compiler also turns on other flags.

-02

Optimize even more. GNU CC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -02. As compared to -0, this option increases both compilation time and the performance of the generated code.

-O2 turns on all optional optimizations except for loop unrolling and function inlining. It also turns on the -fforce-mem option on all machines and frame pointer elimination on machines where doing so does not interfere with debugging.

gcc 47 / 551

-03

Optimize yet more. -03 turns on all optimizations specified by -02 and also turns on the inline-functions option.

-00

Do not optimize.

If you use multiple -O options, with or without level numbers, the last such option is the one that is effective.

Options of the form -fFLAG specify machine-independent flags. Most flags have both positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed--the one which is not the default. You can figure out the other form by either removing no- or adding it.

-ffloat-store

Do not store floating point variables in registers, and inhibit other options that might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep more precision than a double is supposed to have. For most programs, the excess precision does only good, but a few programs rely on the precise definition of IEEE floating point. Use -ffloat-store for such programs.

-fno-default-inline

Do not make member functions inline by default merely because they are defined inside the class scope (C++ only). Otherwise, when you specify -O, member functions defined inside class scope are compiled inline by default; i.e., you don't need to add inline in front of the member function name.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function returns. For machines which must pop arguments after a function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once.

-fforce-mem

Force memory operands to be copied into registers before doing arithmetic on them. This produces better code by making all memory references potential common subexpressions. When they are not common subexpressions, instruction combination should eliminate the separate register-load. The -02 option turns on this option.

-fforce-addr

Force memory address constants to be copied into registers before doing arithmetic on them. This may produce better code just as -fforce-mem may.

-fomit-frame-pointer

Don't keep the frame pointer in a register for functions that don't need one. This avoids the instructions to save, set up and restore frame pointers; it also makes an extra register available

gcc 48 / 551

in many functions. It also makes debugging impossible on some machines.

On some machines, such as the Vax, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro FRAME_POINTER_REQUIRED controls whether a target machine supports this flag. See

Registers

.

-fno-inline

Don't pay attention to the inline keyword. Normally this option is used to keep the compiler from expanding any functions inline. Note that if you are not optimizing, no functions can be expanded inline.

-finline-functions

Integrate all simple functions into their callers. The compiler heuristically decides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static, then the function is normally not output as assembler code in its own right.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared static, nevertheless output a separate run-time callable version of the function.

-fno-function-cse

Do not put function addresses in registers; make each instruction that calls a constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler output may be confused by the optimizations performed when this option is not used.

-ffast-math

This option allows GCC to violate some ANSI or IEEE rules and/or specifications in the interest of optimizing code for speed. For example, it allows the compiler to assume arguments to the sqrt function are non-negative numbers and that no floating-point values are NaNs.

This option should never be turned on by any -0 option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ANSI rules/specifications for math functions.

The following options control specific optimizations. The -02 option turns on all of these optimizations except -funroll-loops and -funroll-all-loops. On most machines, the -0 option turns on the -fthread-jumps and -fdelayed-branch options, but specific machines may handle it differently.

gcc 49 / 551

You can use the following flags in the rare cases when "fine-tuning" of optimizations to be performed is desired.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of iteration variables.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of the second branch or a point immediately following it, depending on whether the condition is known to be true or false.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when the target of the jump is not reached by any other path. For example, when CSE encounters an if statement with an else clause, CSE will follow the jump when the condition tested is false.

-fcse-skip-blocks

This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which conditionally skip over blocks. When CSE encounters a simple if statement with no else clause, -fcse-skip-blocks causes CSE to follow the jump around the body of the if.

-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been performed.

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions.

-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable. This helps machines that have slow floating point or memory load instructions by allowing other instructions to be issued until the result of the load or floating point instruction is required.

-fschedule-insns2

Similar to -fschedule-insns, but requests an additional pass of instruction scheduling after register allocation has been done. This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than one cycle.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered

gcc 50 / 551

by function calls, by emitting extra instructions to save and restore the registers around such calls. Such allocation is done only when it seems to result in better code than would otherwise be produced.

This option is enabled by default on certain machines, usually those which have no call-preserved registers to use instead.

-funroll-loops

Perform the optimization of loop unrolling. This is only done for loops whose number of iterations can be determined at compile time or run time. -funroll-loop implies both -fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all loops and usually makes programs run more slowly.

- -funroll-all-loops implies -fstrength-reduce as well as
- -frerun-cse-after-loop.

-fno-peephole

Disable any machine-specific peephole optimizations.

1.16 gcc.guide/Preprocessor Options

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual compilation.

If you use the -E option, nothing is done except preprocessing. Some of these options make sense only together with -E because they cause the preprocessor output to be unsuitable for actual compilation.

-include FILE

Process FILE as input before processing the regular input file. In effect, the contents of FILE are compiled first. Any -D and -U options on the command line are always processed before -include FILE, regardless of the order in which they are written. All the -include and -imacros options are processed in the order in which they are written.

-imacros FILE

Process FILE as input, discarding the resulting output, before processing the regular input file. Because the output generated from FILE is discarded, the only effect of -imacros FILE is to make the macros defined in FILE available for use in the main input.

Any -D and -U options on the command line are always processed before -imacros FILE, regardless of the order in which they are written. All the -include and -imacros options are processed in

gcc 51 / 551

the order in which they are written.

-idirafter DIR

Add the directory DIR to the second include path. The directories on the second include path are searched when a header file is not found in any of the directories in the main include path (the one that \neg I adds to).

-iprefix PREFIX

Specify PREFIX as the prefix for subsequent -iwithprefix options.

-iwithprefix DIR

Add a directory to the second include path. The directory's name is made by concatenating PREFIX and DIR, where PREFIX was specified previously with -iprefix. If you have not specified a prefix yet, the directory containing the installed passes of the compiler is used as the default.

-iwithprefixbefore DIR

Add a directory to the main include path. The directory's name is made by concatenating PREFIX and DIR, as in the case of -iwithprefix.

-isystem DIR

Add a directory to the beginning of the second include path, marking it as a system directory, so that it gets the same special treatment as is applied to the standard system directories.

-nostdinc

Do not search the standard system directories for header files. Only the directories you have specified with -I options (and the current directory, if appropriate) are searched. See

Directory Options , for information on -I.

By using both -nostdinc and -I-, you can limit the include-file search path to only those directories you specify explicitly.

-undef

Do not predefine any nonstandard macros. (Including architecture flags).

-E

Run only the C preprocessor. Preprocess all the C source files specified and output the results to standard output or to the specified output file.

-C

Tell the preprocessor not to discard comments. Used with the -E option.

-P

Tell the preprocessor not to generate #line directives. Used with the -E option.

-M

gcc 52 / 551

Tell the preprocessor to output a rule suitable for make describing the dependencies of each object file. For each source file, the preprocessor outputs one make-rule whose target is the object file name for that source file and whose dependencies are all the #include header files it uses. This rule may be a single line or may be continued with \ -newline if it is long. The list of rules is printed on standard output instead of the preprocessed C program.

-M implies -E.

Another way to specify output of a make rule is by setting the environment variable DEPENDENCIES_OUTPUT (see

Environment Variables
).

-MM

Like -M but the output mentions only the user header files included with #include "FILE". System header files included with #include <FILE> are omitted.

-MD

Like -M but the dependency information is written to a file made by replacing ".c" with ".d" at the end of the input file names. This is in addition to compiling the file as specified---MD does not inhibit ordinary compilation the way -M does.

In Mach, you can use the utility md to merge multiple dependency files into a single dependency file suitable for using with the make command.

-MMD

Like -MD except mention only user header files, not system header files.

-MG

Treat missing header files as generated files and assume they live in the same directory as the source file. If you specify -MG, you must also specify either -M or -MM. -MG is not supported with -MD or -MMD.

-H

Print the name of each header file used, in addition to other normal activities.

-AQUESTION (ANSWER)

Assert the answer ANSWER for QUESTION, in case it is tested with a preprocessing conditional such as $\#if\ \#QUESTION\ (ANSWER)$. -A-disables the standard assertions that normally describe the target machine.

-DMACRO

Define macro MACRO with the string 1 as its definition.

-DMACRO=DEFN

Define macro MACRO as DEFN. All instances of -D on the command

gcc 53 / 551

line are processed before any -U options.

-UMACRO

Undefine macro MACRO. -U options are evaluated after all -D options, but before any -include and -imacros options.

-dM

Tell the preprocessor to output only a list of the macro definitions that are in effect at the end of preprocessing. Used with the -E option.

-dD

Tell the preprocessing to pass all macro definitions into the output, in their proper sequence in the rest of the output.

-dN

Like $-\mathrm{d}D$ except that the macro arguments and contents are omitted. Only $\#\mathrm{define}\ \mathrm{NAME}\ \mathrm{is}\ \mathrm{included}\ \mathrm{in}\ \mathrm{the}\ \mathrm{output}.$

-trigraphs

Support ANSI C trigraphs. The -ansi option also has this effect.

-Wp, OPTION

Pass OPTION as an option to the preprocessor. If OPTION contains commas, it is split into multiple options at the commas.

1.17 gcc.guide/Assembler Options

Passing Options to the Assembler

You can pass options to the assembler.

-Wa, OPTION

Pass OPTION as an option to the assembler. If OPTION contains commas, it is split into multiple options at the commas.

1.18 gcc.guide/Link Options

Options for Linking

These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is not doing a link step.

OBJECT-FILE-NAME

A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are

gcc 54 / 551

distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the linker.

-c

-S -E

If any of these options is used, then the linker is not run, and object file names should not be used as arguments. See

Overall Options

.

-1LIBRARY

Search the library named LIBRARY when linking.

It makes a difference where in the command you write this option; the linker searches processes libraries and object files in the order they are specified. Thus, foo.o -lz bar.o searches library z after file foo.o but before bar.o. If bar.o refers to functions in z, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a file named libLIBRARY.a. The linker then uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories plus any that you specify with -L.

Normally the files found this way are library files—archive files whose members are object files. The linker handles an archive file by scanning through it for members which define symbols that have so far been referenced but not defined. But if the file that is found is an ordinary object file, it is linked in the usual fashion. The only difference between using an -l option and specifying a file name is that -l surrounds LIBRARY with lib and .a and searches several directories.

-lobjc

You need this special case of the -l option in order to link an Objective C program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system libraries are used normally, unless -nostdlib or -nodefaultlibs is used.

-nodefaultlibs

Do not use the standard system libraries when linking. Only the libraries you specify will be passed to the linker. The standard startup files are used normally, unless -nostartfiles is used.

-nostdlib

Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify will be passed to the linker.

gcc 55 / 551

One of the standard libraries bypassed by -nostdlib and -nodefaultlibs is libgcc.a, a library of internal subroutines that GNU CC uses to overcome shortcomings of particular machines, or special needs for some languages. (See

Interfacing to GNU CC Output

, for more discussion of libgcc.a.) In

most cases, you need libgcc.a even when you want to avoid other standard libraries. In other words, when you specify -nostdlib or -nodefaultlibs you should usually specify -lgcc as well. This ensures that you have no unresolved references to internal GNU CC library subroutines. (For example, __main, used to ensure C++ constructors will be called; see

collect2

.)

-s

Remove all symbol table and relocation information from the executable.

-static

On systems that support dynamic linking, this prevents linking with the shared libraries. On other systems, this option has no effect.

-shared

Produce a shared object which can then be linked with other objects to form an executable. Only a few systems support this option.

-symbolic

Bind references to global symbols when building a shared object. Warn about any unresolved references (unless overridden by the link editor option -Xlinker -z -Xlinker defs). Only a few systems support this option.

-Xlinker OPTION

If you want to pass an option that takes an argument, you must use -Xlinker twice, once for the option and once for the argument. For example, to pass -assert definitions, you must write -Xlinker -assert -Xlinker definitions. It does not work to write -Xlinker "-assert definitions", because this passes the entire string as a single argument, which is not what the linker expects.

-W1,OPTION

Pass OPTION as an option to the linker. If OPTION contains commas, it is split into multiple options at the commas.

-u SYMBOL

Pretend the symbol SYMBOL is undefined, to force linking of library modules to define it. You can use -u multiple times with different symbols to force loading of additional library modules.

gcc 56 / 551

1.19 gcc.guide/Directory Options

Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the compiler:

-IDIR

Add the directory DIRECTORY to the head of the list of directories to be searched for header files. This can be used to override a system header file, substituting your own version, since these directories are searched before the system header file directories. If you use more than one -I option, the directories are scanned in left-to-right order; the standard system directories come after.

-T-

Any directories you specify with -I options before the -I- option are searched only for the case of #include "FILE"; they are not searched for #include <FILE>.

If additional directories are specified with -I options after the -I-, these directories are searched for all #include directives. (Ordinarily all -I directories are used this way.)

In addition, the -I- option inhibits the use of the current directory (where the current input file came from) as the first search directory for #include "FILE". There is no way to override this effect of -I-. With -I. you can specify searching the directory which was current when the compiler was invoked. That is not exactly the same as what the preprocessor does by default, but it is often satisfactory.

 ${ ext{-I-}}$ does not inhibit the use of the standard system directories for header files. Thus, ${ ext{-I-}}$ and ${ ext{-nostdinc}}$ are independent.

-LDIR

Add directory DIR to the list of directories to be searched for -1.

$-\mathtt{BPREFIX}$

This option specifies where to find the executables, libraries, include files, and data files of the compiler itself.

The compiler driver program runs one or more of the subprograms cpp, cc1, as and ld. It tries PREFIX as a prefix for each program it tries to run, both with and without MACHINE/VERSION/ (see

Target Options
).

For each subprogram to be run, the compiler driver first tries the -B prefix, if any. If that name is not found, or if -B was

gcc 57 / 551

not specified, the driver tries two standard prefixes, which are /usr/lib/gcc/ and /usr/local/lib/gcc-lib/. If neither of those results in a file name that is found, the unmodified program name is searched for using the directories specified in your PATH environment variable.

-B prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these options into -L options for the linker. They also apply to includes files in the preprocessor, because the compiler translates these options into -isystem options for the preprocessor. In this case, the compiler appends include to the prefix.

The run-time support file libgcc.a can also be searched for using the -B prefix, if needed. If it is not found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the -B prefix is to use the environment variable GCC_EXEC_PREFIX. See

Environment Variables

1.20 gcc.guide/Target Options

Specifying Target Machine and Compiler Version

By default, GNU CC compiles code for the same type of machine that you are using. However, it can also be installed as a cross-compiler, to compile for some other type of machine. In fact, several different configurations of GNU CC, for different target machines, can be installed side by side. Then you specify which one to use with the -b option.

In addition, older and newer versions of GNU CC can be installed side by side. One of them (probably the newest) will be the default, but you may sometimes wish to use another.

-b MACHINE

The argument MACHINE specifies the target machine for compilation. This is useful when you have installed GNU CC as a cross-compiler.

The value to use for MACHINE is the same as was specified as the machine type when configuring GNU CC as a cross-compiler. For example, if a cross-compiler was configured with configure i386v, meaning to compile for an 80386 running System V, then you would specify -b i386v to run that cross compiler.

When you do not specify -b, it normally means to compile for the same type of machine that you are using.

gcc 58 / 551

-V VERSION

The argument VERSION specifies which version of GNU CC to run. This is useful when multiple versions are installed. For example, VERSION might be 2.0, meaning to run GNU CC version 2.0.

The default version, when you do not specify -V, is the last version of GNU CC that you installed.

The -b and -V options actually work by controlling part of the file name used for the executable files and libraries used for compilation. A given version of GNU CC, for a given target machine, is normally kept in the directory /usr/local/lib/gcc-lib/MACHINE/VERSION.

Thus, sites can customize the effect of -b or -V either by changing the names of these directories or adding alternate names (or symbolic links). If in directory /usr/local/lib/gcc-lib/ the file 80386 is a link to the file i386v, then -b 80386 becomes an alias for -b i386v.

In one respect, the -b or -V do not completely change to a different compiler: the top-level driver program gcc that you originally invoked continues to run and invoke the other executables (preprocessor, compiler per se, assembler and linker) that do the real work. However, since no real work is done in the driver program, it usually does not matter that the driver program in use is not the one for the specified target and version.

The only way that the driver program depends on the target machine is in the parsing and handling of special machine-specific options. However, this is controlled by a file which is found, along with the other executables, in the directory for the specified version and target machine. As a result, a single installed driver program adapts to any specified target machine and compiler version.

The driver program executable does control one significant thing, however: the default version and target machine. Therefore, you can install different instances of the driver program, compiled for different targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for version 2.1 is installed as gcc, then the command gcc will use version 2.1 by default, while ogcc will use 2.0 by default. However, you can choose either version with either command with the -V option.

1.21 gcc.guide/Submodel Options

Hardware Models and Configurations

Earlier we discussed the standard option -b which chooses among different installed compilers for completely different target machines, such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own

gcc 59 / 551

special options, starting with -m, to choose among various hardware models or configurations--for example, 68010 vs 68020, floating coprocessor or none. A single installed version of the compiler can compile for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for compatibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description. The default for the options is also defined by that macro, which enables you to change the defaults.

M680x0 Options

VAX Options

SPARC Options

Convex Options

AMD29K Options

ARM Options

M88K Options

RS-6000 and PowerPC Options

RT Options

MIPS Options

i386 Options

HPPA Options

Intel 960 Options

DEC Alpha Options

Clipper Options

H8-300 Options

System V Options

1.22 gcc.guide/M680x0 Options

M680x0 Options

gcc 60 / 551

These are the -m options defined for the 68000 series. The default values for these options depends on which style of 68000 was selected when the compiler was configured; the defaults for the most common choices are given below.

-m68000

-mc68000

Generate output for a 68000. This is the default when the compiler is configured for 68000-based systems.

-m68020

-mc68020

Generate output for a 68020. This is the default when the compiler is configured for 68020-based systems.

-m68881

Generate output containing 68881 instructions for floating point. This is the default for most 68020 systems unless -nfp was specified when the compiler was configured.

-m68030

Generate output for a 68030. This is the default when the compiler is configured for 68030-based systems.

-m68040

Generate output for a 68040. This is the default when the compiler is configured for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the 68040. If your 68040 does not have code to emulate those instructions, use -m68040.

-m68020-40

Generate output for a 68040, without using any of the new instructions. This results in code which can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The generated code does use the 68881 instructions that are emulated on the 68040.

-mfpa

Generate output containing Sun FPA instructions for floating point.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all m68k targets. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation. The embedded targets m68k-*-aout and m68k-*-coff do provide software floating point support.

-mshort

Consider type int to be 16 bits wide, like short int.

-mnobitfield

gcc 61 / 551

Do not use the bit-field instructions. The -m68000 option implies -mnobitfield.

-mbitfield

Do use the bit-field instructions. The -m68020 option implies -mbitfield. This is the default if you use a configuration designed for a 68020.

-mrtd

Use a different function-calling convention, in which functions that take a fixed number of arguments return with the rtd instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments (including printf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors, but not by the 68000.

1.23 gcc.guide/VAX Options

VAX Options

These -m options are defined for the Vax:

-munix

Do not output certain jump instructions (aobleq and so on) that the Unix assembler for the Vax cannot handle across long ranges.

-mgnu

Do output those jump instructions, on the assumption that you will assemble with the ${\tt GNU}$ assembler.

-mg

Output code for g-format floating point numbers instead of d-format.

1.24 gcc.guide/SPARC Options

gcc 62 / 551

SPARC Options

These -m switches are supported on the SPARC:

-mno-app-regs

-mapp-regs

Specify -mapp-regs to generate output using the global registers 2 through 4, which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify -mno-app-regs. You should compile libraries and system software with this option.

-mfpu

-mhard-float

Generate output containing floating point instructions. This is the default.

-mno-fpu

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all SPARC targets. Normally the facilities of the machine's usual C compiler are used, but this cannot be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation. The embedded targets sparc-*-aout and sparclite-*-* do provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is only useful if you compile all of a program with this option. In particular, you need to compile libgcc.a, the library that comes with GNU CC, with -msoft-float in order for this to work.

-mhard-quad-float

Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float

Generate output containing library calls for quad-word (long double) floating point instructions. The functions called are those specified in the SPARC ABI. This is the default.

As of this writing, there are no sparc implementations that have hardware support for the quad-word floating point instructions. They all invoke a trap handler for one of these instructions, and then the trap handler emulates the effect of the instruction. Because of the trap handler overhead, this is much slower than calling the ABI library routines. Thus the -msoft-quad-float option is the default.

-mno-epilogue -mepilogue gcc 63 / 551

With -mepilogue (the default), the compiler always emits code for function exit at the end of each function. Any function exit in the middle of the function (such as a return statement in C) will generate a jump to the exit code at the end of the function.

With -mno-epilogue, the compiler tries to emit exit code inline at every function exit.

-mno-flat

With -mflat, the compiler does not generate save/restore instructions and will use a "flat" or single register window calling convention. This model uses %i7 as the frame pointer and is compatible with the normal register window model. Code from either may be intermixed although debugger support is still incomplete. The local registers and the input registers (0-5) are still treated as "call saved" registers and will be saved on the stack as necessary.

With -mno-flat (the default), the compiler emits save/restore instructions (except for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles -munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.

With -munaligned-doubles, GNU CC assumes that doubles have 8 byte alignment only if they are contained in another type, or if they have an absolute address. Otherwise, it assumes they have 4 byte alignment. Specifying this option avoids some rare compatibility problems with code generated by other compilers. It is not the default because it results in a performance loss, especially for floating point code.

-mv8

-msparclite

These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu SPARClite), GCC generates code for the v7 variant of the SPARC architecture.

-mv8 will give you SPARC v8 code. The only difference from $\rm v7$ code is that the compiler emits the integer multiply and integer divide instructions which exist in SPARC v8 but not in SPARC v7.

-msparclite will give you SPARClite code. This adds the integer multiply, integer divide step and scan (ffs) instructions which exist in SPARClite but not in SPARC v7.

-mcypress

-msupersparc

These two options select the processor for which the code is optimised.

With -mcypress (the default), the compiler optimizes code for the

gcc 64 / 551

Cypress CY7C602 chip, as used in the SparcStation/SparcServer 3xx series. This is also appropriate for the older SparcStation 1, 2, IPX etc.

With -msuperspare the compiler optimizes code for the SuperSpare cpu, as used in the SpareStation 10, 1000 and 2000 series. This flag also enables use of the full SPARC v8 instruction set.

In a future version of GCC, these options will very likely be renamed to -mcpu=cypress and -mcpu=supersparc.

These $\mbox{-m}$ switches are supported in addition to the above on SPARC V9 processors:

-mmedlow

Generate code for the Medium/Low code model: assume a 32 bit address space. Programs are statically linked, PIC is not supported. Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.

-mmedany

Generate code for the Medium/Anywhere code model: assume a 32 bit text segment starting at offset 0, and a 32 bit data segment starting anywhere (determined at link time). Programs are statically linked, PIC is not supported. Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.

-mint64

Types long and int are 64 bits.

-mlong32

Types long and int are 32 bits.

-mlong64

-mint32

Type long is 64 bits, and type int is 32 bits.

-mstack-bias

-mno-stack-bias

With -mstack-bias, GNU CC assumes that the stack pointer, and frame pointer if present, are offset by -2047 which must be added back when making stack frame references. Otherwise, assume no such offset is present.

1.25 gcc.guide/Convex Options

Convex Options

gcc 65 / 551

These -m options are defined for Convex:

-mc1

Generate output for C1. The code will run on any Convex machine. The preprocessor symbol __convex__c1__ is defined.

-mc2

Generate output for C2. Uses instructions not available on C1. Scheduling and other optimizations are chosen for max performance on C2. The preprocessor symbol __convex_c2__ is defined.

-mc32

Generate output for C32xx. Uses instructions not available on C1. Scheduling and other optimizations are chosen for max performance on C32. The preprocessor symbol __convex_c32__ is defined.

-mc34

Generate output for C34xx. Uses instructions not available on C1. Scheduling and other optimizations are chosen for max performance on C34. The preprocessor symbol __convex_c34__ is defined.

-mc38

Generate output for C38xx. Uses instructions not available on C1. Scheduling and other optimizations are chosen for max performance on C38. The preprocessor symbol __convex_c38__ is defined.

-margcount

Generate code which puts an argument count in the word preceding each argument list. This is compatible with regular CC, and a few programs may need the argument count word. GDB and other source-level debuggers do not need it; this info is in the symbol table.

-mnoargcount

Omit the argument count word. This is the default.

-mvolatile-cache

Allow volatile references to be cached. This is the default.

-mvolatile-nocache

Volatile references bypass the data cache, going all the way to memory. This is only needed for multi-processor code that does not use standard synchronization instructions. Making non-volatile references to volatile locations will not necessarily work.

-mlong32

Type long is 32 bits, the same as type int. This is the default.

-mlong64

Type long is 64 bits, the same as type long long. This option is useless, because no library support exists for it.

gcc 66 / 551

1.26 gcc.guide/AMD29K Options

AMD29K Options

These -m options are defined for the AMD Am29000:

-mdw

Generate code that assumes the DW bit is set, i.e., that byte and halfword operations are directly supported by the hardware. This is the default.

-mndw

Generate code that assumes the DW bit is not set.

-mbw

Generate code that assumes the system supports byte and halfword write operations. This is the default.

-mnbw

Generate code that assumes the systems does not support byte and halfword write operations. -mnbw implies -mndw.

-msmall

Use a small memory model that assumes that all function addresses are either within a single 256 KB segment or at an absolute address of less than 256k. This allows the call instruction to be used instead of a const, consth, calli sequence.

-mnormal

Use the normal memory model: Generate call instructions only when calling functions in the same file and calli instructions otherwise. This works if each file occupies less than 256 KB but allows the entire executable to be larger than 256 KB. This is the default.

-mlarge

Always use calli instructions. Specify this option if you expect a single file to compile into more than 256 KB of code.

-m29050

Generate code for the Am29050.

-m29000

Generate code for the Am29000. This is the default.

-mkernel-registers

Generate references to registers gr64-gr95 instead of to registers gr96-gr127. This option can be used when compiling kernel code that wants a set of global registers disjoint from that used by user-mode code.

Note that when this option is used, register names in -f flags must use the normal, user-mode, names.

-muser-registers

gcc 67 / 551

Use the normal set of global registers, gr96-gr127. This is the default.

-mstack-check

-mno-stack-check

Insert (or do not insert) a call to __msp_check after each stack adjustment. This is often used for kernel code.

-mstorem-bug

-mno-storem-bug

-mstorem-bug handles 29k processors which cannot handle the separation of a mtsrim insn and a storem instruction (most 29000 chips to date, but not the 29050).

-mno-reuse-arg-regs

-mreuse-arg-regs

-mno-reuse-arg-regs tells the compiler to only use incoming argument registers for copying out arguments. This helps detect calling a function with fewer arguments than it was declared with.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not part of GNU CC. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation.

1.27 gcc.guide/ARM Options

ARM Options

These -m options are defined for Advanced RISC Machines (ARM) architectures:

-m2

-m3

These options are identical. Generate code for the ARM2 and ARM3 processors. This option is the default. You should also use this option to generate code for ARM6 processors that are running with a 26-bit program counter.

-m6

Generate code for the ARM6 processor when running with a 32-bit program counter.

-mapcs

Generate a stack frame that is compliant with the ARM Procedure Call Standard for all functions, even if this is not strictly necessary for correct execution of the code.

$-{\tt mbsd}$

This option only applies to RISC iX. Emulate the native BSD-mode

gcc 68 / 551

compiler. This is the default if -ansi is not specified.

-mxopen

This option only applies to RISC iX. Emulate the native X/Open-mode compiler.

-mno-symrename

This option only applies to RISC iX. Do not run the assembler post-processor, symrename, after code has been assembled. Normally it is necessary to modify some of the standard symbols in preparation for linking with the RISC iX C library; this option suppresses this pass. The post-processor is never run when the compiler is built for cross-compilation.

1.28 gcc.guide/M88K Options

M88K Options

These -m options are defined for Motorola 88k architectures:

-m88000

Generate code that works well on both the m88100 and the m88110.

-m88100

Generate code that works best for the ${\tt m88100}$, but that also runs on the ${\tt m88110}$.

-m88110

Generate code that works best for the ${\tt m88110}$, and ${\tt may}$ not run on the ${\tt m88100}$.

-mbig-pic

Obsolete option to be removed from the next revision. Use -fPIC.

-midentify-revision

Include an ident directive in the assembler output recording the source file name, compiler name and version, timestamp, and compilation flags used.

-mno-underscores

In assembler output, emit symbol names without adding an underscore character at the beginning of each name. The default is to use an underscore as prefix on each name.

-mocs-debug-info

-mno-ocs-debug-info

Include (or omit) additional debugging information (about registers used in each stack frame) as specified in the 88open Object Compatibility Standard, "OCS". This extra information allows debugging of code that has had the frame pointer eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include this information; other 88k configurations omit this information by default.

gcc 69 / 551

-mocs-frame-position

When emitting COFF debugging information for automatic variables and parameters stored on the stack, use the offset from the canonical frame address, which is the stack pointer (register 31) on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use -mocs-frame-position; other 88k configurations have the default -mno-ocs-frame-position.

-mno-ocs-frame-position

When emitting COFF debugging information for automatic variables and parameters stored on the stack, use the offset from the frame pointer register (register 30). When this option is in effect, the frame pointer is not eliminated when debugging information is selected by the -g switch.

-moptimize-arg-area

-mno-optimize-arg-area

Control how function arguments are stored in stack frames. -moptimize-arg-area saves space by optimizing them, but this conflicts with the 88open specifications. The opposite alternative, -mno-optimize-arg-area, agrees with 88open standards. By default GNU CC does not optimize the argument area.

-mshort-data-NUM

Generate smaller data references by making them relative to r0, which allows loading a value using a single instruction (rather than the usual two). You control which data references are affected by specifying NUM with this option. For example, if you specify -mshort-data-512, then the data references affected are those involving displacements of less than 512 bytes. -mshort-data-NUM is not effective for NUM greater than 64k.

-mserialize-volatile

-mno-serialize-volatile

Do, or don't, generate code to guarantee sequential consistency of volatile memory references. By default, consistency is guaranteed.

The order of memory references made by the MC88110 processor does not always match the order of the instructions requesting those references. In particular, a load instruction may execute before a preceding store instruction. Such reordering violates sequential consistency of volatile memory references, when there are multiple processors. When consistency must be guaranteed, GNU C generates special instructions, as needed, to force execution in the proper order.

The MC88100 processor does not reorder memory references and so always provides sequential consistency. However, by default, GNU C generates the special instructions to guarantee consistency even when you use -m88100, so that the code may be run on an MC88110 processor. If you intend to run your code only on the MC88100 processor, you may use -mno-serialize-volatile.

The extra code generated to guarantee consistency may affect the performance of your application. If you know that you can safely forgo this guarantee, you may use -mno-serialize-volatile.

gcc 70 / 551

-msvr4

Turn on (-msvr4) or off (-msvr3) compiler extensions related to System V release 4 (SVr4). This controls the following:

- 1. Which variant of the assembler syntax to emit.
- 2. -msvr4 makes the C preprocessor recognize #pragma weak that is used on System V release 4.
- -msvr4 makes GNU CC issue additional declaration directives used in SVr4.

-msvr4 is the default for the m88k-motorola-sysv4 and m88k-dg-dgux m88k configurations. -msvr3 is the default for all other m88k configurations.

-mversion-03.00

This option is obsolete, and is ignored.

-mno-check-zero-division
-mcheck-zero-division

Do, or don't, generate code to guarantee that integer division by zero will be detected. By default, detection is guaranteed.

Some models of the MC88100 processor fail to trap upon integer division by zero under certain conditions. By default, when compiling code that might be run on such a processor, GNU C generates code that explicitly checks for zero-valued divisors and traps with exception number 503 when one is detected. Use of mno-check-zero-division suppresses such checking for code generated to run on an MC88100 processor.

GNU C assumes that the MC88110 processor correctly detects all instances of integer division by zero. When -m88110 is specified, both -mcheck-zero-division and -mno-check-zero-division are ignored, and no explicit checks for zero-valued divisors are generated.

-muse-div-instruction

Use the div instruction for signed integer division on the MC88100 processor. By default, the div instruction is not used.

On the MC88100 processor the signed integer division instruction div) traps to the operating system on a negative operand. The operating system transparently completes the operation, but at a large cost in execution time. By default, when compiling code that might be run on an MC88100 processor, GNU C emulates signed integer division using the unsigned integer division instruction divu), thereby avoiding the large penalty of a trap to the operating system. Such emulation has its own, smaller, execution cost in both time and space. To the extent that your code's important signed integer division operations are performed on two nonnegative operands, it may be desirable to use the divinstruction directly.

gcc 71 / 551

On the MC88110 processor the div instruction (also known as the divs instruction) processes negative operands without trapping to the operating system. When -m88110 is specified, -muse-div-instruction is ignored, and the div instruction is used for signed integer division.

Note that the result of dividing INT_MIN by -1 is undefined. In particular, the behavior of such a division with and without -muse-div-instruction may differ.

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such shifts or emit code to handle them properly. By default GNU CC makes no special provision for large bit shifts.

-mwarn-passed-structs

Warn when a function passes a struct as an argument or result. Structure-passing conventions have changed during the evolution of the C language, and are often the source of portability problems. By default, GNU CC issues no such warning.

1.29 gcc.guide/RS-6000 and PowerPC Options

IBM RS/6000 and PowerPC Options

These -m options are defined for the IBM RS/6000 and PowerPC:

-mpower

-mno-power

-mpower2

-mno-power2

-mpowerpc

-mno-powerpc

-mpowerpc-gpopt

-mno-powerpc-gpopt

-mpowerpc-gfxopt

-mno-powerpc-gfxopt

GNU CC supports two related instruction set architectures for the RS/6000 and PowerPC. The POWER instruction set are those instructions supported by the rios chip set used in the original RS/6000 systems and the PowerPC instruction set is the architecture of the Motorola MPC6xx microprocessors. The PowerPC architecture defines 64-bit instructions, but they are not supported by any current processors.

Neither architecture is a subset of the other. However there is a large common subset of instructions supported by both. An MQ register is included in processors supporting the POWER architecture.

You use these options to specify which instructions are available on the processor you are using. The default value of these

gcc 72 / 551

options is determined when configuring GNU CC. Specifying the -mcpu=CPU_TYPE overrides the specification of these options. We recommend you use that option rather than these.

The -mpower option allows GNU CC to generate instructions that are found only in the POWER architecture and to use the MQ register. Specifying -mpower2 implies -power and also allows GNU CC to generate instructions that are present in the POWER2 architecture but not the original POWER architecture.

The -mpowerpc option allows GNU CC to generate instructions that are found only in the 32-bit subset of the PowerPC architecture. Specifying -mpowerpc-gpopt implies -mpowerpc and also allows GNU CC to use the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. Specifying -mpowerpc-gfxopt implies -mpowerpc and also allows GNU CC to use the optional PowerPC architecture instructions in the Graphics group, including floating-point select.

If you specify both -mno-power and -mno-powerpc, GNU CC will use only the instructions in the common subset of both architectures plus some special AIX common-mode calls, and will not use the MQ register. Specifying both -mpower and -mpowerpc permits GNU CC to use any instruction from either architecture and to allow use of the MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics -mold-mnemonics

Select which mnemonics to use in the generated assembler code. -mnew-mnemonics requests output that uses the assembler mnemonics defined for the PowerPC architecture, while -mold-mnemonics requests the assembler mnemonics defined for the POWER architecture. Instructions defined in only one architecture have only one mnemonic; GNU CC uses that mnemonic irrespective of which of these options is specified.

PowerPC assemblers support both the old and new mnemonics, as will later POWER assemblers. Current POWER assemblers only support the old mnemonics. Specify -mnew-mnemonics if you have an assembler that supports them, otherwise specify -mold-mnemonics.

The default value of these options depends on how GNU CC was configured. Specifying -mcpu=CPU_TYPE sometimes overrides the value of these option. Unless you are building a cross-compiler, you should normally not specify either -mnew-mnemonics or -mold-mnemonics, but should instead accept the default.

-mcpu=CPU_TYPE

Set architecture type, register usage, choice of mnemonics, and instruction scheduling parameters for machine type CPU_TYPE. By default, CPU_TYPE is the target system defined when GNU CC was configured. Supported values for CPU_TYPE are rios1, rios2, rsc, 601, 603, 604, power, powerpc, 403, and common. -mcpu=power and -mcpu=powerpc specify generic POWER and pure PowerPC (i.e., not MPC601) architecture machine types, with an appropriate, generic processor model assumed for scheduling purposes.

gcc 73 / 551

Specifying -mcpu=rios1, -mcpu=rios2, -mcpu=rsc, or -mcpu=power enables the -mpower option and disables the -mpowerpc option; -mcpu=601 enables both the -mpower and -mpowerpc options; -mcpu=603, -mcpu=604, -mcpu=403, and -mcpu=powerpc enable the -mpowerpc option and disable the -mpower option; -mcpu=common disables both the -mpower and -mpowerpc options.

To generate code that will operate on all members of the RS/6000 and PowerPC families, specify -mcpu=common. In that case, GNU CC will use only the instructions in the common subset of both architectures plus some special AIX common-mode calls, and will not use the MQ register. GNU CC assumes a generic processor model for scheduling purposes.

Specifying -mcpu=rios1, -mcpu=rios2, -mcpu=rsc, or -mcpu=power also disables the new-mnemonics option. Specifying -mcpu=601, -mcpu=603, -mcpu=604, 403, or -mcpu=powerpc also enables the new-mnemonics option.

-mfull-toc -mno-fp-in-toc -mno-sum-in-toc -mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every executable file. The -mfull-toc option is selected by default. In that case, GNU CC will allocate at least one TOC entry for each unique non-automatic variable reference in your program. GNU CC will also place floating-point constants in the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the available TOC space, you can reduce the amount of TOC space used with the -mno-fp-in-toc and -mno-sum-in-toc options. -mno-fp-in-toc prevents GNU CC from putting floating-point constants in the TOC and -mno-sum-in-toc forces GNU CC to generate code to calculate the sum of an address and a constant at run-time instead of putting that sum into the TOC. You may specify one or both of these options. Each causes GNU CC to produce very slightly slower and larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these options, specify -mminimal-toc instead. This option causes GNU CC to make only one TOC entry for every file. When you specify this option, GNU CC will produce code that is slower and larger but which uses extremely little TOC space. You may wish to use this option only on files that contain less frequently executed code.

-msoft-float -mhard-float

Generate code that does not use (uses) the floating-point register set. Software floating point emulation is provided if you use the -msoft-float option, and pass the option to GNU CC when linking.

-mmultiple -mno-multiple gcc 74 / 551

Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. These instructions are generated by default on POWER systems, and not generated on PowerPC systems. Do not use -mmultiple on little endian PowerPC systems, since those instructions do not work when the processor is in little endian mode.

-mstring

-mno-string

Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. These instructions are generated by default on POWER systems, anod not generated on PowerPC systems. Do not use -mstring on little endian PowerPC systems, since those instructions do not work when the processor is in little endian mode.

-mno-bit-align

-mbit-align

On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain bit fields to be aligned to the base type of the bit field.

For example, by default a structure containing nothing but 8 unsigned bitfields of length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By using -mno-bit-align, the structure would be aligned to a 1 byte boundary and be one byte in size.

-mno-strict-align

-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory references will be handled by the system.

-mrelocatable

-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow) the program to be relocated to a different address at runtime. $\,$

-mno-toc

-mt.oc

On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer to a global area pointing to the addresses used in the program.

-mno-traceback

-mtraceback

On embedded PowerPC systems do not (do) generate a traceback tag before the start of the function. This tag can be used by the debugger to identify where the start of a function is.

-mlittle

-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor in little endian mode. The -mlittle-endian option is the same as -mlittle.

gcc 75 / 551

-mbiq

-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor in big endian mode. The ${\sf -mbig-endian}$ option is the same as ${\sf -mbig.}$

-mcall-sysv

On System V.4 and embedded PowerPC systems compile code using calling conventions that adheres to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supplement. This is the default unless you configured GCC using powerpc-*-eabiaix.

-mcall-aix

On System V.4 and embedded PowerPC systems compile code using calling conventions that are similar to those used on AIX. This is the default if you configured GCC using powerpc-*-eabiaix.

-mprototype

-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions are properly prototyped. Otherwise, the compiler must insert an instruction before every non prototyped call to set or clear bit 6 of the condition code register (CR) to indicate whether floating point values were passed in the floating point registers in case the function takes a variable arguments. With -mprototype, only calls to prototyped variable argument functions will set or clear the bit.

1.30 gcc.guide/RT Options

IBM RT Options

These -m options are defined for the IBM RT PC:

-min-line-mul

Use an in-line code sequence for integer multiplies. This is the default.

-mcall-lib-mul

Call lmul\$\$ for integer multiples.

-mfull-fp-blocks

Generate full-size floating point data blocks, including the minimum amount of scratch space recommended by IBM. This is the default.

-mminimum-fp-blocks

Do not include extra scratch space in floating point data blocks. This results in smaller code, but slower execution, since scratch space must be allocated dynamically.

gcc 76 / 551

-mfp-arg-in-fpregs

Use a calling sequence incompatible with the IBM calling convention in which floating point arguments are passed in floating point registers. Note that varargs.h and stdargs.h will not work with floating point operands if this option is specified.

-mfp-arg-in-gregs

Use the normal calling convention for floating point arguments. This is the default.

-mhc-struct-return

Return structures of more than one word in memory, rather than in a register. This provides compatibility with the MetaWare HighC (hc) compiler. Use the option -fpcc-struct-return for compatibility with the Portable C Compiler (pcc).

-mnohc-struct-return

Return some structures of more than one word in registers, when convenient. This is the default. For compatibility with the IBM-supplied compilers, use the option -fpcc-struct-return or the option -mhc-struct-return.

1.31 gcc.guide/MIPS Options

MIPS Options

These -m options are defined for the MIPS family of computers:

-mcpu=CPU TYPE

Assume the defaults for the machine type CPU TYPE when scheduling instructions. The choices for CPU TYPE are r2000, r3000, r4000, r4400, r4600, and r6000. While picking a specific CPU TYPE will schedule things appropriately for that particular chip, the compiler will not generate any code that does not meet level 1 of the MIPS ISA (instruction set architecture) without the -mips2 or -mips3 switches being used.

-mips1

Issue instructions from level 1 of the MIPS ISA. This is the default. r3000 is the default CPU TYPE at this ISA level.

-mips2

Issue instructions from level 2 of the MIPS ISA (branch likely, square root instructions). r6000 is the default CPU TYPE at this ISA level.

-mips3

Issue instructions from level 3 of the MIPS ISA (64 bit instructions). r4000 is the default CPU TYPE at this ISA level. This option does not change the sizes of any of the C data types.

-mfp32

Assume that 32 32-bit floating point registers are available.

gcc 77 / 551

This is the default.

-mfp64

Assume that 32 64-bit floating point registers are available. This is the default when the -mips3 option is used.

-mgp32

Assume that $32\ 32$ -bit general purpose registers are available. This is the default.

-mgp64

Assume that 32 64-bit general purpose registers are available. This is the default when the -mips3 option is used.

-mint64

Types long, int, and pointer are 64 bits. This works only if -mips3 is also specified.

-mlong64

Types long and pointer are 64 bits, and type int is 32 bits. This works only if -mips3 is also specified.

-mmips-as

Generate code for the MIPS assembler, and invoke mips-tfile to add normal debug information. This is the default for all platforms except for the OSF/1 reference platform, using the OSF/rose object format. If the either of the -gstabs or -gstabs+ switches are used, the mips-tfile program will encapsulate the stabs within MIPS ECOFF.

-mgas

Generate code for the GNU assembler. This is the default on the OSF/1 reference platform, using the OSF/rose object format.

-mrnames

-mno-rnames

The -mrnames switch says to output code using the MIPS software names for the registers, instead of the hardware names (ie, A0 instead of \$4). The only known assembler that supports this option is the Algorithmics assembler.

$-{\tt mgpopt}$

-mno-apopt

The -mgpopt switch says to write all of the data declarations before the instructions in the text section, this allows the MIPS assembler to generate one word memory references instead of using two words for short global or static data items. This is on by default if optimization is selected.

-mstats

-mno-stats

For each non-inline function processed, the -mstats switch causes the compiler to emit one line to the standard error file to print statistics about the program (number of registers saved, stack size, etc.).

-mmemcpy

gcc 78 / 551

-mno-memcpy

The -mmemcpy switch makes all block moves call the appropriate string function (memcpy or bcopy) instead of possibly generating inline code.

-mmips-tfile

-mno-mips-tfile

The -mno-mips-tfile switch causes the compiler not postprocess the object file with the mips-tfile program, after the MIPS assembler has generated it to add debug support. If mips-tfile is not run, then no local variables will be available to the debugger. In addition, stage2 and stage3 objects will have the temporary file names passed to the assembler embedded in the object file, which means the objects will not compare the same. The -mno-mips-tfile switch should only be used when there are bugs in the mips-tfile program that prevents compilation.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not part of GNU CC. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation.

-mhard-float

Generate output containing floating point instructions. This is the default if you use the unmodified sources.

-mabicalls

-mno-abicalls

Emit (or do not emit) the pseudo operations .abicalls, .cpload, and .cprestore that some System V.4 ports use for position independent code.

-mlong-calls

-mno-long-calls

Do all calls with the JALR instruction, which requires loading up a function's address into a register before the call. You need to use this switch, if you call outside of the current 512 megabyte segment to functions that are not through pointers.

-mhalf-pic

-mno-half-pic

Put pointers to extern references into the data section and load them up, rather than put the references in the text section.

-membedded-pic

-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All calls are made using PC relative address, and all data is addressed using the \$gp register. This requires GNU as and GNU ld which do most of the work.

-membedded-data

-mno-embedded-data

Allocate variables to the read-only data section first if

79 / 551 gcc

possible, then next in the small data section if possible, otherwise in data. This gives slightly slower code than the default, but reduces the amount of RAM required when executing, and thus may be preferred for some embedded systems.

-msingle-float

-mdouble-float

The -msingle-float switch tells gcc to assume that the floating point coprocessor only supports single precision operations, as on the r4650 chip. The -mdouble-float switch permits gcc to use double precision operations. This is the default.

-mmad

-mno-mad

Permit use of the mad, madu and mul instructions, as on the r4650 chip.

-m4650

Turns on -msingle-float, -mmad, and, at least for now, -mcpu=r4650.

-EL

Compile code for the processor in little endian mode. requisite libraries are assumed to exist.

-EB

Compile code for the processor in big endian mode. The requisite libraries are assumed to exist.

-G NUM

Put global and static items less than or equal to NUM bytes into the small data or bss sections instead of the normal data or bss section. This allows the assembler to emit one word memory reference instructions based on the global pointer (GP or \$28), instead of the normal two words used. By default, NUM is 8 when the MIPS assembler is used, and 0 when the GNU assembler is used. The -G NUM switch is also passed to the assembler and linker. All modules should be compiled with the same -G NUM value.

-nocpp

Tell the MIPS assembler to not run it's preprocessor over user assembler files (with a .s suffix) when assembling them.

These options are defined by the macro TARGET_SWITCHES in the machine description. The default for the options is also defined by that macro, which enables you to change the defaults.

1.32 gcc.guide/i386 Options

Intel 386 Options

These -m options are defined for the i386 family of computers:

-m486

gcc 80 / 551

-m386

Control whether or not code is optimized for a 486 instead of an 386. Code generated for an 486 will run on a 386 and vice versa.

-mieee-fp

-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point comparisons. These handle correctly the case where the result of a comparison is unordered.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not part of GNU CC. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation.

On machines where a function returns floating point results in the 80387 register stack, some floating point opcodes may be emitted even if -msoft-float is used.

-mno-fp-ret-in-387

Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double in an FPU register, even if there is no FPU. The idea is that the operating system should emulate an FPU.

The option -mno-fp-ret-in-387 causes such values to be returned in ordinary CPU registers instead.

-mno-fancy-math-387

Some 387 emulators do not support the sin, cos and sqrt instructions for the 387. Specify this option to avoid generating those instructions. This option is the default on FreeBSD. As of revision 2.6.1, these instructions are not generated unless you also use the -ffast-math switch.

-malign-double

-mno-align-double

Control whether GNU CC aligns double, long double, and long long variables on a two word boundary or a one word boundary. Aligning double variables on a two word boundary will produce code that runs somewhat faster on a Pentium at the expense of more memory.

Warning: if you use the -malign-double switch, structures containing the above types will be aligned differently than the published application binary interface specifications for the 386.

-msvr3-shlib

-mno-svr3-shlib

Control whether GNU CC places uninitialized locals into bss or data. -msvr3-shlib places these locals into bss. These options are meaningful only on System V Release 3.

-mno-wide-multiply

gcc 81 / 551

-mwide-multiply

Control whether GNU CC uses the mul and imul that produce 64 bit results in eax:edx from 32 bit operands to do long long multiplies and 32-bit division by constants.

-mrtd

Use a different function-calling convention, in which functions that take a fixed number of arguments return with the ret NUM instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence with the function attribute stdcall. You can also override the -mrtd option by using the function attribute cdecl. See

Function Attributes

Warning: this calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments (including printf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.)

-mreg-alloc=REGS

Control the default allocation order of integer registers. The string REGS is a series of letters specifying a register. The supported letters are: a allocate EAX; b allocate EBX; c allocate ECX; d allocate EDX; S allocate ESI; D allocate EDI; B allocate EBP.

-mregparm=NUM

Control how many registers are used to pass integer arguments. By default, no registers are used to pass arguments, and at most 3 registers can be used. You can control this behavior for a specific function by using the function attribute regparm. See

Function Attributes

Warning: if you use this switch, and NUM is nonzero, then you \hookleftarrow must

build all modules with the same value, including any libraries. This includes the system libraries and startup modules.

-malign-loops=NUM

Align loops to a 2 raised to a NUM byte boundary. If -malign-loops is not specified, the default is 2.

-malign-jumps=NUM

Align instructions that are only jumped to to a 2 raised to a NUM byte boundary. If -malign-jumps is not specified, the default is 2 if optimizing for a 386, and 4 if optimizing for a 486.

gcc 82 / 551

-malign-functions=NUM

Align the start of functions to a 2 raised to NUM byte boundary. If -malign-jumps is not specified, the default is 2 if optimizing for a 386, and 4 if optimizing for a 486.

1.33 gcc.guide/HPPA Options

HPPA Options

These -m options are defined for the HPPA family of computers:

-mpa-risc-1-0

Generate code for a PA 1.0 processor.

-mpa-risc-1-1

Generate code for a PA 1.1 processor.

-mjump-in-delay

Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer for the function call to be the target of the conditional jump.

-mmillicode-long-calls

Generate code which assumes millicode routines can not be reached by the standard millicode call sequence, linker-generated long-calls, or linker-modified millicode calls. In practice this should only be needed for dynamicly linked executables with extremely large SHLIB_INFO sections.

-mdisable-fpregs

Prevent floating point registers from being used in any manner. This is necessary for compiling kernels which perform lazy context switching of floating point registers. If you use this option and attempt to perform floating point operations, the compiler will abort.

-mdisable-indexing

Prevent the compiler from using indexing address modes. This avoids some rather obscure problems when compiling MIG generated code under MACH.

-mfast-indirect-calls

Generate code which performs faster indirect calls. Such code is suitable for kernels and for static linking. The fast indirect call code will fail miserably if it's part of a dynamically linked executable and in the presense of nested functions.

-mportable-runtime

Use the portable calling conventions proposed by \mbox{HP} for \mbox{ELF} systems.

-mgas

gcc 83 / 551

Enable the use of assembler directives only GAS understands.

-mschedule=CPU TYPE

Schedule code according to the constraints for the machine type CPU TYPE. The choices for CPU TYPE are 700 for 7N0 machines, 7100 for 7N5 machines, and 7100 for 7N2 machines. 700 is the default for CPU TYPE.

Note the 7100LC scheduling information is incomplete and using 7100LC often leads to bad schedules. For now it's probably best to use 7100 instead of 7100LC for the 7N2 machines.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all HPPA targets. Normally the facilities of the machine's usual C compiler are used, but this cannot be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation. The embedded target hppal.1-*-pro does provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is only useful if you compile all of a program with this option. In particular, you need to compile libgcc.a, the library that comes with GNU CC, with -msoft-float in order for this to work.

1.34 gcc.guide/Intel 960 Options

Intel 960 Options

These -m options are defined for the Intel 960 implementations:

-mCPU TYPE

Assume the defaults for the machine type CPU TYPE for some of the other options, including instruction scheduling, floating point support, and addressing modes. The choices for CPU TYPE are ka, kb, mc, ca, cf, sa, and sb. The default is kb.

-mnumerics

-msoft-float

The -mnumerics option indicates that the processor does support floating-point instructions. The -msoft-float option indicates that floating-point support should not be assumed.

-mleaf-procedures

-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable with the bal instruction as well as call. This will result in more efficient code for explicit calls when the bal instruction can be substituted by the assembler or linker, but less efficient code in other cases, such as calls via function pointers, or using a linker that doesn't support this optimization.

gcc 84 / 551

-mtail-call -mno-tail-call Do (or do machine-i

Do (or do not) make additional attempts (beyond those of the machine-independent portions of the compiler) to optimize tail-recursive calls into branches. You may not want to do this because the detection of cases where this is not valid is not totally complete. The default is -mno-tail-call.

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing mode is a win on this implementation of the i960. Complex addressing modes may not be worthwhile on the K-series, but they definitely are on the C-series. The default is currently -mcomplex-addr for all processors except the CB and CC.

-mcode-align
-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don't bother). Currently turned on by default for C-series implementations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat -mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align -mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align

Enable structure-alignment compatibility with Intel's gcc release version 1.3 (based on gcc 1.37). Currently this is buggy in that #pragma align 1 is always assumed as well, and cannot be turned off.

1.35 gcc.guide/DEC Alpha Options

DEC Alpha Options

These -m options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point operations. When -msoft-float is specified, functions in libgccl.c will be used to perform floating-point

gcc 85 / 551

operations. Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a way as to call such emulations routines, these routines will issue floating-point operations. If you are compiling for an Alpha without floating-point operations, you must ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required to have floating-point registers.

```
-mfp-reg
-mno-fp-regs
```

Generate code that uses (does not use) the floating-point register set. -mno-fp-regs implies -msoft-float. If the floating-point register set is not used, floating point operands are passed in integer registers as if they were integers and floating-point results are passed in \$0 instead of \$f0. This is a non-standard calling sequence, so any function with a floating-point argument or return value called by code compiled with -mno-fp-regs must also be compiled with that option.

A typical use of this option is building a kernel that does not use, and hence need not save and restore, any floating-point registers.

1.36 gcc.guide/Clipper Options

Clipper Options

These -m options are defined for the Clipper implementations:

-mc300

Produce code for a C300 Clipper processor. This is the default.

-mc400

Produce code for a C400 Clipper processor i.e. use floating point registers f8..f15.

1.37 gcc.guide/H8-300 Options

H8/300 Options

These -m options are defined for the H8/300 implementations:

-mrelax

Shorten some address references at link time, when possible; uses the linker option -relax. See ld and the ${\rm H8/300}$, for a fuller description.

gcc 86 / 551

-mh

Generate code for the H8/300H.

1.38 gcc.guide/System V Options

Options for System V

These additional options are available on System V Release 4 for compatibility with other compilers on those systems:

-Qy

Identify the versions of each tool used by the compiler, in a .ident assembler directive in the output.

-Qn

Refrain from adding .ident directives to the output file (this is the default).

-YP, DIRS

Search the directories DIRS, and no others, for libraries specified with -1.

-Ym,DIR

Look in the directory DIR to find the M4 preprocessor. The assembler uses this option.

1.39 gcc.guide/Code Gen Options

Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed--the one which is not the default. You can figure out the other form by either removing no- or adding it.

-fpcc-struct-return

Return "short" struct and union values in memory like longer ones, rather than in registers. This convention is less efficient, but it has the advantage of allowing intercallability between GNU CC-compiled files and files compiled with other compilers.

The precise convention for returning structures in memory depends on the target configuration macros.

gcc 87 / 551

Short structures and unions are those whose size and alignment match that of some integer type.

-freg-struct-return

Use the convention that struct and union values are returned in registers when possible. This is more efficient for small structures than -fpcc-struct-return.

If you specify neither -fpcc-struct-return nor its contrary -freg-struct-return, GNU CC defaults to whichever convention is standard for the target. If there is no standard convention, GNU CC defaults to -fpcc-struct-return, except on targets where GNU CC is the principal compiler. In those cases, we can choose the standard, and we chose the more efficient register return alternative.

-fshort-enums

Allocate to an enum type only as many bytes as it needs for the declared range of possible values. Specifically, the enum type will be equivalent to the smallest integer type which has enough room.

-fshort-double

Use the same size for double as for float.

-fshared-data

Requests that the data and non-const variables of this compilation be shared data rather than private data. The distinction makes sense only on certain operating systems, where shared data is shared between processes running the same program, while private data exists in one copy per process.

-fno-common

Allocate even uninitialized global variables in the bss section of the object file, rather than generating them as common blocks. This has the effect that if the same variable is declared (without extern) in two different compilations, you will get an error when you link them. The only reason this might be useful is if you wish to verify that the program will work on other systems which always work this way.

-fno-ident

Ignore the #ident directive.

-fno-gnu-linker

Do not output global initializations (such as C++ constructors and destructors) in the form used by the GNU linker (on systems where the GNU linker is the standard method of handling them). Use this option when you want to use a non-GNU linker, which also requires using the collect2 program to make sure the system linker includes constructors and destructors. (collect2 is included in the GNU CC distribution.) For systems which must use collect2, the compiler driver gcc is configured to do this automatically.

-finhibit-size-directive

Don't output a .size assembler directive, or anything else that would cause trouble if the function is split in the middle, and the

gcc 88 / 551

two halves are placed at locations far apart in memory. This option is used when compiling crtstuff.c; you should not need to use it for anything else.

-fverbose-asm

Put extra commentary information in the generated assembly code to make it more readable. This option is generally only of use to those who actually need to read the generated assembly code (perhaps while debugging the compiler itself).

-fvolatile

Consider all memory references through pointers to be volatile.

-fvolatile-global

Consider all memory references to extern and global data items to be volatile.

-fpic

Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table (GOT). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an error message from the linker indicating that -fpic does not work; in that case, recompile with -fPIC instead. (These maximums are 16k on the m88k, 8k on the Sparc, and 32k on the m68k and RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on certain machines. For the 386, GNU CC supports PIC for System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

The GNU assembler does not fully support PIC. Currently, you must use some other assembler in order for PIC to work. We would welcome volunteers to upgrade GAS to handle this; the first part of the job is to figure out what the assembler must do differently.

-fPIC

If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, m88k and the Sparc.

Position-independent code requires special support, and therefore works only on certain machines.

-ffixed-REG

Treat the register named REG as a fixed register; generated code should never refer to it (except perhaps as a stack pointer, frame pointer or in some other fixed role).

REG must be the name of a register. The register names accepted are machine-specific and are defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a

gcc 89 / 551

three-way choice.

-fcall-used-REG

Treat the register named REG as an allocatable register that is clobbered by function calls. It may be allocated for temporaries or variables that do not live across a call. Functions compiled this way will not save and restore the register REG.

Use of this flag for a register that has a fixed pervasive role in the machine's execution model, such as the stack pointer or frame pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-REG

Treat the register named REG as an allocatable register saved by functions. It may be allocated even for temporaries or variables that live across a call. Functions compiled this way will save and restore the register REG if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine's execution model, such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct

Pack all structure members together without holes. Usually you would not want to use this option, since it makes the code suboptimal, and the offsets of structure members won't agree with system libraries.

+e0 +e1

Control whether virtual function definitions in classes are used to generate code, or only to define interfaces for their callers. (C++ only).

These options are provided for compatibility with cfront 1.x usage; the recommended alternative GNU C++ usage is in flux. See

Declarations and Definitions in One Header

With +e0, virtual function definitions in classes are declared extern; the declaration is used only as an interface specification, not to generate code for the virtual functions (in this compilation).

With +e1, G++ actually generates the code implementing virtual functions defined in the code, and makes them publicly visible.

gcc 90 / 551

1.40 gcc.guide/Environment Variables

Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU CC operates. They work by specifying directories or prefixes to use when searching for various kinds of files.

Note that you can also specify places to search using options such as $-\mathrm{B}_{r}$ -I and $-\mathrm{L}$ (see

Directory Options

). These take precedence over

places specified using environment variables, which in turn take precedence over those specified by the configuration of GNU CC. See

Driver

.

TMPDIR

If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC uses temporary files to hold the output of one stage of compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the compiler proper.

GCC EXEC PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is PREFIX/lib/gcc-lib/ where PREFIX is the value of prefix when you ran the configure script.

Other prefixes specified with -B take precedence over this prefix.

This prefix is also used for finding files such as crt0.0 that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard directories whose name normally begins with /usr/local/lib/gcc-lib (more precisely, with the value of GCC_INCLUDE_DIR), GNU CC tries replacing that beginning with the specified prefix to produce an alternate directory name. Thus, with -Bfoo/, GNU CC will search foo/bar where it would normally search /usr/local/lib/bar. These alternate directories are searched first; the standard directories come next.

gcc 91 / 551

COMPILER PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like PATH. GNU CC tries the directories thus specified when searching for subprograms, if it can't find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH. When configured as a native compiler, GNU CC tries the directories thus specified when searching for special linker files, if it can't find them using GCC_EXEC_PREFIX. Linking using GNU CC also uses these directories when searching for ordinary libraries for the -l option (but directories specified with -L come first).

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable's value is a colon-separated list of directories, much like PATH. When GNU CC searches for header files, it tries the directories listed in the variable for the language you are using, after the directories specified with -I but before the standard header file directories.

DEPENDENCIES_OUTPUT

If this variable is set, its value specifies how to output dependencies for Make based on the header files processed by the compiler. This output looks much like the output from the -M option (see

Preprocessor Options

), but it goes to a separate file, and is in addition to the usual results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the form FILE TARGET, in which case the rules are written to file FILE using TARGET as the target name.

1.41 gcc.guide/Running Protoize

Running Protoize

==========

The program protoize is an optional part of GNU C. You can use it to add prototypes to a program, thus converting the program to ANSI C in one respect. The companion program unprotoize does the reverse: it removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as command line arguments. The conversion programs start out by compiling these files to see what functions they define. The

gcc 92 / 551

information gathered about a file FOO is saved in a file named FOO.X.

After scanning comes actual conversion. The specified files are all eligible to be converted; any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert only source and header files in the current directory. You can specify additional directories whose files should be converted with the -d DIRECTORY option. You can also specify particular files to exclude with the -x FILE option. A file is converted if it is eligible, its directory name matches one of the specified directory names, and its name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and function declarations to specify the types of the arguments. The only ones not rewritten are those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to make them available for any calls that precede the function's definition. Or it can insert prototype declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to remove any argument types, and rewriting function definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function declaration or definition that they can't convert. You can suppress these warnings with -q.

The output from protoize or unprotoize replaces the original source file. The original file is renamed to a name ending with .save. If the .save file already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the program and collect information about the functions it uses. So neither of these programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and unprotoize. Each option works with both programs unless otherwise stated.

-B DIRECTORY

Look for the file SYSCALLS.c.X in DIRECTORY, instead of the usual directory (normally /usr/local/lib). This file contains prototype information about standard system functions. This option applies only to protoize.

-c COMPILATION-OPTIONS

Use COMPILATION-OPTIONS as the options when running gcc to produce the .X files. The special option -aux-info is always passed in addition, to tell gcc to write a .X file.

Note that the compilation options must be given as a single argument to protoize or unprotoize. If you want to specify several

gcc 93 / 551

gcc options, you must quote the entire set of compilation options to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they would produce the wrong kind of output. These include -g, -O, -c, -S, and -O If you include these in the COMPILATION-OPTIONS, they are ignored.

-C

Rename files to end in .C instead of .c. This is convenient if you are converting a C program to C++. This option applies only to protoize.

-g

Add explicit global declarations. This means inserting explicit declarations at the beginning of each source file for each function that is called in the file and was not declared. These declarations precede the first function definition that contains a call to an undeclared function. This option applies only to protoize.

-i STRING

Indent old-style parameter declarations with the string STRING. This option applies only to protoize.

unprotoize converts prototyped function definitions to old-style function definitions, where the arguments are declared between the argument list and the initial {. By default, unprotoize uses five spaces as the indentation. If you want to indent with just one space instead, use -i " ".

-k

Keep the .X files. Normally, they are deleted after conversion is finished.

– 1

Add explicit local declarations. protoize with -l inserts a prototype declaration for each function in each block which calls the function without any declaration. This option applies only to protoize.

-n

Make no real changes. This mode just prints information about the conversions that would have been done without -n.

-N

Make no .save files. The original files are simply deleted. Use this option with caution.

-p PROGRAM

Use the program PROGRAM as the compiler. Normally, the name gcc is used.

-q

Work quietly. Most warnings are suppressed.

-v

gcc 94 / 551

Print the version number, just like -v for gcc.

If you need special compiler options to compile one of your program's source files, then you should generate that file's .X file specially, by running gcc on that source file with the appropriate options and the option -aux-info. Then run protoize on the entire set of files. protoize will use the existing .X file because it is newer than the source file. For example:

```
gcc -Dfoo=bar file1.c -aux-info
protoize *.c
```

You need to include the special files along with the rest in the protoize command, even though their .X files already exist, because otherwise they won't get converted.

See

1.42 gcc.guide/Installation

Installing GNU CC

Header Dirs

Configurations Supported by GNU CC.

Other Dir

Compiling in a separate directory (not where the source is).

Cross-Compiler
Building and installing a cross-compiler.

Sun Install
See below for installation on the Sun.

VMS Install
See below for installation on VMS.

Collect2

How collect2 works; how it finds ld.

Understanding the standard header file directories.

Here is the procedure for installing GNU CC on a Unix system. See See $\,$

 ${\tt VMS}$ Install , for ${\tt VMS}$ systems. In this section we assume you

gcc 95 / 551

compile in the same directory that contains the source files; see See

Other Dir

, to find out how to compile in a separate directory on ${\tt Unix}$ systems.

You cannot install GNU C by itself on MSDOS; it will not compile under any MSDOS compiler except itself. You need to get the complete compilation package DJGPP, which includes binaries as well as sources, and includes all the necessary compilation tools and libraries.

- 1. If you have built GNU CC previously in the same directory for a different target machine, do make distclean to delete all files that might be invalid. One of the files this deletes is Makefile; if make distclean complains that Makefile does not exist, it probably means that the directory is already suitably clean.
- 2. On a System V release 4 system, make sure /usr/bin precedes /usr/ucb in PATH. The cc command in /usr/ucb uses libraries which have bugs.
- 3. Specify the host, build and target machine configurations. You do this by running the file configure.

The build machine is the system which you are using, the host machine is the system where you want to run the resulting compiler (normally the build machine), and the target machine is the system for which you want the compiler to generate code.

If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify any operands to configure; it will try to guess the type of machine you are on and use that as the build, host and target machines. So you don't need to specify a configuration when building a native compiler unless configure cannot figure out what your configuration is or guesses wrong.

In those cases, specify the build machine's configuration name with the --build option; the host and target will default to be the same as the build machine. (If you are building a cross-compiler, see See

Cross-Compiler

.)

Here is an example:

./configure --build=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less abbreviated.

A canonical configuration name has three parts, separated by dashes. It looks like this: CPU-COMPANY-SYSTEM. (The three parts may themselves contain dashes; configure can figure out which dashes serve which purpose.) For example, m68k-sun-sunos4.1 specifies a Sun 3.

gcc 96 / 551

You can also replace parts of the configuration by nicknames or aliases. For example, sun3 stands for m68k-sun, so sun3-sunos4.1 is another way to specify a Sun 3. You can also use simply sun3-sunos, since the version of SunOS is assumed by default to be version 4. sun3-bsd also works, since configure knows that the only BSD variant on a Sun 3 is SunOS.

You can specify a version number after any of the system types, and some of the CPU types. In most cases, the version is irrelevant, and will be ignored. So you might as well specify the version if you know it.

See See

Configurations

, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GNU CC.

There are four additional options you can specify independently to describe variant hardware and software configurations. These are --with-gnu-as, --with-gnu-ld, --with-stabs and --nfp.

--with-gnu-as

If you will use GNU CC with the GNU assembler (GAS), you should declare this by using the --with-gnu-as option when you run configure.

Using this option does not install GAS. It only modifies the output of GNU CC to work with GAS. Building and installing GAS is up to you.

Conversely, if you do not wish to use GAS and do not specify —with-gnu-as when building GNU CC, it is up to you to make sure that GAS is not installed. GNU CC searches for a program named as in various directories; if the program it finds is GAS, then it runs GAS. If you are not sure where GNU CC finds the assembler it is using, try specifying -v when you run it.

The systems where it makes a difference whether you use GAS are

hppal.0-ANY-ANY, hppal.1-ANY-ANY, i386-ANY-sysv, i386-ANY-isc, i860-ANY-bsd, m68k-bull-sysv, m68k-hp-hpux, m68k-sony-bsd, m68k-altos-sysv, m68000-hp-hpux, m68000-att-sysv, ANY-lynx-lynxos, and mips-ANY). On any other system, --with-gnu-as has no effect.

On the systems listed above (except for the HP-PA, for ISC on the 386, and for mips-sgi-irix5.*), if you use GAS, you should also use the GNU linker (and specify --with-gnu-ld).

--with-gnu-ld

Specify the option --with-gnu-ld if you plan to use the GNU linker with GNU CC.

This option does not cause the GNU linker to be installed; it

gcc 97 / 551

just modifies the behavior of GNU CC to work with the GNU linker. Specifically, it inhibits the installation of collect2, a program which otherwise serves as a front-end for the system's linker on most configurations.

--with-stabs

On MIPS based systems and on Alphas, you must specify whether you want GNU CC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ECOFF debug format cannot fully handle languages other than C. BSD stabs format can handle other languages, but it only works with the GNU debugger GDB.

Normally, GNU CC uses the ECOFF debugging format by default; if you prefer BSD stabs, specify --with-stabs when you configure GNU CC.

No matter which default you choose when you configure GNU CC, the user can use the -gcoff and -gstabs+ options to specify explicitly the debug format for a particular compilation.

--with-stabs is meaningful on the ISC system on the 386, also, if --with-gas is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not.

--with-stabs is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs.

--nfp

On certain systems, you must specify whether the machine has a floating point unit. These systems include m68k-sun-sunosN and m68k-isi-bsd. On any other system, --nfp currently has no effect, though perhaps there are other systems where it could usefully make a difference.

The configure script searches subdirectories of the source directory for other compilers that are to be integrated into GNU CC. The GNU compiler for C++, called G++ is in a subdirectory named cp. configure inserts rules into Makefile to build all of those compilers.

Here we spell out what files will be set up by configure. Normally you need not be concerned with these files.

* A file named config.h is created that contains a #include of the top-level config file for the machine you will run the compiler on (see

Config

). This file is responsible for defining information about the host machine. It includes

gcc 98 / 551

tm.h.

The top-level config file is located in the subdirectory config. Its name is always xm-SOMETHING.h; usually xm-MACHINE.h, but there are some exceptions.

If your system does not support symbolic links, you might want to set up config.h to contain a #include command which refers to the appropriate file.

- * A file named tconfig.h is created which includes the top-level config file for your target machine. This is used for compiling certain programs to run on that machine.
- * A file named tm.h is created which includes the machine-description macro file for your target machine. It should be in the subdirectory config and its name is often MACHINE.h.
- * The command file configure also constructs the file Makefile by adding some text to the template file Makefile.in. The additional text comes from files in the config directory, named t-TARGET and x-HOST. If these files do not exist, it means nothing needs to be added for a given target or host.
- 4. The standard directory for installing GNU CC is /usr/local/lib. If you want to install its files somewhere else, specify --prefix=DIR when you run configure. Here DIR is a directory name to use instead of /usr/local for all purposes with one exception: the directory /usr/local/include is searched for header files no matter where you install the compiler. To override this name, use the --local-prefix option below.
- 5. Specify --local-prefix=DIR if you want the compiler to search directory DIR/include for locally installed header files instead of /usr/local/include.

You should specify --local-prefix only if your site has a different convention (not /usr/local) for where to put site-specific files.

Do not specify /usr as the --local-prefix! The directory you use for --local-prefix must not contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the header file corrections made by the fixincludes script.

6. Make sure the Bison parser generator is installed. (This is unnecessary if the Bison output files c-parse.c and cexp.c are more recent than c-parse.y and cexp.y and you do not plan to change the .y files.)

Bison versions older than Sept 8, 1988 will produce incorrect output for c-parse.c.

7. If you have chosen a configuration for GNU CC which requires other

gcc 99 / 551

GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory under the names as, ld or whatever is appropriate. This will enable the compiler to find the proper tools for compilation of the program enquire.

Alternatively, you can do subsequent compilation using a value of the PATH environment variable such that the necessary GNU tools come before the standard system tools.

8. Build the compiler. Just type make LANGUAGES=c in the compiler directory.

LANGUAGES=c specifies that only the C compiler should be compiled. The makefile normally builds compilers for all the supported languages; currently, C, C++ and Objective C. However, C is the only language that is sure to work when you build with other non-GNU C compilers. In addition, building anything but C at this stage is a waste of time.

In general, you can specify the languages to build by typing the argument LANGUAGES="LIST", where LIST is one or more words from the list c, c++, and objective-c. If you have any additional GNU compilers as subdirectories of the GNU CC source directory, you may also specify their names in this list.

Ignore any warnings you may see about "statement not reached" in insn-emit.c; they are normal. Also, warnings about "unknown escape sequence" are normal in genopinit.c and perhaps some other files. Likewise, you should ignore warnings about "constant is so large that it is unsigned" in insn-emit.c and insn-recog.c and a warning about a comparison always being zero in enquire.o. Any other compilation errors may represent bugs in the port to your machine or operating system, and should be investigated and reported (see

Bugs

Some commercial compilers fail to compile GNU CC because they have bugs or limitations. For example, the Microsoft compiler is said to run out of macro space. Some Ultrix compilers run out of expression space; then you need to break up the statement where the problem happens.

9. If you are building a cross-compiler, stop here. See

Cross-Compiler

.

10. Move the first-stage object files and executables into a subdirectory with this command:

make stage1

The files are moved into a subdirectory named stage1. Once installation is complete, you may wish to delete these files with rm -r stage1.

gcc 100 / 551

11. If you have chosen a configuration for GNU CC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the stage1 subdirectory under the names as, ld or whatever is appropriate. This will enable the stage 1 compiler to find the proper tools in the following stage.

Alternatively, you can do subsequent compilation using a value of the PATH environment variable such that the necessary GNU tools come before the standard system tools.

12. Recompile the compiler with itself, with this command:

```
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"
```

This is called making the stage 2 compiler.

The command shown above builds compilers for all the supported languages. If you don't want them all, you can specify the languages to build by typing the argument LANGUAGES="LIST". LIST should contain one or more words from the list c, c++, objective-c, and proto. Separate the words with spaces. proto stands for the programs protoize and unprotoize; they are not a separate language, but you use LANGUAGES to enable or disable their installation.

If you are going to build the stage 3 compiler, then you might want to build only the C language in stage 2.

Once you have built the stage 2 compiler, if you are short of disk space, you can delete the subdirectory stage1.

On a 68000 or 68020 system lacking floating point hardware, unless you have selected a tm.h file that expects by default that there is no such hardware, do this instead:

```
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -02 -msoft-float"
```

13. If you wish to test the compiler by compiling it with itself one more time, install any other necessary GNU tools (such as GAS or the GNU linker) in the stage2 subdirectory as you did in the stage1 subdirectory, then do this:

```
make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"
```

This is called making the stage 3 compiler. Aside from the -B option, the compiler options should be the same as when you made the stage 2 compiler. But the LANGUAGES option need not be the same. The command shown above builds compilers for all the supported languages; if you don't want them all, you can specify the languages to build by typing the argument LANGUAGES="LIST", as described above.

If you do not have to install any additional GNU tools, you may use the $\operatorname{command}$

gcc 101 / 551

make bootstrap LANGUAGES=LANGUAGE-LIST BOOT_CFLAGS=OPTION-LIST

instead of making stage1, stage2, and performing the two compiler builds.

14. Then compare the latest object files with the stage 2 object files—they ought to be identical, aside from time stamps (if any).

On some systems, meaningful comparison of object files is impossible; they always appear "different." This is currently true on Solaris and some systems that use ELF object file format. On some versions of Irix on SGI machines and DEC Unix (OSF/1) on Alpha systems, you will not be able to compare the files without specifying -save-temps; see the description of individual systems above to see if you get comparison failures. You may have similar problems on other systems.

Use this command to compare the files:

make compare

This will mention any object files that differ between stage 2 and stage 3. Any difference, no matter how innocuous, indicates that the stage 2 compiler has compiled GNU CC incorrectly, and is therefore a potentially serious bug which you should investigate and report (see

Bugs

If your system does not put time stamps in the object files, then this is a faster way to compare them (using the Bourne shell):

for file in *.o; do
cmp \$file stage2/\$file
done

If you have built the compiler with the -mno-mips-tfile option on MIPS machines, you will not be able to compare the files.

15. Install the compiler driver, the compiler's passes and run-time support with make install. Use the same value for CC, CFLAGS and LANGUAGES that you used when compiling the files that are being installed. One reason this is necessary is that some versions of Make have bugs and recompile files gratuitously when you do this step. If you use the same variable values, those files will be recompiled properly.

For example, if you have built the stage 2 compiler, you can use the following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="LIST"

This copies the files cc1, cpp and libgcc.a to files cc1, cpp and libgcc.a in the directory

/usr/local/lib/gcc-lib/TARGET/VERSION, which is where the compiler driver program looks for them. Here TARGET is the target

gcc 102 / 551

machine type specified when you ran configure, and VERSION is the version number of GNU CC. This naming scheme permits various versions and/or cross-compilers to coexist.

This also copies the driver program xgcc into /usr/local/bin/gcc, so that it appears in typical execution search paths.

On some systems, this command causes recompilation of some files. This is usually due to bugs in make. You should either ignore this problem, or use GNU Make.

Warning: there is a bug in alloca in the Sun library. To avoid this bug, be sure to install the executables of GNU CC that were compiled by GNU CC. (That is, the executables from stage 2 or 3, not stage 1.) They use alloca as a built-in function and never the one in the library.

(It is usually better to install GNU CC executables from stage 2 or 3, since they usually run faster than the ones compiled with some other compiler.)

16. If you're going to use C++, it's likely that you need to also install the libg++ distribution. It should be available from the same place where you got the GNU C distribution. Just as GNU C does not distribute a C runtime library, it also does not include a C++ run-time library. All I/O functionality, special class libraries, etc., are available in the libg++ distribution.

1.43 gcc.guide/Configurations

Configurations Supported by GNU CC

Here are the possible CPU types:

1750a, a29k, alpha, arm, cN, clipper, dsp16xx, elxsi, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m68000, m68k, m88k, mips, mipsel, mips64, mips64el, ns32k, powerpc, powerpcle, pyramid, romp, rs6000, sh, sparc, sparclite, sparc64, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names.

acorn, alliant, altos, apollo, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing just CPU-SYSTEM, if it is not needed. For example, vax-ultrix4.2 is equivalent to vax-dec-ultrix4.2.

gcc 103 / 551

Here is a list of system types:

386bsd, aix, acis, amigaos, aos, aout, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, gnu/linux, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

You can omit the system type; then configure guesses the operating system from the CPU and company.

You can add a version number to the system type; this may or may not make a difference. For example, you can write bsd4.3 or bsd4.4 to distinguish versions of BSD. In practice, the version number is most needed for sysv3 and sysv4, which are often treated differently.

If you specify an impossible combination such as i860-dg-vms, then you may get an error message from configure, or it may ignore part of the information and do the best it can with the rest. configure always prints the canonical name for the alternative that it used. GNU CC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine name sun3, mentioned above, is an alias for m68k-sun. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names:

3300, 3b1, 3bN, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cN, crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN, hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4, symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name. If you want to install your own homemade configuration files, you can use local as the company name to access them. If you use configuration CPU-local, the configuration name without the cpu prefix is used to form the configuration file names.

Thus, if you specify m68k-local, configuration uses files m68k.md, local.h, m68k.c, xm-local.h, t-local, and x-local, all in the directory config/m68k.

Here is a list of configurations that have special treatment or special things you must know:

1750a-*-*

MIL-STD-1750A processors.

Starting with GCC 2.6.1, the MIL-STD-1750A cross configuration no longer supports the Tektronix Assembler, but instead produces $\frac{1}{2}$

gcc 104 / 551

output for as1750, an assembler/linker available under the GNU Public License for the 1750A. Contact kellogg@space.otn.dasa.de for more details on obtaining as1750. A similarly licensed simulator for the 1750A is available from same address.

You should ignore a fatal error during the building of libgcc (libgcc is not yet implemented for the 1750A.)

The as1750 assembler requires the file ms1750.inc, which is found in the directory config/1750a.

GNU CC produced the same sections as the Fairchild F9450 C Compiler, namely:

Normal

The program code section.

Static

The read/write (RAM) data section.

Konst

The read-only (ROM) constants section.

Init

Initialization section (code to copy KREL to SREL).

The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16). This means that type 'char' is represented with a 16-bit word per character. The 1750A's "Load/Store Upper/Lower Byte" instructions are not used by GNU CC.

alpha-*-osf1

Systems using processors that implement the DEC Alpha architecture and are running the DEC Unix (OSF/1) operating system, for example the DEC Alpha AXP systems. (VMS on the Alpha is not currently supported by GNU CC.)

GNU CC writes a .verstamp directive to the assembler output file unless it is built as a cross-compiler. It gets the version to use from the system header file /usr/include/stamp.h. If you install a new version of DEC Unix, you should rebuild GCC to pick up the new version stamp.

Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit machines will not generate code as efficient as that generated when the compiler is running on a 64-bit machine because many optimizations that depend on being able to represent a word on the target in an integral value on the host cannot be performed. Building cross-compilers on the Alpha for 32-bit machines has only been tested in a few cases and may not work properly.

make compare may fail on old versions of DEC Unix unless you add -save-temps to CFLAGS. On these systems, the name of the assembler input file is stored in the object file, and that makes comparison fail if it differs between the stage1 and stage2 compilations. The option -save-temps forces a fixed name to be

gcc 105 / 551

used for the assembler input file, instead of a randomly chosen name in /tmp. Do not add -save-temps unless the comparisons fail without that option. If you add -save-temps, you will have to manually delete the .i and .s files after each series of compilations.

