
Autoconf
Creating Automatic Configuration Scripts

Edition 2.8, for Autoconf version 2.8
January 1996

by David MacKenzie



Copyright c© 1992, ’93, ’94, ’95, ’96 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, except that this permission notice may be stated

in a translation approved by the Foundation.



Chapter 1: Introduction 1

1 Introduction

A physicist, an engineer, and a computer scientist were
discussing the nature of God. Surely a Physicist, said the
physicist, because early in the Creation, God made Light; and you
know, Maxwell’s equations, the dual nature of electro-magnetic
waves, the relativist consequences. . . An Engineer!, said the
engineer, because before making Light, God split the Chaos into
Land and Water; it takes a hell of an engineer to handle that big
amount of mud, and orderly separation of solids from
liquids. . . The computer scientist shouted: And the Chaos,
where do you think it was coming from, hmm?

—Anonymous

Autoconf is a tool for producing shell scripts that automatically configure software source code

packages to adapt to many kinds of UNIX-like systems. The configuration scripts produced by

Autoconf are independent of Autoconf when they are run, so their users do not need to have

Autoconf.

The configuration scripts produced by Autoconf require no manual user intervention when run;

they do not normally even need an argument specifying the system type. Instead, they test for the

presence of each feature that the software package they are for might need individually. (Before

each check, they print a one-line message stating what they are checking for, so the user doesn’t

get too bored while waiting for the script to finish.) As a result, they deal well with systems that

are hybrids or customized from the more common UNIX variants. There is no need to maintain

files that list the features supported by each release of each variant of UNIX.

For each software package that Autoconf is used with, it creates a configuration script from a

template file that lists the system features that the package needs or can use. After the shell code

to recognize and respond to a system feature has been written, Autoconf allows it to be shared by

many software packages that can use (or need) that feature. If it later turns out that the shell code

needs adjustment for some reason, it needs to be changed in only one place; all of the configuration

scripts can be regenerated automatically to take advantage of the updated code.

The Metaconfig package is similar in purpose to Autoconf, but the scripts it produces require

manual user intervention, which is quite inconvenient when configuring large source trees. Unlike

Metaconfig scripts, Autoconf scripts can support cross-compiling, if some care is taken in writing

them.



Chapter 1: Introduction 2

There are several jobs related to making portable software packages that Autoconf currently

does not do. Among these are automatically creating ‘Makefile’ files with all of the standard

targets, and supplying replacements for standard library functions and header files on systems that

lack them. Work is in progress to add those features in the future.

Autoconf imposes some restrictions on the names of macros used with #ifdef in C programs

(see [Preprocessor Symbol Index], page 102).

Autoconf requires GNU m4 in order to generate the scripts. It uses features that some UNIX

versions of m4 do not have. It also overflows internal limits of some versions of m4, including GNU

m4 1.0. You must use version 1.1 or later of GNU m4. Using version 1.3 or later will be much faster

than 1.1 or 1.2.

See Chapter 13 [Upgrading], page 87, for information about upgrading from version 1. See

Chapter 14 [History], page 92, for the story of Autoconf’s development. See Chapter 12 [Questions],

page 83, for answers to some common questions about Autoconf.

Mail suggestions and bug reports for Autoconf to bug-gnu-utils@prep.ai.mit.edu. Please

include the Autoconf version number, which you can get by running ‘autoconf --version’.



Chapter 2: Making configure Scripts 3

2 Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure. When

run, configure creates several files, replacing configuration parameters in them with appropriate

values. The files that configure creates are:

• one or more ‘Makefile’ files, one in each subdirectory of the package (see Section 3.3 [Makefile

Substitutions], page 12);

• optionally, a C header file, the name of which is configurable, containing #define directives

(see Section 3.4 [Configuration Headers], page 17);

• a shell script called ‘config.status’ that, when run, will recreate the files listed above (see

Chapter 11 [Invoking config.status], page 81);

• a shell script called ‘config.cache’ that saves the results of running many of the tests (see

Section 6.3.2 [Cache Files], page 59);

• a file called ‘config.log’ containing any messages produced by compilers, to help debugging

if configure makes a mistake.

To create a configure script with Autoconf, you need to write an Autoconf input file

‘configure.in’ and run autoconf on it. If you write your own feature tests to supplement

those that come with Autoconf, you might also write files called ‘aclocal.m4’ and ‘acsite.m4’. If

you use a C header file to contain #define directives, you might also write ‘acconfig.h’, and you

will distribute the Autoconf-generated file ‘config.h.in’ with the package.

Here is a diagram showing how the files that can be used in configuration are produced. Programs

that are executed are suffixed by ‘*’. Optional files are enclosed in square brackets (‘[]’). autoconf

and autoheader also read the installed Autoconf macro files (by reading ‘autoconf.m4’).

Files used in preparing a software package for distribution:



Chapter 2: Making configure Scripts 4

your source files --> [autoscan*] --> [configure.scan] --> configure.in

configure.in --. .------> autoconf* -----> configure
+---+

[aclocal.m4] --+ ‘---.
[acsite.m4] ---’ |

+--> [autoheader*] -> [config.h.in]
[acconfig.h] ----. |

+-----’
[config.h.top] --+
[config.h.bot] --’

Makefile.in -------------------------------> Makefile.in

Files used in configuring a software package:

.-------------> config.cache
configure* ------------+-------------> config.log

|
[config.h.in] -. v .-> [config.h] -.

+--> config.status* -+ +--> make*
Makefile.in ---’ ‘-> Makefile ---’

2.1 Writing ‘configure.in’

To produce a configure script for a software package, create a file called ‘configure.in’ that

contains invocations of the Autoconf macros that test the system features your package needs or

can use. Autoconf macros already exist to check for many features; see Chapter 4 [Existing Tests],

page 23, for their descriptions. For most other features, you can use Autoconf template macros to

produce custom checks; see Chapter 5 [Writing Tests], page 45, for information about them. For

especially tricky or specialized features, ‘configure.in’ might need to contain some hand-crafted

shell commands. The autoscan program can give you a good start in writing ‘configure.in’ (see

Section 2.2 [Invoking autoscan], page 6, for more information).

The order in which ‘configure.in’ calls the Autoconf macros is not important, with a few

exceptions. Every ‘configure.in’ must contain a call to AC_INIT before the checks, and a call

to AC_OUTPUT at the end (see Section 3.2 [Output], page 11). Additionally, some macros rely on

other macros having been called first, because they check previously set values of some variables to

decide what to do. These macros are noted in the individual descriptions (see Chapter 4 [Existing

Tests], page 23), and they also warn you when creating configure if they are called out of order.



Chapter 2: Making configure Scripts 5

To encourage consistency, here is a suggested order for calling the Autoconf macros. Generally

speaking, the things near the end of this list could depend on things earlier in it. For example,

library functions could be affected by typedefs and libraries.

AC_INIT(file)
checks for programs
checks for libraries
checks for header files
checks for typedefs
checks for structures
checks for compiler characteristics
checks for library functions
checks for system services
AC_OUTPUT([file. . .])

It is best to put each macro call on its own line in ‘configure.in’. Most of the macros don’t

add extra newlines; they rely on the newline after the macro call to terminate the commands. This

approach makes the generated configure script a little easier to read by not inserting lots of blank

lines. It is generally safe to set shell variables on the same line as a macro call, because the shell

allows assignments without intervening newlines.

When calling macros that take arguments, there must not be any blank space between the macro

name and the open parenthesis. Arguments can be more than one line long if they are enclosed

within the m4 quote characters ‘[’ and ‘]’. If you have a long line such as a list of file names, you

can generally use a backslash at the end of a line to continue it logically on the next line (this is

implemented by the shell, not by anything special that Autoconf does).

Some macros handle two cases: what to do if the given condition is met, and what to do if the

condition is not met. In some places you might want to do something if a condition is true but do

nothing if it’s false, or vice versa. To omit the true case, pass an empty value for the action-if-found

argument to the macro. To omit the false case, omit the action-if-not-found argument to the macro,

including the comma before it.

You can include comments in ‘configure.in’ files by starting them with the m4 builtin macro

dnl, which discards text up through the next newline. These comments do not appear in the

generated configure scripts. For example, it is helpful to begin ‘configure.in’ files with a line

like this:

dnl Process this file with autoconf to produce a configure script.



Chapter 2: Making configure Scripts 6

2.2 Using autoscan to Create ‘configure.in’

The autoscan program can help you create a ‘configure.in’ file for a software package.

autoscan examines source files in the directory tree rooted at a directory given as a command

line argument, or the current directory if none is given. It searches the source files for common

portability problems and creates a file ‘configure.scan’ which is a preliminary ‘configure.in’

for that package.

You should manually examine ‘configure.scan’ before renaming it to ‘configure.in’; it will

probably need some adjustments. Occasionally autoscan outputs a macro in the wrong order

relative to another macro, so that autoconf produces a warning; you need to move such macros

manually. Also, if you want the package to use a configuration header file, you must add a call

to AC_CONFIG_HEADER (see Section 3.4 [Configuration Headers], page 17). You might also have to

change or add some #if directives to your program in order to make it work with Autoconf (see

Section 2.3 [Invoking ifnames], page 7, for information about a program that can help with that

job).

autoscan uses several data files, which are installed along with the distributed Autoconf macro

files, to determine which macros to output when it finds particular symbols in a package’s source

files. These files all have the same format. Each line consists of a symbol, whitespace, and the

Autoconf macro to output if that symbol is encountered. Lines starting with ‘#’ are comments.

autoscan is only installed if you already have Perl installed. autoscan accepts the following

options:

--help Print a summary of the command line options and exit.

--macrodir=dir

Look for the data files in directory dir instead of the default installation directory. You

can also set the AC_MACRODIR environment variable to a directory; this option overrides

the environment variable.

--verbose

Print the names of the files it examines and the potentially interesting symbols it finds

in them. This output can be voluminous.

--version

Print the version number of Autoconf and exit.



Chapter 2: Making configure Scripts 7

2.3 Using ifnames to List Conditionals

ifnames can help when writing a ‘configure.in’ for a software package. It prints the identifiers

that the package already uses in C preprocessor conditionals. If a package has already been set up

to have some portability, this program can help you figure out what its configure needs to check

for. It may help fill in some gaps in a ‘configure.in’ generated by autoscan (see Section 2.2

[Invoking autoscan], page 6).

ifnames scans all of the C source files named on the command line (or the standard input, if

none are given) and writes to the standard output a sorted list of all the identifiers that appear in

those files in #if, #elif, #ifdef, or #ifndef directives. It prints each identifier on a line, followed

by a space-separated list of the files in which that identifier occurs.

ifnames accepts the following options:

--help

-h Print a summary of the command line options and exit.

--macrodir=dir

-m dir Look for the Autoconf macro files in directory dir instead of the default installation

directory. Only used to get the version number. You can also set the AC_MACRODIR

environment variable to a directory; this option overrides the environment variable.

--version

Print the version number of Autoconf and exit.

2.4 Using autoconf to Create configure

To create configure from ‘configure.in’, run the autoconf program with no arguments.

autoconf processes ‘configure.in’ with the m4 macro processor, using the Autoconf macros.

If you give autoconf an argument, it reads that file instead of ‘configure.in’ and writes the

configuration script to the standard output instead of to configure. If you give autoconf the

argument ‘-’, it reads the standard input instead of ‘configure.in’ and writes the configuration

script on the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with Autoconf;

autoconf reads them first. Then it looks for the optional file ‘acsite.m4’ in the directory that

contains the distributed Autoconf macro files, and for the optional file ‘aclocal.m4’ in the current

directory. Those files can contain your site’s or the package’s own Autoconf macro definitions (see



Chapter 2: Making configure Scripts 8

Chapter 7 [Writing Macros], page 62, for more information). If a macro is defined in more than

one of the files that autoconf reads, the last definition it reads overrides the earlier ones.

autoconf accepts the following options:

--help

-h Print a summary of the command line options and exit.

--localdir=dir

-l dir Look for the package file ‘aclocal.m4’ in directory dir instead of in the current direc-

tory.

--macrodir=dir

-m dir Look for the installed macro files in directory dir. You can also set the AC_MACRODIR

environment variable to a directory; this option overrides the environment variable.

--version

Print the version number of Autoconf and exit.

2.5 Using autoreconf to Update configure Scripts

If you have a lot of Autoconf-generated configure scripts, the autoreconf program can save

you some work. It runs autoconf (and autoheader, where appropriate) repeatedly to remake the

Autoconf configure scripts and configuration header templates in the directory tree rooted at the

current directory. By default, it only remakes those files that are older than their ‘configure.in’

or (if present) ‘aclocal.m4’. Since autoheader does not change the timestamp of its output file if

the file wouldn’t be changing, this is not necessarily the minimum amount of work. If you install a

new version of Autoconf, you can make autoreconf remake all of the files by giving it the ‘--force’

option.

If you give autoreconf the ‘--macrodir=dir’ or ‘--localdir=dir’ options, it passes them down

to autoconf and autoheader (with relative paths adjusted properly).

See Section 3.3.3 [Automatic Remaking], page 16, for ‘Makefile’ rules to automatically re-

make configure scripts when their source files change. That method handles the timestamps of

configuration header templates properly, but does not pass ‘--macrodir=dir’ or ‘--localdir=dir’.

autoreconf accepts the following options:



Chapter 2: Making configure Scripts 9

--help

-h Print a summary of the command line options and exit.

--force

-f Remake even ‘configure’ scripts and configuration headers that are newer than their

input files (‘configure.in’ and, if present, ‘aclocal.m4’).

--localdir=dir

-l dir Look for the package files ‘aclocal.m4’ and ‘acconfig.h’ (but not ‘file.top’ and

‘file.bot’) in directory dir instead of in the directory containing each ‘configure.in’.

--macrodir=dir

-m dir Look for the Autoconf macro files in directory dir instead of the default installation

directory. You can also set the AC_MACRODIR environment variable to a directory; this

option overrides the environment variable.

--verbose

Print the name of each directory where autoreconf runs autoconf (and autoheader,

if appropriate).

--version

Print the version number of Autoconf and exit.



Chapter 3: Initialization and Output Files 10

3 Initialization andOutput Files

Autoconf-generated configure scripts need some information about how to initialize, such as

how to find the package’s source files; and about the output files to produce. The following sections

describe initialization and creating output files.

3.1 Finding configure Input

Every configure script must call AC_INIT before doing anything else. The only other required

macro is AC_OUTPUT (see Section 3.2 [Output], page 11).

MacroAC INIT (unique-file-in-source-dir)

Process any command-line arguments and find the source code directory. unique-file-

in-source-dir is some file that is in the package’s source directory; configure checks for

this file’s existence to make sure that the directory that it is told contains the source

code in fact does. Occasionally people accidentally specify the wrong directory with

‘--srcdir’; this is a safety check. See Chapter 10 [Invoking configure], page 77, for

more information.

Packages that do manual configuration or use the install program might need to tell configure

where to find some other shell scripts by calling AC_CONFIG_AUX_DIR, though the default places it

looks are correct for most cases.

MacroAC CONFIG AUX DIR(dir)
Use the ‘install-sh’, ‘config.sub’, ‘config.guess’, and Cygnus configure scripts

that are in directory dir. These are auxiliary files used in configuration. dir can

be either absolute or relative to ‘srcdir’. The default is ‘srcdir’ or ‘srcdir/..’ or ‘sr-

cdir/../..’, whichever is the first that contains ‘install-sh’. The other files are not

checked for, so that using AC_PROG_INSTALL does not automatically require distribut-

ing the other auxiliary files. It checks for ‘install.sh’ also, but that name is obsolete

because some make programs have a rule that creates ‘install’ from it if there is no

‘Makefile’.



Chapter 3: Initialization and Output Files 11

3.2 Creating Output Files

Every Autoconf-generated configure script must finish by calling AC_OUTPUT. It is the macro

that creates the ‘Makefile’s and optional other files resulting from configuration. The only other

required macro is AC_INIT (see Section 3.1 [Input], page 10).

MacroAC OUTPUT ([file. . .] [,extra-cmds] [,init-cmds])

Create output files. The file. . . argument is a whitespace-separated list of output files;

it may be empty. This macro creates each file ‘file’ by copying an input file (by default

named ‘file.in’), substituting the output variable values. See Section 3.3 [Makefile

Substitutions], page 12, for more information on using output variables. See Section 6.2

[Setting Output Variables], page 56, for more information on creating them. This

macro creates the directory that the file is in if it doesn’t exist (but not the parents

of that directory). Usually, ‘Makefile’s are created this way, but other files, such as

‘.gdbinit’, can be specified as well.