GNU CC now supports both the native (ECOFF) debugging format used by DBX and GDB and an encapsulated STABS format for use only with GDB. See the discussion of the --with-stabs option of configure above for more information on these formats and how to select them.

There is a bug in DEC's assembler that produces incorrect line numbers for ECOFF format when the .align directive is used. To work around this problem, GNU CC will not emit such alignment directives while writing ECOFF format debugging information even if optimization is being performed. Unfortunately, this has the very undesirable side-effect that code addresses when -O is specified are different depending on whether or not -g is also specified.

To avoid this behavior, specify -gstabs+ and use GDB instead of DBX. DEC is now aware of this problem with the assembler and hopes to provide a fix shortly.

arm

Advanced RISC Machines ARM-family processors. These are often used in embedded applications. There are no standard Unix configurations. This configuration corresponds to the basic instruction sequences and will produce a.out format object modules.

You may need to make a variant of the file arm.h for your particular configuration.

arm-*-riscix

The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD Unix. If you are running a version of RISC iX prior to 1.2 then you must specify the version number during configuration. Note that the assembler shipped with RISC iX does not support stabs debugging information; a new version of the assembler, with stabs support included, is now available from Acorn.

a29k

AMD Am29k-family processors. These are normally used in embedded applications. There are no standard Unix configurations. This configuration corresponds to AMD's standard calling sequence and binary interface and is compatible with other 29k tools.

You may need to make a variant of the file a29k.h for your particular configuration.

a29k-*-bsd

AMD Am29050 used in a system running a variant of BSD Unix.

decstation-*

DECstations can support three different personalities: Ultrix, DEC OSF/1, and OSF/rose. To configure GCC for these platforms use the following configurations:

gcc 106 / 551

decstation-ultrix

Ultrix configuration.

decstation-osf1

Dec's version of OSF/1.

decstation-osfrose

Open Software Foundation reference port of OSF/1 which uses the OSF/rose object file format instead of ECOFF. Normally, you would not select this configuration.

The MIPS C compiler needs to be told to increase its table size for switch statements with the -Wf,-XNg1500 option in order to compile cp/parse.c. If you use the -O2 optimization option, you also need to use -Olimit 3000. Both of these options are automatically generated in the Makefile that the shell script configure builds. If you override the CC make variable and use the MIPS compilers, you may need to add -Wf,-XNg1500 -Olimit 3000.

elxsi-elxsi-bsd

The Elxsi's C compiler has known limitations that prevent it from compiling GNU C. Please contact mrs@cygnus.com for more details.

dsp16xx

A port to the AT&T DSP1610 family of processors.

h8300-*-*

The calling convention and structure layout has changed in release 2.6. All code must be recompiled. The calling convention now passes the first three arguments in function calls in registers. Structures are no longer a multiple of 2 bytes.

hppa*-*-*

There are several variants of the HP-PA processor which run a variety of operating systems. GNU CC must be configured to use the correct processor type and operating system, or GNU CC will not function correctly. The easiest way to handle this problem is to not specify a target when configuring GNU CC, the configure script will try to automatically determine the right processor type and operating system.

-g does not work on HP-UX, since that system uses a peculiar debugging format which GNU CC does not know about. However, -g will work if you also use GAS and GDB in conjunction with GCC. We highly recommend using GAS for all HP-PA configurations.

You should be using GAS-2.6 (or later) along with GDB-4.16 (or later). These can be retrieved from all the traditional GNU ftp archive sites.

GAS will need to be installed into a directory before /bin, /usr/bin, and /usr/ccs/bin in your search path. You should install GAS before you build GNU CC.

To enable debugging, you must configure GNU CC with the

gcc 107 / 551

--with-gnu-as option before building.

i370-*-*

This port is very preliminary and has many known bugs. We hope to have a higher-quality port for this machine soon.

i386-*-linuxoldld

Use this configuration to generate a.out binaries on Linux-based GNU systems, if you do not have gas/binutils version 2.5.2 or later installed. This is an obsolete configuration.

i386-*-linuxaout

Use this configuration to generate a.out binaries on Linux-based GNU systems. This configuration is being superseded. You must use gas/binutils version 2.5.2 or later.

i386-*-linux

Use this configuration to generate ELF binaries on Linux-based GNU systems. You must use gas/binutils version 2.5.2 or later.

i386-*-sco

Compilation with RCC is recommended. Also, it may be a good idea to link with GNU malloc instead of the malloc that comes with the system.

i386-*-sco3.2v4

Use this configuration for SCO release 3.2 version 4.

i386-*-isc

It may be a good idea to link with GNU malloc instead of the malloc that comes with the system.

In ISC version 4.1, sed core dumps when building deduced.h. Use the version of sed from version 4.0.

i386-*-esix

It may be good idea to link with GNU malloc instead of the malloc that comes with the system.

i386-ibm-aix

You need to use GAS version 2.1 or later, and and LD from GNU binutils version 2.2 or later.

i386-sequent-bsd

Go to the Berkeley universe before compiling. In addition, you probably need to create a file named string.h containing just one line: #include <strings.h>.

i386-sequent-ptx1*

Sequent DYNIX/ptx 1.x.

i386-sequent-ptx2*

Sequent DYNIX/ptx 2.x.

i386-sun-sunos4

You may find that you need another version of GNU CC to begin bootstrapping with, since the current version when built with the

gcc 108 / 551

system's own compiler seems to get an infinite loop compiling part of libgcc2.c. GNU CC version 2 compiled with GNU CC (any version) seems not to have this problem.

See See

Sun Install

, for information on installing ${\tt GNU}$ CC on ${\tt Sun}$

systems.

i[345]86-*-winnt3.5

This version requires a GAS that has not let been released. Until it is, you can get a prebuilt binary version via anonymous ftp from cs.washington.edu:pub/gnat or cs.nyu.edu:pub/gnat. You must also use the Microsoft header files from the Windows NT 3.5 SDK. Find these on the CDROM in the /mstools/h directory dated 9/4/94. You must use a fixed version of Microsoft linker made especially for NT 3.5, which is also is available on the NT 3.5 SDK CDROM. If you do not have this linker, can you also use the linker from Visual C/C++ 1.0 or 2.0.

Installing GNU CC for NT builds a wrapper linker, called ld.exe, which mimics the behaviour of Unix ld in the specification of libraries (-L and -l). ld.exe looks for both Unix and Microsoft named libraries. For example, if you specify -lfoo, ld.exe will look first for libfoo.a and then for foo.lib.

You may install GNU CC for Windows NT in one of two ways, depending on whether or not you have a Unix-like shell and various Unix-like utilities.

1. If you do not have a Unix-like shell and few Unix-like utilities, you will use a DOS style batch script called configure.bat. Invoke it as configure winnt from an MSDOS console window or from the program manager dialog box. configure.bat assumes you have already installed and have in your path a Unix-like sed program which is used to create a working Makefile from Makefile.in.

Makefile uses the Microsoft Nmake program maintenance utility and the Visual C/C++ V8.00 compiler to build GNU CC. You need only have the utilities sed and touch to use this installation method, which only automatically builds the compiler itself. You must then examine what fixinc.winnt does, edit the header files by hand and build libgcc.a manually.

2. The second type of installation assumes you are running a Unix-like shell, have a complete suite of Unix-like utilities in your path, and have a previous version of GNU CC already installed, either through building it via the above installation method or acquiring a pre-built binary. In this case, use the configure script in the normal fashion.

i860-intel-osf1

This is the Paragon. If you have version 1.0 of the operating system, see See $\,$

Installation Problems

gcc 109 / 551

, for special things you need to do to compensate for peculiarities in the system.

*-lynx-lynxos

LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as /bin/gcc. You should compile with this instead of /bin/cc. You can tell GNU CC to use the GNU assembler and linker, by specifying --with-gnu-as --with-gnu-ld when configuring. These will produce COFF format object files and executables; otherwise GNU CC will use the installed tools, which produce a.out format executables.

m68000-hp-bsd

HP 9000 series 200 running BSD. Note that the C compiler that comes with this system cannot compile GNU CC; contact law@cs.utah.edu to get binaries of GNU CC for bootstrapping.

m68k-altos

Altos 3068. You must use the GNU assembler, linker and debugger. Also, you must fix a kernel bug. Details in the file README.ALTOS.

m68k-att-sysv

AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to compile GNU CC with this machine's standard C compiler, due to bugs in that compiler. You can bootstrap it more easily with previous versions of GNU CC if you have them.

Installing GNU CC on the 3b1 is difficult if you do not already have GNU CC running, due to bugs in the installed C compiler. However, the following procedure might work. We are unable to test it.

- 1. Comment out the #include "config.h" line on line 37 of cccp.c and do make cpp. This makes a preliminary version of GNU cpp.
- 2. Save the old /lib/cpp and copy the preliminary GNU cpp to that file name.
- 3. Undo your change in cccp.c, or reinstall the original version, and do make cpp again.
- 4. Copy this final version of GNU cpp into /lib/cpp.
- 5. Replace every occurrence of obstack_free in the file tree.c with _obstack_free.
- 6. Run make to get the first-stage GNU CC.
- 7. Reinstall the original version of /lib/cpp.
- 8. Now you can compile GNU CC with itself and install it in the normal fashion.

m68k-bull-sysv

Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC works either with native assembler or GNU assembler. You can use GNU assembler with native coff generation by providing

gcc 110 / 551

--with-gnu-as to the configure script or use GNU assembler with dbx-in-coff encapsulation by providing --with-gnu-as --stabs. For any problem with native assembler or for availability of the DPX/2 port of GAS, contact F.Pierresteguy@frcl.bull.fr.

m68k-crds-unox

Use configure unos for building on Unos.

The Unos assembler is named casm instead of as. For some strange reason linking /bin/as to /bin/casm changes the behavior, and does not work. So, when installing GNU CC, you should install the following script as as in the subdirectory where the passes of GCC are installed:

#!/bin/sh
casm \$*

The default Unos library is named libunos.a instead of libc.a. To allow GNU CC to function, either change all references to -lc in gcc.c to -lunos or link /lib/libc.a to /lib/libunos.a.

When compiling GNU CC with the standard compiler, to overcome bugs in the support of alloca, do not use -O when making stage 2. Then use the stage 2 compiler with -O to make the stage 3 compiler. This compiler will have the same characteristics as the usual stage 2 compiler on other systems. Use it to make a stage 4 compiler and compare that with stage 3 to verify proper compilation.

(Perhaps simply defining ALLOCA in x-crds as described in the comments there will make the above paragraph superfluous. Please inform us of whether this works.)

Unos uses memory segmentation instead of demand paging, so you will need a lot of memory. 5 Mb is barely enough if no other tasks are running. If linking ccl fails, try putting the object files into a library and linking from that library.

m68k-hp-hpux

HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug in the assembler that prevents compilation of GNU CC. To fix it, get patch $PHCO_4484$ from HP.

In addition, if you wish to use gas --with-gnu-as you must use gas version 2.1 or later, and you must use the GNU linker version 2.1 or later. Earlier versions of gas relied upon a program which converted the gas output into the native HP/UX format, but that program has not been kept up to date. gdb does not understand that native HP/UX format, so you must use gas if you wish to use gdb.

m68k-sun

Sun 3. We do not provide a configuration file to use the Sun FPA by default, because programs that establish signal handlers for floating point traps inherently cannot work with the FPA.

See See

gcc 111 / 551

Sun Install

, for information on installing GNU CC on Sun

systems.

m88k-*-svr3

Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port. These systems tend to use the Green Hills C, revision 1.8.5, as the standard C compiler. There are apparently bugs in this compiler that result in object files differences between stage 2 and stage 3. If this happens, make the stage 4 compiler and compare it to the stage 3 compiler. If the stage 3 and stage 4 object files are identical, this suggests you encountered a problem with the standard C compiler; the stage 3 and 4 compilers may be usable.

It is best, however, to use an older version of GNU CC for bootstrapping if you have one.

m88k-*-dgux

Motorola m88k running DG/UX. To build 88open BCS native or cross compilers on DG/UX, specify the configuration name as m88k-*-dguxbcs and build in the 88open BCS software development environment. To build ELF native or cross compilers on DG/UX, specify m88k-*-dgux and build in the DG/UX ELF development environment. You set the software development environment by issuing sde-target command and specifying either m88kbcs or m88kdguxelf as the operand.

If you do not specify a configuration name, configure guesses the configuration based on the current software development environment.

m88k-tektronix-sysv3

Tektronix XD88 running UTekV 3.2e. Do not turn on optimization while building stage1 if you bootstrap with the buggy Green Hills compiler. Also, The bundled LAI System V NFS is buggy so if you build in an NFS mounted directory, start from a fresh reboot, or avoid NFS all together. Otherwise you may have trouble getting clean comparisons between stages.

mips-mips-bsd

MIPS machines running the MIPS operating system in BSD mode. It's possible that some old versions of the system lack the functions memcpy, memcmp, and memset. If your system lacks these, you must remove or undo the definition of TARGET_MEM_FUNCTIONS in mips-bsd.h.

The MIPS C compiler needs to be told to increase its table size for switch statements with the -Wf,-XNg1500 option in order to compile cp/parse.c. If you use the -O2 optimization option, you also need to use -Olimit 3000. Both of these options are automatically generated in the Makefile that the shell script configure builds. If you override the CC make variable and use the MIPS compilers, you may need to add -Wf,-XNg1500 -Olimit 3000.

mips-mips-riscos*

The MIPS C compiler needs to be told to increase its table size

gcc 112 / 551

for switch statements with the -Wf,-XNg1500 option in order to compile cp/parse.c. If you use the -O2 optimization option, you also need to use -Olimit 3000. Both of these options are automatically generated in the Makefile that the shell script configure builds. If you override the CC make variable and use the MIPS compilers, you may need to add -Wf,-XNg1500 -Olimit 3000.

MIPS computers running RISC-OS can support four different personalities: default, BSD 4.3, System V.3, and System V.4 (older versions of RISC-OS don't support V.4). To configure GCC for these platforms use the following configurations:

mips-mips-riscosrev

Default configuration for RISC-OS, revision rev.

mips-mips-riscosrevbsd

BSD 4.3 configuration for RISC-OS, revision rev.

mips-mips-riscosrevsysv4

System V.4 configuration for RISC-OS, revision rev.

mips-mips-riscosrevsysv

System V.3 configuration for RISC-OS, revision rev.

The revision rev mentioned above is the revision of RISC-OS to use. You must reconfigure GCC when going from a RISC-OS revision 4 to RISC-OS revision 5. This has the effect of avoiding a linker bug (see See

Installation Problems
, for more details).

mips-sgi-*

In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib" option must be installed from the CD-ROM supplied from Silicon Graphics. This is found on the 2nd CD in release 4.0.1.

In order to compile GCC on an SGI running IRIX 5, the "compiler_dev.hdr" subsystem must be installed from the IDO CD-ROM supplied by Silicon Graphics.

make compare may fail on version 5 of IRIX unless you add -save-temps to CFLAGS. On these systems, the name of the assembler input file is stored in the object file, and that makes comparison fail if it differs between the stage1 and stage2 compilations. The option -save-temps forces a fixed name to be used for the assembler input file, instead of a randomly chosen name in /tmp. Do not add -save-temps unless the comparisons fail without that option. If you do you -save-temps, you will have to manually delete the .i and .s files after each series of compilations.

The MIPS C compiler needs to be told to increase its table size for switch statements with the -Wf, -XNg1500 option in order to compile cp/parse.c. If you use the -O2 optimization option, you also need to use $-Olimit\ 3000$. Both of these options are automatically generated in the Makefile that the shell script

gcc 113 / 551

configure builds. If you override the CC make variable and use the MIPS compilers, you may need to add -Wf, -XNg1500 -Olimit 3000.

On Irix version 4.0.5F, and perhaps on some other versions as well, there is an assembler bug that reorders instructions incorrectly. To work around it, specify the target configuration mips-sgi-irix4loser. This configuration inhibits assembler optimization.

In a compiler configured with target mips-sgi-irix4, you can turn off assembler optimization by using the -noasmopt option. This compiler option passes the option -00 to the assembler, to inhibit reordering.

The -noasmopt option can be useful for testing whether a problem is due to erroneous assembler reordering. Even if a problem does not go away with -noasmopt, it may still be due to assembler reordering--perhaps GNU CC itself was miscompiled as a result.

To enable debugging under Irix 5, you must use GNU as 2.5 or later, and use the --with-gnu-as configure option when configuring gcc. GNU as is distributed as part of the binutils package.

mips-sony-sysv

Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2 (which uses ELF instead of COFF). Support for 5.0.2 will probably be provided soon by volunteers. In particular, the linker does not like the code generated by GCC when shared libraries are linked in.

ns32k-encore

Encore ns32000 system. Encore systems are supported only under BSD.

ns32k-*-genix

National Semiconductor ns32000 system. Genix has bugs in alloca and malloc; you must get the compiled versions of these from GNU Emacs.

ns32k-sequent

Go to the Berkeley universe before compiling. In addition, you probably need to create a file named string.h containing just one line: #include <strings.h>.

ns32k-utek

UTEK ns32000 system ("merlin"). The C compiler that comes with this system cannot compile GNU CC; contact tektronix!reed!mason to get binaries of GNU CC for bootstrapping.

romp-*-aos romp-*-mach

The only operating systems supported for the IBM RT PC are AOS and MACH. GNU CC does not support AIX running on the RT. We recommend you compile GNU CC with an earlier version of itself; if you compile GNU CC with hc, the Metaware compiler, it will work, but you will get mismatches between the stage 2 and stage 3

gcc 114 / 551

compilers in various files. These errors are minor differences in some floating-point constants and can be safely ignored; the stage 3 compiler is correct.

rs6000-*-aix powerpc-*-aix

Various early versions of each release of the IBM XLC compiler will not bootstrap GNU CC. Symptoms include differences between the stage2 and stage3 object files, and errors when compiling libgcc.a or enquire. Known problematic releases include: xlc-1.2.1.8, xlc-1.3.0.0 (distributed with AIX 3.2.5), and xlc-1.3.0.19. Both xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are known to produce working versions of GNU CC, but most other recent releases correctly bootstrap GNU CC. Also, releases of AIX prior to AIX 3.2.4 include a version of the IBM assembler which does not accept debugging directives: assembler updates are available as PTFs. Also, if you are using AIX 3.2.5 or greater and the GNU assembler, you must have a version modified after October 16th, 1995 in order for the GNU C compiler to build. See the file README.RS6000 for more details on of these problems.

GNU CC does not yet support the 64-bit PowerPC instructions.

Objective C does not work on this architecture because it makes assumptions that are incompatible with the calling conventions.

AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including floating-point numbers ("." vs "," for separating decimal fractions). There have been problems reported where the library linked with GNU CC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the LANG environment variable to "C" or "En_US".

Due to changes in the way that GNU CC invokes the binder (linker) for AIX 4.1, you may now receive warnings of duplicate symbols from the link step that were not reported before. The assembly files generated by GNU CC for AIX have always included multiple symbol definitions for certain global variable and function declarations in the original program. The warnings should not prevent the linker from producing a correct library or runnable executable.

powerpc-*-elf
powerpc-*-sysv4

PowerPC system in big endian mode, running System V.4.

This configuration is currently under development.

powerpc-*-eabiaix

Embedded PowerPC system in big endian mode with -mcall-aix selected as the default. This system is currently under development.

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running

gcc 115 / 551

under the PSIM simulator. This system is currently under development.

powerpc-*-eabi

Embedded PowerPC system in big endian mode.

This configuration is currently under development.

powerpcle-*-elf

powerpcle-*-sysv4

PowerPC system in little endian mode, running System V.4.

This configuration is currently under development.

powerpcle-*-sysv4

Embedded PowerPC system in little endian mode.

This system is currently under development.

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM simulator.

This system is currently under development.

powerpcle-*-eabi

Embedded PowerPC system in little endian mode.

This configuration is currently under development.

vax-dec-ultrix

Don't try compiling with $Vax\ C\ (vcc)$. It produces incorrect code in some cases (for example, when alloca is used).

Meanwhile, compiling cp/parse.c with pcc does not work because of an internal table size limitation in that compiler. To avoid this problem, compile just the GNU C compiler first, and use it to recompile building all the languages that you want to run.

sparc-sun-*

See See

Sun Install

, for information on installing GNU CC on Sun

systems.

vax-dec-vms

See See

VMS Install

, for details on how to install GNU CC on VMS.

we32k-*-*

These computers are also known as the 3b2, 3b5, 3b20 and other similar names. (However, the 3b1 is actually a 68000; see See

Configurations

.)

gcc 116 / 551

Don't use -g when compiling with the system's compiler. The system's linker seems to be unable to handle such a large program with debugging information.

The system's compiler runs out of capacity when compiling stmt.c in GNU CC. You can work around this by building cpp in GNU CC first, then use that instead of the system's preprocessor with the system's C compiler to compile stmt.c. Here is how:

```
mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo '/lib/cpp.gnu -traditional ${1+"$@"}' > /lib/cpp
chmod +x /lib/cpp
```

The system's compiler produces bad code for some of the GNU CC optimization files. So you must build the stage 2 compiler without optimization. Then build a stage 3 compiler with optimization. That executable should work. Here are the necessary commands:

```
make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -0"
```

You may need to raise the ULIMIT setting to build a C++ compiler, as the file cclplus is larger than one megabyte.

1.44 gcc.guide/Other Dir

```
Compilation in a Separate Directory
```

If you wish to build the object files and executables in a directory other than the one containing the source files, here is what you must do differently:

- Make sure you have a version of Make that supports the VPATH feature. (GNU Make supports it, as do Make versions on most BSD systems.)
- 2. If you have ever run configure in the source directory, you must undo the configuration. Do this by running:

make distclean

3. Go to the directory in which you want to build the compiler before running configure:

```
mkdir gcc-sun3 cd gcc-sun3
```

On systems that do not support symbolic links, this directory must be on the same file system as the source code directory.

gcc 117 / 551

4. Specify where to find configure when you run it:

../gcc/configure ...

This also tells configure where to find the compiler sources; configure takes the directory from the file name that was used to invoke it. But if you want to be sure, you can specify the source directory with the --srcdir option, like this:

../gcc/configure --srcdir=../gcc OTHER OPTIONS

The directory you specify with --srcdir need not be the same as the one that configure is found in.

Now, you can run make in that directory. You need not repeat the configuration steps shown above, when ordinary source files change. You must, however, run configure again when the configuration files change, if your system does not support symbolic links.

1.45 qcc.quide/Cross-Compiler

Building and Installing a Cross-Compiler

 $\ensuremath{\mathsf{GNU}}$ CC can function as a cross-compiler for many machines, but not all.

- * Cross-compilers for the Mips as target using the Mips assembler currently do not work, because the auxiliary programs mips-tdump.c and mips-tfile.c can't be compiled on anything but a Mips. It does work to cross compile for a Mips if you use the GNU assembler and linker.
- * Cross-compilers between machines with different floating point formats have not all been made to work. GNU CC now has a floating point emulator with which these can work, but each target machine description needs to be updated to take advantage of it.
- * Cross-compilation between machines of different word sizes is somewhat problematic and sometimes does not work.

Since GNU CC generates assembler code, you probably need a cross-assembler that GNU CC can run, in order to produce object files. If you want to link on other than the target machine, you need a cross-linker as well. You also need header files and libraries suitable for the target machine that you can install on the host machine.

Steps of Cross
Using a cross-compiler involves several steps
that may be carried out on different machines.

Configure Cross

gcc 118 / 551

Configuring a cross-compiler.

Tools and Libraries
Where to put the linker and assembler, and the C library.

Cross Headers
Finding and installing header files
for a cross-compiler.

Cross Runtime
Supplying arithmetic runtime routines (libgcc1.a).

Build Cross
Actually compiling the cross-compiler.

1.46 gcc.guide/Steps of Cross

Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several steps:

- * Run the cross-compiler on the host machine to produce assembler files for the target machine. This requires header files for the target machine.
- * Assemble the files produced by the cross-compiler. You can do this either with an assembler on the target machine, or with a cross-assembler on the host machine.
- * Link those files to make an executable. You can do this either with a linker on the target machine, or with a cross-linker on the host machine. Whichever machine you use, you need libraries and certain startup files (typically crt...o) for the target machine.

It is most convenient to do all of these steps on the same host machine, since then you can do it all with a single invocation of GNU CC. This requires a suitable cross-assembler and cross-linker. For some targets, the GNU assembler and linker are available.

1.47 gcc.guide/Configure Cross

Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running configure. Use the --target=TARGET to specify the target type. If configure was unable to correctly identify the system you are

gcc 119 / 551

running on, also specify the --build=BUILD option. For example, here is how to configure for a cross-compiler that produces code for an HP 68030 system running BSD on a system that configure can correctly identify:

./configure --target=m68k-hp-bsd4.3

1.48 gcc.guide/Tools and Libraries

Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should install them now. Put them in the directory /usr/local/TARGET/bin. Here is a table of the tools you should put in this directory:

as

This should be the cross-assembler.

ld

This should be the cross-linker.

ar

This should be the cross-archiver: a program which can manipulate archive files (linker libraries) in the target machine's format.

ranlib

This should be a program to construct a symbol table in an archive file.

The installation of GNU CC will find these programs in that directory, and copy or link them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package and GAS. Configure them with the same —host and —target options that you use for configuring GNU CC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a standard C library, put them in the directory /usr/local/TARGET/lib; installation of GNU CC copies all all the files in that subdirectory into the proper place for GNU CC to find them and link with them. Here's an example of copying some libraries from a target machine:

```
ftp TARGET-MACHINE
lcd /usr/local/TARGET/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
```

gcc 120 / 551

```
get libm.a
quit
```

The precise set of libraries you'll need, and their locations on the target machine, vary depending on its operating system.

Many targets require "start files" such as crt0.0 and crtn.0 which are linked into each executable; these too should be placed in /usr/local/TARGET/lib. There may be several alternatives for crt0.0, for use with profiling or other compilation options. Check your target's definition of STARTFILE_SPEC to find out what start files it uses. Here's an example of copying these files from a target machine:

ftp TARGET-MACHINE
lcd /usr/local/TARGET/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

1.49 gcc.guide/Cross Runtime

libgcc.a and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions implicitly. Some of these functions can be compiled successfully with GNU CC itself, but a few cannot be. These problem functions are in the source file libgccl.c; the library made from them is called libgccl.a.

When you build a native compiler, these functions are compiled with some other compiler—the one that you use for bootstrapping GNU CC. Presumably it knows how to open code these operations, or else knows how to call the run—time emulation facilities that the machine comes with. But this approach doesn't work for building a cross—compiler. The compiler that you use for building knows about the host system, not the target system.

So, when you build a cross-compiler you have to supply a suitable library libgccl.a that does the job it is expected to do.

To compile libgccl.c with the cross-compiler itself does not work. The functions in this file are supposed to implement arithmetic operations that GNU CC does not know how to open code for your target machine. If these functions are compiled with GNU CC itself, they will compile into infinite recursion.

On any given target, most of these functions are not needed. If GNU CC can open code an arithmetic operation, it will not call these functions to perform the operation. It is possible that on your target machine, none of these functions is needed. If so, you can supply an

gcc 121 / 551

empty library as libgccl.a.

Many targets need library support only for multiplication and division. If you are linking with a library that contains functions for multiplication and division, you can tell GNU CC to call them directly by defining the macros MULSI3_LIBCALL, and the like. These macros need to be defined in the target description macro file. For some targets, they are defined already. This may be sufficient to avoid the need for libgccl.a; if so, you can supply an empty library.

Some targets do not have floating point instructions; they need other functions in libgcc1.a, which do floating arithmetic. Recent versions of GNU CC have a file which emulates floating point. With a certain amount of work, you should be able to construct a floating point emulator that can be used as libgcc1.a. Perhaps future versions will contain code to do this automatically and conveniently. That depends on whether someone wants to implement it.

Some embedded targets come with all the necessary libgcc1.a routines written in C or assembler. These targets build libgcc1.a automatically and you do not need to do anything special for them. Other embedded targets do not need any libgcc1.a routines since all the necessary operations are supported by the hardware.

If your target system has another C compiler, you can configure GNU CC as a native compiler on that machine, build just libgccl.a with make libgccl.a on that machine, and use the resulting file with the cross-compiler. To do this, execute the following on the target machine:

```
cd TARGET-BUILD-DIR
./configure --host=sparc --target=sun3
make libgcc1.a
```

And then this on the host machine:

ftp TARGET-MACHINE
binary
cd TARGET-BUILD-DIR
get libgccl.a
quit

Another way to provide the functions you need in libgcc1.a is to define the appropriate perform_... macros for those functions. If these definitions do not use the C arithmetic operators that they are meant to implement, you should be able to compile them with the cross-compiler you are building. (If these definitions already exist for your target file, then you are all set.)

To build libgcc1.a using the perform macros, use LIBGCC1=libgcc1.a OLDCC=./xgcc when building the compiler. Otherwise, you should place your replacement library under the name libgcc1.a in the directory in which you will build the cross-compiler, before you run make.

gcc 122 / 551

1.50 gcc.guide/Cross Headers

Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an embedded system, then you may not need any header files except the few that are part of GNU CC (and those of your program). However, if you intend to link your program with a standard C library such as libc.a, then you probably need to compile with the header files that go with the library you use.

The GNU C compiler does not come with these files, because (1) they are system-specific, and (2) they belong in a C library, not in a compiler.

If the GNU C library supports your target machine, then you can get the header files from there (assuming you actually use the GNU library when you link your program).

If your target machine comes with a C compiler, it probably comes with suitable header files also. If you make these files accessible from the host machine, the cross-compiler can use them also.

Otherwise, you're on your own in finding header files to use when cross-compiling.

When you have found suitable header files, put them in /usr/local/TARGET/include, before building the cross compiler. Then installation will run fixincludes properly and install the corrected versions of the header files where the compiler will use them.

Provide the header files before you build the cross-compiler, because the build stage actually runs the cross-compiler to produce parts of libgcc.a. (These are the parts that can be compiled with GNU CC.) Some of them need suitable header files.

Here's an example showing how to copy the header files from a target machine. On the target machine, do this:

```
(cd /usr/include; tar cf - .) > tarfile
```

Then, on the host machine, do this:

```
ftp TARGET-MACHINE
lcd /usr/local/TARGET/include
get tarfile
quit
tar xf tarfile
```

1.51 gcc.guide/Build Cross

Actually Building the Cross-Compiler

gcc 123 / 551

Now you can proceed just as for compiling a single-machine compiler through the step of building stage 1. If you have not provided some sort of libgcc1.a, then compilation will give up at the point where it needs that file, printing a suitable error message. If you do provide libgcc1.a, then building the compiler will automatically compile and link a test program called libgcc1-test; if you get errors in the linking, it means that not all of the necessary routines in libgcc1.a are available.

You must provide the header file float.h. One way to do this is to compile enquire and run it on your target machine. The job of enquire is to run on the target machine and figure out by experiment the nature of its floating point representation. enquire records its findings in the header file float.h. If you can't produce this file by running enquire on the target machine, then you will need to come up with a suitable float.h in some other way (or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn't work to rebuild GNU CC as a cross-compiler using the cross-compiler, because that would produce a program that runs on the target machine, not on the host. For example, if you compile a 386-to-68030 cross-compiler with itself, the result will not be right either for the 386 (because it was compiled into 68030 code) or for the 68030 (because it was configured for a 386 as the host). If you want to compile GNU CC into 68030 code, whether you compile it on a 68030 or with a cross-compiler on a 386, you must specify a 68030 as the host when you configure it.

To install the cross-compiler, use make install, as usual.

1.52 gcc.guide/Sun Install

Installing GNU CC on the Sun

On Solaris (version 2.1), do not use the linker or other tools in /usr/ucb to build GNU CC. Use /usr/ccs/bin.

Make sure the environment variable FLOAT_OPTION is not set when you compile libgcc.a. If this option were set to f68881 when libgcc.a is compiled, the resulting code would demand to be linked with a special startup file and would not link properly without special pains.

There is a bug in alloca in certain versions of the Sun library. To avoid this bug, install the binaries of GNU CC that were compiled by GNU CC. They use alloca as a built-in function and never the one in the library.

Some versions of the Sun compiler crash when compiling GNU CC. The problem is a segmentation fault in cpp. This problem seems to be due to the bulk of data in the environment variables. You may be able to avoid it by using the following command to compile GNU CC with Sun CC:

gcc 124 / 551

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

1.53 gcc.guide/VMS Install

Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset containing both source code and precompiled binaries.

To install the gcc command so you can use the compiler easily, in the same manner as you use the VMS C compiler, you must install the VMS CLD file for GNU CC as follows:

- 1. Define the VMS logical names GNU_CC and GNU_CC_INCLUDE to point to the directories where the GNU CC executables (gcc-cpp.exe, gcc-ccl.exe, etc.) and the C include files are kept respectively. This should be done with the commands:
 - \$ assign /system /translation=concealed disk:[gcc.] gnu_cc
 - \$ assign /system /translation=concealed disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands can be placed in your system startup file so they will be executed whenever the machine is rebooted. You may, if you choose, do this via the GCC_INSTALL.COM script in the [GCC] directory.

- 2. Install the GCC command with the command line:
 - \$ set command /table=sys\$common:[syslib]dcltables /output=sys\$common:[syslib]dcltables gnu_cc:[000000]gcc
 - \$ install replace sys\$common:[syslib]dcltables
- 3. To install the help file, do the following:
 - \$ library/help sys\$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like gcc /verbose file.c, which is equivalent to the command gcc -v -c file.c in Unix.

If you wish to use GNU C++ you must first install GNU CC, and then perform the following steps:

- Define the VMS logical name GNU_GXX_INCLUDE to point to the directory where the preprocessor will search for the C++ header files. This can be done with the command:
 - \$ assign /system /translation=concealed disk:[gcc.gxx_include.] gnu_gxx_include

gcc 125 / 551

with the appropriate disk and directory name. If you are going to be using libg++, this is where the libg++ install procedure will install the libg++ header files.

2. Obtain the file gcc-cclplus.exe, and place this in the same directory that gcc-ccl.exe is kept.

The GNU C++ compiler can be invoked with a command like gcc /plus /verbose file.cc, which is equivalent to the command g++-v-c file.cc in Unix.

We try to put corresponding binaries and sources on the VMS distribution tape. But sometimes the binaries will be from an older version than the sources, because we don't always have time to update them. (Use the /version option to determine the version number of the binaries and compare it with the source file version.c to tell whether this is so.) In this case, you should use the binaries you get to recompile the sources. If you must recompile, here is how:

- Execute the command procedure vmsconfig.com to set up the files tm.h, config.h, aux-output.c, and md., and to create files tconfig.h and hconfig.h. This procedure also creates several linker option files used by make-ccl.com and a data file used by make-12.com.
 - \$ @vmsconfig.com
- 2. Setup the logical names and command tables as defined above. In addition, define the VMS logical name GNU_BISON to point at the to the directories where the Bison executable is kept. This should be done with the command:
 - \$ assign /system /translation=concealed disk:[bison.] gnu_bison

You may, if you choose, use the ${\tt INSTALL_BISON.COM}$ script in the ${\tt [BISON]}$ directory.

- 3. Install the BISON command with the command line:
 - \$ set command /table=sys\$common:[syslib]dcltables /output=sys\$common:[syslib]dcltables gnu bison:[000000]bison
 - \$ install replace sys\$common:[syslib]dcltables
- 4. Type @make-gcc to recompile everything (alternatively, submit the file make-gcc.com to a batch queue). If you wish to build the GNU C++ compiler as well as the GNU CC compiler, you must first edit make-gcc.com and follow the instructions that appear in the comments.
- 5. In order to use GCC, you need a library of functions which GCC compiled code will call to perform certain tasks, and these functions are defined in the file libgcc2.c. To compile this you should use the command procedure make-12.com, which will generate the library libgcc2.olb. libgcc2.olb should be built using the compiler built from the same distribution that libgcc2.c came

gcc 126 / 551

from, and make-gcc.com will automatically do all of this for you.

To install the library, use the following commands:

- \$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
- \$ library gnu_cc:[000000]gcclib/delete=L_*
- \$ library libgcc2/extract=*/output=libgcc2.obj
- \$ library gnu_cc:[000000]gcclib libgcc2.obj

The first command simply removes old modules that will be replaced with modules from libgcc2 under different module names. The modules new and eprintf may not actually be present in your gcclib.olb--if the VMS librarian complains about those modules not being present, simply ignore the message and continue on with the next command. The second command removes the modules that came from the previous version of the library libgcc2.c.

Whenever you update the compiler on your system, you should also update the library with the above procedure.

6. You may wish to build GCC in such a way that no files are written to the directory where the source files reside. An example would be the when the source files are on a read-only disk. In these cases, execute the following DCL commands (substituting your actual path names):

where the directory dual:[gcc.source_dir] contains the source code, and the directory dua0:[gcc.build_dir] is meant to contain all of the generated object files and executables. Once you have done this, you can proceed building GCC as described above. (Keep in mind that gcc_build is a rooted logical name, and thus the device names in each element of the search list must be an actual physical device name rather than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU CC, you also should check to see that you have the newest version of the assembler. In particular, GNU CC version 2 treats global constant variables slightly differently from GNU CC version 1, and GAS version 1.38.1 does not have the patches required to work with GCC version 2. If you use GAS 1.38.1, then extern const variables will not have the read-only bit set, and the linker will generate warning messages about mismatched psect attributes for these variables. These warning messages are merely a nuisance, and can safely be ignored.

If you are compiling with a version of GNU CC older than 1.33, specify /DEFINE=("inline=") as an option in all the compilations. This requires editing all the gcc commands in make-ccl.com. (The older versions had problems supporting inline.) Once you have a working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need to make minor changes in make-cccp.com and make-ccl.com to choose

gcc 127 / 551

alternate definitions of CC, CFLAGS, and LIBS. See comments in those files. However, you must also have a working version of the GNU assembler (GNU as, aka GAS) as it is used as the back-end for GNU CC to produce binary object modules and is not included in the GNU CC sources. GAS is also needed to compile libgcc2 in order to build gcclib (see above); make-12.com expects to be able to find it operational in gnu_cc:[000000]gnu-as.exe.

To use GNU CC on VMS, you need the VMS driver programs gcc.exe, gcc.com, and gcc.cld. They are distributed with the VMS binaries (gcc-vms) rather than the GNU CC sources. GAS is also included in gcc-vms, as is Bison.

Once you have successfully built GNU CC with VAX C, you should use the resulting compiler to rebuild itself. Before doing this, be sure to restore the CC, CFLAGS, and LIBS definitions in make-cccp.com and make-ccl.com. The second generation compiler will be able to take advantage of many optimizations that must be suppressed when building with other compilers.

Under previous versions of GNU CC, the generated code would occasionally give strange results when linked with the sharable VAXCRTL library. Now this should work.

Even with this version, however, GNU CC itself should not be linked with the sharable VAXCRTL. The version of qsort in VAXCRTL has a bug (known to be present in VMS versions V4.6 through V5.5) which causes the compiler to fail.

The executables are generated by make-ccl.com and make-cccp.com use the object library version of VAXCRTL in order to make use of the qsort routine in gcclib.olb. If you wish to link the compiler executables with the shareable image version of VAXCRTL, you should edit the file tm.h (created by vmsconfig.com) to define the macro QSORT_WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with VAX C, to avoid a problem in case gcclib.olb is not yet available.

1.54 gcc.guide/Collect2

collect2

Many target systems do not have support in the assembler and linker for "constructors"--initialization functions to be called before the official "start" of main. On such systems, GNU CC uses a utility called collect2 to arrange to call these functions at start time.

The program collect2 works by linking the program once and looking through the linker output file for symbols with particular names indicating they are constructor functions. If it finds any, it creates a new temporary .c file containing a table of them, compiles it, and links the program a second time including that file.

gcc 128 / 551

The actual calls to the constructors are carried out by a subroutine called __main, which is called (automatically) at the beginning of the body of main (provided main was compiled with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking C and C++ object code together. (If you use -nostdlib, you get an unresolved reference to __main, since it's defined in the standard GCC library. Include -lgcc at the end of your compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler are installed. When collect2 needs to find the real ld, it tries the following file names:

- * real-ld in the directories listed in the compiler's search directories.
- \star real-1d in the directories listed in the environment variable PATH.
- * The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
- * Id in the compiler's search directories, except that collect2 will not execute itself recursively.
- * ld in PATH.

"The compiler's search directories" means all the directories where gcc searches for passes of the compiler. This includes directories that you specify with -B.

Cross-compilers search a little differently:

- * real-ld in the compiler's search directories.
- * TARGET-real-ld in PATH.
- * The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
- * ld in the compiler's search directories.
- * TARGET-ld in PATH.

collect2 explicitly avoids running ld using the file name under which collect2 itself was invoked. In fact, it remembers up a list of such names—in case one copy of collect2 finds another copy (or version) of collect2 installed as ld in a second place in the search path.

collect2 searches for the utilities nm and strip using the same algorithm as above for ld.

gcc 129 / 551

1.55 gcc.guide/Header Dirs

Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GNU CC stores its private include files, and also where GNU CC stores the fixed include files. A cross compiled GNU CC runs fixincludes on the header files in \$(tooldir)/include. (If the cross compilation header files need to be fixed, they must be installed before GNU CC is built. If the cross compilation header files are already suitable for ANSI C and GNU CC, nothing special need be done).

GPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++ looks first for header files. libg++ installs only target independent header files in that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is normally /usr/local/include. GNU CC searches this directory so that users can install header files in /usr/local/include.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn't install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other packages to install header files that GNU CC will use. For a cross-compiler, this is the equivalent of /usr/include. When you build a cross-compiler, fixincludes processes any header files in this directory.

1.56 gcc.guide/C Extensions

Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C. (The -pedantic option directs GNU CC to print a warning message if any of these features is used.) To test for the availability of these features in conditional compilation, check for a predefined macro __GNUC__, which is always defined under GNU CC.

These extensions are available in C and Objective C. Most of them are also available in C++. See

Extensions to the C++ Language

, for

extensions that apply only to C++.

Statement Exprs
Putting statements and declarations inside expressions.

Local Labels

gcc 130 / 551

Labels local to a statement-expression. Labels as Values Getting pointers to labels, and computed gotos. Nested Functions As in Algol and Pascal, lexical scoping of functions. Constructing Calls Dispatching a call to another function. Naming Types Giving a name to the type of some expression. Typeof typeof: referring to the type of an expression. Lvalues Using ?:, , and casts in lvalues. Conditionals Omitting the middle operand of a ?: expression. Long Long Double-word integers--long long int. Complex Data types for complex numbers. Zero Length Zero-length arrays. Variable Length Arrays whose length is computed at run time. Macro Varargs Macros with variable number of arguments. Subscripting Any array can be subscripted, even if not an lvalue. Pointer Arith Arithmetic on void-pointers and function pointers. Initializers Non-constant initializers. Constructors Constructor expressions give structures, unions or arrays as values. Labeled Elements Labeling elements of initializers. Cast to Union Casting to union type from any member of the union.

gcc 131 / 551

```
Case Ranges
           'case 1 ... 9' and such.
          Function Attributes
          Declaring that functions have no side effects,
                 or that they can never return.
          Function Prototypes
          Prototype declarations and old-style definitions.
          C++ Comments
          C++ comments are recognized.
         Dollar Signs
          Dollar sign is allowed in identifiers.
          Character Escapes
           \e stands for the character ESC.
          Variable Attributes
          Specifying attributes of variables.
          Type Attributes
           Specifying attributes of types.
         Alignment
           Inquiring about the alignment of a type or variable.
          Defining inline functions (as fast as macros).
         Extended Asm
          Assembler instructions with C expressions as operands.
                  (With them you can define "built-in" functions.)
          Asm Labels
          Specifying the assembler name to use for a C symbol.
          Explicit Reg Vars
          Defining variables residing in specified registers.
          Alternate Keywords
          __const__, __asm__, etc., for header files.
          Incomplete Enums
          enum foo;, with details to follow.
         Function Names
          Printable strings which are the name of the current
function.
```

1.57 gcc.guide/Statement Exprs

gcc 132 / 551

Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C. This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this construct, parentheses go around the braces. For example:

```
({ int y = foo (); int z;
  if (y > 0) z = y;
  else z = - y;
  z; })
```

is a valid (though slightly more complex than necessary) expression for the absolute value of foo ().

The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement last within the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions "safe" (so that they evaluate each operand exactly once). For example, the "maximum" function is commonly defined as a macro in standard C as follows:

```
\#define max(a,b) ((a) > (b) ? (a) : (b))
```

But this definition computes either A or B twice, with bad results if the operand has side effects. In GNU C, if you know the type of the operands (here let's assume int), you can define the macro safely as follows:

```
#define maxint(a,b) \
  ({int _a = (a), _b = (b); _a > _b ? _a : _b; })
```

Embedded statements are not allowed in constant expressions, such as the value of an enumeration constant, the width of a bit field, or the initial value of a static variable.

If you don't know the type of the operand, you can still do this, but you must use typeof (see

```
Typeof
) or type naming (see
Naming Types
).
```

gcc 133 / 551

1.58 gcc.guide/Local Labels

```
Locally Declared Labels
```

Each statement expression is a scope in which local labels can be declared. A local label is simply an identifier; you can jump to it with an ordinary goto statement, but only from within the statement expression it belongs to.

```
A local label declaration looks like this:
```

__label__ LABEL;

or

```
__label__ LABEL1, LABEL2, ...;
```

Local label declarations must come at the beginning of the statement expression, right after the ({, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You must do this in the usual way, with LABEL:, within the statements of the statement expression.

The local label feature is useful because statement expressions are often used in macros. If the macro contains nested loops, a goto can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label will be multiply defined in that function. A local label avoids this problem. For example:

1.59 gcc.guide/Labels as Values

Labels as Values

gcc 134 / 551

You can get the address of a label defined in the current function (or a containing function) with the unary operator &&. The value has type void *. This value is a constant and can be used wherever a constant of that type is valid. For example:

```
void *ptr;
...
ptr = &&foo;
```

To use these values, you need to be able to jump to one. This is done with the computed goto statement (1), goto $\star \text{EXP}$;. For example,

```
goto *ptr;
```

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump table:

```
static void *array[] = { &&foo, &&bar, &&hack };
```

Then you can select a label with indexing, like this:

```
goto *array[i];
```

Note that this does not check whether the subscript is in bounds--array indexing in C never does that.

Such an array of label values serves a purpose much like that of the switch statement. The switch statement is cleaner, so use that rather than an array unless the problem does not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the interpreter function can be stored in the threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a different function. If you do that, totally unpredictable things will happen. The best way to avoid this is to store the label address only in automatic variables and never pass it as an argument.

```
----- Footnotes -----
```

(1) The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables.

1.60 gcc.guide/Nested Functions

Nested Functions

gcc 135 / 551

A nested function is a function defined inside another function. (Nested functions are not supported for GNU C++.) The nested function's name is local to the block where it is defined. For example, here we define a nested function named square, and call it twice:

```
foo (double a, double b)
{
  double square (double z) { return z * z; }
  return square (a) + square (b);
}
```

The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called lexical scoping. For example, here we show a nested function which uses an inherited variable named offset:

```
bar (int *array, int offset, int size)
{
  int access (int *array, int index)
     { return array[index + offset]; }
  int i;
    ...
  for (i = 0; i < size; i++)
    ... access (array, i) ...
}</pre>
```

Nested function definitions are permitted within functions in the places where variable definitions are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing its address or passing the address to another function:

```
hack (int *array, int size)
{
  void store (int index, int value)
     { array[index] = value; }

  intermediate (store, size);
}
```

Here, the function intermediate receives the address of store as an argument. If intermediate calls store, the arguments given to store are used to store into array. But this technique works only so long as the containing function (hack, in this example) does not exit.

If you try to call the nested function through its address after the containing function has exited, all hell will break loose. If you try to call it after a containing scope level has exited, and if it refers to some of the variables that are no longer in scope, you may be lucky, but it's not wise to take the risk. If, however, the nested function does not refer to anything that has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a

gcc 136 / 551

technique called trampolines. A paper describing them is available from maya.idiap.ch in directory pub/tmb, file usenix88-lexic.ps.Z.

A nested function can jump to a label inherited from a containing function, provided the label was explicitly declared in the containing function (see

Local Labels

). Such a jump returns instantly to the containing function, exiting the nested function which did the goto and any intermediate functions as well. Here is an example:

```
bar (int *array, int offset, int size)
  __label__ failure;
 int access (int *array, int index)
      if (index > size)
       goto failure;
     return array[index + offset];
    }
  int i;
  for (i = 0; i < size; i++)
    ... access (array, i) ...
 return 0;
 /* Control comes here from access
    if it detects an error. */
 failure:
 return -1;
}
```

A nested function always has internal linkage. Declaring one with extern is erroneous. If you need to declare the nested function before its definition, use auto (which is otherwise meaningless for function declarations).

```
bar (int *array, int offset, int size)
{
    __label__ failure;
    auto int access (int *, int);
    ...
    int access (int *array, int index)
        {
        if (index > size)
            goto failure;
        return array[index + offset];
        }
        ...
}
```

137 / 551 gcc

gcc.guide/Constructing Calls 1.61

Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function received, and call another function with the same arguments, without knowing the number or types of the arguments.

You can also record the return value of that function call, and later return that value, without knowing what data type the function tried to return (as long as your caller expects that data type).

__builtin_apply_args ()

This built-in function returns a pointer of type void * to data describing how to perform a call with the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to a function into a block of memory allocated on the stack. Then it returns the address of that block.

__builtin_apply (FUNCTION, ARGUMENTS, SIZE)

This built-in function invokes FUNCTION (type void (*)()) with a copy of the parameters described by ARGUMENTS (type void \star) and SIZE (type int).

The value of ARGUMENTS should be the value returned by __builtin_apply_args. The argument SIZE specifies the size of the stack argument data, in bytes.

This function returns a pointer of type void * to data describing how to return whatever value was returned by FUNCTION. The data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for SIZE. The value is used by __builtin_apply to compute the amount of data that should be pushed on the stack and copied from the incoming argument area.

__builtin_return (RESULT)

This built-in function returns the value described by RESULT from the containing function. You should specify, for RESULT, a value returned by __builtin_apply.

1.62 gcc.guide/Naming Types

Naming an Expression's Type ______

You can give a name to the type of an expression using a typedef declaration with an initializer. Here is how to define NAME as a type gcc 138 / 551

```
name for the type of EXP:
    typedef NAME = EXP;
```

This is useful in conjunction with the statements-within-expressions feature. Here is how the two together can be used to define a safe "maximum" macro that operates on any arithmetic type:

```
#define max(a,b) \
  ({typedef _ta = (a), _tb = (b); \
    _ta _a = (a); _tb _b = (b); \
    _a > _b ? _a : _b; })
```

The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within the expressions that are substituted for a and b. Eventually we hope to design a new form of declaration syntax that allows you to declare variables whose scopes start only after their initializers; this will be a more reliable way to prevent such conflicts.

1.63 gcc.guide/Typeof

Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of this keyword looks like sizeof, but the construct acts semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression or with a type. Here is an example with an expression:

```
typeof (x[0](1))
```

This assumes that x is an array of functions; the type described is that of the values of the functions.

Here is an example with a typename as the argument:

```
typeof (int *)
```

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ANSI C programs, write __typeof__ instead of typeof. See

```
Alternate Keywords
```

A typeof-construct can be used anywhere a typedef name could be used. For example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.

 \star This declares y with the type of what x points to.

gcc 139 / 551

1.64 gcc.guide/Lvalues

pointers to char.

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided their operands are lvalues. This means that you can take their addresses or store values into them.

Standard C++ allows compound expressions and conditional expressions as lvalues, and permits casts to reference type, so use of this extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the last expression in the sequence is an lvalue. These two expressions are equivalent:

$$(a, b) += 5$$

a, $(b += 5)$

Similarly, the address of the compound expression can be taken. These two expressions are equivalent:

```
&(a, b)
a, &b
```

gcc 140 / 551

A conditional expression is a valid lvalue if its type is not void and the true and false branches are both valid lvalues. For example, these two expressions are equivalent:

```
(a ? b : c) = 5
(a ? b = 5 : (c = 5))
```

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand side is a cast works by converting the right-hand side first to the specified type, then to the type of the inner left-hand side expression. After this is stored, the value is converted back to the specified type to become the value of the assignment. Thus, if a has type char *, the following two expressions are equivalent:

```
(int)a = 5
(int)(a = (char *)(int)5)
```

An assignment-with-arithmetic operation such as += applied to a cast performs the arithmetic using the type resulting from the cast, and then continues as in the previous case. Therefore, these two expressions are equivalent:

```
(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))
```

You cannot take the address of an lvalue cast, because the use of its address would not work out coherently. Suppose that &(int)f were permitted, where f has type float. Then the following statement would try to store an integer bit-pattern where a floating point number belongs:

```
*&(int)f = 1;
```

This is quite different from what (int) f=1 would do--that would convert 1 to floating point and store it. Rather than cause this inconsistency, we think it is better to prohibit use of & on a cast.

If you really do want an int * pointer with the address of f, you can simply write (int *)&f.

1.65 gcc.guide/Conditionals

Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression

```
х ? : у
```

gcc 141 / 551

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then repeating the operand in the middle would perform the side effect twice. Omitting the middle operand uses the value already computed without the undesirable effects of recomputing it.

1.66 gcc.guide/Long Long

Double-Word Integers

GNU C supports data types for integers that are twice as long as long int. Simply write long long int for a signed integer, or unsigned long long int for an unsigned integer. To make an integer constant of type long long int, add the suffix LL to the integer. To make an integer constant of type unsigned long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction, and bitwise boolean operations on these types are open-coded on all types of machines. Multiplication is open-coded if the machine supports fullword-to-doubleword a widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GNU CC.

There may be pitfalls when you use long long types for function arguments, unless you declare function prototypes. If a function expects type int for its argument, and you pass a value of type long long int, confusion will result because the caller and the subroutine will disagree about the number of bytes for the argument. Likewise, if the function expects long long int and you pass int. The best way to avoid such problems is to use prototypes.

1.67 gcc.guide/Complex

Complex Numbers

GNU C supports complex data types. You can declare both complex integer types and complex floating types, using the keyword __complex__.

gcc 142 / 551

For example, __complex__ double x; declares x as a variable whose real part and imaginary part are both of type double. __complex__ short int y; declares y to have real and imaginary parts of type short int; this is not likely to be useful, but it shows that the set of complex types is complete.

To write a constant with a complex data type, use the suffix i or j (either one; they are equivalent). For example, 2.5fi has type __complex__ int. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant.

To extract the real part of a complex-valued expression EXP, write __real__ EXP. Likewise, use __imag__ to extract the imaginary part.

The operator \sim performs complex conjugation when used on a value with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous fashion; it's even possible for the real part to be in a register while the imaginary part is on the stack (or vice-versa). None of the supported debugging info formats has a way to represent noncontiguous allocation like this, so GNU CC describes a noncontiguous complex variable as if it were two separate variables of noncomplex type. If the variable's actual name is foo, the two fictitious variables are named foo\$real and foo\$imag. You can examine and set these two fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat them as a single variable with a complex type.

1.68 gcc.guide/Zero Length

Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure which is really a header for a variable-length object:

```
struct line {
  int length;
  char contents[0];
};

{
  struct line *thisline = (struct line *)
    malloc (sizeof (struct line) + this_length);
  thisline->length = this_length;
}
```

In standard C, you would have to give contents a length of 1, which means either you waste space or complicate the argument to malloc.

gcc 143 / 551

1.69 gcc.guide/Variable Length

```
Arrays of Variable Length
```

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like any other automatic arrays, but with a length that is not a constant expression. The storage is allocated at the point of declaration and deallocated when the brace-level is exited. For example:

```
FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
  char str[strlen (s1) + strlen (s2) + 1];
  strcpy (str, s1);
  strcat (str, s2);
  return fopen (str, mode);
}
```

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The function alloca is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca exists until the containing function returns. The space for a variable-length array is deallocated as soon as the array name's scope ends. (If you use both variable-length arrays and alloca in the same function, deallocation of a variable-length array will also deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

```
struct entry
tester (int len, char data[len][len])
{
   ...
}
```

The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list--another GNU extension.

```
struct entry
tester (int len; char data[len][len], int len)
```

gcc 144 / 551

```
{
    ...
}
```

The int len before the semicolon is a parameter forward declaration, and it serves the purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the last one must end with a semicolon, which is followed by the "real" parameter declarations. Each forward declaration must match a "real" declaration in parameter name and data type.

1.70 gcc.guide/Macro Varargs

Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a function can. The syntax for defining the macro looks much like that used for a function. Here is an example:

```
#define eprintf(format, args...) \
fprintf (stderr, format , ## args)
```

Here args is a rest argument: it takes in zero or more arguments, as many as the call contains. All of them plus the commas between them form the value of args, which is substituted into the macro body where args is used. Thus, we have this expansion:

```
eprintf ("%s:%d: ", input_file_name, line_number)
==>
fprintf (stderr, "%s:%d: " , input_file_name, line_number)
```

Note that the comma after the string constant comes from the definition of eprintf, whereas the last comma comes from the value of args.

The reason for using ## is to handle the case when args matches no arguments at all. In this case, args has an empty value. In this case, the second comma in the definition becomes an embarrassment: if it got through to the expansion of the macro, we would get something like this:

```
fprintf (stderr, "success!\n" , )
```

which is invalid C syntax. ## gets rid of the comma, so we get the following instead:

```
fprintf (stderr, "success!\n")
```

This is a special feature of the GNU C preprocessor: ## before a rest argument that is empty discards the preceding sequence of non-whitespace characters from the macro definition. (If another macro

gcc 145 / 551

```
argument precedes, none of it is discarded.)
```

It might be better to discard the last preprocessor token instead of the last preceding sequence of non-whitespace characters; in fact, we may someday change this feature to do so. We advise you to write the macro definition so that the preceding sequence of non-whitespace characters is just a single token, so that the meaning will not change if we change the definition of this feature.

1.71 gcc.guide/Subscripting

```
Non-Lvalue Arrays May Have Subscripts
```

Subscripting is allowed on arrays that are not lvalues, even though the unary & operator is not. For example, this is valid in ${\tt GNU}$ C though not valid in other C dialects:

```
struct foo {int a[4];};
struct foo f();
bar (int index)
{
  return f().a[index];
}
```

1.72 gcc.guide/Pointer Arith

Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that size of is also allowed on void and on function types, and returns 1.

The option -Wpointer-arith requests a warning if these extensions are used.

1.73 gcc.guide/Initializers

Non-Constant Initializers

gcc 146 / 551

As in standard C++, the elements of an aggregate initializer for an automatic variable are not required to be constant expressions in GNU C. Here is an example of an initializer with run-time varying elements:

```
foo (float f, float g)
{
  float beat_freqs[2] = { f-g, f+g };
   ...
}
```

1.74 gcc.guide/Constructors

Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an initializer. Its value is an object of the type specified in the cast, containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo and structure are declared as shown:

```
struct foo {int a; char b[2];} structure;
```

Here is an example of constructing a struct foo with a constructor:

```
structure = ((struct foo) \{x + y, 'a', 0\});
```

This is equivalent to writing the following:

```
{
  struct foo temp = {x + y, 'a', 0};
  structure = temp;
}
```

You can also construct an array. If all the elements of the constructor are (made up of) simple constant expressions, suitable for use in initializers, then the constructor is an lvalue and can be coerced to a pointer to its first element, as shown here:

```
char **foo = (char *[]) { "x", "y", "z" };
```

Array constructors whose elements are not simple constants are not very useful, because the constructor is not an lvalue. There are only two valid ways to use it: to subscript it, or initialize an array variable with it. The former is probably slower than a switch statement, while the latter does the same thing an ordinary C initializer would do. Here is an example of subscripting an array constructor:

```
output = ((int[]) \{ 2, x, 28 \}) [input];
```

Constructor expressions for scalar types and union types are is also

gcc 147 / 551

allowed, but then the constructor expression is equivalent to a cast.

1.75 gcc.guide/Labeled Elements

Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed order, the same as the order of the elements in the array or structure being initialized.

In GNU C you can give the elements in any order, specifying the array indices or structure field names they apply to. This extension is not implemented in $GNU\ C++$.

To specify an array index, write [INDEX] or [INDEX] = before the element value. For example,

```
int a[6] = { [4] 29, [2] = 15 };
is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };
```

The index values must be constant expressions, even if the array being initialized is automatic.

To initialize a range of elements to the same value, write [FIRST...LAST] = VALUE. For example,

```
int widths[] = { [0 \dots 9] = 1, [10 \dots 99] = 2, [100] = 3 };
```

Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with FIELDNAME: before the element value. For example, given the following structure,

```
struct point { int x, y; };

the following initialization
    struct point p = { y: yvalue, x: xvalue };

is equivalent to
    struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is .FIELDNAME =., as shown here:
    struct point p = { .y = yvalue, .x = xvalue };
```

gcc 148 / 551

You can also use an element label (with either the colon syntax or the period-equal syntax) when initializing a union, to specify which element of the union should be used. For example,

```
union foo { int i; double d; };
union foo f = { d: 4 };
```

will convert 4 to a double to store it in the union using the second element. By contrast, casting 4 to type union foo would store it into the union as the integer i, since it is an integer. (See

```
Cast to Union
.)
```

You can combine this technique of naming elements with ordinary C initialization of successive elements. Each initializer element that does not have a label applies to the next consecutive element of the array or structure. For example,

```
int a[6] = { [1] = v1, v2, [4] = v4 };
is equivalent to
  int a[6] = { 0, v1, v2, 0, v4, 0 };
```

Labeling the elements of an array initializer is especially useful when the indices are characters or belong to an enum type. For example:

```
int whitespace[256]
= \{ [' '] = 1, [' \t'] = 1, [' \h'] = 1, [' \t'] = 1, [' \t'] = 1, [' \t'] = 1, [' \t'] = 1 \};
```

1.76 gcc.guide/Case Ranges

Case Ranges

You can specify a range of consecutive values in a single case label, like this:

```
case LOW ... HIGH:
```

This has the same effect as the proper number of individual case labels, one for each integer value from LOW to HIGH, inclusive.

This feature is especially useful for ranges of ASCII character codes:

```
case 'A' ... 'Z':
```

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you use it with integer values. For example, write

gcc 149 / 551

```
this:
    case 1 ... 5:
rather than this:
    case 1...5:
```

1.77 gcc.guide/Cast to Union

```
Cast to a Union Type
```

A cast to union type is similar to other casts, except that the type specified is a union type. You can specify the type either with union TAG or with a typedef name. A cast to union is actually a constructor though, not a cast, and hence does not yield an lvalue like normal casts. (See

Constructors
.)

The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables:

```
union foo { int i; double d; };
int x;
double y;
```

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union:

```
union foo u;
...
u = (union foo) x == u.i = x
u = (union foo) y == u.d = y

You can also use the union cast as a function argument:
  void hack (union foo);
...
hack ((union foo) x);
```

1.78 gcc.guide/Function Attributes

Declaring Attributes of Functions

gcc 150 / 551

In GNU C, you declare certain things about functions called in your program which help the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. Eight attributes, noreturn, const, format, section, constructor, destructor, unused and weak are currently defined for functions. Other attributes, including section are supported for variables declarations (see

```
Variable Attributes
) and
for types (see

Type Attributes
).
```

You may also specify attributes with __ preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __noreturn_ instead of noreturn.

noreturn

A few standard library functions, such as abort and exit, cannot return. GNU CC knows this automatically. Some programs define their own functions that never return. You can declare them noreturn to tell the compiler this fact. For example,

```
void fatal () __attribute__ ((noreturn));

void
fatal (...)
{
    ... /* Print error message. */ ...
    exit (1);
}
```

The noreturn keyword tells the compiler to assume that fatal cannot return. It can then optimize without regard to what would happen if fatal ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GNU C versions earlier than 2.5. An alternative way to declare that a function does not return, which works in the current version and in some older versions, is as follows:

```
typedef void voidfn ();
volatile voidfn fatal;
```

gcc 151 / 551

const

Many functions do not examine any values except their arguments, and have no effects except the return value. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute const. For example,

```
int square (int) __attribute__ ((const));
```

says that the hypothetical function square is safe to call fewer times than the program says.

The attribute const is not implemented in GNU C versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows:

```
typedef int intfn ();
extern const intfn square;
```

This approach does not work in GNU C++ from 2.6.0 on, since the language specifies that the const must be attached to the return value.

Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const function to return void.

```
format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)
```

The format attribute specifies that a function takes printf or scanf style arguments which should be type-checked against a format string. For example, the declaration:

```
extern int
my_printf (void *my_object, const char *my_format, ...)
    __attribute__ ((format (printf, 2, 3)));
```

causes the compiler to check the arguments in calls to my_printf for consistency with the printf style format string argument my_format .

The parameter ARCHETYPE determines how the format string is interpreted, and should be either printf or scanf. The parameter STRING-INDEX specifies which argument is the format string argument (starting from 1), while FIRST-TO-CHECK is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as vprintf), specify the third parameter as zero. In this case the compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second argument of the function my_print, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.

gcc 152 / 551

The format attribute allows you to identify your own functions which take format strings as arguments, so that GNU CC can check the calls to these functions for errors. The compiler always checks formats for the ANSI library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf whenever such warnings are requested (using -Wformat), so there is no need to modify the header file stdio.h.

section ("section-name")

Normally, the compiler places the code it generates in the text section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The section attribute specifies that a function lives in a particular section. For example, the declaration:

```
extern void foobar (void) __attribute__ ((section ("bar")));
```

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead.

constructor destructor

The constructor attribute causes the function to be called automatically before execution enters main (). Similarly, the destructor attribute causes the function to be called automatically after main () has completed or exit () has been called. Functions with these attributes are useful for initializing data that will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective ${\tt C.}$

unused

This attribute, attached to a function, means that the function is meant to be possibly unused. GNU CC will not produce a warning for this function.

weak

The weak attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions which can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a out targets when using the GNU assembler and linker.

alias ("target")

The alias attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance,

```
void __f () { /* do something */; }
void f () __attribute__ ((weak, alias ("__f")));
```

gcc 153 / 551

declares f to be a weak alias for __f. In C++, the mangled name for the target must be used.

regparm (NUMBER)

On the Intel 386, the regparm attribute causes the compiler to pass up to NUMBER integer arguments in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments will continue to be passed all of their arguments on the stack.

stdcall

On the Intel 386, the stdcall attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments.

cdecl

On the Intel 386, the cdecl attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments. This is useful to override the effects of the -mrtd switch.

You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ANSI C's #pragma should be used instead. There are two reasons for not doing this.

- 1. It is impossible to generate #pragma commands from a macro.
- 2. There is no telling what the same #pragma might mean in another compiler.

These two reasons apply to almost any application that might be proposed for #pragma. It is basically a mistake to use #pragma for anything.

1.79 gcc.guide/Function Prototypes

Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later old-style non-prototype definition. Consider the following example:

```
/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif
```

gcc 154 / 551

```
/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x)    /* ??? lossage here ??? */
    uid_t x;
{
    return x == 0;
}
```

Suppose the type uid_t happens to be short. ANSI C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function definition's argument is really an int, which does not match the prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is portable to traditional C compilers, because the programmer does not know whether the uid_t type is short, int, or long. Therefore, in cases like these GNU C allows a prototype to override a later old-style definition. More precisely, in GNU C, a function prototype argument type overrides the argument type specified by a later old-style definition if the former type is the same as the latter type before promotion. Thus in GNU C the above example is equivalent to the following:

```
int isroot (uid_t);
int
isroot (uid_t x)
{
  return x == 0;
}
```

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

1.80 gcc.guide/C++ Comments

```
C++ Style Comments
```

In GNU C, you may use C++ style comments, which start with // and continue until the end of the line. Many other C implementations allow such comments, and they are likely to be in a future C standard. However, C++ style comments are not recognized if you specify -ansi or -traditional, since they are incompatible with traditional constructs like dividend//*comment*/divisor.

gcc 155 / 551

1.81 gcc.guide/Dollar Signs

Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify -traditional. On a few systems they are allowed by default, even if you do not use -traditional. But they are never allowed if you specify -ansi.

There are certain ANSI C programs (obscure, to be sure) that would compile incorrectly if dollar signs were permitted in identifiers. For example:

#define foo(a) #a
#define lose(b) foo (b)
#define test\$
lose (test)

1.82 gcc.guide/Character Escapes

The Character ESC in Constants

You can use the sequence \e in a string or character constant to stand for the ASCII character ESC.

1.83 gcc.guide/Alignment

Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type even at an odd addresses. For these machines, __alignof__ reports the recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the largest alignment that the lvalue is known to have. It may

gcc 156 / 551

have this alignment as a result of its data type, or because it is part of a structure and inherits alignment from that structure. For example, after this declaration:

```
struct foo { int x; char y; } fool;
```

the value of __alignof__ (fool.y) is probably 2 or 4, the same as __alignof__ (int), even though the data type of fool.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an object is __attribute__ ((aligned (ALIGNMENT))); see the following section.

1.84 gcc.guide/Variable Attributes

Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure fields. This keyword is followed by an attribute specification inside double parentheses. Eight attributes are currently defined for variables: aligned, mode, nocommon, packed, section, transparent_union, unused, and weak. Other attributes are available for functions (see

```
Function Attributes
) and for types (see
Type Attributes
).
```

You may also specify attributes with __ preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __aligned__ instead of aligned.

aligned (ALIGNMENT)

This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration:

```
int x __attribute__ ((aligned (16))) = 0;
```

causes the compiler to allocate the global variable x on a 16-byte boundary. On a 68040, this could be used in conjunction with an asm expression to access the movel6 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a double-word aligned int pair, you could write:

```
struct foo { int x[2] __attribute__ ((aligned (8))); };
```

This is an alternative to creating a union with a double member that forces the union to be double-word aligned.

gcc 157 / 551

It is not possible to specify the alignment of functions; the alignment of functions is determined by the machine's requirements and cannot be changed. You cannot specify alignment for a typedef name because such a name is just an alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given variable or structure field. Alternatively, you can leave out the alignment factor and just ask the compiler to align a variable or field to the maximum useful alignment for the target machine you are compiling for. For example, you could write:

```
short array[3] __attribute__ ((aligned));
```

Whenever you leave out the alignment factor in an aligned attribute specification, the compiler automatically sets the alignment for the declared variable or field to the largest alignment which is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an __attribute__ will still only provide you with 8 byte alignment. See your linker documentation for further information.

mode (MODE)

This attribute specifies the data type for the declaration—whichever type corresponds to the mode MODE. This in effect lets you request an integer or floating point type according to its width.

You may also specify a mode of byte or __byte__ to indicate the mode corresponding to a one-byte integer, word or __word__ for the mode of a one-word integer, and pointer or __pointer__ for the mode used to represent pointers.

nocommon

This attribute specifies requests GNU CC not to place a variable "common" but instead to allocate space for it directly. If you specify the -fno-common flag, GNU CC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initialization of zeros. A variable may only be initialized in one source file.

gcc 158 / 551

packed

The packed attribute specifies that a variable or structure field should have the smallest possible alignment—one byte for a variable, and one bit for a field, unless you specify a larger value with the aligned attribute.

Here is a structure in which the field ${\bf x}$ is packed, so that it immediately follows a:

```
struct foo
{
  char a;
  int x[2] __attribute__ ((packed));
};
```

section ("section-name")

Normally, the compiler places the objects it generates in sections like data and bss. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The section attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names:

```
struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data_copy __attribute__ ((section ("INITDATACOPY"))) = 0;

main()
{
    /* Initialize stack pointer */
    init_sp (stack + sizeof (stack));

    /* Initialize initialized data */
    memcpy (&init_data_copy, &data, &edata - &data);

    /* Turn on the serial ports */
    init_duart (&a);
    init_duart (&b);
}
```

Use the section attribute with an initialized definition of a global variable, as shown in the example. GNU CC issues a warning and otherwise ignores the section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition because of the way linkers work. The linker requires each object be defined once, with the exception that uninitialized variables tentatively go in the common (or bss) section and can be multiply "defined". You can force a variable to be initialized with the -fno-common flag or the nocommon attribute.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map

gcc 159 / 551

the entire contents of a module to a particular section, consider using the facilities of the linker instead.

transparent_union

This attribute, attached to a function argument variable which is a union, means to pass the argument in the same way that the first union member would be passed. You can also use this attribute on a typedef for a union data type; then it applies to all function arguments with that type.

unused

This attribute, attached to a variable, means that the variable is meant to be possibly unused. GNU CC will not produce a warning for this variable.

weak

The weak attribute is described in See Function Attributes

To specify multiple attributes, separate them by commas within the double parentheses: for example, __attribute__ ((aligned (16), packed)).

1.85 gcc.guide/Type Attributes

Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union types when you define such types. This keyword is followed by an attribute specification inside double parentheses. Three attributes are currently defined for types: aligned, packed, and transparent_union. Other attributes are defined for functions (see

Function Attributes
) and for variables (see
Variable Attributes
).

You may also specify any one of these attributes with ___ preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same name. For example, you may use __aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes either in a typedef declaration or just past the closing curly brace of a complete enum, struct or union type definition and the packed attribute only past the closing brace of a definition.

aligned (ALIGNMENT)

This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations:

gcc 160 / 551

```
struct S { short f[3]; } __attribute__ ((aligned (8));
typedef int more_aligned_int __attribute__ ((aligned (8));
```

force the compiler to insure (as fas as it can) that each variable whose type is struct S or more_aligned_int will be allocated and aligned at least on a 8-byte boundary. On a Sparc, having all variables of type struct S aligned to 8-byte boundaries allows the compiler to use the ldd and std (doubleword load and store) instructions when copying one variable of type struct S to another, thus improving run-time efficiency.

Note that the alignment of any given struct or union type is required by the ANSI C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members of the struct or union in question. This means that you can effectively adjust the alignment of a struct or union type by attaching an aligned attribute to any one of the members of such a type, but the notation illustrated in the example above is a more obvious, intuitive, and readable way to request the compiler to adjust the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given struct or union type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write:

```
struct S { short f[3]; } __attribute__ ((aligned));
```

Whenever you leave out the alignment factor in an aligned attribute specification, the compiler automatically sets the alignment for the type to the largest alignment which is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables which have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the entire struct S type is 6 bytes. The smallest power of two which is greater than or equal to that is 8, so the compiler sets the alignment for the entire struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only individual stand-alone objects of that type, the compiler's ability to select a time-efficient alignment is primarily useful only when you plan to create arrays of variables having the relevant (efficiently aligned) type. If you declare or use arrays of variables of an efficiently-aligned type, then it is likely that your program will also be doing pointer arithmetic (or subscripting, which amounts to the same thing) on pointers to the relevant type, and the code that the compiler generates for these pointer arithmetic operations will often be more efficient for efficiently-aligned types than for other types.

gcc 161 / 551

The aligned attribute can only increase the alignment; but you can decrease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an __attribute__ will still only provide you with 8 byte alignment. See your linker documentation for further information.

packed

This attribute, attached to an enum, struct, or union type definition, specified that the minimum required memory be used to represent the type.

Specifying this attribute for struct and union types is equivalent to specifying the packed attribute on each of the structure or union members. Specifying the -fshort-enums flag on the line is equivalent to specifying the packed attribute on all enum definitions.

You may only specify this attribute after a closing curly brace on an enum definition, not in a typedef declaration.

transparent_union

This attribute, attached to a union type definition, indicates that any variable having that union type should, if passed to a function, be passed in the same way that the first union member would be passed. For example:

```
union foo
{
  char a;
  int x[2];
} __attribute__ ((transparent_union));
```

To specify multiple attributes, separate them by commas within the double parentheses: for example, __attribute__ ((aligned (16), packed)).

1.86 gcc.guide/Inline

An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that function's code into the code for its callers. This makes execution faster by eliminating the function-call overhead; in addition, if any of the actual argument values are constant, their known values may permit simplifications at compile time so that not all of the

gcc 162 / 551

inline function's code needs to be included. The effect on code size is less predictable; object code may be larger or smaller with function inlining, depending on the particular case. Inlining of functions is an optimization and it really "works" only in optimizing compilation. If you don't use -O, no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like this:

```
inline int
inc (int *a)
{
   (*a)++;
}
```

(If you are writing a header file to be included in ANSI C programs, write __inline__ instead of inline. See

Alternate Keywords

You can also make all "simple enough" functions inline with the option -finline-functions. Note that certain usages in a function definition can make it unsuitable for inline substitution.

Note that in C and Objective C, unlike C++, the inline keyword does not affect the linkage of the function.

GNU CC automatically inlines member functions defined within the class body of C++ programs even if they are not explicitly declared inline. (You can override this with -fno-default-inline; see

Options Controlling C++ Dialect
.)

When a function is both inline and static, if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GNU CC does not actually output assembler code for the function, unless you specify the option -fkeep-inline-functions. Some calls cannot be integrated for various reasons (in particular, calls that precede the function's definition cannot be integrated, and neither can recursive calls within the definition). If there is a nonintegrated call, then the function is compiled to assembler code as usual. The function must also be compiled as usual if the program refers to its address, because that can't be inlined.

When an inline function is not static, then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be integrated. Therefore, a non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you

gcc 163 / 551

had only declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition (lacking inline and extern) in a library file. The definition in the header file will cause most calls to the function to be inlined. If any uses of the function remain, they will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear whether it is better to inline or not, in this case, but we found that a correct implementation when not optimizing was difficult. So we did the easy thing, and turned it off.

1.87 gcc.guide/Extended Asm

Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can now specify the operands of the instruction using C expressions. This means no more guessing which registers or memory locations will contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine description, plus an operand constraint string for each operand.

For example, here is how to use the 68881's fsinx instruction:

```
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
```

Here angle is the C expression for the input operand while result is that of the output operand. Each has "f" as its operand constraint, saying that a floating point register is required. The = in =f indicates that the operand is an output; all output operands' constraints must use =. The constraints use the same language used in the machine description (see

Constraints
).

Each operand is described by an operand-constraint string followed by the C expression in parentheses. A colon separates the assembler template from the first output operand, and another separates the last output operand from the first input, if any. Commas separate output operands and separate inputs. The total number of operands is limited to ten or to the maximum number of operands in any instruction pattern in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then there must be two consecutive colons surrounding the place where the output operands would go.

gcc 164 / 551

Output operand expressions must be lvalues; the compiler can check this. The input operands need not be lvalues. The compiler cannot check whether the operands have data types that are reasonable for the instruction being executed. It does not parse the assembler instruction template and does not know what it means, or whether it is valid assembler input. The extended asm feature is most often used for machine instructions that the compiler itself does not know exist. If the output expression cannot be directly addressed (for example, it is a bit field), your constraint must allow a register. In that case, GNU CC will use the register as the output of the asm, and then store that register into the output.

The output operands must be write-only; GNU CC will assume that the values in these operands before the instruction are dead and need not be generated. Extended asm does not support input-output or read-write operands. For this reason, the constraint character +, which indicates such an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which only some of the bits are to be changed, you must logically split its function into two separate operands, one input operand and one write-only output operand. The connection between them is expressed by constraints which say they need to be in the same location when the instruction executes. You can use the same C expression for both operands, or different expressions. For example, here we write the (fictitious) combine instruction with bar as its read-only source operand and foo as its read-write destination:

```
asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
```

The constraint "0" for operand 1 says that it must occupy the same location as operand 0. A digit in constraint is allowed only in an input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be in the same place as another. The mere fact that foo is the value of both operands is not enough to guarantee that they will be in the same place in the generated assembler code. The following would not work:

```
asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
```

Various optimizations or reloading could cause operands 0 and 1 to be in different registers; GNU CC knows no reason not to do so. For example, the compiler might find a copy of the value of foo in one register and use it for operand 1, but generate the output operand 0 in a different register (copying it afterward to foo's own address). Of course, since the register for operand 1 is not even mentioned in the assembler code, the result will not work, but GNU CC can't tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon after the input operands, followed by the names of the clobbered hard registers (given as strings). Here is a realistic example for the Vax:

gcc 165 / 551

```
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");
```

If you refer to a particular hardware register from the assembler code, then you will probably have to list the register after the third colon to tell the compiler that the register's value is modified. In many assemblers, the register names begin with %; to produce one % in the assembler code, you must write %% in the input.

If your assembler instruction can alter the condition code register, add cc to the list of clobbered registers. GNU CC on some machines represents the condition codes as a specific hardware register; cc serves to name this register. On other machines, the condition code is handled differently, and specifying cc has no effect. But it is valid no matter what the machine.

If your assembler instruction modifies memory in an unpredictable fashion, add memory to the list of clobbered registers. This will cause GNU CC to not keep memory values cached in registers across the assembler instruction.

You can put multiple assembler instructions together in a single asm template, separated either with newlines (written as \n) or with semicolons if the assembler allows such semicolons. The GNU assembler allows semicolons and all Unix assemblers seem to do so. The input operands are guaranteed not to use any of the clobbered registers, and neither will the output operands' addresses, so you can read and write the clobbered registers as many times as you like. Here is an example of multiple instructions in a template; it assumes that the subroutine _foo accepts arguments in registers 9 and 10:

Unless an output operand has the & constraint modifier, GNU CC may allocate it in the same register as an unrelated input operand, on the assumption that the inputs are consumed before the outputs are produced. This assumption may be false if the assembler code actually consists of more than one instruction. In such a case, use & for each output operand that may not overlap an input. See

Modifiers

If you want to test the condition code produced by an assembler instruction, you must include a branch and a label in the asm construct, as follows:

This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers do.

Speaking of labels, jumps from one asm to another are not supported.

gcc 166 / 551

The compiler's optimizers do not know about these jumps, and therefore they cannot take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in macros that look like functions. For example,

```
#define sin(x) \
({ double __value, __arg = (x); \
   asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
   __value; })
```

Here the variable $_$ arg is used to make sure that the instruction operates on a proper double value, and to accept only those arguments x which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data type is to use a cast in the asm. This is different from using a variable __arg in that it converts more different types. For example, if the desired type were int, casting the argument to int would accept a pointer with no complaint, while assigning the argument to an int variable named __arg would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes that the instruction has no side effects except to change the output operands. This does not mean that instructions with a side effect cannot be used, but you must be careful, because the compiler may eliminate them if the output operands aren't used, or move them out of loops, or replace two with one if they constitute a common subexpression. Also, if your instruction does have a side effect on a variable that otherwise appears not to change, the old value of the variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined, by writing the keyword volatile after the asm. For example:

```
#define set_priority(x) \ asm volatile ("set_priority %0": /* no outputs */ : "g" (x))
```

An instruction without output operands will not be deleted or moved significantly, regardless, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that appear insignificant to the compiler, such as across jump instructions. You can't expect a sequence of volatile asm instructions to remain perfectly consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition code left by the assembler instruction. However, when we attempted to implement this, we found no way to make it work reliably. The problem is that output operands might need reloading, which would result in additional following "store" instructions. On most machines, these instructions would alter the condition code before there was time to test it. This problem doesn't arise for ordinary "test" and "compare" instructions because they don't have any output operands.

gcc 167 / 551

If you are writing a header file that should be includable in ANSI C programs, write __asm__ instead of asm. See

Alternate Keywords

1.88 gcc.guide/Asm Labels

Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by writing the asm (or __asm__) keyword after the declarator as follows:

```
int foo asm ("myfoo") = 2;
```

This specifies that the name to be used for the variable foo in the assembler code should be myfoo rather than the usual _foo.

On systems where an underscore is normally prepended to the name of a C function or variable, this feature allows you to define names for the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can get the same effect by writing a declaration for the function before its definition and putting asm there, like this:

```
extern func () asm ("FUNC");
func (x, y)
    int x, y;
```

It is up to you to make sure that the assembler names you choose do not conflict with any other assembler symbols. Also, you must not use a register name; that would produce completely invalid assembler code. GNU CC does not as yet have the ability to store static variables in registers. Perhaps that will be added.

1.89 gcc.guide/Explicit Reg Vars

Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can also specify the register in which an ordinary register variable should be allocated.

gcc 168 / 551

* Global register variables reserve registers throughout the program. This may be useful in programs such as programming language interpreters which have a couple of global variables that are accessed very often.

* Local register variables in specific registers do not reserve the registers. The compiler's data flow analysis is capable of determining where the specified registers contain live values, and where they are available for other uses.

These local variables are sometimes convenient for use with the extended asm feature (see

Extended Asm

), if you want to write one

output of the assembler instruction directly into a particular register. (This will work provided the register you specify fits the constraints specified for that operand in the asm.)

Global Reg Vars

Local Reg Vars

1.90 gcc.guide/Global Reg Vars

Defining Global Register Variables

You can define a global register variable in GNU C like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is normally saved and restored by function calls on your machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your program according to cpu type. The register a5 would be a good choice on a 68000 for a variable of pointer type. On machines with register windows, be sure to choose a "global" register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the registers; then you would need additional conditionals. For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should choose and how to enable you to guide the choice. No solution is evident.

Defining a global register variable in a certain register reserves that register entirely for this use, at least within the current

gcc 169 / 551

compilation. The register will not be allocated for any other purpose in the functions in the current compilation. The register will not be saved and restored by these functions. Stores into this register are never deleted even if they would appear to be dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than one thread of control, because the system library routines may temporarily use the register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such function foo by way of a third function lose that was compiled without knowledge of this variable (i.e. in a different source file in which the variable wasn't declared). This is because lose might save the register and put some other value there. For example, you can't expect a global register variable to be available in the comparison-function that you pass to qsort, since qsort might have put something else in that register. (If you are prepared to recompile qsort with the same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your global register variable, so that they will not use that register for any other purpose, then it suffices to specify the compiler option -ffixed-REG. You need not actually add a global register declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called from a function compiled without this variable, because it could clobber the value the caller expects to find there on return. Therefore, the function which is the entry point into the part of the program that uses the global register variable must explicitly save and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had at the time of the setjmp. On some machines, however, longjmp will not change the value of global register variables. To be portable, the function that called setjmp should make other arrangements to save the values of the global register variables, and to restore them in a longjmp. This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a declaration could appear after function definitions, the declaration would be too late to prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no means to supply initial contents for a register.

On the Sparc, there are reports that $g3\ldots g7$ are suitable registers, but certain library functions, such as getwd, as well as the subroutines for division and remainder, modify g3 and g4. g1 and g2 are local temporaries.

On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of

gcc 170 / 551

course, it will not do to use more than a few of those.

gcc.guide/Local Reg Vars

Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax used for defining global register variables, but for a local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific registers are most often useful with explicit assembler instructions (see

Extended Asm

). Both of these things

generally require that you conditionalize your program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the registers; then you would need additional conditionals. For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should choose and how to enable you to guide the choice. No solution is evident.

Defining such a register variable does not reserve the register; it remains available for other uses in places where flow control determines the variable's value is not live. However, these registers are made unavailable for use in the reload pass. I would not be surprised if excessive use of this feature leaves the compiler too few available registers to compile certain functions.

qcc.quide/Alternate Keywords

Alternate Keywords

============

The option -traditional disables certain keywords; -ansi disables certain others. This causes trouble when you want to use GNU C extensions, or ANSI C features, in a general-purpose header file that should be usable by all programs, including ANSI C programs and

gcc 171 / 551

traditional ones. The keywords asm, typeof and inline cannot be used since they won't work in a program compiled with -ansi, while the keywords const, volatile, signed, typeof and inline won't work in a program compiled with -traditional.

The way to solve these problems is to put __ at the beginning and end of each problematical keyword. For example, use __asm__ instead of asm, __const__ instead of const, and __inline__ instead of inline.

Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords as macros to replace them with the customary keywords. It looks like this:

```
#ifndef __GNUC__
#define __asm__ asm
#endif
```

-pedantic causes warnings for many GNU C extensions. You can prevent such warnings within one expression by writing __extension_ before the expression. __extension_ has no effect aside from this.

1.93 gcc.guide/Incomplete Enums

You can define an enum tag without specifying its possible values. This results in an incomplete type, much like what you get if you write struct foo without describing the elements. A later declaration which does specify the possible values completes the type.

You can't allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.

1.94 gcc.guide/Function Names

```
Function Names as Strings
```

GNU CC predefines two string variables to be the name of the current function. The variable __FUNCTION__ is the name of the function as it appears in the source. The variable __PRETTY_FUNCTION__ is the name of the function pretty printed in a language specific fashion.

gcc 172 / 551

These names are always the same in a C function, but in a C++ function they may be different. For example, this program:

```
extern "C" {
     extern int printf (char *, ...);
     class a {
      public:
       sub (int i)
           printf ("__FUNCTION__ = %s\n", __FUNCTION__);
           printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
     };
     int
     main (void)
       a ax;
       ax.sub(0);
       return 0;
gives this output:
     \__FUNCTION\__ = sub
     __PRETTY_FUNCTION__ = int a::sub (int)
```

These names are not macros: they are predefined string variables. For example, #ifdef __FUNCTION__ does not have any special meaning inside a function, since the preprocessor does not do anything special with the identifier __FUNCTION__.

1.95 gcc.guide/C++ Extensions

Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use most of the C language extensions in your C++ programs). If you want to write code that checks whether these features are available, you can test for the GNU compiler the same way as for C programs: check for a predefined macro __GNUC__. You can also use __GNUG__ to test specifically for GNU C++ (see Standard Predefined Macros).

```
Naming Results
Giving a name to C++ function return values.

Min and Max
C++ Minimum and maximum operators.
```

gcc 173 / 551

```
Destructors and Goto
Goto is safe to use in C++ even when destructors
are needed.
```

C++ Interface

You can use a single C++ header file for both declarations and definitions.

Template Instantiation

Methods for ensuring that exactly one copy of

each needed template instantiation is emitted.

C++ Signatures

You can specify abstract types to get subtype polymorphism independent from inheritance.

1.96 gcc.guide/Naming Results

```
Named Return Values in C++
```

GNU C++ extends the function-definition syntax to allow you to specify a name for the result of a function outside the body of the definition, in C++ programs:

```
TYPE
FUNCTIONNAME (ARGS) return RESULTNAME;
{
    ...
    BODY
    ...
}
```

You can use this feature to avoid an extra constructor call when a function result has a class type. For example, consider a function m, declared as $X \ v = m$ ();, whose result is of class X:

```
X
m ()
{
   X b;
   b.a = 23;
   return b;
```

Although m appears to have no arguments, in fact it has one implicit argument: the address of the return value. At invocation, the address of enough space to hold v is sent in as the implicit argument. Then b is constructed and its a field is set to the value 23. Finally, a copy constructor (a constructor of the form X(X&)) is applied to b, with the (implicit) return value location as the target, so that v is now bound to the return value.

gcc 174 / 551

But this is wasteful. The local b is declared just to hold something that will be copied right out. While a compiler that combined an "elision" algorithm with interprocedural data flow analysis could conceivably eliminate all of this, it is much more practical to allow you to assist the compiler in generating efficient code by manipulating the return value explicitly, thus avoiding the local variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid the temporary allocation and copying by naming r as your return value at the outset, and assigning to its a field directly:

```
X
m () return r;
{
   r.a = 23;
}
```

The declaration of r is a standard, proper declaration, whose effects are executed before any of the body of m.

Functions of this type impose no additional restrictions; in particular, you can execute return statements, or return implicitly by reaching the end of the function body ("falling off the edge"). Cases like

```
X
m () return r (23);
{
   return;
}
```

(or even X m () return r (23); { }) are unambiguous, since the return value r has been initialized in either case. The following code may be hard to read, but also works predictably:

```
X
m () return r;
{
    X b;
    return b;
}
```

The return value slot denoted by r is initialized at the outset, but the statement return b; overrides this value. The compiler deals with this by destroying r (calling the destructor if there is one, or doing nothing if there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use overloaded operators, where there is a great need to control not just the arguments, but the return values of functions. For classes where the copy constructor incurs a heavy performance penalty (especially in the common case where there is a quick default constructor), this is a major savings. The disadvantage of this extension is that you do not control when the default constructor for the return value is called: it is always called at the beginning.

gcc 175 / 551

1.97 gcc.guide/Min and Max

Minimum and Maximum Operators in C++

It is very convenient to have operators which return the "minimum" or the "maximum" of two arguments. In GNU C++ (but not in GNU C),

A <? B

is the minimum, returning the smaller of the numeric values ${\bf A}$ and ${\bf B}$:

A >? B

is the maximum, returning the larger of the numeric values A and B.

These operations are not primitive in ordinary C++, since you can use a macro to return the minimum of two things in C++, as in the following example.

```
#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))
```

You might then use int \min = MIN (i, j); to set MIN to the minimum value of variables I and J.

However, side effects in X or Y may cause unintended behavior. For example, MIN (i++, j++) will fail, incrementing the smaller counter twice. A GNU C extension allows you to write safe macros that avoid this kind of problem (see

Naming an Expression's Type

). However,

writing MIN and MAX as macros also forces you to use function-call notation notation for a fundamental arithmetic operation. Using GNU C++ extensions, you can write int min = i <? j; instead.

Since <? and >? are built into the compiler, they properly handle expressions with side-effects; int min = i++ <? j++; works correctly.

1.98 gcc.guide/Destructors and Goto

goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you use it to exit a block which contains aggregates requiring destructors, the destructors will run before the goto transfers control. (In ANSI C++, goto is restricted to targets within the current block.)

The compiler still forbids using goto to enter a scope that requires

gcc 176 / 551

constructors.

1.99 gcc.guide/C++ Interface

Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need two kinds of things for each object that you use across more than one source file. First, you need an interface specification, describing its structure with type declarations and function prototypes. Second, you need the implementation itself. It can be tedious to maintain a separate interface description in a header file, in parallel to the actual implementation. It is also dangerous, since separate interface and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the nonce, you must use one of two #pragma commands; in a future release of GNU C++, an alternative mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with #pragma interface in the source code. This allows the compiler to use the header file only as an interface specification when ordinary source files incorporate it with #include. In the single source file where the full implementation belongs, you can use either a naming convention or #pragma implementation to indicate this alternate use of the header file.

#pragma interface
#pragma interface "SUBDIR/OBJECTS.h"

Use this directive in header files that define object classes, to save space in most of the object files that use those classes. Normally, local copies of certain information (backup copies of inline member functions, debugging information, and the internal tables that implement virtual functions) must be kept in each object file that includes class definitions. You can use this pragma to avoid such duplication. When a header file containing #pragma interface is included in a compilation, this auxiliary information will not be generated (unless the main input source file itself uses #pragma implementation). Instead, the object files will contain references to be resolved at link time.

The second form of this directive is useful for the case where you have multiple headers with the same name in different directories. If you use this form, you must specify the same string to #pragma implementation.

#pragma implementation
#pragma implementation "OBJECTS.h"

Use this pragma in a main input file, when you want full output

gcc 177 / 551

from included header files to be generated (and made globally visible). The included header file, in turn, should use #pragma interface. Backup copies of inline member functions, debugging information, and the internal tables used to implement virtual functions are all generated in implementation files.

If you use #pragma implementation with no argument, it applies to an include file with the same basename(1) as your source file. For example, in allclass.cc, #pragma implementation by itself is equivalent to #pragma implementation "allclass.h".

In versions of GNU C++ prior to 2.6.0 allclass.h was treated as an implementation file whenever you would include it from allclass.cc even if you never specified #pragma implementation. This was deemed to be more trouble than it was worth, however, and disabled.

If you use an explicit #pragma implementation, it must appear in your source file before you include the affected header files.

Use the string argument if you want a single implementation file to include code from multiple header files. (You must also use #include to include the header file; #pragma implementation only specifies how to use the file--it doesn't actually include it.)

There is no way to split up the contents of a single header file into multiple implementation files.

 $\mbox{\tt\#pragma}$ implementation and $\mbox{\tt\#pragma}$ interface also have an effect on function inlining.

If you define a class in a header file marked with #pragma interface, the effect on a function defined in that class is similar to an explicit extern declaration—the compiler emits no code at all to define an independent version of the function. Its definition is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file that declares it as #pragma implementation, the compiler emits code for the function itself; this defines a version of the function that can be found via pointers (or by callers compiled without inlining). If all calls to the function can be inlined, you can avoid emitting the function by compiling with -fno-implement-inlines. If any calls were not inlined, you will get linker errors.

(1) A file's basename was the name stripped of all leading path information and of trailing suffixes, such as .h or .C or .cc.

1.100 gcc.guide/Template Instantiation

Where's the Template?

gcc 178 / 551

C++ templates are the first language feature to require more intelligence from the environment than one usually finds on a UNIX system. Somehow the compiler and linker have to make sure that each template instance occurs exactly once in the executable if it is needed, and not at all otherwise. There are two basic approaches to this problem, which I will refer to as the Borland model and the Cfront model.

Borland model

Borland C++ solved the template instantiation problem by adding the code equivalent of common blocks to their linker; template instances are emitted in each translation unit that uses them, and they are collapsed together at run time. The advantage of this model is that the linker only has to consider the object files themselves; there is no external complexity to worry about. This disadvantage is that compilation time is increased because the template code is being compiled repeatedly. Code written for this model tends to include definitions of all member templates in the header file, since they must be seen to be compiled.

Cfront model

The AT&T C++ translator, Cfront, solved the template instantiation problem by creating the notion of a template repository, an automatically maintained place where template instances are stored. As individual object files are built, notes are placed in the repository to record where templates and potential type arguments were seen so that the subsequent instantiation step knows where to find them. At link time, any needed instances are generated and linked in. The advantages of this model are more optimal compilation speed and the ability to use the system linker; to implement the Borland model a compiler vendor also needs to replace the linker. The disadvantages are vastly increased complexity, and thus potential for error; theoretically, this should be just as transparent, but in practice it has been very difficult to build multiple programs in one directory and one program in multiple directories using Cfront. Code written for this model tends to separate definitions of non-inline member templates into a separate file, which is magically found by the link preprocessor when a template needs to be instantiated.

Currently, g++ implements neither automatic model. In the mean time, you have three options for dealing with template instantiations:

- 1. Do nothing. Pretend g++ does implement automatic instantiation management. Code written for the Borland model will work fine, but each translation unit will contain instances of each of the templates it uses. In a large program, this can lead to an unacceptable amount of code duplication.
- 2. Add #pragma interface to all files containing template definitions. For each of these files, add #pragma implementation "FILENAME" to the top of some .C file which #includes it. Then compile everything with -fexternal-templates. The templates will then only be expanded in the translation unit which implements them (i.e. has a #pragma implementation line for the file where they live); all other files will use external references. If

gcc 179 / 551

you're lucky, everything should work properly. If you get undefined symbol errors, you need to make sure that each template instance which is used in the program is used in the file which implements that template. If you don't have any use for a particular instance in that file, you can just instantiate it explicitly, using the syntax from the latest C++ working paper:

```
template class A<int>;
template ostream& operator << (ostream&, const A<int>&);
```

This strategy will work with code written for either model. If you are using code written for the Cfront model, the file containing a class template and the file containing its member templates should be implemented in the same translation unit.

A slight variation on this approach is to use the flag -falt-external-templates instead; this flag causes template instances to be emitted in the translation unit that implements the header where they are first instantiated, rather than the one which implements the file where the templates are defined. This header must be the same in all translation units, or things are likely to break.

See

 $\begin{array}{c} \text{Declarations and Definitions in One Header}\\ \text{, for more}\\ \text{discussion of these pragmas.} \end{array}$

3. Explicitly instantiate all the template instances you use, and compile with -fno-implicit-templates. This is probably your best bet; it may require more knowledge of exactly which templates you are using, but it's less mysterious than the previous approach, and it doesn't require any #pragmas or other g++-specific code. You can scatter the instantiations throughout your program, you can create one big file to do all the instantiations, or you can create tiny files like

```
#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;
```

for each instance you need, and create a template instantiation library from those. I'm partial to the last, but your mileage may vary. If you are using Cfront-model code, you can probably get away with not using -fno-implicit-templates when compiling files that don't #include the member template definitions.

1.101 gcc.guide/C++ Signatures

Type Abstraction using Signatures

gcc 180 / 551

In GNU C++, you can use the keyword signature to define a completely abstract class interface as a datatype. You can connect this abstraction with actual classes using signature pointers. If you want to use signatures, run the GNU compiler with the -fhandle-signatures command-line option. (With this option, the compiler reserves a second keyword sigof as well, for a future extension.)

Roughly, signatures are type abstractions or interfaces of classes. Some other languages have similar facilities. C++ signatures are related to ML's signatures, Haskell's type classes, definition modules in Modula-2, interface modules in Modula-3, abstract types in Emerald, type modules in Trellis/Owl, categories in Scratchpad II, and types in POOL-I. For a more detailed discussion of signatures, see 'Signatures: A Language Extension for Improving Type Abstraction and Subtype Polymorphism in C++' by Gerald Baumgartner and Vincent F. Russo (Tech report CSD-TR-95-051, Dept. of Computer Sciences, Purdue University, August 1995, a slightly improved version appeared in Software--Practice & Experience, 25(8), pp. 863-889, August 1995). You can get the tech report by anonymous FTP from ftp.cs.purdue.edu in pub/gb/Signature-design.ps.gz.

Syntactically, a signature declaration is a collection of member function declarations and nested type declarations. For example, this signature declaration defines a new abstract type S with member functions int foo () and int bar (int):

```
signature S
{
  int foo ();
  int bar (int);
};
```

Since signature types do not include implementation definitions, you cannot write an instance of a signature directly. Instead, you can define a pointer to any class that contains the required interfaces as a signature pointer. Such a class implements the signature type.

To use a class as an implementation of S, you must ensure that the class has public member functions int foo () and int bar (int). The class can have other member functions as well, public or not; as long as it offers what's declared in the signature, it is suitable as an implementation of that signature type.

For example, suppose that ${\tt C}$ is a class that meets the requirements of signature ${\tt S}$ (${\tt C}$ conforms to ${\tt S}$). Then

```
C obj;
S * p = &obj;
```

defines a signature pointer p and initializes it to point to an object of type C. The member function call int $i = p \rightarrow foo$ (); executes obj.foo ().

Abstract virtual classes provide somewhat similar facilities in standard C++. There are two main advantages to using signatures instead:

gcc 181 / 551

1. Subtyping becomes independent from inheritance. A class or signature type T is a subtype of a signature type S independent of any inheritance hierarchy as long as all the member functions declared in S are also found in T. So you can define a subtype hierarchy that is completely independent from any inheritance (implementation) hierarchy, instead of being forced to use types that mirror the class inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as implementations of a signature type. If those class hierarchies are only available in compiled form, you're out of luck with abstract virtual classes, since an abstract virtual class cannot be retrofitted on top of existing class hierarchies. So you would be required to write interface classes as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration can contain member function definitions as well as member function declarations. A signature member function with a full definition is called a default implementation; classes need not contain that particular interface in order to conform. For example, a class C can conform to the signature

```
signature T
{
  int f (int);
  int f0 () { return f (0); };
};
```

whether or not C implements the member function int f0 (). If you define C::f0, that definition takes precedence; otherwise, the default implementation S::f0 applies.

1.102 gcc.guide/Trouble

Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC. Most of these are not GNU CC bugs per se--if they were, we would fix them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that are too much work to add, and some are places where people's opinions differ as to what is best.

Actual Bugs
Bugs we will fix later.

Installation Problems
Problems that manifest when you install GNU CC.

gcc 182 / 551

Cross-Compiler Problems
Common problems of cross compiling with GNU CC.

Interoperation
Problems using GNU CC with other compilers, and with certain linkers, assemblers and debuggers.

External Bugs
Problems compiling certain programs.

Incompatibilities
GNU CC is incompatible with traditional C.

Fixed Headers

GNU C uses corrected versions of system header files.

This is necessary, but doesn't always work smoothly.

Standard Libraries

GNU C uses the system C library, which might not be compliant with the ISO/ANSI C standard.

Disappointments

Regrettable things we can't change, but not quite bugs.

C++ Misunderstandings Common misunderstandings with GNU C++.

Protoize Caveats
Things to watch out for when using protoize.

Non-buas

Things we think are right, but some others disagree.

Warnings and Errors
Which problems in your code get warnings,
and which get errors.

1.103 gcc.guide/Actual Bugs

Actual Bugs We Haven't Fixed Yet

- * The fixincludes script interacts badly with automounters; if the directory of system header files is automounted, it tends to be unmounted while fixincludes is running. This would seem to be a bug in the automounter. We don't know any good way to work around it.
- * The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp functions that reference the jmp_buf type before that type is defined. To work around this, edit the offending file and place the typedef in front of the prototypes.

gcc 183 / 551

- * There are several obscure case of mis-using struct, union, and enum tags that are not detected as errors by the compiler.
- * When -pedantic-errors is specified, GNU C will incorrectly give an error message when a function name is specified in an expression involving the comma operator.
- * Loop unrolling doesn't work properly for certain C++ programs. This is a bug in the C++ front end. It sometimes emits incorrect debug info, and the loop unrolling code is unable to recover from this error.

1.104 gcc.guide/Installation Problems

Installation Problems

This is a list of problems (and some apparent problems which don't really mean anything is wrong) that show up during installation of GNU CC.

- \star On certain systems, defining certain environment variables such as CC can interfere with the functioning of make.
- * If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be because you have previously configured the compiler in the source directory. Make sure you have done all the necessary preparations. See

Other Dir

•

* If you build GNU CC on a BSD system using a directory stored in a System V file system, problems may occur in running fixincludes if the System V file system doesn't support symbolic links. These problems result in a failure to fix the declaration of size_t in sys/types.h. If you find that size_t is a signed type and that type mismatches occur, this could be the cause.

The solution is not to use such a directory for building GNU CC.

* In previous versions of GNU CC, the gcc driver program looked for as and ld in various places; for example, in files beginning with /usr/local/lib/gcc-. GNU CC version 2 looks for them in the directory /usr/local/lib/gcc-lib/TARGET/VERSION.

Thus, to use a version of as or ld that is not the system default, for example gas or GNU ld, you must put them in that directory (or make links to them from that directory).

* Some commands executed when making the compiler may fail (return a non-zero status) and be ignored by make. These failures, which are often due to files that were not found, are expected, and can

gcc 184 / 551

safely be ignored.

* It is normal to have warnings in compiling certain files about unreachable code and about enumeration type clashes. These files' names begin with insn-. Also, real.c may get some warnings that you can ignore.

- * Sometimes make recompiles parts of the compiler when installing the compiler. In one case, this was traced down to a bug in make. Either ignore the problem or switch to GNU Make.
- * If you have installed a program known as purify, you may find that it causes errors while linking enquire, which is part of building GNU CC. The fix is to get rid of the file real-ld which purify installs—so that GNU CC won't try to use it.
- * On SLS 1.01, a Linux-based GNU system, there is a problem with libc.a: it does not contain the obstack functions. However, GNU CC assumes that the obstack functions are in libc.a when it is the GNU C library. To work around this problem, change the __GNU_LIBRARY__ conditional around line 31 to #if 1.
- * On some 386 systems, building the compiler never finishes because enquire hangs due to a hardware problem in the motherboard—it reports floating point exceptions to the kernel incorrectly. You can install GNU CC except for float.h by patching out the command to run enquire. You may also be able to fix the problem for real by getting a replacement motherboard. This problem was observed in Revision E of the Micronics motherboard, and is fixed in Revision F. It has also been observed in the MYLEX MXA-33 motherboard.

If you encounter this problem, you may also want to consider removing the FPU from the socket during the compilation. Alternatively, if you are running SCO Unix, you can reboot and force the FPU to be ignored. To do this, type hd(40)unix auto ignorefpu.

* On some 386 systems, GNU CC crashes trying to compile enquire.c. This happens on machines that don't have a 387 FPU chip. On 386 machines, the system kernel is supposed to emulate the 387 when you don't have one. The crash is due to a bug in the emulator.

One of these systems is the Unix from Interactive Systems: 386/ix. On this system, an alternate emulator is provided, and it does work. To use it, execute this command as super-user:

ln /etc/emulator.rel1 /etc/emulator

and then reboot the system. (The default emulator file remains present under the name emulator.dflt.)

Try using /etc/emulator.att, if you have such a problem on the SCO system.

Another system which has this problem is Esix. We don't know whether it has an alternate emulator that works.

gcc 185 / 551

On NetBSD 0.8, a similar problem manifests itself as these error messages:

enquire.c: In function 'fprop':
enquire.c:2328: floating overflow

- \star On SCO systems, when compiling GNU CC with the system's compiler, do not use -0. Some versions of the system's compiler miscompile GNU CC with -0.
- * Sometimes on a Sun 4 you may observe a crash in the program genflags or genoutput while building GNU CC. This is said to be due to a bug in sh. You can probably get around it by running genflags or genoutput manually and then retrying the make.
- * On Solaris 2, executables of GNU CC version 2.0.2 are commonly available, but they have a bug that shows up when compiling current versions of GNU CC: undefined symbol errors occur during assembly if you use -g.

The solution is to compile the current version of GNU CC without -g. That makes a working compiler which you can use to recompile with -g.

* Solaris 2 comes with a number of optional OS packages. Some of these packages are needed to use GNU CC fully. If you did not install all optional packages when installing Solaris, you will need to verify that the packages that GNU CC needs are installed.

To check whether an optional package is installed, use the pkginfo command. To add an optional package, use the pkgadd command. For further details, see the Solaris documentation.

For Solaris 2.0 and 2.1, GNU CC needs six packages: SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, and SUNWtoo.

For Solaris 2.2, GNU CC needs an additional seventh package: SUNWsprot.

- * On Solaris 2, trying to use the linker and other tools in /usr/ucb to install GNU CC has been observed to cause trouble. For example, the linker may hang indefinitely. The fix is to remove /usr/ucb from your PATH.
- * If you use the 1.31 version of the MIPS assembler (such as was shipped with Ultrix 3.1), you will need to use the -fno-delayed-branch switch when optimizing floating point code. Otherwise, the assembler will complain when the GCC compiler fills a branch delay slot with a floating point instruction, such as add.d.
- * If on a MIPS system you get an error message saying "does not have gp sections for all it's [sic] sectons [sic]", don't worry about it. This happens whenever you use GAS with the MIPS linker, but there is not really anything wrong, and it is okay to use the output file. You can stop such warnings by installing the GNU linker.

gcc 186 / 551

It would be nice to extend GAS to produce the gp tables, but they are optional, and there should not be a warning about their absence.

* In Ultrix 4.0 on the MIPS machine, stdio.h does not work with GNU CC at all unless it has been fixed with fixincludes. This causes problems in building GNU CC. Once GNU CC is installed, the problems go away.

To work around this problem, when making the stage 1 compiler, specify this option to Make:

```
GCC_FOR_TARGET="./xgcc -B./ -I./include"
```

When making stage 2 and stage 3, specify this option:

```
CFLAGS="-g -I./include"
```

* Users have reported some problems with version 2.0 of the MIPS compiler tools that were shipped with Ultrix 4.1. Version 2.10 which came with Ultrix 4.2 seems to work fine.

Users have also reported some problems with version 2.20 of the MIPS compiler tools that were shipped with RISC/os 4.x. The earlier version 2.11 seems to work fine.

- * Some versions of the MIPS linker will issue an assertion failure when linking code that uses alloca against shared libraries on RISC-OS 5.0, and DEC's OSF/1 systems. This is a bug in the linker, that is supposed to be fixed in future revisions. To protect against this, GNU CC passes -non_shared to the linker unless you pass an explicit -shared or -call_shared switch.
- * On System V release 3, you may get this error message while linking:

ld fatal: failed to write symbol name SOMETHING
 in strings table for file WHATEVER

This probably indicates that the disk is full or your ULIMIT won't allow the file to be as large as it needs to be.

This problem can also result because the kernel parameter MAXUMEM is too small. If so, you must regenerate the kernel and make the value much larger. The default value is reported to be 1024; a value of 32768 is said to work. Smaller values may also work.

 \star On System V, if you get an error like this,

/usr/local/lib/bison.simple: In function 'yyparse': /usr/local/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ULIMIT, or MAXUMEM.

* Current GNU CC versions probably do not work on version 2 of the NeXT operating system.

gcc 187 / 551

* On NeXTStep 3.0, the Objective C compiler does not work, due, apparently, to a kernel bug that it happens to trigger. This problem does not happen on 3.1.

* On the Tower models 4NO and 6NO, by default a process is not allowed to have more than one megabyte of memory. GNU CC cannot compile itself (or many other programs) with -O in that much memory.

To solve this problem, reconfigure the kernel adding the following line to the configuration file:

MAXUMEM = 4096

* On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a bug in the assembler that must be fixed before GNU CC can be built. This bug manifests itself during the first stage of compilation, while building libgcc2.a:

_floatdisf

ccl: warning: '-g' option not supported on this version of GCC ccl: warning: '-gl' option not supported on this version of GCC ./xgcc: Internal compiler error: program as got fatal signal 11

A patched version of the assembler is available by anonymous ftp from altdorf.ai.mit.edu as the file archive/cph/hpux-8.0-assembler. If you have HP software support, the patch can also be obtained directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439, where the assembler aborts on floating point constants.

The bug is not really in the assembler, but in the shared library version of the function "cvtnum(3c)". The bug on "cvtnum(3c)" is SR#4701-078451. Anyway, the attached assembler uses the archive library version of "cvtnum(3c)" and thus does not exhibit the bug.

This patch is also known as PHCO_4484.

- * On HP-UX version 8.05, but not on 8.07 or more recent versions, the fixproto shell script triggers a bug in the system shell. If you encounter this problem, upgrade your operating system or use BASH (the GNU shell) to run fixproto.
- * Some versions of the Pyramid C compiler are reported to be unable to compile GNU CC. You must use an older version of GNU CC for bootstrapping. One indication of this problem is if you get a crash when GNU CC compiles the function muldi3 in file libgcc2.c.

You may be able to succeed by getting GNU CC version 1, installing it, and using it to compile GNU CC version 2. The bug in the Pyramid C compiler does not seem to affect GNU CC version 1.

 \star There may be similar problems on System V Release 3.1 on 386

gcc 188 / 551

```
systems.
\star On the Intel Paragon (an i860 machine), if you are using operating
 system version 1.0, you will get warnings or errors about
 redefinition of va_arg when you build GNU CC.
 If this happens, then you need to link most programs with the
 library iclib.a. You must also modify stdio.h as follows: before
 the lines
               defined(__i860__) && !defined(_VA_LIST)
       #include <va_list.h>
 insert the line
       #if ___PGC___
 and after the lines
      extern int vprintf(const char *, va_list );
      extern int vsprintf(char *, const char *, va_list );
       #endif
 insert the line
       #endif /* ___PGC___ */
 These problems don't exist in operating system version 1.1.
\star On the Altos 3068, programs compiled with GNU CC won't work unless
 you fix a kernel bug. This happens using system versions V.2.2
 1.0gT1 and V.2.2 1.0e and perhaps later versions as well. See the
 file README.ALTOS.
* You will get several sorts of compilation and linking errors on the
 we32k if you don't follow the special instructions.
             Configurations
\star A bug in the HP-UX 8.05 (and earlier) shell will cause the fixproto
 program to report an error of the form:
       ./fixproto: sh internal 1K buffer overflow
```

To fix this, change the first line of the fixproto script to look

1.105 gcc.guide/Cross-Compiler Problems

like:

#!/bin/ksh

gcc 189 / 551

Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several reasons.

* Cross compilation can run into trouble for certain machines because some target machines' assemblers require floating point numbers to be written as integer constants in certain contexts.

The compiler writes these integer constants by examining the floating point value as an integer and printing that integer, because this is simple to write and independent of the details of the floating point representation. But this does not work if the compiler is running on a different machine with an incompatible floating point format, or even a different byte-ordering.

In addition, correct constant folding of floating point values requires representing them in the target machine's format. (The C standard does not quite require this, but in practice it is the only way to win.)

It is now possible to overcome these problems by defining macros such as REAL_VALUE_TYPE. But doing so is a substantial amount of work for each target machine. See

Cross-compilation

* At present, the program mips-tfile which adds debug support to object files on MIPS systems does not work in a cross compile environment.

1.106 gcc.guide/Interoperation

Interoperation

This section lists various difficulties encountered in using GNU C or GNU C++ together with other compilers or with the assemblers, linkers, libraries and debuggers on certain systems.

- \star Objective C does not work on the RS/6000.
- * GNU C++ does not do name mangling in the same way as other C++ compilers. This means that object files compiled with one compiler cannot be used with another.

This effect is intentional, to protect you from more subtle problems. Compilers differ as to many internal details of C++ implementation, including: how class instances are laid out, how multiple inheritance is implemented, and how virtual function calls are handled. If the name encoding were made the same, your programs would link against libraries provided from other

gcc 190 / 551

compilers--but the programs would then crash when run. Incompatible libraries are then detected at link time, rather than at run time.

- * Older GDB versions sometimes fail to read the output of GNU CC version 2. If you have trouble, get GDB version 4.4 or later.
- * DBX rejects some files produced by GNU CC, though it accepts similar constructs in output from PCC. Until someone can supply a coherent description of what is valid DBX input and what is not, there is nothing I can do about these problems. You are on your own.
- * The GNU assembler (GAS) does not support PIC. To generate PIC code, you must use some other assembler, such as /bin/as.
- * On some BSD systems, including some versions of Ultrix, use of profiling causes static variable destructors (currently used only in C++) not to be run.
- * Use of -I/usr/include may cause trouble.

Many systems come with header files that won't work with GNU CC unless corrected by fixincludes. The corrected header files go in a new directory; GNU CC searches this directory before /usr/include. If you use -I/usr/include, this tells GNU CC to search /usr/include earlier on, before the corrected headers. The result is that you get the uncorrected header files.

Instead, you should use these options (when compiling C programs):

-I/usr/local/lib/gcc-lib/TARGET/VERSION/include -I/usr/include

For C++ programs, GNU CC also uses a special directory that defines C++ interfaces to standard C subroutines. This directory is meant to be searched before other standard include directories, so that it takes precedence. If you are compiling C++ programs and specifying include directories explicitly, use this option first, then the two options above:

-I/usr/local/lib/g++-include

- * On some SGI systems, when you use -lgl_s as an option, it gets translated magically to -lgl_s -lX11_s -lc_s. Naturally, this does not happen when you use GNU CC. You must specify all three options explicitly.
- * On a Sparc, GNU CC aligns all values of type double on an 8-byte boundary, and it expects every double to be so aligned. The Sun compiler usually gives double values 8-byte alignment, with one exception: function arguments of type double may not be aligned.

As a result, if a function compiled with Sun CC takes the address of an argument of type double and passes this pointer of type double \ast to a function compiled with GNU CC, dereferencing the pointer may cause a fatal signal.

gcc 191 / 551

One way to solve this problem is to compile your entire program with GNU CC. Another solution is to modify the function that is compiled with Sun CC to copy the argument into a local variable; local variables are always properly aligned. A third solution is to modify the function that uses the pointer to dereference it via the following function access_double instead of directly with *:

```
inline double
access_double (double *unaligned_ptr)
{
  union d2i { double d; int i[2]; };

  union d2i *p = (union d2i *) unaligned_ptr;
  union d2i u;

  u.i[0] = p->i[0];
  u.i[1] = p->i[1];

  return u.d;
}
```

Storing into the pointer can be done likewise with the same union.

* On Solaris, the malloc function in the libmalloc.a library may allocate memory that is only 4 byte aligned. Since GNU CC on the Sparc assumes that doubles are 8 byte aligned, this may result in a fatal signal if doubles are stored in memory allocated by the libmalloc.a library.

The solution is to not use the libmalloc.a library. Use instead malloc and related functions from libc.a; they do not have this problem.

- * Sun forgot to include a static version of libdl.a with some versions of SunOS (mainly 4.1). This results in undefined symbols when linking static binaries (that is, if you use -static). If you see undefined symbols _dlclose, _dlsym or _dlopen when linking, compile and link against the file mit/util/misc/dlsym.c from the MIT version of X windows.
- * The 128-bit long double format that the Sparc port supports currently works by using the architecturally defined quad-word floating point instructions. Since there is no hardware that supports these instructions they must be emulated by the operating system. Long doubles do not work in Sun OS versions 4.0.3 and earlier, because the kernel emulator uses an obsolete and incompatible format. Long doubles do not work in Sun OS version 4.1.1 due to a problem in a Sun library. Long doubles do work on Sun OS versions 4.1.2 and higher, but GNU CC does not enable them by default. Long doubles appear to work in Sun OS 5.x (Solaris 2.x).
- * On HP-UX version 9.01 on the HP PA, the HP compiler cc does not compile GNU CC correctly. We do not yet know why. However, GNU CC compiled on earlier HP-UX versions works properly on HP-UX 9.01 and can compile itself properly on 9.01.

gcc 192 / 551

* On the HP PA machine, ADB sometimes fails to work on functions compiled with GNU CC. Specifically, it fails to work on functions that use alloca or variable-size arrays. This is because GNU CC doesn't generate HP-UX unwind descriptors for such functions. It may even be impossible to generate them.

* Debugging (-g) is not supported on the HP PA machine, unless you use the preliminary GNU tools (see
Installation

- * Taking the address of a label may generate errors from the HP-UX PA assembler. GAS for the PA does not have this problem.
- * Using floating point parameters for indirect calls to static functions will not work when using the HP assembler. There simply is no way for GCC to specify what registers hold arguments for static functions when using the HP assembler. GAS for the PA does not have this problem.
- * In extremely rare cases involving some very large functions you may receive errors from the HP linker complaining about an out of bounds unconditional branch offset. This used to occur more often in previous versions of GNU CC, but is now exceptionally rare. If you should run into it, you can work around by making your function smaller.
- * GNU CC compiled code sometimes emits warnings from the HP-UX assembler of the form:

(warning) Use of GR3 when
 frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

* The current version of the assembler (/bin/as) for the RS/6000 has certain problems that prevent the -g option in GCC from working. Note that Makefile.in uses -g by default when compiling libgcc2.c.

IBM has produced a fixed version of the assembler. The upgraded assembler unfortunately was not included in any of the AIX 3.2 update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users of AIX 3.1 should request PTF U403044 from IBM and users of AIX 3.2 should request PTF U416277. See the file README.RS6000 for more details on these updates.

You can test for the presense of a fixed assembler by using the $\operatorname{\mathsf{command}}$

as -u < /dev/null

If the command exits normally, the assembler fix already is installed. If the assembler complains that "-u" is an unknown flag, you need to order the fix.

 \star On the IBM RS/6000, compiling code of the form

gcc 193 / 551

extern int foo;

static int foo;

... foo ...

will cause the linker to report an undefined symbol foo. Although this behavior differs from most other systems, it is not a bug because redefining an extern variable as static is undefined in ANSI C.

- * AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including floating-point numbers ("." vs "," for separating decimal fractions). There have been problems reported where the library linked with GCC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the LANG environment variable to "C" or "En_US".
- * Even if you specify -fdollars-in-identifiers, you cannot successfully use \$ in identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports these identifiers.
- * On the RS/6000, XLC version 1.3.0.0 will miscompile jump.c. XLC version 1.3.0.1 or later fixes this problem. You can obtain XLC-1.3.0.2 by requesting PTF 421749 from IBM.
- \star There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that occurs when the fldcr instruction is used. GNU CC uses fldcr on the 88100 to serialize volatile memory references. Use the option -mno-serialize-volatile if your version of the assembler has this bug.
- * On VMS, GAS versions 1.38.1 and earlier may cause spurious warning messages from the linker. These warning messages complain of mismatched psect attributes. You can ignore them. See

VMS Install

•

* On NewsOS version 3, if you include both of the files stddef.h and sys/types.h, you get an error because there are two typedefs of size_t. You should change sys/types.h by adding these lines around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
ACTUAL TYPEDEF HERE
#endif

- * On the Alliant, the system's own convention for returning structures and unions is unusual, and is not compatible with GNU CC no matter what options are used.
- * On the IBM RT PC, the MetaWare HighC compiler (hc) uses a different convention for structure and union returning. Use the option

194 / 551 gcc

-mhc-struct-return to tell GNU CC to use a convention compatible with it.

* On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function calls. However, the C compiler uses conventions compatible with BSD Unix: registers 2 through 5 may be clobbered by function calls.

GNU CC uses the same convention as the Ultrix C compiler. You can use these options to produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

 \star On the WE32k, you may find that programs compiled with GNU CC do not work with the standard shared C library. You may need to link with the ordinary C compiler. If you do so, you must specify the following options:

-L/usr/local/lib/qcc-lib/we32k-att-sysv/2.7.1 -lqcc -lc s

The first specifies where to find the library libgcc.a specified with the -lgcc option.

GNU CC does linking by invoking ld, just as cc does, and there is no reason why it should matter which compilation program you use to invoke ld. If someone tracks this problem down, it can probably be fixed easily.

- \star On the Alpha, you may get assembler errors about invalid syntax as a result of floating point constants. This is due to a bug in the C library functions ecvt, fcvt and gcvt. Given valid floating point numbers, they sometimes print NaN.
- \star On Irix 4.0.5F (and perhaps in some other versions), an assembler bug sometimes reorders instructions incorrectly when optimization is turned on. If you think this may be happening to you, try using the GNU assembler; GAS version 2.1 supports ECOFF on Irix.

Or use the -noasmopt option when you compile GNU CC with itself, and then again when you compile your program. (This is a temporary kludge to turn off assembler optimization on Irix.) If this proves to be what you need, edit the assembler spec in the file specs so that it unconditionally passes -00 to the assembler, and never passes -02 or -03.

1.107 gcc.guide/External Bugs

Problems Compiling Certain Programs ______

Certain programs have problems compiling.

gcc 195 / 551

* Parse errors may occur compiling X11 on a Decstation running Ultrix 4.2 because of problems in DEC's versions of the X11 header files X11/Xlib.h and X11/Xutil.h. People recommend adding -I/usr/include/mit to use the MIT versions of the header files, using the -traditional switch to turn off ANSI C, or fixing the header files by adding this:

```
#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif
```

* If you have trouble compiling Perl on a SunOS 4 system, it may be because Perl specifies -I/usr/ucbinclude. This accesses the unfixed header files. Perl specifies the options

```
-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return
```

most of which are unnecessary with GCC 2.4.5 and newer versions. You can make a properly working Perl by setting ccflags to -fwritable-strings (implied by the -traditional in the original options) and cppflags to empty in config.sh, then typing ./doSH; make depend; make.

* On various 386 Unix systems derived from System V, including SCO, ISC, and ESIX, you may get error messages about running out of virtual memory while compiling certain programs.

You can prevent this problem by linking GNU CC with the GNU malloc (which thus replaces the malloc that comes with the system). GNU malloc is available as a separate package, and also in the file src/gmalloc.c in the GNU Emacs 19 distribution.

If you have installed GNU malloc as a separate library package, use this option when you relink GNU CC:

```
MALLOC=/usr/local/lib/libgmalloc.a
```

Alternatively, if you have compiled gmalloc.c from Emacs 19, copy the object file to gmalloc.o and use this option when you relink GNU CC:

MALLOC=gmalloc.o

1.108 gcc.guide/Incompatibilities

Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and most existing (non-ANSI) versions of C. The -traditional option eliminates many of these incompatibilities, but not all, by telling GNU C to behave like the other C compilers.

gcc 196 / 551

* GNU CC normally makes string constants read-only. If several identical-looking string constants are used, GNU CC stores only one copy of the string.

One consequence is that you cannot call mktemp with a string constant argument. The function mktemp always alters the string its argument points to.

Another consequence is that sscanf does not work on some systems when passed a string constant as its format control string or input. This is because sscanf incorrectly tries to write into the string constant. Likewise fscanf and scanf.

The best solution to these problems is to change the program to use char-array variables with initialization strings for these purposes instead of string constants. But if this is not possible, you can use the -fwritable-strings flag, which directs GNU CC to handle string constants the same way most C compilers do. -traditional also has this effect, among others.

* -2147483648 is positive.

This is because 2147483648 cannot fit in the type int, so (following the ANSI C rules) its data type is unsigned long int. Negating this value yields 2147483648 again.

 \star GNU CC does not substitute macro arguments when they appear inside of string constants. For example, the following macro in GNU CC

```
#define foo(a) "a"
```

will produce output "a" regardless of what the argument A is.

The -traditional option directs GNU CC to handle such cases (among others) in the old-fashioned (non-ANSI) fashion.

* When you use setjmp and longjmp, the only automatic variables guaranteed to remain valid are those declared volatile. This is a consequence of automatic register allocation. Consider this function:

```
jmp_buf j;
foo ()
{
  int a, b;
  a = fun1 ();
  if (setjmp (j))
    return a;
  a = fun2 ();
  /* longjmp (j) may occur in fun3. */
  return a + fun3 ();
}
```

gcc 197 / 551

Here a may or may not be restored to its first value when the longjmp occurs. If a is allocated in a register, then its first value is restored; otherwise, it keeps the last value stored in it.

If you use the -W option with the -O option, you will get a warning when GNU CC thinks such a problem might be possible.

The -traditional option directs GNU C to put variables in the stack by default, rather than in registers, in functions that call setjmp. This results in the behavior found in traditional C compilers.

* Programs that use preprocessing directives in the middle of macro arguments do not work with GNU CC. For example, a program like this will not work:

ANSI C does not permit such a construct. It would make sense to support it when -traditional is used, but it is too much work to implement.

* Declarations of external variables and functions within a block apply only to the block containing the declaration. In other words, they have the same scope as any other declaration in the same place.

In some other C compilers, a extern declaration affects all the rest of the file even if it happens within a block.

The -traditional option directs GNU C to treat all extern declarations as global, like traditional compilers.

* In traditional C, you can combine long, etc., with a typedef name, as shown here:

```
typedef int foo;
typedef long foo bar;
```

In ANSI C, this is not allowed: long and other type modifiers require an explicit int. Because this criterion is expressed by Bison grammar rules rather than C code, the -traditional flag cannot alter it.

- * PCC allows typedef names to be used as function parameters. The difficulty described immediately above applies here too.
- * PCC allows whitespace in the middle of compound assignment operators such as +=. GNU CC, following the ANSI standard, does not allow this. The difficulty described immediately above applies here too.
- * GNU CC complains about unterminated character constants inside of preprocessing conditionals that fail. Some programs have English

gcc 198 / 551

comments enclosed in conditionals that are guaranteed to fail; if these comments contain apostrophes, GNU CC will probably report an error. For example, this code would produce an error:

#if 0
You can't expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment delimited by /*...*/. However, -traditional suppresses these error messages.

* Many user programs contain the declaration long time ();. In the past, the system header files on many systems did not actually declare time, so it did not matter what type your program declared it to return. But in systems with ANSI C headers, time is declared to return time_t, and if that is not the same as long, then long time (); is erroneous.

The solution is to change your program to use time_t as the return type of time.

- * When compiling functions that return float, PCC converts it to a double. GNU CC actually returns a float. If you are concerned with PCC compatibility, you should declare your functions to return double; you might as well say what you mean.
- * When compiling functions that return structures or unions, GNU CC output code normally uses a method different from that used on most versions of Unix. As a result, code compiled with GNU CC cannot call a structure-returning function compiled with PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or union with any other size is stored into an address supplied by the caller (usually in a special, fixed register, but on some machines it is passed on the stack). The machine-description macros STRUCT_VALUE and STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then returning the address of that storage as if it were a pointer value. The caller must copy the data from that memory area to the place where the value is wanted. GNU CC does not use this method because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union returning. GNU CC on most of these machines uses a compatible convention when returning structures and unions in memory, but still returns small structures and unions in registers.

You can tell GNU CC to use a compatible convention for all structure and union returning with the option -fpcc-struct-return.

gcc 199 / 551

* GNU C complains about program fragments such as 0x74ae-0x4000 which appear to be two hexadecimal constants separated by the minus operator. Actually, this string is a single preprocessing token. Each such token must correspond to one token in C. Since this does not, GNU C prints an error message. Although it may appear obvious that what is meant is an operator and two values, the ANSI C standard specifically requires that this be treated as erroneous.

A preprocessing token is a preprocessing number if it begins with a digit and is followed by letters, underscores, digits, periods and e^+ , e^- , E^+ , or E^- character sequences.

To make the above program fragment valid, place whitespace in front of the minus sign. This whitespace will end the preprocessing number.

1.109 gcc.guide/Fixed Headers

Fixed Header Files

GNU CC needs to install corrected versions of some system header files. This is because most target systems have some header files that won't work with GNU CC unless they are changed. Some have bugs, some are incompatible with ANSI C, and some depend on special features of other compilers.

Installing GNU CC automatically creates and installs the fixed header files, by running a program called fixincludes (or for certain targets an alternative such as fixinc.svr4). Normally, you don't need to pay attention to this. But there are cases where it doesn't do the right thing automatically.

- * If you update the system's header files, such as by installing a new system version, the fixed header files of GNU CC are not automatically updated. The easiest way to update them is to reinstall GNU CC. (If you want to be clever, look in the makefile and you can find a shortcut.)
- * On some systems, in particular SunOS 4, header file directories contain machine-specific symbolic links in certain places. This makes it possible to share most of the header files among hosts running the same version of SunOS 4 on different machine models.

The programs that fix the header files do not understand this special way of using symbolic links; therefore, the directory of fixed header files is good only for the machine model used to build it.

In SunOS 4, only programs that look inside the kernel will notice the difference between machine models. Therefore, for most purposes, you need not be concerned about this.

It is possible to make separate sets of fixed header files for the

gcc 200 / 551

different machine models, and arrange a structure of symbolic links so as to use the proper set, but you'll have to do this by hand.

* On Lynxos, GNU CC by default does not fix the header files. This is because bugs in the shell cause the fixincludes script to fail.

This means you will encounter problems due to bugs in the system header files. It may be no comfort that they aren't GNU CC's fault, but it does mean that there's nothing for us to do about them.

1.110 gcc.guide/Standard Libraries

Standard Libraries

GNU CC by itself attempts to be what the ISO/ANSI C standard calls a conforming freestanding implementation. This means all ANSI C language features are available, as well as the contents of float.h, limits.h, stdarg.h, and stddef.h. The rest of the C library is supplied by the vendor of the operating system. If that C library doesn't conform to the C standards, then your programs might get warnings (especially when using -Wall) that you don't expect.

For example, the sprintf function on SunOS 4.1.3 returns char \star while the C standard says that sprintf returns an int. The fixincludes program could make the prototype for this function match the Standard, but that would be wrong, since the function will still return char \star .

If you need a Standard compliant library, then you need to find one, as GNU CC does not provide one. The GNU C library (called glibc) has been ported to a number of operating systems, and provides ANSI/ISO, POSIX, BSD and SystemV compatibility. You could also ask your operating system vendor if newer libraries are available.

1.111 gcc.guide/Disappointments

Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don't know any practical way around them.

* Certain local variables aren't recognized by debuggers when you compile with optimization.

This occurs because sometimes GNU CC optimizes the variable out of existence. There is no way to tell the debugger how to compute the value such a variable "would have had", and it is not clear that

gcc 201 / 551

would be desirable anyway. So GNU CC simply does not mention the eliminated variable when it writes debugging information.

You have to expect a certain amount of disagreement between the executable and your source code, when you use optimization.

* Users often think it is a bug when GNU CC reports an error for code like this:

```
int foo (struct mumble *);
struct mumble { ... };
int foo (struct mumble *x)
{ ... }
```

This code really is erroneous, because the scope of struct mumble in the prototype is limited to the argument list containing it. It does not refer to the struct mumble defined with file scope immediately below—they are two unrelated types with similar names in different scopes.

But in the definition of foo, the file-scope type is used because that is available to be inherited. Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it's what the ANSI standard specifies. It is easy enough for you to make your code work by moving the definition of struct mumble above the prototype. It's not worth being incompatible with ANSI C just to avoid an error for the example shown above.

* Accesses to bitfields even in volatile objects works by accessing larger objects, such as a byte or a word. You cannot rely on what size of object is accessed in order to read or write the bitfield; it may even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but do not use bitfields.

* GNU CC comes with shell scripts to fix certain known problems in system header files. They install corrected copies of various header files in a special directory where only GNU CC will normally look for them. The scripts adapt to various systems by searching all the system header files for the problem cases that we know about.

If new system header files are installed, nothing automatically arranges to update the corrected header files. You will have to reinstall GNU CC to fix the new header files. More specifically, go to the build directory and delete the files stmp-fixinc and stmp-headers, and the subdirectory include; then do make install again.

* On 68000 systems, you can get paradoxical results if you test the precise values of floating point numbers. For example, you can

gcc 202 / 551

find that a floating point value which is not a NaN is not equal to itself. This results from the fact that the the floating point registers hold a few more bits of precision than fit in a double in memory. Compiled code moves values between memory and floating point registers at its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the -ffloat-store option (see

Optimize Options
).

* On the MIPS, variable argument functions using varargs.h cannot have a floating point value for the first argument. The reason for this is that in the absence of a prototype in scope, if the first argument is a floating point, it is passed in a floating point register, rather than an integer register.

If the code is rewritten to use the ANSI standard stdarg.h method of variable arguments, and the prototype is in scope at the time of the call, everything will work fine.

1.112 gcc.guide/C++ Misunderstandings

Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ANSI C++ draft standard) is also evolving. As a result, your C++ compiler may occasionally surprise you, even when its behavior is correct. This section discusses some areas that frequently give rise to questions of this sort.

Static Definitions
Static member declarations are not definitions

Temporaries may vanish before you expect

1.113 gcc.guide/Static Definitions

Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member; you must also define it. For example: gcc 203 / 551

```
class Foo
{
    ...
    void method();
    static int bar;
};
```

This declaration only establishes that the class Foo has an int named Foo::bar, and a member function named Foo::method. But you still need to define both method and bar elsewhere. According to the draft ANSI standard, you must supply an initializer in one (and only one) source file, such as:

```
int Foo::bar = 0;
```

Other C++ compilers may not correctly implement the standard behavior. As a result, when you switch to g++ from one of these compilers, you may discover that a program that appeared to work correctly in fact does not conform to the standard: g++ reports as undefined symbols any static data members that lack definitions.

1.114 gcc.guide/Temporaries

Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The compiler may very well delete the object before you expect it to, leaving a pointer to garbage. The most common place where this problem crops up is in classes like the libg++ String class, that define a conversion function to type char * or const char *. However, any class that returns a pointer to some internal structure is potentially subject to this problem.

For example, a program may use a function strfunc that returns String objects, and another function charfunc that operates on pointers to char:

```
String strfunc ();
void charfunc (const char *);
```

In this situation, it may seem natural to write charfunc (strfunc ()); based on the knowledge that class String has an explicit conversion to char pointers. However, what really happens is akin to charfunc (strfunc ().convert ());, where the convert method is a function to do the same data conversion normally performed by a cast. Since the last use of the temporary String object is the call to the conversion function, the compiler may delete that object before actually calling charfunc. The compiler has no way of knowing that deleting the String object will invalidate the pointer. The pointer then points to garbage, so that by the time charfunc is called, it gets an invalid argument.

gcc 204 / 551

Code like this may run successfully under some other compilers, especially those that delete temporaries relatively late. However, the GNU C++ behavior is also standard-conforming, so if your program depends on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI C++ committee continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the temporary a name, which forces it to remain until the end of the scope of the name. For example:

```
String& tmp = strfunc ();
charfunc (tmp);
```

1.115 gcc.guide/Protoize Caveats

Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file in a way that won't work unless you rearrange it.

* protoize can insert references to a type name or type tag before the definition, or in a file where they are not defined.

If this happens, compiler error messages should show you where the new references are, so fixing the file by hand is straightforward.

- * There are some C constructs which protoize cannot figure out. For example, it can't determine argument types for declaring a pointer-to-function variable; this you must do by hand. protoize inserts a comment containing ??? each time it finds such a variable; so you can find all such variables by searching for this string. ANSI C does not require declaring the argument types of pointer-to-function types.
- * Using unprotoize can easily introduce bugs. If the program relied on prototypes to bring about conversion of arguments, these conversions will not take place in the program without prototypes. One case in which you can be sure unprotoize is safe is when you are removing prototypes that were made with protoize; if the program worked before without any prototypes, it will work again without them.

You can find all the places where this problem might occur by compiling the program with the -Wconversion option. It prints a warning whenever an argument is converted.

* Both conversion programs can be confused if there are macro calls in and around the text to be converted. In other words, the standard syntax for a declaration or definition must not result from expanding a macro. This problem is inherent in the design of C and cannot be fixed. If only a few functions have confusing

gcc 205 / 551

macro calls, you can easily convert them manually.

* protoize cannot get the argument types for a function whose definition was not actually compiled due to preprocessing conditionals. When this happens, protoize changes nothing in regard to such a function. protoize tries to detect such instances and warn about them.

You can generally work around this problem by using protoize step by step, each time specifying a different set of -D options for compilation, until all of the functions have been converted. There is no automatic way to verify that you have got them all, however.

* Confusion may result if there is an occasion to convert a function declaration or definition in a region of source code where there is more than one formal parameter list present. Thus, attempts to convert code containing multiple (conditionally compiled) versions of a single function header (in the same vicinity) may not produce the desired (or expected) results.

If you plan on converting source files which contain such code, it is recommended that you first make sure that each conditionally compiled region of source code which contains an alternative function header also contains at least one additional follower token (past the final right parenthesis of the function header). This should circumvent the problem.

- * unprotoize can become confused when trying to convert a function definition or declaration which contains a declaration for a pointer-to-function formal argument which has the same name as the function being defined or declared. We recommand you avoid such choices of formal parameter names.
- * You might also want to correct some of the indentation by hand and break long lines. (The conversion programs don't write lines longer than eighty characters in any case.)

1.116 qcc.quide/Non-bugs

Certain Changes We Don't Want to Make

This section lists changes that people frequently request, but which we do not make because we think GNU CC is better without them.

* Checking the number and type of arguments to a function which has an old-fashioned definition and no prototype.

Such a feature would work only occasionally—only for calls that appear in the same file as the called function, following the definition. The only way to check all calls reliably is to add a prototype for the function. But adding a prototype eliminates the motivation for this feature. So the feature is not worthwhile.

gcc 206 / 551

 \star Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about this would cause far more annoyance than good.

* Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more annoyance than good.

* Warning about unreachable code.

It's very common to have unreachable code in machine-generated programs. For example, this happens normally in some files of GNU C itself.

* Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that there is something dangerous about discarding a value. There are functions that return values which some callers may find useful; it makes no sense to clutter the program with a cast to void whenever the value isn't useful.

 \star Assuming (for optimization) that the address of an external symbol is never zero.

This assumption is false on certain systems when #pragma weak is used.

* Making -fshort-enums the default.

This would cause storage layout to be incompatible with most other C compilers. And it doesn't seem very important, given that you can get the same result in other ways. The case where it matters most is when the enumeration-valued object is inside a structure, and in that case you can specify a field width explicitly.

* Making bitfields unsigned by default on particular machines where "the ABI standard" says to do so.

The ANSI C standard leaves it up to the implementation whether a bitfield declared plain int is signed or not. This in effect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the signed dialect with -fsigned-bitfields and the unsigned dialect with -funsigned-bitfields. However, this leaves open the question of which dialect to use by default.

Currently, the preferred dialect makes plain bitfields signed, because this is simplest. Since int is the same as signed int in every other context, it is cleanest for them to be the same in bitfields as well.

gcc 207 / 551

Some computer manufacturers have published Application Binary Interface standards which specify that plain bitfields should be unsigned. It is a mistake, however, to say anything about this issue in an ABI. This is because the handling of plain bitfields distinguishes two dialects of C. Both dialects are meaningful on every type of machine. Whether a particular object file was compiled using signed bitfields or unsigned is of no concern to other object files, even if they access the same bitfields in the same data structures.

A given program is written in one or the other of these two dialects. The program stands a chance to work on most any machine if it is compiled with the proper dialect. It is unlikely to work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is uniform across machines. These users would be inconvenienced if the compiler treated plain bitfields differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On these occasions, the users would benefit if the GNU C compiler were to support by default the same dialect as the other compilers on that machine. But such applications are rare. And users writing a program to run on more than one type of machine cannot possibly benefit from this kind of compatibility.

This is why GNU CC does and will treat plain bitfields in the same fashion on all types of machines (by default).

There are some arguments for making bitfields unsigned by default on all machines. If, for example, this becomes a universal de facto standard, it would make sense for GNU CC to go along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each bitfield whether it is signed or not. In this way, they write programs which have the same meaning in both C dialects.)

* Undefining __STDC__ when -ansi is not used.

Currently, GNU CC defines __STDC__ as long as you don't use -traditional. This provides good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use certain features of ANSI C, such as function prototypes or ANSI token concatenation. Since plain gcc supports all the features of ANSI C, the correct answer to these questions is "yes".

Some users try to use __STDC__ to check for the availability of certain library facilities. This is actually incorrect usage in an ANSI C program, because the ANSI C standard says that a conforming freestanding implementation should define __STDC__ even though it does not have the library facilities. gcc -ansi -pedantic is a conforming freestanding implementation, and it is

gcc 208 / 551

therefore required to define __STDC__, even though it does not come with an ANSI C library.

Sometimes people say that defining __STDC__ in a compiler that does not completely conform to the ANSI C standard somehow violates the standard. This is illogical. The standard is a standard for compilers that claim to support ANSI C, such as gcc -ansi--not for other compilers such as plain gcc. Whatever the ANSI C standard says is relevant to the design of plain gcc without -ansi only for pragmatic reasons, not as a requirement.

* Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that goes with the C compiler that is subsequently used. These programs must test __STDC__ to determine what kind of C preprocessor that compiler uses: whether they should concatenate tokens in the ANSI C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined. They would not work otherwise.

In addition, many header files are written to provide prototypes in ANSI C but not in traditional C. Many of these header files can work without change in C++ provided __STDC__ is defined. If __STDC__ is not defined, they will all fail, and will all need to be changed to test explicitly for C++ as well.

* Deleting "empty" loops.

GNU CC does not delete "empty" loops because the most likely reason you would put one in a program is to have a delay. Deleting them will not make real programs run any faster, so it would be pointless.

It would be different if optimization of a nonempty loop could produce an empty one. But this generally can't happen.

* Making side effects happen in the same order as in some other compiler.

It is never safe to depend on the order of evaluation of side effects. For example, a function call like this may very well behave differently from one compiler to another:

```
void func (int, int);
int i = 2;
func (i++, i++);
```

There is no guarantee (in either the C or the C++ standard language definitions) that the increments will be evaluated in any particular order. Either increment might happen first. func might get the arguments 2, 3, or it might get 3, 2, or even 2, 2.

* Not allowing structures with volatile fields in registers.

gcc 209 / 551

Strictly speaking, there is no prohibition in the ANSI C standard against allowing structures with volatile fields in registers, but it does not seem to make any sense and is probably not what you wanted to do. So the compiler will give an error message in this case.

1.117 gcc.guide/Warnings and Errors

Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind has a different purpose:

Errors report problems that make it impossible to compile your program. GNU CC reports errors with the source file name and line number where the problem is apparent.

Warnings report other unusual conditions in your code that may indicate a problem, although compilation can (and does) proceed. Warning messages also report the source file name and line number, but include the text warning: to distinguish them from error messages.

Warnings may indicate danger points where you should check to make sure that your program really does what you intend; or the use of obsolete features; or the use of nonstandard features of GNU C or C++. Many warnings are issued only if you ask for them, with one of the -W options (for instance, -Wall requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never gratuitously rejects a program whose meaning is clear merely because (for instance) it fails to conform to a standard. In some cases, however, the C and C++ standards specify that certain extensions are forbidden, and a diagnostic must be issued by a conforming compiler. The -pedantic option tells GNU CC to issue warnings in such cases; -pedantic-errors says to make them errors instead. This does not mean that all non-ANSI constructs get warnings or errors.

See

Options to Request or Suppress Warnings , for more detail on these and related command-line options.

1.118 gcc.guide/Bugs

Reporting Bugs

gcc 210 / 551

Your bug reports play an essential role in making GNU CC reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See

Trouble

. If it isn't known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not. (If it does not, look in the service directory; see See

Service

.) In any case, the principal function of a bug report is to help the entire community by making the next version of GNU CC work better. Bug reports are your contribution to the maintenance of GNU CC.

Since the maintainers are very overloaded, we cannot respond to every bug report. However, if the bug has not been fixed, we are likely to send you a patch and ask you to tell us whether it works.

In order for a bug report to serve its purpose, you must include the information that makes for fixing the bug.

Criteria: Bug Criteria

Have you really found a bug?

Where: Bug Lists

Where to send your bug report.

Reporting: Bug Reporting

How to report a bug effectively.

Patches: Sending Patches

How to send a patch for GNU CC.

Known: Trouble
Known problems.

Help: Service

Where to ask for help.

1.119 gcc.guide/Bug Criteria

Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

* If the compiler gets a fatal signal, for any input whatever, that

gcc 211 / 551

is a compiler bug. Reliable compilers never crash.

* If the compiler produces invalid assembly code, for any input whatever (except an asm statement), that is a compiler bug, unless the compiler reports errors (not just warnings) which would ordinarily prevent the assembler from being run.

* If the compiler produces valid assembly code that does not correctly execute the input source code, that is a compiler bug.

However, you must double-check to make sure, because you may have run into an incompatibility between GNU C and traditional C (see

Incompatibilities

). These incompatibilities might be considered bugs, but they are inescapable consequences of valuable features.

Or you may have a program whose behavior is undefined, which happened by chance to give the desired results with another C or C++ compiler.

For example, in many nonoptimizing compilers, you can write x; at the end of a function instead of return x;, with the same results. But the value of the function is undefined if return is omitted; it is not a bug when GNU CC produces different results.

Problems often result from expressions with two increment operators, as in f (*p++, *p++). Your previous compiler might have interpreted that expression the way you intended; GNU CC might interpret it another way. Neither compiler is wrong. The bug is in your code.

After you have localized the error to a single source line, it should be easy to check for these things. If your program is correct and well defined, you have found a compiler bug.

- * If the compiler produces an error message for valid input, that is a compiler bug.
- * If the compiler does not produce an error message for invalid input, that is a compiler bug. However, you should note that your idea of "invalid input" might be my idea of "an extension" or "support for traditional practice".
- * If you are an experienced user of C or C++ compilers, your suggestions for improvement of GNU CC or GNU C++ are welcome in any case.

1.120 gcc.guide/Bug Lists

Where to Report Bugs

gcc 212 / 551

Send bug reports for GNU C to bug-gcc@prep.ai.mit.edu.

Send bug reports for GNU C++ to bug-g++@prep.ai.mit.edu. If your bug involves the C++ class library libg++, send mail to bug-lib-g++@prep.ai.mit.edu. If you're not sure, you can send the bug report to both lists.

Do not send bug reports to help-gcc@prep.ai.mit.edu or to the newsgroup gnu.gcc.help. Most users of GNU CC do not want to receive bug reports. Those that do, have asked to be on bug-gcc and/or bug-g++.

The mailing lists bug-gcc and bug-g++ both have newsgroups which serve as repeaters: gnu.gcc.bug and gnu.g++.bug. Each mailing list and its newsgroup carry exactly the same messages.

Often people think of posting bug reports to the newsgroup instead of mailing them. This appears to work, but it has one problem which can be crucial: a newsgroup posting does not contain a mail path back to the sender. Thus, if maintainers need more information, they may be unable to reach you. For this reason, you should always send bug reports by mail to the proper mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs Free Software Foundation 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA

1.121 gcc.guide/Bug Reporting

How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and they conclude that some details don't matter. Thus, you might assume that the name of the variable you use in an example does not matter. Well, probably it doesn't, but one cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from the location where that name is stored in memory; perhaps, if the name were different, the contents of that location would fool the compiler into doing the right thing despite the bug. Play it safe and give a specific, complete example. That is the easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not known. It isn't very important what happens if the bug is already known. Therefore, always write your bug reports on the assumption that the bug is not known.

gcc 213 / 551

Sometimes people give a few sketchy facts and ask, "Does this ring a bell?" This cannot help us fix a bug, so it is basically useless. We respond by asking for enough details to enable us to investigate. You might as well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you for more information, it is best if you include all the previous information in your response, as well as the information that was missing.

Please report each bug in a separate message. This makes it easier for us to track which bugs have been fixed and to forward your bugs reports to the appropriate maintainer.

Do not compress and encode any part of your bug report using programs such as unencode. If you do so it will slow down the processing of your bug. If you must submit multiple large files, use shar, which allows us to read your message without having to run any decompression programs.

To enable someone to investigate the bug, you should include all these things:

 \star The version of GNU CC. You can get this by running it with the -v option.

Without this, we won't know whether there is any point in looking for the bug in the current version of GNU CC.

* A complete input file that will reproduce the bug. If the bug is in the C preprocessor, send a source file and any header files that it requires. If the bug is in the compiler proper (cc1), run your source file through the C preprocessor by doing gcc -E SOURCEFILE > OUTFILE, then include the contents of OUTFILE in the bug report. (When you do this, use the same -I, -D or -U options that you used in actual compilation.)

A single statement is not enough of an example. In order to compile it, it must be embedded in a complete file of compiler input; and the bug might depend on the details of how this is done.

Without a real example one can compile, all anyone can do about your bug report is wish you luck. It would be futile to try to guess how to provoke the bug. For example, bugs in register allocation and reloading frequently depend on every little detail of the function they happen in.

Even if the input file that fails comes from a GNU program, you should still send the complete test case. Don't ask the GNU CC maintainers to do the extra work of obtaining the program in question—they are all overworked as it is. Also, the problem may depend on what is in the header files on your system; it is unreliable for the GNU CC maintainers to try the problem with the header files available to them. By sending CPP output, you can eliminate this source of uncertainty and save us a certain percentage of wild goose chases.

gcc 214 / 551

* The command arguments you gave GNU CC or GNU C++ to compile that example and observe the bug. For example, did you use -0? To guarantee you won't omit something important, list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we would not encounter the bug.

- * The type of machine you are using, and the operating system name and version number.
- * The operands you gave to the configure command when you installed the compiler.
- * A complete list of any modifications you have made to the compiler source. (We don't promise to investigate the bug unless it happens in an unmodified compiler. But if you've made modifications and don't tell us, then you are sending us on a wild goose chase.)

Be precise about these changes. A description in English is not enough—send a context diff for them.

Adding files of your own (such as a machine description for a machine we don't support) is a modification of the compiler source.

- * Details of any other deviations from the standard procedure for installing GNU CC.
- * A description of what behavior you observe that you believe is incorrect. For example, "The compiler gets a fatal signal," or, "The assembler instruction at line 208 in the output is incorrect."

Of course, if the bug is that the compiler gets a fatal signal, then one can't miss it. But if the bug is incorrect output, the maintainer might not notice unless it is glaringly wrong. None of us has time to study all the assembler code from a 50-line C program just on the chance that one instruction might be wrong. We need you to do this part!

Even if the problem you experience is a fatal signal, you should still say so explicitly. Suppose something strange is going on, such as, your copy of the compiler is out of synch, or you have encountered a bug in the C library on your system. (This has happened!) Your copy might crash and the copy here would not. If you said to expect a crash, then when the compiler here fails to crash, we would know that the bug was not happening. If you don't say to expect a crash, then we would not know whether the bug was happening. We would not be able to draw any conclusion from our observations.

If the problem is a diagnostic when compiling GNU CC with some other compiler, say whether it is a warning or an error.

Often the observed symptom is incorrect output when your program is run. Sad to say, this is not enough information unless the program is short and simple. None of us has time to study a large program to figure out how it would work if compiled correctly,

gcc 215 / 551

much less which line of it was compiled wrong. So you will have to do that. Tell us which source line it is, and what incorrect result happens when that line is executed. A person who understands the program can find this as easily as finding a bug in the program itself.

- * If you send examples of assembler code output from GNU CC or GNU C++, please use -g when you make them. The debugging information includes source line numbers which are essential for correlating the output with the input.
- * If you wish to mention something in the GNU CC source, refer to it by context, not by line number.

The line numbers in the development sources don't match those in your sources. Your line numbers would convey no useful information to the maintainers.

* Additional information from a debugger might enable someone to find a problem on a machine which he does not have available. However, you need to think when you collect this information if you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never useful by itself. A simple backtrace with arguments conveys little about GNU CC because the compiler is largely data-driven; the same functions are called over and over for different RTL insns, doing different things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because they are pointers to RTL list structure. The numeric values of the pointers, which the debugger prints in the backtrace, have no significance whatever; all that matters is the contents of the objects they point to (and most of the contents are other such pointers).

In addition, most compiler passes consist of one or more loops that scan the RTL insn sequence. The most vital piece of information about such a loop—which insn it has reached—is usually in a local variable, not in an argument.

What you need to provide in addition to a backtrace are the values of the local variables for several stack frames up. When a local variable or an argument is an RTX, first print its value and then use the GDB command pr to print the RTL expression that it points to. (If GDB doesn't run on your machine, use your debugger to call the function debug_rtx with the RTX as an argument.) In general, whenever a variable is a pointer, its value is no use without the data it points to.

Here are some things that are not necessary:

 \star A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input file will make the bug go away and which changes will not affect it.

gcc 216 / 551

This is often time consuming and not very useful, because the way we will find the bug is by running a single example under the debugger with breakpoints, not by pure deduction from a series of examples. You might as well save your time for something else.

Of course, if you can find a simpler example to report instead of the original one, that is a convenience. Errors in the output will be easier to spot, running under the debugger will take less time, etc. Most GNU CC bugs involve just one function, so the most straightforward way to simplify an example is to delete all the function definitions except the one where the bug occurs. Those earlier in the file may be replaced by external declarations if the crucial function depends on them. (Exception: inline functions may affect compilation of functions defined later in the file.)

However, simplification is not vital; if you don't want to do this, report the bug anyway and send the entire test case you used.

- * In particular, some people insert conditionals #ifdef BUG around a statement which, if removed, makes the bug not happen. These are just clutter; we won't pay any attention to them anyway. Besides, you should send us cpp output, and that can't have conditionals.
- * A patch for the bug.

A patch for the bug is useful if it is a good one. But don't omit the necessary information, such as the test case, on the assumption that a patch is all we need. We might see problems with your patch and decide to fix the problem another way, or we might not understand it at all.

Sometimes with a program as complicated as GNU CC it is very hard to construct an example that will make the program follow a certain path through the code. If you don't send the example, we won't be able to construct one, so we won't be able to verify that the bug is fixed.

And if we can't understand what bug you are trying to fix, or why your patch should be an improvement, we won't install it. A test case will help us to understand.

See

Sending Patches

, for guidelines on how to make it easy for us to understand and install your patches.

 \star A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even I can't guess right about such things without first using the debugger to find the facts.

* A core dump file.

We have no way of examining a core dump for your type of machine unless we have an identical system--and if we do have one, we

gcc 217 / 551

should be able to reproduce the crash ourselves.

1.122 gcc.guide/Sending Patches

Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C compiler, that is very helpful. Send suggested fixes to the bug report mailing list, bug-gcc@prep.ai.mit.edu.

Please follow these guidelines so we can study your patches efficiently. If you don't follow these guidelines, your information might still be useful, but using it will take extra work. Maintaining GNU C is a lot of work in the best of circumstances, and we can't keep up unless you do your best to help.

* Send an explanation with your changes of what problem they fix or what improvement they bring about. For a bug fix, just include a copy of the bug report, and explain why the change fixes the bug.

(Referring to a bug report is not as good as including it, because then we will have to look it up, and we have probably already deleted it if we've already fixed the bug.)

- * Always include a proper bug report for the problem you think you have fixed. We need to convince ourselves that the change is right before installing it. Even if it is right, we might have trouble judging it if we don't have a way to reproduce the problem.
- * Include all the comments that are appropriate to help people reading the source in the future understand why this change was needed.
- * Don't mix together changes made for different reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them both. We might want to install just one. If you send them all jumbled together in a single set of diffs, we have to do extra work to disentangle them—to figure out which parts of the change serve which purpose. If we don't have time for this, we might have to ignore your changes entirely.

If you send each change as soon as you have written it, with its own explanation, then the two changes never get tangled up, and we can consider each one properly without any extra work to disentangle them.

Ideally, each change you send should be impossible to subdivide into parts that we might want to consider separately, because each of its parts gets its motivation from the other parts.

gcc 218 / 551

* Send each change as soon as that change is finished. Sometimes people think they are helping us by accumulating many changes to send them all together. As explained above, this is absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away. That gives us the option of installing it immediately if it is important.

* Use diff -c to make your diffs. Diffs without context are hard for us to install reliably. More than that, they make it hard for us to study the diffs to decide whether we want to install them. Unidiff format is better than contextless diffs, but not as easy to read as -c format.

If you have GNU diff, use diff -cp, which shows the name of the function that each change occurs in.

* Write the change log entries for your changes. We get lots of changes, and we don't have time to do all the change log writing ourselves.

Read the ChangeLog file to see what sorts of information to put in, and to learn the style that we use. The purpose of the change log is to show people where to find what was changed. So you need to be specific about what functions you changed; in large functions, it's often helpful to indicate where within the function the change was.

On the other hand, once you have shown people where to find the change, you need not explain its purpose. Thus, if you add a new function, all you need to say about it is that it is new. If you feel that the purpose needs explaining, it probably does—but the explanation will be much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change, send us the header line.

* When you write the fix, keep in mind that we can't install a change that would break other systems.

People often suggest fixing a problem by changing machine-independent files such as toplev.c to do something special that a particular system needs. Sometimes it is totally obvious that such changes would break GNU CC for almost all users. We can't possibly make a change like that. At best it might tell us how to write another patch that would solve the problem acceptably.

Sometimes people send fixes that might be an improvement in general—but it is hard to be sure of this. It's hard to install such changes because we have to study them very carefully. Of course, a good explanation of the reasoning by which you concluded the change was correct can help convince us.

The safest changes are changes to the configuration files for a particular machine. These are safe because they can't create new

gcc 219 / 551

bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is good to install.

1.123 gcc.guide/Service

How To Get Help with GNU CC ******************

If you need help installing, using or changing GNU CC, there are two ways to find it:

- * Send a message to a suitable network mailing list. First try bug-gcc@prep.ai.mit.edu, and if that brings no response, try help-gcc@prep.ai.mit.edu.
- * Look in the service directory for someone who might help you for a fee. The service directory is found in the file named SERVICE in the GNU CC distribution.

1.124 gcc.guide/VMS

Using GNU CC on VMS

Here is how to use GNU CC on VMS.

Include Files and VMS
Where the preprocessor looks for the include files.

VMS Misc Misc information.

1.125 gcc.guide/Include Files and VMS

Include Files and VMS

Due to the differences between the filesystems of Unix and VMS, GNU

gcc 220 / 551

CC attempts to translate file names in #include into names that VMS will understand. The basic strategy is to prepend a prefix to the specification of the include file, convert the whole filename to a VMS filename, and then try to open the file. GNU CC tries various prefixes one by one until one of them succeeds:

- 1. The first prefix is the GNU_CC_INCLUDE: logical name: this is where GNU C header files are traditionally stored. If you wish to store header files in non-standard locations, then you can assign the logical GNU_CC_INCLUDE to be a search list, where each element of the list is suitable for use with a rooted logical.
- 2. The next prefix tried is SYS\$SYSROOT:[SYSLIB.]. This is where VAX-C header files are traditionally stored.
- 3. If the include file specification by itself is a valid VMS filename, the preprocessor then uses this name with no prefix in an attempt to open the include file.
- 4. If the file specification is not a valid VMS filename (i.e. does not contain a device or a directory specifier, and contains a / character), the preprocessor tries to convert it from Unix syntax to VMS syntax.

Conversion works like this: the first directory name becomes a device, and the rest of the directories are converted into VMS-format directory names. For example, the name X11/foobar.h is translated to X11:[000000]foobar.h or X11:foobar.h, whichever one can be opened. This strategy allows you to assign a logical name to point to the actual location of the header files.

5. If none of these strategies succeeds, the #include fails.

Include directives of the form:

#include foobar

are a common source of incompatibility between VAX-C and GNU CC. VAX-C treats this much like a standard #include <foobar.h> directive. That is incompatible with the ANSI C behavior implemented by GNU CC: to expand the name foobar as a macro. Macro expansion should eventually yield one of the two standard formats for #include:

#include "FILE"
#include <FILE>

If you have this problem, the best solution is to modify the source to convert the #include directives to one of the two standard forms. That will work with either compiler. If you want a quick and dirty fix, define the file names as macros with the proper expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn't conflict with anything else in the program.

Another source of incompatibility is that VAX-C assumes that:

gcc 221 / 551

```
#include "foobar"
```

is actually asking for the file foobar.h. GNU CC does not make this assumption, and instead takes what you ask for literally; it tries to read the file foobar. The best way to avoid this problem is to always specify the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is sufficient to compile most general purpose programs. Even though the GNU CC distribution does not contain header files to define constants and structures for some VMS system-specific functions, there is no reason why you cannot use GNU CC with any of these functions. You first may have to generate or create header files, either by using the public domain utility UNSDL (which can be found on a DECUS tape), or by extracting the relevant modules from one of the system macro libraries, and using an editor to construct a C header file.