If AC_CONFIG_HEADER, AC_LINK_FILES, or AC_CONFIG_SUBDIRS has been called, this

macro also creates the files named as their arguments.

A typical call to AC_OUTPUT looks like this:

AC_OUTPUT(Makefile src/Makefile man/Makefile X/Imakefile)

You can override an input file name by appending it to file, separated by a colon. For

example,

AC_OUTPUT(Makefile:templates/top.mk lib/Makefile:templates/lib.mk)

If you pass extra-cmds, those commands will be inserted into ‘config.status’ to be

run after all its other processing. If init-cmds are given, they are inserted just before

extra-cmds, with shell variable, command, and backslash substitutions performed on

them in configure. You can use init-cmds to pass variables from configure to the

extra-cmds.

If you run make on subdirectories, you should run it using the make variable MAKE. Most versions

of make set MAKE to the name of the make program plus any options it was given. (But many do

not include in it the values of any variables set on the command line, so those are not passed on



Chapter 3: Initialization and Output Files 12

automatically.) Some old versions of make do not set this variable. The following macro allows you

to use it even with those versions.

MacroAC PROG MAKE SET

If make predefines the variable MAKE, define output variable SET_MAKE to be empty.

Otherwise, define SET_MAKE to contain ‘MAKE=make’. Calls AC_SUBST for SET_MAKE.

To use this macro, place a line like this in each ‘Makefile.in’ that runs MAKE on other directories:

@SET_MAKE@

3.3 Substitutions in Makefiles

Each subdirectory in a distribution that contains something to be compiled or installed should

come with a file ‘Makefile.in’, from which configure will create a ‘Makefile’ in that directory.

To create a ‘Makefile’, configure performs a simple variable substitution, replacing occurrences

of ‘@variable@’ in ‘Makefile.in’ with the value that configure has determined for that variable.

Variables that are substituted into output files in this way are called output variables. They are

ordinary shell variables that are set in configure. To make configure substitute a particular

variable into the output files, the macro AC_SUBST must be called with that variable name as an

argument. Any occurrences of ‘@variable@’ for other variables are left unchanged. See Section 6.2

[Setting Output Variables], page 56, for more information on creating output variables with AC_

SUBST.

A software package that uses a configure script should be distributed with a file ‘Makefile.in’,

but no ‘Makefile’; that way, the user has to properly configure the package for the local system

before compiling it.

See section “Makefile Conventions” in The GNU Coding Standards, for more information on

what to put in ‘Makefile’s.

3.3.1 Preset Output Variables

Some output variables are preset by the Autoconf macros. Some of the Autoconf macros set

additional output variables, which are mentioned in the descriptions for those macros. See [Output

Variable Index], page 101, for a complete list of output variables. Here is what each of the preset



Chapter 3: Initialization and Output Files 13

ones contains. See section “Variables for Installation Directories” in The GNU Coding Standards,

for more information about the variables with names that end in ‘dir’.

Variablebindir
The directory for installing executables that users run.

Variableconfigure input

A comment saying that the file was generated automatically by configure and giving

the name of the input file. AC_OUTPUT adds a comment line containing this variable to

the top of every ‘Makefile’ it creates. For other files, you should reference this variable

in a comment at the top of each input file. For example, an input shell script should

begin like this:

#! /bin/sh
# @configure_input@

The presence of that line also reminds people editing the file that it needs to be pro-

cessed by configure in order to be used.

Variabledatadir
The directory for installing read-only architecture-independent data.

Variableexec prefix

The installation prefix for architecture-dependent files.

Variableincludedir

The directory for installing C header files.

Variableinfodir
The directory for installing documentation in Info format.

Variablelibdir

The directory for installing object code libraries.

Variablelibexecdir

The directory for installing executables that other programs run.



Chapter 3: Initialization and Output Files 14

Variablelocalstatedir

The directory for installing modifiable single-machine data.

Variablemandir

The top-level directory for installing documentation in man format.

Variableoldincludedir

The directory for installing C header files for non-gcc compilers.

Variableprefix

The installation prefix for architecture-independent files.

Variablesbindir
The directory for installing executables that system administrators run.

Variablesharedstatedir
The directory for installing modifiable architecture-independent data.

Variablesrcdir
The directory that contains the source code for that ‘Makefile’.

Variablesysconfdir

The directory for installing read-only single-machine data.

Variabletop srcdir

The top-level source code directory for the package. In the top-level directory, this is

the same as srcdir.

VariableCFLAGS
Debugging and optimization options for the C compiler. If it is not set in the envi-

ronment when configure runs, the default value is set when you call AC_PROG_CC (or

empty if you don’t). configure uses this variable when compiling programs to test for

C features.



Chapter 3: Initialization and Output Files 15

VariableCPPFLAGS

Header file search directory (‘-Idir’) and any other miscellaneous options for the C

preprocessor and compiler. If it is not set in the environment when configure runs, the

default value is empty. configure uses this variable when compiling or preprocessing

programs to test for C features.

VariableCXXFLAGS

Debugging and optimization options for the C++ compiler. If it is not set in the

environment when configure runs, the default value is set when you call AC_PROG_CXX

(or empty if you don’t). configure uses this variable when compiling programs to test

for C++ features.

VariableDEFS

‘-D’ options to pass to the C compiler. If AC_CONFIG_HEADER is called, configure re-

places ‘@DEFS@’ with ‘-DHAVE_CONFIG_H’ instead (see Section 3.4 [Configuration Head-

ers], page 17). This variable is not defined while configure is performing its tests, only

when creating the output files. See Section 6.2 [Setting Output Variables], page 56, for

how to check the results of previous tests.

VariableLDFLAGS
Stripping (‘-s’) and any other miscellaneous options for the linker. If it is not set in

the environment when configure runs, the default value is empty. configure uses

this variable when linking programs to test for C features.

VariableLIBS

‘-l’ and ‘-L’ options to pass to the linker.

3.3.2 Build Directories

You can support compiling a software package for several architectures simultaneously from the

same copy of the source code. The object files for each architecture are kept in their own directory.

To support doing this, make uses the VPATH variable to find the files that are in the source

directory. GNU make and most other recent make programs can do this. Older make programs do

not support VPATH; when using them, the source code must be in the same directory as the object

files.



Chapter 3: Initialization and Output Files 16

To support VPATH, each ‘Makefile.in’ should contain two lines that look like:

srcdir = @srcdir@
VPATH = @srcdir@

Do not set VPATH to the value of another variable, for example ‘VPATH = $(srcdir)’, because

some versions of make do not do variable substitutions on the value of VPATH.

configure substitutes in the correct value for srcdir when it produces ‘Makefile’.

Do not use the make variable $<, which expands to the pathname of the file in the source

directory (found with VPATH), except in implicit rules. (An implicit rule is one such as ‘.c.o’,

which tells how to create a ‘.o’ file from a ‘.c’ file.) Some versions of make do not set $< in explicit

rules; they expand it to an empty value.

Instead, ‘Makefile’ command lines should always refer to source files by prefixing them with

‘$(srcdir)/’. For example:

time.info: time.texinfo
$(MAKEINFO) $(srcdir)/time.texinfo

3.3.3 Automatic Remaking

You can put rules like the following in the top-level ‘Makefile.in’ for a package to automati-

cally update the configuration information when you change the configuration files. This example

includes all of the optional files, such as ‘aclocal.m4’ and those related to configuration header

files. Omit from the ‘Makefile.in’ rules any of these files that your package does not use.

The ‘${srcdir}/’ prefix is included because of limitations in the VPATH mechanism.

The ‘stamp-’ files are necessary because the timestamps of ‘config.h.in’ and ‘config.h’ will

not be changed if remaking them does not change their contents. This feature avoids unnecessary

recompilation. You should include the file ‘stamp-h.in’ your package’s distribution, so make will

consider ‘config.h.in’ up to date. On some old BSD systems, touch or any command that results

in an empty file does not update the timestamps, so use a command like echo as a workaround.



Chapter 3: Initialization and Output Files 17

${srcdir}/configure: configure.in aclocal.m4
cd ${srcdir} && autoconf

# autoheader might not change config.h.in, so touch a stamp file.
${srcdir}/config.h.in: stamp-h.in
${srcdir}/stamp-h.in: configure.in aclocal.m4 acconfig.h \

config.h.top config.h.bot
cd ${srcdir} && autoheader
echo timestamp > ${srcdir}/stamp-h.in

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status

Makefile: Makefile.in config.status
./config.status

config.status: configure
./config.status --recheck

In addition, you should pass ‘echo timestamp > stamp-h’ in the extra-cmds argument to AC_

OUTPUT, so ‘config.status’ will ensure that ‘config.h’ is considered up to date. See Section 3.2

[Output], page 11, for more information about AC_OUTPUT.

See Chapter 11 [Invoking config.status], page 81, for more examples of handling configuration-

related dependencies.

3.4 Configuration Header Files

When a package tests more than a few C preprocessor symbols, the command lines to pass ‘-D’

options to the compiler can get quite long. This causes two problems. One is that the make output

is hard to visually scan for errors. More seriously, the command lines can exceed the length limits

of some operating systems. As an alternative to passing ‘-D’ options to the compiler, configure

scripts can create a C header file containing ‘#define’ directives. The AC_CONFIG_HEADER macro

selects this kind of output. It should be called right after AC_INIT.

The package should ‘#include’ the configuration header file before any other header files, to pre-

vent inconsistencies in declarations (for example, if it redefines const). Use ‘#include <config.h>’

instead of ‘#include "config.h"’, and pass the C compiler a ‘-I.’ option (or ‘-I..’; whichever di-

rectory contains ‘config.h’). That way, even if the source directory is configured itself (perhaps to



Chapter 3: Initialization and Output Files 18

make a distribution), other build directories can also be configured without finding the ‘config.h’

from the source directory.

MacroAC CONFIG HEADER (header-to-create . . .)

Make AC_OUTPUT create the file(s) in the whitespace-separated list header-to-create

containing C preprocessor #define statements, and replace ‘@DEFS@’ in generated files

with ‘-DHAVE_CONFIG_H’ instead of the value of DEFS. The usual name for header-to-

create is ‘config.h’.

If header-to-create already exists and its contents are identical to what AC_OUTPUT

would put in it, it is left alone. Doing this allows some changes in configuration without

needlessly causing object files that depend on the header file to be recompiled.

Usually the input file is named ‘header-to-create.in’; however, you can override the

input file name by appending it to header-to-create, separated by a colon. For example,

AC_CONFIG_HEADER(defines.h:defines.hin)

Doing this allows you to keep your filenames acceptable to MS-DOS.

3.4.1 Configuration Header Templates

Your distribution should contain a template file that looks as you want the final header file to

look, including comments, with default values in the #define statements. For example, suppose

your ‘configure.in’ makes these calls:

AC_CONFIG_HEADER(conf.h)
AC_CHECK_HEADERS(unistd.h)

Then you could have code like the following in ‘conf.h.in’. On systems that have ‘unistd.h’,

configure will change the 0 to a 1. On other systems, it will leave the line unchanged.

/* Define as 1 if you have unistd.h. */
#define HAVE_UNISTD_H 0

Alternately, if your code tests for configuration options using #ifdef instead of #if, a default

value can be to #undef the variable instead of to define it to a value. On systems that have



Chapter 3: Initialization and Output Files 19

‘unistd.h’, configure will change the second line to read ‘#define HAVE_UNISTD_H 1’. On other

systems, it will comment that line out (in case the system predefines that symbol).

/* Define if you have unistd.h. */
#undef HAVE_UNISTD_H

3.4.2 Using autoheader to Create ‘config.h.in’

The autoheader program can create a template file of C ‘#define’ statements for configure to

use. If ‘configure.in’ invokes AC_CONFIG_HEADER(file), autoheader creates ‘file.in’; if multiple

file arguments are given, the first one is used. Otherwise, autoheader creates ‘config.h.in’.

If you give autoheader an argument, it uses that file instead of ‘configure.in’ and writes

the header file to the standard output instead of to ‘config.h.in’. If you give autoheader an

argument of ‘-’, it reads the standard input instead of ‘configure.in’ and writes the header file

to the standard output.

autoheader scans ‘configure.in’ and figures out which C preprocessor symbols it might define.

It copies comments and #define and #undef statements from a file called ‘acconfig.h’, which

comes with and is installed with Autoconf. It also uses a file called ‘acconfig.h’ in the current

directory, if present. If you AC_DEFINE any additional symbols, you must create that file with entries

for them. For symbols defined by AC_CHECK_HEADERS, AC_CHECK_FUNCS, AC_CHECK_SIZEOF, or AC_

CHECK_LIB, autoheader generates comments and #undef statements itself rather than copying

them from a file, since the possible symbols are effectively limitless.

The file that autoheader creates contains mainly #define and #undef statements and their

accompanying comments. If ‘./acconfig.h’ contains the string ‘@TOP@’, autoheader copies the

lines before the line containing ‘@TOP@’ into the top of the file that it generates. Similarly, if

‘./acconfig.h’ contains the string ‘@BOTTOM@’, autoheader copies the lines after that line to the

end of the file it generates. Either or both of those strings may be omitted.

An alternate way to produce the same effect is to create the files ‘file.top’ (typically ‘config.h.top’)

and/or ‘file.bot’ in the current directory. If they exist, autoheader copies them to the beginning

and end, respectively, of its output. Their use is discouraged because they have file names that

contain two periods, and so can not be stored on MS-DOS; also, they are two more files to clutter

up the directory. But if you use the ‘--localdir=dir’ option to use an ‘acconfig.h’ in another

directory, they give you a way to put custom boilerplate in each individual ‘config.h.in’.



Chapter 3: Initialization and Output Files 20

autoheader accepts the following options:

--help

-h Print a summary of the command line options and exit.

--localdir=dir

-l dir Look for the package files ‘aclocal.m4’ and ‘acconfig.h’ (but not ‘file.top’ and

‘file.bot’) in directory dir instead of in the current directory.

--macrodir=dir

-m dir Look for the installed macro files and ‘acconfig.h’ in directory dir. You can also

set the AC_MACRODIR environment variable to a directory; this option overrides the

environment variable.

--version

Print the version number of Autoconf and exit.

3.5 Configuring Other Packages in Subdirectories

In most situations, calling AC_OUTPUT is sufficient to produce ‘Makefile’s in subdirectories.

However, configure scripts that control more than one independent package can use AC_CONFIG_

SUBDIRS to run configure scripts for other packages in subdirectories.

MacroAC CONFIG SUBDIRS (dir . . .)

Make AC_OUTPUT run configure in each subdirectory dir in the given whitespace-

separated list. If a given dir is not found, no error is reported, so a configure script

can configure whichever parts of a large source tree are present. If a given dir contains

‘configure.in’ but no configure, the Cygnus configure script found by AC_CONFIG_

AUXDIR is used. The subdirectory configure scripts are given the same command line

options that were given to this configure script, with minor changes if needed (e.g.,

to adjust a relative path for the cache file or source directory). This macro also sets

the output variable subdirs to the list of directories ‘dir . . .’. ‘Makefile’ rules can use

this variable to determine which subdirectories to recurse into.

3.6 Default Prefix

By default, configure sets the prefix for files it installs to ‘/usr/local’. The user of configure

can select a different prefix using the ‘--prefix’ and ‘--exec-prefix’ options. There are two ways

to change the default: when creating configure, and when running it.



Chapter 3: Initialization and Output Files 21

Some software packages might want to install in a directory besides ‘/usr/local’ by default.

To accomplish that, use the AC_PREFIX_DEFAULT macro.

MacroAC PREFIX DEFAULT (prefix)

Set the default installation prefix to prefix instead of ‘/usr/local’.

It may be convenient for users to have configure guess the installation prefix from the location

of a related program that they have already installed. If you wish to do that, you can call AC_

PREFIX_PROGRAM.

MacroAC PREFIX PROGRAM (program)

If the user did not specify an installation prefix (using the ‘--prefix’ option), guess

a value for it by looking for program in PATH, the way the shell does. If program is

found, set the prefix to the parent of the directory containing program; otherwise leave

the prefix specified in ‘Makefile.in’ unchanged. For example, if program is gcc and

the PATH contains ‘/usr/local/gnu/bin/gcc’, set the prefix to ‘/usr/local/gnu’.