A #include file name cannot contain a DECNET node name. The preprocessor reports an I/O error if you attempt to use a node name, whether explicitly, or implicitly via a logical name.

1.126 gcc.guide/Global Declarations

Global Declarations and VMS

GNU CC does not provide the globalref, globaldef and globalvalue keywords of VAX-C. You can get the same effect with an obscure feature of GAS, the GNU assembler. (This requires GAS version 1.39 or later.) The following macros allow you to use this feature in a fairly natural way:

```
#ifdef ___GNUC__
#define GLOBALREF(TYPE, NAME)
 TYPE NAME
 asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)
#define GLOBALDEF(TYPE, NAME, VALUE)
 asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)
   = VALUE
#define GLOBALVALUEREF (TYPE, NAME)
 const TYPE NAME[1]
 asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)
#define GLOBALVALUEDEF(TYPE, NAME, VALUE)
 const TYPE NAME[1]
 asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)
   = {VALUE}
#else
#define GLOBALREF(TYPE, NAME) \
 globalref TYPE NAME
#define GLOBALDEF(TYPE, NAME, VALUE) \
 globaldef TYPE NAME = VALUE
#define GLOBALVALUEDEF(TYPE, NAME, VALUE) \
```

gcc 222 / 551

```
globalvalue TYPE NAME = VALUE
#define GLOBALVALUEREF(TYPE, NAME) \
  globalvalue TYPE NAME
#endif
```

(The _\$\$PsectAttributes_GLOBALSYMBOL prefix at the start of the name is removed by the assembler, after it has modified the attributes of the symbol). These macros are provided in the VMS binaries distribution in a header file GNU_HACKS.H. An example of the usage is:

```
GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);
```

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly for arrays, since there is no way to insert the array dimension into the declaration at the right place. However, you can declare an array with these macros if you first define a typedef for the array type, like this:

```
typedef int intvector[10];
GLOBALREF (intvector, foo);
```

Array and structure initializers will also break the macros; you can define the initializer to be a macro of its own, or you can expand the GLOBALDEF macro by hand. You may find a case where you wish to use the GLOBALDEF macro with a large array, but you are not interested in explicitly initializing each element of the array. In such cases you can use an initializer like: {0,}, which will initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with GLOBALVALUEREF or GLOBALVALUEDEF is always an array. For example, the declaration:

```
GLOBALVALUEREF (int, ijk);
```

declares the variable ijk as an array of type int [1]. This is done because a globalvalue is actually a constant; its "value" is what the linker would normally consider an address. That is not how an integer value works in C, but it is how an array works. So treating the symbol as an array name gives consistent results—with the exception that the value seems to have the wrong type. Don't try to access an element of the array. It doesn't have any elements. The array "address" may not be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the variable is used. Insert type casts to avoid the warnings. Here is an example; it takes advantage of the ANSI C feature allowing macros that expand to use the same name as the macro itself.

```
GLOBALVALUEREF (int, ss\[ \]_normal);

GLOBALVALUEDEF (int, xyzzy, 123);

#ifdef \[ \]_GNUC\[ \]

#define ss\[ \]_normal ((int) ss\[ \]_normal)

#define xyzzy ((int) xyzzy)

#endif
```

gcc 223 / 551

Don't use globaldef or globalref with a variable whose type is an enumeration type; this is not implemented. Instead, make the variable an integer, and use a global value of for each of the enumeration values. An example of this would be:

```
#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif
```

1.127 gcc.guide/VMS Misc

Other VMS Issues

GNU CC automatically arranges for main to return 1 by default if you fail to specify an explicit return value. This will be interpreted by VMS as a status code indicating a normal successful completion. Version 1 of GNU CC did not provide this default.

GNU CC on VMS works only with the GNU assembler, GAS. You need version 1.37 or later of GAS in order to produce value debugging information for the VMS debugger. Use the ordinary VMS linker with the object files produced by GAS.

Under previous versions of GNU CC, the generated code would occasionally give strange results when linked to the sharable VAXCRTL library. Now this should work.

A caveat for use of const global variables: the const modifier must be specified in every external declaration of the variable in all of the source files that use that variable. Otherwise the linker will issue warnings about conflicting attributes for the variable. Your program will still work despite the warnings, but the variable will be placed in writable storage.

Although the VMS linker does distinguish between upper and lower case letters in global symbols, most VMS compilers convert all such symbols into upper case and most run-time library routines also have upper case names. To be able to reliably call such routines, GNU CC (by means of the assembler GAS) converts global symbols into upper case like other VMS compilers. However, since the usual practice in C is to distinguish case, GNU CC (via GAS) tries to preserve usual C behavior by augmenting each name that is not all lower case. This means truncating the name to at most 23 characters and then adding more characters at the end which encode the case pattern of those 23. Names which contain at least one dollar sign are an exception; they are converted directly into upper case without augmentation.

Name augmentation yields bad results for programs that use

gcc 224 / 551

precompiled libraries (such as Xlib) which were generated by another compiler. You can use the compiler option /NOCASE_HACK to inhibit augmentation; it makes external C functions and variables case-independent as is usual on VMS. Alternatively, you could write all references to the functions and variables in such libraries using lower case; this will work on VMS, but is not portable to other systems. The compiler option /NAMES also provides control over global name handling.

Function and variable names are handled somewhat differently with GNU C++. The GNU C++ compiler performs name mangling on function names, which means that it adds information to the function name to describe the data types of the arguments that the function takes. One result of this is that the name of a function can become very long. Since the VMS linker only recognizes the first 31 characters in a name, special action is taken to ensure that each function and variable has a unique name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32 characters in length, then no special action is performed. If the name is longer than 31 characters, the assembler (GAS) will generate a hash string based upon the function name, truncate the function name to 23 characters, and append the hash string to the truncated name. If the /VERBOSE compiler option is used, the assembler will print both the full and truncated names of each symbol that is truncated.

The /NOCASE_HACK compiler option should not be used when you are compiling programs that use libg++. libg++ has several instances of objects (i.e. Filebuf and filebuf) which become indistinguishable in a case-insensitive environment. This leads to cases where you need to inhibit augmentation selectively (if you were using libg++ and Xlib in the same program, for example). There is no special feature for doing this, but you can get the result by defining a macro for each mixed case symbol for which you wish to inhibit augmentation. The macro should expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro definitions can be placed in a header file to minimize the number of changes to your source code.

1.128 gcc.guide/Portability

The main goal of GNU CC was to make a good, fast compiler for machines in the class that the GNU system aims to run on: 32-bit machines that address 8-bit bytes and have several general registers. Elegance, theoretical power and simplicity are only secondary.

GNU CC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the

gcc 225 / 551

target. But when the compiler needs information that is difficult to express in this fashion, I have not hesitated to define an ad-hoc parameter to the machine description. The purpose of portability is to reduce the total work needed on the compiler; it was not of interest for its own sake.

GNU CC does not contain machine dependent code, but it does contain code that depends on machine parameters such as endianness (whether the most significant byte has the highest or lowest address of the bytes in a word) and the availability of autoincrement addressing. In the RTL-generation pass, it is often necessary to have multiple strategies for generating code for a particular kind of syntax tree, strategies that are usable for different combinations of parameters. Often I have not tried to address all possible cases, but only the common ones or only the ones that I have encountered. As a result, a new target may require additional strategies. You will know if this happens because the compiler will call abort. Fortunately, the new strategies can be added in a machine-independent fashion, and will affect only the target machines that need them.

1.129 gcc.guide/Interface

Interfacing to GNU CC Output

GNU CC is normally configured to use the same function calling convention normally in use on the target system. This is done with the machine-description macros described (see

Target Macros
).

However, returning of structure and union values is done differently on some target machines. As a result, functions compiled with PCC returning such types cannot be called from code compiled with GNU CC, and vice versa. This does not cause trouble often because few Unix library routines return structures or unions.

GNU CC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same registers used for int or double return values. (GNU CC typically allocates variables of such types in registers also.) Structures and unions of other sizes are returned by storing them into an address passed by the caller (usually in a register). The machine-description macros STRUCT_VALUE and STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then returning the address of that storage as if it were a pointer value. The caller must copy the data from that memory area to the place where the value is wanted. This is slower than the method used by GNU CC, and fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system convention is to pass to the subroutine the address of

gcc 226 / 551

where to return the value. On these machines, GNU CC has been configured to be compatible with the standard compiler, when this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GNU CC uses the system's standard convention for passing arguments. On some machines, the first few arguments are passed in registers; in others, all are passed on the stack. It would be possible to use registers for argument passing on any machine, and this would probably result in a significant speedup. But the result would be complete incompatibility with code that follows the standard convention. So this change is practical only if you are switching to GNU CC as the sole C compiler for the system. We may implement register argument passing on certain machines once we have a complete GNU system so that we can compile the libraries with GNU CC.

On some machines (particularly the Sparc), certain types of arguments are passed "by invisible reference". This means that the value is stored in memory, and the address of the memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ANSI C says that automatic variables that are not declared volatile have undefined values after a longjmp. And this is all GNU CC promises to do, because it is very difficult to restore register variables correctly, and one of GNU CC's features is that it can put variables in registers without your asking it to.

If you want a variable to be unaltered by longjmp, and you don't want to write volatile because old C compilers don't accept it, just take the address of the variable. If a variable's address is ever taken, even if just to compute it and ignore it, then the variable cannot go in a register:

```
{
  int careful;
  &careful;
  ...
}
```

Code compiled with GNU CC may call certain library routines. Most of them handle arithmetic for which there are no instructions. This includes multiply and divide on some machines, and floating point operations on any machine for which floating point support is disabled with -msoft-float. Some standard parts of the C library, such as bcopy or memcpy, are also called automatically. The usual function call interface is used for calling the library routines.

These library routines should be defined in the library libgcc.a, which GNU CC automatically searches whenever it links a program. On machines that have multiply and divide instructions, if hardware floating point is in use, normally libgcc.a is not needed, but it is searched just in case.

Each arithmetic function is defined in libgcc1.c to use the corresponding C arithmetic operator. As long as the file is compiled with another C compiler, which supports all the C arithmetic operators, this file will work portably. However, libgcc1.c does not work if

gcc 227 / 551

compiled with GNU CC, because each arithmetic function would compile into a call to itself!

1.130 gcc.guide/Passes

Passes and Files of the Compiler

The overall control structure of the compiler is in toplev.c. This file is responsible for initialization, decoding arguments, opening and closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input. The RTL intermediate code for a function is generated as the function is parsed, a statement at a time. Each statement is read in as a syntax tree and then converted to RTL; then the storage for the tree for the statement is reclaimed. Storage for types (and the expressions for their sizes), declarations, and a representation of the binding contours and how they nest, remain until the function is finished being compiled; these are all needed to output the debugging information.

Each time the parsing pass reads a complete function definition or top-level declaration, it calls either the function rest_of_compilation, or the function rest_of_decl_compilation in toplev.c, which are responsible for all further processing necessary, ending with output of the assembler language. All other compiler passes run, in sequence, within rest_of_compilation. When that function returns from compiling a function definition, the storage used for that function definition's compilation is entirely freed, unless it is an inline function (see

An Inline Function is As Fast As a Macro) .

Here is a list of all the passes of the compiler and their source files. Also included is a description of where debugging dumps can be requested with \neg d options.

* Parsing. This pass reads the entire text of a function definition, constructing partial syntax trees. This and RTL generation are no longer truly separate passes (formerly they were), but it is easier to think of them as separate.

The tree representation does not entirely follow C syntax, because it is intended to support other languages as well.

Language-specific data type analysis is also done in this pass, and every tree node that represents an expression has a data type attached. Variables are represented as declaration nodes.

Constant folding and some arithmetic simplifications are also done during this pass.

gcc 228 / 551

The language-independent source files for parsing are stor-layout.c, fold-const.c, and tree.c. There are also header files tree.h and tree.def which define the format of the tree representation.

The source files to parse C are c-parse.in, c-decl.c, c-typeck.c, c-aux-info.c, c-convert.c, and c-lang.c along with header files c-lex.h, and c-tree.h.

The source files for parsing C++ are cp-parse.y, cp-class.c, cp-cvt.c, cp-decl.c, cp-decl.c, cp-dem.c, cp-except.c, cp-expr.c, cp-init.c, cp-lex.c, cp-method.c, cp-ptree.c, cp-search.c, cp-tree.c, cp-type2.c, and cp-typeck.c, along with header files cp-tree.def, cp-tree.h, and cp-decl.h.

The special source files for parsing Objective C are objc-parse.y, objc-actions.c, objc-tree.def, and objc-actions.h. Certain C-specific files are used for this as well.

The file c-common.c is also used for all of the above languages.

* RTL generation. This is the conversion of syntax tree into RTL code. It is actually done statement-by-statement during parsing, but for most purposes it can be thought of as a separate pass.

This is where the bulk of target-parameter-dependent code is found, since often it is necessary for strategies to apply only when certain standard kinds of instructions are available. The purpose of named instruction patterns is to provide this information to the RTL generation pass.

Optimization is done in this pass for if-conditions that are comparisons, boolean operations or conditional expressions. Tail recursion is detected at this time also. Decisions are made about how best to arrange loops and how to output switch statements.

The source files for RTL generation include stmt.c, calls.c, expr.c, explow.c, expmed.c, function.c, optabs.c and emit-rtl.c. Also, the file insn-emit.c, generated from the machine description by the program genemit, is used in this pass. The header file expr.h is used for communication within this pass.

The header files insn-flags.h and insn-codes.h, generated from the machine description by the programs genflags and gencodes, tell this pass which standard names are available for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the tree structure representation of the function (only part of which is saved).

The decision of whether the function can and should be expanded inline in its subsequent callers is made at the end of rtl generation. The function must meet certain criteria, currently related to the size of the function and the types and number of parameters it has. Note that this function may contain loops, recursive calls to itself (tail-recursive functions can be

gcc 229 / 551

inlined!), gotos, in short, all constructs supported by GNU CC. The file integrate.c contains the code to save a function's rtl for later inlining and to inline that rtl when the function is called. The header file integrate.h is also used for this purpose.

The option $-\mathrm{dr}$ causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .rtl to the input file name.

* Jump optimization. This pass simplifies jumps to the following instruction, jumps across jumps, and jumps to jumps. It deletes unreferenced labels and unreachable code, except that unreachable code that contains a loop is not recognized as unreachable in this pass. (Such loops are deleted later in the basic block analysis.) It also converts some code originally written with jumps into sequences of instructions that directly set values from the results of comparisons, if the machine has such instructions.

Jump optimization is performed two or three times. The first time is immediately following RTL generation. The second time is after CSE, but only if CSE says repeated jump optimization is needed. The last time is right before the final pass. That time, cross-jumping and deletion of no-op move instructions are done together with the optimizations described above.

The source file of this pass is jump.c.

The option -dj causes a debugging dump of the RTL code after this pass is run for the first time. This dump file's name is made by appending .jump to the input file name.

- * Register scan. This pass finds the first and last use of each register, as a guide for common subexpression elimination. Its source is in regclass.c.
- * Jump threading. This pass detects a condition jump that branches to an identical or inverse test. Such jumps can be threaded through the second conditional test. The source code for this pass is in jump.c. This optimization is only performed if -fthread-jumps is enabled.
- * Common subexpression elimination. This pass also does constant propagation. Its source file is cse.c. If constant propagation causes conditional jumps to become unconditional or to become no-ops, jump optimization is run again when CSE is finished.

The option -ds causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .cse to the input file name.

* Loop optimization. This pass moves constant expressions out of loops, and optionally does strength-reduction and loop unrolling as well. Its source files are loop.c and unroll.c, plus the header loop.h used for communication between them. Loop unrolling uses some functions in integrate.c and the header integrate.h.

The option -dL causes a debugging dump of the RTL code after this

gcc 230 / 551

pass. This dump file's name is made by appending .loop to the input file name.

* If -frerun-cse-after-loop was enabled, a second common subexpression elimination pass is performed after the loop optimization pass. Jump threading is also done again at this time if it was specified.

The option -dt causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .cse2 to the input file name.

- * Stupid register allocation is performed at this point in a nonoptimizing compilation. It does a little data flow analysis as well. When stupid register allocation is in use, the next pass executed is the reloading pass; the others in between are skipped. The source file is stupid.c.
- * Data flow analysis (flow.c). This pass divides the program into basic blocks (and in the process deletes unreachable loops); then it computes which pseudo-registers are live at each point in the program, and makes the first instruction that uses a value point at the instruction that computed the value.

This pass also deletes computations whose results are never used, and combines memory references with add or subtract instructions to make autoincrement or autodecrement addressing.

The option -df causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .flow to the input file name. If stupid register allocation is in use, this dump file reflects the full results of such allocation.

* Instruction combination (combine.c). This pass attempts to combine groups of two or three instructions that are related by data flow into single instructions. It combines the RTL expressions for the instructions by substitution, simplifies the result using algebra, and then attempts to match the result against the machine description.

The option -dc causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .combine to the input file name.

* Instruction scheduling (sched.c). This pass looks for instructions whose output will not be available by the time that it is used in subsequent instructions. (Memory loads and floating point instructions often have this behavior on RISC machines). It re-orders instructions within a basic block to try to separate the definition and use of items that otherwise would cause pipeline stalls.

Instruction scheduling is performed twice. The first time is immediately after instruction combination and the second is immediately after reload.

The option -dS causes a debugging dump of the RTL code after this

gcc 231 / 551

pass is run for the first time. The dump file's name is made by appending .sched to the input file name.

- * Register class preferencing. The RTL code is scanned to find out which register class is best for each pseudo register. The source file is regclass.c.
- * Local register allocation (local-alloc.c). This pass allocates hard registers to pseudo registers that are used only within one basic block. Because the basic block is linear, it can use fast and powerful techniques to do a very good job.

The option -dl causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .lreg to the input file name.

- * Global register allocation (global.c). This pass allocates hard registers for the remaining pseudo registers (those whose life spans are not contained in one basic block).
- * Reloading. This pass renumbers pseudo registers with the hardware registers numbers they were allocated. Pseudo registers that did not get hard registers are replaced with stack slots. Then it finds instructions that are invalid because a value has failed to end up in a register, or has ended up in a register of the wrong kind. It fixes up these instructions by reloading the problematical values temporarily into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instructions to save and restore call-clobbered registers around calls.

Source files are reload.c and reloadl.c, plus the header reload.h used for communication between them.

The option -dg causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .greg to the input file name.

* Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory loads generated for spilled pseudo registers.

The option -dR causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .sched2 to the input file name.

* Jump optimization is repeated, this time including cross-jumping and deletion of no-op move instructions.

The option $-\mathrm{d}J$ causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .jump2 to the input file name.

* Delayed branch scheduling. This optional pass attempts to find instructions that can go into the delay slots of other instructions, usually jumps and calls. The source file name is

gcc 232 / 551

reorg.c.

The option -dd causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .dbr to the input file name.

* Conversion from usage of some hard registers to usage of a register stack may be done at this point. Currently, this is supported only for the floating-point registers of the Intel 80387 coprocessor. The source file name is reg-stack.c.

The options -dk causes a debugging dump of the RTL code after this pass. This dump file's name is made by appending .stack to the input file name.

* Final. This pass outputs the assembler code for the function. It is also responsible for identifying spurious test and compare instructions. Machine-specific peephole optimizations are performed at the same time. The function entry and exit sequences are generated directly as assembler code in this pass; they never exist as RTL.

The source files are final.c plus insn-output.c; the latter is generated automatically from the machine description by the tool genoutput. The header file conditions.h is used for communication between these files.

* Debugging information output. This is run after final because it must output the stack slot offsets for pseudo registers that did not get hard registers. Source files are dbxout.c for DBX symbol table format, sdbout.c for SDB symbol table format, and dwarfout.c for DWARF symbol table format.

Some additional files are used by all or many passes:

- * Every pass uses machmode.def and machmode.h which define the machine modes.
- * Several passes use real.h, which defines the default representation of floating point constants and how to operate on them.
- * All the passes that work with RTL use the header files rtl.h and rtl.def, and subroutines in file rtl.c. The tools gen* also use these files to read and work with the machine description RTL.
- * Several passes refer to the header file insn-config.h which contains a few parameters (C macro definitions) generated automatically from the machine description RTL by the tool genconfig.
- * Several passes use the instruction recognizer, which consists of recog.c and recog.h, plus the files insn-recog.c and insn-extract.c that are generated automatically from the machine description by the tools genrecog and genextract.
- \star Several passes use the header files regs.h which defines the

gcc 233 / 551

information recorded about pseudo register usage, and basic-block.h which defines the information recorded about basic blocks.

- * hard-reg-set.h defines the type HARD_REG_SET, a bit-vector with a bit for each hard register, and some macros to manipulate it. This type is just int if the machine has few enough hard registers; otherwise it is an array of int and some of the macros expand into loops.
- * Several passes use instruction attributes. A definition of the attributes defined for a particular machine is in file insn-attr.h, which is generated from the machine description by the program genattr. The file insn-attrtab.c contains subroutines to obtain the attribute values for insns. It is generated from the machine description by the program genattrtab.

1.131 gcc.guide/RTL

RTL Representation

Most of the work of the compiler is done on an intermediate representation called register transfer language. In this language, the instructions to be output are described, pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that point at other structures, and a textual form that is used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form.

RTL Objects

Expressions vs vectors vs strings vs integers.

Accessors

Macros to access expression operands or vector elts.

Flags

Other flags in an RTL expression.

Machine Modes

Describing the size and format of a datum.

Constants

Expressions with constant values.

Regs and Memory

Expressions representing register contents or memory.

gcc 234 / 551

Arithmetic

Expressions representing arithmetic on other expressions.

Comparisons

Expressions representing comparison of expressions.

Bit Fields

Expressions representing bitfields in memory or req.

Conversions

Extending, truncating, floating or fixing.

RTL Declarations

Declaring volatility, constancy, etc.

Side Effects

Expressions for storing in registers, etc.

Incdec

Embedded side-effects for autoincrement addressing.

Assembler

Representing asm with operands.

Insns

Expression types for entire insns.

Calls

RTL representation of function call insns.

Sharing

Some expressions are unique; others *must* be copied.

Reading RTL

Reading textual RTL from a file.

1.132 gcc.guide/RTL Objects

RTL Object Types

===========

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression ("RTX", for short) is a C structure, but it is usually referred to with a pointer; a type that is given the typedef name rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an integral object whose type is HOST_WIDE_INT (see

Config

); their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a

gcc 235 / 551

char * in usual C fashion, and it is written in C syntax as well. However, strings in RTL may never be null. If you write an empty string in a machine description, it is represented in core as a null pointer rather than as a pointer to a null character. In certain contexts, these null pointers instead of strings are valid. Within RTL code, strings are most commonly found inside symbol_ref expressions, but they appear in other contexts in the RTL expressions that make up machine descriptions.

A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. The written form of a vector consists of square brackets ([...]) surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression code is a name defined in rtl.def, which is also (in upper case) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX can be extracted with the macro GET_CODE (X) and altered with PUT_CODE (X, NEWCODE).

The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. Instead, you must know from its context—from the expression code of the containing expression. For example, in an expression of code subreg, the first operand is to be regarded as an expression and the second operand as an integer. In an expression of code plus, there are two operands, both of which are to be regarded as expressions. In a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces).

Expression code names in the md file are written in lower case, but when they appear in C code they are written in upper case. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The written form of this is (nil).

1.133 gcc.guide/Accessors

Access to Operands

For each expression type rtl.def specifies the number of contained objects and their kinds, with four possibilities: e for expression (actually a pointer to an expression), i for integer, w for wide

gcc 236 / 551

integer, s for string, and E for vector of expressions. The sequence of letters for an expression code is called its format. Thus, the format of subreg is ei.

A few other format characters are used occasionally:

u
u is equivalent to e except that it is printed differently in
debugging dumps. It is used for pointers to insns.

n is equivalent to i except that it is printed differently in debugging dumps. It is used for the line number or code number of a note insn.

S
S indicates a string which is optional. In the RTL objects in core, S is equivalent to s, but when the object is read, from an md file, the string value of this operand may be omitted.

An omitted string is taken to be the null string.

V V indicates a vector which is optional. In the RTL objects in core, V is equivalent to E, but when the object is read from an md file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements.

0
0 means a slot whose contents do not fit any normal category. 0
slots are not printed at all in dumps, and are often used in
special ways by small parts of the compiler.

There are macros to get the number of operands, the format, and the class of an expression code:

GET_RTX_LENGTH (CODE)

Number of operands of an RTX of code CODE.

GET_RTX_FORMAT (CODE)

The format of an RTX of code CODE, as a C string.

GET RTX CLASS (CODE)

1

A single character representing the type of RTX operation that code ${\tt CODE}$ performs.

The following classes are defined:

o
 An RTX code that represents an actual object, such as reg or
 mem. subreg is not in this class.

An RTX code for a comparison. The codes in this class are NE, EQ, LE, LT, GE, GT, LEU, LTU, GEU, GTU.

An RTX code for a unary arithmetic operation, such as neg.

gcc 237 / 551

c $\label{eq:continuous} \mbox{An RTX code for a commutative binary operation, other than NE and EQ (which have class <).}$

- An RTX code for a noncommutative binary operation, such as MINUS.
- b
 An RTX code for a bitfield operation, either ZERO_EXTRACT or
 SIGN_EXTRACT.
- i An RTX code for a machine insn (INSN, JUMP_INSN, and CALL INSN).
- $\ensuremath{\mathtt{m}}$ An RTX code for something that matches in insns, such as $\ensuremath{\mathtt{MATCH_DUP}}$.
- x All other RTX codes.

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus,

XEXP (X, 2)

accesses operand 2 of expression X, as an expression.

XINT (X, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as a string.

Any operand can be accessed as an integer, as an expression or as a string. You must choose the correct method of access for the kind of value actually stored in the operand. You would do this based on the expression code of the containing expression. That is also how you would know how many operands there are.

For example, if X is a subreg expression, you know that it has two operands which can be correctly accessed as XEXP (X, 0) and XINT (X, 1). If you did XINT (X, 0), you would get the address of the expression operand but cast as an integer; that might occasionally be useful, but it would be cleaner to write (int) XEXP (X, 0). XEXP (X, 1) would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably result in a crash when accessed. Nothing stops you from writing XEXP (X, 28) either, but this will access memory past the end of the

gcc 238 / 551

expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements and length of a vector.

XVEC (EXP, IDX)

Access the vector-pointer which is operand number IDX in EXP.

XVECLEN (EXP, IDX)

Access the length (number of elements) in the vector which is in operand number IDX in EXP. This value is an int.

XVECEXP (EXP, IDX, ELTNUM)

Access element number ELTNUM in the vector which is in operand number IDX in EXP. This value is an RTX.

It is up to you to make sure that ELTNUM is not negative and is less than XVECLEN (EXP, IDX).

All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector elements as well as to access them.

1.134 gcc.guide/Flags

Flags in an RTL Expression

RTL expressions contain several flags (one-bit bitfields) that are used in certain types of expression. Most often they are accessed with the following macros:

MEM_VOLATILE_P (X)

In mem expressions, nonzero for volatile memory references. Stored in the volatil field and printed as /v.

MEM_IN_STRUCT_P (X)

In mem expressions, nonzero for reference to an entire structure, union or array, or to a component of one. Zero for references to a scalar variable or through a pointer to a scalar. Stored in the in_struct field and printed as /s.

REG_LOOP_TEST_P

In reg expressions, nonzero if this register's entire life is contained in the exit test code for some loop. Stored in the in_struct field and printed as /s.

REG_USERVAR_P (X)

In a reg, nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by the compiler. Stored in the volatil field and printed as /v.

REG_FUNCTION_VALUE_P (X)

gcc 239 / 551

Nonzero in a reg if it is the place in which this function's value is going to be returned. (This happens only in a hard register.) Stored in the integrated field and printed as /i.

The same hard register may be used also for collecting the values of functions called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

SUBREG PROMOTED VAR P

Nonzero in a subreg if it was made when accessing an object that was promoted to a wider mode in accord with the PROMOTED_MODE machine description macro (see

Storage Layout

). In this case, the

mode of the subreg is the declared mode of the object and the mode of SUBREG_REG is the mode of the register that holds the object. Promoted variables are always either sign- or zero-extended to the wider mode on every assignment. Stored in the in_struct field and printed as /s.

SUBREG_PROMOTED_UNSIGNED_P

Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object being referenced is kept zero-extended and zero if it is kept sign-extended. Stored in the unchanging field and printed as /u.

RTX_UNCHANGING_P (X)

Nonzero in a reg or mem if the value is not changed. (This flag is not set for memory references via pointers to constants. Such pointers only guarantee that the object will not be changed explicitly by the current function. The object might be changed by other functions or by aliasing.) Stored in the unchanging field and printed as /u.

RTX_INTEGRATED_P (INSN)

Nonzero in an insn if it resulted from an in-line function call. Stored in the integrated field and printed as /i. This may be deleted; nothing currently depends on it.

SYMBOL REF USED (X)

In a symbol_ref, indicates that X has been used. This is normally only used to ensure that X is only declared external once. Stored in the used field.

SYMBOL_REF_FLAG (X)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in the volatil field and printed as /v.

LABEL_OUTSIDE_LOOP_P

In label_ref expressions, nonzero if this is a reference to a label that is outside the innermost loop containing the reference to the label. Stored in the in_struct field and printed as /s.

INSN_DELETED_P (INSN)

In an insn, nonzero if the insn has been deleted. Stored in the volatil field and printed as /v.

gcc 240 / 551

INSN_ANNULLED_BRANCH_P (INSN)

In an insn in the delay slot of a branch insn, indicates that an annulling branch should be used. See the discussion under sequence below. Stored in the unchanging field and printed as $/\mathrm{u}$.

INSN_FROM_TARGET_P (INSN)

In an insn in a delay slot of a branch, indicates that the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be executed if the branch is taken. For annulled branches with this bit clear, the insn should be executed only if the branch is not taken. Stored in the in_struct field and printed as /s.

CONSTANT_POOL_ADDRESS_P (X)

Nonzero in a symbol_ref if it refers to part of the current function's "constants pool". These are addresses close to the beginning of the function, and GNU CC assumes they can be addressed directly (perhaps with the help of base registers). Stored in the unchanging field and printed as /u.

CONST_CALL_P (X)

In a call_insn, indicates that the insn represents a call to a const function. Stored in the unchanging field and printed as /u.

LABEL_PRESERVE_P (X)

In a code_label, indicates that the label can never be deleted. Labels referenced by a non-local goto will have this bit set. Stored in the in_struct field and printed as /s.

SCHED_GROUP_P (INSN)

During instruction scheduling, in an insn, indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the instruction scheduling pass, for example, use insns before a call_insn may not be separated from the call_insn. Stored in the in_struct field and printed as /s.

These are the fields which the above macros refer to:

used

Normally, this flag is used only momentarily, at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than once are copied, according to the rules for shared structure (see

Sharing
).

In a symbol_ref, it indicates that an external declaration for the symbol has already been written.

In a reg, it is used by the leaf register renumbering code to ensure that each register is only renumbered once.

volatil

This flag is used in mem, symbol_ref and reg expressions and in

gcc 241 / 551

insns. In RTL dump files, it is printed as /v.

In a mem expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary.

In an insn, 1 means the insn has been deleted.

in_struct

In mem expressions, it is 1 if the memory datum referred to is all or part of a structure or array; 0 if it is (or might be) a scalar variable. A reference through a C pointer has 0 because the pointer might point to a scalar variable. This information allows the compiler to determine something about possible cases of aliasing.

In an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch.

During instruction scheduling, in an insn, 1 means that this insn must be scheduled as part of a group together with the previous insn.

In reg expressions, it is 1 if the register has its entire life contained within the test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is used for labels which are the target of non-local gotos.

In an RTL dump, this flag is represented as /s.

unchanging

In reg and mem expressions, 1 means that the value of the expression never changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose mode has been promoted to a wider mode.

In an insn, 1 means that this is an annulling branch.

In a symbol_ref expression, 1 means that this symbol addresses something in the per-function constants pool.

gcc 242 / 551

In a call_insn, 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as /u.

integrated

In some kinds of expressions, including insns, this flag means the rtl was produced by procedure integration.

In a reg expression, this flag indicates the register containing the value to be returned by the current function. On machines that pass parameters in registers, the same register number may be used for parameters as well, but this flag is not set on such uses.

1.135 gcc.guide/Machine Modes

Machine Modes

========

A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an enumeration type, enum machine_mode, defined in machmode.def. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate them. The letters mode which appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at all.

Here is a table of machine modes. The term "byte" below refers to an object of BITS_PER_UNIT bits (see

Storage Layout
).

OImode

"Quarter-Integer" mode represents a single byte treated as an integer.

HImode

"Half-Integer" mode represents a two-byte integer.

PSImode

"Partial Single Integer" mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers.

SImode

"Single Integer" mode represents a four-byte integer.

gcc 243 / 551

PDImode

"Partial Double Integer" mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers.

DImode

"Double Integer" mode represents an eight-byte integer.

TImode

"Tetra Integer" (?) mode represents a sixteen-byte integer.

SFmode

"Single Floating" mode represents a single-precision (four byte) floating point number.

DFmode

"Double Floating" mode represents a double-precision (eight byte) floating point number.

XFmode

"Extended Floating" mode represents a triple-precision (twelve byte) floating point number. This mode is used for IEEE extended floating point. On some systems not all bits within these bytes will actually be used.

TFmode

"Tetra Floating" mode represents a quadruple-precision (sixteen byte) floating point number.

CCmode

"Condition Code" mode represents the value of a condition code, which is a machine-specific set of bits used to represent the result of a comparison operation. Other machine-specific modes may also be used for the condition code. These modes are not used on machines that use cc0 (see see

Condition Code

) .

BLKmode

"Block" mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, BLKmode will not appear in RTL.

VOIDmode

Void mode means the absence of a mode or an unspecified mode. For example, RTL expressions of code const_int have mode VOIDmode because they can be taken to have whatever mode the context requires. In debugging dumps of RTL, VOIDmode is expressed by the absence of any mode.

SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of floating point values. The floating point values are in SFmode, DFmode, XFmode, and TFmode, respectively.

gcc 244 / 551

CQImode, CHImode, CSImode, CDImode, CTImode, COImode

These modes stand for a complex number represented as a pair of integer values. The integer values are in QImode, HImode, SImode, DImode, TImode, and OImode, respectively.

The machine description defines Pmode as a C macro which expands into the machine mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler will attempt to use DImode for 8-byte structures and unions, but this can be prevented by overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the enumeration type enum mode_class defined in machmode.h. The possible mode classes are:

MODE INT

Integer modes. By default these are QImode, HImode, SImode, DImode, and TImode.

MODE_PARTIAL_INT

The "partial integer" modes, PSImode and PDImode.

MODE FLOAT

floating point modes. By default these are SFmode, DFmode, XFmode and TFmode.

MODE_COMPLEX_INT

Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT

Complex floating point modes. By default these are SCmode, DCmode, XCmode, and TCmode.

MODE FUNCTION

Algol or Pascal function variables including a static chain. (These are not currently implemented).

MODE_CC

Modes representing condition code values. These are CCmode plus any modes listed in the EXTRA_CC_MODES macro. See ${\tt Jump\ Patterns}$

also see See

Condition Code

MODE RANDOM

This is a catchall mode class for modes which don't fit into the above classes. Currently VOIDmode and BLKmode are in MODE_RANDOM.

gcc 245 / 551

Here are some C macros that relate to machine modes:

GET_MODE (X)

Returns the machine mode of the RTX X.

PUT_MODE (X, NEWMODE)

Alters the machine mode of the RTX X to be NEWMODE.

NUM MACHINE MODES

Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (M)

Returns the name of mode M as a string.

GET_MODE_CLASS (M)

Returns the mode class of mode M.

GET_MODE_WIDER_MODE (M)

Returns the next wider natural mode. For example, the expression GET_MODE_WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (M)

Returns the size in bytes of a datum of mode M.

GET_MODE_BITSIZE (M)

Returns the size in bits of a datum of mode M.

GET_MODE_MASK (M)

Returns a bitmask containing 1 for all bits in a word that fit within mode M. This macro can only be used for modes whose bitsize is less than or equal to ${\tt HOST_BITS_PER_INT}$.

GET_MODE_ALIGNMENT (M))

Return the required alignment, in bits, for an object of mode M.

GET_MODE_UNIT_SIZE (M)

Returns the size in bytes of the subunits of a datum of mode M. This is the same as GET_MODE_SIZE except in the case of complex modes. For them, the unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (M)

Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (C)

Returns the narrowest mode in mode class C.

The global variables byte_mode and word_mode contain modes whose classes are MODE_INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit machines, these are QImode and SImode, respectively.

gcc 246 / 551

1.136 gcc.guide/Constants

Constant Expression Types

The simplest RTL expressions are those that represent constant values. $\,$

(const_int I)

This type of expression represents the integer value I. I is customarily accessed with the macro INTVAL as in INTVAL (EXP), which is equivalent to XWINT (EXP, 0).

There is only one expression object for the integer value zero; it is the value of the variable const0_rtx. Likewise, the only expression for integer value one is found in const1_rtx, the only expression for integer value two is found in const2_rtx, and the only expression for integer value negative one is found in constm1_rtx. Any attempt to create an expression of code const_int and value zero, one, two or negative one will return const0_rtx, const1_rtx, const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE is -1, const_true_rtx and constm1_rtx will point to the same object.

(const_double:M ADDR IO II ...)

Represents either a floating-point constant of mode M or an integer constant too large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice that number of bits (GNU CC does not provide a mechanism to represent even larger constants). In the latter case, M will be VOIDmode.

ADDR is used to contain the mem expression that corresponds to the location in memory that at which the constant can be found. If it has not been allocated a memory location, but is on the chain of all const_double expressions in this compilation (maintained using an undisplayed field), ADDR contains const0_rtx. If it is not on the chain, ADDR contains cc0_rtx. ADDR is customarily accessed with the macro CONST_DOUBLE_MEM and the chain field via CONST_DOUBLE_CHAIN.

If M is VOIDmode, the bits of the value are stored in I0 and I1. I0 is customarily accessed with the macro $CONST_DOUBLE_LOW$ and I1 with $CONST_DOUBLE_HIGH$.

If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the size of REAL_VALUE_TYPE (see

Cross-compilation

gcc 247 / 551

). The integers

represent a floating point number, but not precisely in the target machine's or host machine's floating point format. To convert them to the precise bit pattern used by the target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see

Data Output
).

The macro CONSTO_RTX (MODE) refers to an expression with value 0 in mode MODE. If mode MODE is of mode class MODE_INT, it returns constO_rtx. Otherwise, it returns a CONST_DOUBLE expression in mode MODE. Similarly, the macro CONST1_RTX (MODE) refers to an expression with value 1 in mode MODE and similarly for CONST2_RTX.

(const_string STR)

Represents a constant string with value STR. Currently this is used only for insn attributes (see

Insn Attributes

) since constant

strings in C are placed in memory.

(symbol_ref:MODE SYMBOL)

Represents the value of an assembler label for data. SYMBOL is a string that describes the name of the assembler label. If it starts with a *, the label is the rest of SYMBOL not including the *. Otherwise, the label is SYMBOL, usually prefixed with _.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the only mode for which a symbol is directly valid.

(label ref LABEL)

Represents the value of an assembler label for code. It contains one operand, an expression, which must be a code_label that appears in the instruction sequence to identify the place where the label should go.

The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them.

(const:M EXP)

Represents a constant that is the result of an assembly-time arithmetic computation. The operand, EXP, is an expression that contains only constants (const_int, symbol_ref and label_ref expressions) combined with plus and minus. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols.

M should be Pmode.

(high:M EXP)

Represents the high-order bits of EXP, usually a symbol_ref. The number of bits is machine-dependent and is normally the number of bits specified in an instruction that initializes the high order bits of a register. It is used with lo_sum to represent the typical two-instruction sequence used in RISC machines to reference a global memory location.

gcc 248 / 551

M should be Pmode.

1.137 gcc.guide/Regs and Memory

Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main memory.

(reg:M N)

For small values of the integer N (those that are less than FIRST_PSEUDO_REGISTER), this stands for a reference to machine register number N: a hard register. For larger values of N, it stands for a temporary value or pseudo register. The compiler's strategy is to generate code assuming an unlimited number of such pseudo registers, and later convert them into hard registers or into memory references.

M is the machine mode of the reference. It is necessary because machines can generally refer to each register in more than one mode. For example, a register may contain a full word but there may be instructions to refer to it as a half word or as a single byte, as well as instructions to refer to it as a floating point number of various precisions.

Even for a register that the machine can access in only one mode, the mode must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All the machine registers that can be used for storage of data are given hard register numbers, even those that can be used only in certain instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an access to a pseudo register using a nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word of data may actually stand for several consecutive registers. If in addition the register number specifies a hardware register, then it actually represents several consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function's RTL code is represented by a unique reg expression.

gcc 249 / 551

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame that cannot be determined until RTL generation for the function has been completed. The following virtual register numbers are defined:

VIRTUAL INCOMING ARGS REGNUM

This points to the first word of the incoming arguments passed on the stack. Normally these arguments are placed there by the caller, but the callee may have pushed some arguments that were previously passed in registers.

When RTL generation is complete, this virtual register is replaced by the sum of the register given by ARG_POINTER_REGNUM and the value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM

If FRAME_GROWS_DOWNWARD is defined, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack.

 $\label{lem:vars_regnum} VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the register given by FRAME_POINTER_REGNUM and the value STARTING_FRAME_OFFSET.$

VIRTUAL_STACK_DYNAMIC_REGNUM

This points to the location of dynamically allocated memory on the stack immediately after the stack pointer has been adjusted by the amount of memory desired.

This virtual register is replaced by the sum of the register given by ${\tt STACK_POINTER_REGNUM}$ and the value ${\tt STACK_DYNAMIC_OFFSET.}$

VIRTUAL_OUTGOING_ARGS_REGNUM

This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use STACK POINTER REGNUM).

This virtual register is replaced by the sum of the register given by ${\tt STACK_POINTER_REGNUM}$ and the value ${\tt STACK_POINTER_OFFSET}$.

(subreg:M REG WORDNUM)

subreg expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a multi-word reg that actually refers to several registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it in a different mode--for example, to perform a fullword move instruction on a pseudo-register that contains a single byte--the pseudo-register must be enclosed in a subreg. In such a case, WORDNUM is zero.

gcc 250 / 551

Usually M is at least as narrow as the mode of REG, in which case it is restricting consideration to only the bits of REG that are in M.

Sometimes M is wider than the mode of REG. These subreg expressions are often called paradoxical. They are used in cases where we want to refer to an object in a wider mode but do not care what value the additional bits have. The reload pass ensures that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register value. Machine modes such as DImode and TImode can indicate values longer than a word, values which usually require two or more consecutive registers. To access one of the registers, use a subreg with mode SImode and a WORDNUM that says which register.

Storing in a non-paradoxical subreg has undefined results for bits belonging to the same word as the subreg. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in the subreg, use strict_low_part around the subreg.

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that word number zero is the most significant part; otherwise, it is the least significant part.

Between the combiner pass and the reload pass, it is possible to have a paradoxical subreg which contains a mem instead of a reg as its first operand. After the reload pass, it is also possible to have a non-paradoxical subreg which contains a mem; this usually occurs when the mem is a stack slot which replaced a pseudo register.

Note that it is not valid to access a DFmode value in SFmode using a subreg. On some machines the most significant part of a DFmode value does not have the same format as a single-precision floating value.

It is also not valid to access a single word of a multi-word value in a hard register when less registers can hold the value than would be expected from its size. For example, some 32-bit machines have floating-point registers that can hold an entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF 10) 1) would be invalid because there is no way to convert that reference to a single machine register. The reload pass prevents subreg expressions such as these from being formed.

The first operand of a subreg expression is customarily accessed with the SUBREG_REG macro and the second operand is customarily accessed with the SUBREG_WORD macro.

(scratch:M)

This represents a scratch register that will be required for the execution of a single instruction and not used subsequently. It is converted into a reg by either the local register allocator or the reload pass.

gcc 251 / 551

scratch is usually present inside a clobber operation (see

Side Effects
).

(cc0)

This refers to the machine's condition code register. It has no operands and may not have a machine mode. There are two ways to use it:

* To stand for a complete set of condition code flags. This is best on most machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) and in comparison operators comparing against zero (const_int with value zero; that is to say, const0 rtx).

* To stand for a single flag that is the result of a single condition. This is useful on machines that have only a single flag bit, and in which comparison instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) where the source is a comparison operator, and as the first operand of if_then_else (in a conditional branch).

There is only one expression object of code cc0; it is the value of the variable $cc0_rtx$. Any attempt to create an expression of code cc0 will return $cc0_rtx$.

Instructions can set the condition code implicitly. On many machines, nearly all instructions set the condition code based on the value that they compute or store. It is not necessary to record these actions explicitly in the RTL because the machine description includes a prescription for recognizing the instructions that do so (by means of the macro NOTICE_UPDATE_CC). See

Condition Code

. Only instructions whose sole purpose is to set the condition code, and instructions that use the condition code, need mention (cc0).

On some machines, the condition code register is given a register number and a reg is used instead of (cc0). This is usually the preferable approach if only a small subset of instructions modify the condition code. Other machines store condition codes in general registers; in such cases a pseudo register should be used.

Some machines, such as the Sparc and RS/6000, have two sets of arithmetic instructions, one that sets and one that does not set the condition code. This is best handled by normally generating

gcc 252 / 551

the instruction that does not set the condition code, and making a pattern that both performs the arithmetic and sets the condition code register (which would not be (cc0) in this case). For examples, search for addcc and andcc in sparc.md.

(pc)

This represents the machine's program counter. It has no operands and may not have a machine mode. (pc) may be validly used only in certain specific contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by incrementing it, but there is no need to mention this in the RTL.

(mem:M ADDR)

This RTX represents a reference to main memory at an address represented by the expression ADDR. M specifies how large a unit of memory is accessed.

1.138 gcc.guide/Arithmetic

RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for mode M. An operand is valid for mode M if it has mode M, or if it is a const_int or const_double and M is a mode of class $\texttt{MODE_INT}$.

For commutative binary operations, constants should be placed in the second operand.

(plus:M X Y)

Represents the sum of the values represented by ${\tt X}$ and ${\tt Y}$ carried out in machine mode ${\tt M}$.

(lo_sum:M X Y)

Like plus, except that it represents that sum of X and the low-order bits of Y. The number of low order bits is machine-dependent but is normally the number of bits in a Pmode item minus the number of bits set by the high code (see Constants).

M should be Pmode.

(minus:M X Y)

Like plus but represents subtraction.

gcc 253 / 551

(compare:M X Y)

Represents the result of subtracting Y from X for purposes of comparison. The result is computed without overflow, as if with infinite precision.

Of course, machines can't really subtract with infinite precision. However, they can pretend to do so when only the sign of the result will be used, which is the case when the result is stored in the condition code. And that is the only way this kind of expression may validly be used: as a value to be stored in the condition codes.

The mode M is not related to the modes of X and Y, but instead is the mode of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it is some mode in class MODE_CC, often CCmode. See

Condition Code

.

Normally, X and Y must have the same mode. Otherwise, compare is valid only if the mode of X is in class MODE_INT and Y is a const_int or const_double with mode VOIDmode. The mode of X determines what mode the comparison is to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way to know in what mode the comparison is to be performed; the comparison must either be folded during the compilation or the first operand must be loaded into a register while its mode is still known.

(neg:M X)

Represents the negation (subtraction from zero) of the value represented by X, carried out in mode M.

(mult:M X Y)

Represents the signed product of the values represented by \boldsymbol{X} and \boldsymbol{Y} carried out in machine mode \boldsymbol{M} .

Some machines support a multiplication that generates a product wider than the operands. Write the pattern for this as

```
(mult:M (sign_extend:M X) (sign_extend:M Y))
```

where M is wider than the modes of X and Y, which need not be the same.

Write patterns for unsigned widening multiplication similarly using zero_extend.

(div:M X Y)

Represents the quotient in signed division of X by Y, carried out in machine mode M. If M is a floating point mode, it represents the exact quotient; otherwise, the integerized quotient.

gcc 254 / 551

Some machines have division instructions in which the operands and quotient widths are not all the same; you should represent such instructions using truncate and sign_extend as in,

(truncate:M1 (div:M2 X (sign_extend:M2 Y)))

(udiv:M X Y)

Like div but represents unsigned division.

(mod:M X Y)

(umod:M X Y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:M X Y)

(smax:M X Y)

Represents the smaller (for smin) or larger (for smax) of X and Y, interpreted as signed integers in mode M.

(umin:M X Y)

(umax:M X Y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:M X)

Represents the bitwise complement of the value represented by X, carried out in mode M, which must be a fixed-point machine mode.

(and:M X Y)

Represents the bitwise logical-and of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point machine mode.

(ior:M X Y)

Represents the bitwise inclusive-or of the values represented by ${\tt X}$ and ${\tt Y}$, carried out in machine mode ${\tt M}$, which must be a fixed-point mode.

(xor:M X Y)

Represents the bitwise exclusive-or of the values represented by ${\tt X}$ and ${\tt Y}$, carried out in machine mode ${\tt M}$, which must be a fixed-point mode.

(ashift:M X C)

Represents the result of arithmetically shifting X left by C places. X have mode M, a fixed-point machine mode. C be a fixed-point mode or be a constant with mode VOIDmode; which mode is determined by the mode called for in the machine description entry for the left-shift instruction. For example, on the Vax, the mode of C is QImode regardless of M.

(lshiftrt:M X C)

(ashiftrt:M X C)

Like ashift but for right shift. Unlike the case for left shift, these two operations are distinct.

gcc 255 / 551

(rotate:M X C)

(rotatert:M X C)

Similar but represent left and right rotate. If C is a constant, use rotate.

(abs:M X)

Represents the absolute value of X, computed in mode M.

(sqrt:M X)

Represents the square root of X, computed in mode M. Most often M will be a floating point mode.

(ffs:M X)

Represents one plus the index of the least significant 1-bit in X, represented as an integer of mode M. (The value is zero if X is zero.) The mode of X need not be M; depending on the target machine, various mode combinations may be valid.

1.139 gcc.guide/Comparisons

Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_VALUE (see

Misc

) if the

relation holds, or zero if it does not. The mode of the comparison operation is independent of the mode of the data being compared. If the comparison operation is being tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode. If the comparison operation is producing data to be stored in some variable, the mode must be in class MODE_INT. All comparison operations producing data must use the same mode, which is machine-specific.

There are two ways that comparison operations may be used. The comparison operators may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_int 0)). Such a construct actually refers to the result of the preceding instruction in which the condition codes were set. The instructing setting the condition code must be adjacent to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode of the comparison is determined by the operands; they must both be valid for a common machine mode. A comparison with both operands constant would be invalid as the machine mode could not be deduced from it, but such a comparison should never exist in RTL due to constant folding.

In the example above, if (cc0) were last set to (compare X Y), the comparison operation is identical to (eq X Y). Usually only one style

gcc 256 / 551

of comparisons is supported on a particular machine, but the combine pass will try to merge the operations to produce the eq shown in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct expression codes gt and gtu for signed and unsigned greater-than. These can produce different results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned greater-than, because -1 when regarded as unsigned is actually 0xffffffff which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons are distinguished by the machine modes of the operands.

(eq:M X Y)

1 if the values represented by X and Y are equal, otherwise 0.

(ne:M X Y)

1 if the values represented by X and Y are not equal, otherwise 0.

(gt:M X Y)

1 if the X is greater than Y. If they are fixed-point, the comparison is done in a signed sense.

(gtu:M X Y)

Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:M X Y)

(ltu:M X Y)

Like gt and gtu but test for "less than".

(ge:M X Y)

(geu:M X Y)

Like gt and gtu but test for "greater than or equal".

(le:M X Y)

(leu:M X Y)

Like gt and gtu but test for "less than or equal".

(if_then_else COND THEN ELSE)

This is not a comparison operation but is listed here because it is always used in conjunction with a comparison operation. To be precise, COND is a comparison expression. This expression represents a choice, according to COND, between the value represented by THEN and the one represented by ELSE.

On most machines, if_then_else expressions are valid only to express conditional jumps.

(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)

Similar to if_then_else, but more general. Each of TEST1, TEST2, ... is performed in turn. The result of this expression is the VALUE corresponding to the first non-zero test, or DEFAULT if none of the tests are non-zero expressions.

This is currently not valid for instruction patterns and is

gcc 257 / 551

supported only for insn attributes. See Insn Attributes

.

1.140 gcc.guide/Bit Fields

Bit Fields

========

Special expression codes exist to represent bitfield instructions. These types of expressions are lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value into the specified bit field.

(sign_extract:M LOC SIZE POS)

This represents a reference to a sign-extended bit field contained or starting in LOC (a memory or register reference). The bit field is SIZE bits wide and starts at bit POS. The compilation option BITS_BIG_ENDIAN says which end of the memory unit POS counts from.

If LOC is in memory, its mode must be a single-byte integer mode. If LOC is in a register, the mode to use is specified by the operand of the insv or extv pattern (see

Standard Names

) and is

usually a full-word integer mode.

The mode of POS is machine-specific and is also specified in the insv or extv pattern.

The mode M is the same as the mode that would be used for LOC if it were a register.

(zero_extract:M LOC SIZE POS)

Like sign_extract but refers to an unsigned or zero-extended bit field. The same sequence of bits are extracted, but they are filled to an entire word with zeros instead of by sign-extension.

1.141 gcc.guide/Conversions

Conversions

All conversions between machine modes must be represented by explicit conversion operations. For example, an expression which is the sum of a byte and a full word cannot be written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two operands of

gcc 258 / 551

the same machine mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in

```
(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
```

The conversion operation is not a mere placeholder, because there may be more than one way of converting from a given starting mode to the desired final mode. The conversion operation code says how to do it.

For all conversion operations, X must not be VOIDmode because the mode in which to do the conversion would not be known. The conversion must either be done at compile-time or X must be placed into a register.

(sign_extend:M X)

Represents the result of sign-extending the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode narrower than M.

(zero extend:M X)

Represents the result of zero-extending the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode narrower than M.

(float_extend:M X)

Represents the result of extending the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode narrower than M.

(truncate:M X)

Represents the result of truncating the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode wider than M.

(float_truncate:M X)

Represents the result of truncating the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode wider than M.

(float:M X)

Represents the result of converting fixed point value X, regarded as signed, to floating point mode M.

(unsigned_float:M X)

Represents the result of converting fixed point value X, regarded as unsigned, to floating point mode M.

(fix:M X)

When M is a fixed point mode, represents the result of converting floating point value X to mode M, regarded as signed. How rounding is done is not specified, so this operation may be used validly in compiling C code only for integer-valued operands.

(unsigned_fix:M X)

Represents the result of converting floating point value X to fixed point mode M, regarded as unsigned. How rounding is done is not specified.

gcc 259 / 551

(fix:M X)

When M is a floating point mode, represents the result of converting floating point value X (valid for mode M) to an integer, still represented in floating point mode M, by rounding towards zero.

1.142 gcc.guide/RTL Declarations

Declarations

Declaration expression codes do not represent arithmetic operations but rather state assertions about their operands.

(strict_low_part (subreg:M (reg:N R) 0))

This expression code is used in only one context: as the destination operand of a set expression. In addition, the operand of this expression must be a non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is meaningful in mode N, but is not part of mode M, is not to be altered. Normally, an assignment to such a subreg is allowed to have undefined effects on the rest of the register when M is less than a word.

1.143 gcc.guide/Side Effects

Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instructions never produce values; they are meaningful only for their side effects on the state of the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described above, which represent values, appear only as the operands of these.

(set LVAL X)

Represents the action of storing the value of X into the place represented by LVAL. LVAL must be an expression representing a place that can be stored in: reg (or subreg or strict_low_part), mem, pc or cc0.

If LVAL is a reg, subreg or mem, it has a machine mode; then ${\tt X}$ must be valid for that mode.

If LVAL is a req whose machine mode is less than the full width of

gcc 260 / 551

the register, then it means that the part of the register specified by the machine mode is given the specified value and the rest of the register receives an undefined value. Likewise, if LVAL is a subreg whose machine mode is narrower than the mode of the register, the rest of the register can be changed in an undefined way.

If LVAL is a strict_low_part of a subreg, then the part of the register specified by the machine mode of the subreg is given the value X and the rest of the register is not changed.

If LVAL is (cc0), it has no machine mode, and X may be either a compare expression or a value that may have any mode. The latter case represents a "test" instruction. The expression (set (cc0) (reg:M N)) is equivalent to (set (cc0) (compare (reg:M N) (const_int 0))). Use the former expression to save space during the compilation.

If LVAL is (pc), we have a jump instruction, and the possibilities for X are very limited. It may be a label_ref expression (unconditional jump). It may be an if_then_else (conditional jump), in which case either the second or the third operand must be (pc) (for the case which does not jump) and the other of the two must be a label_ref (for the case which does jump). X may also be a mem or (plus:SI (pc) Y), where Y may be a reg or a mem; these unusual patterns are used to represent jumps through branch tables.

If LVAL is neither (cc0) nor (pc), the mode of LVAL must not be VOIDmode and the mode of X must be valid for the mode of LVAL.

 ${\tt LVAL}$ is customarily accessed with the SET_DEST macro and X with the SET_SRC macro.

(return)

As the sole expression in a pattern, represents a return from the current function, on machines where this can be done with one instruction, such as Vaxes. On machines where a multi-instruction "epilogue" must be executed in order to return from the function, returning is done by jumping to a label which precedes the epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc) (return)), but the latter form is never used.

(call FUNCTION NARGS)

Represents a function call. FUNCTION is a mem expression whose address is the address of the function to be called. NARGS is an expression which can be used for two purposes: on some machines it represents the number of bytes of stack argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which FUNCTION must have. The machine description defines macro FUNCTION_MODE to expand

gcc 261 / 551

into the requisite mode name. The purpose of this mode is to specify what kind of addressing is allowed, on machines where the allowed kinds of addressing depend on the machine mode being addressed.

(clobber X)

Represents the storing or possible storing of an unpredictable, undescribed value into X, which must be a reg, scratch or mem expression.

One place this is used is in string instructions that store standard values into particular hard registers. It may not be worth the trouble to describe the values that are stored, but it is essential to inform the compiler that the registers will be altered, lest it attempt to keep data in them across the string instruction.

If X is (mem:BLK (const_int 0)), it means that all memory locations must be presumed clobbered.

Note that the machine description classifies certain hard registers as "call-clobbered". All function call instructions are assumed by default to clobber these registers, so there is no need to use clobber expressions to indicate this fact. Also, each function call is assumed to have the potential to alter any memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression whose arguments are reg or match_scratch (see

RTL Template

) expressions, the combiner phase can add the appropriate clobber expressions to an insn it has constructed when doing so will cause a pattern to be matched.

This feature can be used, for example, on a machine that whose multiply and add instructions don't use an MQ register but which has an add-accumulate instruction that does clobber the MQ register. Similarly, a combined instruction might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other side effects, the register allocator guarantees that the register is unoccupied both before and after that insn. However, the reload phase may allocate a register used for one of the inputs unless the & constraint is specified for the selected alternative (see

Modifiers

). You can clobber either a specific hard register, a pseudo register, or a scratch expression; in the latter two cases, GNU CC will allocate a hard register that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch instead of a pseudo-register because this will allow the combiner phase to add the clobber when required. You do this by coding (clobber (match_scratch ...)). If you do clobber a

gcc 262 / 551

pseudo register, use one which appears nowhere else--generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel: when one of the input operands of the insn is also clobbered by the insn. In this case, using the same pseudo register in the clobber and elsewhere in the insn produces the expected results.

(use X)

Represents the use of the value of X. It indicates that the value in X at this point in the program is needed, even though it may not be apparent why this is so. Therefore, the compiler will not attempt to delete previous instructions whose only effect is to store a value in X. X must be a reg expression.

During the delayed branch scheduling phase, X may be an insn. This indicates that X previously was located at this place in the code and its data dependencies need to be taken into account. These use insns will be deleted before the delayed branch scheduling phase exits.

```
(parallel [X0 X1 ...])
```

Represents several side effects performed in parallel. The square brackets stand for a vector; the operand of parallel is a vector of expressions. X0, X1 and so on are individual side effect expressions—expressions of code set, call, return, clobber or use.

"In parallel" means that first all the values used in the individual side-effects are computed, and second all the actual side-effects are performed. For example,

says unambiguously that the values of hard register 1 and the memory location addressed by it are interchanged. In both places where (reg:SI 1) appears as a memory address it refers to the value in register 1 before the execution of the insn.

It follows that it is incorrect to use parallel and expect the result of one set to be available for the next one. For example, people sometimes attempt to represent a jump-if-zero instruction this way:

But this is incorrect, because it says that the jump condition depends on the condition code value before this instruction, not on the new value that is set by this instruction.

Peephole optimization, which takes place together with final assembly code output, can produce insns whose patterns consist of

gcc 263 / 551

a parallel whose elements are the operands needed to output the resulting assembler code—often reg, mem or constant expressions. This would not be well-formed RTL at any other stage in compilation, but it is ok then because no further optimization remains to be done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must deal with such insns if you define any peephole optimizations.

(sequence [INSNS ...])

Represents a sequence of insns. Each of the INSNS that appears in the vector is suitable for appearing in the chain of insns, so it must be an insn, jump_insn, call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It represents the sequence of insns that result from a define_expand before those insns are passed to emit_insn to insert them in the chain of insns. When actually inserted, the individual sub-insns are separated out and the sequence is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside in its delay slots are grouped together into a sequence. The insn requiring the delay slot is the first insn in the vector; subsequent insns are to be placed in the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a branch insn should be used that will conditionally annul the effect of the insns in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn is from the target of the branch and should be executed only if the branch is taken; otherwise the insn should be executed only if the branch is not taken. See

Delay Slots

.

These expression codes appear in place of a side effect, as the body of an insn, though strictly speaking they do not always describe side effects as such:

(asm input S)

Represents literal assembler code as described by the string S.

(unspec [OPERANDS ...] INDEX) (unspec_volatile [OPERANDS ...] INDEX)

Represents a machine-specific operation on OPERANDS. INDEX selects between multiple machine-specific operations. unspec_volatile is used for volatile operations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or inside an expression.

(addr_vec:M [LR0 LR1 ...])

Represents a table of jump addresses. The vector elements LRO, etc., are label_ref expressions. The mode M specifies how much space is given to each address; normally M would be Pmode.

gcc 264 / 551

```
(addr_diff_vec:M BASE [LR0 LR1 ...])
```

Represents a table of jump addresses expressed as offsets from BASE. The vector elements LRO, etc., are label_ref expressions and so is BASE. The mode M specifies how much space is given to each address-difference.

1.144 gcc.guide/Incdec

Embedded Side-Effects on Addresses

Four special side-effect expression codes appear as memory addresses.

(pre_dec:M X)

Represents the side effect of decrementing X by a standard amount and represents also the value that X has after being decremented. X must be a reg or mem, but most machines allow only a reg. M must be the machine mode for pointers on the machine in use. The amount X is decremented by is the length in bytes of the machine mode of the containing memory reference of which this expression serves as the address. Here is an example of its use:

```
(mem:DF (pre_dec:SI (reg:SI 39)))
```

This says to decrement pseudo register 39 by the length of a DFmode value and use the result to address a DFmode value.

(pre_inc:M X)

Similar, but specifies incrementing X instead of decrementing it.

(post_dec:M X)

Represents the same side effect as pre_dec but a different value. The value represented here is the value X has before being decremented.

(post_inc:M X)

Similar, but specifies incrementing X instead of decrementing it.

These embedded side effect expressions must be used with care. Instruction patterns may not use them. Until the flow pass of the compiler, they may occur only to represent pushes onto the stack. The flow pass finds cases where registers are incremented or decremented in one instruction and used as an address shortly before or after; these cases are then transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an insn, the original value of the register is used. Uses of the register outside of an address are not permitted within the same insn as a use in an embedded side effect expression because such insns behave differently on different machines and hence must be treated as ambiguous and disallowed.

gcc 265 / 551

An instruction that can be represented with an embedded side effect could also be represented using parallel containing an additional set to describe how the address register is altered. This is not done because machines that allow these operations at all typically allow them wherever a memory address is called for. Describing them as additional parallel stores would require doubling the number of entries in the machine description.

1.145 gcc.guide/Assembler

```
Assembler Instructions as Expressions
```

The RTX code asm_operands represents a value produced by a user-specified assembler instruction. It is used to represent an asm statement with arguments. An asm statement with a single output operand, like this:

```
asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
```

is represented using a single asm_operands RTX which represents the value that is stored in outputvar:

Here the operands of the asm_operands RTX are the assembler template string, the output-operand's constraint, the index-number of the output operand among the output operands specified, a vector of input operand RTX's, and a vector of input-operand modes and constraints. The mode M1 is the mode of the sum x+y; M2 is that of $\star z$.

When an asm statement has multiple output values, its insn has several such set RTX's inside of a parallel. Each set contains a asm_operands; all of these share the same assembler template and vectors, but each contains the constraint for the respective output operand. They are also distinguished by the output-operand index number, which is 0, 1, ... for successive output operands.

1.146 gcc.guide/Insns

Insns

=====

The RTL representation of the code for a function is a doubly-linked chain of objects called insns. Insns are expressions with special codes that are used for no other purpose. Some insns are actual

gcc 266 / 551

instructions; others represent dispatch tables for switch statements; others represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that distinguishes it from all other insns in the current function (after delayed branch scheduling, copies of an insn with the same id-number may be present in multiple places in a function, but these copies will always be identical and will only appear inside a sequence), and chain pointers to the preceding and following insns. These three fields occupy the same position in every insn, independent of the expression code of the insn. They could be accessed with XEXP and XINT, but instead three special macros are always used:

INSN_UID (I)

Accesses the unique id of insn I.

PREV_INSN (I)

Accesses the chain pointer to the insn preceding I. If I is the first insn, this is a null pointer.

NEXT_INSN (I)

Accesses the chain pointer to the insn following I. If I is the last insn, this is a null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and PREV_INSN pointers must always correspond: if INSN is not the first insn,

NEXT_INSN (PREV_INSN (INSN)) == INSN

is always true and if INSN is not the last insn,

PREV_INSN (NEXT_INSN (INSN)) == INSN

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions, which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence expressions. Specifically, if INSN is the first insn in a sequence, NEXT_INSN (PREV_INSN (INSN)) is the insn containing the sequence expression, as is the value of PREV_INSN (NEXT_INSN (INSN)) is INSN is the last insn in the sequence expression. You can use these expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn

The expression code insn is used for instructions that do not jump and do not do function calls. sequence expressions are always

gcc 267 / 551

contained in insns with code insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory ones listed above. These four are described in a table below.

jump_insn

The expression code jump_insn is used for instructions that may jump (or, more generally, may contain label_ref expressions). If there is an instruction to return from the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same way and in addition contain a field JUMP_LABEL which is defined once jump optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_label to which this insn will (possibly conditionally) branch. In a more complex jump, JUMP_LABEL records one of the labels that the insn refers to; the only way to find the others is to scan the entire body of the insn.

Return insns count as jumps, but since they do not refer to any labels, they have zero in the JUMP_LABEL field.

call_insn

The expression code call_insn is used for instructions that may do function calls. It is important to distinguish these instructions because they imply that certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra fields as insn insns, accessed in the same way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains a list (chain of expr_list expressions) containing use and clobber expressions that denote hard registers used or clobbered by the called function. A register specified in a clobber in this list is modified after the execution of the call_insn, while a register in a clobber in the body of the call_insn is clobbered before the insn completes execution. clobber expressions in this list augment registers specified in CALL_USED_REGISTERS (see

Register Basics
).

code_label

A code_label insn represents a label that a jump insn can jump to. It contains two special fields of data in addition to the three standard ones. CODE_LABEL_NUMBER is used to hold the label number, a number that identifies this label uniquely among all the labels in the compilation (not just in the current function). Ultimately, the label is represented in the assembler output as an assembler label, usually of the form LN where N is the label number.

When a code_label appears in an RTL expression, it normally

gcc 268 / 551

appears within a label_ref which represents the address of the label, as a number.

The field LABEL_NUSES is only defined once the jump optimization phase is completed and contains the number of times this label is referenced in the current function.

barrier

Barriers are placed in the instruction stream when control cannot flow past them. They are placed after unconditional jump instructions to indicate that the jumps are unconditional and after calls to volatile functions, which do not return (e.g., exit). They contain no information beyond the three standard fields.

note

note insns are used to represent additional debugging and declarative information. They contain two nonstandard fields, an integer which is accessed with the macro NOTE_LINE_NUMBER and a string accessed with NOTE SOURCE FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source line and NOTE_SOURCE_FILE is the source file name that the line came from. These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED

Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end of a level of scoping of variable names. They control the output of debugging information.

NOTE_INSN_LOOP_BEG

NOTE INSN LOOP END

These types of notes indicate the position of the beginning and end of a while or for loop. They enable the loop optimizer to find loops quickly.

NOTE_INSN_LOOP_CONT

Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP

This note indicates the place in a loop where the exit test begins for those loops in which the exit test has been duplicated. This position becomes another virtual start of the loop when considering loop invariants. gcc 269 / 551

NOTE INSN FUNCTION END

Appears near the end of the function body, just before the label that return statements jump to (on machine where a single instruction does not suffice for returning). This note may be deleted by jump optimization.

NOTE_INSN_SETJMP

Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for various purposes; for example, the reload pass sets it to HImode if the insn needs reloading but not register elimination and QImode if both are required. The common subexpression elimination pass sets the mode of an insn to QImode when it is the first insn in a block that has already been processed.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (I)

An expression for the side effect performed by this insn. This must be one of the following codes: set, call, use, clobber, return, asm_input, asm_output, addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel, or sequence. If it is a parallel, each element of the parallel must be one these codes, except that parallel expressions cannot be nested and addr_vec and addr_diff_vec are not permitted inside a parallel expression.

INSN_CODE (I)

An integer that says which pattern in the machine description matches this insn, or -1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains -1 on an insn whose pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_vec expression.

Matching is also never attempted on insns that result from an asm statement. These contain at least one asm_operands expression. The function asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic representation that locates the pattern in the md file as some small positive or negative offset from a named pattern.

LOG_LINKS (I)

A list (chain of insn_list expressions) giving information about dependencies between instructions within a basic block. Neither a jump nor a label may come between the related insns.

REG_NOTES (I)

gcc 270 / 551

A list (chain of expr_list and insn_list expressions) giving miscellaneous information about the insn. It is often information pertaining to the registers used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two operands: the first is an insn, and the second is another insn_list expression (the next one in the chain). The last insn_list in the chain has a null pointer as second operand. The significant thing about the chain is which insns appear in it (as first operands of insn_list expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow only adds links for those data dependencies which can be used for instruction combination. For each insn, the flow analysis pass adds a link to insns which store into registers values that are used for the first time in this insn. The instruction scheduling pass adds extra links so that every dependence will be represented. Links represent data dependencies, antidependencies and output dependencies; the machine mode of the link distinguishes these three types: antidependencies have mode REG_DEP_ANTI, output dependencies have mode REG_DEP_OUTPUT, and data dependencies have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes expr_list expressions in addition to insn_list expressions. There are several kinds of register notes, which are distinguished by the machine mode, which in a register note is really understood as being an enum reg_note. The first operand OP of the note is data whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (X) returns the kind of register note. Its counterpart, the macro PUT_REG_NOTE_KIND (X, NEWKIND) sets the register note type of X to be NEWKIND.

Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD

The value in OP dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program.

This does not necessarily mean that the register OP has no useful value after this insn since it may also be an output of the insn. In such a case, however, a REG_DEAD note would be redundant and is usually not present until after the reload pass, but no code relies on this fact.

REG INC

The register OP is incremented (or decremented; at this level there is no distinction) by an embedded side effect inside this insn. This means it appears in a post_inc, pre_inc, post_dec or pre_dec expression.

gcc 271 / 551

REG NONNEG

The register OP is known to have a nonnegative value when this insn is reached. This is used so that decrement and branch until zero instructions, such as the m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a decrement_and_branch_until_zero pattern.

REG_NO_CONFLICT

This insn does not cause a conflict between OP and the item being set by this insn even though it might appear that it does. In other words, if the destination register and OP could otherwise be assigned the same register, this insn does not prevent that assignment.

Insns with this note are usually part of a block that begins with a clobber insn specifying a multi-word pseudo register (which will be the output of the block), a group of insns that each set one word of the value and have the REG_NO_CONFLICT note attached, and a final insn that copies the output to itself with an attached REG_EQUAL note giving the expression being computed. This block is encapsulated with REG_LIBCALL and REG_RETVAL notes on the first and last insns, respectively.

REG_LABEL

This insn uses OP, a code_label, but is not a jump_insn. The presence of this note allows jump optimization to be aware that OP is, in fact, being used.

The following notes describe attributes of outputs of an insn:

REG_EQUIV REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that that register will be equal to OP at run time; the scope of this equivalence differs between the two types of notes. The value which the insn explicitly copies into the register may look different from OP, but they will be equal at run time. If the output of the single set is a strict_low_part expression, the note refers to the register that is contained in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to OP throughout the entire function, and could validly be replaced in all its occurrences by OP. ("Validly" here refers to the data flow of the program; simple replacement may make some insns invalid.) For example, when a constant is loaded into a register that is never assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. Although in this case the register may be set by other insns, it is still valid to replace the register by the stack slot throughout the function.

gcc 272 / 551

In the case of REG_EQUAL, the register that is set by this insn will be equal to OP at run time at the end of this insn but not necessarily elsewhere in the function. In this case, OP is typically an arithmetic expression. For example, when a sequence of insns such as a library call is used to perform an arithmetic operation, this kind of note is attached to the insn that produces or copies the final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL is used by passes prior to register allocation (such as common subexpression elimination and loop optimization) to tell them how to think of that value. REG_EQUIV notes are used by register allocation to indicate that there is an available substitute expression (either a constant or a mem expression for the location of a parameter on the stack) that may be used in place of a register if insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note and are not useful to the early optimization passes and pseudo registers that are equivalent to a memory location throughout there entire life, which is not detected until later in the compilation, all equivalences are initially indicated by an attached REG_EQUAL note. In the early stages of register allocation, a REG_EQUAL note is changed into a REG_EQUIV note if OP is a constant and the insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_EQUAL notes and passes subsequent to register allocation need only check for REG_EQUIV notes.

REG_UNUSED

The register OP being set by this insn will not be used in a subsequent insn. This differs from a REG_DEAD note, which indicates that the value in an input will not be used subsequently. These two notes are independent; both may be present for the same register.

REG_WAS_0

The single output of this insn contained zero before this insn. OP is the insn that set it to zero. You can rely on this note if it is present and OP has not been deleted or turned into a note; its absence implies nothing.

These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn.

REG_RETVAL

This insn copies the value of a multi-insn sequence (for example, a library call), and OP is the first insn of the sequence (for a library call, the first insn that was generated to set up the arguments for the library call).

Loop optimization uses this note to treat such a sequence as a single operation for code motion purposes and flow analysis uses this note to delete such sequences whose results are dead.

gcc 273 / 551

A REG_EQUAL note will also usually be attached to this insn to provide the expression being computed by the sequence.

REG LIBCALL

This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn sequence, and it points to the last one.

REG_CC_SETTER

REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and use cc0 are adjacent. However, when branch delay slot filling is done, this may no longer be true. In this case a REG_CC_USER note will be placed on the insn setting cc0 to point to the insn using cc0 and a REG_CC_SETTER note will be placed on the insn using cc0 to point to the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the type of dependency that each link represents. Links which indicate a data dependence (a read after write dependence) do not use any code, they simply have mode VOIDmode, and are printed without any descriptive text.

REG DEP ANTI

This indicates an anti dependence (a write after read dependence).

REG_DEP_OUTPUT

This indicates an output dependence (a write after write dependence).

For convenience, the machine mode in an insn_list or expr_list is printed using these symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the first operand of an insn_list is assumed to be an insn and is printed in debugging dumps as the insn's unique id; the first operand of an expr_list is printed in the ordinary way as an expression.

1.147 gcc.guide/Calls

RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:FM ADDR) NBYTES)

Here NBYTES is an operand that represents the number of bytes of

gcc 274 / 551

argument data being passed to the subroutine, FM is a machine mode (which must equal as the definition of the FUNCTION_MODE macro in the machine description) and ADDR represents the address of the subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned in a hard register. If this register's number is R, then the body of the call insn looks like this:

```
(set (reg:M R)
      (call (mem:FM ADDR) NBYTES))
```

This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine the address of a place to store the value. So the call insn itself does not "return" any value, and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain the return address. call_insn insns on these machines should have a body which is a parallel that contains both the call expression and clobber expressions that indicate which registers are destroyed. Similarly, if the call instruction requires some register other than the stack pointer that is not explicitly mentioned it its RTL, a use subexpression should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration macro CALL_USED_REGISTERS (see

```
Register Basics
```

and, with the exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate which registers contain inputs to the function. Similarly, if registers other than those in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single clobber follow immediately after the call to indicate which registers.

1.148 gcc.guide/Sharing

Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist two distinct objects representing the same value. In other cases, it makes an opposite assumption: that no RTL expression object of a certain kind appears in more than one place in

gcc 275 / 551

the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe global variables and external functions, and a few standard objects such as small integer constants, no RTL objects are common to two functions.

- * Each pseudo-register has only a single reg object to represent it, and therefore only a single machine mode.
- * For any symbolic label, there is only one symbol_ref object referring to it.
- * There is only one const_int expression with value 0, only one with value 1, and only one with value -1. Some other integer values are also stored uniquely.
- * There is only one pc expression.
- * There is only one cc0 expression.
- * There is only one const_double expression with value 0 for each floating point mode. Likewise for values 1 and 2.
- * No label_ref or scratch appears in more than one place in the RTL structure; in other words, it is safe to do a tree-walk of all the insns in the function and assume that each time a label_ref or scratch is seen it is distinct from all others that are seen.
- * Only one mem object is normally created for each static variable or stack slot, so these objects are frequently shared in all the places they appear. However, separate but equal objects for these variables are occasionally made.
- * When a single asm statement has multiple output operands, a distinct asm_operands expression is made for each output operand. However, these all share the vector which contains the sequence of input operands. This sharing is used later on to test whether two asm_operands expressions come from the same statement, so all optimizations must carefully preserve the sharing if they copy the vector at all.
- * No RTL object appears in more than one place in the RTL structure except as described above. Many passes of the compiler rely on this by assuming that they can modify RTL objects in place without unwanted side-effects on other insns.
- * During initial RTL generation, shared structure is freely introduced. After all the RTL for a function has been generated, all shared structure is copied by unshare_all_rtl in emit-rtl.c, after which the above rules are guaranteed to be followed.
- * During the combiner pass, shared structure within an insn can exist temporarily. However, the shared structure is copied before the combiner is finished with the insn. This is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

gcc 276 / 551

1.149 gcc.guide/Reading RTL

Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream, and returns a single RTL object.

Reading RTL from a file is very slow. This is not currently a problem since reading RTL occurs only as part of building the compiler.

People frequently have the idea of using RTL stored as text in a file as an interface between a language front end and the bulk of GNU CC. This idea is not feasible.

GNU CC was designed to use RTL internally only. Correct RTL for a given program is very dependent on the particular target machine. And the RTL does not contain all the information about the program.

The proper way to interface GNU CC to a new language front end is with the "tree" data structure. There is no manual for this data structure, but it is described in the files tree.h and tree.def.

1.150 gcc.guide/Machine Desc

Machine Descriptions

A machine description has two parts: a file of instruction patterns (.md file) and a C header file of macro definitions.

The .md file for a target machine contains a pattern for each instruction that the target machine supports (or at least each instruction that is worth telling the compiler about). It may also contain comments. A semicolon causes the rest of the line to be a comment, unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

Patterns

How to write instruction patterns.

Example

An explained example of a define_insn pattern.

RTL Template

The RTL template defines what insns match a pattern.

gcc 277 / 551

Output Template

The output template says how to make assembler code from such an insn.

Output Statement

For more generality, write C code to output the assembler code.

Constraints

When not all operands are general operands.

Standard Names

Names mark patterns to use for code generation.

Pattern Ordering

When the order of patterns makes a difference.

Dependent Patterns

Having one pattern may make you need another.

Jump Patterns

Special considerations for patterns for jump insns.

Insn Canonicalizations

Canonicalization of Instructions

Peephole Definitions

Defining machine-specific peephole optimizations.

Expander Definitions

Generating a sequence of several RTL insns for a standard operation.

Insn Splitting

Splitting Instructions into Multiple Instructions

Insn Attributes

Specifying the value of attributes for generated insns.

1.151 gcc.guide/Patterns

Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later, operand constraints that restrict how the pieces can be filled in, and an output pattern or C code to generate

the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

1. An optional name. The presence of a name indicate that this

gcc 278 / 551

instruction pattern can perform a certain standard job for the RTL-generation pass of the compiler. This pass knows certain names and will use the instruction patterns with those names, if the names are defined in the machine description.

The absence of a name is indicated by writing an empty string where the name should go. Nameless instruction patterns are never used for generating RTL code, but they may permit several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no effect; they are equivalent to no name at all.

2. The RTL template (see

RTL Template

) is a vector of incomplete RTL

expressions which show what the instruction should look like. It is incomplete because it may contain match_operand, match_operator, and match_dup expressions that stand for operands of the instruction.

If the vector has only one element, that element is the template for the instruction pattern. If the vector has multiple elements, then the instruction pattern is a parallel expression containing the elements described.

3. A condition. This is a string which contains a C expression that is the final test to decide whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn being matched, but only the target-machine-type flags. The compiler needs to test these conditions during initialization in order to learn exactly which named instructions are available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn, and only after the insn has matched the pattern's recognition template. The insn's operands may be found in the vector operands.

4. The output template: a string that says how to output matching insns as assembler code. % in this string specifies where to substitute the value of an operand. See

Output Template

When simple substitution isn't general enough, you can specify a

piece of C code to compute the output. See
Output Statement
.

5. Optionally, a vector containing the values of attributes for insns matching this pattern. See

Insn Attributes

gcc 279 / 551

1.152 gcc.guide/Example

Here is an actual example of an instruction pattern, for the 68000/68020.