3.7 Version Numbers in configure

The following macros manage version numbers for configure scripts. Using them is optional.

MacroAC PREREQ (version)

Ensure that a recent enough version of Autoconf is being used. If the version of

Autoconf being used to create configure is earlier than version, print an error message

on the standard error output and do not create configure. For example:

AC_PREREQ(1.8)

This macro is useful if your ‘configure.in’ relies on non-obvious behavior that changed

between Autoconf releases. If it merely needs recently added macros, then AC_PREREQ

is less useful, because the autoconf program already tells the user which macros are

not found. The same thing happens if ‘configure.in’ is processed by a version of

Autoconf older than when AC_PREREQ was added.



Chapter 3: Initialization and Output Files 22

MacroAC REVISION (revision-info)

Copy revision stamp revision-info into the configure script, with any dollar signs or

double-quotes removed. This macro lets you put a revision stamp from ‘configure.in’

into configure without RCS or CVS changing it when you check in configure. That

way, you can determine easily which revision of ‘configure.in’ a particular configure

corresponds to.

It is a good idea to call this macro before AC_INIT so that the revision number is

near the top of both ‘configure.in’ and configure. To support doing that, the AC_

REVISION output begins with ‘#! /bin/sh’, like the normal start of a configure script

does.

For example, this line in ‘configure.in’:

AC_REVISION($Revision: 1.30 $)dnl

produces this in configure:

#! /bin/sh
# From configure.in Revision: 1.30



Chapter 4: Existing Tests 23

4 Existing Tests

These macros test for particular system features that packages might need or want to use. If

you need to test for a kind of feature that none of these macros check for, you can probably do it by

calling primitive test macros with appropriate arguments (see Chapter 5 [Writing Tests], page 45).

These tests print messages telling the user which feature they’re checking for, and what they find.

They cache their results for future configure runs (see Section 6.3 [Caching Results], page 57).

Some of these macros set output variables. See Section 3.3 [Makefile Substitutions], page 12, for

how to get their values. The phrase “define name” is used below as a shorthand to mean “define

C preprocessor symbol name to the value 1”. See Section 6.1 [Defining Symbols], page 55, for how

to get those symbol definitions into your program.

4.1 Alternative Programs

These macros check for the presence or behavior of particular programs. They are used to choose

between several alternative programs and to decide what to do once one has been chosen. If there

is no macro specifically defined to check for a program you need, and you don’t need to check for

any special properties of it, then you can use one of the general program check macros.

4.1.1 Particular Program Checks

These macros check for particular programs—whether they exist, and in some cases whether

they support certain features.

MacroAC DECL YYTEXT

Define YYTEXT_POINTER if yytext is a ‘char *’ instead of a ‘char []’. Also set output

variable LEX_OUTPUT_ROOT to the base of the file name that the lexer generates; usually

‘lex.yy’, but sometimes something else. These results vary according to whether lex

or flex is being used.

MacroAC PROG AWK

Check for mawk, gawk, nawk, and awk, in that order, and set output variable AWK to

the first one that it finds. It tries mawk first because that is reported to be the fastest

implementation.



Chapter 4: Existing Tests 24

MacroAC PROG CC

Determine a C compiler to use. If CC is not already set in the environment, check for

gcc, and use cc if it’s not found. Set output variable CC to the name of the compiler

found.

If using the GNU C compiler, set shell variable GCC to ‘yes’, empty otherwise. If output

variable CFLAGS was not already set, set it to ‘-g -O’ for the GNU C compiler (‘-O’ on

systems where GCC does not accept ‘-g’), or ‘-g’ for other compilers.

MacroAC PROG CC C O

If the C compiler does not accept the ‘-c’ and ‘-o’ options simultaneously, define NO_

MINUS_C_MINUS_O.

MacroAC PROG CPP

Set output variable CPP to a command that runs the C preprocessor. If ‘$CC -E’ doesn’t

work, it uses ‘/lib/cpp’. It is only portable to run CPP on files with a ‘.c’ extension.

If the current language is C (see Section 5.8 [Language Choice], page 53), many of the

specific test macros use the value of CPP indirectly by calling AC_TRY_CPP, AC_CHECK_

HEADER, AC_EGREP_HEADER, or AC_EGREP_CPP.

MacroAC PROG CXX
Determine a C++ compiler to use. Check if the environment variable CXX or CCC (in

that order) is set; if so, set output variable CXX to its value. Otherwise search for a

C++ compiler under likely names (c++, g++, gcc, CC, and cxx). If none of those checks

succeed, as a last resort set CXX to gcc.

If using the GNU C++ compiler, set shell variable GXX to ‘yes’, empty otherwise. If

output variable CXXFLAGS was not already set, set it to ‘-g -O’ for the GNU C++

compiler (‘-O’ on systems where G++ does not accept ‘-g’), or ‘-g’ for other compilers.

MacroAC PROG CXXCPP

Set output variable CXXCPP to a command that runs the C++ preprocessor. If ‘$CXX

-E’ doesn’t work, it uses ‘/lib/cpp’. It is only portable to run CXXCPP on files with a

‘.c’, ‘.C’, or ‘.cc’ extension.



Chapter 4: Existing Tests 25

If the current language is C++ (see Section 5.8 [Language Choice], page 53), many

of the specific test macros use the value of CXXCPP indirectly by calling AC_TRY_CPP,

AC_CHECK_HEADER, AC_EGREP_HEADER, or AC_EGREP_CPP.

MacroAC PROG GCC TRADITIONAL
Add ‘-traditional’ to output variable CC if using the GNU C compiler and ioctl

does not work properly without ‘-traditional’. That usually happens when the fixed

header files have not been installed on an old system. Since recent versions of the GNU

C compiler fix the header files automatically when installed, this is becoming a less

prevalent problem.

MacroAC PROG INSTALL
Set output variable INSTALL to the path of a BSD compatible install program, if one

is found in the current PATH. Otherwise, set INSTALL to ‘dir/install-sh -c’, checking

the directories specified to AC_CONFIG_AUX_DIR (or its default directories) to determine

dir (see Section 3.2 [Output], page 11). Also set the variable INSTALL_PROGRAM to

‘${INSTALL}’ and INSTALL_DATA to ‘${INSTALL} -m 644’.

This macro screens out various instances of install known to not work. It prefers to

find a C program rather than a shell script, for speed. Instead of ‘install-sh’, it can

also use ‘install.sh’, but that name is obsolete because some make programs have a

rule that creates ‘install’ from it if there is no ‘Makefile’.

A copy of ‘install-sh’ which you may use comes with Autoconf. If you use AC_PROG_

INSTALL, you must include either ‘install-sh’ or ‘install.sh’ in your distribution,

or configure will produce an error message saying it can’t find them—even if the

system you’re on has a good install program. This check is a safety measure to

prevent you from accidentally leaving that file out, which would prevent your package

from installing on systems that don’t have a BSD-compatible install program.

If you need to use your own installation program because it has features not found in

standard install programs, there is no reason to use AC_PROG_INSTALL; just put the

pathname of your program into your ‘Makefile.in’ files.

MacroAC PROG LEX
If flex is found, set output variable LEX to ‘flex’ and LEXLIB to ‘-lfl’, if that library

is in a standard place. Otherwise set LEX to ‘lex’ and LEXLIB to ‘-ll’.



Chapter 4: Existing Tests 26

MacroAC PROG LN S

If ‘ln -s’ works on the current filesystem (the operating system and filesystem support

symbolic links), set output variable LN_S to ‘ln -s’, otherwise set it to ‘ln’.

MacroAC PROG RANLIB
Set output variable RANLIB to ‘ranlib’ if ranlib is found, otherwise to ‘:’ (do nothing).

MacroAC PROG YACC

If bison is found, set output variable YACC to ‘bison -y’. Otherwise, if byacc is found,

set YACC to ‘byacc’. Otherwise set YACC to ‘yacc’.

4.1.2 Generic Program Checks

These macros are used to find programs not covered by the particular test macros. If you need

to check the behavior of a program as well as find out whether it is present, you have to write

your own test for it (see Chapter 5 [Writing Tests], page 45). By default, these macros use the

environment variable PATH. If you need to check for a program that might not be in the user’s

PATH, you can pass a modified path to use instead, like this:

AC_PATH_PROG(INETD, inetd, /usr/libexec/inetd,
$PATH:/usr/libexec:/usr/sbin:/usr/etc:etc)

MacroAC CHECK PROG (variable, prog-to-check-for, value-if-found [,

value-if-not-found [, path, [ reject ]]])

Check whether program prog-to-check-for exists in PATH. If it is found, set variable

to value-if-found, otherwise to value-if-not-found, if given. Always pass over reject (an

absolute file name) even if it is the first found in the search path; in that case, set

variable using the absolute file name of the prog-to-check-for found that is not reject.

If variable was already set, do nothing. Calls AC_SUBST for variable.

MacroAC CHECK PROGS (variable, progs-to-check-for [, value-if-not-found [,

path]])

Check for each program in the whitespace-separated list progs-to-check-for exists in

PATH. If it is found, set variable to the name of that program. Otherwise, continue

checking the next program in the list. If none of the programs in the list are found, set

variable to value-if-not-found; if value-if-not-found is not specified, the value of variable

is not changed. Calls AC_SUBST for variable.



Chapter 4: Existing Tests 27

MacroAC CHECK TOOL (variable, prog-to-check-for [, value-if-not-found [,

path]])

Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the host type

as determined by AC_CANONICAL_HOST, followed by a dash (see Section 8.2 [Canoni-

calizing], page 68). For example, if the user runs ‘configure --host=i386-gnu’, then

this call:

AC_CHECK_TOOL(RANLIB, ranlib, :)

sets RANLIB to ‘i386-gnu-ranlib’ if that program exists in PATH, or to ‘ranlib’ if that

program exists in PATH, or to ‘:’ if neither program exists.

MacroAC PATH PROG (variable, prog-to-check-for [, value-if-not-found [,

path]])

Like AC_CHECK_PROG, but set variable to the entire path of prog-to-check-for if found.

MacroAC PATH PROGS (variable, progs-to-check-for [, value-if-not-found [,

path]])

Like AC_CHECK_PROGS, but if any of progs-to-check-for are found, set variable to the

entire path of the program found.

4.2 Library Files

The following macros check for the presence of certain C library archive files.

MacroAC CHECK LIB (library, function [, action-if-found [, action-if-not-found

[, other-libraries]]])

Try to ensure that C function function is available by checking whether a test C program

can be linked with the library library to get the function. library is the base name of

the library; e.g., to check for ‘-lmp’, use ‘mp’ as the library argument.

action-if-found is a list of shell commands to run if the link with the library succeeds;

action-if-not-found is a list of shell commands to run if the link fails. If action-if-found

and action-if-not-found are not specified, the default action is to add ‘-llibrary ’ to

LIBS and define ‘HAVE_LIBlibrary ’ (in all capitals).



Chapter 4: Existing Tests 28

If linking with library results in unresolved symbols, which would be resolved by linking

with additional libraries, give those libraries as the other-libraries argument, separated

by spaces: ‘-lXt -lX11’. Otherwise this macro will fail to detect that library is present,

because linking the test program will always fail with unresolved symbols.

MacroAC HAVE LIBRARY (library, [, action-if-found [, action-if-not-found [,

other-libraries]]])

This macro is equivalent to calling AC_CHECK_LIB with a function argument of main. In

addition, library can be written as any of ‘foo’, ‘-lfoo’, or ‘libfoo.a’. In all of those

cases, the compiler is passed ‘-lfoo’. However, library can not be a shell variable; it

must be a literal name. This macro is considered obsolete.

4.3 Library Functions

The following macros check for particular C library functions. If there is no macro specifically

defined to check for a function you need, and you don’t need to check for any special properties of

it, then you can use one of the general function check macros.

4.3.1 Particular Function Checks

These macros check for particular C functions—whether they exist, and in some cases how they

respond when given certain arguments.

MacroAC FUNC ALLOCA
Check how to get alloca. Tries to get a builtin version by checking for ‘alloca.h’

or the predefined C preprocessor macros __GNUC__ and _AIX. If this macro finds

‘alloca.h’, it defines HAVE_ALLOCA_H.

If those attempts fail, it looks for the function in the standard C library. If any of those

methods succeed, it defines HAVE_ALLOCA. Otherwise, it sets the output variable ALLOCA

to ‘alloca.o’ and defines C_ALLOCA (so programs can periodically call ‘alloca(0)’ to

garbage collect). This variable is separate from LIBOBJS so multiple programs can

share the value of ALLOCA without needing to create an actual library, in case only

some of them use the code in LIBOBJS.



Chapter 4: Existing Tests 29

This macro does not try to get alloca from the System V R3 ‘libPW’ or the System

V R4 ‘libucb’ because those libraries contain some incompatible functions that cause

trouble. Some versions do not even contain alloca or contain a buggy version. If

you still want to use their alloca, use ar to extract ‘alloca.o’ from them instead of

compiling ‘alloca.c’.

Source files that use alloca should start with a piece of code like the following, to

declare it properly. In some versions of AIX, the declaration of alloca must precede

everything else except for comments and preprocessor directives. The #pragma directive

is indented so that pre-ANSI C compilers will ignore it, rather than choke on it.

/* AIX requires this to be the first thing in the file. */
#ifdef __GNUC__
# define alloca __builtin_alloca
#else
# if HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
#pragma alloca

# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
char *alloca ();
# endif
# endif
# endif
#endif

MacroAC FUNC CLOSEDIR VOID
If the closedir function does not return a meaningful value, define CLOSEDIR_VOID.

Otherwise, callers ought to check its return value for an error indicator.

MacroAC FUNC GETLOADAVG
Check how to get the system load averages. If the system has the getloadavg function,

this macro defines HAVE_GETLOADAVG, and adds to LIBS any libraries needed to get that

function.

Otherwise, it adds ‘getloadavg.o’ to the output variable LIBOBJS, and possibly defines

several other C preprocessor macros and output variables:

1. It defines SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.



Chapter 4: Existing Tests 30

2. If it finds ‘nlist.h’, it defines NLIST_STRUCT.

3. If ‘struct nlist’ has an ‘n_un’ member, it defines NLIST_NAME_UNION.

4. If compiling ‘getloadavg.c’ defines LDAV_PRIVILEGED, programs need to be in-

stalled specially on this system for getloadavg to work, and this macro defines

GETLOADAVG_PRIVILEGED.

5. This macro sets the output variable NEED_SETGID. The value is ‘true’ if special

installation is required, ‘false’ if not. If NEED_SETGID is ‘true’, this macro sets

KMEM_GROUP to the name of the group that should own the installed program.

MacroAC FUNC GETMNTENT
Check for getmntent in the ‘sun’, ‘seq’, and ‘gen’ libraries, for Irix 4, PTX, and

Unixware, respectively. Then, if getmntent is available, define HAVE_GETMNTENT.

MacroAC FUNC GETPGRP
If getpgrp takes no argument (the POSIX.1 version), define GETPGRP_VOID. Otherwise,

it is the BSD version, which takes a process ID as an argument. This macro does not

check whether getpgrp exists at all; if you need to work in that situation, first call

AC_CHECK_FUNC for getpgrp.

MacroAC FUNC MEMCMP
If the memcmp function is not available, or does not work on 8-bit data (like the one on

SunOS 4.1.3), add ‘memcmp.o’ to output variable LIBOBJS.

MacroAC FUNC MMAP
If the mmap function exists and works correctly on memory mapped files, define HAVE_

MMAP.

MacroAC FUNC SETVBUF REVERSED
If setvbuf takes the buffering type as its second argument and the buffer pointer as

the third, instead of the other way around, define SETVBUF_REVERSED. This is the case

on System V before release 3.

MacroAC FUNC STRCOLL

If the strcoll function exists and works correctly, define HAVE_STRCOLL. This does

a bit more than ‘AC_CHECK_FUNCS(strcoll)’, because some systems have incorrect

definitions of strcoll, which should not be used.



Chapter 4: Existing Tests 31

MacroAC FUNC STRFTIME

Check for strftime in the ‘intl’ library, for SCO UNIX. Then, if strftime is available,

define HAVE_STRFTIME.

MacroAC FUNC UTIME NULL

If ‘utime(file, NULL)’ sets file’s timestamp to the present, define HAVE_UTIME_NULL.

MacroAC FUNC VFORK
If ‘vfork.h’ is found, define HAVE_VFORK_H. If a working vfork is not found, define

vfork to be fork. This macro checks for several known errors in implementations of

vfork and considers the system to not have a working vfork if it detects any of them.

It is not considered to be an implementation error if a child’s invocation of signal

modifies the parent’s signal handler, since child processes rarely change their signal

handlers.

MacroAC FUNC VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found, define HAVE_

DOPRNT. (If vprintf is available, you may assume that vfprintf and vsprintf are

also available.)

MacroAC FUNC WAIT3

If wait3 is found and fills in the contents of its third argument (a ‘struct rusage *’),

which HP-UX does not do, define HAVE_WAIT3.

4.3.2 Generic Function Checks

These macros are used to find functions not covered by the particular test macros. If the

functions might be in libraries other than the default C library, first call AC_CHECK_LIB for those

libraries. If you need to check the behavior of a function as well as find out whether it is present,

you have to write your own test for it (see Chapter 5 [Writing Tests], page 45).

MacroAC CHECK FUNC (function, [action-if-found [, action-if-not-found]])

If C function function is available, run shell commands action-if-found, otherwise

action-if-not-found. If you just want to define a symbol if the function is available,

consider using AC_CHECK_FUNCS instead. This macro checks for functions with C link-

age even when AC_LANG_CPLUSPLUS has been called, since C++ is more standardized



Chapter 4: Existing Tests 32

than C is. (see Section 5.8 [Language Choice], page 53, for more information about

selecting the language for checks.)

MacroAC CHECK FUNCS (function. . . [, action-if-found [,

action-if-not-found]])

For each given function in the whitespace-separated argument list that is available,

define HAVE_function (in all capitals). If action-if-found is given, it is additional shell

code to execute when one of the functions is found. You can give it a value of ‘break’

to break out of the loop on the first match. If action-if-not-found is given, it is executed

when one of the functions is not found.

MacroAC REPLACE FUNCS (function-name. . .)

For each given function-name in the whitespace-separated argument list that is not in

the C library, add ‘function-name.o’ to the value of the output variable LIBOBJS.

4.4 Header Files

The following macros check for the presence of certain C header files. If there is no macro

specifically defined to check for a header file you need, and you don’t need to check for any special

properties of it, then you can use one of the general header file check macros.

4.4.1 Particular Header Checks

These macros check for particular system header files—whether they exist, and in some cases

whether they declare certain symbols.

MacroAC DECL SYS SIGLIST

Define SYS_SIGLIST_DECLARED if the variable sys_siglist is declared in a system

header file, either ‘signal.h’ or ‘unistd.h’.

MacroAC DIR HEADER

Like calling AC_HEADER_DIRENT and AC_FUNC_CLOSEDIR_VOID, but defines a different

set of C preprocessor macros to indicate which header file is found. This macro and

the names it defines are considered obsolete. The names it defines are:



Chapter 4: Existing Tests 33

‘dirent.h’

DIRENT

‘sys/ndir.h’

SYSNDIR

‘sys/dir.h’

SYSDIR

‘ndir.h’ NDIR

In addition, if the closedir function does not return a meaningful value, define VOID_

CLOSEDIR.

MacroAC HEADER DIRENT
Check for the following header files, and for the first one that is found and defines ‘DIR’,

define the listed C preprocessor macro:

‘dirent.h’

HAVE_DIRENT_H

‘sys/ndir.h’

HAVE_SYS_NDIR_H

‘sys/dir.h’

HAVE_SYS_DIR_H

‘ndir.h’ HAVE_NDIR_H

The directory library declarations in the source code should look something like the

following:



Chapter 4: Existing Tests 34

#if HAVE_DIRENT_H
# include <dirent.h>
# define NAMLEN(dirent) strlen((dirent)->d_name)
#else
# define dirent direct
# define NAMLEN(dirent) (dirent)->d_namlen
# if HAVE_SYS_NDIR_H
# include <sys/ndir.h>
# endif
# if HAVE_SYS_DIR_H
# include <sys/dir.h>
# endif
# if HAVE_NDIR_H
# include <ndir.h>
# endif
#endif

Using the above declarations, the program would declare variables to be type struct

dirent, not struct direct, and would access the length of a directory entry name by

passing a pointer to a struct dirent to the NAMLEN macro.

This macro also checks for the SCO Xenix ‘dir’ and ‘x’ libraries.

MacroAC HEADER MAJOR

If ‘sys/types.h’ does not define major, minor, and makedev, but ‘sys/mkdev.h’

does, define MAJOR_IN_MKDEV; otherwise, if ‘sys/sysmacros.h’ does, define MAJOR_

IN_SYSMACROS.

MacroAC HEADER STDC

Define STDC_HEADERS if the system has ANSI C header files. Specifically, this macro

checks for ‘stdlib.h’, ‘stdarg.h’, ‘string.h’, and ‘float.h’; if the system has those,

it probably has the rest of the ANSI C header files. This macro also checks whether

‘string.h’ declares memchr (and thus presumably the other mem functions), whether

‘stdlib.h’ declare free (and thus presumably malloc and other related functions),

and whether the ‘ctype.h’ macros work on characters with the high bit set, as ANSI

C requires.

Use STDC_HEADERS instead of __STDC__ to determine whether the system has ANSI-

compliant header files (and probably C library functions) because many systems that

have GCC do not have ANSI C header files.



Chapter 4: Existing Tests 35

On systems without ANSI C headers, there is so much variation that it is probably

easier to declare the functions you use than to figure out exactly what the system

header files declare. Some systems contain a mix of functions ANSI and BSD; some

are mostly ANSI but lack ‘memmove’; some define the BSD functions as macros in

‘string.h’ or ‘strings.h’; some have only the BSD functions but ‘string.h’; some

declare the memory functions in ‘memory.h’, some in ‘string.h’; etc. It is probably

sufficient to check for one string function and one memory function; if the library has

the ANSI versions of those then it probably has most of the others. If you put the

following in ‘configure.in’:

AC_HEADER_STDC
AC_CHECK_FUNCS(strchr memcpy)

then, in your code, you can put declarations like this:

#if STDC_HEADERS
# include <string.h>
#else
# ifndef HAVE_STRCHR
# define strchr index
# define strrchr rindex
# endif
char *strchr (), *strrchr ();
# ifndef HAVE_MEMCPY
# define memcpy(d, s, n) bcopy ((s), (d), (n))
# define memmove(d, s, n) bcopy ((s), (d), (n))
# endif
#endif

If you use a function like memchr, memset, strtok, or strspn, which have no BSD

equivalent, then macros won’t suffice; you must provide an implementation of each

function. An easy way to incorporate your implementations only when needed (since

the ones in system C libraries may be hand optimized) is to, taking memchr for example,

put it in ‘memchr.c’ and use ‘AC_REPLACE_FUNCS(memchr)’.

MacroAC HEADER SYS WAIT

If ‘sys/wait.h’ exists and is compatible with POSIX.1, define HAVE_SYS_WAIT_H. In-

compatibility can occur if ‘sys/wait.h’ does not exist, or if it uses the old BSD union

wait instead of int to store a status value. If ‘sys/wait.h’ is not POSIX.1 compatible,

then instead of including it, define the POSIX.1 macros with their usual interpretations.

Here is an example:



Chapter 4: Existing Tests 36

#include <sys/types.h>
#if HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifndef WEXITSTATUS
# define WEXITSTATUS(stat_val) ((unsigned)(stat_val) >> 8)
#endif
#ifndef WIFEXITED
# define WIFEXITED(stat_val) (((stat_val) & 255) == 0)
#endif

MacroAC MEMORY H

Define NEED_MEMORY_H if memcpy, memcmp, etc. are not declared in ‘string.h’ and

‘memory.h’ exists. This macro is obsolete; instead, use AC_CHECK_HEADERS(memory.h).

See the example for AC_HEADER_STDC.

MacroAC UNISTD H
Define HAVE_UNISTD_H if the system has ‘unistd.h’. This macro is obsolete; instead,

use ‘AC_CHECK_HEADERS(unistd.h)’.

The way to check if the system supports POSIX.1 is:

#if HAVE_UNISTD_H
# include <sys/types.h>
# include <unistd.h>
#endif

#ifdef _POSIX_VERSION
/* Code for POSIX.1 systems. */
#endif

_POSIX_VERSION is defined when ‘unistd.h’ is included on POSIX.1 systems. If there

is no ‘unistd.h’, it is definitely not a POSIX.1 system. However, some non-POSIX.1

systems do have ‘unistd.h’.

MacroAC USG

Define USG if the system does not have ‘strings.h’, rindex, bzero, etc. This implies

that it has ‘string.h’, strrchr, memset, etc.

The symbol USG is obsolete. Instead of this macro, see the example for AC_HEADER_

STDC.



Chapter 4: Existing Tests 37

4.4.2 Generic Header Checks

These macros are used to find system header files not covered by the particular test macros. If

you need to check the contents of a header as well as find out whether it is present, you have to

write your own test for it (see Chapter 5 [Writing Tests], page 45).

MacroAC CHECK HEADER (header-file, [action-if-found [,

action-if-not-found]])

If the system header file header-file exists, execute shell commands action-if-found,

otherwise execute action-if-not-found. If you just want to define a symbol if the header

file is available, consider using AC_CHECK_HEADERS instead.

MacroAC CHECK HEADERS (header-file. . . [, action-if-found [,

action-if-not-found]])

For each given system header file header-file in the whitespace-separated argument list

that exists, define HAVE_header-file (in all capitals). If action-if-found is given, it is

additional shell code to execute when one of the header files is found. You can give it

a value of ‘break’ to break out of the loop on the first match. If action-if-not-found is

given, it is executed when one of the header files is not found.

4.5 Structures

The following macros check for certain structures or structure members. To check structures

not listed here, use AC_EGREP_CPP (see Section 5.1 [Examining Declarations], page 45) or AC_TRY_

COMPILE (see Section 5.2 [Examining Syntax], page 46).

MacroAC HEADER STAT
If the macros S_ISDIR, S_ISREG et al. defined in ‘sys/stat.h’ do not work properly

(returning false positives), define STAT_MACROS_BROKEN. This is the case on Tektronix

UTekV, Amdahl UTS and Motorola System V/88.

MacroAC HEADER TIME
If a program may include both ‘time.h’ and ‘sys/time.h’, define TIME_WITH_SYS_

TIME. On some older systems, ‘sys/time.h’ includes ‘time.h’, but ‘time.h’ is not

protected against multiple inclusion, so programs should not explicitly include both

files. This macro is useful in programs that use, for example, struct timeval or



Chapter 4: Existing Tests 38

struct timezone as well as struct tm. It is best used in conjunction with HAVE_SYS_

TIME_H, which can be checked for using AC_CHECK_HEADERS(sys/time.h).

#if TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# if HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif

MacroAC STRUCT ST BLKSIZE

If struct stat contains an st_blksize member, define HAVE_ST_BLKSIZE.

MacroAC STRUCT ST BLOCKS

If struct stat contains an st_blocks member, define HAVE_ST_BLOCKS. Otherwise,

add ‘fileblocks.o’ to the output variable LIBOBJS.

MacroAC STRUCT ST RDEV
If struct stat contains an st_rdev member, define HAVE_ST_RDEV.

MacroAC STRUCT TM

If ‘time.h’ does not define struct tm, define TM_IN_SYS_TIME, which means that in-

cluding ‘sys/time.h’ had better define struct tm.

MacroAC STRUCT TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zonemember, define

HAVE_TM_ZONE. Otherwise, if the external array tzname is found, define HAVE_TZNAME.

4.6 Typedefs

The following macros check for C typedefs. If there is no macro specifically defined to check for

a typedef you need, and you don’t need to check for any special properties of it, then you can use

a general typedef check macro.



Chapter 4: Existing Tests 39

4.6.1 Particular Typedef Checks

These macros check for particular C typedefs in ‘sys/types.h’ and ‘stdlib.h’ (if it exists).

MacroAC TYPE GETGROUPS

Define GETGROUPS_T to be whichever of gid_t or int is the base type of the array

argument to getgroups.

MacroAC TYPE MODE T
If mode_t is not defined, define mode_t to be int.

MacroAC TYPE OFF T
If off_t is not defined, define off_t to be long.

MacroAC TYPE PID T
If pid_t is not defined, define pid_t to be int.

MacroAC TYPE SIGNAL
If ‘signal.h’ declares signal as returning a pointer to a function returning void,

define RETSIGTYPE to be void; otherwise, define it to be int.

Define signal handlers as returning type RETSIGTYPE:

RETSIGTYPE
hup_handler ()
{
. . .

}

MacroAC TYPE SIZE T

If size_t is not defined, define size_t to be unsigned.

MacroAC TYPE UID T

If uid_t is not defined, define uid_t to be int and gid_t to be int.



Chapter 4: Existing Tests 40

4.6.2 Generic Typedef Checks

This macro is used to check for typedefs not covered by the particular test macros.

MacroAC CHECK TYPE (type, default)

If the type type is not defined in ‘sys/types.h’ or ‘stdlib.h’ (if it exists), define it

to be the C (or C++) builtin type default; e.g., ‘short’ or ‘unsigned’.

4.7 Compiler Characteristics

The following macros check for C compiler or machine architecture features. To check for

characteristics not listed here, use AC_TRY_COMPILE (see Section 5.2 [Examining Syntax], page 46)

or AC_TRY_RUN (see Section 5.4 [Run Time], page 48)

MacroAC C BIGENDIAN
If words are stored with the most significant byte first (like Motorola and SPARC, but

not Intel and VAX, CPUs), define WORDS_BIGENDIAN.

MacroAC C CONST

If the C compiler does not fully support the keyword const, define const to be empty.

Some C compilers that do not define __STDC__ do support const; some compilers that

define __STDC__ do not completely support const. Programs can simply use const as

if every C compiler supported it; for those that don’t, the ‘Makefile’ or configuration

header file will define it as empty.

MacroAC C INLINE
If the C compiler supports the keyword inline, do nothing. Otherwise define inline

to __inline__ or __inline if it accepts one of those, otherwise define inline to be

empty.

MacroAC C CHAR UNSIGNED

If the C type char is unsigned, define __CHAR_UNSIGNED__, unless the C compiler

predefines it.



Chapter 4: Existing Tests 41

MacroAC C LONG DOUBLE

If the C compiler supports the long double type, define HAVE_LONG_DOUBLE. Some

C compilers that do not define __STDC__ do support the long double type; some

compilers that define __STDC__ do not support long double.

MacroAC CHECK SIZEOF (type [, cross-size])

Define SIZEOF_uctype to be the size in bytes of the C (or C++) builtin type type, e.g.

‘int’ or ‘char *’. If ‘type’ is unknown to the compiler, it gets a size of 0. uctype is

type, with lowercase converted to uppercase, spaces changed to underscores, and aster-

isks changed to ‘P’. If cross-compiling, the value cross-size is used if given, otherwise

configure exits with an error message.

For example, the call

AC_CHECK_SIZEOF(int *)

defines SIZEOF_INT_P to be 8 on DEC Alpha AXP systems.

MacroAC INT 16 BITS
If the C type int is 16 bits wide, define INT_16_BITS. This macro is obsolete; it is

more general to use ‘AC_CHECK_SIZEOF(int)’ instead.

MacroAC LONG 64 BITS

If the C type long int is 64 bits wide, define LONG_64_BITS. This macro is obsolete;

it is more general to use ‘AC_CHECK_SIZEOF(long)’ instead.

4.8 System Services

The following macros check for operating system services or capabilities.

MacroAC SYS INTERPRETER
Check whether the system supports starting scripts with a line of the form ‘#!

/bin/csh’ to select the interpreter to use for the script. After running this macro,

shell code in configure.in can check the variable ac_cv_sys_interpreter; it will be

set to ‘yes’ if the system supports ‘#!’, ‘no’ if not.



Chapter 4: Existing Tests 42

MacroAC PATH X

Try to locate the X Window System include files and libraries. If the user gave the

command line options ‘--x-includes=dir’ and ‘--x-libraries=dir’, use those direc-

tories. If either or both were not given, get the missing values by running xmkmf on a

trivial ‘Imakefile’ and examining the ‘Makefile’ that it produces. If that fails (such

as if xmkmf is not present), look for them in several directories where they often reside.

If either method is successful, set the shell variables x_includes and x_libraries to

their locations, unless they are in directories the compiler searches by default.