This is an instruction that sets the condition codes based on the value of a general operand. It has no condition, so any insn whose RTL description has the form shown may be handled according to this pattern. The name tstsi means "test a SImode value" and tells the RTL generation pass that, when it is necessary to test such a value, an insn to do so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to return based on the kind of operand and the specific type of CPU for which code is being generated.

"rm" is an operand constraint. Its meaning is explained below.

1.153 gcc.guide/RTL Template

RTL Template

=========

The RTL template is used to define which insns match the particular pattern and how to find their operands. For named patterns, the RTL template also says how to construct an insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Matching involves determining the values that serve as the operands in the insn being matched. Both of these activities are controlled by special expression types that direct matching and substitution of the operands.

```
(match_operand:M N PREDICATE CONSTRAINT)
```

This expression is a placeholder for operand number N of the insn. When constructing an insn, operand number N will be substituted at this point. When matching an insn, whatever appears at this

gcc 280 / 551

position in the insn will be taken as operand number N; but it must satisfy PREDICATE or this instruction pattern will not match at all.

Operand numbers must be chosen consecutively counting from zero in each instruction pattern. There may be only one match_operand expression in the pattern for each operand number. Usually operands are numbered in the order of appearance in match_operand expressions.

PREDICATE is a string that is the name of a C function that accepts two arguments, an expression and a machine mode. During matching, the function will be called with the putative operand as the expression and M as the mode argument (if M is not specified, VOIDmode will be used, which normally causes PREDICATE to accept any mode). If it returns zero, this instruction pattern fails to match. PREDICATE may be an empty string; then it means no test is to be done on the operand, so anything which occurs in this position is valid.

Most of the time, PREDICATE will reject modes other than M--but not always. For example, the predicate address_operand uses M as the mode of memory ref that the address should be valid for. Many predicates accept const_int nodes even though their mode is VOIDmode.

) .

People are often unclear on the difference between the constraint and the predicate. The predicate helps decide whether a given insn matches the pattern. The constraint plays no role in this decision; instead, it controls various decisions in the case of an insn which does match.

On CISC machines, the most common PREDICATE is "general_operand". This function checks that the putative operand is either a constant, a register or a memory reference, and that it is valid for mode M.

For an operand that must be a register, PREDICATE should be "register_operand". Using "general_operand" would be valid, since the reload pass would copy any non-register operands through registers, but this would make GNU CC do extra work, it would prevent invariant operands (such as constant) from being removed from loops, and it would prevent the register allocator from doing the best possible job. On RISC machines, it is usually most efficient to allow PREDICATE to accept only objects that the constraints allow.

For an operand that must be a constant, you must be sure to either use "immediate_operand" for PREDICATE, or make the instruction pattern's extra condition require a constant, or both. You cannot expect the constraints to do this work! If the constraints allow only constants, but the predicate allows something else, the

gcc 281 / 551

compiler will crash when that case arises.

(match_scratch:M N CONSTRAINT)

This expression is also a placeholder for operand number ${\tt N}$ and indicates that operand must be a scratch or reg expression.

When matching patterns, this is equivalent to

```
(match_operand:M N "scratch_operand" PRED)
```

but, when generating RTL, it produces a (scratch:M) expression.

If the last few expressions in a parallel are clobber expressions whose operands are either a hard register or match_scratch, the combiner can add or delete them when necessary. See

Side Effects

.

(match_dup N)

This expression is also a placeholder for operand number N. It is used when the operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is substituted into the insn being constructed. But in matching, match_dup behaves differently. It assumes that operand number N has already been determined by a match_operand appearing earlier in the recognition template, and it matches only an identical-looking expression.

```
(match_operator:M N PREDICATE [OPERANDS...])
```

This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression code is taken from that of operand N, and whose operands are constructed from the patterns OPERANDS.

When matching an expression, it matches an expression if the function PREDICATE returns nonzero on that expression and the patterns OPERANDS match the operands of the expression.

Suppose that the function commutative_operator is defined as follows, to match any expression whose operator is one of the commutative arithmetic operators of RTL and whose mode is MODE:

gcc 282 / 551

Then the following pattern will match any RTL expression consisting of a commutative operator applied to two general operands:

```
(match_operator:SI 3 "commutative_operator"
  [(match_operand:SI 1 "general_operand" "g")
      (match_operand:SI 2 "general_operand" "g")])
```

Here the vector [OPERANDS...] contains two patterns because the expressions to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator are recorded as operands 1 and 2 of the insn. (This is done by the two instances of match_operand.) Operand 3 of the insn will be the entire commutative expression: use GET_CODE (operands[3]) to see which commutative operator was used.

The machine mode M of match_operator works like that of match_operand: it is passed as the second argument to the predicate function, and that function is solely responsible for deciding whether the expression to be matched "has" that mode.

When constructing an insn, argument 3 of the gen-function will specify the operation (i.e. the expression code) for the expression to be made. It should be an RTL expression, whose expression code is copied into a new expression whose operands are arguments 1 and 2 of the gen-function. The subexpressions of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best if the operand number of the match_operator is higher than that of the actual operands of the insn. This improves register allocation because the register allocator often looks at operands 1 and 2 of insns to see if it can do register tying.

There is no way to specify constraints in match_operator. The operand of the insn which corresponds to the match_operator never has any constraints because it is never reloaded as a whole. However, if parts of its OPERANDS are matched by match_operand patterns, those parts may have constraints of their own.

(match_op_dup:M N[OPERANDS...])

Like match_dup, except that it applies to operators instead of operands. When constructing an insn, operand number N will be substituted at this point. But in matching, match_op_dup behaves differently. It assumes that operand number N has already been determined by a match_operator appearing earlier in the recognition template, and it matches only an identical-looking expression.

(match_parallel N PREDICATE [SUBPAT...])

This pattern is a placeholder for an insn that consists of a parallel expression with a variable number of elements. This expression should only appear at the top level of an insn pattern.

When constructing an insn, operand number N will be substituted at this point. When matching an insn, it matches if the body of the insn is a parallel expression with at least as many elements as the

gcc 283 / 551

vector of SUBPAT expressions in the match_parallel, if each SUBPAT matches the corresponding element of the parallel, and the function PREDICATE returns nonzero on the parallel that is the body of the insn. It is the responsibility of the predicate to validate elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expressions, which can contain a variable number of elements in a parallel. For example,

This example comes from a29k.md. The function load_multiple_operations is defined in a29k.c and checks that subsequent elements in the parallel are the same as the set in the pattern, except that they are referencing subsequent registers and memory locations.

An insn that matches this pattern might look like:

(match_par_dup N [SUBPAT...])
 Like match_op_dup, but for match_parallel instead of
 match_operator.

(address (match_operand:M N "address_operand" ""))

This complex of expressions is a placeholder for an operand number N in a "load address" instruction: an operand which specifies a memory location in the usual way, but for which the actual operand value used is the address of the location, not the contents of the location.

address expressions never appear in RTL code, only in machine descriptions. And they are used only in machine descriptions that do not use the operand constraint feature. When operand constraints are in use, the letter p in the constraint serves this purpose.

M is the machine mode of the memory location being addressed, not

gcc 284 / 551

the machine mode of the address itself. That mode is always the same on a given target machine (it is Pmode, which normally is SImode), so there is no point in mentioning it; thus, no machine mode is written in the address expression. If some day support is added for machines in which addresses of different kinds of objects appear differently or are used differently (such as the PDP-10), different formats would perhaps need different machine modes and these modes might be written in the address expression.

1.154 gcc.guide/Output Template

Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an instruction pattern. Most of the template is a fixed string which is output literally. The character % is used to specify where to substitute an operand; it can also be used to identify places where different variants of the assembler require different syntax.

In the simplest case, a % followed by a digit N says to output operand N at that point in the string.

% followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings described below. The machine description macro PRINT_OPERAND can define additional letters with nonstandard meanings.

%cDIGIT can be used to substitute an operand that is a constant value without the syntax that normally indicates an immediate operand.

nDIGIT is like CDIGIT except that the value of the constant is negated before printing.

%aDIGIT can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a "load address" instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference.

%lDIGIT is used to substitute a label_ref into a jump instruction.

%= outputs a number which is unique to each instruction in the entire compilation. This is useful for making local labels to be referred to more than once in a single template that generates multiple assembler instructions.

% followed by a punctuation character specifies a substitution that
does not use an operand. Only one case is standard: %% outputs a %
into the assembler code. Other nonstandard cases can be defined in the
PRINT_OPERAND macro. You must also define which punctuation

gcc 285 / 551

characters are valid with the PRINT OPERAND PUNCT VALID P macro.

The template may generate multiple assembler instructions. Write the text for the instructions, with \; between them.

When the RTL contains two operands which are required by constraint to match each other, the output template must refer only to the lower-numbered operand. Matching operands are not always identical, and the rest of the compiler arranges to put the proper RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following % is to distinguish between different assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while MIT syntax does not. For example, the opcode movel in MIT syntax is move.l in Motorola syntax. The same file of patterns is used for both kinds of output syntax, but the character sequence %. is used in each place where Motorola syntax wants a period. The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period; the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler to first split the insn, and then output the resulting instructions separately. This helps eliminate redundancy in the output templates. If you have a define_insn that needs to emit multiple assembler instructions, and there is an matching define_split already defined, then you can simply use # as the output template instead of writing an output template that emits the multiple assembler instructions.

If ASSEMBLER_DIALECT is defined, you can use {option0|option1|option2} constructs in the templates. These describe multiple variants of assembler language syntax. See

Instruction Output

1.155 gcc.guide/Output Statement

C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for all the cases that are recognized by a single instruction pattern. For example, the opcodes may depend on the kinds of operands; or some unfortunate combinations of operands may require extra machine instructions.

If the output control string starts with a @, then it is actually a series of templates, each on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates correspond to the pattern's constraint alternatives (see

gcc 286 / 551

```
Multi-Alternative
). For example,
```

if a target machine has a two-address add instruction addr to add into a register and another addm to add a register to memory, you might write this pattern:

If the output control string starts with a \star , then it is not an output template but rather a piece of C program that should compute a template. It should execute a return statement to return the template-string you want. Most such templates use C string literals, which require doublequote characters to delimit them. To include these doublequote characters in the string, prefix each one with \setminus .

The operands may be found in the array operands, whose ${\tt C}$ data type is ${\tt rtx}$ [].

It is very common to select different ways of generating assembler code based on whether an immediate operand is within a certain range. Be careful when doing this, because the result of INTVAL is an integer on the host machine. If the host machine has more bits in an int than the target machine has in the mode in which the constant will be used, then some of the bits you get from INTVAL will be superfluous. For proper results, you must carefully disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute more of them, using the subroutine output_asm_insn. This receives two arguments: a template-string and a vector of operands. The vector may be operands, or it may be another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code can test the variable which_alternative, which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, clrreg for registers and clrmem for memory locations. Here is how a pattern could use which_alternative to choose between them:

gcc 287 / 551

")

The example above, where the assembler code to generate was solely determined by the alternative, could also have been specified as follows, having the output control string start with a @:

1.156 gcc.guide/Constraints

Operand Constraints

Each match_operand in an instruction pattern can specify a constraint for the type of operands allowed. Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a memory reference, and which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match.

```
Simple Constraints
Basic use of constraints.

Multi-Alternative
When an insn has two alternative constraint-patterns.

Class Preferences
Constraints guide which hard register to put things in.

Modifiers
More precise control over effects of constraints.

Machine Constraints
Existing constraints for some particular machines.

No Constraints
Describing a clean machine without constraints.
```

1.157 gcc.guide/Simple Constraints

gcc 288 / 551

Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind of operand that is permitted. Here are the letters that are allowed:

m

A memory operand is allowed, with any kind of address that the machine supports in general.

0

A memory operand is allowed, but only if the address is offsettable. This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine mode) may be added to the address and the result is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that is the sum of a register and a constant (as long as a slightly larger constant is also within the range of address-offsets supported by the machine); but an autoincrement or autodecrement address is not offsettable. More complicated indirect/indexed addresses may or may not be offsettable depending on the other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the constraint letter o is valid only when accompanied by both < (if the target machine has predecrement addressing) and > (if the target machine has preincrement addressing).

V

A memory operand that is not offsettable. In other words, anything that would fit the m constraint but not the o constraint.

<

A memory operand with autodecrement addressing (either predecrement or postdecrement) is allowed.

>

A memory operand with autoincrement addressing (either preincrement or postincrement) is allowed.

r

A register operand is allowed provided that it is in a general register.

d, a, f, ...

Other letters can be defined in machine-dependent fashion to stand for particular classes of registers. d, a and f are defined on the 68000/68020 to stand for data, address and floating point registers.

i

An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at

gcc 289 / 551

assembly time.

n

An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use n rather than i.

I, J, K, ... P

Other letters in the range I through P may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the 68000, I is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions.

Е

An immediate floating operand (expression code const_double) is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running).

F

An immediate floating operand (expression code const_double) is allowed.

G, H

G and H may be defined in a machine-dependent fashion to permit immediate floating operands in particular ranges of values.

S

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value not known at compile time, it certainly must allow any known value. So why use s instead of i? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a register and using the register. This is because the load into the register can be done with a moveq instruction. We arrange for this to happen by defining the letter K to mean "any integer outside the range -128 to 127", and then specifying Ks in the operand constraints.

g

Any register, memory or immediate integer operand is allowed, except for registers that are not general registers.

Χ

Any operand whatsoever is allowed, even if it does not satisfy general_operand. This is normally used in the constraint of a match_scratch when certain alternatives will not actually require a scratch register.

0, 1, 2, ... 9

gcc 290 / 551

An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last.

This is called a matching constraint and what it really means is that the assembler has only a single operand that fills two roles considered separate in the RTL insn. For example, an add insn has two input operands and one output operand in the RTL, but on most CISC machines an add instruction really has only two operands, one of them an input-output operand:

addl #35, r12

Matching constraints are used in these circumstances. More precisely, the two operands that match must include one input-only operand and one output-only operand. Moreover, the digit must be a smaller number than the number of the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-looking RTL expressions. But in a few special cases specific kinds of dissimilarity are allowed. For example, $\star x$ as an input operand will match $\star x + +$ as an output operand. For proper results in such cases, the output template should always use the output-operand's number when printing the operand.

p
 An operand that is a valid memory address is allowed. This is for
 "load address" and "push address" instructions.

p in the constraint must be accompanied by address_operand as the predicate in the match_operand. This predicate interprets the mode specified in the match_operand as the mode of the memory reference for which the address would be valid.

Q, R, S, ... U

Letters in the range Q through U may be defined in a machine-dependent fashion to stand for arbitrary operand types. The machine description macro EXTRA_CONSTRAINT is passed the operand as its first argument and the constraint letter as its second operand.

A typical use for this would be to distinguish certain types of memory references that affect other insn operands.

Do not define these constraint letters to accept register references (reg); the reload pass does not expect this and would not handle it properly.

In order to have valid assembler code, each operand must satisfy its constraint. But a failure to do so does not prevent the pattern from applying to an insn. Instead, it directs the compiler to modify the code so that the constraint will be satisfied. Usually this is done by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

gcc 291 / 551

which has three operands, two of which are required by a constraint to be identical. If we are considering an insn of the form

the first pattern would not apply at all, because this insn does not contain two identical subexpressions in the right place. The pattern would say, "That does not look like an add instruction; try other patterns." The second pattern would say, "Yes, that's an add instruction, but there is something wrong with it." It would direct the reload pass of the compiler to generate additional insns to make the constraint true. The results might look like this:

It is up to you to make sure that each operand, in each pattern, has constraints that can handle any RTL expression that could be present for that operand. (When multiple alternatives are in use, each pattern must, for each possible combination of operand expressions, have at least one alternative which can handle that combination of operands.) The constraints don't need to allow any possible operand—when this is the case, they do not constrain—but they must at least point the way to reloading any possible operand so that it will fit.

* If the constraint accepts whatever operands the predicate permits, there is no problem: reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe

gcc 292 / 551

provided its constraints include the letter i. If any possible constant value is accepted, then nothing less than i will do; if the predicate is more selective, then the constraints may also be more selective.

- * Any operand expression can be reloaded by copying it into a register. So if an operand's constraints allow some kind of register, it is certain to be safe. It need not permit all classes of registers; the compiler knows how to copy a register into another register of the proper class in order to make an instruction valid.
- * A nonoffsettable memory reference can be reloaded by copying the address into a register. So if the constraint uses the letter o, all memory references are taken care of.
- * A constant operand can be reloaded by allocating space in memory to hold it as preinitialized data. Then the memory reference can be used in place of the constant. So if the constraint uses the letters o or m, constant operands are not a problem.
- * If the constraint permits a constant and a pseudo register used in an insn was not allocated to a hard register and is equivalent to a constant, the register will be replaced with the constant. If the predicate does not permit a constant and the insn is re-recognized for some reason, the compiler will crash. Thus the predicate must always recognize any objects allowed by the constraint.

If the operand's predicate can recognize registers, but the constraint does not permit them, it can make the compiler crash. When this operand happens to be a register, the reload pass will be stymied, because it does not know how to copy a register temporarily into memory.

1.158 gcc.guide/Multi-Alternative

Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For example, on the 68000, a logical-or instruction can combine register or an immediate value into memory, or it can combine any kind of operand into a register; but it cannot combine one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be described by a series of letters for each operand. The overall constraint for an operand is made from the letters for this operand from the first alternative, a comma, the letters for this operand from the second alternative, a comma, and so on until the last alternative. Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"

293 / 551 gcc

```
[(set (match operand:SI 0 "general operand" "=m, d")
      (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
              (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
...)
```

The first alternative has m (memory) for operand $\mathbf{0}$, $\mathbf{0}$ for operand $\mathbf{1}$ (meaning it must match operand 0), and dKs for operand 2. The second alternative has d (data register) for operand 0, 0 for operand 1, and dmKs for operand 2. The = and % in the constraints apply to all the alternatives; their meaning is explained in the next section (see

> Class Preferences) .

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many instructions must be added to copy the operands so that that alternative applies. The alternative requiring the least copying is chosen. If two alternatives need the same amount of copying, the one that comes first is chosen. These choices can be altered with the ? and ! characters:

Disparage slightly the alternative that the ? appears in, as a choice when no alternative applies exactly. The compiler regards this alternative as one unit more costly for each ? that appears in it.

! Disparage severely the alternative that the ! appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code for writing the assembler code can use the variable which_alternative, which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.). See

Output Statement

1.159 gcc.guide/Class Preferences

Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which kind of hardware register a pseudo register is best allocated to. The compiler examines the constraints that apply to the insns that use the pseudo register, looking for the machine-dependent letters such as d and a that specify classes of registers. The pseudo register is put in whichever class gets the most

gcc 294 / 551

"votes". The constraint letters g and r also vote: they vote in favor of a general register. The machine description says which registers are considered general.

Of course, on some machines all registers are equivalent, and no register classes are defined. Then none of this complexity is relevant.

1.160 gcc.guide/Modifiers

δ

읒

Constraint Modifier Characters

Here are constraint modifier characters.

Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data.

Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and which are outputs from it. = identifies an output; + identifies an operand that is both input and output; all other operands are assumed to be input only.

Means (in a particular alternative) that this operand is written before the instruction is finished using the input operands. Therefore, this operand may not lie in a register that is used as an input operand or as part of any memory address.

& applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative requires & while others do not. See, for example, the movdf insn of the 68000.

& does not obviate the need to write =.

Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. This is often used in patterns for addition instructions that really have only two operands: the result must go in one of the arguments. Here for example, is how the 68000 halfword-add instruction is defined:

gcc 295 / 551

...)

#

Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences.

*

Says that the following character should be ignored when choosing register preferences. \star has no effect on the meaning of the constraint as a constraint, and no effect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword in a data register, and can also sign-extend a value by copying it into an address register. While either kind of register is acceptable, the constraints on an address-register destination are less strict, so it is best if register allocation makes an address register its goal. Therefore, * is used so that the d constraint letter (for data register) is ignored when computing register preferences.

1.161 gcc.guide/Machine Constraints

Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments, since they will convey meaning more readily to people reading your code. Failing that, use the constraint letters that usually have very similar meanings across architectures. The most commonly used constraints are m and r (for memory and general-purpose registers respectively; see

```
Simple Constraints
), and I, usually the letter indicating the most common immediate-constant format.
```

recter indicating the most common immediate constant format.

For each machine architecture, the config/MACHINE.h file defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as for asm statements; therefore, some of the constraints are not particularly interesting for asm. The constraints are defined through these macros:

```
REG_CLASS_FROM_LETTER
```

Register class constraints (usually lower case).

```
CONST_OK_FOR_LETTER_P
```

Immediate constant constraints, for non-floating point constants of word size or smaller precision (usually upper case).

gcc 296 / 551

CONST_DOUBLE_OK_FOR_LETTER_P

AMD 29000 family--a29k.h

Immediate constant constraints, for all floating point constants and for constants of greater than word size precision (usually upper case).

EXTRA_CONSTRAINT

Special cases of registers or memory. This macro is not required, and is only defined for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best way to be certain you have the right constraints. However, here is a summary of the machine-dependent constraints available on some particular machines.

```
ARM family--arm.h
    f
          Floating-point register
    F
          One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0,
          4.0, 5.0 or 10.0
    G
          Floating-point constant that would satisfy the constraint {\tt F}
          if it were negated
    Ι
          Integer that is valid as an immediate operand in a data
          processing instruction. That is, an integer in the range {\bf 0}
          to 255 rotated by a multiple of 2
    J
          Integer in the range -4095 to 4095
          Integer that satisfies constraint I when inverted (ones
          complement)
    Τ.
          Integer that satisfies constraint I when negated (twos
          complement)
    Μ
          Integer in the range 0 to 32
    Q
          A memory reference where the exact address is in a single
          register ('m' is preferable for asm statements)
    R
          An item in the constant pool
    S
          A symbol in the text segment of the current file
```

gcc 297 / 551

```
1
          Local register 0
    b
          Byte Pointer (BP) register
    q
          Q register
    h
          Special purpose register
    Α
          First accumulator register
          Other accumulator register
    f
          Floating point register
    Ι
          Constant greater than 0, less than 0x100
          Constant greater than 0, less than 0x10000
    K
          Constant whose high 24 bits are on (1)
    L
          16 bit constant whose high 8 bits are on (1)
    М
          32 bit constant whose high 16 bits are on (1)
    Ν
          32 bit negative constant that fits in 8 bits
          The constant 0x80000000 or, on the 29050, any 32 bit constant
          whose low 16 bits are 0.
    Ρ
          16 bit negative constant that fits in 8 bits
    G
    Η
          A floating point constant (in asm statements, use the machine
          independent E or F instead)
IBM RS6000--rs6000.h
   h
          Address base register
    f
          Floating point register
```

gcc 298 / 551

```
h
          MQ, CTR, or LINK register
    q
          MQ register
          CTR register
    1
          LINK register
    Х
          CR register (condition register) number 0
    У
          CR register (condition register)
    Ι
          Signed 16 bit constant
    J
          Constant whose low 16 bits are 0
    K
          Constant whose high 16 bits are 0
    \mathbf{L}
          Constant suitable as a mask operand
    Μ
          Constant larger than 31
    Ν
          Exact power of 2
    0
          Zero
    Р
          Constant whose negation is a signed 16 bit constant
    G
          Floating point constant that can be loaded into a register
          with one instruction per word
    Q
          Memory operand that is an offset from a register (m is
          preferable for asm statements)
Intel 386--i386.h
    q
          a, b, c, or d register
    Α
          a, or d register (for 64-bit ints)
```

gcc 299 / 551

```
f
          Floating point register
    t
          First (top of stack) floating point register
          Second floating point register
          a register
    b
          b register
    С
          c register
    d
          d register
    D
          di register
    S
          si register
    Ι
          Constant in range 0 to 31 (for 32 bit shifts)
    J
          Constant in range 0 to 63 (for 64 bit shifts)
    K
          0xff
    \mathbf{L}
          0xffff
    Μ
          0, 1, 2, or 3 (shifts for lea instruction)
    Ν
          Constant in range 0 to 255 (for out instruction)
          Standard 80387 floating point constant
Intel 960--i960.h
          Floating point register (fp0 to fp3)
    1
          Local register (r0 to r15)
    b
```

gcc 300 / 551

```
Global register (g0 to g15)
    d
          Any local or global register
    Ι
          Integers from 0 to 31
    J
          Integers from -31 to 0
    G
          Floating point 0
    Н
          Floating point 1
MIPS--mips.h
    d
          General-purpose integer register
    f
          Floating-point register (if available)
    h
          Hi register
    1
          Lo register
          Hi or Lo register
    У
          General-purpose integer register
          Floating-point status register
    Ι
          Signed 16 bit constant (for arithmetic instructions)
    J
          Zero
    K
          Zero-extended 16-bit constant (for logic instructions)
    L
          Constant with low 16 bits zero (can be loaded with lui)
          32 bit constant which requires two instructions to load (a
          constant which is not I, K, or L)
```

gcc 301 / 551

```
Ν
          Negative 16 bit constant
    0
          Exact power of two
          Positive 16 bit constant
    G
          Floating point zero
    Q
          Memory reference that can be loaded with more than one
          instruction (m is preferable for asm statements)
    R
          Memory reference that can be loaded with one instruction (m
          is preferable for asm statements)
    S
          Memory reference in external OSF/rose PIC format (m is
          preferable for asm statements)
Motorola 680x0--m68k.h
          Address register
    d
          Data register
    f
          68881 floating-point register, if available
          Sun FPA (floating-point) register, if available
    У
          First 16 Sun FPA registers, if available
          Integer in the range 1 to 8
    J
          16 bit signed number
    K
          Signed number whose magnitude is greater than 0x80
          Integer in the range -8 to -1
    G
          Floating point constant that is not a 68881 constant
    Н
```

gcc 302 / 551

Floating point constant that can be used by Sun FPA SPARC--sparc.h f Floating-point register Ι Signed 13 bit constant ıΤ Zero K 32 bit constant with the low 12 bits clear (a constant that can be loaded with the sethi instruction) G Floating-point zero Signed 13 bit constant, sign-extended to 32 or 64 bits Q Memory reference that can be loaded with one instruction (m is more appropriate for asm statements) Constant, or memory address Τ Memory address aligned to an 8-byte boundary U Even register

1.162 gcc.guide/No Constraints

Not Using Constraints

Some machines are so clean that operand constraints are not required. For example, on the Vax, an operand valid in one context is valid in any other context. On such a machine, every operand constraint would be g, excepting only operands of "load address" instructions which are written as if they referred to a memory location's contents but actual refer to its address. They would have constraint p.

For such machines, instead of writing g and p for all the constraints, you can choose to write a description with empty constraints. Then you write "" for the constraint in every match_operand. Address operands are identified by writing an address expression around the match_operand, not by their

gcc 303 / 551

constraints.

When the machine description has just empty constraints, certain parts of compilation are skipped, making the compiler faster. However, few machines actually do not need constraints; all machine descriptions now in existence use constraints.

1.163 gcc.guide/Standard Names

Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of the compiler. Giving one of these names to an instruction pattern tells the RTL generation pass that it can use the pattern in to accomplish a certain task.

 $M_{VZ} \cap m$

Here M stands for a two-letter machine mode name, in lower case. This instruction pattern moves data with that machine mode from operand 1 to operand 0. For example, movsi moves full-word data.

If operand 0 is a subreg with mode M of a register whose own mode is wider than M, the effect of this instruction is to store the specified value in the part of the register that corresponds to mode M. The effect on the rest of the register is undefined.

This class of patterns is special in several ways. First of all, each of these names must be defined, because there is no other way to copy a datum from one place to another.

Second, these patterns are not used solely in the RTL generation pass. Even the reload pass can generate move insns to copy values from stack slots into temporary registers. When it does so, one of the operands is a hard register and the other is an operand that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL which needs no reloading and needs no temporary registers—no registers other than the operands. For example, if you support the pattern with a define_expand, then in such a case the define_expand mustn't call force_reg or any other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where fetching those modes from memory normally requires several insns and some temporary registers. Look in spur.md to see how the requirement can be satisfied.

During reload a memory reference with an invalid address may be passed as an operand. Such an address will be replaced with a valid address later in the reload pass. In this case, nothing may be done with the address except to use it as it stands. If it is copied, it will not be replaced with a valid address. No attempt

gcc 304 / 551

should be made to make such an address into a valid address and no routine (such as change_address) that will do so may be called. Note that general_operand will fail when applied to such an address.

The global variable reload_in_progress (which must be explicitly declared if required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine description, but typically on a RISC machine these can only be pseudo registers that did not get hard registers, while on other machines explicit memory references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can be allocated using gen_reg_rtx prior to reload. But this is impossible during and after reload. If there are cases needing scratch registers after reload, you must define SECONDARY_INPUT_RELOAD_CLASS and perhaps also SECONDARY_OUTPUT_RELOAD_CLASS to detect them, and provide patterns reload_inM or reload_outM to handle them. See

Register Classes

The constraints on a moveM must permit moving any hard register to any other hard register provided that HARD_REGNO_MODE_OK permits mode M in both registers and REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point moveM instructions into and out of any registers that can hold fixed point values, because unions and structures (which have modes SImode or DImode) can be in those registers and they may have floating point members.

There may also be a need to support fixed point moveM instructions in and out of floating point registers. Unfortunately, I have forgotten why this was so, and I don't know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point values in floating point registers, then the constraints of the fixed point moveM instructions must be designed to avoid ever trying to reload into a floating point register.

reload_inM reload_outM

Like movM, but used when a scratch register is required to move between operand 0 and operand 1. Operand 2 describes the scratch register. See the discussion of the SECONDARY_RELOAD_CLASS macro in see

Register Classes

movstrictM

Like movM except that if operand 0 is a subreg with mode M of a register whose natural mode is wider, the movstrictM instruction is guaranteed not to alter any of the register except the part $\frac{1}{2}$

gcc 305 / 551

which belongs to mode M.

load_multiple

Load several consecutive memory locations into consecutive registers. Operand 0 is the first of the consecutive registers, operand 1 is the first memory location, and operand 2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not define this if the most efficient way of loading consecutive registers from memory is to do them one at a time.

On some machines, there are restrictions as to which consecutive registers can be stored into memory, such as particular starting or ending register numbers or only a range of valid counts. For those machines, use a define_expand (see

Expander Definitions

) and make

the pattern fail if the restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register from the appropriate memory location (you may also need use or clobber elements). Use a match_parallel (see

RTL Template

) to recognize the insn. See a29k.md and rs6000.md for examples of the use of this insn pattern.

store_multiple

Similar to load_multiple, but store several consecutive registers into consecutive memory locations. Operand 0 is the first of the consecutive memory locations, operand 1 is the first register, and operand 2 is a constant: the number of consecutive registers.

addM3

Add operand 2 and operand 1, storing the result in operand 0. All operands must have mode M. This can be used even on two-address machines, by means of constraints requiring operands 1 and 0 to be the same location.

subM3, mulM3

divM3, udivM3, modM3, umodM3

sminM3, smaxM3, uminM3, umaxM3

andM3, iorM3, xorM3

Similar, for other arithmetic operations.

mulhisi3

Multiply operands 1 and 2, which have mode HImode , and store a SImode product in operand 0.

mulqihi3, mulsidi3

Similar widening-multiplication instructions of other widths.

umulqihi3, umulhisi3, umulsidi3

Similar widening-multiplication instructions that do unsigned $\operatorname{multiplication}$.

gcc 306 / 551

mulM3_highpart

Perform a signed multiplication of operands 1 and 2, which have mode M, and store the most significant half of the product in operand 0. The least significant half of the product is discarded.

umulM3_highpart

Similar, but the multiplication is unsigned.

divmodM4

Signed division that produces both a quotient and a remainder. Operand 1 is divided by operand 2 to produce a quotient stored in operand 0 and a remainder stored in operand 3.

For machines with an instruction that produces both a quotient and a remainder, provide a pattern for divmodM4 but do not provide patterns for divM3 and modM3. This allows optimization in the relatively common case when both the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is more efficient than the instruction that produces both, write the output routine of divmodM4 to call find_reg_note and look for a REG_UNUSED note on the quotient or remainder and generate the appropriate instruction.

udivmodM4

Similar, but does unsigned division.

ashlM3

Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store the result in operand 0. Here M is the mode of operand 0 and operand 1; operand 2's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction.

ashrM3, lshrM3, rotlM3, rotrM3

Other shift and rotate instructions, analogous to the ashlm3 instructions.

negM2

Negate operand 1 and store the result in operand 0.

ahsM2

Store the absolute value of operand 1 into operand 0.

sqrtM2

Store the square root of operand ${\bf 1}$ into operand ${\bf 0}$.

The sqrt built-in function of C always uses the mode which corresponds to the C data type double.

ffsM2

Store into operand 0 one plus the index of the least significant 1-bit of operand 1. If operand 1 is zero, store zero. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode

gcc 307 / 551

before generating the instruction.

The ffs built-in function of C always uses the mode which corresponds to the C data type int.

one_cmplM2

Store the bitwise-complement of operand 1 into operand 0.

cmpM

Compare operand 0 and operand 1, and set the condition codes. The RTL pattern should look like this:

tstM

Compare operand 0 against zero, and set the condition codes. The RTL pattern should look like this:

```
(set (cc0) (match operand:M 0 ...))
```

tstM patterns should not be defined for machines that do not use (cc0). Doing so would confuse the optimizer since it would no longer be clear which set operations were comparisons. The cmpM patterns should be used instead.

movstrM

Block move instruction. The addresses of the destination and source strings are the first two operands, and both are in mode Pmode. The number of bytes to move is the third operand, in mode M.

The fourth operand is the known shared alignment of the source and destination, in the form of a const_int rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand.

These patterns need not give special consideration to the possibility that the source and destination strings might overlap.

cmpstrM

Block compare instruction, with five operands. Operand 0 is the output; it has mode M. The remaining four operands are like the operands of movstrM. The two memory blocks specified are compared byte by byte in lexicographic order. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison.

Compute the length of a string, with three operands. Operand 0 is the result (of mode M), operand 1 is a mem referring to the first character of the string, operand 2 is the character to search for (normally zero), and operand 3 is a constant describing the known alignment of the beginning of the string.

floatMN2

Convert signed integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N).

gcc 308 / 551

floatunsMN2

Convert unsigned integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N).

fixMN2

Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number and store in operand 0 (which has mode N). This instruction's result is defined only when the value of operand 1 is an integer.

fixunsMN2

Convert operand 1 (valid for floating point mode M) to fixed point mode N as an unsigned number and store in operand 0 (which has mode N). This instruction's result is defined only when the value of operand 1 is an integer.

ftruncM2

Convert operand 1 (valid for floating point mode M) to an integer value, still represented in floating point mode M, and store it in operand 0 (valid for floating point mode M).

fix_truncMN2

Like fixMN2 but works for any floating point value of mode M by converting the value to an integer.

fixuns_truncMN2

Like fixunsMN2 but works for any floating point value of mode M by converting the value to an integer.

truncMN

Truncate operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point.

extendMN

Sign-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point.

zero extendMN

Zero-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point.

extv

Extract a bit field from operand 1 (a register or memory operand), where operand 2 specifies the width in bits and operand 3 the starting bit, and store it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have mode byte_mode or word_mode; often word_mode is allowed only for registers. Operands 2 and 3 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands 2 and 3.

The bit-field value is sign-extended to a full word integer before it is stored in operand $\ensuremath{\text{0}}$.

gcc 309 / 551

extzv

Like extv except that the bit-field value is zero-extended.

insv

Store operand 3 (which must be valid for word_mode) into a bit field in operand 0, where operand 1 specifies the width in bits and operand 2 the starting bit. Operand 0 may have mode byte_mode or word_mode; often word_mode is allowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands 1 and 2.

movMODEcc

Conditionally move operand 2 or operand 3 into operand 0 according to the comparison in operand 1. If the comparison is true, operand 2 is moved into operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands being moved. Some machines, sparc64 for example, have instructions that conditionally move an integer value based on the floating point condition codes and vice versa.

If the machine does not have conditional move instructions, do not define these patterns.

sCOND

Store zero or nonzero in the operand according to the condition codes. Value stored is nonzero iff the condition COND is true. COND is the name of a comparison operation expression code, such as eq, lt or leu.

You specify the mode that the operand must have when you write the match_operand expression. The compiler automatically sees which mode you have used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must be negative. Otherwise the instruction is not suitable and you should omit it from the machine description. You describe to the compiler exactly which value is stored by defining the macro STORE_FLAG_VALUE (see

Misc

). If a description cannot be found that can be used for all the $\,$ sCOND patterns, you should omit those operations from the machine description.

These operations may fail, but should do so only in relatively uncommon cases; if they would fail for common cases involving integer comparisons, it is best to omit these patterns.

If these operations are omitted, the compiler will usually generate code that copies the constant one to the target and branches around an assignment of zero to the target. If this code is more efficient than the potential instructions used for the sCOND pattern followed by those required to convert the result into a 1 or a zero in SImode, you should omit the sCOND

gcc 310 / 551

operations from the machine description.

bCOND

Conditional branch instruction. Operand 0 is a label_ref that refers to the label to jump to. Jump if the condition codes meet condition COND.

Some machines do not follow the model assumed here where a comparison instruction is followed by a conditional branch instruction. In that case, the cmpM (and tstM) patterns should simply store the operands away and generate all the required insns in a define_expand (see

Expander Definitions

) for the conditional

branch operations. All calls to expand bCOND patterns are immediately preceded by calls to expand either a cmpM pattern or a tstM pattern.

Machines that use a pseudo register for the condition code value, or where the mode used for the comparison depends on the condition being tested, should also use the above mechanism. See

Jump Patterns

 $\,$ The above discussion also applies to the movMODEcc and sCOND patterns.

call

Subroutine call instruction returning no value. Operand 0 is the function to call; operand 1 is the number of bytes of arguments pushed (in mode SImode, except it is normally a const_int); operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is supplied for the sake of some RISC machines which need to put this information into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function. Note, however, that this address can be a symbol_ref expression even if it would not be a legitimate memory address on the target machine. If it is also not a valid argument for a call instruction, the pattern for this operation should be a define_expand (see

Expander Definitions

) that places the

address into a register and uses that register in the call instruction

call_value

Subroutine call instruction returning a value. Operand 0 is the hard register in which the value is returned. There are three more operands, the same as the three operands of the call instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the call insn.

call_pop, call_value_pop

gcc 311 / 551

Similar to call and call_value, except used if defined and if RETURN_POPS_ARGS is non-zero. They should emit a parallel that contains both the function call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be non-zero, the use of these patterns increases the number of functions for which the frame pointer can be eliminated, if desired.

untyped_call

Subroutine call instruction returning a value of any type. Operand 0 is the function to call; operand 1 is a memory location where the result of calling the function is to be stored; operand 2 is a parallel expression where each element is a set expression that indicates the saving of a function return value into the result block.

This instruction pattern should be defined to support __builtin_apply on machines where special instructions are needed to call a subroutine with arbitrary arguments or to save the value returned. This instruction pattern is required on machines that have multiple registers that can hold a return value (i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

return

Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function.

Like the movM patterns, this pattern is also used after the RTL generation phase. In this case it is to support machines where multiple instructions are usually needed to return from a function, but some class of functions only requires one instruction to implement a return. Normally, the applicable functions are those which do not need to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true when reload_completed is non-zero and the function's epilogue would only be a single instruction. For machines with register windows, the routine leaf_function_p may be used to determine if a register window push is required.

where CONDITION would normally be the same condition specified on

gcc 312 / 551

the named return pattern.

untyped_return

Untyped subroutine return instruction. This instruction pattern should be defined to support __builtin_return on machines where special instructions are needed to return a value of any type.

Operand 0 is a memory location where the result of calling a function with __builtin_apply is stored; operand 1 is a parallel expression where each element is a set expression that indicates the restoring of a function return value from the result block.

nop

No-op instruction. This instruction pattern name should always be defined to output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

indirect_jump

An instruction to jump to an address which is operand zero. This pattern name is mandatory on all machines.

casesi

Instruction to jump through a dispatch table, including bounds checking. This instruction takes five operands:

- 1. The index to dispatch on, which has mode SImode.
- 2. The lower bound for indices in the table, an integer constant.
- 3. The total range of indices in the table--the largest index minus the smallest one (both inclusive).
- 4. A label that precedes the table itself.
- 5. A label to jump to if the index has a value outside the bounds. (If the machine-description macro CASE_DROPS_THROUGH is defined, then an out-of-bounds index drops through to the code following the jump table instead of jumping to this label. In that case, this label is not actually used by the casesi instruction, but it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number of elements in the table is one plus the difference between the upper bound and the lower bound.

tablejump

Instruction to jump to a variable address. This is a low-level capability which can be used to implement a dispatch table when there is no casesi pattern.

This pattern requires two operands: the address or offset, and a label which should immediately precede the jump table. If the macro CASE_VECTOR_PC_RELATIVE is defined then the first operand is an offset which counts from the address of the table; otherwise, it is an absolute address to jump to. In either case, the first operand has mode Pmode.

gcc 313 / 551

The tablejump insn is always the last insn before the jump table it uses. Its assembler code normally has no need to use the second operand, but you should incorporate it in the RTL pattern so that the jump optimizer will not delete the table as unreachable code.

save_stack_block
save_stack_function
save_stack_nonlocal
restore_stack_block
restore_stack_function
restore_stack_nonlocal

Most machines save and restore the stack pointer by copying it to or from an object of mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On those machines, define the patterns corresponding to the non-standard cases by using a define_expand (see

Expander Definitions
) that produces the required insns. The three types of saves and restores are:

- save_stack_block saves the stack pointer at the start of a block that allocates a variable-sized object, and restore_stack_block restores the stack pointer when the block is exited.
- 2. save_stack_function and restore_stack_function do a similar job for the outermost block of a function and are used when the function allocates variable-sized objects or calls alloca. Only the epilogue uses the restored stack pointer, allowing a simpler save or restore sequence on some machines.
- 3. save_stack_nonlocal is used in functions that contain labels branched to by nested functions. It saves the stack pointer in such a way that the inner function can use restore_stack_nonlocal to restore the stack pointer. The compiler generates code to restore the frame and argument pointer registers, but some machines require saving and restoring additional data such as register window information or stack backchains. Place insns in these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the stack pointer. The mode used to allocate the save area is the mode of operand 0. You must specify an integral mode, or VOIDmode if no save area is needed for a particular type of save (either because no save is needed or because a machine-specific save area can be used). Operand 0 is the stack pointer and operand 1 is the save area for restore operations. If save_stack_block is defined, operand 0 must not be VOIDmode since these saves can be arbitrarily nested.

gcc 314 / 551

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx when the stack pointer is saved for use by nonlocal gotos and a reg in the other two cases.

allocate stack

Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 0 from the stack pointer to create space for dynamically allocated data.

Do not define this pattern if all that must be done is the subtraction. Some machines require other operations such as stack probes or maintaining the back chain. Define this pattern to emit those operations in addition to updating the stack pointer.

1.164 gcc.guide/Pattern Ordering

When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that appears first in the machine description is the one used. Therefore, more specific patterns (patterns that will match fewer things) and faster instructions (those that will produce better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it is not valid. For example, the 68000 has an instruction for converting a fullword to floating point and another for converting a byte to floating point. An instruction converting an integer to floating point could match either one. We put the pattern to convert the fullword first to make sure that one will be used rather than the other. (Otherwise a large integer might be generated as a single-byte immediate quantity, which would not work.) Instead of using this pattern ordering it would be possible to make the pattern for convert-a-byte smart enough to deal properly with any constant value.

1.165 gcc.guide/Dependent Patterns

Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch names \mbox{bCOND} . The recognition template must always have the form

gcc 315 / 551

In addition, every machine description must have an anonymous pattern for each of the possible reverse-conditional branches. Their templates look like

They are necessary because jump optimization can turn direct-conditional branches into reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of patterns that must be specified for branches. For example,

In some cases machines support instructions identical except for the machine mode of one or more operands. For example, there may be "sign-extend halfword" and "sign-extend byte" instructions whose patterns are

```
(set (match_operand:SI 0 ...)
      (extend:SI (match_operand:HI 1 ...)))
(set (match_operand:SI 0 ...)
      (extend:SI (match_operand:QI 1 ...)))
```

Constant integers do not specify a machine mode, so an instruction to extend a constant value could match either pattern. The pattern it actually will match is the one that appears first in the file. For correct results, this must be the one for the widest possible mode (HImode, here). If the pattern matches the QImode instruction, the results will be incorrect if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with a constant permitted by the constraint in some cases. Similarly for memory references. Because of this substitution, you should not provide separate patterns for increment and decrement instructions. Instead, they should be generated from the same pattern that supports register-register add insns by examining the operands and generating the appropriate machine instruction.

gcc 316 / 551

1.166 gcc.guide/Jump Patterns

Defining Jump Instruction Patterns

For most machines, GNU CC assumes that the machine has a condition code. A comparison insn sets the condition code, recording the results of both signed and unsigned comparison of the given operands. A separate branch insn tests the condition code and branches or not according its value. The branch insns come in distinct signed and unsigned flavors. Many common machines, such as the Vax, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one set of conditional branch instructions. The easiest way to handle these machines is to treat them just like the others until the final stage where assembly code is written. At this time, when outputting code for the compare instruction, peek ahead at the following branch using next_cc0_user (insn). (The variable insn refers to the insn being output, in the output-writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output an unsigned compare; otherwise output a signed compare. When the branch itself is output, you can treat signed and unsigned branches identically.

The reason you can do this is that GNU CC always generates a pair of consecutive RTL insns, possibly separated by note insns, one to set the condition code and one to test it, and keeps the pair inviolate until the end.

To go with this technique, you must define the machine-description macro ${\tt NOTICE_UPDATE_CC}$ to do ${\tt CC_STATUS_INIT}$; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar technique works for them. When it is time to "output" a compare instruction, record its operands in two static variables. When outputting the branch-on-condition-code instruction that follows, actually output a compare-and-branch instruction that uses the remembered operands.

It also works to define patterns for compare-and-branch instructions. In optimizing compilation, the pair of compare and branch instructions will be combined according to these patterns. But this does not happen if optimization is not requested. So you must use one of the solutions above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there may not even be a separate condition code register. On these machines, the restriction that the definition and use of the condition code be adjacent insns is not necessary and can prevent important optimizations. For example, on the IBM RS/6000, there is a delay for taken branches unless the condition code register is set three

gcc 317 / 551

instructions earlier than the conditional branch. The instruction scheduler cannot perform this optimization if it is not permitted to separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition code. If there is a specific condition code register in the machine, use a hard register. If the condition code or comparison result can be placed in any general register, or if there are multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the condition code was produced; for example, on the 68k and Sparc, setting the condition code directly from an add or subtract instruction does not clear the overflow bit the way that a test instruction does, so a different branch instruction must be used for some conditional branches. For machines that use (cc0), the set and use of the condition code must be adjacent (separated only by note insns) allowing flags in cc_status to be used. (See

Condition Code

.)

Also, the comparison and branch insns can be located from each other by using the functions prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no assumptions can be made about the adjacency of the compare and branch insns and the above methods cannot be used. Instead, we use the machine mode of the condition code register to record different formats of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_CC. Normally, it will be CCmode. If additional modes are required (as for the add example mentioned above in the Sparc), define the macro EXTRA_CC_MODES to list the additional modes required (see

Condition Code

). Also define <code>EXTRA_CC_NAMES</code> to list the names of those modes and <code>SELECT_CC_MODE</code> to choose a mode given an operand of a compare.

If it is known during RTL generation that a different mode will be required (for example, if the machine has separate compare instructions for signed and unsigned quantities, like most IBM processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the macro SELECT_CC_MODE determines which machine mode should be used for the comparison result. The patterns should be written using that mode. To support the case of the add on the Sparc discussed above, we have the pattern

gcc 318 / 551

"...")

The SELECT_CC_MODE macro on the Sparc returns CC_NOOVmode for comparisons whose argument is a plus.

1.167 gcc.guide/Insn Canonicalizations

Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation performed by a single machine instruction. This situation is most commonly encountered with logical, branch, and multiply-accumulate instructions. In such cases, the compiler attempts to convert these multiple RTL expressions into a single canonical form to reduce the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

* For commutative and comparison operators, a constant is always made the second operand. If a machine only supports a constant as the second operand, only patterns that match a constant in the second operand need be supplied.

For these operators, if only one operand is a neg, not, mult, plus, or minus expression, it will be the first operand.

* For the compare operator, a constant is always the second operand on machines where cc0 is used (see

Jump Patterns

). On other

machines, there are rare cases where the compiler might want to construct a compare with a constant as the first operand. However, these cases are not common enough for it to be worthwhile to provide a pattern matching a constant as the first operand unless the machine actually has such an instruction.

An operand of neg, not, mult, plus, or minus is made the first operand under the same conditions as above.

- * (minus X (const_int N)) is converted to (plus X (const_int -N)).
- * Within address computations (i.e., inside mem), a left shift is converted into the appropriate multiplication by a power of two.

De'Morgan's Law is used to move bitwise negation inside a bitwise logical—and or logical—or operation. If this results in only one operand being a not expression, it will be the first one.

A machine that has an instruction that performs a bitwise logical—and of one operand with the bitwise negation of the other

gcc 319 / 551

In both cases, it is not necessary to include patterns for the many logically equivalent RTL expressions.

- * The only possible RTL expressions involving both bitwise exclusive-or and bitwise negation are (xor:M X Y) and (not:M (xor:M X Y)).
- \star The sum of three items, one of which is a constant, will only appear in the form

```
(plus:M (plus:M X Y) CONSTANT)
```

- * On machines that do not use cc0, (compare X (const_int 0)) will be converted to X.
- * Equality comparisons of a group of bits (usually a single bit) with zero will be written using zero_extract rather than the equivalent and or sign_extract operations.

1.168 qcc.quide/Peephole Definitions

Machine-Specific Peephole Optimizers

In addition to instruction patterns the md file may contain definitions of machine-specific peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the program does not suggest that it should try them. For example, sometimes two consecutive insns related in purpose can be combined even though the second one does not appear to use a register computed in the first one. A machine-specific peephole optimizer can detect such opportunities.

A definition looks like this:

gcc 320 / 551

```
(define_peephole
  [INSN-PATTERN-1
  INSN-PATTERN-2
  ...]
  "CONDITION"
  "TEMPLATE"
  "OPTIONAL INSN-ATTRIBUTES")
```

The last string operand may be omitted if you are not using any machine-specific information in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, INSN-PATTERN-1 and so on are patterns to match consecutive insns. The optimization applies to a sequence of insns when INSN-PATTERN-1 matches the first one, INSN-PATTERN-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are checked only at the last stage just before code generation, and only optionally. Therefore, any insn which would match a peephole but no define_insn will cause a crash in code generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and match_dup, as usual. What is not usual is that the operand numbers apply to all the insn patterns in the definition. So, you can check for identical operands in two insns by using match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect on the applicability of the peephole, but they will be validated afterward, so make sure your constraints are general enough to apply whenever the peephole matches. If the peephole matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write constraints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the CONDITION is checked. This is a C expression which makes the final decision whether to perform the optimization (we do so if the expression is nonzero). If CONDITION is omitted (in other words, the string is empty) then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete. Therefore, the peephole definition can check which operands have ended up in which kinds of registers, just by looking at the operands.

The way to refer to the operands in CONDITION is to write operands[I] for operand number I (as matched by (match_operand I \dots)). Use the variable insn to refer to the last of the insns being matched; use prev_active_insn to find the preceding insns.

gcc 321 / 551

When optimizing computations with intermediate results, you can use CONDITION to match only when the intermediate results are not used elsewhere. Use the C expression dead_or_set_p (INSN, OP), where INSN is the insn in which you expect the value to be used for the last time (from the value of insn, together with use of prev_nonnote_insn), and OP is the intermediate value (from operands[I]).

Applying the optimization means replacing the sequence of insns with one new insn. The TEMPLATE controls ultimate output of assembler code for this combined insn. It works exactly like the template of a define_insn. Operand numbers in this template are the same ones used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn patterns in the machine description; it does not even have an opportunity to match them. The peephole optimizer definition itself serves as the insn pattern to control how the insn is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:

```
(define_peephole
    [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
     (set (match_operand:DF 0 "register_operand" "=f")
          (match_operand:DF 1 "register_operand" "ad"))]
    "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
    II *
  {
    rtx xoperands[2];
    xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
  #ifdef MOTOROLA
    output_asm_insn (\"move.1 %1,(sp)\", xoperands);
    output_asm_insn (\"move.l %1,-(sp)\", operands);
    return \"fmove.d (sp)+,%0\";
  #else
    output_asm_insn (\"movel %1,sp@\", xoperands);
    output_asm_insn (\"movel %1, sp@-\", operands);
    return \"fmoved sp@+,%0\";
  #endif
  ")
The effect of this optimization is to change
  jbsr _foobar
  addql #4,sp
  movel d1, sp@-
  movel d0, sp@-
  fmoved sp@+, fp0
```

into

jbsr _foobar

gcc 322 / 551

```
movel d1,sp@
movel d0,sp@-
fmoved sp@+,fp0
```

INSN-PATTERN-1 and so on look almost like the second operand of define_insn. There is one important difference: the second operand of define_insn consists of one or more RTX's enclosed in square brackets. Usually, there is only one: then the same action can be written as an element of a define_peephole. But when there are multiple actions in a define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn pattern looks like this,

```
(define_insn "divmodsi4"
       [(set (match_operand:SI 0 "general_operand" "=d")
             (div:SI (match_operand:SI 1 "general_operand" "0")
                     (match_operand:SI 2 "general_operand" "dmsK")))
        (set (match_operand:SI 3 "general_operand" "=d")
             (mod:SI (match dup 1) (match dup 2)))]
       "TARGET 68020"
       "divsl%.1 %2,%3:%0")
then the way to mention this insn in a peephole is as follows:
     (define_peephole
       [...
        (parallel
         [(set (match_operand:SI 0 "general_operand" "=d")
               (div:SI (match_operand:SI 1 "general_operand" "0")
                       (match_operand:SI 2 "general_operand" "dmsK")))
          (set (match_operand:SI 3 "general_operand" "=d")
               (mod:SI (match_dup 1) (match_dup 2)))])
        ...]
       ...)
```

1.169 gcc.guide/Expander Definitions

Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be handled with single insn, but a sequence of RTL insns can represent them. For these target machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike the latter, a define_expand is used only for RTL generation and it can produce more than one RTL insn.

A define_expand RTX has four operands:

* The name. Each define_expand must have a name, since the only use for it is to refer to it by name.

gcc 323 / 551

* The RTL template. This is just like the RTL template for a define_peephole in that it is a vector of RTL expressions each being one insn.

- * The condition, a string containing a C expression. This expression is used to express how the availability of this pattern depends on subclasses of target machine, selected by command-line options when GNU CC is run. This is just like the condition of a define_insn that has a standard name. Therefore, the condition (if present) may not depend on the data in the insn being matched, but only the target-machine-type flags. The compiler needs to test these conditions during initialization in order to learn exactly which named instructions are available in a particular run.
- * The preparation statements, a string containing zero or more C statements which are to be executed before RTL code is generated from the RTL template.

Usually these statements prepare temporary registers for use as internal operands in the RTL template, but they can also generate RTL insns directly by calling routines such as emit_insn, etc. Any such insns precede the ones that come from the RTL template.

Every RTL insn emitted by a define_expand must match some define_insn in the machine description. Otherwise, the compiler will crash when trying to generate code for the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes the operands that need to be specified when this pattern is used. In particular, it gives a predicate for each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern, should be described with a match_operand in its first occurrence in the RTL template. This enters information on the operand's predicate into the tables that record such things. GNU CC uses the information to preload the operand into a register if that is required for valid RTL code. If the operand is referred to more than once, subsequent references should use match_dup.

The RTL template may also refer to internal "operands" which are temporary registers or labels used only within the sequence made by the define_expand. Internal operands are substituted into the RTL template with match_dup, never with match_operand. The values of the internal operands are not passed in as arguments by the compiler when it requests use of this pattern. Instead, they are computed within the pattern, in the preparation statements. These statements compute the values and store them into the appropriate elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and FAIL. Use them with a following semicolon, as a statement.

DONE

gcc 324 / 551

Use the DONE macro to end RTL generation for the pattern. The only RTL insns resulting from the pattern on this occasion will be those already emitted by explicit calls to emit_insn within the preparation statements; the RTL template will not be generated.

FAIL

Make the pattern fail on this occasion. When a pattern fails, it means that the pattern was not truly available. The calling routines in the compiler will try other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting, etc.) and bitfield (extv, extzv, and insv) operations.

Here is an example, the definition of left-shift for the SPUR chip:

This example uses define_expand so that it can generate an RTL insn for shifting when the shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns aren't available. When it fails, the compiler tries another strategy using different patterns (such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names, then it would be possible to use a define_insn in that case. Here is another case (zero-extension on the 68000) which makes more use of the power of define_expand:

Here two RTL insns are generated, one to clear the entire output operand and the other to copy the input operand into its low half. This sequence is incorrect if the input operand refers to [the old value of]

gcc 325 / 551

the output operand, so the preparation statement makes sure this isn't so. The function make_safe_from copies the operands[1] into a temporary register if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot be represented by a const_int because the constant value is too large to be legitimate on this machine. So it must be copied into a register with force_reg and then the register used in the and.

Note: If the define_expand is used to serve a standard binary or unary arithmetic operation or a bitfield operation, then the last insn it generates must not be a code_label, barrier or note. It must be an insn, jump_insn or call_insn. If you don't need a real insn at the end, emit an insn to copy the result of the operation into itself. Such an insn will generate no code, but it can avoid problems in the compiler.

1.170 gcc.guide/Insn Splitting

Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns. On machines that have instructions requiring delay slots (see

```
Delay Slots
) or that have instructions whose output is not available for multiple cycles (see
```

Function Units
), the compiler phases

that optimize these cases need to be able to move insns into one-instruction delay slots. However, some insns may generate more than one machine instruction. These insns cannot be placed into a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to one machine instruction. The disadvantage of doing so is that it will cause the compilation to be slower and require more space. If the resulting insns are too complex, it may also suppress some optimizations. The compiler splits the insn if there is a

gcc 326 / 551

reason to believe that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one insn with a complex expression that cannot be matched by some define_insn pattern, the combiner phase attempts to split the complex pattern into two insns that are recognized. Usually it can break the complex pattern into two patterns by splitting out some subexpression. However, in some other cases, such as performing an addition of a large constant in two insns on a RISC machine, the way to split the addition into two insns is machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several simpler insns. It looks like this:

```
(define_split
  [INSN-PATTERN]
  "CONDITION"
  [NEW-INSN-PATTERN-1
  NEW-INSN-PATTERN-2
  ...]
  "PREPARATION STATEMENTS")
```

INSN-PATTERN is a pattern that needs to be split and CONDITION is the final condition to be tested, as in a define_insn. When an insn matching INSN-PATTERN and satisfying CONDITION is found, it is replaced in the insn list with the insns given by NEW-INSN-PATTERN-1, NEW-INSN-PATTERN-2, etc.

The PREPARATION STATEMENTS are similar to those statements that are specified for define_expand (see

Expander Definitions
) and are executed

before the new RTL is generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike those in define_expand, however, these statements must not generate any new pseudo-registers. Once reload has completed, they also must not allocate any space in the stack frame.

Patterns are matched against INSN-PATTERN in two different circumstances. If an insn needs to be split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means that it must have been matched by some define_insn and, if reload_completed is non-zero, is known to satisfy the constraints of that define_insn. In that case, the new insn patterns must also be insns that are matched by some define_insn and, if reload_completed is non-zero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from a29k.md, which splits a sign_extend from HImode to SImode into a pair of shift insns:

gcc 327 / 551

When the combiner phase tries to split an insn pattern, it is always the case that the pattern is not matched by any define_insn. The combiner pass first tries to split a single set expression and then the same set expression inside a parallel, but followed by a clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects exactly two new insn patterns to be generated. It will verify that these patterns match some define_insn definitions, so you need not do this test in the define_split (of course, there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from rs6000.md:

Here the predicate non_add_cint_operand matches any const_int that is not a valid operand of a single add insn. The add with the smaller displacement is written so that it can be substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality comparison of a register and a large constant:

gcc 328 / 551

```
"
{
  /* Get the constant we are comparing against, C, and see what it
  looks like sign-extended to 16 bits. Then see what constant
  could be XOR'ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;

operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc);
}")
```

To avoid confusion, don't write a single define_split that accepts some insns that match some define_insn as well as some insns that don't. Instead, write two separate define_split definitions, one for the insns that are valid and one for the insns that are not valid.

1.171 gcc.guide/Insn Attributes

Instruction Attributes

In addition to describing the instruction supported by the target machine, the md file also defines a group of attributes and a set of values for each. Every generated insn is assigned a value for each attribute. One possible attribute would be the effect that the insn has on the machine's condition code. This attribute can then be used by NOTICE_UPDATE_CC to track the condition codes.

```
Defining Attributes
Specifying attributes and their values.

Expressions
Valid expressions for attribute values.

Tagging Insns
Assigning attribute values to insns.

Attr Example
An example of assigning attributes.

Insn Lengths
Computing the length of insns.

Constant Attributes
Defining attributes that are constant.

Delay Slots
Defining delay slots required for a machine.
```

gcc 329 / 551

Function Units
Specifying information for insn scheduling.

1.172 gcc.guide/Defining Attributes

Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine. It looks like:

(define_attr NAME LIST-OF-VALUES DEFAULT)

NAME is a string specifying the name of the attribute being defined.

LIST-OF-VALUES is either a string that specifies a comma-separated list of values that can be assigned to the attribute, or a null string to indicate that the attribute takes numeric values.

DEFAULT is an attribute expression that gives the value of this attribute for insns that match patterns whose definition does not include an explicit value for this attribute. See

Attr Example

, for

more information on the handling of defaults. See Constant Attributes

for information on attributes that do not depend on any particular insn.

For each defined attribute, a number of definitions are written to the insn-attr.h file. For cases where an explicit set of values is specified for an attribute, the following are defined:

- * A #define is written for the symbol HAVE_ATTR_NAME.
- * An enumeral class is defined for attr_NAME with elements of the form UPPER-NAME_UPPER-VALUE where the attribute name and value are first converted to upper case.
- * A function get_attr_NAME is defined that is passed an insn and returns the attribute value for that insn.

For example, if the following is present in the md file:

```
(define_attr "type" "branch, fp, load, store, arith" ...)
```

the following lines will be written to the file insn-attr.h.

gcc 330 / 551

If the attribute takes numeric values, no enum type will be defined and the function to obtain the attribute's value will return int.

1.173 gcc.guide/Expressions

Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific to attribute definitions, to be discussed below. Attribute value expressions must have one of the following forms:

(const int I)

The integer I specifies the value of a numeric attribute. I must be non-negative.

The value of a numeric attribute can be specified either with a const_int or as an integer represented as a string in const_string, eq_attr (see below), and set_attr (see

Tagging Insns
) expressions.

(const_string VALUE)

The string VALUE specifies a constant attribute value. If VALUE is specified as "*", it means that the default value of the attribute is to be used for the insn containing this expression. "*" obviously cannot be used in the DEFAULT expression of a define_attr.

If the attribute whose value is being specified is numeric, VALUE must be a string containing a non-negative integer (normally const_int would be used in this case). Otherwise, it must contain one of the valid values for the attribute.

(if_then_else TEST TRUE-VALUE FALSE-VALUE)

TEST specifies an attribute test, whose format is defined below. The value of this expression is TRUE-VALUE if TEST is true, otherwise it is FALSE-VALUE.

(cond [TEST1 VALUE1 ...] DEFAULT)

The first operand of this expression is a vector containing an even number of expressions and consisting of pairs of TEST and VALUE expressions. The value of the cond expression is that of the VALUE corresponding to the first true TEST expression. If none of the TEST expressions are true, the value of the cond expression is that of the DEFAULT expression.

TEST expressions can have one of the following forms:

(const_int I)

gcc 331 / 551

This test is true if I is non-zero and false otherwise.

(not TEST)

(ior TEST1 TEST2)

(and TEST1 TEST2)

These tests are true if the indicated logical function is true.

(match_operand:M N PRED CONSTRAINTS)

This test is true if operand N of the insn whose attribute value is being determined has mode M (this part of the test is ignored if M is VOIDmode) and the function specified by the string PRED returns a non-zero value when passed operand N and mode M (this part of the test is ignored if PRED is the null string).

The CONSTRAINTS operand is ignored and should be the null string.

(le ARITH1 ARITH2)

(leu ARITH1 ARITH2)

(lt ARITH1 ARITH2)

(ltu ARITH1 ARITH2)

(qt ARITH1 ARITH2)

(gtu ARITH1 ARITH2)

(ge ARITH1 ARITH2)

(geu ARITH1 ARITH2)

(ne ARITH1 ARITH2)

(eq ARITH1 ARITH2)

These tests are true if the indicated comparison of the two arithmetic expressions is true. Arithmetic expressions are formed with plus, minus, mult, div, mod, abs, neg, and, ior, xor, not, ashift, lshiftrt, and ashiftrt expressions.

const_int and symbol_ref are always valid terms (see

Insn Lengths

, for additional forms). symbol_ref is a string
denoting a C expression that yields an int when evaluated by the
get_attr_... routine. It should normally be a global variable.

(eq_attr NAME VALUE)

NAME is a string specifying the name of an attribute.

VALUE is a string that is either a valid value for attribute NAME, a comma-separated list of values, or ! followed by a value or list. If VALUE does not begin with a !, this test is true if the value of the NAME attribute of the current insn is in the list specified by VALUE. If VALUE begins with a !, this test is true if the attribute's value is not in the specified list.

For example,

(eq_attr "type" "load, store")

is equivalent to

(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If NAME specifies an attribute of alternative, it refers to the

gcc 332 / 551

value of the compiler variable which_alternative (see

Note that, for most attributes, an eq_attr test is simplified in cases where the value of the attribute being tested is known for all insns matching a particular pattern. This is by far the most common case.

(attr_flag NAME)

The value of an attr_flag expression is true if the flag specified by NAME is true for the insn currently being scheduled.

NAME is a string specifying one of a fixed set of flags to test. Test the flags forward and backward to determine the direction of a conditional branch. Test the flags very_likely, likely, very_unlikely, and unlikely to determine if a conditional branch is expected to be taken.

If the very_likely flag is true, then the likely flag is also true. Likewise for the very_unlikely and unlikely flags.

This example describes a conditional branch delay slot which can be nullified for forward branches that are taken (annul-true) or for backward branches which are not taken (annul-false).

The forward and backward flags are false if the current insn being scheduled is not a conditional branch.

The very_likely and likely flags are true if the insn being scheduled is not a conditional branch. The The very_unlikely and unlikely flags are false if the insn being scheduled is not a conditional branch.

attr_flag is only used during delay slot scheduling and has no meaning to other passes of the compiler.

gcc 333 / 551

1.174 gcc.guide/Tagging Insns

Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is matched by that insn (or which define_peephole generated it). Every define_insn and define_peephole can have an optional last argument to specify the values of attributes for matching insns. The value of any attribute not specified in a particular insn is set to the default value for that attribute, as specified in its define_attr. Extensive use of default values for attributes permits the specification of the values for only one or two attributes in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of expressions, each of which defines the value for a single attribute. The most general way of assigning an attribute's value is to use a set expression whose first operand is an attr expression giving the name of the attribute being set. The second operand of the set is an attribute expression (see

Expressions

) giving the value

of the attribute.

When the attribute value depends on the alternative attribute (i.e., which is the applicable alternative in the constraint of the insn), the set_attr_alternative expression can be used. It allows the specification of a vector of attribute expressions, one for each alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_attr expression can be used, which allows specifying a string giving either a single attribute value or a list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, NAME is a string specifying the attribute to be set.

(set_attr NAME VALUE-STRING)

VALUE-STRING is either a string giving the desired attribute value, or a string containing a comma-separated list giving the values for succeeding alternatives. The number of elements must match the number of alternatives in the constraint of the insn pattern.

Note that it may be useful to specify \star for some alternative, in which case the attribute will assume its default value for insns matching that alternative.

(set_attr_alternative NAME [VALUE1 VALUE2 ...])

Depending on the alternative of the insn, the value will be one of the specified values. This is a shorthand for using a cond with tests on the alternative attribute.

(set (attr NAME) VALUE)

gcc 334 / 551

The first operand of this set must be the special RTL expression attr, whose sole operand is a string giving the name of the attribute being set. VALUE is the value of the attribute.

The following shows three different ways of representing the same attribute value specification:

The define_asm_attributes expression provides a mechanism to specify the attributes assigned to insns produced from an asm statement. It has the form:

```
(define_asm_attributes [ATTR-SETS])
```

where ATTR-SETS is specified the same as for both the define_insn and the define_peephole expressions.

These values will typically be the "worst case" attribute values. For example, they might indicate that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the length of an asm insn is to multiply the length specified in the expression define_asm_attributes by the number of machine instructions specified in the asm statement, determined by counting the number of semicolons and newlines in the string. Therefore, the value of the length attribute specified in a define_asm_attributes should be the maximum possible length of a single machine instruction.

1.175 gcc.guide/Attr Example

Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typically, insns are divided into types and an attribute, customarily called type, is used to represent this value. This attribute is normally used only to define the default value for other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word operations are performed in registers. Let us assume that we

gcc 335 / 551

can divide all insns into loads, stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition code and will limit ourselves to the following possible effects: The condition code can be set unpredictably (clobbered), not be changed, be set to agree with the results of the operation, or only changed if the item previously set into the condition code has been modified.

Here is part of a sample md file for such a machine:

```
(define_attr "type" "load, store, arith, fp, branch" (const_string "arith"))
(define_attr "cc" "clobber, unchanged, set, change0"
             (cond [(eq_attr "type" "load")
                         (const_string "change0")
                     (eq_attr "type" "store, branch")
                         (const_string "unchanged")
                     (eq_attr "type" "arith")
                         (if_then_else (match_operand:SI 0 "" "")
                                       (const_string "set")
                                        (const_string "clobber"))]
                    (const_string "clobber")))
(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=r,r,m")
        (match_operand:SI 1 "general_operand" "r,m,r"))]
  "@
  move %0,%1
  load %0,%1
  store %0,%1"
  [(set_attr "type" "arith,load,store")])
```

Note that we assume in the above example that arithmetic operations performed on quantities smaller than a machine word clobber the condition code since they will set the condition code to a value corresponding to the full-word result.

1.176 gcc.guide/Insn Lengths

Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different length branch displacements. In most cases, the assembler will choose the correct instruction to use. However, when the assembler cannot do so, GCC can when a special attribute, the length attribute, is defined. This attribute must be defined to have numeric values by specifying a null string in its define_attr.

In the case of the length attribute, two additional forms of

gcc 336 / 551

arithmetic terms are allowed in test expressions:

(match_dup N)

This refers to the address of operand N of the current insn, which must be a label_ref.

(pc)

This refers to the address of the current insn. It might have been more consistent with other usage to make this the address of the next insn but this would be confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the length attribute. In the case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

The following macros can be used to refine the length computation:

FIRST_INSN_ADDRESS

When the length insn attribute is used, this macro specifies the value to be assigned to the address of the first insn in a function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (INSN, LENGTH)

If defined, modifies the length assigned to instruction INSN as a function of the context in which it is used. LENGTH is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn. If updating is required, INSN must not be a varying-length insn.

This macro will normally not be required. A case in which it is required is the ROMP. On this machine, the size of an addr_vec insn must be increased by two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be used by the output routine to determine the form of the branch instruction to be written, as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If we adopt the convention that a register will be set to the starting address of a function, we can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:

gcc 337 / 551

1.177 gcc.guide/Constant Attributes

```
Constant Attributes
```

A special form of define_attr, where the expression for the default value is a const expression, indicates an attribute that is constant for a given run of the compiler. Constant attributes may be used to specify which variety of processor is used. For example,

The routine generated for constant attributes has no parameters as it does not depend on any particular insn. RTL expressions used to define the value of a constant attribute may use the symbol_ref form, but may not use either the match_operand form or eq_attr forms involving insn attributes.

1.178 gcc.guide/Delay Slots

```
Delay Slot Scheduling
```

The insn attribute mechanism can be used to specify the requirements for delay slots, if any, on a target machine. An instruction is said to require a delay slot if some instructions that are physically after the instruction are executed as if they were located before it. Classic examples are branch and call instructions, which often execute the following instruction before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in the delay slot. This means that the

gcc 338 / 551

instruction will not be executed for certain branch outcomes. Both instructions that annul if the branch is true and instructions that annul if the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an instruction needs a delay slot is dependent only on the type of instruction being generated, not on data flow between the instructions. See the next section for a discussion of data-dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_delay expression. It has the following form:

TEST is an attribute test that indicates whether this define_delay applies to a particular insn. If so, the number of required delay slots is determined by the length of the vector specified as the second argument. An insn placed in delay slot N must satisfy attribute test DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled if the branch is true. Similarly, ANNUL-FALSE-N specifies which insns in the delay slot may be annulled if the branch is false. If annulling is not supported for that delay slot, (nil) should be coded.

For example, in the common case where branch and call insns require a single delay slot, which may contain any insn other than a branch or call, the following would be placed in the md file:

Multiple define_delay expressions may be specified. In this case, each such expression specifies different delay slot requirements and there must be no insn for which tests in two define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch can be annulled if the branch is true, we might represent this as follows:

gcc 339 / 551

1.179 gcc.guide/Function Units

Specifying Function Units

On most RISC machines, there are instructions whose results are not available for a specific number of cycles. Common cases are instructions that load data from memory. On many machines, a pipeline stall will result if the data is referenced too soon after the load instruction.

In addition, many newer microprocessors have multiple function units, usually one for integer and one for floating point, and often will incur pipeline stalls when a result that is needed is not yet ready.

The descriptions in this section allow the specification of how much time must elapse between the execution of an instruction and the time when its result is used. It also allows specification of when the execution of an instruction will delay execution of similar instructions due to function unit conflicts.

For the purposes of the specifications in this section, a machine is divided into function units, each of which execute a specific class of instructions in first-in-first-out order. Function units that accept one instruction each cycle and allow a result to be used in the succeeding instruction (usually via forwarding) need not be specified. Classic RISC microprocessors will normally have a single function unit, which we can call memory. The newer "superscalar" processors will often have function units for floating point operations, usually at least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with a define_function_unit expression, which looks like this:

NAME is a string giving the name of the function unit.

MULTIPLICITY is an integer specifying the number of identical units in the processor. If more than one unit is specified, they will be scheduled independently. Only truly independent units should be counted; a pipelined unit should be specified as a single unit. (The only common example of a machine that has multiple function units for a single instruction class that are truly independent and not pipelined are the two multiply and two increment units of the CDC 6600.)

SIMULTANEITY specifies the maximum number of insns that can be executing in each instance of the function unit simultaneously or zero if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit NAME must have the same name and values for MULTIPLICITY and SIMULTANEITY.

gcc 340 / 551

TEST is an attribute test that selects the insns we are describing in this definition. Note that an insn may use more than one function unit and a function unit may be specified in more than one define_function_unit.

READY-DELAY is an integer that specifies the number of cycles after which the result of the instruction can be used without introducing any stalls.

ISSUE-DELAY is an integer that specifies the number of cycles after the instruction matching the TEST expression begins using this unit until a subsequent instruction can begin. A cost of N indicates an N-1 cycle delay. A subsequent instruction may also be delayed if an earlier instruction has a longer READY-DELAY value. This blocking effect is computed using the SIMULTANEITY, READY-DELAY, ISSUE-DELAY, and CONFLICT-LIST terms. For a normal non-pipelined function unit, SIMULTANEITY is one, the unit is taken to block for the READY-DELAY cycles of the executing insn, and smaller values of ISSUE-DELAY are ignored.

CONFLICT-LIST is an optional list giving detailed conflict costs for this unit. If specified, it is a list of condition test expressions to be applied to insns chosen to execute in NAME following the particular insn matching TEST that is already executing in NAME. For each insn in the list, ISSUE-DELAY specifies the conflict cost; for insns not in the list, the cost is zero. If not specified, CONFLICT-LIST defaults to all instructions that use the function unit.

Typical uses of this vector are where a floating point function unit can pipeline either single- or double-precision operations, but not both, or where a memory unit can pipeline loads, but not stores, etc.

As an example, consider a classic RISC machine where the result of a load instruction is not available for two cycles (a single "delay" instruction is required) and where only one load instruction can be executed simultaneously. This would be specified as:

```
(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)
```

For the case of a floating point function unit that can pipeline either single or double precision, but not both, the following could be specified:

```
(define_function_unit
   "fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])
(define_function_unit
   "fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])
```

Note: The scheduler attempts to avoid function unit conflicts and uses all the specifications in the define_function_unit expression. It has recently come to our attention that these specifications may not allow modeling of some of the newer "superscalar" processors that have insns using multiple pipelined units. These insns will cause a potential conflict for the second unit used during their execution and there is no way of representing that conflict. We welcome any examples of how function unit conflicts work in such processors and suggestions for their representation.

gcc 341 / 551

1.180 gcc.guide/Target Macros

Target Description Macros

In addition to the file MACHINE.md, a machine description includes a C header file conventionally given the name MACHINE.h. This header file defines numerous macros that convey the information about the target machine that does not fit into the scheme of the .md file. The file tm.h should be a link to MACHINE.h. The header file config.h includes tm.h and most compiler source files include config.h.

Driver

Controlling how the driver runs the compilation passes.

Run-time Target

Defining -m options like -m68000 and -m68020.

Storage Layout

Defining sizes and alignments of data.

Type Layout

Defining sizes and properties of basic user data types.

Registers

Naming and describing the hardware registers.

Register Classes

Defining the classes of hardware registers.

Stack and Calling

Defining which way the stack grows and by how much.

Vararqs

Defining the varargs macros.

Trampolines

Code set up at run time to enter a nested function.

Library Calls

Controlling how library routines are implicitly called.

Addressing Modes

Defining addressing modes valid for memory operands.

Condition Code

Defining how insns update the condition code.

Costs

Defining relative costs of different operations.

gcc 342 / 551

Sections

Dividing storage into text, data, and other sections.

PTC

Macros for position independent code.

Assembler Format

Defining how to write insns and pseudo-ops to output.

Debugging Info

Defining the format of debugging output.

Cross-compilation

Handling floating point for cross-compilers.

Misc

Everything else.

1.181 gcc.guide/Driver

Controlling the Compilation Driver, gcc

You can control the compilation driver.

SWITCH_TAKES_ARG (CHAR)

A C expression which determines whether the option - CHAR takes arguments. The value should be the number of arguments that option takes-zero, for many options.

By default, this macro is defined to handle the standard options properly. You need not define it unless you wish to add additional options which take arguments.

WORD_SWITCH_TAKES_ARG (NAME)

A C expression which determines whether the option -NAME takes arguments. The value should be the number of arguments that option takes-zero, for many options. This macro rather than SWITCH_TAKES_ARG is used for multi-character option names.

By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which handles the standard options properly. You need not define WORD_SWITCH_TAKES_ARG unless you wish to add additional options which take arguments. Any redefinition should call DEFAULT_WORD_SWITCH_TAKES_ARG and then check for additional options.

SWITCHES_NEED_SPACES

A string-valued C expression which is nonempty if the linker needs a space between the $^-\mathrm{L}$ or $^-\mathrm{o}$ option and its argument.

If this macro is not defined, the default value is 0.

gcc 343 / 551

CPP SPEC

A C string constant that tells the GNU CC driver program options to pass to CPP. It can also specify how to translate options you give to GNU CC into options for GNU CC to pass to the CPP.

Do not define this macro if it does not need to do anything.

NO_BUILTIN_SIZE_TYPE

If this macro is defined, the preprocessor will not define the builtin macro __SIZE_TYPE__. The macro __SIZE_TYPE__ must then be defined by CPP_SPEC instead.

This should be defined if SIZE_TYPE depends on target dependent flags which are not accessible to the preprocessor. Otherwise, it should not be defined.

NO BUILTIN PTRDIFF TYPE

If this macro is defined, the preprocessor will not define the builtin macro __PTRDIFF_TYPE__. The macro __PTRDIFF_TYPE__ must then be defined by CPP_SPEC instead.

This should be defined if PTRDIFF_TYPE depends on target dependent flags which are not accessible to the preprocessor. Otherwise, it should not be defined.

SIGNED_CHAR_SPEC

A C string constant that tells the GNU CC driver program options to pass to CPP. By default, this macro is defined to pass the option -D__CHAR_UNSIGNED__ to CPP if char will be treated as unsigned char by ccl.

Do not define this macro unless you need to override the default definition.

CC1_SPEC

A C string constant that tells the GNU CC driver program options to pass to ccl. It can also specify how to translate options you give to GNU CC into options for GNU CC to pass to the ccl.

Do not define this macro if it does not need to do anything.

CC1PLUS SPEC

A C string constant that tells the GNU CC driver program options to pass to cclplus. It can also specify how to translate options you give to GNU CC into options for GNU CC to pass to the cclplus.

Do not define this macro if it does not need to do anything.

ASM_SPEC

A C string constant that tells the GNU CC driver program options to pass to the assembler. It can also specify how to translate options you give to GNU CC into options for GNU CC to pass to the assembler. See the file sun3.h for an example of this.

Do not define this macro if it does not need to do anything.

ASM_FINAL_SPEC

gcc 344 / 551

A C string constant that tells the GNU CC driver program how to run any programs which cleanup after the normal assembler. Normally, this is not needed. See the file mips.h for an example of this.

Do not define this macro if it does not need to do anything.

LINK_SPEC

A C string constant that tells the GNU CC driver program options to pass to the linker. It can also specify how to translate options you give to GNU CC into options for GNU CC to pass to the linker.

Do not define this macro if it does not need to do anything.

LIB_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C library from the usual place. See gcc.c.

LIBGCC SPEC

Another C string constant that tells the GNU CC driver program how and when to place a reference to libgcc.a into the linker command line. This constant is placed both before and after the value of LIB_SPEC.

If this macro is not defined, the GNU CC driver provides a default that passes the string -lgcc to the linker unless the -shared option is specified.

STARTFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two is that STARTFILE_SPEC is used at the very beginning of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C startup file from the usual place. See gcc.c.

ENDFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two is that ENDFILE_SPEC is used at the very end of the command given to the linker.

Do not define this macro if it does not need to do anything.