If both methods fail, or the user gave the command line option ‘--without-x’, set the

shell variable no_x to ‘yes’; otherwise set it to the empty string.

MacroAC PATH XTRA
An enhanced version of AC_PATH_X. It adds the C compiler flags that X needs to

output variable X_CFLAGS, and the X linker flags to X_LIBS. If X is not available, adds

‘-DX_DISPLAY_MISSING’ to X_CFLAGS.

This macro also checks for special libraries that some systems need in order to compile

X programs. It adds any that the system needs to output variable X_EXTRA_LIBS. And

it checks for special X11R6 libraries that need to be linked with before ‘-lX11’, and

adds any found to the output variable X_PRE_LIBS.

MacroAC SYS LONG FILE NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_FILE_

NAMES.

MacroAC SYS RESTARTABLE SYSCALLS

If the system automatically restarts a system call that is interrupted by a signal, define

HAVE_RESTARTABLE_SYSCALLS.

4.9 UNIX Variants

The following macros check for certain operating systems that need special treatment for some

programs, due to exceptional oddities in their header files or libraries. These macros are warts;

they will be replaced by a more systematic approach, based on the functions they make available

or the environments they provide.



Chapter 4: Existing Tests 43

MacroAC AIX

If on AIX, define _ALL_SOURCE. Allows the use of some BSD functions. Should be

called before any macros that run the C compiler.

MacroAC DYNIX SEQ

If on Dynix/PTX (Sequent UNIX), add ‘-lseq’ to output variable LIBS. This macro

is obsolete; instead, use AC_FUNC_GETMNTENT.

MacroAC IRIX SUN

If on IRIX (Silicon Graphics UNIX), add ‘-lsun’ to output variable LIBS. This

macro is obsolete. If you were using it to get getmntent, use AC_FUNC_GETMNTENT

instead. If you used it for the NIS versions of the password and group functions, use

‘AC_CHECK_LIB(sun, getpwnam)’.

MacroAC ISC POSIX

If on a POSIXized ISC UNIX, define _POSIX_SOURCE and add ‘-posix’ (for the GNU

C compiler) or ‘-Xp’ (for other C compilers) to output variable CC. This allows the

use of POSIX facilities. Must be called after AC_PROG_CC and before any other macros

that run the C compiler.

MacroAC MINIX

If on Minix, define _MINIX and _POSIX_SOURCE and define _POSIX_1_SOURCE to be 2.

This allows the use of POSIX facilities. Should be called before any macros that run

the C compiler.

MacroAC SCO INTL

If on SCO UNIX, add ‘-lintl’ to output variable LIBS. This macro is obsolete; instead,

use AC_FUNC_STRFTIME.

MacroAC XENIX DIR

If on Xenix, add ‘-lx’ to output variable LIBS. Also, if ‘dirent.h’ is being used, add

‘-ldir’ to LIBS. This macro is obsolete; use AC_HEADER_DIRENT instead.



Chapter 5: Writing Tests 44

5 Writing Tests

If the existing feature tests don’t do something you need, you have to write new ones. These

macros are the building blocks. They provide ways for other macros to check whether various kinds

of features are available and report the results.

This chapter contains some suggestions and some of the reasons why the existing tests are

written the way they are. You can also learn a lot about how to write Autoconf tests by looking at

the existing ones. If something goes wrong in one or more of the Autoconf tests, this information

can help you understand the assumptions behind them, which might help you figure out how to

best solve the problem.

These macros check the output of the C compiler system. They do not cache the results of their

tests for future use (see Section 6.3 [Caching Results], page 57), because they don’t know enough

about the information they are checking for to generate a cache variable name. They also do not

print any messages, for the same reason. The checks for particular kinds of C features call these

macros and do cache their results and print messages about what they’re checking for.

When you write a feature test that could be applicable to more than one software package, the

best thing to do is encapsulate it in a new macro. See Chapter 7 [Writing Macros], page 62, for

how to do that.

5.1 Examining Declarations

The macro AC_TRY_CPP is used to check whether particular header files exist. You can check for

one at a time, or more than one if you need several header files to all exist for some purpose.

MacroAC TRY CPP (includes, [action-if-true [, action-if-false]])

includes is C or C++ #include statements and declarations, on which shell variable,

backquote, and backslash substitutions are performed. (Actually, it can be any C

program, but other statements are probably not useful.) If the preprocessor produces

no error messages while processing it, run shell commands action-if-true. Otherwise

run shell commands action-if-false.

This macro uses CPPFLAGS, but not CFLAGS, because ‘-g’, ‘-O’, etc. are not valid options

to many C preprocessors.



Chapter 5: Writing Tests 45

Here is how to find out whether a header file contains a particular declaration, such as a typedef,

a structure, a structure member, or a function. Use AC_EGREP_HEADER instead of running grep

directly on the header file; on some systems the symbol might be defined in another header file

that the file you are checking ‘#include’s.

MacroAC EGREP HEADER (pattern, header-file, action-if-found [,

action-if-not-found])

If the output of running the preprocessor on the system header file header-file matches

the egrep regular expression pattern, execute shell commands action-if-found, other-

wise execute action-if-not-found.

To check for C preprocessor symbols, either defined by header files or predefined by the C

preprocessor, use AC_EGREP_CPP. Here is an example of the latter:

AC_EGREP_CPP(yes,
[#ifdef _AIX
yes

#endif
], is_aix=yes, is_aix=no)

MacroAC EGREP CPP (pattern, program, [action-if-found [,

action-if-not-found]])

program is the text of a C or C++ program, on which shell variable, backquote, and

backslash substitutions are performed. If the output of running the preprocessor on

program matches the egrep regular expression pattern, execute shell commands action-

if-found, otherwise execute action-if-not-found.

This macro calls AC_PROG_CPP or AC_PROG_CXXCPP (depending on which language is

current, see Section 5.8 [Language Choice], page 53), if it hasn’t been called already.

5.2 Examining Syntax

To check for a syntax feature of the C or C++ compiler, such as whether it recognizes a certain

keyword, use AC_TRY_COMPILE to try to compile a small program that uses that feature. You can

also use it to check for structures and structure members that are not present on all systems.



Chapter 5: Writing Tests 46

MacroAC TRY COMPILE (includes, function-body, [action-if-found [,

action-if-not-found]])

Create a test C program to see whether a function whose body consists of function-

body can be compiled; includes is any #include statements needed by the code in

function-body. If the file compiles successfully, run shell commands action-if-found,

otherwise run action-if-not-found. This macro uses CFLAGS or CXXFLAGS, and CPPFLAGS,

when compiling. It does not try to link; use AC_TRY_LINK if you need to do that (see

Section 5.3 [Examining Libraries], page 47).

5.3 Examining Libraries

To check for a library, a function, or a global variable, Autoconf configure scripts try to compile

and link a small program that uses it. This is unlike Metaconfig, which by default uses nm or ar on

the C library to try to figure out which functions are available. Trying to link with the function is

usually a more reliable approach because it avoids dealing with the variations in the options and

output formats of nm and ar and in the location of the standard libraries. It also allows configuring

for cross-compilation or checking a function’s runtime behavior if needed. On the other hand, it

can be slower than scanning the libraries once.

A few systems have linkers that do not return a failure exit status when there are unresolved

functions in the link. This bug makes the configuration scripts produced by Autoconf unusable

on those systems. However, some of them can be given options that make the exit status correct.

This is a problem that Autoconf does not currently handle automatically. If users encounter this

problem, they might be able to solve it by setting LDFLAGS in the environment to pass whatever

options the linker needs (for example, ‘-Wl,-dn’ on MIPS RISC/OS).

AC_TRY_LINK is used to compile test programs to test for functions and global variables. It is

also used (by AC_CHECK_LIB) to check for libraries, by adding the library being checked for to LIBS

temporarily and trying to link a small program.

MacroAC TRY LINK (includes, function-body, [action-if-found [,

action-if-not-found]])

Create a test C program to see whether a function whose body consists of function-body

can be compiled and linked; includes is any #include statements needed by the code in

function-body. If the file compiles and links successfully, run shell commands action-

if-found, otherwise run action-if-not-found. This macro uses CFLAGS or CXXFLAGS,

CPPFLAGS, LDFLAGS, and LIBS when compiling.



Chapter 5: Writing Tests 47

MacroAC COMPILE CHECK (echo-text, includes, function-body,

action-if-found [, action-if-not-found])

This is an obsolete version of AC_TRY_LINK, with the addition that it prints ‘checking

for echo-text’ to the standard output first, if echo-text is non-empty. Use AC_MSG_

CHECKING and AC_MSG_RESULT instead to print messages (see Section 6.4 [Printing

Messages], page 60).

5.4 Checking Run Time Behavior

Sometimes you need to find out how a system performs at run time, such as whether a given

function has a certain capability or bug. If you can, make such checks when your program runs

instead of when it is configured. You can check for things like the machine’s endianness when your

program initializes itself.

If you really need to test for a run-time behavior while configuring, you can write a test program

to determine the result, and compile and run it using AC_TRY_RUN. Avoid running test programs if

possible, because using them prevents people from configuring your package for cross-compiling.

5.4.1 Running Test Programs

Use the following macro if you need to test run-time behavior of the system while configuring.

MacroAC TRY RUN (program, [action-if-true [, action-if-false [,

action-if-cross-compiling]]])

program is the text of a C program, on which shell variable and backquote substitutions

are performed. If it compiles and links successfully and returns an exit status of 0 when

executed, run shell commands action-if-true. Otherwise run shell commands action-if-

false; the exit status of the program is available in the shell variable ‘$?’. This macro

uses CFLAGS or CXXFLAGS, CPPFLAGS, LDFLAGS, and LIBS when compiling.

If the C compiler being used does not produce executables that run on the system

where configure is being run, then the test program is not run. If the optional shell

commands action-if-cross-compiling are given, they are run instead and this macro calls

AC_C_CROSS if it has not already been called. Otherwise, configure prints an error

message and exits.



Chapter 5: Writing Tests 48

Try to provide a pessimistic default value to use when cross-compiling makes run-time tests

impossible. You do this by passing the optional last argument to AC_TRY_RUN. autoconf prints a

warning message when creating configure each time it encounters a call to AC_TRY_RUN with no

action-if-cross-compiling argument given. You may ignore the warning, though users will not be

able to configure your package for cross-compiling. A few of the macros distributed with Autoconf

produce this warning message.

To configure for cross-compiling you can also choose a value for those parameters based on the

canonical system name (see Chapter 8 [Manual Configuration], page 67). Alternatively, set up a

test results cache file with the correct values for the target system (see Section 6.3 [Caching Results],

page 57).

To provide a default for calls of AC_TRY_RUN that are embedded in other macros, including a few

of the ones that come with Autoconf, you can call AC_C_CROSS before running them. Then, if the

shell variable cross_compiling is set to ‘yes’, use an alternate method to get the results instead

of calling the macros.

MacroAC C CROSS

If the C compiler being used does not produce executables that can run on the sys-

tem where configure is being run, set the shell variable cross_compiling to ‘yes’,

otherwise ‘no’.

5.4.2 Guidelines for Test Programs

Test programs should not write anything to the standard output. They should return 0 if the

test succeeds, nonzero otherwise, so that success can be distinguished easily from a core dump

or other failure; segmentation violations and other failures produce a nonzero exit status. Test

programs should exit, not return, from main, because on some systems (old Suns, at least) the

argument to return in main is ignored.

Test programs can use #if or #ifdef to check the values of preprocessor macros defined by tests

that have already run. For example, if you call AC_HEADER_STDC, then later on in ‘configure.in’

you can have a test program that includes an ANSI C header file conditionally:

#if STDC_HEADERS
# include <stdlib.h>
#endif



Chapter 5: Writing Tests 49

If a test program needs to use or create a data file, give it a name that starts with ‘conftest’,

such as ‘conftestdata’. The configure script cleans up by running ‘rm -rf conftest*’ after

running test programs and if the script is interrupted.

5.4.3 Test Functions

Function declarations in test programs should have a prototype conditionalized for C++. In

practice, though, test programs rarely need functions that take arguments.

#ifdef __cplusplus
foo(int i)
#else
foo(i) int i;
#endif

Functions that test programs declare should also be conditionalized for C++, which requires

‘extern "C"’ prototypes. Make sure to not include any header files containing clashing prototypes.

#ifdef __cplusplus
extern "C" void *malloc(size_t);
#else
char *malloc();
#endif

If a test program calls a function with invalid parameters (just to see whether it exists), organize

the program to ensure that it never invokes that function. You can do this by calling it in another

function that is never invoked. You can’t do it by putting it after a call to exit, because GCC

version 2 knows that exit never returns and optimizes out any code that follows it in the same

block.

If you include any header files, make sure to call the functions relevant to them with the correct

number of arguments, even if they are just 0, to avoid compilation errors due to prototypes. GCC

version 2 has internal prototypes for several functions that it automatically inlines; for example,

memcpy. To avoid errors when checking for them, either pass them the correct number of arguments

or redeclare them with a different return type (such as char).



Chapter 5: Writing Tests 50

5.5 Portable Shell Programming

When writing your own checks, there are some shell script programming techniques you should

avoid in order to make your code portable. The Bourne shell and upward-compatible shells like

Bash and the Korn shell have evolved over the years, but to prevent trouble, do not take advantage

of features that were added after UNIX version 7, circa 1977. You should not use shell functions,

aliases, negated character classes, or other features that are not found in all Bourne-compatible

shells; restrict yourself to the lowest common denominator. Even unset is not supported by all

shells! Also, include a space after the exclamation point in interpreter specifications, like this:

#! /usr/bin/perl

If you omit the space before the path, then 4.2BSD based systems (such as Sequent DYNIX)

will ignore the line, because they interpret ‘#! /’ as a 4-byte magic number.

The set of external programs you should run in a configure script is fairly small. See section

“Utilities in Makefiles” in GNU Coding Standards, for the list. This restriction allows users to start

out with a fairly small set of programs and build the rest, avoiding too many interdependencies

between packages.

Some of these external utilities have a portable subset of features, as well; for example, don’t rely

on ln having a ‘-f’ option or cat having any options. sed scripts should not contain comments or

use branch labels longer than 8 characters. Don’t use ‘grep -s’ to suppress output, because ‘grep

-s’ on System V does not suppress output, only error messages. Instead, redirect the standard

output and standard error (in case the file doesn’t exist) of grep to ‘/dev/null’. Check the exit

status of grep to determine whether it found a match.

5.6 Testing Values and Files

configure scripts need to test properties of many files and strings. Here are some portability

problems to watch out for when doing those tests.

The test program is the way to perform many file and string tests. It is often invoked by the

alternate name ‘[’, but using that name in Autoconf code is asking for trouble since it is an m4

quote character.

If you need to make multiple checks using test, combine them with the shell operators ‘&&’ and

‘||’ instead of using the test operators ‘-a’ and ‘-o’. On System V, the precedence of ‘-a’ and



Chapter 5: Writing Tests 51

‘-o’ is wrong relative to the unary operators; consequently, POSIX does not specify them, so using

them is nonportable. If you combine ‘&&’ and ‘||’ in the same statement, keep in mind that they

have equal precedence.

To enable configure scripts to support cross-compilation, they shouldn’t do anything that tests

features of the host system instead of the target system. But occasionally you may find it necessary

to check whether some arbitrary file exists. To do so, use ‘test -f’ or ‘test -r’. Do not use ‘test

-x’, because 4.3BSD does not have it.

Another nonportable shell programming construction is

var=${var:-value}

The intent is to set var to value only if it is not already set, but if var has any value, even the

empty string, to leave it alone. Old BSD shells, including the Ultrix sh, don’t accept the colon,

and complain and die. A portable equivalent is

: ${var=value}

5.7 Multiple Cases

Some operations are accomplished in several possible ways, depending on the UNIX variant.

Checking for them essentially requires a “case statement”. Autoconf does not directly provide one;

however, it is easy to simulate by using a shell variable to keep track of whether a way to perform

the operation has been found yet.

Here is an example that uses the shell variable fstype to keep track of whether the remaining

cases need to be checked.