LINK_LIBGCC_SPECIAL

Define this macro if the driver program should find the library libgcc.a itself and should not pass -L options to the linker. If you do not define this macro, the driver program will pass the argument -lgcc to tell the linker to do the search and will pass -L options to it.

LINK_LIBGCC_SPECIAL_1

Define this macro if the driver program should find the library libgcc.a. If you do not define this macro, the driver program

gcc 345 / 551

will pass the argument $-\lg$ cc to tell the linker to do the search. This macro is similar to LINK_LIBGCC_SPECIAL, except that it does not affect -L options.

MULTILIB DEFAULTS

Define this macro as a C expression for the initializer of an array of string to tell the driver program which options are defaults for this target and thus do not need to be handled specially when using MULTILIB_OPTIONS.

Do not define this macro if MULTILIB_OPTIONS is not defined in the target makefile fragment or if none of the options listed in MULTILIB_OPTIONS are set by default. See

Target Fragment

RELATIVE PREFIX NOT LINKDIR

Define this macro to tell gcc that it should only translate a -B prefix into a -L linker option if the prefix indicates an absolute file name.

STANDARD EXEC PREFIX

Define this macro as a C string constant if you wish to override the standard choice of /usr/local/lib/gcc-lib/ as the default prefix to try when searching for the executable files of the compiler.

MD_EXEC_PREFIX

If defined, this macro is an additional prefix to try after STANDARD_EXEC_PREFIX. MD_EXEC_PREFIX is not searched when the -b option is used, or the compiler is built as a cross compiler.

STANDARD_STARTFILE_PREFIX

Define this macro as a C string constant if you wish to override the standard choice of /usr/local/lib/ as the default prefix to try when searching for startup files such as crt0.o.

MD_STARTFILE_PREFIX

If defined, this macro supplies an additional prefix to try after the standard prefixes. MD_EXEC_PREFIX is not searched when the -b option is used, or when the compiler is built as a cross compiler.

MD_STARTFILE_PREFIX_1

If defined, this macro supplies yet another prefix to try after the standard prefixes. It is not searched when the -b option is used, or when the compiler is built as a cross compiler.

INIT_ENVIRONMENT

Define this macro as a C string constant if you with to set environment variables for programs called by the driver, such as the assembler and loader. The driver passes the value of this macro to putenv to initialize the necessary environment variables.

LOCAL_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice of /usr/local/include as the default prefix to

gcc 346 / 551

try when searching for local header files. $LOCAL_INCLUDE_DIR$ comes before SYSTEM_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search either /usr/local/include or its replacement.

SYSTEM_INCLUDE_DIR

Define this macro as a C string constant if you wish to specify a system-specific directory to search for header files before the standard directory. SYSTEM_INCLUDE_DIR comes before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

STANDARD_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice of /usr/include as the default prefix to try when searching for header files.

Cross compilers do not use this macro and do not search either /usr/include or its replacement.

INCLUDE DEFAULTS

Define this macro if you wish to override the entire default search path for include files. The default search path includes GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition, GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are defined automatically by Makefile, and specify private search areas for GCC. The directory GPLUSPLUS_INCLUDE_DIR is used only for C++ programs.

The definition should be an initializer for an array of structures. Each array element should have two elements: the directory name (a string constant) and a flag for C++-only directories. Mark the end of the array with a null element. For example, here is the definition used for VMS:

Here is the order of prefixes tried for exec files:

- 1. Any prefixes specified by the user with -B.
- 2. The environment variable GCC_EXEC_PREFIX, if any.
- 3. The directories specified by the environment variable COMPILER PATH.

gcc 347 / 551

- 4. The macro STANDARD EXEC PREFIX.
- /usr/lib/gcc/.
- 6. The macro MD_EXEC_PREFIX, if any.

Here is the order of prefixes tried for startfiles:

- 1. Any prefixes specified by the user with -B.
- 2. The environment variable GCC_EXEC_PREFIX, if any.
- 3. The directories specified by the environment variable LIBRARY_PATH (native only, cross compilers do not use this).
- 4. The macro STANDARD_EXEC_PREFIX.
- 5. /usr/lib/gcc/.
- 6. The macro MD_EXEC_PREFIX, if any.
- 7. The macro MD_STARTFILE_PREFIX, if any.
- 8. The macro STANDARD_STARTFILE_PREFIX.
- 9. /lib/.
- 10. /usr/lib/.

1.182 gcc.guide/Run-time Target

Run-time Target Specification

Here are run-time target specifications.

CPP_PREDEFINES

Define this to be a string constant containing -D options to define the predefined macros that identify this machine and system. These macros will be predefined unless the -ansi option is specified.

In addition, a parallel set of macros are predefined, whose names are made by appending __ at the beginning and at the end. These __ macros are permitted by the ANSI standard, so they are predefined regardless of whether -ansi is specified.

For example, on the Sun, one can use the following value:

"-Dmc68000 -Dsun -Dunix"

The result is to define the macros $_mc68000_$, $_sun_$ and $_unix_$ unconditionally, and the macros mc68000, sun and unix

gcc 348 / 551

provided -ansi is not specified.

extern int target_flags;

This declaration should be present.

TARGET_...

This series of macros is to allow compiler command arguments to enable or disable the use of optional features of the target machine. For example, one machine description serves both the 68000 and the 68020; a command argument tells the compiler whether it should use 68020-only instructions or not. This command argument works by means of a macro TARGET_68020 that tests a bit in target_flags.

Define a macro TARGET_FEATURENAME for each such option. Its definition should test a bit in target_flags; for example:

```
#define TARGET_68020 (target_flags & 1)
```

One place where these macros are used is in the condition-expressions of instruction patterns. Note how TARGET_68020 appears frequently in the 68000 machine description file, m68k.md. Another place they are used is in the definitions of the other macros in the MACHINE.h file.

TARGET_SWITCHES

This macro defines names of command options to set and clear bits in target_flags. Its definition is an initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the option name, and a number, which contains the bits to set in target_flags. A negative number says to clear bits instead; the negative of the number is which bits to clear. The actual option name is made by appending -m to the specified name.

One of the subgroupings should have a null string. The number in this grouping is the default value for target_flags. Any target options act starting with that value.

Here is an example which defines -m68000 and -m68020 with opposite meanings, and picks the latter as the default:

```
#define TARGET_SWITCHES \
   { "68020", 1}, \
      { "68000", -1}, \
      { "", 1}}
```

TARGET_OPTIONS

This macro is similar to TARGET_SWITCHES but defines names of command options that have values. Its definition is an initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the fixed part of the option name, and the address of a variable. The variable, type char \star , is set to the variable part of the given option if the fixed part matches. The actual option name is made

gcc 349 / 551

by appending -m to the specified name.

Here is an example which defines -mshort-data-NUMBER. If the given option is -mshort-data-512, the variable m88k_short_data will be set to the string "512".

```
extern char *m88k_short_data;
#define TARGET_OPTIONS \
  { "short-data-", &m88k_short_data } }
```

TARGET_VERSION

This macro is a C statement to print on stderr a string describing the particular machine description choice. Every machine description should define TARGET_VERSION. For example:

```
#ifdef MOTOROLA
#define TARGET_VERSION \
   fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION \
   fprintf (stderr, " (68k, MIT syntax)");
#endif
```

OVERRIDE OPTIONS

Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro OVERRIDE_OPTIONS to take account of this. This macro, if defined, is executed once just after all the command options have been parsed.

Don't use this macro to turn on various extra optimizations for -O. That is what OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (LEVEL)

Some machines may desire to change what optimizations are performed for various optimization levels. This macro, if defined, is executed once just after the optimization level is determined and before the remainder of the command options have been parsed. Values set in this macro are used as the default values for the other command line options.

LEVEL is the optimization level specified; 2 if -02 is specified, 1 if -0 is specified, and 0 if neither is specified.

You should not use this macro to change options that are not machine-specific. These should uniformly selected by the same optimization level on all supported machines. Use this macro to enable machine-specific optimizations.

Do not examine write_symbols in this macro! The debugging options are not supposed to alter the generated code.

CAN DEBUG WITHOUT FP

Define this macro if debugging can be performed even without a frame pointer. If this macro is defined, GNU CC will turn on the -fomit-frame-pointer option whenever -O is specified.

gcc 350 / 551

1.183 gcc.guide/Storage Layout

Storage Layout

=========

Note that the definitions of the macros in this table which are sizes or alignments measured in bits do not need to be constant. They can be C expressions that refer to static variables, such as the target_flags. See

Run-time Target

.

BITS_BIG_ENDIAN

Define this macro to have the value 1 if the most significant bit in a byte has the lowest number; otherwise define it to have the value zero. This means that bit-field instructions count from the most significant bit. If the machine has no bit-field instructions, then this must still be defined, but it doesn't matter which value it is defined to. This macro need not be a constant.

This macro does not affect the way structure fields are packed into bytes or words; that is controlled by BYTES_BIG_ENDIAN.

BYTES BIG ENDIAN

Define this macro to have the value 1 if the most significant byte in a word has the lowest number. This macro need not be a constant.

WORDS_BIG_ENDIAN

Define this macro to have the value 1 if, in a multiword object, the most significant word has the lowest number. This applies to both memory locations and registers; GNU CC fundamentally assumes that the order of words in memory is the same as the order in registers. This macro need not be a constant.

LIBGCC2_WORDS_BIG_ENDIAN

Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used only when compiling libgcc2.c. Typically the value will be set based on preprocessor defines.

FLOAT_WORDS_BIG_ENDIAN

Define this macro to have the value 1 if DFmode, XFmode or TFmode floating point numbers are stored in memory with the word containing the sign bit at the lowest address; otherwise define it to have the value 0. This macro need not be a constant.

You need not define this macro if the ordering is the same as for $\operatorname{multi-word}$ integers.

BITS_PER_UNIT

Define this macro to be the number of bits in an addressable

gcc 351 / 551

storage unit (byte); normally 8.

BITS PER WORD

Number of bits in a word; normally 32.

MAX_BITS_PER_WORD

Maximum number of bits in a word. If this is undefined, the default is BITS_PER_WORD. Otherwise, it is the constant value that is the largest value that BITS_PER_WORD can have at run-time.

UNITS_PER_WORD

Number of storage units in a word; normally 4.

MIN_UNITS_PER_WORD

Minimum number of units in a word. If this is undefined, the default is UNITS_PER_WORD. Otherwise, it is the constant value that is the smallest value that UNITS_PER_WORD can have at run-time.

POINTER SIZE

Width of a pointer, in bits. You must specify a value no wider than the width of Pmode. If it is not equal to the width of Pmode, you must define POINTERS_EXTEND_UNSIGNED.

POINTERS_EXTEND_UNSIGNED

A C expression whose value is nonzero if pointers that need to be extended from being POINTER_SIZE bits wide to Pmode are sign-extended and zero if they are zero-extended.

You need not define this macro if the POINTER_SIZE is equal to the width of Pmode.

PROMOTE_MODE (M, UNSIGNEDP, TYPE)

A macro to update M and UNSIGNEDP when an object whose type is TYPE and which has the specified mode and signedness is to be stored in a register. This macro is only called when TYPE is a scalar type.

On most RISC machines, which only have operations that operate on a full register, define this macro to set M to word_mode if M is an integer mode narrower than BITS_PER_WORD. In most cases, only integer modes should be widened because wider-precision floating-point operations are usually more expensive than their narrower counterparts.

For most machines, the macro definition does not change UNSIGNEDP. However, some machines, have instructions that preferentially handle either signed or unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit loads from memory and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set UNSIGNEDP according to which kind of extension is more efficient.

Do not define this macro if it would never modify M.

PROMOTE_FUNCTION_ARGS

Define this macro if the promotion described by PROMOTE_MODE

gcc 352 / 551

should also be done for outgoing function arguments.

PROMOTE_FUNCTION_RETURN

Define this macro if the promotion described by PROMOTE_MODE should also be done for the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same promotions done by PROMOTE_MODE.

PROMOTE_FOR_CALL_ONLY

Define this macro if the promotion described by PROMOTE_MODE should only be performed for outgoing function arguments or function return values, as specified by PROMOTE_FUNCTION_ARGS and PROMOTE_FUNCTION_RETURN, respectively.

PARM BOUNDARY

Normal alignment required for function parameters on the stack, in bits. All stack parameters receive at least this much alignment regardless of data type. On most machines, this is the same as the size of an integer.

STACK BOUNDARY

Define this macro if you wish to preserve a certain alignment for the stack pointer. The definition is a C expression for the desired alignment (measured in bits).

If PUSH_ROUNDING is not defined, the stack will always be aligned to the specified boundary. If PUSH_ROUNDING is defined and specifies a less strict alignment than STACK_BOUNDARY, the stack may be momentarily unaligned while pushing arguments.

FUNCTION BOUNDARY

Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT

Biggest alignment that any data type can require on this machine, in bits.

BIGGEST_FIELD_ALIGNMENT

Biggest alignment that any structure field can require on this machine, in bits. If defined, this overrides BIGGEST_ALIGNMENT for structure fields only.

MAX_OFILE_ALIGNMENT

Biggest alignment supported by the object file format of this machine. Use this macro to limit the alignment which can be specified using the __attribute__ ((aligned (N))) construct. If not defined, the default value is BIGGEST_ALIGNMENT.

DATA_ALIGNMENT (TYPE, BASIC-ALIGN)

If defined, a C expression to compute the alignment for a static variable. TYPE is the data type, and BASIC-ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then BASIC-ALIGN is used.

gcc 353 / 551

One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. Another is to cause character arrays to be word-aligned so that strcpy calls that copy constants to character arrays can be done inline.

CONSTANT_ALIGNMENT (CONSTANT, BASIC-ALIGN)

If defined, a C expression to compute the alignment given to a constant that is being placed in memory. CONSTANT is the constant and BASIC-ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then BASIC-ALIGN is used.

The typical use of this macro is to increase alignment for string constants to be word aligned so that strcpy calls that copy constants can be done inline.

EMPTY FIELD BOUNDARY

Alignment in bits to be given to a structure bit field that follows an empty field such as int : 0;.

Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment that results from an empty field.

STRUCTURE_SIZE_BOUNDARY

Number of bits which any structure or union's size must be a multiple of. Each structure or union's size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as ${\tt BITS_PER_UNIT}$.

STRICT_ALIGNMENT

Define this macro to be the value 1 if instructions will fail to work if given data not on the nominal alignment. If instructions will merely go slower in that case, define this macro as 0.

PCC_BITFIELD_TYPE_MATTERS

Define this if you wish to imitate the way many other C compilers handle alignment of bitfields and the structures that contain them.

The behavior is that the type written for a bitfield (int, short, or other integer type) imposes an alignment for the entire structure, as if the structure really did contain an ordinary field of that type. In addition, the bitfield is placed within the structure so that it would fit within such a field, not crossing a boundary for it.

Thus, on most machines, a bitfield whose type is written as int would not cross a four-byte boundary, and would force four-byte alignment for the whole structure. (The alignment used may not be four bytes; it is controlled by the other alignment parameters.)

If the macro is defined, its definition should be a C expression; a nonzero value for the expression enables this behavior.

gcc 354 / 551

Note that if this macro is not defined, or its value is zero, some bitfields may cross more than one alignment boundary. The compiler can support such references if there are insv, extv, and extzv insns that can directly reference memory.

The other known way of making bitfields work is to define STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be accessed with fullwords.

Unless the machine has bitfield instructions or you define STRUCTURE_SIZE_BOUNDARY that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

If your aim is to make GNU CC use the same conventions for laying out bitfields as are used by another compiler, here is how to investigate what the other compiler does. Compile and run this program:

```
struct fool
  char x;
  char :0;
  char y;
};
struct foo2
  char x;
  int :0;
 char y;
};
main ()
  printf ("Size of fool is %d\n",
          sizeof (struct fool));
  printf ("Size of foo2 is dn",
          sizeof (struct foo2));
  exit (0);
```

If this prints 2 and 5, then the compiler's behavior is what you would get from PCC_BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED

Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to aligning a bitfield within the structure.

ROUND_TYPE_SIZE (STRUCT, SIZE, ALIGN)

Define this macro as an expression for the overall size of a structure (given by STRUCT as a tree node) when the size computed from the fields is SIZE and the alignment is ALIGN.

The default is to round SIZE up to a multiple of ALIGN.

ROUND_TYPE_ALIGN (STRUCT, COMPUTED, SPECIFIED)

Define this macro as an expression for the alignment of a structure

gcc 355 / 551

(given by STRUCT as a tree node) if the alignment computed in the usual way is COMPUTED and the alignment explicitly specified was SPECIFIED.

The default is to use SPECIFIED if it is larger; otherwise, use the smaller of COMPUTED and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE

An integer expression for the size in bits of the largest integer machine mode that should actually be used. All integer machine modes of this size or smaller can be used for structures and unions with the appropriate sizes. If this macro is undefined, GET_MODE_BITSIZE (DImode) is assumed.

CHECK_FLOAT_VALUE (MODE, VALUE, OVERFLOW)

A C statement to validate the value VALUE (of type double) for mode MODE. This means that you check whether VALUE fits within the possible range of values for mode MODE on this target machine. The mode MODE is always a mode of class MODE_FLOAT. OVERFLOW is nonzero if the value is already known to be out of range.

If VALUE is not valid or if OVERFLOW is nonzero, you should set OVERFLOW to 1 and then assign some valid value to VALUE. Allowing an invalid value to go through the compiler can produce incorrect assembler code which may even cause Unix assemblers to crash.

This macro need not be defined if there is no work for it to do.

TARGET_FLOAT_FORMAT

A code distinguishing the floating point format of the target machine. There are three defined values:

IEEE_FLOAT_FORMAT

This code indicates IEEE floating point. It is the default; there is no need to define this macro when the format is IEEE.

VAX FLOAT FORMAT

This code indicates the peculiar format used on the Vax.

UNKNOWN FLOAT FORMAT

This code indicates any other format.

The value of this macro is compared with HOST_FLOAT_FORMAT (see

Config

) to determine whether the target machine has the same format as the host machine. If any other formats are actually in use on supported machines, new codes should be defined for them.

The ordering of the component words of floating point values stored in memory is controlled by FLOAT_WORDS_BIG_ENDIAN for the target machine and HOST_FLOAT_WORDS_BIG_ENDIAN for the host.

gcc 356 / 551

1.184 gcc.guide/Type Layout

Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types used in programs being compiled. Unlike the macros in the previous section, these apply to specific features of C and related languages, rather than to fundamental aspects of storage layout.

INT_TYPE_SIZE

A C expression for the size in bits of the type int on the target machine. If you don't define this, the default is one word.

MAX_INT_TYPE_SIZE

Maximum number for the size in bits of the type int on the target machine. If this is undefined, the default is INT_TYPE_SIZE. Otherwise, it is the constant value that is the largest value that INT_TYPE_SIZE can have at run-time. This is used in cpp.

SHORT_TYPE_SIZE

A C expression for the size in bits of the type short on the target machine. If you don't define this, the default is half a word. (If this would be less than one storage unit, it is rounded up to one unit.)

LONG_TYPE_SIZE

A C expression for the size in bits of the type long on the target machine. If you don't define this, the default is one word.

MAX_LONG_TYPE_SIZE

Maximum number for the size in bits of the type long on the target machine. If this is undefined, the default is LONG_TYPE_SIZE. Otherwise, it is the constant value that is the largest value that LONG_TYPE_SIZE can have at run-time. This is used in cpp.

LONG_LONG_TYPE_SIZE

A C expression for the size in bits of the type long long on the target machine. If you don't define this, the default is two words. If you want to support GNU Ada on your machine, the value of macro must be at least 64.

CHAR_TYPE_SIZE

A C expression for the size in bits of the type char on the target machine. If you don't define this, the default is one quarter of a word. (If this would be less than one storage unit, it is rounded up to one unit.)

MAX_CHAR_TYPE_SIZE

Maximum number for the size in bits of the type char on the target machine. If this is undefined, the default is CHAR_TYPE_SIZE. Otherwise, it is the constant value that is the largest value that CHAR_TYPE_SIZE can have at run-time. This is used in cpp.

FLOAT_TYPE_SIZE

gcc 357 / 551

A C expression for the size in bits of the type float on the target machine. If you don't define this, the default is one word.

DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type double on the target machine. If you don't define this, the default is two words.

LONG DOUBLE TYPE SIZE

A C expression for the size in bits of the type long double on the target machine. If you don't define this, the default is two words.

DEFAULT_SIGNED_CHAR

An expression whose value is 1 or 0, according to whether the type char should be signed or unsigned by default. The user can always override this default with the options -fsigned-char and -funsigned-char.

DEFAULT SHORT ENUMS

A C expression to determine whether to give an enum type only as many bytes as it takes to represent the range of possible values of that type. A nonzero value means to do that; a zero value means all enum types should be allocated like int.

If you don't define the macro, the default is 0.

SIZE_TYPE

A C expression for a string describing the name of the data type to use for size values. The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces, and write first any length keyword, then unsigned if appropriate, and finally int. The string must exactly match one of the data type names defined in the function init_decl_processing in the file c-decl.c. You may not omit int or change the order—that would cause the compiler to crash on startup.

If you don't define this macro, the default is "long unsigned int".

PTRDIFF TYPE

A C expression for a string describing the name of the data type to use for the result of subtracting two pointers. The typedef name ptrdiff_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is "long int".

WCHAR TYPE

A C expression for a string describing the name of the data type to use for wide characters. The typedef name wchar_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is "int".

gcc 358 / 551

WCHAR_TYPE_SIZE

A C expression for the size in bits of the data type for wide characters. This is used in cpp, which cannot make use of WCHAR_TYPE.

MAX_WCHAR_TYPE_SIZE

Maximum number for the size in bits of the data type for wide characters. If this is undefined, the default is WCHAR_TYPE_SIZE. Otherwise, it is the constant value that is the largest value that WCHAR_TYPE_SIZE can have at run-time. This is used in cpp.

OBJC_INT_SELECTORS

Define this macro if the type of Objective ${\tt C}$ selectors should be int.

If this macro is not defined, then selectors should have the type struct $objc_selector *.$

OBJC SELECTORS WITHOUT LABELS

Define this macro if the compiler can group all the selectors together into a vector and use just one label at the beginning of the vector. Otherwise, the compiler must give each selector its own assembler label.

On certain machines, it is important to have a separate label for each selector because this enables the linker to eliminate duplicate selectors.

TARGET_BELL

A C constant expression for the integer value for escape sequence α .

TARGET_BS

TARGET_TAB

TARGET_NEWLINE

C constant expressions for the integer values for escape sequences \b , \t and \n .

TARGET VT

TARGET_FF

TARGET CR

C constant expressions for the integer values for escape sequences \v , \f and \r .

1.185 gcc.guide/Registers

Register Usage

=========

This section explains how to describe what registers the target machine has, and how (in general) they can be used.

The description of which registers a specific instruction can use is

gcc 359 / 551

done with register classes; see See

Register Classes

. For information

on using registers to access a stack frame, see See

Frame Registers

For passing values in registers, see See

Register Arguments

. For

returning values in registers, see See

Scalar Return

.

Register Basics

Number and kinds of registers.

Allocation Order

Order in which registers are allocated.

Values in Registers

What kinds of values each reg can hold.

Leaf Functions

Renumbering registers for leaf functions.

Stack Registers

Handling a register stack such as 80387.

Obsolete Register Macros

Macros formerly used for the 80387.

1.186 gcc.guide/Register Basics

Basic Characteristics of Registers

Registers have various characteristics.

FIRST_PSEUDO_REGISTER

Number of hardware registers known to the compiler. They receive numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register's number really is assigned the number FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS

An initializer that says which registers are used for fixed purposes all throughout the compiled code and are therefore not available for general allocation. These would include the stack pointer, the frame pointer (except on machines where that can be used as a general register when no frame pointer is needed), the program counter on machines where that is considered one of the

gcc 360 / 551

addressable registers, and any other numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas and surrounded by braces. The Nth number is 1 if register N is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following one, may be overridden at run time either automatically, by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by the user with the command options -ffixed-REG, -fcall-used-REG and -fcall-saved-REG.

CALL_USED_REGISTERS

Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by function calls as well as for fixed registers. This macro therefore identifies the registers that are not available for general allocation of values that must live across function calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on function entry and restores it on function exit, if the register is used within the function.

CONDITIONAL_REGISTER_USAGE

Zero or more C statements that may conditionally modify two variables fixed_regs and call_used_regs (both of type char []) after they have been initialized from the two preceding macros.

This is necessary in case the fixed or call-clobbered registers depend on target flags.

You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify fixed_regs and call_used_regs to 1 for each of the registers in the classes which should not be used by GCC. Also define the macro REG_CLASS_FROM_LETTER to return NO_REGS if it is called with a letter for a class that shouldn't be used.

(However, if this class is not included in GENERAL_REGS and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.)

NON_SAVING_SETJMP

If this macro is defined and has a nonzero value, it means that setjmp and related functions fail to save the registers, or that longjmp fails to restore them. To compensate, the compiler avoids putting variables in registers in functions that use setjmp.

INCOMING_REGNO (OUT)

Define this macro if the target machine has register windows. This C expression returns the register number as seen by the called function corresponding to the register number OUT as seen

gcc 361 / 551

by the calling function. Return OUT if register number OUT is not an outbound register.

OUTGOING_REGNO (IN)

Define this macro if the target machine has register windows. This C expression returns the register number as seen by the calling function corresponding to the register number IN as seen by the called function. Return IN if register number IN is not an inbound register.

1.187 gcc.guide/Allocation Order

Order of Allocation of Registers

Registers are allocated in order.

REG_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard registers in the order in which GNU CC should prefer to use them (from most preferred to least).

If this macro is not defined, registers are used lowest numbered first (all else being equal).

One use of this macro is on machines where the highest numbered registers must always be saved and the save-multiple-registers instruction supports only sequences of consecutive registers. On such machines, define REG_ALLOC_ORDER to be an initializer that lists the highest numbered allocatable register first.

ORDER REGS FOR LOCAL ALLOC

A C statement (sans semicolon) to choose the order in which to allocate hard registers for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. Element 0 should be the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_order before execution of the macro.

On most machines, it is not necessary to define this macro.

1.188 gcc.guide/Values in Registers

How Values Fit in Registers

gcc 362 / 551

This section discusses the macros that describe which kinds of values (specifically, which machine modes) each register can hold, and how many consecutive registers are needed for a given mode.

HARD REGNO NREGS (REGNO, MODE)

A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode MODE.

On a machine where all registers are exactly one word, a suitable definition of this macro is

```
#define HARD_REGNO_NREGS(REGNO, MODE) \
    ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
    / UNITS_PER_WORD))
```

HARD_REGNO_MODE_OK (REGNO, MODE)

A C expression that is nonzero if it is permissible to store a value of mode MODE in hard register number REGNO (or in several registers starting with that one). For a machine where all registers are equivalent, a suitable definition is

```
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
```

It is not necessary for this macro to check for the numbers of fixed registers, because the allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs. The way to implement that is to define this macro to reject odd register numbers for such modes.

The minimum requirement for a mode to be OK in a register is that the movMODE instruction pattern support moves between the register and any other hard register for which the mode is OK; and that moving a value into the register and back out not alter it.

Since the same instruction used to move SImode will work for all narrower integer modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to distinguish between these modes, provided you define patterns movhi, etc., to take advantage of this. This is useful because of the interaction between HARD_REGNO_MODE_OK and MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed only in floating point registers. This is not true. Any registers that can hold integers can safely hold a floating point machine mode, whether or not floating arithmetic can be done on it in those registers. Integer move instructions can be used to move the values.

On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case,

gcc 363 / 551

HARD_REGNO_MODE_OK should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one and retrieve it unchanged without a trap, then any machine mode may go in a floating register, so you can define this macro to say so.

The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for those instructions.

On some machines, the floating registers are especially slow to access, so that it is better to store a value in a stack frame than in such a register if floating point arithmetic is not being done. As long as the floating registers are not in class GENERAL_REGS, they will not be used unless some pattern's constraint asks for one.

MODES_TIEABLE_P (MODE1, MODE2)

A C expression that is nonzero if it is desirable to choose register allocation so as to avoid move instructions between a value of mode MODE1 and a value of mode MODE2.

If ${\tt HARD_REGNO_MODE_OK}$ (R, MODE1) and ${\tt HARD_REGNO_MODE_OK}$ (R, MODE2) are ever different for any R, then MODES_TIEABLE_P (MODE1, MODE2) must be zero.

1.189 gcc.guide/Leaf Functions

Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently if it does not make its own register window. Often this means it is required to receive its arguments in the registers where they are passed by the caller, instead of the registers where they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions are met; for example, often they may use only those registers for its own variables and temporaries. We use the term "leaf function" to mean a function that is suitable for this special handling, so that functions with no calls are not necessarily "leaf functions".

GNU CC assigns register numbers before it knows whether the function is suitable for leaf function treatment. So it needs to renumber the registers in order to output a leaf function. The following macros accomplish this.

LEAF_REGISTERS

A C initializer for a vector, indexed by hard register number,

gcc 364 / 551

which contains 1 for a register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers marked here should be the ones before renumbering—those that GNU CC would ordinarily allocate. The registers which will actually be used in the assembler code, after renumbering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treatment of leaf functions.

LEAF_REG_REMAP (REGNO)

A C expression whose value is the register number to which REGNO should be renumbered, when a function is treated as a leaf function.

If REGNO is a register number which should not appear in a leaf function before renumbering, then the expression should yield -1, which will cause the compiler to abort.

Define this macro only if the target machine offers a way to optimize the treatment of leaf functions, and registers need to be renumbered to do this.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf functions specially. It can test the C variable leaf_function which is nonzero for leaf functions. (The variable leaf_function is defined only if LEAF_REGISTERS is defined.)

1.190 gcc.guide/Stack Registers

Registers That Form a Stack

There are special features to handle computers where some of the "registers" form a stack, as in the 80387 coprocessor for the 80386. Stack registers are normally written by pushing onto the stack, and are numbered relative to the top of the stack.

Currently, GNU CC can only handle one group of stack-like registers, and they must be consecutively numbered.

STACK REGS

Define this if the machine has any stack-like registers.

FIRST_STACK_REG

The number of the first stack-like register. This one is the top of the stack.

LAST_STACK_REG

The number of the last stack-like register. This one is the bottom of the stack.

gcc 365 / 551

1.191 gcc.guide/Obsolete Register Macros

Obsolete Macros for Controlling Register Usage

These features do not work very well. They exist because they used to be required to generate correct code for the 80387 coprocessor of the 80386. They are no longer used by that machine description and may be removed in a later version of the compiler. Don't use them!

OVERLAPPING_REGNO_P (REGNO)

If defined, this is a C expression whose value is nonzero if hard register number REGNO is an overlapping register. This means a hard register which overlaps a hard register with a different number. (Such overlap is undesirable, but occasionally it allows a machine to be supported which otherwise could not be.) This macro must return nonzero for all the registers which overlap each other. GNU CC can use an overlapping register only in certain limited ways. It can be used for allocation within a basic block, and may be spilled for reloading; that is all.

If this macro is not defined, it means that none of the hard registers overlap each other. This is the usual situation.

INSN_CLOBBERS_REGNO_P (INSN, REGNO)

If defined, this is a C expression whose value should be nonzero if the insn INSN has the effect of mysteriously clobbering the contents of hard register number REGNO. By "mysterious" we mean that the insn's RTL expression doesn't describe such an effect.

If this macro is not defined, it means that no insn clobbers registers mysteriously. This is the usual situation; all else being equal, it is best for the RTL expression to show all the activity.

PRESERVE_DEATH_INFO_REGNO_P (REGNO)

If defined, this is a C expression whose value is nonzero if accurate REG_DEAD notes are needed for hard register number REGNO at the time of outputting the assembler code. When this is so, a few optimizations that take place after register allocation and could invalidate the death notes are not done when this register is involved.

You would arrange to preserve death info for a register when some of the code in the machine description which is executed to write the assembler code looks at the death notes. This is necessary only when the actual hardware feature which GNU CC thinks of as a register is not actually a register of the usual sort. (It might, for example, be a hardware stack.)

If this macro is not defined, it means that no death notes need to be preserved. This is the usual situation.

gcc 366 / 551

1.192 gcc.guide/Register Classes

Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain registers may not be allowed for indexed addressing; certain registers may not be allowed in some instructions. These machine restrictions are described to the compiler using register classes.

You define a number of register classes, giving each one a name and saying which of the registers belong to it. Then you can specify register classes that are allowed as operands to particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain no registers. Often the union of two classes will be another class; however, this is not required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about the name, but the operand constraint letters r and g specify this class. If GENERAL_REGS is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class ${\tt X}$ is contained in class ${\tt Y}$ then ${\tt X}$ has a lower class number than ${\tt Y}$.

The way classes other than GENERAL_REGS are specified in operand constraints is through machine-dependent operand constraint letters. You can define such letters to correspond to various classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows both classes. For example, if an instruction allows either a floating point (coprocessor) register or a general register for a certain operand, you should define a class FLOAT_OR_GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each class, which classes contain it and which ones are contained in it; for each pair of classes, the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all the registers used must belong to that class. Therefore, register classes cannot be used to enforce a requirement for a register pair to start with an even-numbered register. The way to specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special requirement: each such class must have, for

gcc 367 / 551

each fixed-point machine mode, a subclass whose registers can transfer that mode to or from memory. For example, on some machines, the operations for single-byte values (QImode) are limited to certain registers. When this is so, each register class that is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which single-byte values can be loaded or stored. This is so that PREFERRED_RELOAD_CLASS can always have a possible value to return.

enum req_class

An enumeral type that must be defined with all the register class names as enumeral values. NO_REGS must be first. ALL_REGS must be the last register class, followed by one more enumeral value, LIM_REG_CLASSES, which is not a register class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name to type int. The number serves as an index in many of the tables described below.

N_REG_CLASSES

The number of distinct register classes, defined as follows:

#define N REG CLASSES (int) LIM REG CLASSES

REG_CLASS_NAMES

An initializer containing the names of the register classes as C string constants. These names are used in writing some of the debugging dumps.

REG_CLASS_CONTENTS

An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is that register R is in the class if MASK & (1 << R) is 1.

When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, braced groupings containing several integers. Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET which is defined in hard-reg-set.h.

REGNO REG CLASS (REGNO)

A C expression whose value is a register class containing hard register REGNO. In general there is more than one such class; choose a class which is minimal, meaning that no smaller class also contains the register.

BASE_REG_CLASS

A macro whose definition is the name of the class to which a valid base register must belong. A base register is one used in an address which is the register value plus a displacement.

INDEX_REG_CLASS

A macro whose definition is the name of the class to which a valid index register must belong. An index register is one used in an address where its value is either multiplied by a scale factor or gcc 368 / 551

added to another register (as well as added to a displacement).

REG_CLASS_FROM_LETTER (CHAR)

A C expression which defines the machine-dependent operand constraint letters for register classes. If CHAR is such a letter, the value should be the register class corresponding to it. Otherwise, the value should be NO_REGS. The register letter r, corresponding to class GENERAL_REGS, will not be passed to this macro; you do not need to handle it.

REGNO_OK_FOR_BASE_P (NUM)

A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses. It may be either a suitable hard register or a pseudo register that has been allocated such a hard register.

REGNO_OK_FOR_INDEX_P (NUM)

A C expression which is nonzero if register number NUM is suitable for use as an index register in operand addresses. It may be either a suitable hard register or a pseudo register that has been allocated such a hard register.

The difference between an index register and a base register is that the index register may be scaled. If an address involves the sum of two registers, neither one of them scaled, then either one may be labeled the "base" and the other the "index"; but whichever labeling is used must fit the machine's constraints of which registers may serve in each capacity. The compiler will try both labelings, looking for one that is valid, and will reload one or both registers only if neither labeling works.

PREFERRED_RELOAD_CLASS (X, CLASS)

A C expression that places additional restrictions on the register class to use when it is necessary to copy value X into a register in class CLASS. The value is a register class; perhaps CLASS, or perhaps another, smaller class. On many machines, the following definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example, on the 68000, when X is an integer constant that is in range for a moveq instruction, the value of this macro is always DATA_REGS as long as CLASS includes the data registers. Requiring a data register guarantees that a moveq will be used.

If X is a const_double, by returning NO_REGS you can force X into a memory constant. This is useful on certain machines where immediate floating values cannot be loaded into certain kinds of registers.

PREFERRED_OUTPUT_RELOAD_CLASS (X, CLASS)

Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads. If you don't define this macro, the default is to use CLASS, unchanged.

LIMIT_RELOAD_CLASS (MODE, CLASS)

gcc 369 / 551

A C expression that places additional restrictions on the register class to use when it is necessary to be able to hold a value of mode MODE in a reload register for which class CLASS would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain modes that simply can't go in certain reload classes.

The value is a register class; perhaps CLASS, or perhaps another, smaller class.

Don't define this macro unless the target machine has limitations which require the macro to do something nontrivial.

SECONDARY_RELOAD_CLASS (CLASS, MODE, X)
SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)
SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)

Many machines have some registers that cannot be copied directly to or from memory or even from other types of registers. An example is the MQ register, which on most machines, can only be copied to or from general registers, but not memory. Some machines allow copying all registers to and from memory, but require a scratch register for stores to some memory locations (e.g., those with symbolic address on the RT, and those with certain symbolic address on the Sparc when compiling PIC). In some cases, both an intermediate and a scratch register are required.

You should define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying X to a register CLASS in MODE requires an intermediate register, you should define SECONDARY_INPUT_RELOAD_CLASS to return the largest register class all of whose registers can be used as intermediate registers or scratch registers.

If copying a register CLASS in MODE to X requires an intermediate or scratch register, SECONDARY_OUTPUT_RELOAD_CLASS should be defined to return the largest register class required. If the requirements for input and output reloads are the same, the macro SECONDARY_RELOAD_CLASS should be used instead of defining both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no spare register is needed; i.e., if X can be directly copied to or from a register of CLASS in MODE without requiring a scratch register. Do not define this macro if it would always return NO_REGS.

If a scratch register is required (either with or without an intermediate register), you should define patterns for reload_inM or reload_outM, as required (see

Standard Names

. These patterns,

which will normally be implemented with a define_expand, should be similar to the movM patterns, except that operand 2 is the scratch

gcc 370 / 551

register.

Define constraints for the reload register and scratch register that contain a single register class. If the original reload register (whose class is CLASS) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional reload registers are required. Their classes are obtained from the constraints in the insn pattern.

X might be a pseudo-register or a subreg of a pseudo-register, which could either be in a hard register or in memory. Use true_regnum to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location must be used to perform the copy and the movM pattern should use memory as a intermediate storage. This case often occurs between floating-point and general registers.

SECONDARY MEMORY NEEDED (CLASS1, CLASS2, M)

Certain machines have the property that some registers cannot be copied to some other registers without using memory. Define this macro on those machines to be a C expression that is non-zero if objects of mode M in registers of CLASS1 can only be copied to registers of class CLASS2 by storing a register of CLASS1 into memory and loading that memory location into a register of CLASS2.

Do not define this macro if its value would always be zero.

SECONDARY_MEMORY_NEEDED_RTX (MODE)

Normally when SECONDARY_MEMORY_NEEDED is defined, the compiler allocates a stack slot for a memory location needed for register copies. If this macro is defined, the compiler instead uses the memory location defined by this macro.

Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED.

SECONDARY MEMORY NEEDED MODE (MODE)

When the compiler needs a secondary memory location to copy between two registers of mode MODE, it normally allocates sufficient memory to hold a quantity of BITS_PER_WORD bits and performs the store and load operations in a mode that many bits wide and whose class is the same as that of MODE.

This is right thing to do on most machines because it ensures that all bits of the register are copied and prevents accesses to the registers in a narrower mode, which some machines prohibit for floating-point registers.

However, this default behavior is not correct on some machines, such as the DEC Alpha, that store short integers in floating-point registers differently than in integer registers. On those

gcc 371 / 551

machines, the default widening will not work correctly and you must define this macro to suppress that widening in some cases. See the file alpha.h for details.

Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED or if widening MODE to a mode that is BITS_PER_WORD bits wide is correct for your machine.

SMALL REGISTER CLASSES

Normally the compiler avoids choosing registers that have been explicitly mentioned in the rtl as spill registers (these registers are normally those used to pass parameters and return values). However, some machines have so few registers of certain classes that there would not be enough registers to use as spill registers if this were done.

Define SMALL_REGISTER_CLASSES on these machines. When it is defined, the compiler allows registers explicitly used in the rtl to be used as spill registers but avoids extending the lifetime of these registers.

It is always safe to define this macro, but if you unnecessarily define it, you will reduce the amount of optimizations that can be performed in some cases. If you do not define this macro when it is required, the compiler will run out of spill registers and print a fatal error message. For most machines, you should not define this macro.

CLASS_LIKELY_SPILLED_P (CLASS)

A C expression whose value is nonzero if pseudos that have been assigned to registers of class CLASS would likely be spilled because registers of CLASS are needed for spill registers.

The default value of this macro returns 1 if CLASS has exactly one register and zero otherwise. On most machines, this default should be used. Only define this macro to some other expression if pseudo allocated by local-alloc.c end up in memory because their hard registers were needed for spill registers. If this macro returns nonzero for those classes, those pseudos will only be allocated by global.c, which knows how to reallocate the pseudo to another register. If there would not be another register available for reallocation, you should not change the definition of this macro since the only effect of such a definition would be to slow down register allocation.

CLASS_MAX_NREGS (CLASS, MODE)

A C expression for the maximum number of consecutive registers of class CLASS needed to hold a value of mode MODE.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of the macro CLASS_MAX_NREGS (CLASS, MODE) should be the maximum value of HARD_REGNO_NREGS (REGNO, MODE) for all REGNO values in the class CLASS.

This macro helps control the handling of multiple-word values in the reload pass.

gcc 372 / 551

CLASS CANNOT CHANGE SIZE

If defined, a C expression for a class that contains registers which the compiler must always access in a mode that is the same size as the mode in which it loaded the register.

For the example, loading 32-bit integer or floating-point objects into floating-point registers on the Alpha extends them to 64-bits. Therefore loading a 64-bit object and then storing it as a 32-bit object does not store the low-order 32-bits, as would be the case for a normal register. Therefore, alpha.h defines this macro as FLOAT_REGS.

Three other special macros describe which operands fit which constraint letters.

CONST_OK_FOR_LETTER_P (VALUE, C)

A C expression that defines the machine-dependent operand constraint letters that specify particular ranges of integer values. If C is one of those letters, the expression should check that VALUE, an integer, is in the appropriate range and return 1 if so, 0 otherwise. If C is not one of those letters, the value should be 0 regardless of VALUE.

CONST DOUBLE OK FOR LETTER P (VALUE, C)

A C expression that defines the machine-dependent operand constraint letters that specify particular ranges of const_double values.

If C is one of those letters, the expression should check that VALUE, an RTX of code const_double, is in the appropriate range and return 1 if so, 0 otherwise. If C is not one of those letters, the value should be 0 regardless of VALUE.

const_double is used for all floating-point constants and for DImode fixed-point constants. A given letter can accept either or both kinds of values. It can use GET_MODE to distinguish between these kinds.

EXTRA_CONSTRAINT (VALUE, C)

A C expression that defines the optional machine-dependent constraint letters that can be used to segregate specific types of operands, usually memory references, for the target machine. Normally this macro will not be defined. If it is required for a particular target machine, it should return 1 if VALUE corresponds to the operand type represented by the constraint letter C. If C is not defined as an extra constraint, the value returned should be 0 regardless of VALUE.

For example, on the ROMP, load instructions cannot have their output in r0 if the memory reference contains a symbolic address. Constraint letter Q is defined as representing a memory address that does not contain a symbolic address. An alternative is specified with a Q constraint on the input and r on the output. The next alternative specifies m on the input and a register class that does not include r0 on the output.

gcc 373 / 551

1.193 gcc.guide/Stack and Calling

Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

Frame Layout

Frame Registers

Elimination

Stack Arguments

Register Arguments

Scalar Return

Aggregate Return

Caller Saves

Function Entry

Profiling

1.194 gcc.guide/Frame Layout

Basic Stack Layout

Here is the basic stack layout.

STACK_GROWS_DOWNWARD

Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address.

When we say, "define this macro if ...," it means that the compiler checks this macro only with #ifdef so the precise definition used does not matter.

FRAME_GROWS_DOWNWARD

Define this macro if the addresses of local variable slots are at negative offsets from the frame pointer.

ARGS_GROW_DOWNWARD

gcc 374 / 551

Define this macro if successive arguments to a function occupy decreasing addresses on the stack.

STARTING_FRAME_OFFSET

Offset from the frame pointer to the first local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, find the next slot's offset by subtracting the first slot's length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding the length of the first slot to the value STARTING_FRAME_OFFSET.

STACK_POINTER_OFFSET

Offset from the stack pointer register to the first location at which outgoing arguments are placed. If not specified, the default value of zero is used. This is the proper value for most machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location at which outgoing arguments are placed.

FIRST_PARM_OFFSET (FUNDECL)

Offset from the argument pointer register to the first argument's address. On some machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argument's address.

STACK_DYNAMIC_OFFSET (FUNDECL)

Offset from the stack pointer register to an item dynamically allocated on the stack, e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length of the outgoing arguments. The default is correct for most machines. See function.c for details.

DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)

A C expression whose value is RTL representing the address in a stack frame where the pointer to the caller's frame is stored. Assume that FRAMEADDR is an RTL expression for the address of the stack frame itself.

If you don't define this macro, the default is to return the value of FRAMEADDR—that is, the stack frame address is also the address of the stack word that points to the previous frame.

SETUP_FRAME_ADDRESSES ()

If defined, a C expression that produces the machine-specific code to setup the stack so that arbitrary frames can be accessed. For example, on the Sparc, we must flush all of the register windows to the stack before we can access arbitrary stack frames. This macro will seldom need to be defined.

RETURN_ADDR_RTX (COUNT, FRAMEADDR)

A C expression whose value is RTL representing the value of the return address for the frame COUNT steps up from the current frame.

gcc 375 / 551

FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of the COUNT - 1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.

RETURN_ADDR_IN_PREVIOUS_FRAME

Define this if the return address of a particular stack frame is accessed from the frame pointer of the previous stack frame.

1.195 gcc.guide/Frame Registers

Registers That Address the Stack Frame

This discusses registers that address the stack frame.

STACK POINTER REGNUM

The register number of the stack pointer register, which must also be a fixed register according to FIXED_REGISTERS. On most machines, the hardware determines which register this is.

FRAME_POINTER_REGNUM

The register number of the frame pointer register, which is used to access automatic variables in the stack frame. On some machines, the hardware determines which register this is. On other machines, you can choose any register you wish for this purpose.

HARD_FRAME_POINTER_REGNUM

On some machines the offset between the frame pointer and starting offset of the automatic variables is not known until after register allocation has been done (for example, because the saved registers are between these two locations). On those machines, define FRAME_POINTER_REGNUM the number of a special, fixed register to be used internally until the offset is known, and define HARD_FRAME_POINTER_REGNUM to be actual the hard register number used for the frame pointer.

You should define this macro only in the very rare circumstances when it is not possible to calculate the offset between the frame pointer and the automatic variables until after register allocation has been completed. When this macro is defined, you must also indicate in your definition of ELIMINABLE_REGS how to eliminate FRAME_POINTER_REGNUM into either HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as ${\tt FRAME_POINTER_REGNUM.}$

ARG_POINTER_REGNUM

The register number of the arg pointer register, which is used to access the function's argument list. On some machines, this is the same as the frame pointer register. On some machines, the hardware determines which register this is. On other machines, you can choose any register you wish for this purpose. If this is not the same register as the frame pointer register, then you must

gcc 376 / 551

STATIC_CHAIN_REGNUM

STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function's static chain pointer. If register windows are used, the register number as seen by the called function is STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the calling function is STATIC_CHAIN_REGNUM. If these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined; instead, the next two macros should be defined.

STATIC CHAIN

STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem expressions that denote where they are stored. STATIC_CHAIN and STATIC_CHAIN_INCOMING give the locations as seen by the calling and called functions, respectively. Often the former will be at an offset from the stack pointer and the latter at an offset from the frame pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will have been initialized prior to the use of these macros and should be used to refer to those items.

If the static chain is passed in a register, the two previous macros should be defined instead.

1.196 gcc.guide/Elimination

Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

FRAME_POINTER_REQUIRED

A C expression which is nonzero if a function must have and use a frame pointer. This expression is evaluated in the reload pass. If its value is nonzero the function will have a frame pointer.

The expression can in principle examine the current function and decide according to the facts, but on most machines the constant 0 or the constant 1 suffices. Use 0 when the machine allows code to be generated with no frame pointer, and doing so saves some time or space. Use 1 when there is no possible advantage to avoiding a frame pointer.

gcc 377 / 551

In certain cases, the compiler does not know how to produce valid code without a frame pointer. The compiler recognizes those cases and automatically gives the function a frame pointer regardless of what FRAME_POINTER_REQUIRED says. You don't need to worry about them.

In a function that does not require a frame pointer, the frame pointer register can be allocated for ordinary usage, unless you mark it as a fixed register. See FIXED_REGISTERS for more information.

INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR)

A C statement to store in the variable DEPTH-VAR the difference between the frame pointer and the stack pointer values immediately after the function prologue. The value would be computed from information such as the result of get_frame_size () and the tables of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not be defined. Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is defined to always be true; in that case, you may set DEPTH-VAR to anything.

ELIMINABLE_REGS

If defined, this macro specifies a table of register pairs used to eliminate unneeded registers that point into the stack frame. If it is not defined, the only elimination attempted by the compiler is to replace references to the frame pointer with references to the stack pointer.

The definition of this macro is a list of structure initializations, each of which specifies an original and replacement register.

On some machines, the position of the argument pointer is not known until the compilation is completed. In such a case, a separate hard register must be used for the argument pointer. This register can be eliminated by replacing it with either the frame pointer or the argument pointer, depending on whether or not the frame pointer has been eliminated.

```
In this case, you might specify:
    #define ELIMINABLE_REGS \
    {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
        {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
        {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
```

Note that the elimination of the argument pointer with the stack pointer is specified first since that is the preferred elimination.

CAN_ELIMINATE (FROM-REG, TO-REG)

A C expression that returns non-zero if the compiler is allowed to try to replace register number FROM-REG with register number TO-REG. This macro need only be defined if ELIMINABLE_REGS is defined, and will usually be the constant 1, since most of the cases preventing register elimination are things that the compiler

gcc 378 / 551

already knows about.

INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR)

This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the initial difference between the specified pair of registers. This macro must be defined if ELIMINABLE_REGS is defined.

LONGJMP RESTORE FROM STACK

Define this macro if the longjmp function restores registers from the stack frames, rather than from those saved specifically by setjmp. Certain quantities must not be kept in registers across a call to setjmp on such machines.

1.197 gcc.guide/Stack Arguments

Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following section for other macros that control passing certain arguments in registers.

PROMOTE PROTOTYPES

Define this macro if an argument declared in a prototype as an integral type smaller than int should actually be passed as an int. In addition to avoiding errors in certain cases of mismatch, it also makes for better code on certain machines.

PUSH_ROUNDING (NPUSHED)

A C expression that is the number of bytes actually pushed onto the stack when an instruction attempts to push NPUSHED bytes.

If the target machine does not have a push instruction, do not define this macro. That directs GNU CC to use an alternate strategy: to allocate the entire argument block and then store the arguments into it.

On some machines, the definition

#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte actually push two bytes in an attempt to maintain alignment. Then the definition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

ACCUMULATE_OUTGOING_ARGS

If defined, the maximum amount of space required for outgoing arguments will be computed and placed into the variable current_function_outgoing_args_size. No space will be pushed onto the stack for each call; instead, the function prologue should increase the stack frame size by this amount.

gcc 379 / 551

Defining both PUSH_ROUNDING and ACCUMULATE_OUTGOING_ARGS is not proper.

REG PARM STACK SPACE (FNDECL)

Define this macro if functions should assume that stack space has been allocated for arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed in registers for the function represented by FNDECL.

This space can be allocated by the caller, or be a part of the machine-dependent stack frame: OUTGOING_REG_PARM_STACK_SPACE says which.

MAYBE_REG_PARM_STACK_SPACE

FINAL_REG_PARM_STACK_SPACE (CONST_SIZE, VAR_SIZE)

Define these macros in addition to the one above if functions might allocate stack space for arguments even when their values are passed in registers. These should be used when the stack space allocated for arguments in registers is not a simple constant independent of the function declaration.

The value of the first macro is the size, in bytes, of the area that we should initially assume would be reserved for arguments passed in registers.

The value of the second macro is the actual size, in bytes, of the area that will be reserved for arguments passed in registers. This takes two arguments: an integer representing the number of bytes of fixed sized arguments on the stack, and a tree representing the number of bytes of variable sized arguments on the stack.

When these macros are defined, REG_PARM_STACK_SPACE will only be called for libcall functions, the current function, or for a function being called when it is known that such stack space must be allocated. In each case this value can be easily computed.

When deciding whether a called function needs such stack space, and how much space to reserve, GNU CC uses these two macros instead of REG_PARM_STACK_SPACE.

OUTGOING_REG_PARM_STACK_SPACE

Define this if it is the responsibility of the caller to allocate the area reserved for arguments passed in registers.

If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space for these arguments counts in the value of current_function_outgoing_args_size.

STACK_PARMS_IN_REG_PARM_AREA

Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parameters don't skip the area specified by it.

380 / 551 gcc

Normally, when a parameter is not passed in registers, it is placed on the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro suppresses this behavior and causes the parameter to be passed on the stack in its natural location.

RETURN_POPS_ARGS (FUNDECL, FUNTYPE, STACK-SIZE)

A C expression that should indicate the number of bytes of its own arguments that a function pops on returning, or 0 if the function pops no arguments and the caller must therefore pop them all after the function returns.

FUNDECL is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type FUNCTION_DECL that describes the declaration of the function. From this it is possible to obtain the DECL_MACHINE_ATTRIBUTES of the function.

FUNTYPE is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type FUNCTION TYPE that describes the data type of the function. From this it is possible to obtain the data types of the value and arguments (if known).

When a call to a library function is being considered, FUNTYPE will contain an identifier node for the library function. Thus, if you need to distinguish among various library functions, you can do so by their names. Note that "library function" in this context means a function used to perform arithmetic, whose name is known specially in the compiler and was not mentioned in the C code being compiled.

STACK-SIZE is the number of bytes of arguments passed on the stack. If a variable number of bytes is passed, it is zero, and argument popping will always be the responsibility of the calling function.

On the Vax, all functions always pop their arguments, so the definition of this macro is STACK-SIZE. On the 68000, using the standard calling convention, no functions pop their arguments, so the value of the macro is always 0 in this case. But an alternative calling convention is available in which functions that take a fixed number of arguments pop them but other functions (such as printf) pop nothing (the caller pops all). When this convention is in use, FUNTYPE is examined to determine whether a function takes a fixed number of arguments.

1.198 gcc.guide/Register Arguments

Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are passed in registers or how they are arranged in the stack.

gcc 381 / 551

FUNCTION_ARG (CUM, MODE, TYPE, NAMED)

A C expression that controls whether a function argument is passed in a register, and which register.

The arguments are CUM, which summarizes all the previous arguments; MODE, the machine mode of the argument; TYPE, the data type of the argument as a tree node or 0 if that is not known (which happens for C support library functions); and NAMED, which is 1 for an ordinary argument and 0 for nameless arguments that correspond to ... in the called function's prototype.

The value of the expression should either be a reg RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack.

For machines like the Vax and 68000, where normally all arguments are pushed, zero suffices as a definition.

The usual way to make the ANSI library stdarg.h work on a machine where some arguments are usually passed in registers, is to cause nameless arguments to be passed on the stack instead. This is done by making FUNCTION_ARG return 0 whenever NAMED is 0.

You may use the macro MUST_PASS_IN_STACK (MODE, TYPE) in the definition of this macro to determine if this argument is of a type that must be passed in the stack. If REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns non-zero for such an argument, the compiler will abort. If REG_PARM_STACK_SPACE is defined, the argument will be computed in the stack and then loaded into a register.

FUNCTION_INCOMING_ARG (CUM, MODE, TYPE, NAMED)

Define this macro if the target machine has "register windows", so that the register in which a function sees an arguments is not necessarily the same as the one in which the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller passes the value, and FUNCTION_INCOMING_ARG should be defined in a similar fashion to tell the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

FUNCTION_ARG_PARTIAL_NREGS (CUM, MODE, TYPE, NAMED)

A C expression for the number of words, at the beginning of an argument, must be put in registers. The value must be zero for arguments that are passed entirely in registers or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first N words of arguments are passed in registers, and the rest on the stack. If a multi-word argument (a double or a structure) crosses that boundary, its first few words must be $\frac{1}{2}$

gcc 382 / 551

passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many of the words should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by the caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called function.

FUNCTION ARG PASS BY REFERENCE (CUM, MODE, TYPE, NAMED)

A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type.

On machines where REG_PARM_STACK_SPACE is not defined, a suitable definition of this macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \
 MUST PASS IN STACK (MODE, TYPE)

FUNCTION_ARG_CALLEE_COPIES (CUM, MODE, TYPE, NAMED)

If defined, a C expression that indicates when it is the called function's responsibility to make a copy of arguments passed by invisible reference. Normally, the caller makes a copy and passes the address of the copy to the routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller does not make a copy. Instead, it passes a pointer to the "live" value. The called function must not modify this value. If it can be determined that the value won't be modified, it need not make a copy; otherwise a copy must be made.

CUMULATIVE_ARGS

A C type for declaring a variable that is used as the first argument of FUNCTION_ARG and other related values. For some target machines, the type int suffices and can hold the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that have been passed on the stack. The compiler has other variables to keep track of that. For target machines on which all arguments are passed on the stack, there is no need to store anything in CUMULATIVE_ARGS; however, the data structure must exist and should not be empty, so use int.

INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME)

A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of the function which will receive the args, or 0 if the args are to a compiler support library function.

When processing a call to a compiler support library function, LIBNAME identifies which one. It is a symbol_ref rtx which contains the name of the function, as a string. LIBNAME is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either LIBNAME or FNTYPE is nonzero, but

gcc 383 / 551

never both of them at once.

INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME)

Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the arguments for the function being compiled. If this macro is undefined, INIT_CUMULATIVE_ARGS is used instead.

The value passed for LIBNAME is always 0, since library routines with special calling conventions are never compiled with GNU CC. The argument LIBNAME exists for symmetry with INIT_CUMULATIVE_ARGS.

FUNCTION_ARG_ADVANCE (CUM, MODE, TYPE, NAMED)

A C statement (sans semicolon) to update the summarizer variable CUM to advance past an argument in the argument list. The values MODE, TYPE and NAMED describe that argument. Once this is done, the variable CUM is suitable for analyzing the following argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on the stack. The compiler knows how to track the amount of stack space used for arguments without any special help.

FUNCTION_ARG_PADDING (MODE, TYPE)

If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value should be of type enum direction: either upward to pad above the argument, downward to pad below, or none to inhibit padding.

The amount of padding is always just enough to reach the next multiple of FUNCTION_ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most systems. For little-endian machines, the default is to pad upward. For big-endian machines, the default is to pad downward for an argument of constant size shorter than an int, and upward otherwise.

FUNCTION_ARG_BOUNDARY (MODE, TYPE)

If defined, a C expression that gives the alignment boundary, in bits, of an argument with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all arguments.

FUNCTION ARG REGNO P (REGNO)

A C expression that is nonzero if REGNO is the number of a hard register in which function arguments are sometimes passed. This does not include implicit arguments such as the static chain and the structure-value address. On many machines, no registers can be used for this purpose since all function arguments are pushed on the stack.

1.199 qcc.quide/Scalar Return

How Scalar Function Values Are Returned

gcc 384 / 551

This section discusses the macros that control returning scalars as values--values that can fit in registers.

TRADITIONAL RETURN FLOAT

Define this macro if -traditional should not cause functions declared to return float to convert the value to double.

FUNCTION VALUE (VALTYPE, FUNC)

A C expression to create an RTX representing the place where a function returns a value of data type VALTYPE. VALTYPE is a tree node representing a data type. Write TYPE_MODE (VALTYPE) to get the machine mode used to represent that type. On many machines, only the mode is relevant. (Actually, on most machines, scalar values are returned in the same place regardless of mode).

If PROMOTE_FUNCTION_RETURN is defined, you must apply the same promotion rules specified in PROMOTE_MODE if VALTYPE is a scalar type.

If the precise function being called is known, FUNC is a tree node (FUNCTION_DECL) for it; otherwise, FUNC is a null pointer. This makes it possible to use a different value-returning convention for specific functions when all their calls are known.

FUNCTION_VALUE is not used for return vales with aggregate data types, because these are returned in another way. See STRUCT_VALUE_REGNUM and related macros, below.

FUNCTION_OUTGOING_VALUE (VALTYPE, FUNC)

Define this macro if the target machine has "register windows" so that the register in which a function returns its value is not the same as the one in which the caller sees the value.

For such machines, FUNCTION_VALUE computes the register in which the caller will see the value. FUNCTION_OUTGOING_VALUE should be defined in a similar fashion to tell the function where to put the value

If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves both purposes.

FUNCTION_OUTGOING_VALUE is not used for return vales with aggregate data types, because these are returned in another way. See STRUCT_VALUE_REGNUM and related macros, below.

LIBCALL_VALUE (MODE)

A C expression to create an RTX representing the place where a library function returns a value of mode MODE. If the precise function being called is known, FUNC is a tree node (FUNCTION_DECL) for it; otherwise, FUNC is a null pointer. This makes it possible to use a different value-returning convention for specific functions when all their calls are known.

Note that "library function" in this context means a compiler support routine, used to perform arithmetic, whose name is known specially by the compiler and was not mentioned in the C code being

gcc 385 / 551

compiled.

The definition of LIBRARY_VALUE need not be concerned aggregate data types, because none of the library functions returns such types.

FUNCTION_VALUE_REGNO_P (REGNO)

A C expression that is nonzero if REGNO is the number of a hard register in which the values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair (for a value of type double, say) need not be recognized by this macro. So for most machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use different registers for the return value, this macro should recognize only the caller's register numbers.

APPLY_RESULT_SIZE

Define this macro if untyped_call and untyped_return need more space than is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbitrary return value.

1.200 gcc.guide/Aggregate Return

How Large Values Are Returned

When a function value's mode is BLKmode (and in some other cases), the value is not returned according to FUNCTION_VALUE (see

Scalar Return

). Instead, the caller passes the address of a block of memory in which the value should be stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

RETURN IN MEMORY (TYPE)

A C expression which can inhibit the returning of certain function values in registers, based on the type of value. A nonzero value says to return the function value in memory, just as large structures are always returned. Here TYPE will be a C expression of type tree, representing the data type of the value.

Note that values of mode BLKmode must be explicitly handled by this macro. Also, the option -fpcc-struct-return takes effect regardless of this macro. On most systems, it is possible to leave the macro undefined; this causes a default definition to be used, whose value is the constant 1 for BLKmode values, and 0

gcc 386 / 551

otherwise.

Do not use this macro to indicate that structures and unions should always be returned in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to indicate this.

DEFAULT_PCC_STRUCT_RETURN

Define this macro to be 1 if all structure and union return values must be in memory. Since this results in slower code, this should be defined only if needed for compatibility with other compilers or with an ABI. If you define this macro to be 0, then the conventions used for structure and union return values are decided by the RETURN_IN_MEMORY macro.

If not defined, this defaults to the value 1.

STRUCT VALUE REGNUM

If the structure value address is passed in a register, then STRUCT_VALUE_REGNUM should be the number of that register.

STRUCT_VALUE

If the structure value address is not passed in a register, define STRUCT_VALUE as an expression returning an RTX for the place where the address is passed. If it returns 0, the address is passed as an "invisible" first argument.

STRUCT_VALUE_INCOMING_REGNUM

On some architectures the place where the structure value address is found by the called function is not the same place that the caller put it. This can be due to register windows, or it could be because the function prologue moves it to a different place.

If the incoming location of the structure value address is in a register, define this macro as the register number.

STRUCT_VALUE_INCOMING

If the incoming location is not a register, then you should define STRUCT_VALUE_INCOMING as an expression for an RTX for where the called function should find the value. If it should find the value on the stack, define this to create a mem which refers to the frame pointer. A definition of 0 means that the address is passed as an "invisible" first argument.

PCC_STATIC_STRUCT_RETURN

Define this macro if the usual system convention on the target machine for returning structures and unions is for the called function to return the address of a static variable containing the value.

Do not define this if the usual system convention is for the caller to pass an address to the subroutine.

This macro has effect in -fpcc-struct-return mode, but it does nothing when you use -freg-struct-return mode.

gcc 387 / 551

1.201 gcc.guide/Caller Saves

Caller-Saves Register Allocation

If you enable it, GNU CC can save registers around function calls. This makes it possible to use call-clobbered registers to hold variables that must live across calls.

DEFAULT_CALLER_SAVES

Define this macro if function calls on the target machine do not preserve any registers; in other words, if CALL_USED_REGISTERS has 1 for all registers. This macro enables -fcaller-saves by default. Eventually that option will be enabled by default on all machines and both the option and this macro will be eliminated.

CALLER_SAVE_PROFITABLE (REFS, CALLS)

A C expression to determine whether it is worthwhile to consider placing a pseudo-register in a call-clobbered hard register and saving and restoring it around each function call. The expression should be 1 when this is worth doing, and 0 otherwise.

If you don't define this macro, a default is used which is good on most machines: $4 \star \text{CALLS} < \text{REFS}$.

1.202 gcc.guide/Function Entry

Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue) code.

FUNCTION_PROLOGUE (FILE, SIZE)

A C compound statement that outputs the assembler code for entry to a function. The prologue is responsible for setting up the stack frame, initializing the frame pointer register, saving registers that must be saved, and allocating SIZE additional bytes of storage for the local variables. SIZE is an integer. FILE is a stdio stream to which the assembler code should be output.

The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_live: element R is nonzero if hard register R is used anywhere within the function. This implies the function prologue should save register R, provided it is not one of the call-used registers. (FUNCTION_EPILOGUE must likewise use regs_ever_live.)

On machines that have "register windows", the function entry code does not save on the stack the registers that are in the windows,

gcc 388 / 551

even if they are supposed to be preserved by function calls; instead it takes appropriate steps to "push" the register stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable frame_pointer_needed. The variable's value will be 1 at run time in a function that needs a frame pointer. See

.

The function entry code is responsible for allocating any stack space required for the function. This stack space consists of the regions listed below. In most cases, these regions are allocated in the order listed, with the last listed region closest to the top of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest address if it is not defined). You can use a different order for a machine if doing so is more convenient or required for compatibility reasons. Except in cases where required by standard or by a debugger, there is no reason why the stack layout used by GCC need agree with that used by other compilers for a machine.

- * A region of current_function_pretend_args_size bytes of uninitialized space just underneath the first argument arriving on the stack. (This may not be at the very start of the allocated stack region if the calling sequence has pushed anything else since pushing the stack arguments. But usually, on such machines, nothing else has been pushed yet, because the function prologue itself does all the pushing.) This region is used on machines where an argument may be passed partly in registers and partly in memory, and, in some cases to support the features in varargs.h and stdargs.h.
- * An area of memory used to save certain registers used by the function. The size of this area, which may also include space for such things as the return address and pointers to previous stack frames, is machine-specific and usually depends on which registers have been used in the function. Machines with register windows often do not require a save area.
- * A region of at least SIZE bytes, possibly rounded up to an allocation boundary, to contain the local variables of the function. On some machines, this region and the save area may occur in the opposite order, with the save area closer to the top of the stack.
- * Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of current_function_outgoing_args_size bytes to be used for outgoing argument lists of the function. See

Stack Arguments

.

gcc 389 / 551

Normally, it is necessary for the macros FUNCTION_PROLOGUE and FUNCTION_EPILOGUE to treat leaf functions specially. The C variable leaf_function is nonzero for such a function.

EXIT IGNORE STACK

Define this macro as a C expression that is nonzero if the return instruction or the function epilogue ignores the value of the stack pointer; in other words, if it is safe to delete an instruction to adjust the stack pointer before a return from the function.

Note that this macro's value is relevant only for functions for which frame pointers are maintained. It is never safe to delete a final stack adjustment in a function that has no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

FUNCTION_EPILOGUE (FILE, SIZE)

A C compound statement that outputs the assembler code for exit from a function. The epilogue is responsible for restoring the saved registers and stack pointer to their values when the function was called, and returning control to the caller. This macro takes the same arguments as the macro FUNCTION_PROLOGUE, and the registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS in the same way.

On some machines, there is a single instruction that does all the work of returning from the function. On these machines, give that instruction the name return and do not define the macro FUNCTION_EPILOGUE at all.

Do not define a pattern named return if you want the FUNCTION_EPILOGUE to be used. If you want the target switches to control whether return instructions or epilogues are used, define a return pattern with a validity condition that tests the target switches appropriately. If the return pattern's validity condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function exit code must vary accordingly. Sometimes the code for these two cases is completely different. To determine whether a frame pointer is wanted, the macro can refer to the variable frame_pointer_needed. The variable's value will be 1 when compiling a function that needs a frame pointer.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf functions specially. The C variable leaf_function is nonzero for such a function. See

Leaf Functions

On some machines, some functions pop their arguments on exit while others leave that for the caller to do. For example, the 68020 when given -mrtd pops arguments in functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their own arguments. FUNCTION_EPILOGUE needs to know what was decided. The variable that is called

gcc 390 / 551

.

DELAY_SLOTS_FOR_EPILOGUE

Define this macro if the function epilogue contains delay slots to which instructions from the rest of the function can be "moved". The definition should be a C expression whose value is an integer representing the number of delay slots there.

ELIGIBLE_FOR_EPILOGUE_DELAY (INSN, N)

A C expression that returns 1 if INSN can be placed in delay slot number N of the epilogue.

The argument N is an integer which identifies the delay slot now being considered (since different slots may have different rules of eligibility). It is never negative and is always less than the number of epilogue delay slots (what DELAY_SLOTS_FOR_EPILOGUE returns). If you reject a particular insn for a given delay slot, in principle, it may be reconsidered for a subsequent delay slot. Also, other insns may (at least in principle) be considered for the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an RTL list made with insn_list objects, stored in the variable current_function_epilogue_delay_list. The insn for the first delay slot comes first in the list. Your definition of the macro FUNCTION_EPILOGUE should fill the delay slots by outputting the insns in this list, usually by calling final_scan_insn.

You need not define this macro if you did not define ${\tt DELAY_SLOTS_FOR_EPILOGUE}$.

1.203 gcc.guide/Profiling

Generating Code for Profiling

These macros will help you generate code for profiling.

FUNCTION PROFILER (FILE, LABELNO)

A C statement or compound statement to output to FILE some assembler code to call the profiling subroutine mcount. Before calling, the assembler code must load the address of a counter variable into a register where mcount expects to find the address. The name of this variable is LP followed by the number LABELNO, so you would generate the name using LP%d in a fprintf.

The details of how the address should be passed to mount are determined by your operating system environment, not by GNU CC. To figure them out, compile a small program for profiling using the system's installed C compiler and look at the assembler code that

gcc 391 / 551

results.

PROFILE_BEFORE_PROLOGUE

Define this macro if the code for function profiling should come before the function prologue. Normally, the profiling code comes after.

FUNCTION_BLOCK_PROFILER (FILE, LABELNO)

A C statement or compound statement to output to FILE some assembler code to initialize basic-block profiling for the current object module. This code should call the subroutine __bb_init_func once per object module, passing it as its sole argument the address of a block allocated in the object module.

The name of the block is a local symbol made with this statement:

```
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
```

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_LABEL as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result.

The first word of this block is a flag which will be nonzero if the object module has already been initialized. So test this word first, and do not call __bb_init_func if the flag is nonzero.

BLOCK_PROFILER (FILE, BLOCKNO)

A C statement or compound statement to increment the count associated with the basic block number BLOCKNO. Basic blocks are numbered separately from zero within each compilation. The count associated with block number BLOCKNO is at index BLOCKNO in a vector of words; the name of this array is a local symbol made with this statement:

```
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
```

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_LABEL as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result.

BLOCK_PROFILER_CODE

A C function or functions which are needed in the library to support block profiling.

1.204 gcc.guide/Varargs

Implementing the Varargs Macros

GNU CC comes with an implementation of varargs.h and stdarg.h that work without change on machines that pass arguments on the stack.

gcc 392 / 551

ANSI stdarg.h differs from traditional varargs.h mainly in the calling convention for va_start. The traditional implementation takes just one argument, which is the variable in which to store the argument pointer. The ANSI implementation of va_start takes an additional second argument. The user is supposed to write the last named argument of the function here.

However, va_start should not use this argument. The way to find the end of the named arguments is with the built-in functions described below.

__builtin_saveregs ()

Use this built-in function to save the argument registers in memory so that the varargs mechanism can access them. Both ANSI and traditional versions of va_start must use __builtin_saveregs, unless you use SETUP_INCOMING_VARARGS (see below) instead.

On some machines, __builtin_saveregs is open-coded under the control of the macro EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine written in assembler language, found in libgcc2.c.

Code generated for the call to __builtin_saveregs appears at the beginning of the function, as opposed to where the call to __builtin_saveregs is written, regardless of what the code is. This is because the registers must be saved before the function starts to use them for its own purposes.

__builtin_args_info (CATEGORY)

Use this built-in function to find the first anonymous arguments in registers.

In general, a machine may have several categories of registers used for arguments, each for a particular category of data types. (For example, on some machines, floating-point registers are used for floating-point arguments while other arguments are passed in the general registers.) To make non-varargs functions use the proper calling convention, you have defined the CUMULATIVE_ARGS data type to record how many registers in each category have been used so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_ARGS after the ordinary argument layout is finished with it, with CATEGORY specifying which word to access. Thus, the value indicates the first unused register in a given category.

Normally, you would use __builtin_args_info in the implementation of va_start, accessing each category just once and storing the value in the va_list object. This is because va_list will have to update the values, and there is no way to alter the values accessed by __builtin_args_info.

__builtin_next_arg (LASTARG)

gcc 393 / 551

This is the equivalent of __builtin_args_info, for stack arguments. It returns the address of the first anonymous stack argument, as type void *. If ARGS_GROW_DOWNWARD, it returns the address of the location above the first anonymous stack argument. Use it in va_start to initialize the pointer for fetching arguments from the stack. Also use it in va_start to verify that the second parameter LASTARG is the last named argument of the current function.

__builtin_classify_type (OBJECT)

Since each machine has its own conventions for which data types are passed in which kind of register, your implementation of va_arg has to embody these conventions. The easiest way to categorize the specified data type is to use __builtin_classify_type together with sizeof and __alignof__.

__builtin_classify_type ignores the value of OBJECT, considering only its data type. It returns an integer describing what kind of type that is—integer, floating, pointer, structure, and so on.

The file typeclass.h defines an enumeration that you can use to interpret the values of __builtin_classify_type.

These machine description macros help implement varargs:

EXPAND_BUILTIN_SAVEREGS (ARGS)

If defined, is a C expression that produces the machine-specific code for a call to __builtin_saveregs. This code will be moved to the very beginning of the function, before any parameter access are made. The return value of this function should be an RTX that contains the value to use as the return of __builtin_saveregs.

The argument ARGS is a tree_list containing the arguments that were passed to __builtin_saveregs.

If this macro is not defined, the compiler will output an ordinary call to the library function __builtin_saveregs.

SETUP_INCOMING_VARARGS (ARGS_SO_FAR, MODE, TYPE,

PRETEND_ARGS_SIZE, SECOND_TIME) This macro offers an alternative to using __builtin_saveregs and defining the macro EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register arguments into the stack so that all the arguments appear to have been passed consecutively on the stack. Once this is done, you can use the standard implementation of varargs that works for machines that pass all their arguments on the stack.

The argument ARGS_SO_FAR is the CUMULATIVE_ARGS data structure, containing the values that obtain after processing of the named arguments. The arguments MODE and TYPE describe the last named argument—its machine mode and its data type as a tree node.

The macro implementation should do two things: first, push onto the stack all the argument registers not used for the named arguments, and second, store the size of the data thus pushed into the int-valued variable whose name is supplied as the argument PRETEND_ARGS_SIZE. The value that you store here will serve as

gcc 394 / 551

additional offset for setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile time without knowing their data types, SETUP_INCOMING_VARARGS is only useful on machines that have just a single category of argument register and use it uniformly for all data types.

If the argument SECOND_TIME is nonzero, it means that the arguments of the function are being analyzed for the second time. This happens for an inline function, which is not actually compiled until the end of the source file. The macro SETUP_INCOMING_VARARGS should not generate any instructions in this case.

STRICT_ARGUMENT_NAMING

Define this macro if the location where a function argument is passed depends on whether or not it is a named argument.

This macro controls how the NAMED argument to FUNCTION_ARG is set for varargs and stdarg functions. With this macro defined, the NAMED argument is always true for named arguments, and false for unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS is defined, then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named.

1.205 gcc.guide/Trampolines

Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of a nested function is taken. It normally resides on the stack, in the stack frame of the containing function. These macros tell GNU CC how to generate code to allocate and initialize a trampoline.

The instructions in the trampoline must do two things: load a constant address into the static chain register, and jump to the real address of the nested function. On CISC machines such as the m68k, this requires two instructions, a move immediate and a jump. Then the two addresses exist in the trampoline as word-long immediate operands. On RISC machines, it is often necessary to load each address into a register in two parts. Then pieces of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static chain value and the function address—into the immediate operands of the instructions. On a CISC machine, this is simply a matter of copying each address to a memory reference at the proper offset from the start of the trampoline. On a RISC machine, it may be necessary to take out pieces of the address and store them separately.

gcc 395 / 551

TRAMPOLINE_TEMPLATE (FILE)

A C statement to output, on the stream FILE, assembler code for a block of data that contains the constant parts of a trampoline. This code should not include a label—the label is taken care of automatically.

TRAMPOLINE_SECTION

The name of a subroutine to switch to the section in which the trampoline template is to be placed (see

Sections

). The default is

a value of readonly_data_section, which places the trampoline in the section containing read-only data.

TRAMPOLINE SIZE

A C expression for the size in bytes of the trampoline, as an integer.

TRAMPOLINE ALIGNMENT

Alignment required for trampolines, in bits.

If you don't define this macro, the value of BIGGEST_ALIGNMENT is used for aligning trampolines.

INITIALIZE_TRAMPOLINE (ADDR, FNADDR, STATIC_CHAIN)

A C statement to initialize the variable parts of a trampoline. ADDR is an RTX for the address of the trampoline; FNADDR is an RTX for the address of the nested function; STATIC_CHAIN is an RTX for the static chain value that should be passed to the function when it is called.

ALLOCATE_TRAMPOLINE (FP)

A C expression to allocate run-time space for a trampoline. The expression value should be an RTX representing a memory reference to the space for the trampoline.

If this macro is not defined, by default the trampoline is allocated as a stack slot. This default is right for most machines. The exceptions are machines where it is impossible to execute instructions in the stack area. On such machines, you may have to implement a separate stack, using this macro in conjunction with FUNCTION_PROLOGUE and FUNCTION_EPILOGUE.

FP points to a data structure, a struct function, which describes the compilation status of the immediate containing function of the function which the trampoline is for. Normally (when ALLOCATE_TRAMPOLINE is not defined), the stack slot for the trampoline is in the stack frame of this containing function. Other allocation strategies probably must do something analogous with this information.

Implementing trampolines is difficult on many machines because they have separate instruction and data caches. Writing into a stack location fails to clear the memory in the instruction cache, so when the program jumps to that location, it executes the old contents.

gcc 396 / 551

Here are two possible solutions. One is to clear the relevant parts of the instruction cache whenever a trampoline is set up. The other is to make all trampolines identical, by having them jump to a standard subroutine. The former technique makes trampoline execution faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following macros which describe the shape of the cache.

INSN_CACHE_SIZE

The total size in bytes of the cache.

INSN_CACHE_LINE_WIDTH

The length in bytes of each cache line. The cache is divided into cache lines which are disjoint slots, each holding a contiguous chunk of data fetched from memory. Each time data is brought into the cache, an entire line is read at once. The data loaded into a cache line is always aligned on a boundary equal to the line size.

INSN CACHE DEPTH

The number of alternative cache lines that can hold any particular memory location.

Alternatively, if the machine has system calls or instructions to clear the instruction cache directly, you can define the following macro.

CLEAR_INSN_CACHE (BEG, END)

If defined, expands to a C expression clearing the instruction cache in the specified interval. If it is not defined, and the macro INSN_CACHE_SIZE is defined, some generic code is generated to clear the cache. The definition of this macro would typically be a series of asm statements. Both BEG and END are both pointer expressions.

To use a standard subroutine, define the following macro. In addition, you must make sure that the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure that the beginning of the trampoline code is always aligned at the same point in its cache line. Look in m68k.h as a guide.

TRANSFER FROM TRAMPOLINE

Define this macro if trampolines need a special subroutine to do their work. The macro should expand to a series of asm statements which will be compiled with GNU CC. They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function when you jump to the subroutine, you can do so by placing a special label of your own in the assembler code. Use one asm statement to generate an assembler label, and another to make the label global. Then trampolines can use that label to jump directly to your special assembler code.

gcc 397 / 551

1.206 gcc.guide/Library Calls

Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

MULSI3 LIBCALL

A C string constant giving the name of the function to call for multiplication of one signed full-word by another. If you do not define this macro, the default name is used, which is __mulsi3, a function defined in libgcc.a.

DIVSI3_LIBCALL

A C string constant giving the name of the function to call for division of one signed full-word by another. If you do not define this macro, the default name is used, which is __divsi3, a function defined in libgcc.a.

UDIVSI3_LIBCALL

A C string constant giving the name of the function to call for division of one unsigned full-word by another. If you do not define this macro, the default name is used, which is __udivsi3, a function defined in libgcc.a.

MODSI3 LIBCALL

A C string constant giving the name of the function to call for the remainder in division of one signed full-word by another. If you do not define this macro, the default name is used, which is __modsi3, a function defined in libgcc.a.

UMODSI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division of one unsigned full-word by another. If you do not define this macro, the default name is used, which is __umodsi3, a function defined in libgcc.a.

MULDI3_LIBCALL

A C string constant giving the name of the function to call for multiplication of one signed double-word by another. If you do not define this macro, the default name is used, which is __muldi3, a function defined in libgcc.a.

DIVDI3_LIBCALL

A C string constant giving the name of the function to call for division of one signed double-word by another. If you do not define this macro, the default name is used, which is __divdi3, a function defined in libgcc.a.