Chapter 5: Writing Tests 52

AC_MSG_CHECKING(how to get filesystem type)
fstype=no
# The order of these tests is important.
AC_TRY_CPP([#include <sys/statvfs.h>
#include <sys/fstyp.h>], AC_DEFINE(FSTYPE_STATVFS) fstype=SVR4)
if test $fstype = no; then
AC_TRY_CPP([#include <sys/statfs.h>
#include <sys/fstyp.h>], AC_DEFINE(FSTYPE_USG_STATFS) fstype=SVR3)
fi
if test $fstype = no; then
AC_TRY_CPP([#include <sys/statfs.h>
#include <sys/vmount.h>], AC_DEFINE(FSTYPE_AIX_STATFS) fstype=AIX)
fi
# (more cases omitted here)
AC_MSG_RESULT($fstype)

5.8 Language Choice

Packages that use both C and C++ need to test features of both compilers. Autoconf-generated

configure scripts check for C features by default. The following macros determine which language’s

compiler is used in tests that follow in ‘configure.in’.

MacroAC LANG C
Do compilation tests using CC and CPP and use extension ‘.c’ for test programs.

MacroAC LANG CPLUSPLUS
Do compilation tests using CXX and CXXCPP and use extension ‘.C’ for test programs.

MacroAC LANG SAVE

Remember the current language (as set by AC_LANG_C or AC_LANG_CPLUSPLUS) on a

stack. Does not change which language is current. Use this macro and AC_LANG_

RESTORE in macros that need to temporarily switch to a particular language.

MacroAC LANG RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE,

and remove it from the stack. This macro is equivalent to either AC_LANG_C or AC_

LANG_CPLUSPLUS, whichever had been run most recently when AC_LANG_SAVE was last

called.



Chapter 5: Writing Tests 53

Do not call this macro more times than AC_LANG_SAVE.

MacroAC REQUIRE CPP

Ensure that whichever preprocessor would currently be used for tests has been found.

Calls AC_REQUIRE (see Section 7.4.1 [Prerequisite Macros], page 65) with an argument

of either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which language is current.



Chapter 6: Results of Tests 54

6 Results of Tests

Once configure has determined whether a feature exists, what can it do to record that infor-

mation? There are four sorts of things it can do: define a C preprocessor symbol, set a variable

in the output files, save the result in a cache file for future configure runs, and print a message

letting the user know the result of the test.

6.1 Defining C Preprocessor Symbols

A common action to take in response to a feature test is to define a C preprocessor symbol

indicating the results of the test. That is done by calling AC_DEFINE or AC_DEFINE_UNQUOTED.

By default, AC_OUTPUT places the symbols defined by these macros into the output variable DEFS,

which contains an option ‘-Dsymbol=value’ for each symbol defined. Unlike in Autoconf version 1,

there is no variable DEFS defined while configure is running. To check whether Autoconf macros

have already defined a certain C preprocessor symbol, test the value of the appropriate cache

variable, as in this example:

AC_CHECK_FUNC(vprintf, AC_DEFINE(HAVE_VPRINTF))
if test "$ac_cv_func_vprintf" != yes; then
AC_CHECK_FUNC(_doprnt, AC_DEFINE(HAVE_DOPRNT))
fi

If AC_CONFIG_HEADER has been called, then instead of creating DEFS, AC_OUTPUT creates a header

file by substituting the correct values into #define statements in a template file. See Section 3.4

[Configuration Headers], page 17, for more information about this kind of output.

MacroAC DEFINE (variable [, value])

Define C preprocessor variable variable. If value is given, set variable to that value

(verbatim), otherwise set it to 1. value should not contain literal newlines, and if

you are not using AC_CONFIG_HEADER it should not contain any ‘#’ characters, as make

tends to eat them. To use a shell variable (which you need to do in order to define a

value containing the m4 quote characters ‘[’ or ‘]’), use AC_DEFINE_UNQUOTED instead.

The following example defines the C preprocessor variable EQUATION to be the string

constant ‘"$a > $b"’:

AC_DEFINE(EQUATION, "$a > $b")



Chapter 6: Results of Tests 55

MacroAC DEFINE UNQUOTED (variable [, value])

Like AC_DEFINE, but three shell expansions are performed—once—on variable and

value: variable expansion (‘$’), command substitution (‘‘’), and backslash escaping

(‘\’). Single and double quote characters in the value have no special meaning. Use

this macro instead of AC_DEFINE when variable or value is a shell variable. Examples:

AC_DEFINE_UNQUOTED(config_machfile, "${machfile}")
AC_DEFINE_UNQUOTED(GETGROUPS_T, $ac_cv_type_getgroups)
AC_DEFINE_UNQUOTED(${ac_tr_hdr})

Due to the syntactical bizarreness of the Bourne shell, do not use semicolons to separate AC_

DEFINE or AC_DEFINE_UNQUOTED calls from other macro calls or shell code; that can cause syntax

errors in the resulting configure script. Use either spaces or newlines. That is, do this:

AC_CHECK_HEADER(elf.h, AC_DEFINE(SVR4) LIBS="$LIBS -lelf")

or this:

AC_CHECK_HEADER(elf.h,
AC_DEFINE(SVR4)
LIBS="$LIBS -lelf")

instead of this:

AC_CHECK_HEADER(elf.h, AC_DEFINE(SVR4); LIBS="$LIBS -lelf")

6.2 Setting Output Variables

One way to record the results of tests is to set output variables, which are shell variables whose

values are substituted into files that configure outputs. The two macros below create new output

variables. See Section 3.3.1 [Preset Output Variables], page 12, for a list of output variables that

are always available.

MacroAC SUBST (variable)

Create an output variable from a shell variable. Make AC_OUTPUT substitute the variable

variable into output files (typically one or more ‘Makefile’s). This means that AC_

OUTPUT will replace instances of ‘@variable@’ in input files with the value that the shell



Chapter 6: Results of Tests 56

variable variable has when AC_OUTPUT is called. The value of variable should not

contain literal newlines.

MacroAC SUBST FILE (variable)

Another way to create an output variable from a shell variable. Make AC_OUTPUT insert

(without substitutions) the contents of the file named by shell variable variable into

output files. This means that AC_OUTPUT will replace instances of ‘@variable@’ in output

files (such as ‘Makefile.in’) with the contents of the file that the shell variable variable

names when AC_OUTPUT is called. Set the variable to ‘/dev/null’ for cases that do not

have a file to insert.

This macro is useful for inserting ‘Makefile’ fragments containing special dependen-

cies or other make directives for particular host or target types into ‘Makefile’s. For

example, ‘configure.in’ could contain:

AC_SUBST_FILE(host_frag)dnl
host_frag=$srcdir/conf/sun4.mh

and then a ‘Makefile.in’ could contain:

@host_frag@

6.3 Caching Results

To avoid checking for the same features repeatedly in various configure scripts (or repeated

runs of one script), configure saves the results of many of its checks in a cache file. If, when a

configure script runs, it finds a cache file, it reads from it the results from previous runs and avoids

rerunning those checks. As a result, configure can run much faster than if it had to perform all

of the checks every time.

MacroAC CACHE VAL (cache-id, commands-to-set-it)

Ensure that the results of the check identified by cache-id are available. If the results

of the check were in the cache file that was read, and configure was not given the

‘--quiet’ or ‘--silent’ option, print a message saying that the result was cached;

otherwise, run the shell commands commands-to-set-it. Those commands should have

no side effects except for setting the variable cache-id. In particular, they should not

call AC_DEFINE; the code that follows the call to AC_CACHE_VAL should do that, based



Chapter 6: Results of Tests 57

on the cached value. Also, they should not print any messages, for example with

AC_MSG_CHECKING; do that before calling AC_CACHE_VAL, so the messages are printed

regardless of whether the results of the check are retrieved from the cache or determined

by running the shell commands. If the shell commands are run to determine the value,

the value will be saved in the cache file just before configure creates its output files.

See Section 6.3.1 [Cache Variable Names], page 58, for how to choose the name of the

cache-id variable.

MacroAC CACHE CHECK (message, cache-id, commands)

A wrapper for AC_CACHE_VAL that takes care of printing the messages. This macro

provides a convenient shorthand for the most common way to use these macros. It calls

AC_MSG_CHECKING for message, then AC_CACHE_VAL with the cache-id and commands

arguments, and AC_MSG_RESULT with cache-id.

6.3.1 Cache Variable Names

The names of cache variables should have the following format:

package-prefix_cv_value-type_specific-value[_additional-options]

for example, ‘ac_cv_header_stat_broken’ or ‘ac_cv_prog_gcc_traditional’. The parts of the

variable name are:

package-prefix

An abbreviation for your package or organization; the same prefix you begin local

Autoconf macros with, except lowercase by convention. For cache values used by the

distributed Autoconf macros, this value is ‘ac’.

_cv_ Indicates that this shell variable is a cache value.

value-type A convention for classifying cache values, to produce a rational naming system. The

values used in Autoconf are listed in Section 7.2 [Macro Names], page 62.

specific-value

Which member of the class of cache values this test applies to. For example, which

function (‘alloca’), program (‘gcc’), or output variable (‘INSTALL’).

additional-options

Any particular behavior of the specific member that this test applies to. For example,

‘broken’ or ‘set’. This part of the name may be omitted if it does not apply.



Chapter 6: Results of Tests 58

Like their names, the values that may be assigned to cache variables have a few restrictions.

The values may not contain single quotes or curly braces. Usually, their values will be boolean

(‘yes’ or ‘no’) or the names of files or functions; so this is not an important restriction.

6.3.2 Cache Files

A cache file is a shell script that caches the results of configure tests run on one system so they

can be shared between configure scripts and configure runs. It is not useful on other systems. If

its contents are invalid for some reason, the user may delete or edit it.

By default, configure uses ‘./config.cache’ as the cache file, creating it if it does not exist

already. configure accepts the ‘--cache-file=file’ option to use a different cache file; that is

what configure does when it calls configure scripts in subdirectories, so they share the cache.

See Section 3.5 [Subdirectories], page 20, for information on configuring subdirectories with the

AC_CONFIG_SUBDIRS macro.

Giving ‘--cache-file=/dev/null’ disables caching, for debugging configure. ‘config.status’

only pays attention to the cache file if it is given the ‘--recheck’ option, which makes it rerun

configure. If you are anticipating a long debugging period, you can also disable cache loading

and saving for a configure script by redefining the cache macros at the start of ‘configure.in’:

define([AC_CACHE_LOAD], )dnl
define([AC_CACHE_SAVE], )dnl
AC_INIT(whatever)
... rest of configure.in ...

It is wrong to try to distribute cache files for particular system types. There is too much room for

error in doing that, and too much administrative overhead in maintaining them. For any features

that can’t be guessed automatically, use the standard method of the canonical system type and

linking files (see Chapter 8 [Manual Configuration], page 67).

The cache file on a particular system will gradually accumulate whenever someone runs a

configure script; it will be initially nonexistent. Running configure merges the new cache results

with the existing cache file. The site initialization script can specify a site-wide cache file to use

instead of the default, to make it work transparently, as long as the same C compiler is used every

time (see Section 9.5 [Site Defaults], page 75).



Chapter 6: Results of Tests 59

6.4 Printing Messages

configure scripts need to give users running them several kinds of information. The following

macros print messages in ways appropriate for each kind. The arguments to all of them get enclosed

in shell double quotes, so the shell performs variable and backquote substitution on them.

These macros are all wrappers around the echo shell command. configure scripts should

rarely need to run echo directly to print messages for the user. Using these macros makes it easy

to change how and when each kind of message is printed; such changes need only be made to the

macro definitions, and all of the callers change automatically.

MacroAC MSG CHECKING (feature-description)

Notify the user that configure is checking for a particular feature. This macro prints a

message that starts with ‘checking ’ and ends with ‘...’ and no newline. It must be fol-

lowed by a call to AC_MSG_RESULT to print the result of the check and the newline. The

feature-description should be something like ‘whether the Fortran compiler accepts

C++ comments’ or ‘for c89’.

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’ option.

MacroAC MSG RESULT (result-description)

Notify the user of the results of a check. result-description is almost always the value of

the cache variable for the check, typically ‘yes’, ‘no’, or a file name. This macro should

follow a call to AC_MSG_CHECKING, and the result-description should be the completion

of the message printed by the call to AC_MSG_CHECKING.

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’ option.

MacroAC MSG ERROR (error-description)

Notify the user of an error that prevents configure from completing. This macro prints

an error message on the standard error output and exits configure with a nonzero

status. error-description should be something like ‘invalid value $HOME for \$HOME’.

MacroAC MSG WARN (problem-description)

Notify the configure user of a possible problem. This macro prints the message on

the standard error output; configure continues running afterward, so macros that

call AC_MSG_WARN should provide a default (back-up) behavior for the situations they



Chapter 6: Results of Tests 60

warn about. problem-description should be something like ‘ln -s seems to make hard

links’.

The following two macros are an obsolete alternative to AC_MSG_CHECKING and AC_MSG_RESULT.

MacroAC CHECKING (feature-description)

This macro is similar to AC_MSG_CHECKING, except that it prints a newline after the

feature-description. It is useful mainly to print a general description of the overall

purpose of a group of feature checks, e.g.,

AC_CHECKING(if stack overflow is detectable)

MacroAC VERBOSE (result-description)

This macro is similar to AC_MSG_RESULT, except that it is meant to follow a call to

AC_CHECKING instead of AC_MSG_CHECKING; it starts the message it prints with a tab.

It is considered obsolete.



Chapter 7: Writing Macros 61

7 WritingMacros

When you write a feature test that could be applicable to more than one software package, the

best thing to do is encapsulate it in a new macro. Here are some instructions and guidelines for

writing Autoconf macros.

7.1 Macro Definitions

Autoconf macros are defined using the AC_DEFUNmacro, which is similar to the m4 builtin define

macro. In addition to defining a macro, AC_DEFUN adds to it some code which is used to constrain

the order in which macros are called (see Section 7.4.1 [Prerequisite Macros], page 65).

An Autoconf macro definition looks like this:

AC_DEFUN(macro-name, [macro-body])

The square brackets here do not indicate optional text: they should literally be present in the

macro definition to avoid macro expansion problems (see Section 7.3 [Quoting], page 64). You can

refer to any arguments passed to the macro as ‘$1’, ‘$2’, etc.

To introduce comments in m4, use the m4 builtin dnl; it causes m4 to discard the text through

the next newline. It is not needed between macro definitions in ‘acsite.m4’ and ‘aclocal.m4’,

because all output is discarded until AC_INIT is called.

See section “How to define new macros” in GNU m4, for more complete information on writing

m4 macros.

7.2 Macro Names

All of the Autoconf macros have all-uppercase names starting with ‘AC_’ to prevent them from

accidentally conflicting with other text. All shell variables that they use for internal purposes have

mostly-lowercase names starting with ‘ac_’. To ensure that your macros don’t conflict with present

or future Autoconf macros, you should prefix your own macro names and any shell variables they

use with some other sequence. Possibilities include your initials, or an abbreviation for the name

of your organization or software package.



Chapter 7: Writing Macros 62

Most of the Autoconf macros’ names follow a structured naming convention that indicates the

kind of feature check by the name. The macro names consist of several words, separated by

underscores, going from most general to most specific. The names of their cache variables use

the same convention (see Section 6.3.1 [Cache Variable Names], page 58, for more information on

them).

The first word of the name after ‘AC_’ usually tells the category of feature being tested. Here

are the categories used in Autoconf for specific test macros, the kind of macro that you are more

likely to write. They are also used for cache variables, in all-lowercase. Use them where applicable;

where they’re not, invent your own categories.

C C language builtin features.

DECL Declarations of C variables in header files.

FUNC Functions in libraries.

GROUP UNIX group owners of files.

HEADER Header files.

LIB C libraries.

PATH The full path names to files, including programs.

PROG The base names of programs.

STRUCT Definitions of C structures in header files.

SYS Operating system features.

TYPE C builtin or declared types.

VAR C variables in libraries.

After the category comes the name of the particular feature being tested. Any further words

in the macro name indicate particular aspects of the feature. For example, AC_FUNC_UTIME_NULL

checks the behavior of the utime function when called with a NULL pointer.

A macro that is an internal subroutine of another macro should have a name that starts with

the name of that other macro, followed by one or more words saying what the internal macro does.

For example, AC_PATH_X has internal macros AC_PATH_X_XMKMF and AC_PATH_X_DIRECT.



Chapter 7: Writing Macros 63

7.3 Quoting

Macros that are called by other macros are evaluated by m4 several times; each evaluation might

require another layer of quotes to prevent unwanted expansions of macros or m4 builtins, such as

‘define’ and ‘$1’. Quotes are also required around macro arguments that contain commas, since

commas separate the arguments from each other. It’s a good idea to quote any macro arguments

that contain newlines or calls to other macros, as well.

Autoconf changes the m4 quote characters from the default ‘‘’ and ‘’’ to ‘[’ and ‘]’, because

many of the macros use ‘‘’ and ‘’’, mismatched. However, in a few places the macros need to use

brackets (usually in C program text or regular expressions). In those places, they use the m4 builtin

command changequote to temporarily change the quote characters to ‘<<’ and ‘>>’. (Sometimes,

if they don’t need to quote anything, they disable quoting entirely instead by setting the quote

characters to empty strings.) Here is an example:

AC_TRY_LINK(
changequote(<<, >>)dnl
<<#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif>>,
changequote([, ])dnl
[atoi(*tzname);], ac_cv_var_tzname=yes, ac_cv_var_tzname=no)

When you create a configure script using newly written macros, examine it carefully to check

whether you need to add more quotes in your macros. If one or more words have disappeared in

the m4 output, you need more quotes. When in doubt, quote.

However, it’s also possible to put on too many layers of quotes. If this happens, the resulting

configure script will contain unexpanded macros. The autoconf program checks for this problem

by doing ‘grep AC_ configure’.

7.4 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work cor-

rectly. Autoconf provides a way to ensure that certain macros are called if needed and a way to

warn the user if macros are called in an order that might cause incorrect operation.



Chapter 7: Writing Macros 64

7.4.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed by other

macros. For example, AC_DECL_YYTEXT examines the output of flex or lex, so it depends on

AC_PROG_LEX having been called first to set the shell variable LEX.

Rather than forcing the user of the macros to keep track of the dependencies between them,

you can use the AC_REQUIRE macro to do it automatically. AC_REQUIRE can ensure that a macro is

only called if it is needed, and only called once.

MacroAC REQUIRE (macro-name)

If the m4 macro macro-name has not already been called, call it (without any argu-

ments). Make sure to quote macro-name with square brackets. macro-name must have

been defined using AC_DEFUN or else contain a call to AC_PROVIDE to indicate that it

has been called.

An alternative to using AC_DEFUN is to use define and call AC_PROVIDE. Because this technique

does not prevent nested messages, it is considered obsolete.

MacroAC PROVIDE (this-macro-name)

Record the fact that this-macro-name has been called. this-macro-name should be the

name of the macro that is calling AC_PROVIDE. An easy way to get it is from the m4

builtin variable $0, like this:

AC_PROVIDE([$0])

7.4.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires that

the other be called. For example, a macro that changes the behavior of the C compiler should be

called before any macros that run the C compiler. Many of these dependencies are noted in the

documentation.

Autoconf provides the AC_BEFOREmacro to warn users when macros with this kind of dependency

appear out of order in a ‘configure.in’ file. The warning occurs when creating configure from

‘configure.in’, not when running configure. For example, AC_PROG_CPP checks whether the C

compiler can run the C preprocessor when given the ‘-E’ option. It should therefore be called after



Chapter 7: Writing Macros 65

any macros that change which C compiler is being used, such as AC_PROG_CC. So AC_PROG_CC

contains:

AC_BEFORE([$0], [AC_PROG_CPP])dnl

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC is called.

MacroAC BEFORE (this-macro-name, called-macro-name)

Make m4 print a warning message on the standard error output if called-macro-name

has already been called. this-macro-name should be the name of the macro that is

calling AC_BEFORE. The macro called-macro-name must have been defined using AC_

DEFUN or else contain a call to AC_PROVIDE to indicate that it has been called.

7.4.3 Obsolete Macros

Configuration and portability technology has evolved over the years. Often better ways of

solving a particular problem are developed, or ad-hoc approaches are systematized. This process

has occurred in many parts of Autoconf. One result is that some of the macros are now considered

obsolete; they still work, but are no longer considered the best thing to do. Autoconf provides the

AC_OBSOLETE macro to warn users producing configure scripts when they use obsolete macros, to

encourage them to modernize. A sample call is:

AC_OBSOLETE([$0], [; use AC_CHECK_HEADERS(unistd.h) instead])dnl

MacroAC OBSOLETE (this-macro-name [, suggestion])

Make m4 print a message on the standard error output warning that this-macro-name

is obsolete, and giving the file and line number where it was called. this-macro-name

should be the name of the macro that is calling AC_OBSOLETE. If suggestion is given,

it is printed at the end of the warning message; for example, it can be a suggestion for

what to use instead of this-macro-name.



Chapter 8: Manual Configuration 66

8 Manual Configuration

A few kinds of features can’t be guessed automatically by running test programs. For example,

the details of the object file format, or special options that need to be passed to the compiler

or linker. You can check for such features using ad-hoc means, such as having configure check

the output of the uname program, or looking for libraries that are unique to particular systems.

However, Autoconf provides a uniform method for handling unguessable features.

8.1 Specifying the System Type

Like other GNU configure scripts, Autoconf-generated configure scripts can make decisions

based on a canonical name for the system type, which has the form:

cpu-company-system

configure can usually guess the canonical name for the type of system it’s running on. To

do so it runs a script called config.guess, which derives the name using the uname command or

symbols predefined by the C preprocessor.

Alternately, the user can specify the system type with command line arguments to configure.

Doing so is necessary when cross-compiling. In the most complex case of cross-compiling, three

system types are involved. The options to specify them are:

--build=build-type

the type of system on which the package is being configured and compiled (rarely

needed);

--host=host-type

the type of system on which the package will run;

--target=target-type

the type of system for which any compiler tools in the package will produce code.

If the user gives configure a non-option argument, it is used as the default for the host, target,

and build system types if the user does not specify them explicitly with options. The target and

build types default to the host type if it is given and they are not. If you are cross-compiling,

you still have to specify the names of the cross-tools you use, in particular the C compiler, on the

configure command line, e.g.,



Chapter 8: Manual Configuration 67

CC=m68k-coff-gcc configure --target=m68k-coff

configure recognizes short aliases for many system types; for example, ‘decstation’ can be

given on the command line instead of ‘mips-dec-ultrix4.2’. configure runs a script called

config.sub to canonicalize system type aliases.

8.2 Getting the Canonical System Type

The following macros make the system type available to configure scripts. They run the shell

script config.guess to determine any values for the host, target, and build types that they need

and the user did not specify on the command line. They run config.sub to canonicalize any aliases

the user gave. If you use these macros, you must distribute those two shell scripts along with your

source code. See Section 3.2 [Output], page 11, for information about the AC_CONFIG_AUX_DIR

macro which you can use to control which directory configure looks for those scripts in. If you do

not use either of these macros, configure ignores any ‘--host’, ‘--target’, and ‘--build’ options

given to it.

MacroAC CANONICAL SYSTEM

Determine the system type and set output variables to the names of the canonical

system types. See Section 8.3 [System Type Variables], page 68, for details about the

variables this macro sets.

MacroAC CANONICAL HOST
Perform only the subset of AC_CANONICAL_SYSTEM relevant to the host type. This is

all that is needed for programs that are not part of a compiler toolchain.

8.3 System Type Variables

After calling AC_CANONICAL_SYSTEM, the following output variables contain the system type

information. After AC_CANONICAL_HOST, only the host variables below are set.

build, host, target

the canonical system names;

build_alias, host_alias, target_alias

the names the user specified, or the canonical names if config.guess was used;



Chapter 8: Manual Configuration 68

build_cpu, build_vendor, build_os

host_cpu, host_vendor, host_os

target_cpu, target_vendor, target_os

the individual parts of the canonical names (for convenience).

8.4 Using the System Type

How do you use a canonical system type? Usually, you use it in one or more case statements in

‘configure.in’ to select system-specific C files. Then link those files, which have names based on

the system name, to generic names, such as ‘host.h’ or ‘target.c’. The case statement patterns

can use shell wildcards to group several cases together, like in this fragment:

case "$target" in
i386-*-mach* | i386-*-gnu*) obj_format=aout emulation=mach bfd_gas=yes ;;
i960-*-bout) obj_format=bout ;;
esac

MacroAC LINK FILES (source. . ., dest. . .)

Make AC_OUTPUT link each of the existing files source to the corresponding link name

dest. Makes a symbolic link if possible, otherwise a hard link. The dest and source

names should be relative to the top level source or build directory.

For example, this call:

AC_LINK_FILES(config/${machine}.h config/${obj_format}.h, host.h object.h)

creates in the current directory ‘host.h’, which is a link to ‘srcdir/config/${machine}.h’,

and ‘object.h’, which is a link to ‘srcdir/config/${obj_format}.h’.

You can also use the host system type to find cross-compilation tools. See Section 4.1.2 [Generic

Programs], page 26, for information about the AC_CHECK_TOOL macro which does that.



Chapter 9: Site Configuration 69

9 Site Configuration

configure scripts support several kinds of local configuration decisions. There are ways for

users to specify where external software packages are, include or exclude optional features, install

programs under modified names, and set default values for configure options.

9.1 Working With External Software

Some packages require, or can optionally use, other software packages which are already installed.

The user can give configure command line options to specify which such external software to use.

The options have one of these forms:

--with-package[=arg]
--without-package

For example, ‘--with-gnu-ld’ means work with the GNU linker instead of some other linker.

‘--with-x’ means work with The X Window System.

The user can give an argument by following the package name with ‘=’ and the argument. Giving

an argument of ‘no’ is for packages that are used by default; it says to not use the package. An

argument that is neither ‘yes’ nor ‘no’ could include a name or number of a version of the other

package, to specify more precisely which other package this program is supposed to work with. If no

argument is given, it defaults to ‘yes’. ‘--without-package’ is equivalent to ‘--with-package=no’.

For each external software package that may be used, ‘configure.in’ should call AC_ARG_WITH

to detect whether the configure user asked to use it. Whether each package is used or not by

default, and which arguments are valid, is up to you.

MacroAC ARG WITH (package, help-string [, action-if-given [,

action-if-not-given]])

If the user gave configure the option ‘--with-package’ or ‘--without-package’, run

shell commands action-if-given. If neither option was given, run shell commands action-

if-not-given. The name package indicates another software package that this program

should work with. It should consist only of alphanumeric characters and dashes.

The option’s argument is available to the shell commands action-if-given in the shell

variable withval, which is actually just the value of the shell variable with_package,



Chapter 9: Site Configuration 70

with any ‘-’ characters changed into ‘_’. You may use that variable instead, if you

wish.

The argument help-string is a description of the option which looks like this:

--with-readline support fancy command line editing

help-string may be more than one line long, if more detail is needed. Just make sure

the columns line up in ‘configure --help’. Avoid tabs in the help string. You’ll need

to enclose it in ‘[’ and ‘]’ in order to produce the leading spaces.

MacroAC WITH (package, action-if-given [, action-if-not-given])

This is an obsolete version of AC_ARG_WITH that does not support providing a help

string.

9.2 Choosing Package Options

If a software package has optional compile-time features, the user can give configure command

line options to specify whether to compile them. The options have one of these forms:

--enable-feature[=arg]
--disable-feature

These options allow users to choose which optional features to build and install. ‘--enable-feature’

options should never make a feature behave differently or cause one feature to replace another.

They should only cause parts of the program to be built rather than left out.

The user can give an argument by following the feature name with ‘=’ and the argument.

Giving an argument of ‘no’ requests that the feature not be made available. A feature with

an argument looks like ‘--enable-debug=stabs’. If no argument is given, it defaults to ‘yes’.

‘--disable-feature’ is equivalent to ‘--enable-feature=no’.

For each optional feature, ‘configure.in’ should call AC_ARG_ENABLE to detect whether the

configure user asked to include it. Whether each feature is included or not by default, and which

arguments are valid, is up to you.



Chapter 9: Site Configuration 71

MacroAC ARG ENABLE (feature, help-string [, action-if-given [,

action-if-not-given]])

If the user gave configure the option ‘--enable-feature’ or ‘--disable-feature’, run

shell commands action-if-given. If neither option was given, run shell commands action-

if-not-given. The name feature indicates an optional user-level facility. It should consist

only of alphanumeric characters and dashes.

The option’s argument is available to the shell commands action-if-given in the shell

variable enableval, which is actually just the value of the shell variable enable_

package, with any ‘-’ characters changed into ‘_’. You may use that variable instead,

if you wish. The help-string argument is like that of AC_ARG_WITH (see Section 9.1

[External Software], page 70).

MacroAC ENABLE (feature, action-if-given [, action-if-not-given])

This is an obsolete version of AC_ARG_ENABLE that does not support providing a help

string.

9.3 Configuring Site Details

Some software packages require complex site-specific information. Some examples are host names

to use for certain services, company names, and email addresses to contact. Since some configuration

scripts generated by Metaconfig ask for such information interactively, people sometimes wonder

how to get that information in Autoconf-generated configuration scripts, which aren’t interactive.

Such site configuration information should be put in a file that is edited only by users, not by

programs. The location of the file can either be based on the prefix variable, or be a standard

location such as the user’s home directory. It could even be specified by an environment variable.

The programs should examine that file at run time, rather than at compile time. Run time config-

uration is more convenient for users and makes the configuration process simpler than getting the

information while configuring. See section “Variables for Installation Directories” in GNU Coding

Standards, for more information on where to put data files.

9.4 Transforming Program Names When Installing

Autoconf supports changing the names of programs when installing them. In order to use these

transformations, ‘configure.in’ must call the macro AC_ARG_PROGRAM.



Chapter 9: Site Configuration 72

MacroAC ARG PROGRAM

Place in output variable program_transform_name a sequence of sed commands for

changing the names of installed programs.

If any of the options described below are given to configure, program names are

transformed accordingly. Otherwise, if AC_CANONICAL_SYSTEM has been called and a

‘--target’ value is given that differs from the host type (specified with ‘--host’ or

defaulted by config.sub), the target type followed by a dash is used as a prefix.

Otherwise, no program name transformation is done.

9.4.1 Transformation Options

You can specify name transformations by giving configure these command line options:

--program-prefix=prefix

prepend prefix to the names;

--program-suffix=suffix

append suffix to the names;

--program-transform-name=expression

perform sed substitution expression on the names.

9.4.2 Transformation Examples

These transformations are useful with programs that can be part of a cross-compilation de-

velopment environment. For example, a cross-assembler running on a Sun 4 configured with

‘--target=i960-vxworks’ is normally installed as ‘i960-vxworks-as’, rather than ‘as’, which

could be confused with a native Sun 4 assembler.

You can force a program name to begin with ‘g’, if you don’t want GNU programs installed

on your system to shadow other programs with the same name. For example, if you config-

ure GNU diff with ‘--program-prefix=g’, then when you run ‘make install’ it is installed

as ‘/usr/local/bin/gdiff’.

As a more sophisticated example, you could use

--program-transform-name=’s/^/g/; s/^gg/g/; s/^gless/less/’



Chapter 9: Site Configuration 73

to prepend ‘g’ to most of the program names in a source tree, excepting those like gdb that already

have one and those like less and lesskey that aren’t GNU programs. (That is assuming that you

have a source tree containing those programs that is set up to use this feature.)

One way to install multiple versions of some programs simultaneously is to append a version

number to the name of one or both. For example, if you want to keep Autoconf version 1 around for

awhile, you can configure Autoconf version 2 using ‘--program-suffix=2’ to install the programs

as ‘/usr/local/bin/autoconf2’, ‘/usr/local/bin/autoheader2’, etc.

9.4.3 Transformation Rules

Here is how to use the variable program_transform_name in a ‘Makefile.in’:

transform=@program_transform_name@
install: all

$(INSTALL_PROGRAM) myprog $(bindir)/‘echo myprog|sed ’$(transform)’‘

uninstall:
rm -f $(bindir)/‘echo myprog|sed ’$(transform)’‘

If you have more than one program to install, you can do it in a loop:

PROGRAMS=cp ls rm
install:

for p in $(PROGRAMS); do \
$(INSTALL_PROGRAM) $$p $(bindir)/‘echo $$p|sed ’$(transform)’‘; \

done

uninstall:
for p in $(PROGRAMS); do \
rm -f $(bindir)/‘echo $$p|sed ’$(transform)’‘; \

done

Whether to do the transformations on documentation files (Texinfo or man) is a tricky question;

there seems to be no perfect answer, due to the several reasons for name transforming. Docu-

mentation is not usually particular to a specific architecture, and Texinfo files do not conflict with

system documentation. But they might conflict with earlier versions of the same files, and man

pages sometimes do conflict with system documentation. As a compromise, it is probably best to

do name transformations on man pages but not on Texinfo manuals.