UDIVDI3_LIBCALL

A C string constant giving the name of the function to call for division of one unsigned full-word by another. If you do not define this macro, the default name is used, which is __udivdi3, a function defined in libgcc.a.

MODDI3 LIBCALL

gcc 398 / 551

A C string constant giving the name of the function to call for the remainder in division of one signed double-word by another. If you do not define this macro, the default name is used, which is __moddi3, a function defined in libgcc.a.

UMODDI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division of one unsigned full-word by another. If you do not define this macro, the default name is used, which is __umoddi3, a function defined in libgcc.a.

INIT_TARGET_OPTABS

Define this macro as a C statement that declares additional library routines renames existing ones. init_optabs calls this macro after initializing all the normal library routines.

TARGET EDOM

The value of EDOM on the target machine, as a C integer constant expression. If you don't define this macro, GNU CC does not attempt to deposit the value of EDOM into errno directly. Look in /usr/include/errno.h to find the value of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports domain errors by calling the library function and letting it report the error. If mathematical functions on your system use matherr when there is an error, then you should leave TARGET_EDOM undefined so that matherr is used normally.

GEN_ERRNO_RTX

Define this macro as a C expression to create an rtl expression that refers to the global "variable" errno. (On certain systems, errno may not actually be a variable.) If you don't define this macro, a reasonable default is used.

TARGET_MEM_FUNCTIONS

Define this macro if GNU CC should generate calls to the System V (and ANSI C) library functions memcpy and memset rather than the BSD functions boopy and bzero.

LIBGCC NEEDS DOUBLE

Define this macro if only float arguments cannot be passed to library routines (so they must be converted to double). This macro affects both how library calls are generated and how the library routines in libgccl.c accept their arguments. It is useful on machines where floating and fixed point arguments are passed differently, such as the i860.

FLOAT_ARG_TYPE

Define this macro to override the type used by the library routines to pick up arguments of type float. (By default, they use a union of float and int.)

The obvious choice would be float—but that won't work with traditional C compilers that expect all arguments declared as float to arrive as double. To avoid this conversion, the library routines ask for the value as some other type and then treat it as a float.

gcc 399 / 551

On some systems, no other type will work for this. For these systems, you must use LIBGCC_NEEDS_DOUBLE instead, to force conversion of the values double before they are passed.

FLOATIFY (PASSED-VALUE)

Define this macro to override the way library routines redesignate a float argument as a float instead of the type it was passed as. The default is an expression which takes the float field of the union.

FLOAT_VALUE_TYPE

Define this macro to override the type used by the library routines to return values that ought to have type float. (By default, they use int.)

The obvious choice would be float—but that won't work with traditional C compilers gratuitously convert values declared as float into double.

INTIFY (FLOAT-VALUE)

Define this macro to override the way the value of a float-returning library routine should be packaged in order to return it. These functions are actually declared to return type FLOAT_VALUE_TYPE (normally int).

These values can't be returned as type float because traditional C compilers would gratuitously convert the value to a double.

A local variable named intify is always available when the macro INTIFY is used. It is a union of a float field named f and a field named i whose type is FLOAT_VALUE_TYPE or int.

If you don't define this macro, the default definition works by copying the value through that union.

nongcc_SI_type

Define this macro as the name of the data type corresponding to ${\sf SImode}$ in the ${\sf system's}$ own ${\sf C}$ compiler.

You need not define this macro if that type is long int, as it usually is.

nongcc_word_type

Define this macro as the name of the data type corresponding to the word_mode in the system's own C compiler.

You need not define this macro if that type is long int, as it usually is.

perform_...

Define these macros to supply explicit C statements to carry out various arithmetic operations on types float and double in the library routines in libgccl.c. See that file for a full list of these macros and their arguments.

On most machines, you don't need to define any of these macros,

gcc 400 / 551

because the C compiler that comes with the system takes care of doing them.

NEXT_OBJC_RUNTIME

Define this macro to generate code for Objective C message sending using the calling convention of the NeXT system. This calling convention involves passing the object, the selector and the method arguments all at once to the method-lookup library function.

The default calling convention passes just the object and the selector to the lookup function, which returns a pointer to the method.

1.207 gcc.guide/Addressing Modes

Addressing Modes

This is about addressing modes.

HAVE_POST_INCREMENT

Define this macro if the machine supports post-increment addressing.

HAVE_PRE_INCREMENT

HAVE_POST_DECREMENT

HAVE_PRE_DECREMENT

Similar for other kinds of addressing.

CONSTANT_ADDRESS_P (X)

A C expression that is 1 if the RTX X is a constant which is a valid address. On most machines, this can be defined as $CONSTANT_P$ (X), but a few machines are more restrictive in which constant addresses are supported.

CONSTANT_P accepts integer-values expressions whose values are not explicitly known, such as symbol_ref, label_ref, and high expressions and const arithmetic expressions, in addition to const_int and const_double expressions.

MAX_REGS_PER_ADDRESS

A number, the maximum number of registers that can appear in a valid memory address. Note that it is up to you to specify a value equal to the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever accept.

GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL)

A C compound statement with a conditional goto LABEL; executed if X (an RTX) is a legitimate memory address on the target machine for a memory operand of mode MODE.

It usually pays to define several simpler macros to serve as subroutines for this one. Otherwise it may be too complicated to understand.

gcc 401 / 551

This macro must exist in two variants: a strict variant and a non-strict one. The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. In contexts where some kind of register is required, a pseudo-register with no hard register must be rejected.

The non-strict variant is used in other passes. It must be defined to accept all pseudo-registers in every context where some kind of register is required.

Compiler source files that want to use the strict variant of this macro define the macro REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to define the strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base registers, one for index registers, and so on) are typically among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros need have two variants; the higher levels of macros may be the same whether strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer are stored inside a const RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are not marked with const. It assumes that a naked plus indicates indexing. If so, then you must reject such naked constant sums as illegitimate addresses, so that none of them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the section that the address refers to. On these machines, define the macro ENCODE_SECTION_INFO to store the information into the symbol_ref, and then check for it here. When you see a const, you will have to look inside it to find the symbol_ref in order to determine the section. See

Assembler Format

The best way to modify the name string is by adding text to the beginning, with suitable punctuation to prevent any ambiguity. Allocate the new name in saveable_obstack. You will have to modify ASM_OUTPUT_LABELREF to remove and decode the added text and output the name accordingly, and define STRIP_NAME_ENCODING to access the original name string.

You can check the information stored here into the symbol_ref in the definitions of the macros ${\tt GO_IF_LEGITIMATE_ADDRESS}$ and ${\tt PRINT_OPERAND_ADDRESS}$.

REG_OK_FOR_BASE_P (X)

gcc 402 / 551

A C expression that is nonzero if X (assumed to be a reg RTX) is valid for use as a base register. For hard registers, it should always accept those which the hardware permits and reject the others. Whether the macro accepts or rejects pseudo registers must be controlled by REG_OK_STRICT as described above. This usually requires two variant definitions, of which REG_OK_STRICT controls the one actually used.

REG OK FOR INDEX P (X)

A C expression that is nonzero if X (assumed to be a reg RTX) is valid for use as an index register.

The difference between an index register and a base register is that the index register may be scaled. If an address involves the sum of two registers, neither one of them scaled, then either one may be labeled the "base" and the other the "index"; but whichever labeling is used must fit the machine's constraints of which registers may serve in each capacity. The compiler will try both labelings, looking for one that is valid, and will reload one or both registers only if neither labeling works.

LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN)

A C compound statement that attempts to replace X with a valid memory address for an operand of mode MODE. WIN will be a C statement label elsewhere in the code; the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);

to avoid further processing if the address has become legitimate.

 ${\tt X}$ will always be the result of a call to break_out_memory_refs, and OLDX will be the operand that was given to that function to produce ${\tt X}$.

The code generated by this macro should not alter the substructure of X. If it transforms X into a more legitimate form, it should assign X (which will always be a C variable) a new value.

It is not necessary for this macro to come up with a legitimate address. The compiler has standard ways of doing so in all cases. In fact, it is safe for this macro to do nothing. But often a machine-dependent strategy can generate better code.

GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)

A C statement or compound statement with a conditional goto LABEL; executed if memory address X (an RTX) can have different meanings depending on the machine mode of the memory reference it is used for or if the address is valid for some modes but not others.

Autoincrement and autodecrement addresses typically have mode-dependent effects because the amount of the increment or decrement is the size of the operand being addressed. Some machines have other mode-dependent addresses. Many RISC machines have no mode-dependent addresses.

You may assume that ADDR is a valid address for the machine.

gcc 403 / 551

LEGITIMATE_CONSTANT_P (X)

A C expression that is nonzero if X is a legitimate constant for an immediate operand on the target machine. You can assume that X satisfies CONSTANT_P, so you need not check this. In fact, 1 is a suitable definition for this macro on machines where anything CONSTANT_P is valid.

1.208 gcc.guide/Condition Code

Condition Code Status

This describes the condition code status.

The file conditions.h defines a variable cc_status to describe how the condition code was computed (in case the interpretation of the condition code depends on the instruction that it was set by). This variable contains the RTL expressions on which the condition code is currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description header file. It can also add additional machine-specific information by defining CC_STATUS_MDEP.

CC STATUS MDEP

C code for a data type which is used for declaring the mdep component of cc_status. It defaults to int.

This macro is not used on machines that do not use cc0.

CC_STATUS_MDEP_INIT

A C expression to initialize the mdep field to "empty". The default definition does nothing, since most machines don't use the field anyway. If you want to use the field, you should probably define this macro to initialize it.

This macro is not used on machines that do not use cc0.

NOTICE_UPDATE_CC (EXP, INSN)

A C compound statement to set the components of cc_status appropriately for an insn INSN whose body is EXP. It is this macro's responsibility to recognize insns that set the condition code as a byproduct of other activity as well as those that explicitly set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter other machine registers, this macro must check to see whether they invalidate the expressions that the condition code is recorded as reflecting. For example, on the 68000, insns that store in address registers do not set the condition code, which means that usually NOTICE_UPDATE_CC can leave cc_status unaltered for such insns.

gcc 404 / 551

But suppose that the previous insn set the condition code based on location a40(102) and the current insn stores a new value in a4. Although the condition code is not changed by this, it will no longer be true that it reflects the contents of a40(102). Therefore, NOTICE_UPDATE_CC must alter cc_status in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results of peephole optimization: insns whose patterns are parallel RTXs containing various reg, mem or constants which are just the operands. The RTL structure of these insns is not sufficient to indicate what the insns actually do. What NOTICE_UPDATE_CC should do when it sees one is just to run CC_STATUS_INIT.

A possible definition of ${\tt NOTICE_UPDATE_CC}$ is to call a function that looks at an attribute (see

Insn Attributes

) named, for

example, cc. This avoids having detailed information about patterns in two places, the md file and in NOTICE_UPDATE_CC.

EXTRA CC MODES

A list of names to be used for additional modes for condition code values in registers (see

Jump Patterns

). These names are added to

enum machine_mode and all have class MODE_CC. By convention, they should start with CC and end with mode.

You should only define this macro if your machine does not use cc0 and only if additional modes are required.

EXTRA_CC_NAMES

A list of C strings giving the names for the modes listed in ${\tt EXTRA_CC_MODES}$. For example, the Sparc defines this macro and ${\tt EXTRA_CC_MODES}$ as

#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
#define EXTRA CC NAMES "CC NOOV", "CCFP", "CCFPE"

This macro is not required if EXTRA CC MODES is not defined.

SELECT_CC_MODE (OP, X, Y)

Returns a mode from class MODE_CC to be used when comparison operation code OP is applied to rtx X and Y. For example, on the Sparc, SELECT_CC_MODE is defined as (see see

Jump Patterns

for a

description of the reason for this definition)

gcc 405 / 551

? CC NOOVmode : CCmode))

You need not define this macro if EXTRA_CC_MODES is not defined.

CANONICALIZE_COMPARISON (CODE, OP0, OP1)

One some machines not all possible comparisons are defined, but you can convert an invalid comparison into a valid one. For example, the Alpha does not have a GT comparison, but you can use an LT comparison instead and swap the order of the operands.

On such machines, define this macro to be a C statement to do any required conversions. CODE is the initial comparison code and OPO and OP1 are the left and right operands of the comparison, respectively. You should modify CODE, OPO, and OP1 as required.

GNU CC will not assume that the comparison resulting from this macro is valid but will see if the resulting insn matches a pattern in the md file.

You need not define this macro if it would never change the comparison code or operands.

REVERSIBLE_CC_MODE (MODE)

A C expression whose value is one if it is always safe to reverse a comparison whose mode is MODE. If SELECT_CC_MODE can ever return MODE for a floating-point inequality comparison, then REVERSIBLE_CC_MODE (MODE) must be zero.

You need not define this macro if it would always returns zero or if the floating-point format is anything other than IEEE_FLOAT_FORMAT. For example, here is the definition used on the Sparc, where floating-point inequality comparisons are always given CCFPEmode:

#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)

1.209 gcc.guide/Costs

Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

CONST_COSTS (X, CODE, OUTER_CODE)

A part of a C switch statement that describes the relative costs of constant RTL expressions. It must contain case labels for expression codes const_int, const, symbol_ref, label_ref and const_double. Each case must ultimately reach a return statement to return the relative cost of the use of that kind of constant value in an expression. The cost may depend on the precise value of the constant, which is available for examination in X, and the rtx code of the expression in which it is contained,

gcc 406 / 551

found in OUTER_CODE.

CODE is the expression code--redundant, since it can be obtained with ${\tt GET_CODE}$ (X).

RTX_COSTS (X, CODE, OUTER_CODE)

Like CONST_COSTS but applies to nonconstant RTL expressions. This can be used, for example, to indicate how costly a multiply instruction is. In writing this macro, you can use the construct COSTS_N_INSNS (N) to specify a cost equal to N fast instructions. OUTER_CODE is the code of the expression in which X is contained.

This macro is optional; do not define it if the default cost assumptions are adequate for the target machine.

ADDRESS COST (ADDRESS)

An expression giving the cost of an addressing mode that contains ADDRESS. If not defined, the cost is computed from the ADDRESS expression and the CONST_COSTS values.

For most CISC machines, the default cost is a good approximation of the true cost of the addressing mode. However, on RISC machines, all instructions normally have the same length and execution time. Hence all addresses will have equal costs.

In cases where more than one form of an address is known, the form with the lowest cost will be used. If multiple forms have the same, lowest, cost, the one that is the most complex will be used.

For example, suppose an address that is equal to the sum of a register and a constant is used twice in the same basic block. When this macro is not defined, the address will be computed in a register and memory references will be indirect through that register. On machines where the cost of the addressing mode containing the sum is no higher than that of a simple indirect reference, this will produce an additional instruction and possibly require an additional register. Proper specification of this macro eliminates this overhead for such machines.

Similar use of this macro is made in strength reduction of loops.

ADDRESS need not be valid as an address. In such a case, the cost is not relevant and can be any value; invalid addresses need not be assigned a different cost.

On machines where an address involving more than one register is as cheap as an address computation involving only one register, defining ADDRESS_COST to reflect this can cause two registers to be live over a region of code where only one would have been if ADDRESS_COST were not defined in that manner. This effect should be considered in the definition of this macro. Equivalent costs should probably only be given to addresses with different numbers of registers on machines with lots of registers.

This macro will normally either not be defined or be defined as a constant.

gcc 407 / 551

REGISTER MOVE COST (FROM, TO)

A C expression for the cost of moving data from a register in class FROM to one in class TO. The classes are expressed using the enumeration values such as GENERAL_REGS. A value of 4 is the default; other values are interpreted relative to that.

It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You should do this if the movM pattern's constraints do not allow such copying.

MEMORY MOVE COST (M)

A C expression for the cost of moving data of mode M between a register and memory. A value of 2 is the default; this cost is relative to those in REGISTER_MOVE_COST.

If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost.

BRANCH_COST

A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that.

Here are additional macros which do not specify precise relative costs, but only that certain actions are more expensive than GNU CC would ordinarily expect.

SLOW BYTE ACCESS

Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the smallest containing object; when it is defined, a fullword load will be used if alignment permits. Unless bytes accesses are faster than word accesses, using word accesses is preferable since it may eliminate subsequent memory access if subsequent accesses occur to other fields in the same word of the structure, but to different bytes.

SLOW_ZERO_EXTEND

Define this macro if zero-extension (of a char or short to an int) can be done faster if the destination is a register that is known to be zero.

If you define this macro, you must have instruction patterns that

gcc 408 / 551

recognize RTL structures like this:

```
(set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
```

and likewise for HImode.

SLOW_UNALIGNED_ACCESS

Define this macro to be the value 1 if unaligned accesses have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler.

When this macro is non-zero, the compiler will act as if STRICT_ALIGNMENT were non-zero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro non-zero if unaligned accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined.

DONT REDUCE ADDR

Define this macro to inhibit strength reduction of memory addresses. (On some machines, such strength reduction seems to do harm rather than good.)

MOVE RATIO

The number of scalar move insns which should be generated instead of a string move insn or a library call. Increasing the value will always make code faster, but eventually incurs high cost in increased code size.

If you don't define this, a reasonable default is used.

NO_FUNCTION_CSE

Define this macro if it is as good or better to call a constant function address than to call an address kept in a register.

NO_RECURSIVE_FUNCTION_CSE

Define this macro if it is as good or better for a function to call itself with an explicit address than to call an address kept in a register.

ADJUST_COST (INSN, LINK, DEP_INSN, COST)

A C statement (sans semicolon) to update the integer variable COST based on the relationship between INSN that is dependent on DEP_INSN through the dependence LINK. The default is to make no adjustment to COST. This can be used for example to specify to the scheduler that an output- or anti-dependence does not incur the same cost as a data-dependence.

1.210 gcc.guide/Sections

Dividing the Output into Sections (Texts, Data, ...)

gcc 409 / 551

An object file is divided into sections containing different types of data. In the most common case, there are three sections: the text section, which holds instructions and read-only data; the data section, which holds initialized writable data; and the bss section, which holds uninitialized data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These macros control what commands to output to tell the assembler this. You can also define additional sections.

TEXT_SECTION_ASM_OP

A C expression whose value is a string containing the assembler operation that should precede instructions and read-only data. Normally ".text" is right.

DATA_SECTION_ASM_OP

A C expression whose value is a string containing the assembler operation to identify the following data as writable initialized data. Normally ".data" is right.

SHARED_SECTION_ASM_OP

if defined, a C expression whose value is a string containing the assembler operation to identify the following data as shared data. If not defined, DATA_SECTION_ASM_OP will be used.

INIT_SECTION_ASM_OP

if defined, a C expression whose value is a string containing the assembler operation to identify the following data as initialization code. If not defined, GNU CC will assume such a section does not exist.

EXTRA SECTIONS

A list of names for sections other than the standard two, which are in_text and in_data. You need not define this macro on a system with no other sections (that GCC needs to use).

EXTRA_SECTION_FUNCTIONS

One or more functions to be defined in varasm.c. These functions should do jobs analogous to those of text_section and data_section, for your additional sections. Do not define this macro if you do not define EXTRA_SECTIONS.

READONLY DATA SECTION

On most machines, read-only variables, constants, and jump tables are placed in the text section. If this is not the case on your machine, this macro should be defined to be the name of a function (either data_section or a function defined in EXTRA_SECTIONS) that switches to the section to be used for read-only items.

If these items should be placed in the text section, this macro should not be defined.

SELECT_SECTION (EXP, RELOC)

A C statement or statements to switch to the appropriate section for output of EXP. You can assume that EXP is either a VAR_DECL node or a constant of some sort. RELOC indicates whether the initial value of EXP requires link-time relocations. Select the

gcc 410 / 551

section by calling text_section or one of the alternatives for other sections.

Do not define this macro if you put all read-only variables and constants in the read-only data section (usually the text section).

SELECT_RTX_SECTION (MODE, RTX)

A C statement or statements to switch to the appropriate section for output of RTX in mode MODE. You can assume that RTX is some kind of constant in RTL. The argument MODE is redundant except in the case of a const_int rtx. Select the section by calling text_section or one of the alternatives for other sections.

Do not define this macro if you put all constants in the read-only data section.

JUMP TABLES IN TEXT SECTION

Define this macro if jump tables (for tablejump insns) should be output in the text section, along with the assembler instructions. Otherwise, the readonly data section is used.

This macro is irrelevant if there is no separate readonly data section.

ENCODE_SECTION_INFO (DECL)

Define this macro if references to a symbol must be treated differently depending on something about the variable or function named by the symbol (such as what section it is in).

The macro definition, if any, is executed immediately after the rtl for DECL has been created and stored in DECL_RTL (DECL). The value of the rtl will be a mem whose address is a symbol_ref.

The usual thing for this macro to do is to record a flag in the symbol_ref (such as SYMBOL_REF_FLAG) or to store a modified name string in the symbol_ref (if one bit is not enough information).

STRIP_NAME_ENCODING (VAR, SYM_NAME)

Decode SYM_NAME and store the real name part in VAR, sans the characters that encode section info. Define this macro if ENCODE_SECTION_INFO alters the symbol's name string.

1.211 gcc.guide/PIC

Position Independent Code

This section describes macros that help implement generation of position independent code. Simply defining these macros is not enough to generate valid PIC; you must also add support to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as LEGITIMIZE_ADDRESS. You must modify the definition of movsi to do something appropriate when the source operand contains a symbolic

gcc 411 / 551

address. You may also need to alter the handling of switch statements so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM

The register number of the register used to address a table of static data addresses in memory. In some cases this register is defined by a processor's "application binary interface" (ABI). When this macro is defined, RTL is generated for this register once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary).

PIC_OFFSET_TABLE_REG_CALL_CLOBBERED

Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is clobbered by calls. Do not define this macro if PPIC_OFFSET_TABLE_REGNUM is not defined.

FINALIZE_PIC

By generating position-independent code, when two different programs (A and B) share a common library (libC.a), the text of the library can be shared whether or not the library is linked at the same address for both programs. In some of these environments, position-independent code requires not only the use of different addressing modes, but also special code to enable the use of these addressing modes.

The FINALIZE_PIC macro serves as a hook to emit these special codes once the function is being compiled into assembly code, but not before. (It is not done before, because in the case of compiling an inline function, it would lead to multiple PIC prologues being included in functions which used inline functions and were compiled to assembly language.)

LEGITIMATE_PIC_OPERAND_P (X)

A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent code. You can assume that X satisfies CONSTANT_P, so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all constants (including SYMBOL_REF) can be immediate operands when generating position independent code.

1.212 gcc.guide/Assembler Format

Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instructions in assembler language-rather than what the instructions do.

File Framework

gcc 412 / 551

Structural information for the assembler file.

Data Output

Output of constants (numbers, strings, addresses).

Uninitialized Data
Output of uninitialized variables.

Label Output
Output and generation of labels.

Initialization

 $\label{thm:continuous} \mbox{ General principles of initialization and termination routines.}$

Macros for Initialization

Specific macros that control the handling of initialization and termination routines.

Instruction Output
Output of actual instructions.

Dispatch Tables
Output of jump tables.

Alignment Output
Pseudo ops for alignment and skipping data.

1.213 gcc.guide/File Framework

The Overall Framework of an Assembler File

This describes the overall framework of an assembler file.

ASM FILE START (STREAM)

A C expression which outputs to the stdio stream STREAM some appropriate text to go at the start of an assembler file.

Normally this macro is defined to output a line containing #NO_APP, which is a comment that has no effect on most assemblers but tells the GNU assembler that it can save time by not checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain commands; see attasm.h.

ASM_FILE_END (STREAM)

A C expression which outputs to the stdio stream STREAM some appropriate text to go at the end of an assembler file.

If this macro is not defined, the default is to output nothing special at the end of the file. Most systems don't require any

gcc 413 / 551

definition.

On systems that use SDB, it is necessary to output certain commands; see attasm.h.

ASM_IDENTIFY_GCC (FILE)

A C statement to output assembler commands which will identify the object file as having been compiled with GNU CC (or another GNU compiler).

If you don't define this macro, the string gcc_compiled.: is output. This string is calculated to define a symbol which, on BSD systems, will never be defined for any other reason. GDB checks for the presence of this symbol when reading the symbol table of an executable.

On non-BSD systems, you must arrange communication with GDB in some other fashion. If GDB is not used on your system, you can define this macro with an empty body.

ASM COMMENT START

A C string constant describing how to begin a comment in the target assembler language. The compiler assumes that the comment will end at the end of the line.

ASM_APP_ON

A C string constant for text to be output before each asm statement or group of consecutive ones. Normally this is "#APP", which is a comment that has no effect on most assemblers but tells the GNU assembler that it must check the lines that follow for all valid assembler constructs.

ASM_APP_OFF

A C string constant for text to be output after each asm statement or group of consecutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output.

ASM_OUTPUT_SOURCE_FILENAME (STREAM, NAME)

A C statement to output COFF information or DWARF debugging information which indicates that filename NAME is the current source file to the stdio stream STREAM.

This macro need not be defined if the standard form of output for the file format in use is appropriate.

ASM_OUTPUT_SOURCE_LINE (STREAM, LINE)

A C statement to output DBX or SDB debugging information before code for line number LINE of the current source file to the stdio stream STREAM.

This macro need not be defined if the standard form of debugging information for the debugger in use is appropriate.

ASM_OUTPUT_IDENT (STREAM, STRING)

A C statement to output something to the assembler file to handle a #ident directive containing the text STRING. If this macro is

gcc 414 / 551

not defined, nothing is output for a #ident directive.

ASM_OUTPUT_SECTION_NAME (STREAM, DECL, NAME)

A C statement to output something to the assembler file to switch to section NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or NULL_TREE. Some target formats do not support arbitrary sections. Do not define this macro in such cases.

At present this macro is only used to support section attributes. When this macro is undefined, section attributes are disabled.

OBJC_PROLOGUE

A C statement to output any assembler statements which are required to precede any Objective C object definitions or message sending. The statement is executed only when compiling an Objective C program.

1.214 gcc.quide/Data Output

Output of Data

This describes data output.

ASM_OUTPUT_LONG_DOUBLE (STREAM, VALUE)
ASM_OUTPUT_DOUBLE (STREAM, VALUE)
ASM_OUTPUT_FLOAT (STREAM, VALUE)
ASM_OUTPUT_THREE_QUARTER_FLOAT (STREAM, VALUE)
ASM_OUTPUT_SHORT_FLOAT (STREAM, VALUE)
ASM_OUTPUT_BYTE_FLOAT (STREAM, VALUE)

A C statement to output to the stdio stream STREAM an assembler instruction to assemble a floating-point constant of TFmode, DFmode, SFmode, TQFmode, HFmode, or QFmode, respectively, whose value is VALUE. VALUE will be a C expression of type REAL_VALUE_TYPE. Macros such as REAL_VALUE_TO_TARGET_DOUBLE are useful for writing these definitions.

ASM_OUTPUT_QUADRUPLE_INT (STREAM, EXP)
ASM_OUTPUT_DOUBLE_INT (STREAM, EXP)
ASM_OUTPUT_INT (STREAM, EXP)
ASM_OUTPUT_SHORT (STREAM, EXP)
ASM_OUTPUT_CHAR (STREAM, EXP)

A C statement to output to the stdio stream STREAM an assembler instruction to assemble an integer of 16, 8, 4, 2 or 1 bytes, respectively, whose value is VALUE. The argument EXP will be an RTL expression which represents a constant value. Use output_addr_const (STREAM, EXP) to output this value as an assembler expression.

For sizes larger than UNITS_PER_WORD, if the action of a macro would be identical to repeatedly calling the macro corresponding to a size of UNITS_PER_WORD, once for each word, you need not define the macro.

gcc 415 / 551

ASM_OUTPUT_BYTE (STREAM, VALUE)

A C statement to output to the stdio stream STREAM an assembler instruction to assemble a single byte containing the number VALUE.

ASM BYTE OP

A C string constant giving the pseudo-op to use for a sequence of single-byte constants. If this macro is not defined, the default is "byte".

ASM_OUTPUT_ASCII (STREAM, PTR, LEN)

A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes at PTR. PTR will be a C expression of type char \ast and LEN a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do not define the macro ASM_OUTPUT_ASCII.

ASM_OUTPUT_POOL_PROLOGUE (FILE FUNNAME FUNDECL SIZE)

A C statement to output assembler commands to define the start of the constant pool for a function. FUNNAME is a string giving the name of the function. Should the return type of the function be required, it can be obtained via FUNDECL. SIZE is the size, in bytes, of the constant pool that will be written immediately after this call.

If no constant-pool prefix is required, the usual case, this macro need not be defined.

ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO, JUMPTO)

A C statement (with or without semicolon) to output a constant in the constant pool, if it needs special treatment. (This macro need not do anything for RTL expressions that can be output normally.)

The argument FILE is the standard I/O stream to output the assembler code on. X is the RTL expression for the constant to output, and MODE is the machine mode (in case X is a const_int). ALIGN is the required alignment for the value X; you should output an assembler directive to force this much alignment.

The argument LABELNO is a number to use in an internal label for the address of this pool entry. The definition of this macro is responsible for outputting the label definition at the proper place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (FILE, "LC", LABELNO);

When you output a pool entry specially, you should end with a goto to the label JUMPTO. This will prevent the same pool entry from being output a second time in the usual manner.

You need not define this macro if it would do nothing.

IS_ASM_LOGICAL_LINE_SEPARATOR (C)

Define this macro as a C expression which is nonzero if C is used as a logical line separator by the assembler.

gcc 416 / 551

If you do not define this macro, the default is that only the character; is treated as a logical line separator.

ASM_OPEN_PAREN ASM_CLOSE_PAREN

These macros are defined as C string constant, describing the syntax in the assembler for grouping arithmetic expressions. The following definitions are correct for most assemblers:

```
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
```

These macros are provided by real.h for writing the definitions of ASM_OUTPUT_DOUBLE and the like:

```
REAL_VALUE_TO_TARGET_SINGLE (X, L)
REAL_VALUE_TO_TARGET_DOUBLE (X, L)
REAL_VALUE_TO_TARGET_LONG_DOUBLE (X, L)
```

These translate X, of type REAL_VALUE_TYPE, to the target's floating point representation, and store its bit pattern in the array of long int whose address is L. The number of elements in the output array is determined by the size of the desired target floating point data type: 32 bits of it go in each long int array element. Each array element holds 32 bits of the result, even if long int is wider than 32 bits on the host machine.

The array element values are designed so that you can print them out using fprintf in the order they should appear in the target machine's memory.

```
REAL_VALUE_TO_DECIMAL (X, FORMAT, STRING)
```

This macro converts X, of type REAL_VALUE_TYPE, to a decimal number and stores it as a string into STRING. You must pass, as STRING, the address of a long enough block of space to hold the result.

The argument FORMAT is a printf-specification that serves as a suggestion for how to format the output string.

1.215 gcc.guide/Uninitialized Data

```
Output of Uninitialized Variables
```

Each of the macros in this section is used to do the whole job of outputting a single uninitialized variable.

```
ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED)
```

A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of a common-label named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants.

gcc 417 / 551

Use the expression assemble_name (STREAM, NAME) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline.

This macro controls how the assembler definitions of uninitialized global variables are output.

ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT) Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_COMMON, and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits.

ASM_OUTPUT_SHARED_COMMON (STREAM, NAME, SIZE, ROUNDED)

If defined, it is similar to ASM_OUTPUT_COMMON, except that it is used when NAME is shared. If not defined, ASM_OUTPUT_COMMON will be used.

ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED)

A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of a local-common-label named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (STREAM, NAME) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline.

This macro controls how the assembler definitions of uninitialized static variables are output.

ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT) Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_LOCAL, and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits.

ASM_OUTPUT_SHARED_LOCAL (STREAM, NAME, SIZE, ROUNDED)

If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is used when NAME is shared. If not defined, ASM_OUTPUT_LOCAL will be used.

1.216 gcc.guide/Label Output

Output and Generation of Labels

This is about outputting labels.

ASM_OUTPUT_LABEL (STREAM, NAME)

A C statement (sans semicolon) to output to the stdio stream STREAM the assembler definition of a label named NAME. Use the

gcc 418 / 551

expression assemble_name (STREAM, NAME) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline.

ASM DECLARE FUNCTION NAME (STREAM, NAME, DECL)

A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name NAME of a function which is being defined. This macro is responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL). The argument DECL is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function name is defined in the usual manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL)

A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the size of a function which is being defined. The argument NAME is the name of the function. The argument DECL is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function size is not defined.

ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL)

A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name NAME of an initialized variable which is being defined. This macro must output the label definition (perhaps using ASM_OUTPUT_LABEL). The argument DECL is the VAR_DECL tree node representing the variable.

If this macro is not defined, then the variable name is defined in the usual manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND)

A C statement (sans semicolon) to finish up declaring a variable name once the compiler has processed its initializer fully and thus has had a chance to determine the size of an array when controlled by an initializer. This is used on systems where it's necessary to declare something about the size of the object.

If you don't define this macro, that is equivalent to defining it to do nothing.

ASM_GLOBALIZE_LABEL (STREAM, NAME)

A C statement (sans semicolon) to output to the stdio stream STREAM some commands that will make the label NAME global; that is, available for reference from other files. Use the expression assemble_name (STREAM, NAME) to output the name itself; before and after that, output the additional assembler syntax for making that name global, and a newline.

ASM_WEAKEN_LABEL

A C statement (sans semicolon) to output to the stdio stream STREAM some commands that will make the label NAME weak; that is, available for reference from other files but only used if no other

gcc 419 / 551

definition is available. Use the expression assemble_name (STREAM, NAME) to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline.

If you don't define this macro, GNU CC will not support weak symbols and you should not define the SUPPORTS_WEAK macro.

SUPPORTS WEAK

A C expression which evaluates to true if the target supports weak symbols.

If you don't define this macro, defaults.h provides a default definition. If ASM_WEAKEN_LABEL is defined, the default definition is 1; otherwise, it is 0. Define this macro if you want to control weak symbol support with a compiler flag such as -melf.

ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME)

A C statement (sans semicolon) to output to the stdio stream STREAM any text necessary for declaring the name of an external symbol named NAME which is referenced in this compilation but not defined. The value of DECL is the tree node for the declaration.

This macro need not be defined if it does not need to output anything. The GNU assembler and most Unix assemblers don't require anything.

ASM_OUTPUT_EXTERNAL_LIBCALL (STREAM, SYMREF)

A C statement (sans semicolon) to output on STREAM an assembler pseudo-op to declare a library function name external. The name of the library function is given by SYMREF, which has type rtx and is a symbol_ref.

This macro need not be defined if it does not need to output anything. The GNU assembler and most Unix assemblers don't require anything.

ASM_OUTPUT_LABELREF (STREAM, NAME)

A C statement (sans semicolon) to output to the stdio stream STREAM a reference in assembler syntax to a label named NAME. This should add _ to the front of the name, if that is customary on your operating system, as it is in most Berkeley Unix systems. This macro is used in assemble_name.

ASM_OUTPUT_INTERNAL_LABEL (STREAM, PREFIX, NUM)

A C statement to output to the stdio stream STREAM a label whose name is made from the string PREFIX and the number NUM.

It is absolutely essential that these labels be distinct from the labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels.

It is desirable to exclude internal labels from the symbol table of the object file. Most assemblers have a naming convention for labels that should be excluded; on many systems, the letter L at the beginning of a label has this effect. You should find out what

gcc 420 / 551

convention your system uses, and follow it.

The usual definition of this macro is as follows:

fprintf (STREAM, "L%s%d:\n", PREFIX, NUM)

ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM)

A C statement to store into the string STRING a label whose name is made from the string PREFIX and the number NUM.

This string, when output subsequently by assemble_name, should produce the output that ASM_OUTPUT_INTERNAL_LABEL would produce with the same PREFIX and NUM.

If the string begins with *, then assemble_name will output the rest of the string unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use * in this way. If the string doesn't start with *, then ASM_OUTPUT_LABELREF gets to output the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part of your machine description, so you should know what it does on your machine.)

ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER)

A C expression to assign to OUTVAR (which is a variable of type char \star) a newly allocated string made from the string NAME and the number NUMBER, with some suitable punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an assembler label for an internal static variable whose name is NAME. Therefore, the string must be such as to result in valid assembler code. The argument NUMBER is different each time this macro is executed; it prevents conflicts between similarly-named internal static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow periods or percent signs in assembler symbols; putting at least one of these between the name and the number will suffice.

ASM_OUTPUT_DEF (STREAM, NAME, VALUE)

A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol NAME to have the value VALUE.

If $\operatorname{SET_ASM_OP}$ is defined, a default definition is provided which is correct for most systems.

OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME)

Define this macro to override the default assembler names used for Objective C methods.

The default name is a unique method number followed by the name of the class (e.g. _1_Foo). For methods in categories, the name of the category is also included in the assembler name (e.g. _1_Foo_Bar).

These names are safe on most systems, but make debugging difficult

gcc 421 / 551

since the method's selector is not present in the name.

Therefore, particular systems define other ways of computing names.

BUF is an expression of type char * which gives you a buffer in which to store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME put together, plus 50 characters extra.

The argument IS_INST specifies whether the method is an instance method or a class method; CLASS_NAME is the name of the class; CAT_NAME is the name of the category (or NULL if the method is not in a category); and SEL_NAME is the name of the selector.

On systems where the assembler can handle quoted names, you can use this macro to provide more human-readable names.

1.217 gcc.guide/Initialization

How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization routines)—functions to initialize data in the program when the program is started. These functions need to be called before the program is "started"—that is to say, before main is called.

Compiling some languages generates destructors (also called termination routines) that should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output something in the assembler code to cause those functions to be called at the appropriate time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization and termination functions. Each way has two variants. Much of the structure is common to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called __CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, -1, or a count of the function pointers after it, depending on the environment). This is followed by a series of zero or more function pointers to constructors (or destructors), followed by a function pointer containing zero.

Depending on the operating system and its executable file format, either crtstuff.c or libgcc2.c traverses these lists at startup time and exit time. Constructors are called in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file

gcc 422 / 551

formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. Traditionally these are called .ctors and .dtors. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates all these words into one contiguous .ctors section. Termination functions are handled similarly.

To use this method, you need appropriate definitions of the macros ASM_OUTPUT_CONSTRUCTOR and ASM_OUTPUT_DESTRUCTOR. Usually you can get them by including svr4.h.

When arbitrary sections are available, there are two variants, depending upon how the code in crtstuff.c is called. On systems that support an init section which is executed at program startup, parts of crtstuff.c are compiled into that section. The program is linked by the gcc driver like this:

ld -o OUTPUT_FILE crtbegin.o ... crtend.o -lgcc

The head of a function (__do_global_ctors) appears in the init section of crtbegin.o; the remainder of the function appears in the init section of crtend.o. The linker will pull these two parts of the section together, making a whole function. If any of the user's object files linked into the middle of it contribute code, then that code will be executed as part of the body of __do_global_ctors.

To use this variant, you must define the ${\tt INIT_SECTION_ASM_OP}$ macro properly.

If no init section is available, do not define INIT_SECTION_ASM_OP. Then __do_global_ctors is built into the text section like all other functions, and resides in libgcc.a. When GCC compiles any function called main, it inserts a procedure call to __main as the first executable code after the function prologue. The __main function, also defined in libgcc2.c, simply calls __do_global_ctors.

In file formats that don't support arbitrary sections, there are again two variants. In the simplest variant, the GNU linker (GNU ld) and an 'a.out' format must be used. In this case, ASM_OUTPUT_CONSTRUCTOR is defined to produce a .stabs entry of type N_SETT, referencing the name __CTOR_LIST__, and with the address of the void function containing the initialization code as its value. The GNU linker recognizes this as a request to add the value to a "set"; the values are accumulated, and are eventually placed in the executable as a vector in the format described above, with a leading (ignored) count and a trailing zero element. ASM_OUTPUT_DESTRUCTOR is handled similarly. Since no init section is available, the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using file formats which the GNU linker does not support, such as 'ECOFF'. In this case, ASM_OUTPUT_CONSTRUCTOR does not produce an N_SETT symbol; initialization and termination functions are recognized simply by their names. This requires an extra program in the linkage step, called

gcc 423 / 551

collect2. This program pretends to be the linker, for use with GNU CC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called via __main as described above.

Choosing among these configuration options has been simplified by a set of operating-system-dependent files in the config subdirectory. These files define all of the relevant parameters. Usually it is sufficient to include one into your specific machine-dependent configuration file. These files are:

aoutos.h

For operating systems using the 'a.out' format.

next.h

For operating systems using the 'MachO' format.

svr3.h

For System V Release 3 and similar systems using 'COFF' format.

svr4.h

For System V Release 4 and similar systems using 'ELF' format.

vms.h

For the VMS operating system.

The following section describes the specific macros that control and customize the handling of initialization and termination functions.

1.218 gcc.guide/Macros for Initialization

Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination functions:

INIT_SECTION_ASM_OP

If defined, a C string constant for the assembler operation to identify the following data as initialization code. If not defined, GNU CC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls how crtstuff.c and libgcc2.c arrange to run the initialization functions.

HAS_INIT_SECTION

If defined, main will not call __main as described above. This macro should be defined for systems that control the contents of the init section on a symbol-by-symbol basis, such as OSF/1, and should not be defined explicitly for systems that support INIT_SECTION_ASM_OP.

LD_INIT_SWITCH

If defined, a C string constant for a switch that tells the linker

gcc 424 / 551

that the following symbol is an initialization routine.

LD_FINI_SWITCH

If defined, a C string constant for a switch that tells the linker that the following symbol is a finalization routine.

INVOKE___main

If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors.

ASM_OUTPUT_CONSTRUCTOR (STREAM, NAME)

Define this macro as a C statement to output on the stream STREAM the assembler code to arrange to call the function named NAME at initialization time.

Assume that NAME is the name of a C function generated automatically by the compiler. This function takes no arguments. Use the function assemble_name to output the name NAME; this performs any system-specific syntactic transformations such as adding an underscore.

If you don't define this macro, nothing special is output to arrange to call the function. This is correct when the function will be called in some other manner—for example, by means of the collect2 program, which looks through the symbol table to find these functions by their names.

ASM_OUTPUT_DESTRUCTOR (STREAM, NAME)

This is like ASM_OUTPUT_CONSTRUCTOR but used for termination functions rather than initialization functions.

If your system uses collect2 as the means of processing constructors, then that program normally uses nm to scan an object file for constructor functions to be called. On certain kinds of systems, you can define these macros to make collect2 work faster (and, in some cases, make it work at all):

OBJECT_FORMAT_COFF

Define this macro if the system uses COFF (Common Object File Format) object files, so that collect2 can assume this format and scan object files directly for dynamic constructor/destructor functions.

OBJECT_FORMAT_ROSE

Define this macro if the system uses ROSE format object files, so that collect2 can assume this format and scan object files directly for dynamic constructor/destructor functions.

These macros are effective only in a native compiler; collect2 as part of a cross compiler always uses nm for the target machine.

REAL_NM_FILE_NAME

Define this macro as a C string constant containing the file name to use to execute nm. The default is to search the path normally

gcc 425 / 551

for nm.

If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define these macros to enable support for running initialization and termination functions in shared libraries:

LDD_SUFFIX

Define this macro to a C string constant containing the name of the program which lists dynamic dependencies, like "ldd" under SunOS 4.

PARSE_LDD_OUTPUT (PTR)

Define this macro to be C code that extracts filenames from the output of the program denoted by LDD_SUFFIX. PTR is a variable of type char * that points to the beginning of a line of output from LDD_SUFFIX. If the line lists a dynamic dependency, the code must advance PTR to the beginning of the filename on that line. Otherwise, it must set PTR to NULL.

1.219 gcc.guide/Instruction Output

Output of Assembler Instructions

This describes assembler instruction output.

REGISTER_NAMES

A C initializer containing the assembler's names for the machine registers, each one as a C string constant. This is what translates register numbers in the compiler into assembler language.

ADDITIONAL_REGISTER_NAMES

If defined, a C initializer for an array of structures containing a name and a register number. This macro defines additional names for hard registers, thus allowing the asm option in declarations to refer to registers using alternate names.

ASM_OUTPUT_OPCODE (STREAM, PTR)

Define this macro if you are using an unusual assembler that requires different names for the machine instructions.

The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The macro-operand PTR is a variable of type char * which points to the opcode name in its "internal" form—the form that is written in the machine description. The definition should output the opcode name to STREAM, performing any translation you desire, and increment the variable PTR to point at the end of the opcode so that it will not be output twice.

In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to process text that includes %-sequences to substitute operands, you

gcc 426 / 551

must take care of the substitution yourself. Just be sure to increment PTR over whatever text should not be output normally.

If you need to look at the operand values, they can be found as the elements of recog_operand.

If the macro definition does nothing, the instruction is output in the usual way.

FINAL_PRESCAN_INSN (INSN, OPVEC, NOPERANDS)

If defined, a C statement to be executed just prior to the output of assembler code for INSN, to modify the extracted operands so they will be output differently.

Here the argument OPVEC is the vector containing the operands extracted from INSN, and NOPERANDS is the number of elements of the vector which contain meaningful data for this insn. The contents of this vector are what will be used to convert the insn template into assembler code, so you can change the assembler output by changing the contents of the vector.

This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ought to be handled by writing conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

PRINT_OPERAND (STREAM, X, CODE)

A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand X. X is an RTL expression.

CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the % specification that was used to request printing of the operand. If the specification was just %DIGIT then CODE is 0; if the specification was %LTR DIGIT then CODE is the ASCII code for LTR.

If X is a register, this macro should print the register's name. The names can be found in an array reg_names whose type is char *[]. reg_names is initialized from REGISTER_NAMES.

When the machine description has a specification PUNCT (a % followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE.

PRINT_OPERAND_PUNCT_VALID_P (CODE)

A C expression which evaluates to true if CODE is a valid punctuation character for use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no punctuation characters (except for the standard one, %) are used

gcc 427 / 551

in this way.

PRINT_OPERAND_ADDRESS (STREAM, X)

A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand that is a memory reference whose address is X. X is an RTL expression.

On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the macro ENCODE_SECTION_INFO to store the information into the symbol_ref, and then check for it here. See

Assembler Format

DBR_OUTPUT_SEQEND (FILE)

A C statement, to be executed after all slot-filler instructions have been output. If necessary, call dbr_sequence_length to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever.

Don't define this macro if it has nothing to do, but it is helpful in reading assembly output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when the scheduling pass is not run, or when no slot fillers could be found.) The variable final_sequence is null when not processing a sequence, otherwise it contains the sequence rtx being output.

REGISTER_PREFIX LOCAL_LABEL_PREFIX USER_LABEL_PREFIX IMMEDIATE PREFIX

If defined, C string expressions to be used for the %R, %L, %U, and %I options of asm_fprintf (see final.c). These are useful when a single md file must support multiple assembler formats. In that case, the various tm.h files can define these macros differently.

ASSEMBLER DIALECT

If your target supports multiple dialects of assembler language (such as different opcodes), define this macro as a C expression that gives the numeric index of the assembler language dialect to use, with zero as the first variant.

If this macro is defined, you may use {option0|option1|option2...} constructs in the output templates of patterns (see

Output Template

) or in the first argument of asm_fprintf. This construct outputs option0, option1 or option2, etc., if the value of ASSEMBLER_DIALECT is zero, one or two, etc. Any special characters within these strings retain their usual meaning.

gcc 428 / 551

If you do not define this macro, the characters $\{$, | and $\}$ do not have any special meaning when used in templates or operands to $asm_fprintf$.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_PREFIX and IMMEDIATE_PREFIX if you can express the variations in assemble language syntax with that mechanism. Define ASSEMBLER_DIALECT and use the {option0|option1} syntax if the syntax variant are larger and involve such things as different opcodes or operand order.

ASM_OUTPUT_REG_PUSH (STREAM, REGNO)

A C expression to output to STREAM some assembler code which will push hard register number REGNO onto the stack. The code need not be optimal, since this macro is used only when profiling.

ASM_OUTPUT_REG_POP (STREAM, REGNO)

A C expression to output to STREAM some assembler code which will pop hard register number REGNO off of the stack. The code need not be optimal, since this macro is used only when profiling.

1.220 gcc.guide/Dispatch Tables

Output of Dispatch Tables

This concerns dispatch tables.

ASM_OUTPUT_ADDR_DIFF_ELT (STREAM, VALUE, REL)

This macro should be provided on machines where the addresses in a dispatch table are relative to the table's own address.

The definition should be a C statement to output to the stdio stream STREAM an assembler pseudo-instruction to generate a difference between two labels. VALUE and REL are the numbers of two internal labels. The definitions of these labels are output using ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in the same way here. For example,

ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE)

This macro should be provided on machines where the addresses in a dispatch table are absolute.

The definition should be a C statement to output to the stdio stream STREAM an assembler pseudo-instruction to generate a reference to a label. VALUE is the number of an internal label whose definition is output using ASM_OUTPUT_INTERNAL_LABEL. For example,

fprintf (STREAM, "\t.word L%d\n", VALUE)

gcc 429 / 551

ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE)

Define this if the label before a jump-table needs to be output specially. The first three arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL; the fourth argument is the jump-table which follows (a jump_insn containing an addr_vec or addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with ASM_OUTPUT_INTERNAL_LABEL.

ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE)

Define this if something special must be output at the end of a jump-table. The definition should be a C statement to be executed after the assembler code for the table is written. It should write the appropriate code to stdio stream STREAM. The argument TABLE is the jump-table insn, and NUM is the label-number of the preceding label.

If this macro is not defined, nothing special is output at the end of the jump-table.

1.221 gcc.guide/Alignment Output

Assembler Commands for Alignment

This describes commands for alignment.

ASM_OUTPUT_ALIGN_CODE (FILE)

A C expression to output text to align the location counter in the way that is desirable at a point in the code that is reached only by jumping.

This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro.

ASM_OUTPUT_LOOP_ALIGN (FILE)

A C expression to output text to align the location counter in the way that is desirable at the beginning of a loop.

This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro.

ASM_OUTPUT_SKIP (STREAM, NBYTES)

A C statement to output to the stdio stream STREAM an assembler instruction to advance the location counter by NBYTES bytes. Those bytes should be zero when loaded. NBYTES will be a C expression of type int.

gcc 430 / 551

ASM_NO_SKIP_IN_TEXT

Define this macro if ASM_OUTPUT_SKIP should not be used in the text section because it fails put zeros in the bytes that are skipped. This is true on many Unix systems, where the pseudo-op to skip bytes produces no-op instructions rather than zeros when used in the text section.

ASM_OUTPUT_ALIGN (STREAM, POWER)

A C statement to output to the stdio stream STREAM an assembler command to advance the location counter to a multiple of 2 to the POWER bytes. POWER will be a C expression of type int.

1.222 gcc.guide/Debugging Info

Controlling Debugging Information Format

This describes how to specify debugging information.

All Debuggers

Macros that affect all debugging formats uniformly.

DBX Options

Macros enabling specific options in DBX format.

DBX Hooks

Hook macros for varying DBX format.

File Names and DBX

Macros controlling output of file names in DBX format.

SDB and DWARF

Macros for SDB (COFF) and DWARF formats.

1.223 gcc.guide/All Debuggers

Macros Affecting All Debugging Formats

These macros affect all debugging formats.

DBX_REGISTER_NUMBER (REGNO)

A C expression that returns the DBX register number for the compiler register number REGNO. In simple cases, the value of this expression may be REGNO itself. But sometimes there are some registers that the compiler knows about and DBX does not, or vice

gcc 431 / 551

versa. In such cases, some register may need to have one number in the compiler and another for DBX.

If two registers have consecutive numbers inside GNU CC, and they can be used as a pair to hold a multiword value, then they must have consecutive numbers after renumbering with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to access such a pair, because they expect register pairs to be consecutive in their own numbering scheme.

If you find yourself defining DBX_REGISTER_NUMBER in way that does not preserve register pairs, then what you must do instead is redefine the actual register numbering scheme.

DEBUGGER_AUTO_OFFSET (X)

A C expression that returns the integer offset value for an automatic variable having address X (an RTL expression). The default computation assumes that X is based on the frame-pointer and gives the offset from the frame-pointer. This is required for targets that produce debugging output for DBX or COFF-style debugging output for SDB and allow the frame-pointer to be eliminated when the -g options is used.

DEBUGGER ARG OFFSET (OFFSET, X)

A C expression that returns the integer offset value for an argument having address ${\tt X}$ (an RTL expression). The nominal offset is OFFSET.

PREFERRED_DEBUGGING_TYPE

A C expression that returns the type of debugging output GNU CC produces when the user specifies -g or -ggdb. Define this if you have arranged for GNU CC to support more than one format of debugging output. Currently, the allowable values are DBX_DEBUG, SDB_DEBUG, DWARF_DEBUG, and XCOFF_DEBUG.

The value of this macro only affects the default debugging output; the user can always get a specific type of output by using -gstabs, -gcoff, -gdwarf, or -gxcoff.

1.224 gcc.guide/DBX Options

Specific Options for DBX Output

These are specific options for DBX output.

DBX_DEBUGGING_INFO

Define this macro if GNU CC should produce debugging output for DBX in response to the $\neg g$ option.

XCOFF_DEBUGGING_INFO

Define this macro if GNU CC should produce XCOFF format debugging output in response to the $\neg g$ option. This is a variant of DBX format.

gcc 432 / 551

DEFAULT GDB EXTENSIONS

Define this macro to control whether GNU CC should by default generate GDB's extended version of DBX debugging information (assuming DBX-format debugging information is enabled at all). If you don't define the macro, the default is 1: always generate the extended information if there is any occasion to.

DEBUG SYMS TEXT

Define this macro if all .stabs commands should be output while in the text section.

ASM_STABS_OP

A C string constant naming the assembler pseudo op to use instead of .stabs to define an ordinary debugging symbol. If you don't define this macro, .stabs is used. This macro applies only to DBX debugging information format.

ASM_STABD_OP

A C string constant naming the assembler pseudo op to use instead of .stabd to define a debugging symbol whose value is the current location. If you don't define this macro, .stabd is used. This macro applies only to DBX debugging information format.

ASM_STABN_OP

A C string constant naming the assembler pseudo op to use instead of .stabn to define a debugging symbol with no name. If you don't define this macro, .stabn is used. This macro applies only to DBX debugging information format.

DBX NO XREFS

Define this macro if DBX on your system does not support the construct xsTAGNAME. On some systems, this construct is used to describe a forward reference to a structure named TAGNAME. On other systems, this construct is not supported at all.

DBX_CONTIN_LENGTH

A symbol name in DBX-format debugging information is normally continued (split into two separate .stabs directives) when it exceeds a certain length (by default, 80 characters). On some operating systems, DBX requires this splitting; on others, splitting must not be done. You can inhibit splitting by defining this macro with the value zero. You can override the default splitting-length by defining this macro as an expression for the length you desire.

DBX_CONTIN_CHAR

Normally continuation is indicated by adding a \setminus character to the end of a .stabs string when a continuation follows. To use a different character instead, define this macro as a character constant for the character you want to use. Do not define this macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION

Define this macro if it is necessary to go to the data section before outputting the .stabs pseudo-op for a non-global static variable.

gcc 433 / 551

DBX_TYPE_DECL_STABS_CODE

The value to use in the "code" field of the .stabs directive for a typedef. The default is N_LSYM .

DBX_STATIC_CONST_VAR_CODE

The value to use in the "code" field of the .stabs directive for a static variable located in the text section. DBX format does not provide any "right" way to do this. The default is N_FUN.

DBX_REGPARM_STABS_CODE

The value to use in the "code" field of the .stabs directive for a parameter passed in registers. DBX format does not provide any "right" way to do this. The default is N_RSYM.

DBX_REGPARM_STABS_LETTER

The letter to use in DBX symbol data to identify a symbol as a parameter passed in registers. DBX format does not customarily provide any way to do this. The default is 'P'.

DBX MEMPARM STABS LETTER

The letter to use in DBX symbol data to identify a symbol as a stack parameter. The default is $^\prime p^\prime$.

DBX FUNCTION FIRST

Define this macro if the DBX information for a function and its arguments should precede the assembler code for the function. Normally, in DBX format, the debugging information entirely follows the assembler code.

DBX LBRAC FIRST

Define this macro if the N_LBRAC symbol for a block should precede the debugging information for variables and functions defined in that block. Normally, in DBX format, the N_LBRAC symbol comes first.

DBX_BLOCKS_FUNCTION_RELATIVE

Define this macro if the value of a symbol describing the scope of a block (N_LBRAC or N_RBRAC) should be relative to the start of the enclosing function. Normally, GNU C uses an absolute address.

1.225 gcc.guide/DBX Hooks

Open-Ended Hooks for DBX Format

These are hooks for DBX format.

DBX_OUTPUT_LBRAC (STREAM, NAME)

Define this macro to say how to output to STREAM the debugging information for the start of a scope level for variable names. The argument NAME is the name of an assembler symbol (for use with assemble_name) whose value is the address where the scope begins.

gcc 434 / 551

DBX_OUTPUT_RBRAC (STREAM, NAME)

Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX OUTPUT ENUM (STREAM, TYPE)

Define this macro if the target machine requires special handling to output an enumeration type. The definition should be a C statement (sans semicolon) to output the appropriate information to STREAM for the type TYPE.

DBX_OUTPUT_FUNCTION_END (STREAM, FUNCTION)

Define this macro if the target machine requires special output at the end of the debugging information for a function. The definition should be a C statement (sans semicolon) to output the appropriate information to STREAM. FUNCTION is the FUNCTION_DECL node for the function.

DBX_OUTPUT_STANDARD_TYPES (SYMS)

Define this macro if you need to control the order of output of the standard data types at the beginning of compilation. The argument SYMS is a tree which is a chain of all the predefined global symbols, including names of data types.

Normally, DBX output starts with definitions of the types for integers and characters, followed by all the other predefined types of the particular language in no particular order.

On some machines, it is necessary to output different particular types first. To do this, define DBX_OUTPUT_STANDARD_TYPES to output those symbols in the necessary order. Any predefined types that you don't explicitly output will be output afterward in no particular order.

Be careful not to define this macro so that it works only for C. There are no global variables to access most of the built-in types, because another language may have another set of types. The way to output a particular type is to look through SYMS to see if you can find it. Here is an example:

This does nothing if the expected type does not exist.

See the function init_decl_processing in c-decl.c to find the names to use for all the built-in C types.

Here is another way of finding a particular type:

```
tree decl;
```

gcc 435 / 551

1.226 gcc.guide/File Names and DBX

File Names in DBX Format

This describes file names in DBX format.

DBX WORKING DIRECTORY

Define this if DBX wants to have the current directory recorded in each object file.

Note that the working directory is always recorded if GDB extensions are enabled.

DBX_OUTPUT_MAIN_SOURCE_FILENAME (STREAM, NAME)

A C statement to output DBX debugging information to the stdio stream STREAM which indicates that file NAME is the main source file—the file specified as the input file for compilation. This macro is called only once, at the beginning of compilation.

This macro need not be defined if the standard form of output for DBX debugging information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (STREAM, NAME)

A C statement to output DBX debugging information to the stdio stream STREAM which indicates that the current directory during compilation is named NAME.

This macro need not be defined if the standard form of output for DBX debugging information is appropriate.

DBX OUTPUT MAIN SOURCE FILE END (STREAM, NAME)

A C statement to output DBX debugging information at the end of compilation of the main source file NAME.

If you don't define this macro, nothing special is output at the end of compilation, which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (STREAM, NAME)

A C statement to output DBX debugging information to the stdio stream STREAM which indicates that file NAME is the current source file. This output is generated each time input shifts to a different source file as a result of #include, the end of an

gcc 436 / 551

included file, or a #line command.

This macro need not be defined if the standard form of output for DBX debugging information is appropriate.

1.227 gcc.guide/SDB and DWARF

Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

SDB DEBUGGING INFO

Define this macro if GNU CC should produce COFF-style debugging output for SDB in response to the -g option.

DWARF_DEBUGGING_INFO

Define this macro if GNU CC should produce dwarf format debugging output in response to the -g option.

PUT_SDB_...

Define these macros to override the assembler syntax for the special SDB assembler directives. See sdbout.c for a list of these macros and their arguments. If the standard syntax is used, you need not define them yourself.

SDB DELIM

Some assemblers do not support a semicolon as a delimiter, even between SDB assembler directives. In that case, define this macro to be the delimiter to use (usually \n). It is not necessary to define a new set of PUT_SDB_OP macros if this is the only change required.

SDB_GENERATE_FAKE

Define this macro to override the usual method of constructing a dummy name for anonymous structure and union types. See sdbout.c for more information.

SDB_ALLOW_UNKNOWN_REFERENCES

Define this macro to allow references to unknown structure, union, or enumeration tags to be emitted. Standard COFF does not allow handling of unknown references, MIPS ECOFF has support for it.

SDB ALLOW FORWARD REFERENCES

Define this macro to allow references to structure, union, or enumeration tags that have not yet been seen to be handled. Some assemblers choke if forward tags are used, while some require it.

1.228 gcc.guide/Cross-compilation

gcc 437 / 551

Cross Compilation and Floating Point

While all modern machines use 2's complement representation for integers, there are a variety of representations for floating point numbers. This means that in a cross-compiler the representation of floating point numbers in the compiled program may be different from that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and precision, the cross compiler cannot safely use the host machine's floating point arithmetic. Therefore, floating point constants must be represented in the target machine's format. This means that the cross compiler cannot use atof to parse a floating point constant; it must have its own special routine to use instead. Also, constant folding must emulate the target machine's arithmetic (or must not be done at all).

The macros in the following table should be defined only if you are cross compiling between different floating point formats.

Otherwise, don't define them. Then default definitions will be set up which use double as the data type, == to test for equality, etc.

You don't need to worry about how many times you use an operand of any of these macros. The compiler never uses operands which have side effects.

REAL_VALUE_TYPE

A macro for the C data type to be used to hold a floating point value in the target machine's format. Typically this would be a struct containing an array of int.

REAL_VALUES_EQUAL (X, Y)

A macro for a C expression which compares for equality the two values, X and Y, both of type REAL_VALUE_TYPE.

REAL_VALUES_LESS (X, Y)

A macro for a C expression which tests whether X is less than Y, both values being of type REAL_VALUE_TYPE and interpreted as floating point numbers in the target machine's representation.

REAL_VALUE_LDEXP (X, SCALE)

A macro for a C expression which performs the standard library function ldexp, but using the target machine's floating point representation. Both X and the value of the expression have type REAL_VALUE_TYPE. The second argument, SCALE, is an integer.

REAL_VALUE_FIX (X)

A macro whose definition is a C expression to convert the target-machine floating point value X to a signed integer. X has type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX (X)

A macro whose definition is a C expression to convert the target-machine floating point value ${\tt X}$ to an unsigned integer. ${\tt X}$

gcc 438 / 551

has type REAL_VALUE_TYPE.

REAL_VALUE_RNDZINT (X)

A macro whose definition is a C expression to round the target-machine floating point value X towards zero to an integer value (but still as a floating point number). X has type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_UNSIGNED_RNDZINT (X)

A macro whose definition is a C expression to round the target-machine floating point value X towards zero to an unsigned integer value (but still represented as a floating point number). X has type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_ATOF (STRING, MODE)

A macro for a C expression which converts STRING, an expression of type char *, into a floating point number in the target machine's representation for mode MODE. The value has type REAL_VALUE_TYPE.

REAL INFINITY

Define this macro if infinity is a possible floating point value, and therefore division by 0 is legitimate.

REAL VALUE ISINF (X)

A macro for a C expression which determines whether X, a floating point value, is infinity. The value has type int. By default, this is defined to call isinf.

REAL_VALUE_ISNAN (X)

A macro for a C expression which determines whether X, a floating point value, is a "nan" (not-a-number). The value has type int. By default, this is defined to call isnan.

Define the following additional macros if you want to make floating point constant folding work while cross compiling. If you don't define them, cross compilation is still possible, but constant folding will not happen for floating point values.

REAL_ARITHMETIC (OUTPUT, CODE, X, Y)

A macro for a C statement which calculates an arithmetic operation of the two floating point values X and Y, both of type REAL_VALUE_TYPE in the target machine's representation, to produce a result of the same type and representation which is stored in OUTPUT (which will be a variable).

The operation to be performed is specified by CODE, a tree code which will always be one of the following: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR, MIN_EXPR.

The expansion of this macro is responsible for checking for overflow. If overflow happens, the macro expansion should execute the statement return 0;, which indicates the inability to perform the arithmetic operation requested.

REAL_VALUE_NEGATE (X)

A macro for a C expression which returns the negative of the floating point value X. Both X and the value of the expression

gcc 439 / 551

have type REAL_VALUE_TYPE and are in the target machine's floating point representation.

There is no way for this macro to report overflow, since overflow can't happen in the negation operation.

REAL_VALUE_TRUNCATE (MODE, X)

A macro for a C expression which converts the floating point value ${\tt X}$ to mode MODE.

Both X and the value of the expression are in the target machine's floating point representation and have type REAL_VALUE_TYPE. However, the value should have an appropriate bit pattern to be output properly as a floating constant whose precision accords with mode MODE.

There is no way for this macro to report overflow.

REAL_VALUE_TO_INT (LOW, HIGH, X)

A macro for a C expression which converts a floating point value X into a double-precision integer which is then stored into LOW and HIGH, two variables of type INT.

REAL VALUE FROM INT (X, LOW, HIGH)

A macro for a C expression which converts a double-precision integer found in LOW and HIGH, two variables of type INT, into a floating point value which is then stored into X.

1.229 gcc.guide/Misc

Miscellaneous Parameters

Here are several miscellaneous parameters.

PREDICATE CODES

Define this if you have defined special-purpose predicates in the file MACHINE.c. This macro is called within an initializer of an array of structures. The first field in the structure is the name of a predicate and the second field is an array of rtl codes. For each predicate, list all rtl codes that can be in expressions matched by the predicate. The list should have a trailing comma. Here is an example of two entries in the list for a typical RISC machine:

```
#define PREDICATE_CODES \
   {"gen_reg_rtx_operand", {SUBREG, REG}}, \
   {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
```

Defining this macro does not affect the generated code (however, incorrect definitions that omit an rtl code that may be matched by the predicate can cause the compiler to malfunction). Instead, it allows the table built by genrecog to be more compact and efficient, thus speeding up the compiler. The most important

gcc 440 / 551

predicates to include in the list specified by this macro are thoses used in the most insn patterns.

CASE_VECTOR_MODE

An alias for a machine mode name. This is the machine mode that elements of a jump-table should have.

CASE_VECTOR_PC_RELATIVE

Define this macro if jump-tables should contain relative addresses.

CASE_DROPS_THROUGH

Define this if control falls through a case insn when the index value is out of range. This means the specified default-label is actually ignored by the case insn proper.

CASE VALUES THRESHOLD

Define this to be the smallest number of different values for which it is best to use a jump-table instead of a tree of conditional branches. The default is four for machines with a casesi instruction and five otherwise. This is best for most machines.

WORD REGISTER OPERATIONS

Define this macro if operations between registers with integral mode smaller than a word are always performed on the entire register. Most RISC machines have this property and most CISC machines do not.

LOAD_EXTEND_OP (MODE)

Define this macro to be a C expression indicating when insns that read memory in MODE, an integral mode narrower than a word, set the bits outside of MODE to be either the sign-extension or the zero-extension of the data read. Return SIGN_EXTEND for values of MODE for which the insn sign-extends, ZERO_EXTEND for which it zero-extends, and NIL for other modes.

This macro is not called with MODE non-integral or with a width greater than or equal to BITS_PER_WORD, so you may return any value in this case. Do not define this macro if it would always return NIL. On machines where this macro is defined, you will normally define it as the constant SIGN_EXTEND or ZERO_EXTEND.

IMPLICIT FIX EXPR

An alias for a tree code that should be used by default for conversion of floating point values to fixed point. Normally, FIX_ROUND_EXPR is used.

FIXUNS_TRUNC_LIKE_FIX_TRUNC

Define this macro if the same instructions that convert a floating point number to a signed fixed point number also convert validly to an unsigned one.

EASY DIV EXPR

An alias for a tree code that is the easiest kind of division to compile code for in the general case. It may be TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR or ROUND_DIV_EXPR. These four division operators differ in how they round the result to an

gcc 441 / 551

integer. EASY_DIV_EXPR is used when it is permissible to use any of those kinds of division and the choice should be made on the basis of efficiency.

MOVE MAX

The maximum number of bytes that a single instruction can move quickly from memory to memory.

MAX_MOVE_MAX

The maximum number of bytes that a single instruction can move quickly from memory to memory. If this is undefined, the default is MOVE_MAX. Otherwise, it is the constant value that is the largest value that MOVE_MAX can have at run-time.

SHIFT_COUNT_TRUNCATED

A C expression that is nonzero if on this machine the number of bits actually used for the count of a shift operation is equal to the number of bits needed to represent the size of the object being shifted. When this macro is non-zero, the compiler will assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and' instructions that truncates the count of a shift operation. On machines that have instructions that act on bitfields at variable positions, which may include 'bit test' instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations of the values that serve as arguments to bitfield instructions.

If both types of instructions truncate the count (for shifts) and position (for bitfield operations), or if no variable-position bitfield instructions exist, you should define this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only applies to shift operations and not the (real or pretended) bitfield operations. Define SHIFT_COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the md file that include the implied truncation of the shift instructions.

You need not define this macro if it would always have the value of zero.

TRULY_NOOP_TRUNCATION (OUTPREC, INPREC)

A C expression which is nonzero if on this machine it is safe to "convert" an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller than INPREC) by merely operating on it as if it had only OUTPREC bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making TRULY_NOOP_TRUNCATION return 0 in such cases may improve things.

STORE_FLAG_VALUE

A C expression describing the value returned by a comparison operator with an integral mode and stored by a store-flag instruction (sCOND) when the condition is true. This description

gcc 442 / 551

must apply to all the sCOND patterns and all the comparison operators whose results have a MODE_INT mode.

A value of 1 or -1 means that the instruction implementing the comparison operator returns exactly 1 or -1 when the comparison is true and 0 when the comparison is false. Otherwise, the value indicates which bits of the result are guaranteed to be 1 when the comparison is true. This value is interpreted in the mode of the comparison operation, which is given by the mode of the first operand in the sCOND pattern. Either the low bit or the sign bit of STORE_FLAG_VALUE be on. Presently, only those bits are used by the compiler.

If STORE_FLAG_VALUE is neither 1 or -1, the compiler will generate code that depends only on the specified bits. It can also replace comparison operators with equivalent operations if they cause the required bits to be set, even if the remaining bits are undefined. For example, on a machine whose comparison operators return an SImode value and where STORE_FLAG_VALUE is defined as 0x80000000, saying that just the sign bit is relevant, the expression

```
(ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0))
```

can be converted to

```
(ashift:SI X (const_int N))
```

where N is the appropriate shift count to move the bit being tested into the sign bit.

There is no way to describe a machine that always sets the low-order bit for a true value, but does not guarantee the value of any other bits, but we do not know of any machine that has such an instruction. If you are trying to port GNU CC to such a machine, include an instruction to perform a logical-and of the result with 1 in the pattern for the comparison operators and let us know (see

```
How to Report Bugs
).
```

Often, a machine will have multiple instructions that obtain a value from a comparison (or the condition codes). Here are rules to guide the choice of value for STORE_FLAG_VALUE, and hence the instructions to be used:

- * Use the shortest sequence that yields a valid definition for STORE_FLAG_VALUE. It is more efficient for the compiler to "normalize" the value (convert it to, e.g., 1 or 0) than for the comparison operators to do so because there may be opportunities to combine the normalization with other operations.
- * For equal-length sequences, use a value of 1 or -1, with -1 being slightly preferred on machines with expensive jumps and 1 preferred on other machines.

gcc 443 / 551

 \star As a second choice, choose a value of 0x80000001 if instructions exist that set both the sign and low-order bits but do not define the others.

* Otherwise, use a value of 0x80000000.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and its negation in the same number of instructions. On those machines, you should also define a pattern for those cases, e.g., one matching

(set A (neg:M (ne:M B C)))

Some machines can also perform and or plus operations on condition code values with less instructions than the corresponding sCOND insn followed by and or plus. On those machines, define the appropriate patterns. Use the names incscc and decscc, respectively, for the the patterns which perform plus or minus operations on condition code values. See rs6000.md for some examples. The GNU Superoptizer can be used to find such instruction sequences on other machines.

You need not define STORE_FLAG_VALUE if the machine has no store-flag instructions.

FLOAT_STORE_FLAG_VALUE

A C expression that gives a non-zero floating point value that is returned when comparison operators with floating-point results are true. Define this macro on machine that have comparison operations that return floating-point values. If there are no such operations, do not define this macro.

Pmode

An alias for the machine mode for pointers. On most machines, define this to be the integer mode corresponding to the width of a hardware pointer; SImode on 32-bit machine or DImode on 64-bit machines. On some machines you must define this to be one of the partial integer modes, such as PSImode.

The width of Pmode must be at least as large as the value of POINTER_SIZE. If it is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to specify how pointers are extended to Pmode.

FUNCTION_MODE

An alias for the machine mode used for memory references to functions being called, in call RTL expressions. On most machines this should be QImode.

INTEGRATE_THRESHOLD (DECL)

A C expression for the maximum number of instructions above which the function DECL should not be inlined. DECL is a FUNCTION_DECL node.

The default definition of this macro is 64 plus 8 times the number of arguments that the function accepts. Some people think a larger threshold should be used on RISC machines.

gcc 444 / 551

SCCS DIRECTIVE

Define this if the preprocessor should ignore #sccs directives and print no error message.

NO_IMPLICIT_EXTERN_C

Define this macro if the system header files support C++ as well as C. This macro inhibits the usual method of using system header files in C++, which is to pretend that the file's contents are enclosed in extern "C" {...}.

HANDLE_PRAGMA (STREAM)

Define this macro if you want to implement any pragmas. If defined, it should be a C statement to be executed when #pragma is seen. The argument STREAM is the stdio input stream from which the source text can be read.

It is generally a bad idea to implement new uses of #pragma. The only reason to define this macro is for compatibility with other compilers that do support #pragma for the sake of any user programs which already use it.

- VALID_MACHINE_DECL_ATTRIBUTE (DECL, ATTRIBUTES, IDENTIFIER, ARGS)

 If defined, a C expression whose value is nonzero if IDENTIFIER

 with arguments ARGS is a valid machine specific attribute for DECL.

 The attributes in ATTRIBUTES have previously been assigned to DECL.
- VALID_MACHINE_TYPE_ATTRIBUTE (TYPE, ATTRIBUTES, IDENTIFIER, ARGS)

 If defined, a C expression whose value is nonzero if IDENTIFIER

 with arguments ARGS is a valid machine specific attribute for TYPE.

 The attributes in ATTRIBUTES have previously been assigned to TYPE.

COMP_TYPE_ATTRIBUTES (TYPE1, TYPE2)

If defined, a C expression whose value is zero if the attributes on TYPE1 and TYPE2 are incompatible, one if they are compatible, and two if they are nearly compatible (which causes a warning to be generated).

SET_DEFAULT_TYPE_ATTRIBUTES (TYPE)

If defined, a C statement that assigns default attributes to newly defined TYPE.

DOLLARS IN IDENTIFIERS

Define this macro to control use of the character \$ in identifier names. The value should be 0, 1, or 2. 0 means \$ is not allowed by default; 1 means it is allowed by default if -traditional is used; 2 means it is allowed by default provided -ansi is not used. 1 is the default; there is no need to define this macro in that case.

NO_DOLLAR_IN_LABEL

Define this macro if the assembler does not accept the character \$ in label names. By default constructors and destructors in G++ have \$ in the identifiers. If this macro is defined, . is used instead.

NO_DOT_IN_LABEL

gcc 445 / 551

Define this macro if the assembler does not accept the character . in label names. By default constructors and destructors in G^{++} have names that use .. If this macro is defined, these names are rewritten to avoid ..

DEFAULT_MAIN_RETURN

Define this macro if the target system expects every program's main function to return a standard "success" value by default (if no other value is explicitly returned).

The definition should be a C statement (sans semicolon) to generate the appropriate rtl instructions. It is used only when compiling the end of main.

HAVE_ATEXIT

Define this if the target system supports the function atexit from the ANSI C standard. If this is not defined, and INIT_SECTION_ASM_OP is not defined, a default exit function will be provided to support C++.

EXIT BODY

Define this if your exit function needs to do something besides calling an external function _cleanup before terminating with _exit. The EXIT_BODY macro is only needed if netiher HAVE_ATEXIT nor INIT_SECTION_ASM_OP are defined.

INSN_SETS_ARE_DELAYED (INSN)

Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to use a resource set or clobbered in INSN. INSN is always a jump_insn or an insn; GNU CC knows that every call_insn has this behavior. On machines where some insn or jump_insn is really a function call and hence has this behavior, you should define this macro.

You need not define this macro if it would always return zero.

INSN_REFERENCES_ARE_DELAYED (INSN)

Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to set or clobber a resource referenced in INSN. INSN is always a jump_insn or an insn. On machines where some insn or jump_insn is really a function call and its operands are registers whose use is actually in the subroutine it calls, you should define this macro. Doing so allows the delay slot scheduler to move instructions which copy arguments into the argument registers into the delay slot of INSN.

You need not define this macro if it would always return zero.

MACHINE_DEPENDENT_REORG (INSN)

In rare cases, correct code generation requires extra machine dependent processing between the second jump optimization pass and delayed branch scheduling. On those machines, define this macro as a C statement to act on the code starting at INSN.

gcc 446 / 551

1.230 gcc.guide/Config

The Configuration File

The configuration file xm-MACHINE.h contains macro definitions that describe the machine and system on which the compiler is running, unlike the definitions in MACHINE.h, which describe the machine for which the compiler is producing output. Most of the values in xm-MACHINE.h are actually the same on all machines that GNU CC runs on, so large parts of all configuration files are identical. But there are some macros that vary:

USG

Define this macro if the host system is System V.

VMS

Define this macro if the host system is VMS.

FATAL_EXIT_CODE

A C expression for the status code to be returned when the compiler exits after serious errors.

SUCCESS_EXIT_CODE

A C expression for the status code to be returned when the compiler exits without serious errors.

HOST_WORDS_BIG_ENDIAN

Defined if the host machine stores words of multi-word values in big-endian order. (GNU CC does not depend on the host byte ordering within a word.)

HOST_FLOAT_WORDS_BIG_ENDIAN

Define this macro to be 1 if the host machine stores DFmode, XFmode or TFmode floating point numbers in memory with the word containing the sign bit at the lowest address; otherwise, define it to be zero.

This macro need not be defined if the ordering is the same as for multi-word integers.

HOST FLOAT FORMAT

A numeric code distinguishing the floating point format for the host machine. See TARGET_FLOAT_FORMAT in See

Storage Layout

for

the alternatives and default.

HOST_BITS_PER_CHAR

A C expression for the number of bits in char on the host machine.

HOST_BITS_PER_SHORT

A C expression for the number of bits in short on the host machine.

gcc 447 / 551

HOST_BITS_PER_INT

A C expression for the number of bits in int on the host machine.

HOST BITS PER LONG

A C expression for the number of bits in long on the host machine.

ONLY_INT_FIELDS

Define this macro to indicate that the host compiler only supports int bit fields, rather than other integral types, including enum, as do most C compilers.

OBSTACK_CHUNK_SIZE

A C expression for the size of ordinary obstack chunks. If you don't define this, a usually-reasonable default is used.

OBSTACK CHUNK ALLOC

The function used to allocate obstack chunks. If you don't define this, xmalloc is used.

OBSTACK CHUNK FREE

The function used to free obstack chunks. If you don't define this, free is used.

USE_C_ALLOCA

Define this macro to indicate that the compiler is running with the alloca implemented in C. This version of alloca can be found in the file alloca.c; to use it, you must also alter the Makefile variable ALLOCA. (This is done automatically for the systems on which we know it is needed.)

If you do define this macro, you should probably do it as follows:

```
#ifndef __GNUC__
#define USE_C_ALLOCA
#else
#define alloca __builtin_alloca
#endif
```

so that when the compiler is compiled with GNU CC it uses the more efficient built-in alloca function.

FUNCTION CONVERSION BUG

Define this macro to indicate that the host compiler does not properly handle converting a function value to a pointer-to-function when it is used in an expression.

HAVE VPRINTF

Define this if the library function vprintf is available on your system.

MULTIBYTE_CHARS

Define this macro to enable support for multibyte characters in the input to GNU CC. This requires that the host system support the ANSI C library functions for converting multibyte characters to wide characters.

gcc 448 / 551

HAVE PUTENV

Define this if the library function putenv is available on your system.

POSIX

Define this if your system is POSIX.1 compliant.

NO_SYS_SIGLIST

Define this if your system does not provide the variable sys_siglist.

DONT_DECLARE_SYS_SIGLIST

Define this if your system has the variable sys_siglist, and there is already a declaration of it in the system header files.

USE_PROTOTYPES

Define this to be 1 if you know that the host compiler supports prototypes, even if it doesn't define __STDC__, or define it to be 0 if you do not want any prototypes used in compiling GNU CC. If USE_PROTOTYPES is not defined, it will be determined automatically whether your compiler supports prototypes by checking if __STDC__ is defined.

NO MD PROTOTYPES

Define this if you wish suppression of prototypes generated from the machine description file, but to use other prototypes within GNU CC. If USE_PROTOTYPES is defined to be 0, or the host compiler does not support prototypes, this macro has no effect.

MD_CALL_PROTOTYPES

Define this if you wish to generate prototypes for the gen_call or gen_call_value functions generated from the machine description file. If USE_PROTOTYPES is defined to be 0, or the host compiler does not support prototypes, or NO_MD_PROTOTYPES is defined, this macro has no effect. As soon as all of the machine descriptions are modified to have the appropriate number of arguments, this macro will be removed.

Some systems do provide this variable, but with a different name such as _sys_siglist. On these systems, you can define sys_siglist as a macro which expands into the name actually provided.

NO_STAB_H

Define this if your system does not have the include file stab.h. If USG is defined, NO_STAB_H is assumed.

PATH SEPARATOR

Define this macro to be a C character constant representing the character used to separate components in paths. The default value is. the colon character $\frac{1}{2}$

DIR SEPARATOR

If your system uses some character other than slash to separate directory names within a file specification, define this macro to be a C character constant specifying that character. When GNU CC displays file names, the character you specify will be used. GNU

gcc 449 / 551

 ${\tt CC}$ will test for both slash and the character you specify when parsing filenames.

OBJECT_SUFFIX

Define this macro to be a C string representing the suffix for object files on your machine. If you do not define this macro, GNU CC will use .o as the suffix for object files.

EXECUTABLE_SUFFIX

Define this macro to be a C string representing the suffix for executable files on your machine. If you do not define this macro, GNU CC will use the null string as the suffix for object files.

COLLECT_EXPORT_LIST

If defined, collect2 will scan the individual object files specified on its command line and create an export list for the linker. Define this macro for systems like AIX, where the linker discards object files that are not referenced from main and uses export lists.

In addition, configuration files for system V define bcopy, bzero and bcmp as aliases. Some files define alloca as a macro when compiled with GNU CC, in order to take advantage of the benefit of GNU CC's built-in alloca.

1.231 gcc.guide/Fragments

Makefile Fragments

When you configure GNU CC using the configure script (see

Installation

), it will construct the file Makefile from the template file Makefile.in. When it does this, it will incorporate makefile fragment files from the config directory, named t-TARGET and x-HOST. If these files do not exist, it means nothing needs to be added for a given target or host.

Target Fragment
Writing the t-TARGET file.

Host Fragment
Writing the x-HOST file.

gcc 450 / 551

1.232 gcc.guide/Target Fragment

The Target Makefile Fragment

The target makefile fragment, t-TARGET, defines special target dependent variables and targets used in the Makefile:

LIBGCC1

The rule to use to build libgccl.a. If your target does not need to use the functions in libgccl.a, set this to empty. See

Interface

.

CROSS_LIBGCC1

The rule to use to build libgccl.a when building a cross compiler. If your target does not need to use the functions in libgccl.a, set this to empty. See

Cross Runtime

LIBGCC2 CFLAGS

Compiler flags to use when compiling libgcc2.c.

LIB2FUNCS EXTRA

A list of source file names to be compiled or assembled and inserted into libgcc.a.

CRTSTUFF_T_CFLAGS

Special flags used when compiling crtstuff.c. See Initialization

MULTILIB_OPTIONS

For some targets, invoking GNU CC in different ways produces objects that can not be linked together. For example, for some targets GNU CC produces both big and little endian code. For these targets, you must arrange for multiple versions of libgcc.a to be compiled, one for each set of incompatible options. When GNU CC invokes the linker, it arranges to link in the right version of libgcc.a, based on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions of libgcc.a must be built. Write options that are mutually incompatible side by side, separated by a slash. Write options that may be used together separated by a space. The build procedure will build all combinations of compatible options.

For example, if you set MULTILIB_OPTIONS to m68000/m68020 msoft-float, Makefile will build special versions of libgcc.a using the options -m68000, -m68020, -msoft-float, -m68000 -msoft-float, and -m68020 -msoft-float.

MULTILIB_DIRNAMES

If MULTILIB_OPTIONS is used, this variable specifies the directory

gcc 451 / 551

names that should be used to hold the various libraries. Write one element in MULTILIB_DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is not used, the default value will be MULTILIB_OPTIONS, with all slashes treated as spaces.

For example, if MULTILIB_OPTIONS is m68000/m68020 msoft-float, then the default value of MULTILIB_DIRNAMES is m68000 m68020 msoft-float. You may specify a different value if you desire a different set of directory names.

MULTILIB_MATCHES

Sometimes the same option may be written in two different ways. If an option is listed in MULTILIB_OPTIONS, GNU CC needs to know about any synonyms. In that case, set MULTILIB_MATCHES to a list of items of the form option=option to describe all relevant synonyms. For example, m68000=mc68000 m68020=mc68020.

1.233 gcc.guide/Host Fragment

The Host Makefile Fragment

The host makefile fragment, x-HOST, defines special host dependent variables and targets used in the Makefile:

CC

The compiler to use when building the first stage.

CLIB

Additional host libraries to link with.

OLDCC

The compiler to use when building libgccl.a for a native compilation.

OLDAR

The version of ar to use when building libgccl.a for a native compilation.

INSTALL

The install program to use.

1.234 gcc.guide/Index

Index

gcc 452 / 551

```
#pragma
  Misc
  Dollar Signs
  Incompatibilities
(nil)
  RTL Objects
 C++ Comments
 Min and Max
>?
 Min and Max
?: side effect
 Conditionals
#pragma implementation, implied
  C++ Interface
#pragma, reason for not using
 Function Attributes
# in template
  Output Template
* in template
  Output Statement
-lgcc, use with -nodefaultlibs
 Link Options
-lgcc, use with -nostdlib
 Link Options
-nodefaultlibs and unresolved references
 Link Options
-nostdlib and unresolved references
 Link Options
?: extensions <1>
 Lvalues
?: extensions
 Conditionals
absM2 instruction pattern
  Standard Names
```

gcc 453 / 551

abs and attributes
 Expressions

ACCUMULATE_OUTGOING_ARGS and stack frames Function Entry

addM3 instruction pattern
 Standard Names

addr_diff_vec, length of
 Insn Lengths

addr_vec, length of
 Insn Lengths

alias attribute Function Attributes

aligned attribute <1>
 Variable Attributes

aligned attribute
Type Attributes

allocate_stack instruction pattern
Standard Names

alloca and SunOs Installation

alloca vs variable-length arrays Variable Length

alloca, for SunOs
 Sun Install

alloca, for Unos Configurations

andM3 instruction pattern
 Standard Names

and and attributes
 Expressions

and, canonicalization of Insn Canonicalizations

ARG_POINTER_REGNUM and virtual registers Regs and Memory

ashiftrt and attributes Expressions

ashift and attributes Expressions

gcc 454 / 551

ashlM3 instruction pattern Standard Names

ashrM3 instruction pattern Standard Names

asm_operands, RTL sharing
 Sharing

asm_operands, usage
 Assembler

asm expressions Extended Asm

bCOND instruction pattern Standard Names

bcopy, implicit usage
 Library Calls

BITS_BIG_ENDIAN, effect on sign_extract
Bit Fields

BLKmode, and function return values Calls

bzero, implicit usage
 Library Calls

call_insn and /u
 Flags

call_pop instruction pattern
 Standard Names

call_value_pop instruction pattern
 Standard Names

call_value instruction pattern
 Standard Names

call instruction pattern Standard Names

call usage Calls

casesi instruction pattern
 Standard Names

cc0, RTL sharing
 Sharing

cmpM instruction pattern
 Standard Names

gcc 455 / 551

cmpstrM instruction pattern
Standard Names

code_label and /i
 Flags

compare, canonicalization of
 Insn Canonicalizations

cond and attributes
 Expressions

const_double, RTL sharing
 Sharing

const_int and attribute tests
 Expressions

const_int and attributes
 Expressions

const_int, RTL sharing
 Sharing

const_string and attributes
 Expressions

constructor function attribute Function Attributes

const applied to function
Function Attributes

const function attribute
Function Attributes

define_insn example
 Example

destructor function attribute Function Attributes

divM3 instruction pattern
 Standard Names

divmodM4 instruction pattern
 Standard Names

div and attributes
 Expressions

EDOM, implicit usage Library Calls

ENCODE_SECTION_INFO and address validation
 Addressing Modes

gcc 456 / 551

ENCODE_SECTION_INFO usage
 Instruction Output

eq and attributes Expressions

errno, implicit usage Library Calls

extendMN instruction pattern
 Standard Names

extv instruction pattern Standard Names

extzv instruction pattern Standard Names

ffsM2 instruction pattern Standard Names

FIRST_PARM_OFFSET and virtual registers Regs and Memory

fixMN2 instruction pattern
 Standard Names

fix_truncMN2 instruction pattern
 Standard Names

fixunsMN2 instruction pattern
 Standard Names

fixuns_truncMN2 instruction pattern
 Standard Names

floatMN2 instruction pattern
 Standard Names

floatunsMN2 instruction pattern
 Standard Names

float as function value type
 Incompatibilities

format function attribute Function Attributes

FRAME_GROWS_DOWNWARD and virtual registers
 Regs and Memory

FRAME_POINTER_REGNUM and virtual registers
 Regs and Memory

fscanf, and constant strings
 Incompatibilities

gcc 457 / 551

ftruncM2 instruction pattern
 Standard Names

FUNCTION_EPILOGUE and trampolines
Trampolines

FUNCTION_PROLOGUE and trampolines
Trampolines

g++ 1.XX Invoking G++

g++ older version Invoking G++

g++, separate compiler
Invoking G++

genflags, crash on Sun 4 Installation Problems

geu and attributes Expressions

ge and attributes
 Expressions

goto in C++
 Destructors and Goto

gprof
 Debugging Options

gtu and attributes Expressions

gt and attributes
 Expressions

HImode, in insn Insns

if_then_else and attributes
 Expressions

if_then_else usage
 Side Effects

in_struct, in code_label
 Flags

in_struct, in insn
Flags

in_struct, in label_ref
 Flags

gcc 458 / 551

```
in_struct, in mem
 Flags
in_struct, in reg
 Flags
in_struct, in subreg
 Flags
indirect_jump instruction pattern
 Standard Names
inline automatic for C++ member fns
 Inline
insn and /i
 Flags
insn and /s
 Flags
insn and /u
 Flags
insv instruction pattern
 Standard Names
integrated, in insn
 Flags
integrated, in reg
 Flags
iorM3 instruction pattern
 Standard Names
ior and attributes
 Expressions
ior, canonicalization of
  Insn Canonicalizations
label_ref and /s
 Flags
label_ref, RTL sharing
 Sharing
leu and attributes
 Expressions
le and attributes
 Expressions
load_multiple instruction pattern
  Standard Names
```

gcc 459 / 551

long long data types
Long Long

longjmp and automatic variables <1>
 C Dialect Options

longjmp and automatic variables
 Interface

longjmp incompatibilities
Incompatibilities

longjmp warnings
Warning Options

lshiftrt and attributes
 Expressions

lshrM3 instruction pattern
Standard Names

lt and attributes
 Expressions

main and the exit status
 VMS Misc

match_dup and attributes
 Insn Lengths

match_operand and attributes
 Expressions

maxM3 instruction pattern
 Standard Names

memcpy, implicit usage
 Library Calls

memset, implicit usage
 Library Calls

mem and /s Flags

mem and /u Flags

mem and /v Flags

mem, RTL sharing
 Sharing

minM3 instruction pattern
 Standard Names

gcc 460 / 551

minus and attributes Expressions

minus, canonicalization of Insn Canonicalizations

mktemp, and constant strings
 Incompatibilities

modM3 instruction pattern
 Standard Names

mode attribute
 Variable Attributes

mod and attributes
 Expressions

movMODEcc instruction pattern
 Standard Names

movM instruction pattern
 Standard Names

movstrM instruction pattern Standard Names

movstrictM instruction pattern
 Standard Names

mulM3 instruction pattern
 Standard Names

mulhisi3 instruction pattern
 Standard Names

mulqihi3 instruction pattern
 Standard Names

mulsidi3 instruction pattern
 Standard Names

mult and attributes
 Expressions

mult, canonicalization of Insn Canonicalizations

MUST_PASS_IN_STACK, and FUNCTION_ARG Register Arguments

negM2 instruction pattern
 Standard Names

neg and attributes
 Expressions

gcc 461 / 551

neg, canonicalization of Insn Canonicalizations

ne and attributes Expressions

nocommon attribute
Variable Attributes

nop instruction pattern
 Standard Names

noreturn function attribute Function Attributes

not and attributes Expressions

not, canonicalization of
 Insn Canonicalizations

one_cmplM2 instruction pattern
 Standard Names

packed attribute
 Variable Attributes

pc and attributes
 Insn Lengths

pc, RTL sharing
 Sharing

plus and attributes
 Expressions

plus, canonicalization of Insn Canonicalizations

prof
 Debugging Options

PUSH_ROUNDING, interaction with STACK_BOUNDARY
 Storage Layout

QImode, in insn Insns

qsort, and global register variables Global Reg Vars

REG_PARM_STACK_SPACE, and FUNCTION_ARG
Register Arguments

reg and /i Flags gcc 462 / 551

reg and /s Flags

reg and /u Flags

reg and /v Flags

reg, RTL sharing
 Sharing

reload_in instruction pattern
 Standard Names

reload_out instruction pattern
 Standard Names

restore_stack_block instruction pattern
Standard Names

restore_stack_function instruction pattern
 Standard Names

restore_stack_nonlocal instruction pattern
 Standard Names

return instruction pattern Standard Names

return, in C++ function header
Naming Results

rotlM3 instruction pattern
 Standard Names

rotrM3 instruction pattern
 Standard Names

sCOND instruction pattern Standard Names

save_stack_block instruction pattern
Standard Names

save_stack_function instruction pattern
Standard Names

save_stack_nonlocal instruction pattern
Standard Names

scanf, and constant strings
Incompatibilities

scratch, RTL sharing Sharing

gcc 463 / 551

section function attribute Function Attributes

- section variable attribute Variable Attributes
- setjmp incompatibilities
 Incompatibilities
- sign_extract, canonicalization of
 Insn Canonicalizations
- signature in C++, advantages
 C++ Signatures
- smulM3_highpart instruction pattern
 Standard Names
- sqrtM2 instruction pattern
 Standard Names
- sscanf, and constant strings Incompatibilities
- STACK_DYNAMIC_OFFSET and virtual registers Regs and Memory
- STACK_POINTER_OFFSET and virtual registers Regs and Memory
- STACK_POINTER_REGNUM and virtual registers Regs and Memory
- STARTING_FRAME_OFFSET and virtual registers Regs and Memory
- strlenM instruction pattern Standard Names
- subM3 instruction pattern
 Standard Names
- subreg and /s
 Flags
- subreg and /u Flags
- subreg, in strict_low_part
 RTL Declarations
- subreg, special reload handling
 Regs and Memory
- SYMBOL_REF_FLAG, in ENCODE_SECTION_INFO Sections

gcc 464 / 551

symbol_ref and /u
 Flags

symbol_ref and /v
 Flags

symbol_ref, RTL sharing
Sharing

tablejump instruction pattern Standard Names

tcov
Debugging Options

truncMN instruction pattern Standard Names

tstM instruction pattern Standard Names

udivM3 instruction pattern
 Standard Names

udivmodM4 instruction pattern
 Standard Names

umaxM3 instruction pattern
Standard Names

uminM3 instruction pattern
 Standard Names

umodM3 instruction pattern
 Standard Names

umulM3_highpart instruction pattern
Standard Names

umulhisi3 instruction pattern Standard Names

umulqihi3 instruction pattern Standard Names

umulsidi3 instruction pattern Standard Names

unchanging, in call_insn
Flags

unchanging, in insn Flags

unchanging, in reg and mem
Flags

gcc 465 / 551

unchanging, in subreg
Flags

unchanging, in symbol_ref
Flags

untyped_call instruction pattern
 Standard Names

untyped_return instruction pattern
 Standard Names

used, in symbol_ref
 Flags

volatile applied to function Function Attributes

volatil, in insn Flags

volatil, in mem Flags

volatil, in reg Flags

volatil, in symbol_ref
Flags

weak attribute Function Attributes

WORDS_BIG_ENDIAN, effect on subreg Regs and Memory

xorM3 instruction pattern
Standard Names

xor, canonicalization of
 Insn Canonicalizations

zero_extendMN instruction pattern
Standard Names

zero_extract, canonicalization of Insn Canonicalizations

libgcc.a Library Calls

stdarg.h and register arguments
 Register Arguments

stdarg.h and RT PC RT Options

gcc 466 / 551

t-TARGET
Target Fragment

tm.h macros
 Target Macros

varargs.h and RT PC RT Options

VAXCRTL VMS Misc

x-HOST Host Fragment

xm-MACHINE.h
Config

- ! in constraint Multi-Alternative
- # in constraint
 Modifiers
- % in constraint
 Modifiers
- % in template
 Output Template
- & in constraint Modifiers
- * in constraint Modifiers
- + in constraint Modifiers
- /i in RTL dump Flags
- /s in RTL dump Flags
- /u in RTL dump Flags
- /v in RTL dump
 Flags
- 0 in constraint
 Simple Constraints
- < in constraint
 Simple Constraints</pre>

gcc 467 / 551

- = in constraint
 Modifiers
- > in constraint
 Simple Constraints
- ? in constraint
 Multi-Alternative
- _ in variables in macros
 Naming Types
- d in constraint
 Simple Constraints
- E in constraint Simple Constraints
- F in constraint Simple Constraints
- G in constraint Simple Constraints
- H in constraint Simple Constraints
- i in constraint
 Simple Constraints
- m in constraint
 Simple Constraints
- n in constraint Simple Constraints
- o in constraint Simple Constraints
- p in constraint
 Simple Constraints
- Q, in constraint Simple Constraints
- r in constraint Simple Constraints
- store_multiple instruction pattern
 Standard Names
- s in constraint Simple Constraints
- V in constraint Simple Constraints

gcc 468 / 551

```
X in constraint
  Simple Constraints
  Output Template
__bb_init_func
 Profiling
__builtin_apply
  Constructing Calls
\_builtin_apply_args
 Constructing Calls
__builtin_args_info
 Varargs
__builtin_classify_type
 Varargs
__builtin_next_arg
 Varargs
__builtin_return
  Constructing Calls
__builtin_saveregs
 Varargs
__CTOR_LIST__
 Initialization
__DTOR_LIST__
 Initialization
___main
 Collect2
abort <1>
  C Dialect Options
abort
 Portability
abs <1>
 Arithmetic
abs
 C Dialect Options
absolute value
 Arithmetic
access to operands
 Accessors
```

gcc 469 / 551

accessors Accessors

ACCUMULATE_OUTGOING_ARGS Stack Arguments

ADDITIONAL_REGISTER_NAMES Instruction Output

addr_diff_vec
 Side Effects

addr_vec
 Side Effects

address
RTL Template

address constraints
Simple Constraints

address of a label Labels as Values

ADDRESS_COST Costs

address_operand
 Simple Constraints

addressing modes
Addressing Modes

ADJUST_COST Costs

ADJUST_INSN_LENGTH Insn Lengths

aggregates as return values
Aggregate Return

alignment Alignment

ALL_REGS
Register Classes

Alliant Interoperation

alloca C Dialect Options

ALLOCATE_TRAMPOLINE Trampolines

gcc 470 / 551

alternate keywords
Alternate Keywords

AMD29K options
AMD29K Options

analysis, data flow Passes

and Arithmetic

ANSI support C Dialect Options

apostrophes
 Incompatibilities

APPLY_RESULT_SIZE Scalar Return

ARG_POINTER_REGNUM Frame Registers

arg_pointer_rtx
Frame Registers

ARGS_GROW_DOWNWARD Frame Layout

argument passing
 Interface

arguments in frame (88k) M88K Options

arguments in registers Register Arguments

arguments on stack Stack Arguments

arithmetic libraries Interface

arithmetic shift Arithmetic

arithmetic simplifications Passes

arithmetic, in RTL Arithmetic

ARM Options
ARM Options

gcc 471 / 551

arrays of length zero Zero Length

arrays of variable length Variable Length

arrays, non-lvalue
 Subscripting

ashift Arithmetic

ashiftrt Arithmetic

ASM_APP_OFF File Framework

ASM_APP_ON
File Framework

ASM_BYTE_OP
Data Output

ASM_CLOSE_PAREN Data Output

ASM_COMMENT_START File Framework

ASM_DECLARE_FUNCTION_NAME Label Output

ASM_DECLARE_FUNCTION_SIZE Label Output

ASM_DECLARE_OBJECT_NAME Label Output

ASM_FILE_END File Framework

ASM_FILE_START File Framework

ASM_FINAL_SPEC Driver

ASM_FINISH_DECLARE_OBJECT Label Output

ASM_FORMAT_PRIVATE_NAME Label Output

asm_fprintf
 Instruction Output

gcc 472 / 551

ASM_GENERATE_INTERNAL_LABEL Label Output

ASM_GLOBALIZE_LABEL Label Output

ASM_IDENTIFY_GCC File Framework

asm_input
Side Effects

ASM_NO_SKIP_IN_TEXT Alignment Output

asm_noperands Insns

ASM_OPEN_PAREN Data Output

ASM_OUTPUT_ADDR_DIFF_ELT Dispatch Tables

ASM_OUTPUT_ADDR_VEC_ELT Dispatch Tables

ASM_OUTPUT_ALIGN
Alignment Output

ASM_OUTPUT_ALIGN_CODE Alignment Output

ASM_OUTPUT_ALIGNED_COMMON Uninitialized Data

ASM_OUTPUT_ALIGNED_LOCAL Uninitialized Data

ASM_OUTPUT_ASCII Data Output

ASM_OUTPUT_BYTE Data Output

ASM_OUTPUT_CASE_END Dispatch Tables

ASM_OUTPUT_CASE_LABEL Dispatch Tables

ASM_OUTPUT_CHAR Data Output

ASM_OUTPUT_COMMON Uninitialized Data

gcc 473 / 551

ASM_OUTPUT_CONSTRUCTOR
Macros for Initialization

ASM_OUTPUT_DEF Label Output

ASM_OUTPUT_DESTRUCTOR
Macros for Initialization

ASM_OUTPUT_DOUBLE Data Output

ASM_OUTPUT_DOUBLE_INT Data Output

ASM_OUTPUT_EXTERNAL Label Output

ASM_OUTPUT_EXTERNAL_LIBCALL Label Output

ASM_OUTPUT_FLOAT Data Output

ASM_OUTPUT_IDENT File Framework

ASM_OUTPUT_INT Data Output

ASM_OUTPUT_INTERNAL_LABEL Label Output

ASM_OUTPUT_LABEL Label Output

ASM_OUTPUT_LABELREF Label Output

ASM_OUTPUT_LOCAL Uninitialized Data

ASM_OUTPUT_LONG_DOUBLE Data Output

ASM_OUTPUT_LOOP_ALIGN Alignment Output

ASM_OUTPUT_OPCODE Instruction Output

ASM_OUTPUT_POOL_PROLOGUE Data Output

ASM_OUTPUT_QUADRUPLE_INT Data Output

gcc 474 / 551

ASM_OUTPUT_REG_POP Instruction Output

ASM_OUTPUT_REG_PUSH Instruction Output

ASM_OUTPUT_SECTION_NAME File Framework

ASM_OUTPUT_SHARED_COMMON Uninitialized Data

ASM_OUTPUT_SHARED_LOCAL Uninitialized Data

ASM_OUTPUT_SHORT Data Output

ASM_OUTPUT_SKIP
Alignment Output

ASM_OUTPUT_SOURCE_FILENAME File Framework

ASM_OUTPUT_SOURCE_LINE File Framework

ASM_OUTPUT_SPECIAL_POOL_ENTRY Data Output

ASM_SPEC Driver

ASM_STABD_OP
DBX Options

ASM_STABN_OP
DBX Options

ASM_STABS_OP
DBX Options

ASM_WEAKEN_LABEL Label Output

assemble_name Label Output

assembler format File Framework

assembler instructions Extended Asm

assembler instructions in RTL Assembler

gcc 475 / 551

assembler names for identifiers
Asm Labels

assembler syntax, 88k M88K Options

ASSEMBLER_DIALECT
Instruction Output

assembly code, invalid Bug Criteria

assigning attribute values to insns Tagging Insns

asterisk in template Output Statement

atof
 Cross-compilation

attr
Tagging Insns

attr_flag
Expressions

attribute expressions Expressions

attribute of types
Type Attributes

attribute of variables Variable Attributes

attribute specifications Attr Example

attribute specifications example Attr Example

attributes, defining Defining Attributes

autoincrement addressing, availability
Portability

autoincrement/decrement addressing
 Simple Constraints

autoincrement/decrement analysis
 Passes

automatic inline for C++ member fns
Inline

gcc 476 / 551

backslash
 Output Template

backtrace for bug reports
 Bug Reporting

barrier Insns

BASE_REG_CLASS
Register Classes

basic blocks Passes

bcmp Config

BIGGEST_ALIGNMENT Storage Layout

BIGGEST_FIELD_ALIGNMENT Storage Layout

Bison parser generator Installation

bit fields
 Bit Fields

bit shift overflow (88k) M88K Options

BITFIELD_NBYTES_LIMITED Storage Layout

BITS_BIG_ENDIAN
Storage Layout

BITS_PER_UNIT
Storage Layout

BITS_PER_WORD
Storage Layout

bitwise complement Arithmetic

bitwise exclusive-or
Arithmetic

bitwise inclusive-or
Arithmetic

bitwise logical-and
Arithmetic

gcc 477 / 551

BLKmode Machine Modes

BLOCK_PROFILER Profiling

BLOCK_PROFILER_CODE
 Profiling

BRANCH_COST Costs

break_out_memory_refs
 Addressing Modes

bug criteria
Bug Criteria

bug report mailing lists
 Bug Lists

bugs Bugs

bugs, known Trouble

builtin functions
 C Dialect Options

byte writes (29k) AMD29K Options

byte_mode
 Machine Modes

BYTES_BIG_ENDIAN Storage Layout

bzero Config

- C compilation options Invoking GCC
- C intermediate output, nonexistent G++ and GCC
- C language extensions C Extensions
- C language, traditional C Dialect Options
- C statements for assembler output Output Statement

gcc 478 / 551

C++

```
G++ and GCC
  Invoking G++
C++ comments
  C++ Comments
C++ compilation options
  Invoking GCC
C++ interface and implementation headers
  C++ Interface
C++ language extensions
  C++ Extensions
C++ member fns, automatically inline
  Inline
C++ misunderstandings
  C++ Misunderstandings
C++ named return value
  Naming Results
C++ options, command line
  C++ Dialect Options
C++ pragmas, effect on inlining
  C++ Interface
C++ signatures
  C++ Signatures
C++ source file suffixes
  Invoking G++
C++ static data, declaring and defining
  Static Definitions
C++ subtype polymorphism
  C++ Signatures
C++ type abstraction
  C++ Signatures
C_INCLUDE_PATH
  Environment Variables
call
  Side Effects
call-clobbered register
  Register Basics
```

gcc 479 / 551

call-saved register
Register Basics

call-used register Register Basics

call_insn Insns

CALL_INSN_FUNCTION_USAGE Insns

CALL_USED_REGISTERS
Register Basics

call_used_regs
 Register Basics

CALLER_SAVE_PROFITABLE Caller Saves

calling conventions Stack and Calling

calling functions in RTL Calls

CAN_DEBUG_WITHOUT_FP
Run-time Target

CAN_ELIMINATE Elimination

canonicalization of instructions
Insn Canonicalizations

CANONICALIZE_COMPARISON Condition Code

case labels in initializers
Labeled Elements

case ranges Case Ranges

case sensitivity and VMS $_{\mbox{\scriptsize VMS}}$ Misc

CASE_DROPS_THROUGH Misc

CASE_VALUES_THRESHOLD Misc

CASE_VECTOR_MODE Misc

gcc 480 / 551

CASE_VECTOR_PC_RELATIVE Misc

cast to a union Cast to Union

casts as lvalues Lvalues

CC

Host Fragment

cc0

Regs and Memory

cc0_rtx

Regs and Memory

CC1_SPEC Driver

CC1PLUS_SPEC Driver

cc_status Condition Code

CC_STATUS_MDEP
Condition Code

CC_STATUS_MDEP_INIT Condition Code

CCmode

Machine Modes

CDImode

Machine Modes

change_address
 Standard Names

CHAR_TYPE_SIZE
Type Layout

CHECK_FLOAT_VALUE Storage Layout

CHImode

Machine Modes

class definitions, register
 Register Classes

class preference constraints
 Class Preferences

gcc 481 / 551

CLASS_LIKELY_SPILLED_P Register Classes

CLASS_MAX_NREGS Register Classes

classes of RTX codes
 Accessors

CLEAR_INSN_CACHE Trampolines

CLIB

Host Fragment

clobber
Side Effects

code generation conventions
 Code Gen Options

code generation RTL sequences
 Expander Definitions

code motion Passes

code_label
 Insns

CODE_LABEL_NUMBER Insns

codes, RTL expression
RTL Objects

COImode Machine Modes

COLLECT_EXPORT_LIST Config

combiner pass
Regs and Memory

command options Invoking GCC

comments, C++ style
 C++ Comments

common subexpression elimination
 Passes

COMP_TYPE_ATTRIBUTES
Misc

gcc 482 / 551

compare Arithmetic

compilation in a separate directory Other Dir

compiler bugs, reporting
Bug Reporting

compiler compared to C++ preprocessor G++ and GCC

compiler options, C++
C++ Dialect Options

compiler passes and files Passes

compiler version, specifying
 Target Options

COMPILER_PATH Environment Variables

complement, bitwise Arithmetic

complex numbers
Complex

compound expressions as lvalues
 Lvalues

computed gotos
 Labels as Values

computing the length of an insn Insn Lengths

cond Comparisons

condition code register
 Regs and Memory

condition code status Condition Code

condition codes Comparisons

conditional expressions as lvalues
 Lvalues

conditional expressions, extensions
Conditionals

gcc 483 / 551

CONDITIONAL_REGISTER_USAGE Register Basics

conditions, in patterns
Patterns

configuration file
 Config

configurations supported by GNU CC Configurations

conflicting types
Disappointments

CONSTO_RTX
Constants

const1_rtx
Constants

CONST2_RTX
Constants

CONST_CALL_P Flags

CONST_COSTS Costs

const_double
 Constants

CONST_DOUBLE_CHAIN Constants

CONST_DOUBLE_LOW Constants

CONST_DOUBLE_MEM
Constants

CONST_DOUBLE_OK_FOR_LETTER_P
 Register Classes

const_int
 Constants

CONST_OK_FOR_LETTER_P
 Register Classes

const_string
 Constants

const_true_rtx
 Constants

gcc 484 / 551

constant attributes
Constant Attributes

constant folding Passes

constant folding and floating point
 Cross-compilation

constant propagation
 Passes

CONSTANT_ADDRESS_P Addressing Modes

CONSTANT_ALIGNMENT Storage Layout

CONSTANT_P
Addressing Modes

CONSTANT_POOL_ADDRESS_P
Flags

constants in constraints
 Simple Constraints

constm1_rtx
Constants

constraint modifier characters
 Modifiers

constraint, matching
 Simple Constraints

constraints Constraints

constraints, machine specific
 Machine Constraints

constructing calls
Constructing Calls

constructor expressions
Constructors

constructors vs goto Destructors and Goto

constructors, automatic calls
 Collect2

constructors, output of Initialization

gcc 485 / 551

contributors
Contributors
controlling re-

controlling register usage
 Register Basics

controlling the compilation driver Driver

conventions, run-time
Interface

conversions Conversions

Convex options
Convex Options

copy_rtx_if_shared
 Sharing

core dump
Bug Criteria

cos C Dialect Options

costs of instructions
 Costs

COSTS_N_INSNS Costs

CPLUS_INCLUDE_PATH
 Environment Variables

CPP_PREDEFINES
Run-time Target

CPP_SPEC Driver

CQImode Machine Modes

cross compilation and floating point
 Cross-compilation

cross compiling
 Target Options

cross-compiler, installation
 Cross-Compiler

cross-jumping
 Passes

gcc 486 / 551

CROSS_LIBGCC1
Target Fragment

CRTSTUFF_T_CFLAGS
 Target Fragment

CSImode Machine Modes

CTImode Machine Modes

CUMULATIVE_ARGS
Register Arguments

current_function_epilogue_delay_list
 Function Entry

current_function_outgoing_args_size
 Stack Arguments

current_function_pops_args
 Function Entry

current_function_pretend_args_size
 Function Entry

data flow analysis Passes

DATA_ALIGNMENT
Storage Layout

data_section Sections

DATA_SECTION_ASM_OP Sections

DBR_OUTPUT_SEQEND
Instruction Output

dbr_sequence_length
 Instruction Output

DBX Interoperation

DBX_BLOCKS_FUNCTION_RELATIVE
 DBX Options

DBX_CONTIN_CHAR DBX Options

DBX_CONTIN_LENGTH DBX Options

gcc 487 / 551

DBX_DEBUGGING_INFO DBX Options

DBX_FUNCTION_FIRST DBX Options

DBX_LBRAC_FIRST
 DBX Options

DBX_MEMPARM_STABS_LETTER
DBX Options

DBX_NO_XREFS
DBX Options

DBX_OUTPUT_ENUM DBX Hooks

DBX_OUTPUT_FUNCTION_END DBX Hooks

DBX_OUTPUT_LBRAC DBX Hooks

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY
 File Names and DBX

DBX_OUTPUT_MAIN_SOURCE_FILE_END
 File Names and DBX

DBX_OUTPUT_MAIN_SOURCE_FILENAME File Names and DBX

DBX_OUTPUT_RBRAC DBX Hooks

DBX_OUTPUT_SOURCE_FILENAME
 File Names and DBX

DBX_OUTPUT_STANDARD_TYPES
DBX Hooks

DBX_REGISTER_NUMBER
All Debuggers

DBX_REGPARM_STABS_CODE DBX Options

DBX_REGPARM_STABS_LETTER DBX Options

DBX_STATIC_CONST_VAR_CODE
 DBX Options

DBX_STATIC_STAB_DATA_SECTION DBX Options

gcc 488 / 551

DBX_TYPE_DECL_STABS_CODE
 DBX Options

DBX_WORKING_DIRECTORY
File Names and DBX

DCmode Machine Modes

De Morgan's law
Insn Canonicalizations

dead code Passes

dead_or_set_p
 Peephole Definitions

deallocating variable length arrays Variable Length

death notes
 Obsolete Register Macros

debug_rtx
 Bug Reporting

DEBUG_SYMS_TEXT DBX Options

DEBUGGER_ARG_OFFSET All Debuggers

DEBUGGER_AUTO_OFFSET All Debuggers

debugging information generation Passes

debugging information options
Debugging Options

debugging, 88k OCS M88K Options

declaration scope Incompatibilities

declarations inside expressions Statement Exprs

declarations, RTL RTL Declarations

declaring attributes of functions Function Attributes

gcc 489 / 551

declaring static data in C++
 Static Definitions

default implementation, signature member function
 C++ Signatures

DEFAULT_CALLER_SAVES
Caller Saves

DEFAULT_GDB_EXTENSIONS
DBX Options

DEFAULT_MAIN_RETURN Misc

DEFAULT_PCC_STRUCT_RETURN
Aggregate Return

DEFAULT_SHORT_ENUMS
Type Layout

DEFAULT_SIGNED_CHAR
Type Layout

define_asm_attributes
 Tagging Insns

define_attr
 Defining Attributes

define_delay
 Delay Slots

define_expand
 Expander Definitions

define_function_unit
 Function Units

define_insn
 Patterns

define_peephole
 Expander Definitions

define_split
 Insn Splitting

defining attributes and their values Defining Attributes

defining jump instruction patterns
 Jump Patterns

defining peephole optimizers Peephole Definitions gcc 490 / 551

defining RTL sequences for code generation Expander Definitions

defining static data in C++
 Static Definitions

delay slots, defining
 Delay Slots

DELAY_SLOTS_FOR_EPILOGUE Function Entry

delayed branch scheduling Passes

dependencies for make as output Environment Variables

dependencies, make Preprocessor Options

DEPENDENCIES_OUTPUT Environment Variables

Dependent Patterns
Dependent Patterns

destructors vs goto
Destructors and Goto

destructors, output of Initialization

detecting -traditional
 C Dialect Options

DFmode Machine Modes

dialect options
 C Dialect Options

digits in constraint Simple Constraints

DImode Machine Modes

DIR_SEPARATOR Config

directory options
Directory Options

disabling certain registers Register Basics gcc 491 / 551

dispatch table Dispatch Tables

div

Arithmetic

DIVDI3_LIBCALL Library Calls

divide instruction, 88k M88K Options

division Arithmetic

DIVSI3_LIBCALL Library Calls

dollar signs in identifier names Dollar Signs

DOLLARS_IN_IDENTIFIERS
Misc

DONE

Expander Definitions

DONT_DECLARE_SYS_SIGLIST Config

DONT_REDUCE_ADDR
Costs

double-word arithmetic
 Long Long

DOUBLE_TYPE_SIZE
Type Layout

downward funargs
Nested Functions

driver Driver

DW bit (29k) AMD29K Options

DWARF_DEBUGGING_INFO SDB and DWARF

DYNAMIC_CHAIN_ADDRESS Frame Layout

EASY_DIV_EXPR Misc gcc 492 / 551

ELIGIBLE_FOR_EPILOGUE_DELAY
 Function Entry

ELIMINABLE_REGS Elimination

empty constraints
No Constraints

EMPTY_FIELD_BOUNDARY
Storage Layout

ENCODE_SECTION_INFO
 Sections

ENDFILE_SPEC Driver

endianness Portability

enum machine_mode
 Machine Modes

enum reg_class
 Register Classes

enumeration clash warnings
Warning Options

environment variables
Environment Variables

epilogue Function Entry

eq Comparisons

eq_attr
Expressions

equal Comparisons

error messages Warnings and Errors

escape sequences, traditional C Dialect Options

exclamation point Multi-Alternative

exclusive-or, bitwise Arithmetic

gcc 493 / 551

EXECUTABLE_SUFFIX Config

exit

C Dialect Options

EXIT_BODY Misc

EXIT_IGNORE_STACK
Function Entry

EXPAND_BUILTIN_SAVEREGS Varargs

expander definitions Expander Definitions

explicit register variables Explicit Reg Vars

expr_list Insns

expression codes RTL Objects

expressions containing statements Statement Exprs

expressions, compound, as lvalues Lvalues

expressions, conditional, as lvalues Lvalues

expressions, constructor Constructors

extended asm Extended Asm

extensible constraints
Simple Constraints

extensions, ?: <1>
 Lvalues

extensions, ?: Conditionals

extensions, C language C Extensions

gcc 494 / 551

extensions, C++ language
 C++ Extensions

extern int target_flags
 Run-time Target

external declaration scope Incompatibilities

EXTRA_CC_MODES
Condition Code

EXTRA_CC_NAMES
Condition Code

EXTRA_CONSTRAINT
Register Classes

EXTRA_SECTION_FUNCTIONS Sections

EXTRA_SECTIONS Sections

fabs
 C Dialect Options

FAIL Expander Definitions

fatal signal
 Bug Criteria

FATAL_EXIT_CODE
 Config

features, optional, in system conventions
 Run-time Target

ffs <1>
 Arithmetic

ffs
 C Dialect Options

file name suffix
 Overall Options

file names Link Options

files and passes of the compiler Passes

final pass Passes gcc 495 / 551

FINAL_PRESCAN_INSN
Instruction Output

FINAL_REG_PARM_STACK_SPACE Stack Arguments

final_scan_insn
Function Entry

final_sequence
 Instruction Output

FINALIZE_PIC PIC

FIRST_INSN_ADDRESS
Insn Lengths

FIRST_PARM_OFFSET
 Frame Layout

FIRST_PSEUDO_REGISTER
 Register Basics

FIRST_STACK_REG
 Stack Registers

FIRST_VIRTUAL_REGISTER
Regs and Memory

fix
 Conversions

fixed register
 Register Basics

FIXED_REGISTERS
 Register Basics

fixed_regs
 Register Basics

FIXUNS_TRUNC_LIKE_FIX_TRUNC Misc

flags in RTL expression Flags

float
 Conversions

FLOAT_ARG_TYPE
Library Calls

float_extend
 Conversions

gcc 496 / 551

FLOAT_STORE_FLAG_VALUE Misc

float_truncate
 Conversions

FLOAT_TYPE_SIZE
Type Layout

FLOAT_VALUE_TYPE Library Calls

FLOAT_WORDS_BIG_ENDIAN Storage Layout

FLOATIFY Library Calls

floating point and cross compilation Cross-compilation

force_reg
 Standard Names

forwarding calls
Constructing Calls

frame layout
 Frame Layout

FRAME_GROWS_DOWNWARD Frame Layout

frame_pointer_needed
 Function Entry

FRAME_POINTER_REGNUM
Frame Registers

FRAME_POINTER_REQUIRED Elimination

frame_pointer_rtx
 Frame Registers

function attributes
Function Attributes

function call conventions
 Interface

function entry and exit
 Function Entry

function pointers, arithmetic
 Pointer Arith

gcc 497 / 551

function prototype declarations Function Prototypes

function units, for scheduling Function Units

function, size of pointer to
 Pointer Arith

function-call insns
 Calls

FUNCTION_ARG
Register Arguments

FUNCTION_ARG_ADVANCE Register Arguments

FUNCTION_ARG_BOUNDARY
Register Arguments

FUNCTION_ARG_CALLEE_COPIES
 Register Arguments

FUNCTION_ARG_PADDING Register Arguments

FUNCTION_ARG_PARTIAL_NREGS
Register Arguments

FUNCTION_ARG_PASS_BY_REFERENCE
 Register Arguments

FUNCTION_ARG_REGNO_P Register Arguments

FUNCTION_BLOCK_PROFILER Profiling

FUNCTION_BOUNDARY Storage Layout

FUNCTION_CONVERSION_BUG Config

FUNCTION_EPILOGUE Function Entry

FUNCTION_INCOMING_ARG Register Arguments

FUNCTION_MODE Misc

FUNCTION_OUTGOING_VALUE Scalar Return

gcc 498 / 551

```
FUNCTION PROFILER
  Profiling
FUNCTION_PROLOGUE
  Function Entry
FUNCTION_VALUE
  Scalar Return
FUNCTION_VALUE_REGNO_P
  Scalar Return
functions in arbitrary sections
 Function Attributes
functions that are passed arguments in registers on the 386
  Function Attributes
functions that do not pop the argument stack on the 386
  Function Attributes
functions that do pop the argument stack on the 386
  Function Attributes
functions that have no side effects
  Function Attributes
functions that never return
  Function Attributes
functions that pop the argument stack on the 386
  Function Attributes
functions with printf or scanf style arguments
 Function Attributes
functions, leaf
 Leaf Functions
G++
  G++ and GCC
 Invoking G++
GCC
 G++ and GCC
GCC_EXEC_PREFIX
 Environment Variables
ae
  Comparisons
GEN ERRNO RTX
```

Library Calls

gcc 499 / 551

gencodes
Passes
genconfig

Passes

general_operand
 RTL Template

GENERAL_REGS
Register Classes

generalized lvalues
 Lvalues

generating assembler output
Output Statement

generating insns
 RTL Template

genflags Passes

get_attr
 Expressions

get_attr_length
 Insn Lengths

GET_CLASS_NARROWEST_MODE
 Machine Modes

GET_CODE RTL Objects

get_frame_size
 Elimination

get_insns Insns

get_last_insn
Insns

GET_MODE
Machine Modes

GET_MODE_ALIGNMENT
 Machine Modes

GET_MODE_BITSIZE
 Machine Modes

GET_MODE_CLASS
 Machine Modes

gcc 500 / 551

GET_MODE_MASK
 Machine Modes

GET_MODE_NAME
Machine Modes

GET_MODE_NUNITS
Machine Modes

GET_MODE_SIZE
 Machine Modes

GET_MODE_UNIT_SIZE
 Machine Modes

GET_MODE_WIDER_MODE
 Machine Modes

GET_RTX_CLASS
Accessors

GET_RTX_FORMAT Accessors

GET_RTX_LENGTH Accessors

geu Comparisons

global offset table
 Code Gen Options

global register after longjmp
 Global Reg Vars

global register allocation
 Passes

global register variables
 Global Reg Vars

GLOBALDEF
Global Declarations

GLOBALREF
Global Declarations

GLOBALVALUEDEF
Global Declarations

GLOBALVALUEREF
Global Declarations

GNU CC and portability Portability

gcc 501 / 551

GNU CC command options Invoking GCC

GO_IF_LEGITIMATE_ADDRESS
 Addressing Modes

GO_IF_MODE_DEPENDENT_ADDRESS
 Addressing Modes

goto with computed label
 Labels as Values

gp-relative references (MIPS)
 MIPS Options

greater than Comparisons

grouping options Invoking GCC

gt Comparisons

gtu Comparisons

HANDLE_PRAGMA Misc

hard registers
Regs and Memory

HARD_FRAME_POINTER_REGNUM
Frame Registers

HARD_REGNO_MODE_OK
 Values in Registers

HARD_REGNO_NREGS
Values in Registers

hardware models and configurations, specifying Submodel Options

HAS_INIT_SECTION

Macros for Initialization

HAVE_ATEXIT Misc

HAVE_POST_DECREMENT Addressing Modes

HAVE_POST_INCREMENT Addressing Modes gcc 502 / 551

HAVE_PRE_DECREMENT Addressing Modes

HAVE_PRE_INCREMENT Addressing Modes

HAVE_PUTENV Config

HAVE_VPRINTF
Config

header files and VMS Include Files and VMS

high Constants

HImode Machine Modes

host makefile fragment Host Fragment

HOST_BITS_PER_CHAR Config

HOST_BITS_PER_INT
Config

HOST_BITS_PER_LONG Config

HOST_BITS_PER_SHORT
Config

HOST_FLOAT_FORMAT
Config

HOST_FLOAT_WORDS_BIG_ENDIAN
 Config

HOST_WORDS_BIG_ENDIAN
Config

HPPA Options
HPPA Options

i386 Options i386 Options

IBM RS/6000 and PowerPC Options RS-6000 and PowerPC Options

IBM RT options RT Options

gcc 503 / 551

IBM RT PC Interoperation

identifier names, dollar signs in
 Dollar Signs

identifiers, names in assembler code Asm Labels

identifying source, compiler (88k)
 M88K Options

IEEE_FLOAT_FORMAT
 Storage Layout

if_then_else
 Comparisons

immediate_operand
 RTL Template

IMMEDIATE_PREFIX
Instruction Output

implicit argument: return value
 Naming Results

IMPLICIT_FIX_EXPR
Misc

implied #pragma implementation
 C++ Interface

in_data
 Sections

in_struct Flags

in_text
 Sections

include files and VMS Include Files and VMS

INCLUDE_DEFAULTS
Driver

inclusive-or, bitwise
Arithmetic

INCOMING_REGNO
 Register Basics

incompatibilities of GNU CC Incompatibilities

gcc 504 / 551

increment operators
Bug Criteria

INDEX_REG_CLASS
Register Classes

INIT_CUMULATIVE_ARGS
 Register Arguments

INIT_CUMULATIVE_INCOMING_ARGS
 Register Arguments

INIT_ENVIRONMENT
Driver

INIT_SECTION_ASM_OP <1>
 Sections

INIT_SECTION_ASM_OP
 Macros for Initialization

INIT_TARGET_OPTABS
 Library Calls

INITIAL_ELIMINATION_OFFSET
 Elimination

INITIAL_FRAME_POINTER_OFFSET
 Elimination

initialization routines
Initialization

initializations in expressions
 Constructors

INITIALIZE_TRAMPOLINE
 Trampolines

initializers with labeled elements
Labeled Elements

initializers, non-constant
 Initializers

inline functions
Inline

inline functions, omission of
 Inline

inline, automatic
 Passes

inlining and C++ pragmas
C++ Interface

gcc 505 / 551

insn Insns

insn attributes
 Insn Attributes

insn canonicalization
 Insn Canonicalizations

insn lengths, computing
 Insn Lengths

insn splitting
 Insn Splitting

insn-attr.h
 Defining Attributes

INSN_ANNULLED_BRANCH_P
 Flags

INSN_CACHE_DEPTH
 Trampolines

INSN_CACHE_LINE_WIDTH
 Trampolines

INSN_CACHE_SIZE
 Trampolines

INSN_CLOBBERS_REGNO_P
 Obsolete Register Macros

INSN_CODE Insns

INSN_DELETED_P
 Flags

INSN_FROM_TARGET_P
 Flags

insn_list
Insns

INSN_REFERENCES_ARE_DELAYED
 Misc

INSN_SETS_ARE_DELAYED
 Misc

INSN_UID Insns

insns Insns gcc 506 / 551

insns, generating
 RTL Template

insns, recognizing
 RTL Template

INSTALL
 Host Fragment

installation trouble
Trouble

installing GNU CC Installation

installing GNU CC on the Sun Sun Install

installing GNU CC on VMS
 VMS Install

instruction attributes
 Insn Attributes

instruction combination
 Passes

instruction patterns
Patterns

instruction recognizer
 Passes

instruction scheduling
 Passes

instruction splitting
Insn Splitting

INT_TYPE_SIZE
 Type Layout

INTEGRATE_THRESHOLD Misc

integrated Flags

integrating function code
 Inline

Intel 386 Options
 i386 Options

Interdependence of Patterns
Dependent Patterns

gcc 507 / 551

interface and implementation headers, C++

```
C++ Interface
               interfacing to GNU CC output
                 Interface
               intermediate C version, nonexistent
                 G++ and GCC
               INTIFY
                 Library Calls
introduction
                                             Top
               invalid assembly code
                 Bug Criteria
               invalid input
                 Bug Criteria
               INVOKE main
                 Macros for Initialization
               invoking g++
                 Invoking G++
               ior
                 Arithmetic
               IS_ASM_LOGICAL_LINE_SEPARATOR
                 Data Output
               isinf
                 Cross-compilation
               isnan
                 Cross-compilation
               jump instruction patterns
                 Jump Patterns
               jump instructions and set
                 Side Effects
               jump optimization
                 Passes
               jump threading
                 Passes
               jump_insn
                 Insns
               JUMP_LABEL
                 Insns
               JUMP_TABLES_IN_TEXT_SECTION
                 Sections
```

gcc 508 / 551

kernel and user registers (29k) ${\tt AMD29K\ Options}$

keywords, alternate
 Alternate Keywords

known causes of trouble Trouble

LABEL_NUSES Insns

LABEL_OUTSIDE_LOOP_P Flags

LABEL_PRESERVE_P Flags

label_ref
 Constants

labeled elements in initializers Labeled Elements

labels as values
Labels as Values

labs
C Dialect Options

language dialect options
 C Dialect Options

large bit shifts (88k) M88K Options

large return values Aggregate Return

LAST_STACK_REG
Stack Registers

LAST_VIRTUAL_REGISTER Regs and Memory

LD_FINI_SWITCH
 Macros for Initialization

LD_INIT_SWITCH

Macros for Initialization

LDD_SUFFIX
Macros for Initialization

ldexp
 Cross-compilation

gcc 509 / 551

le Comparisons

leaf functions
 Leaf Functions

leaf_function
 Leaf Functions

leaf_function_p
 Standard Names

LEAF_REG_REMAP
Leaf Functions

LEAF_REGISTERS
Leaf Functions

left rotate
Arithmetic

left shift Arithmetic

LEGITIMATE_CONSTANT_P
Addressing Modes

LEGITIMATE_PIC_OPERAND_P PIC

LEGITIMIZE_ADDRESS
Addressing Modes

length-zero arrays
Zero Length

less than Comparisons

less than or equal Comparisons

leu Comparisons

LIB2FUNCS_EXTRA
Target Fragment

LIB_SPEC Driver

LIBCALL_VALUE
Scalar Return

LIBGCC1
Target Fragment

gcc 510 / 551

LIBGCC2_CFLAGS
Target Fragment

LIBGCC2_WORDS_BIG_ENDIAN Storage Layout

LIBGCC_NEEDS_DOUBLE Library Calls

LIBGCC_SPEC Driver

Libraries Link Options

library subroutine names Library Calls

LIBRARY_PATH
Environment Variables

LIMIT_RELOAD_CLASS
Register Classes

link options
Link Options

LINK_LIBGCC_SPECIAL Driver

LINK_LIBGCC_SPECIAL_1
Driver

LINK_SPEC Driver

lo_sum
Arithmetic

load address instruction
 Simple Constraints

LOAD_EXTEND_OP
Misc

local labels
Local Labels

local register allocation
 Passes

local variables in macros Naming Types

local variables, specifying registers
 Local Reg Vars

gcc 511 / 551

LOCAL_INCLUDE_DIR Driver

LOCAL_LABEL_PREFIX
Instruction Output

LOG_LINKS Insns

logical-and, bitwise
Arithmetic

LONG_DOUBLE_TYPE_SIZE
Type Layout

LONG_LONG_TYPE_SIZE
Type Layout

LONG_TYPE_SIZE
Type Layout

longjmp
 Global Reg Vars

LONGJMP_RESTORE_FROM_STACK Elimination

loop optimization
 Passes

lshiftrt Arithmetic

lt Comparisons

ltu Comparisons

lvalues, generalized
 Lvalues

M680x0 options M680x0 Options

M88k options M88K Options

machine dependent options
 Submodel Options

machine description macros
 Target Macros

machine descriptions
 Machine Desc

gcc 512 / 551

machine mode conversions
 Conversions

machine modes
 Machine Modes

machine specific constraints
 Machine Constraints

MACHINE_DEPENDENT_REORG Misc

macro with variable arguments
 Macro Varargs

macros containing asm
 Extended Asm

macros, inline alternative
 Inline

macros, local labels
 Local Labels

macros, local variables in
 Naming Types

macros, statements in expressions
 Statement Exprs

macros, target description
 Target Macros

macros, types of arguments ${\tt Typeof}$

make

Preprocessor Options

make_safe_from
 Expander Definitions

makefile fragment
Fragments

match_dup
 RTL Template

match_op_dup
 RTL Template

match_operand
 RTL Template

match_operator
 RTL Template

gcc 513 / 551

match_par_dup
 RTL Template

match_parallel
 RTL Template

match_scratch
 RTL Template

matching constraint
 Simple Constraints

matching operands
 Output Template

math libraries
 Interface

math, in RTL Arithmetic

MAX_BITS_PER_WORD Storage Layout

MAX_CHAR_TYPE_SIZE
Type Layout

MAX_FIXED_MODE_SIZE Storage Layout

MAX_INT_TYPE_SIZE
Type Layout

MAX_LONG_TYPE_SIZE Type Layout

MAX_MOVE_MAX
Misc

MAX_OFILE_ALIGNMENT Storage Layout

MAX_REGS_PER_ADDRESS Addressing Modes

MAX_WCHAR_TYPE_SIZE
Type Layout

maximum operator
 Min and Max

MAYBE_REG_PARM_STACK_SPACE Stack Arguments

mcount Profiling gcc 514 / 551

MD_CALL_PROTOTYPES Config

MD_EXEC_PREFIX Driver

MD_STARTFILE_PREFIX
Driver

MD_STARTFILE_PREFIX_1
 Driver

mem

Regs and Memory

MEM_IN_STRUCT_P
 Flags

MEM_VOLATILE_P
 Flags

member fns, automatically inline
Inline

memcmp

C Dialect Options

memcpy

C Dialect Options

memory model (29k) AMD29K Options

memory reference, nonoffsettable
 Simple Constraints

memory references in constraints
 Simple Constraints

MEMORY_MOVE_COST Costs

messages, warning Warning Options

messages, warning and error Warnings and Errors

middle-operands, omitted
 Conditionals

MIN_UNITS_PER_WORD Storage Layout

minimum operator Min and Max

gcc 515 / 551

minus

Arithmetic

MIPS options
MIPS Options

misunderstandings in C++
 C++ Misunderstandings

mod

Arithmetic

MODDI3_LIBCALL Library Calls

mode classes
 Machine Modes

MODE_CC

Machine Modes

MODE_COMPLEX_FLOAT Machine Modes

MODE_COMPLEX_INT Machine Modes

MODE_FLOAT
Machine Modes

MODE_FUNCTION Machine Modes

MODE_INT
Machine Modes

MODE_PARTIAL_INT
Machine Modes

MODE_RANDOM
Machine Modes

MODES_TIEABLE_P
Values in Registers

modifiers in constraints
 Modifiers

MODSI3_LIBCALL Library Calls

MOVE_MAX
Misc

MOVE_RATIO Costs

gcc 516 / 551

MULDI3_LIBCALL Library Calls

MULSI3_LIBCALL Library Calls

mult Arithmetic

MULTIBYTE_CHARS Config

MULTILIB_DEFAULTS
Driver

MULTILIB_DIRNAMES
Target Fragment

MULTILIB_MATCHES
Target Fragment

MULTILIB_OPTIONS
Target Fragment

multiple alternative constraints
 Multi-Alternative

multiplication
Arithmetic

multiprecision arithmetic
 Long Long

N_REG_CLASSES
 Register Classes

name augmentation VMS Misc

named patterns and conditions Patterns

named return value in C++
Naming Results

names used in assembler code
Asm Labels

names, pattern Standard Names

naming convention, implementation headers C++ Interface

naming types
Naming Types

gcc 517 / 551

```
ne
  Comparisons
neg
  Arithmetic
nested functions
  Nested Functions
nested functions, trampolines for
  Trampolines
newline vs string constants
  C Dialect Options
next_cc0_user
  Jump Patterns
NEXT_INSN
  Insns
NEXT_OBJC_RUNTIME
  Library Calls
nil
  RTL Objects
no constraints
 No Constraints
no-op move instructions
 Passes
NO_BUILTIN_PTRDIFF_TYPE
  Driver
NO_BUILTIN_SIZE_TYPE
  Driver
NO_DOLLAR_IN_LABEL
  Misc
NO_DOT_IN_LABEL
  Misc
NO_FUNCTION_CSE
  Costs
NO_IMPLICIT_EXTERN_C
  Misc
NO_MD_PROTOTYPES
  Config
```

NO_RECURSIVE_FUNCTION_CSE

Costs

gcc 518 / 551

NO_REGS Register Classes

NO_STAB_H Config

NO_SYS_SIGLIST Config

non-constant initializers Initializers

non-static inline function
 Inline

NON_SAVING_SETJMP Register Basics

nongcc_SI_type
 Library Calls

nongcc_word_type
 Library Calls

nonoffsettable memory reference
 Simple Constraints

not Arithmetic

not equal Comparisons

not using constraints
No Constraints

note Insns

NOTE_INSN_BLOCK_BEG Insns

NOTE_INSN_BLOCK_END Insns

NOTE_INSN_DELETED Insns

NOTE_INSN_FUNCTION_END Insns

NOTE_INSN_LOOP_BEG Insns

NOTE_INSN_LOOP_CONT Insns

gcc 519 / 551

NOTE_INSN_LOOP_END Insns

NOTE_INSN_LOOP_VTOP Insns

NOTE_INSN_SETJMP Insns

NOTE_LINE_NUMBER Insns

NOTE_SOURCE_FILE Insns

NOTICE_UPDATE_CC Condition Code

NUM_MACHINE_MODES
Machine Modes

OBJC_GEN_METHOD_LABEL Label Output

OBJC_INCLUDE_PATH Environment Variables

OBJC_INT_SELECTORS
Type Layout

OBJC_PROLOGUE File Framework

OBJC_SELECTORS_WITHOUT_LABELS
Type Layout

OBJECT_FORMAT_COFF
Macros for Initialization

OBJECT_FORMAT_ROSE

Macros for Initialization

OBJECT_SUFFIX Config

Objective C G++ and GCC

OBSTACK_CHUNK_ALLOC Config

OBSTACK_CHUNK_FREE Config

OBSTACK_CHUNK_SIZE Config

gcc 520 / 551

obstack_free
 Configurations

OCS (88k) M88K Options

offsettable address Simple Constraints

old-style function definitions Function Prototypes

OLDAR

Host Fragment

OLDCC

Host Fragment

omitted middle-operands
 Conditionals

ONLY_INT_FIELDS Config

open coding Inline

operand access
Accessors

operand constraints
 Constraints

operand substitution
Output Template

operands Patterns

OPTIMIZATION_OPTIONS Run-time Target

optimize options
Optimize Options

optional hardware or system features Run-time Target

options to control warnings Warning Options

options, C++
C++ Dialect Options

options, code generation Code Gen Options gcc 521 / 551

options, debugging Debugging Options

options, dialect C Dialect Options

options, directory search Directory Options

options, GNU CC command Invoking GCC

options, grouping Invoking GCC

options, linking Link Options

options, optimization
 Optimize Options

options, order Invoking GCC

options, preprocessor Preprocessor Options

order of evaluation, side effects Non-bugs

order of options Invoking GCC

order of register allocation Allocation Order

ORDER_REGS_FOR_LOCAL_ALLOC Allocation Order

Ordering of Patterns Pattern Ordering

other directory, compilation in Other Dir

OUTGOING_REG_PARM_STACK_SPACE Stack Arguments

OUTGOING_REGNO Register Basics

output file option
Overall Options

output of assembler code
 File Framework

gcc 522 / 551

output statements
 Output Statement

output templates
 Output Template

output_addr_const
 Data Output

output_asm_insn
Output Statement

overflow while constant folding
 Cross-compilation

OVERLAPPING_REGNO_P
Obsolete Register Macros

overloaded virtual fn, warning Warning Options

OVERRIDE_OPTIONS
Run-time Target

parallel
 Side Effects

parameter forward declaration
 Variable Length

parameters, miscellaneous
 Misc

PARM_BOUNDARY
Storage Layout

PARSE_LDD_OUTPUT
Macros for Initialization

parser generator, Bison
 Installation

parsing pass Passes

passes and files of the compiler Passes

passing arguments
Interface

PATH_SEPARATOR Config

PATTERN Insns gcc 523 / 551

```
pattern conditions
 Patterns
pattern names
  Standard Names
Pattern Ordering
 Pattern Ordering
patterns
  Patterns
рс
  Regs and Memory
pc_rtx
  Regs and Memory
PCC_BITFIELD_TYPE_MATTERS
  Storage Layout
PCC_STATIC_STRUCT_RETURN
  Aggregate Return
PDImode
 Machine Modes
peephole optimization
  Passes
peephole optimization, RTL representation
  Side Effects
peephole optimizer definitions
  Peephole Definitions
percent sign
  Output Template
perform_...
 Library Calls
PIC <1>
  Code Gen Options
PIC
 PIC
PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
  PIC
PIC_OFFSET_TABLE_REGNUM
 PIC
plus
  Arithmetic
```

gcc 524 / 551

```
Pmode
  Misc
pointer arguments
  Function Attributes
POINTER_SIZE
  Storage Layout
POINTERS_EXTEND_UNSIGNED
  Storage Layout
portability
  Portability
portions of temporary objects, pointers to
  Temporaries
position independent code
  PIC
POSIX
  Config
post_dec
  Incdec
post_inc
  Incdec
pragma
  Misc
pragma, reason for not using
  Function Attributes
pragmas in C++, effect on inlining
  C++ Interface
pragmas, interface and implementation
  C++ Interface
pre_dec
  Incdec
pre_inc
  Incdec
predefined macros
  Run-time Target
PREDICATE_CODES
  Misc
PREFERRED_DEBUGGING_TYPE
  All Debuggers
```

gcc 525 / 551

PREFERRED_OUTPUT_RELOAD_CLASS
Register Classes

PREFERRED_RELOAD_CLASS
Register Classes

preprocessing numbers
 Incompatibilities

preprocessing tokens
Incompatibilities

preprocessor options
 Preprocessor Options

PRESERVE_DEATH_INFO_REGNO_P
Obsolete Register Macros

prev_active_insn
 Peephole Definitions

prev_cc0_setter
 Jump Patterns

PREV_INSN Insns

PRINT_OPERAND
Instruction Output

PRINT_OPERAND_ADDRESS
Instruction Output

PRINT_OPERAND_PUNCT_VALID_P
Instruction Output

processor selection (29k)
 AMD29K Options

product
 Arithmetic

PROFILE_BEFORE_PROLOGUE Profiling

profiling, code generation
 Profiling

program counter
 Regs and Memory

prologue
 Function Entry

PROMOTE_FOR_CALL_ONLY Storage Layout

gcc 526 / 551

PROMOTE_FUNCTION_ARGS
Storage Layout

PROMOTE_FUNCTION_RETURN Storage Layout

PROMOTE_MODE
Storage Layout

PROMOTE_PROTOTYPES
Stack Arguments

promotion of formal parameters
 Function Prototypes

pseudo registers
 Regs and Memory

PSImode Machine Modes

PTRDIFF_TYPE
Type Layout

push address instruction
 Simple Constraints

PUSH_ROUNDING
Stack Arguments

PUT_CODE RTL Objects

PUT_MODE Machine Modes

PUT_REG_NOTE_KIND Insns

PUT_SDB_...
SDB and DWARF

putenv Config

QImode Machine Modes

question mark
Multi-Alternative

quotient Arithmetic

r0-relative references (88k) M88K Options

gcc 527 / 551

ranges in case statements
Case Ranges

read-only strings
 Incompatibilities

READONLY_DATA_SECTION Sections

REAL_ARITHMETIC Cross-compilation

REAL_INFINITY Cross-compilation

REAL_NM_FILE_NAME
Macros for Initialization

REAL_VALUE_ATOF
Cross-compilation

REAL_VALUE_FIX Cross-compilation

REAL_VALUE_FROM_INT Cross-compilation

REAL_VALUE_ISINF Cross-compilation

REAL_VALUE_ISNAN Cross-compilation

REAL_VALUE_LDEXP Cross-compilation

REAL_VALUE_NEGATE Cross-compilation

REAL_VALUE_RNDZINT Cross-compilation

REAL_VALUE_TO_DECIMAL Data Output

REAL_VALUE_TO_INT Cross-compilation

REAL_VALUE_TO_TARGET_DOUBLE
Data Output

REAL_VALUE_TO_TARGET_LONG_DOUBLE
Data Output

REAL_VALUE_TO_TARGET_SINGLE
Data Output

gcc 528 / 551

REAL_VALUE_TRUNCATE Cross-compilation

REAL_VALUE_TYPE Cross-compilation

REAL_VALUE_UNSIGNED_FIX Cross-compilation

REAL_VALUE_UNSIGNED_RNDZINT Cross-compilation

REAL_VALUES_EQUAL Cross-compilation

REAL_VALUES_LESS Cross-compilation

recog_operand
 Instruction Output

recognizing insns RTL Template

reg
Regs and Memory

REG_ALLOC_ORDER
Allocation Order

REG_CC_SETTER Insns

REG_CC_USER Insns

REG_CLASS_CONTENTS
Register Classes

REG_CLASS_FROM_LETTER
 Register Classes

REG_CLASS_NAMES
Register Classes

REG_DEAD Insns

REG_DEP_ANTI Insns

REG_DEP_OUTPUT Insns

REG_EQUAL Insns

gcc 529 / 551

REG_EQUIV Insns

REG_FUNCTION_VALUE_P
 Flags

REG_INC Insns

REG_LABEL Insns

REG_LIBCALL Insns

REG_LOOP_TEST_P
 Flags

reg_names
 Instruction Output

REG_NO_CONFLICT Insns

REG_NONNEG Insns

REG_NOTE_KIND Insns

REG_NOTES
Insns

REG_OK_FOR_BASE_P
Addressing Modes

REG_OK_FOR_INDEX_P
Addressing Modes

REG_OK_STRICT
Addressing Modes

REG_PARM_STACK_SPACE Stack Arguments

REG_RETVAL Insns

REG_UNUSED Insns

REG_USERVAR_P Flags

REG_WAS_0 Insns

gcc 530 / 551

register allocation Passes

register allocation order Allocation Order

register allocation, stupid Passes

register class definitions Register Classes

register class preference constraints Class Preferences

register class preference pass
Passes

register pairs
Values in Registers

register positions in frame (88k) M88K Options

Register Transfer Language (RTL) RTL

register usage Registers

register use analysis Passes

register variable after longjmp
 Global Reg Vars

register-to-stack conversion
 Passes

REGISTER_MOVE_COST Costs

REGISTER_NAMES
Instruction Output

register_operand
RTL Template

REGISTER_PREFIX
Instruction Output

registers
Extended Asm

registers arguments
Register Arguments

gcc 531 / 551

registers for local variables
Local Reg Vars

registers in constraints Simple Constraints

registers, global allocation Explicit Reg Vars

registers, global variables in Global Reg Vars

REGNO_OK_FOR_BASE_P
Register Classes

REGNO_OK_FOR_INDEX_P
Register Classes

REGNO_REG_CLASS
Register Classes

regs_ever_live
 Function Entry

relative costs Costs

RELATIVE_PREFIX_NOT_LINKDIR
Driver

reload pass
Regs and Memory

reload_completed
 Standard Names

reload_in_progress
 Standard Names

reloading Passes

remainder
Arithmetic

reordering, warning Warning Options

reporting bugs Bugs

 $\begin{array}{c} \text{representation of RTL} \\ \text{RTL} \end{array}$

rest argument (in macro)
Macro Varargs

gcc 532 / 551

rest_of_compilation
 Passes

rest_of_decl_compilation
 Passes

return Side Effects

return value of main VMS Misc

return value, named, in C++
Naming Results

return values in registers Scalar Return

RETURN_ADDR_IN_PREVIOUS_FRAME Frame Layout

RETURN_ADDR_RTX Frame Layout

RETURN_IN_MEMORY
Aggregate Return

RETURN_POPS_ARGS
Stack Arguments

returning aggregate values
Aggregate Return

returning structures and unions Interface

REVERSIBLE_CC_MODE Condition Code

right rotate
 Arithmetic

right shift
 Arithmetic

rotate Arithmetic

rotatert Arithmetic

ROUND_TYPE_ALIGN Storage Layout

ROUND_TYPE_SIZE Storage Layout

gcc 533 / 551

RS/6000 and PowerPC Options RS-6000 and PowerPC Options

RT options
RT Options

RT PC Interoperation

RTL addition Arithmetic

RTL comparison Arithmetic

RTL comparison operations Comparisons

RTL constant expression types Constants

RTL constants Constants

RTL declarations
RTL Declarations

RTL difference Arithmetic

RTL expression RTL Objects

RTL expressions for arithmetic Arithmetic

RTL format Accessors

RTL format characters
Accessors

RTL function-call insns Calls

RTL generation Passes

RTL insn template RTL Template

RTL integers RTL Objects

RTL memory expressions Regs and Memory

gcc 534 / 551

RTL object types RTL Objects

RTL postdecrement Incdec

RTL postincrement Incdec

RTL predecrement Incdec

RTL preincrement Incdec

RTL register expressions Regs and Memory

RTL representation RTL

RTL side effect expressions Side Effects

RTL strings RTL Objects

RTL structure sharing assumptions Sharing

RTL subtraction Arithmetic

RTL sum Arithmetic

RTL vectors
RTL Objects

RTX (See RTL)
RTL Objects

RTX_COSTS Costs

RTX_INTEGRATED_P Flags

RTX_UNCHANGING_P Flags

run-time conventions
Interface

run-time options
Code Gen Options

gcc 535 / 551

run-time target specification
 Run-time Target

saveable_obstack
 Addressing Modes

scalars, returned as values Scalar Return

SCCS_DIRECTIVE Misc

SCHED_GROUP_P Flags

scheduling, delayed branch Passes

scheduling, instruction Passes

SCmode Machine Modes

scope of a variable length array
Variable Length

scope of declaration
Disappointments

scope of external declarations
Incompatibilities

scratch
Regs and Memory

scratch operands Regs and Memory

SDB_ALLOW_FORWARD_REFERENCES SDB and DWARF

SDB_ALLOW_UNKNOWN_REFERENCES SDB and DWARF

SDB_DEBUGGING_INFO SDB and DWARF

SDB_DELIM
SDB and DWARF

SDB_GENERATE_FAKE
 SDB and DWARF

search path
 Directory Options

gcc 536 / 551

second include path Preprocessor Options

SECONDARY_INPUT_RELOAD_CLASS Register Classes

SECONDARY_MEMORY_NEEDED Register Classes

SECONDARY_MEMORY_NEEDED_MODE Register Classes

SECONDARY_MEMORY_NEEDED_RTX Register Classes

SECONDARY_OUTPUT_RELOAD_CLASS
Register Classes

SECONDARY_RELOAD_CLASS
Register Classes

SELECT_CC_MODE Condition Code

SELECT_RTX_SECTION Sections

SELECT_SECTION Sections

separate directory, compilation in Other Dir

sequence Side Effects

sequential consistency on 88k M88K Options

set
Side Effects

set_attr
 Tagging Insns

set_attr_alternative
 Tagging Insns

SET_DEFAULT_TYPE_ATTRIBUTES
Misc

SET_DEST
Side Effects

SET_SRC Side Effects gcc 537 / 551

setjmp

Global Reg Vars

```
SETUP_FRAME_ADDRESSES
 Frame Layout
SETUP_INCOMING_VARARGS
  Varargs
SFmode
 Machine Modes
shared strings
  Incompatibilities
shared VMS run time system
 VMS Misc
SHARED_SECTION_ASM_OP
  Sections
sharing of RTL components
  Sharing
shift
 Arithmetic
SHIFT_COUNT_TRUNCATED
 Misc
SHORT_TYPE_SIZE
  Type Layout
side effect in ?:
  Conditionals
side effects, macro argument
  Statement Exprs
side effects, order of evaluation
  Non-bugs
sign_extend
  Conversions
sign_extract
 Bit Fields
signature
  C++ Signatures
signature member function default implementation
  C++ Signatures
signatures, C++
  C++ Signatures
```

gcc 538 / 551

```
Arithmetic
signed maximum
  Arithmetic
signed minimum
 Arithmetic
SIGNED_CHAR_SPEC
 Driver
SImode
 Machine Modes
simple constraints
  Simple Constraints
simplifications, arithmetic
  Passes
sin
  C Dialect Options
SIZE_TYPE
  Type Layout
sizeof
  Typeof
SLOW_BYTE_ACCESS
 Costs
SLOW_UNALIGNED_ACCESS
  Costs
SLOW_ZERO_EXTEND
 Costs
SMALL_REGISTER_CLASSES
  Register Classes
smaller data references (88k)
 M88K Options
smaller data references (MIPS)
 MIPS Options
smax
 Arithmetic
smin
 Arithmetic
SPARC options
  SPARC Options
```

signed division

gcc 539 / 551

specified registers
Explicit Reg Vars

specifying compiler version and target machine Target Options

specifying hardware config
Submodel Options

specifying machine version
 Target Options

specifying registers for local variables Local Reg Vars

speed of instructions
Costs

splitting instructions
Insn Splitting

sqrt <1>
 C Dialect Options

sqrt Arithmetic

square root Arithmetic

stack arguments
 Stack Arguments

stack checks (29k) AMD29K Options

stack frame layout
 Frame Layout

STACK_BOUNDARY
Storage Layout

STACK_DYNAMIC_OFFSET Frame Layout

STACK_GROWS_DOWNWARD Frame Layout

STACK_PARMS_IN_REG_PARM_AREA Stack Arguments

STACK_POINTER_OFFSET Frame Layout

STACK_POINTER_REGNUM Frame Registers

gcc 540 / 551

stack_pointer_rtx
Frame Registers

STACK_REGS
Stack Registers

stage1 Installation

standard pattern names Standard Names

STANDARD_EXEC_PREFIX Driver

STANDARD_INCLUDE_DIR Driver

STANDARD_STARTFILE_PREFIX Driver

start files
Tools and Libraries

STARTFILE_SPEC Driver

STARTING_FRAME_OFFSET Frame Layout

statements inside expressions Statement Exprs

static data in C++, declaring and defining
Static Definitions

STATIC_CHAIN
Frame Registers

STATIC_CHAIN_INCOMING Frame Registers

STATIC_CHAIN_INCOMING_REGNUM Frame Registers

STATIC_CHAIN_REGNUM Frame Registers

storage layout Storage Layout

STORE_FLAG_VALUE Misc

storem bug (29k) AMD29K Options gcc 541 / 551

strcmp

C Dialect Options

strcpy <1>
 C Dialect Options

strcpy
Storage Layout

strength-reduction Passes

STRICT_ALIGNMENT Storage Layout

STRICT_ARGUMENT_NAMING Varargs

strict_low_part
RTL Declarations

string constants
Incompatibilities

string constants vs newline C Dialect Options

STRIP_NAME_ENCODING
Sections

strlen C Dialect Options

STRUCT_VALUE
Aggregate Return

STRUCT_VALUE_INCOMING
Aggregate Return

STRUCT_VALUE_INCOMING_REGNUM Aggregate Return

STRUCT_VALUE_REGNUM Aggregate Return

structure passing (88k) M88K Options

structure value address Aggregate Return

STRUCTURE_SIZE_BOUNDARY Storage Layout

structures
Incompatibilities

gcc 542 / 551

```
structures, constructor expression
 Constructors
structures, returning
  Interface
stupid register allocation
  Passes
submodel options
  Submodel Options
subreg
  Regs and Memory
SUBREG_PROMOTED_UNSIGNED_P
  Flags
SUBREG_PROMOTED_VAR_P
  Flags
SUBREG_REG
  Regs and Memory
SUBREG_WORD
  Regs and Memory
subscripting
  Subscripting
subscripting and function values
  Subscripting
subtype polymorphism, C++
  C++ Signatures
SUCCESS_EXIT_CODE
  Config
suffixes for C++ source
  Invoking G++
Sun installation
  Sun Install
SUPPORTS_WEAK
 Label Output
suppressing warnings
 Warning Options
surprises in C++
 C++ Misunderstandings
SVr4
```

M88K Options

gcc 543 / 551

SWITCH_TAKES_ARG Driver

SWITCHES_NEED_SPACES Driver

symbol_ref
Constants

SYMBOL_REF_FLAG Flags

SYMBOL_REF_USED Flags

symbolic label
 Sharing

syntax checking
Warning Options

synthesized methods, warning
Warning Options

sys_siglist Config

SYSTEM_INCLUDE_DIR Driver

tagging insns Tagging Insns

tail recursion optimization Passes

target description macros
Target Macros

target machine, specifying
 Target Options

target makefile fragment
 Target Fragment

target options
Target Options

target specifications
Run-time Target

target-parameter-dependent code Passes

TARGET_BELL
Type Layout

gcc 544 / 551

TARGET_BS
Type Layout

TARGET_CR
Type Layout

TARGET_EDOM
Library Calls

TARGET_FF
Type Layout

TARGET_FLOAT_FORMAT Storage Layout

TARGET_MEM_FUNCTIONS Library Calls

TARGET_NEWLINE
Type Layout

TARGET_OPTIONS
Run-time Target

TARGET_SWITCHES
Run-time Target

TARGET_TAB
Type Layout

TARGET_VERSION
Run-time Target

TARGET_VT
Type Layout

TCmode Machine Modes

template debugging Warning Options

template instantiation
Template Instantiation

temporaries, lifetime of Temporaries

termination routines Initialization

text_section Sections

TEXT_SECTION_ASM_OP Sections

gcc 545 / 551

TFmode

Machine Modes

thunks

Nested Functions

TImode

Machine Modes

TMPDIR

Environment Variables

top level of compiler
 Passes

traditional C language
 C Dialect Options

TRADITIONAL_RETURN_FLOAT Scalar Return

TRAMPOLINE_ALIGNMENT Trampolines

TRAMPOLINE_SECTION Trampolines

TRAMPOLINE_SIZE Trampolines

TRAMPOLINE_TEMPLATE
Trampolines

trampolines for nested functions Trampolines

TRANSFER_FROM_TRAMPOLINE Trampolines

TRULY_NOOP_TRUNCATION Misc

truncate Conversions

type abstraction, C++
 C++ Signatures

type alignment
 Alignment

type attributes
 Type Attributes

typedef names as function parameters
Incompatibilities

gcc 546 / 551

```
typeof
  Typeof
udiv
 Arithmetic
UDIVDI3_LIBCALL
 Library Calls
UDIVSI3_LIBCALL
 Library Calls
Ultrix calling convention
  Interoperation
umax
 Arithmetic
umin
 Arithmetic
umod
 Arithmetic
UMODDI3_LIBCALL
  Library Calls
UMODSI3_LIBCALL
 Library Calls
unchanging
 Flags
undefined behavior
  Bug Criteria
undefined function value
 Bug Criteria
underscores in variables in macros
  Naming Types
underscores, avoiding (88k)
 M88K Options
union, casting to a
 Cast to Union
unions
  Incompatibilities
unions, returning
 Interface
```

UNITS_PER_WORD
Storage Layout

gcc 547 / 551

```
UNKNOWN_FLOAT_FORMAT
  Storage Layout
unreachable code
 Passes
unresolved references and -nodefaultlibs
 Link Options
unresolved references and -nostdlib
  Link Options
unshare_all_rtl
  Sharing
unsigned division
  Arithmetic
unsigned greater than
  Comparisons
unsigned less than
  Comparisons
unsigned minimum and maximum
  Arithmetic
unsigned_fix
  Conversions
unsigned_float
  Conversions
unspec
  Side Effects
unspec_volatile
 Side Effects
use
  Side Effects
USE_C_ALLOCA
  Config
USE_PROTOTYPES
 Config
used
 Flags
USER_LABEL_PREFIX
  Instruction Output
USG
  Config
```

gcc 548 / 551

VALID_MACHINE_DECL_ATTRIBUTE Misc

VALID_MACHINE_TYPE_ATTRIBUTE Misc

value after longjmp
 Global Reg Vars

values, returned by functions Scalar Return

varargs implementation
 Varargs

variable alignment Alignment

variable attributes
Variable Attributes

variable number of arguments Macro Varargs

variable-length array scope Variable Length

variable-length arrays Variable Length

variables in specified registers Explicit Reg Vars

variables, local, in macros Naming Types

Vax calling convention Interoperation

VAX options
VAX Options

VAX_FLOAT_FORMAT Storage Layout

VIRTUAL_INCOMING_ARGS_REGNUM Regs and Memory

VIRTUAL_OUTGOING_ARGS_REGNUM Regs and Memory

VIRTUAL_STACK_DYNAMIC_REGNUM Regs and Memory

VIRTUAL_STACK_VARS_REGNUM Regs and Memory

gcc 549 / 551

VMS Config VMS and case sensitivity VMS Misc VMS and include files Include Files and VMS VMS installation VMS Install void pointers, arithmetic Pointer Arith void, size of pointer to Pointer Arith VOIDmode Machine Modes volatil Flags volatile memory references Flags voting between constraint alternatives Class Preferences vprintf Config warning for enumeration conversions Warning Options warning for overloaded virtual fn Warning Options warning for reordering of member initializers Warning Options warning for synthesized methods Warning Options warning messages Warning Options warnings vs errors Warnings and Errors WCHAR_TYPE Type Layout

WCHAR_TYPE_SIZE
Type Layout

gcc 550 / 551

which_alternative Output Statement

whitespace Incompatibilities

word_mode
 Machine Modes

WORD_REGISTER_OPERATIONS Misc

WORD_SWITCH_TAKES_ARG
Driver

WORDS_BIG_ENDIAN Storage Layout

XCmode Machine Modes

XCOFF_DEBUGGING_INFO DBX Options

XEXP Accessors

XFmode Machine Modes

XINT Accessors

xor Arithmetic

XSTR Accessors

XVEC Accessors

XVECEXP Accessors

XVECLEN
Accessors

XWINT Accessors

zero division on 88k M88K Options

zero-length arrays Zero Length gcc 551 / 551

zero_extend Conversions

zero_extract Bit Fields