Chapter 9: Site Configuration 74

9.5 Setting Site Defaults

Autoconf-generated configure scripts allow your site to provide default values for some config-

uration values. You do this by creating site- and system-wide initialization files.

If the environment variable CONFIG_SITE is set, configure uses its value as the name of a shell

script to read. Otherwise, it reads the shell script ‘prefix/share/config.site’ if it exists, then

‘prefix/etc/config.site’ if it exists. Thus, settings in machine-specific files override those in

machine-independent ones in case of conflict.

Site files can be arbitrary shell scripts, but only certain kinds of code are really appropriate to

be in them. Because configure reads any cache file after it has read any site files, a site file can

define a default cache file to be shared between all Autoconf-generated configure scripts run on

that system. If you set a default cache file in a site file, it is a good idea to also set the output

variable CC in that site file, because the cache file is only valid for a particular compiler, but many

systems have several available.

You can examine or override the value set by a command line option to configure in

a site file; options set shell variables that have the same names as the options, with any

dashes turned into underscores. The exceptions are that ‘--without-’ and ‘--disable-’ op-

tions are like giving the corresponding ‘--with-’ or ‘--enable-’ option and the value ‘no’.

Thus, ‘--cache-file=localcache’ sets the variable cache_file to the value ‘localcache’;

‘--enable-warnings=no’ or ‘--disable-warnings’ sets the variable enable_warnings to the

value ‘no’; ‘--prefix=/usr’ sets the variable prefix to the value ‘/usr’; etc.

Site files are also good places to set default values for other output variables, such as CFLAGS,

if you need to give them non-default values: anything you would normally do, repetitively, on the

command line. If you use non-default values for prefix or exec prefix (wherever you locate the site

file), you can set them in the site file if you specify it with the CONFIG_SITE environment variable.

You can set some cache values in the site file itself. Doing this is useful if you are cross-compiling,

so it is impossible to check features that require running a test program. You could “prime the

cache” by setting those values correctly for that system in ‘prefix/etc/config.site’. To find out

the names of the cache variables you need to set, look for shell variables with ‘_cv_’ in their names

in the affected configure scripts, or in the Autoconf m4 source code for those macros.

The cache file is careful to not override any variables set in the site files. Similarly, you should

not override command-line options in the site files. Your code should check that variables such



Chapter 9: Site Configuration 75

as prefix and cache_file have their default values (as set near the top of configure) before

changing them.

Here is a sample file ‘/usr/share/local/gnu/share/config.site’. The command ‘configure

--prefix=/usr/share/local/gnu’ would read this file (if CONFIG_SITE is not set to a different

file).

# config.site for configure
#
# Default --prefix and --exec-prefix.
test "$prefix" = NONE && prefix=/usr/share/local/gnu
test "$exec_prefix" = NONE && exec_prefix=/usr/local/gnu
#
# Give Autoconf 2.x generated configure scripts a shared default
# cache file for feature test results, architecture-specific.
if test "$cache_file" = ./config.cache; then
cache_file="$prefix/var/config.cache"
# A cache file is only valid for one C compiler.
CC=gcc

fi



Chapter 10: Running configure Scripts 76

10 Running configure Scripts

Below are instructions on how to configure a package that uses a configure script, suitable for

inclusion as an ‘INSTALL’ file in the package. A plain-text version of ‘INSTALL’ which you may use

comes with Autoconf.

10.1 Basic Installation

These are generic installation instructions.

The configure shell script attempts to guess correct values for various system-dependent vari-

ables used during compilation. It uses those values to create a ‘Makefile’ in each directory of the

package. It may also create one or more ‘.h’ files containing system-dependent definitions. Finally,

it creates a shell script ‘config.status’ that you can run in the future to recreate the current

configuration, a file ‘config.cache’ that saves the results of its tests to speed up reconfiguring,

and a file ‘config.log’ containing compiler output (useful mainly for debugging configure).

If you need to do unusual things to compile the package, please try to figure out how configure

could check whether to do them, and mail diffs or instructions to the address given in the ‘README’

so they can be considered for the next release. If at some point ‘config.cache’ contains results

you don’t want to keep, you may remove or edit it.

The file ‘configure.in’ is used to create ‘configure’ by a program called autoconf. You only

need ‘configure.in’ if you want to change it or regenerate ‘configure’ using a newer version of

autoconf.

The simplest way to compile this package is:

1. cd to the directory containing the package’s source code and type ‘./configure’ to configure

the package for your system. If you’re using csh on an old version of System V, you might

need to type ‘sh ./configure’ instead to prevent csh from trying to execute configure itself.

Running configure takes awhile. While running, it prints some messages telling which features

it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with the package.

4. Type ‘make install’ to install the programs and any data files and documentation.



Chapter 10: Running configure Scripts 77

5. You can remove the program binaries and object files from the source code directory by

typing ‘make clean’. To also remove the files that configure created (so you can compile

the package for a different kind of computer), type ‘make distclean’. There is also a ‘make

maintainer-clean’ target, but that is intended mainly for the package’s developers. If you

use it, you may have to get all sorts of other programs in order to regenerate files that came

with the distribution.

10.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script

does not know about. You can give configure initial values for variables by setting them in the

environment. Using a Bourne-compatible shell, you can do that on the command line like this:

CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

Or on systems that have the env program, you can do it like this:

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

10.3 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by placing

the object files for each architecture in their own directory. To do this, you must use a version of

make that supports the VPATH variable, such as GNU make. cd to the directory where you want the

object files and executables to go and run the configure script. configure automatically checks

for the source code in the directory that configure is in and in ‘..’.

If you have to use a make that does not supports the VPATH variable, you have to compile the

package for one architecture at a time in the source code directory. After you have installed the

package for one architecture, use ‘make distclean’ before reconfiguring for another architecture.



Chapter 10: Running configure Scripts 78

10.4 Installation Names

By default, ‘make install’ will install the package’s files in ‘/usr/local/bin’, ‘/usr/local/man’,

etc. You can specify an installation prefix other than ‘/usr/local’ by giving configure the option

‘--prefix=path’.

You can specify separate installation prefixes for architecture-specific files and architecture-

independent files. If you give configure the option ‘--exec-prefix=path’, the package will use

path as the prefix for installing programs and libraries. Documentation and other data files will

still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like ‘--bindir=path’

to specify different values for particular kinds of files. Run ‘configure --help’ for a list of the

directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra pre-

fix or suffix on their names by giving configure the option ‘--program-prefix=PREFIX ’ or

‘--program-suffix=SUFFIX ’.

10.5 Optional Features

Some packages pay attention to ‘--enable-feature’ options to configure, where feature indi-

cates an optional part of the package. They may also pay attention to ‘--with-package’ options,

where package is something like ‘gnu-as’ or ‘x’ (for the X Window System). The ‘README’ should

mention any ‘--enable-’ and ‘--with-’ options that the package recognizes.

For packages that use the X Window System, configure can usually find the X include and

library files automatically, but if it doesn’t, you can use the configure options ‘--x-includes=dir’

and ‘--x-libraries=dir’ to specify their locations.

10.6 Specifying the System Type

There may be some features configure can not figure out automatically, but needs to determine

by the type of host the package will run on. Usually configure can figure that out, but if it prints

a message saying it can not guess the host type, give it the ‘--host=type’ option. type can either

be a short name for the system type, such as ‘sun4’, or a canonical name with three fields:



Chapter 10: Running configure Scripts 79

cpu-company-system

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t included in this

package, then this package doesn’t need to know the host type.

If you are building compiler tools for cross-compiling, you can also use the ‘--target=type’

option to select the type of system they will produce code for and the ‘--build=type’ option to

select the type of system on which you are compiling the package.

10.7 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site shell script

called ‘config.site’ that gives default values for variables like CC, cache_file, and prefix.

configure looks for ‘prefix/share/config.site’ if it exists, then ‘prefix/etc/config.site’ if it

exists. Or, you can set the CONFIG_SITE environment variable to the location of the site script. A

warning: not all configure scripts look for a site script.

10.8 Operation Controls

configure recognizes the following options to control how it operates.

--cache-file=file

Use and save the results of the tests in file instead of ‘./config.cache’. Set file to

‘/dev/null’ to disable caching, for debugging configure.

--help Print a summary of the options to configure, and exit.

--quiet

--silent

-q Do not print messages saying which checks are being made.

--srcdir=dir

Look for the package’s source code in directory dir. Usually configure can determine

that directory automatically.

--version

Print the version of Autoconf used to generate the configure script, and exit.

configure also accepts some other, not widely useful, options.



Chapter 11: Recreating a Configuration 80

11 Recreating a Configuration

The configure script creates a file named ‘config.status’ which describes which configuration

options were specified when the package was last configured. This file is a shell script which, if run,

will recreate the same configuration.

You can give ‘config.status’ the ‘--recheck’ option to update itself. This option is useful

if you change configure, so that the results of some tests might be different from the previ-

ous run. The ‘--recheck’ option re-runs configure with the same arguments you used before,

plus the ‘--no-create’ option, which prevent configure from running ‘config.status’ and cre-

ating ‘Makefile’ and other files, and the ‘--no-recursion’ option, which prevents configure

from running other configure scripts in subdirectories. (This is so other ‘Makefile’ rules can

run ‘config.status’ when it changes; see Section 3.3.3 [Automatic Remaking], page 16, for an

example).

‘config.status’ also accepts the options ‘--help’, which prints a summary of the options

to ‘config.status’, and ‘--version’, which prints the version of Autoconf used to create the

configure script that generated ‘config.status’.

‘config.status’ checks several optional environment variables that can alter its behavior:

VariableCONFIG SHELL
The shell with which to run configure for the ‘--recheck’ option. It must be Bourne-

compatible. The default is ‘/bin/sh’.

VariableCONFIG STATUS
The file name to use for the shell script that records the configuration. The default is

‘./config.status’. This variable is useful when one package uses parts of another and

the configure scripts shouldn’t be merged because they are maintained separately.

The following variables provide one way for separately distributed packages to share the values

computed by configure. Doing so can be useful if some of the packages need a superset of the

features that one of them, perhaps a common library, does. These variables allow a ‘config.status’

file to create files other than the ones that its ‘configure.in’ specifies, so it can be used for a

different package.



Chapter 11: Recreating a Configuration 81

VariableCONFIG FILES

The files in which to perform ‘@variable@’ substitutions. The default is the arguments

given to AC_OUTPUT in ‘configure.in’.

VariableCONFIG HEADERS

The files in which to substitute C #define statements. The default is the arguments

given to AC_CONFIG_HEADER; if that macro was not called, ‘config.status’ ignores

this variable.

These variables also allow you to write ‘Makefile’ rules that regenerate only some of the files.

For example, in the dependencies given above (see Section 3.3.3 [Automatic Remaking], page 16),

‘config.status’ is run twice when ‘configure.in’ has changed. If that bothers you, you can

make each run only regenerate the files for that rule:

config.h: stamp-h
stamp-h: config.h.in config.status

CONFIG_FILES= CONFIG_HEADERS=config.h ./config.status
echo > stamp-h

Makefile: Makefile.in config.status
CONFIG_FILES=Makefile CONFIG_HEADERS= ./config.status

(If ‘configure.in’ does not call AC_CONFIG_HEADER, there is no need to set CONFIG_HEADERS in

the make rules.)



Chapter 12: Questions About Autoconf 82

12 QuestionsAbout Autoconf

Several questions about Autoconf come up occasionally. Here some of them are addressed.

12.1 Distributing configure Scripts

What are the restrictions on distributing configure
scripts that Autoconf generates? How does that affect my
programs that use them?

There are no restrictions on how the configuration scripts that Autoconf produces may be

distributed or used. In Autoconf version 1, they were covered by the GNU General Public License.

We still encourage software authors to distribute their work under terms like those of the GPL, but

doing so is not required to use Autoconf.

Of the other files that might be used with configure, ‘config.h.in’ is under whatever copyright

you use for your ‘configure.in’, since it is derived from that file and from the public domain file

‘acconfig.h’. ‘config.sub’ and ‘config.guess’ have an exception to the GPL when they are

used with an Autoconf-generated configure script, which permits you to distribute them under

the same terms as the rest of your package. ‘install-sh’ is from the X Consortium and is not

copyrighted.

12.2 Why Require GNU m4?

Why does Autoconf require GNU m4?

Many m4 implementations have hard-coded limitations on the size and number of macros, which

Autoconf exceeds. They also lack several builtin macros that it would be difficult to get along

without in a sophisticated application like Autoconf, including:

builtin
indir
patsubst
__file__
__line__



Chapter 12: Questions About Autoconf 83

Since only software maintainers need to use Autoconf, and since GNU m4 is simple to configure

and install, it seems reasonable to require GNU m4 to be installed also. Many maintainers of GNU

and other free software already have most of the GNU utilities installed, since they prefer them.

12.3 How Can I Bootstrap?

If Autoconf requires GNU m4 and GNU m4 has an
Autoconf configure script, how do I bootstrap? It seems
like a chicken and egg problem!

This is a misunderstanding. Although GNU m4 does come with a configure script produced

by Autoconf, Autoconf is not required in order to run the script and install GNU m4. Autoconf is

only required if you want to change the m4 configure script, which few people have to do (mainly

its maintainer).

12.4 Why Not Imake?

Why not use Imake instead of configure scripts?

Several people have written addressing this question, so I include adaptations of their explana-

tions here.

The following answer is based on one written by Richard Pixley:

Autoconf generated scripts frequently work on machines which it has never been set up to handle

before. That is, it does a good job of inferring a configuration for a new system. Imake cannot do

this.

Imake uses a common database of host specific data. For X11, this makes sense because the

distribution is made as a collection of tools, by one central authority who has control over the

database.

GNU tools are not released this way. Each GNU tool has a maintainer; these maintainers are

scattered across the world. Using a common database would be a maintenance nightmare. Autoconf

may appear to be this kind of database, but in fact it is not. Instead of listing host dependencies,

it lists program requirements.



Chapter 12: Questions About Autoconf 84

If you view the GNU suite as a collection of native tools, then the problems are similar. But the

GNU development tools can be configured as cross tools in almost any host+target permutation.

All of these configurations can be installed concurrently. They can even be configured to share host

independent files across hosts. Imake doesn’t address these issues.

Imake templates are a form of standardization. The GNU coding standards address the same

issues without necessarily imposing the same restrictions.

Here is some further explanation, written by Per Bothner:

One of the advantages of Imake is that it easy to generate large Makefiles using cpp’s ‘#include’

and macro mechanisms. However, cpp is not programmable: it has limited conditional facilities,

and no looping. And cpp cannot inspect its environment.

All of these problems are solved by using sh instead of cpp. The shell is fully programmable, has

macro substitution, can execute (or source) other shell scripts, and can inspect its environment.

Paul Eggert elaborates more:

With Autoconf, installers need not assume that Imake itself is already installed and working

well. This may not seem like much of an advantage to people who are accustomed to Imake. But

on many hosts Imake is not installed or the default installation is not working well, and requiring

Imake to install a package hinders the acceptance of that package on those hosts. For example,

the Imake template and configuration files might not be installed properly on a host, or the Imake

build procedure might wrongly assume that all source files are in one big directory tree, or the

Imake configuration might assume one compiler whereas the package or the installer needs to use

another, or there might be a version mismatch between the Imake expected by the package and the

Imake supported by the host. These problems are much rarer with Autoconf, where each package

comes with its own independent configuration processor.

Also, Imake often suffers from unexpected interactions between make and the installer’s C pre-

processor. The fundamental problem here is that the C preprocessor was designed to preprocess

C programs, not ‘Makefile’s. This is much less of a problem with Autoconf, which uses the

general-purpose preprocessor m4, and where the package’s author (rather than the installer) does

the preprocessing in a standard way.

Finally, Mark Eichin notes:



Chapter 12: Questions About Autoconf 85

Imake isn’t all that extensible, either. In order to add new features to Imake, you need to

provide your own project template, and duplicate most of the features of the existing one. This

means that for a sophisticated project, using the vendor-provided Imake templates fails to provide

any leverage—since they don’t cover anything that your own project needs (unless it is an X11

program).

On the other side, though:

The one advantage that Imake has over configure: ‘Imakefile’s tend to be much shorter

(likewise, less redundant) than ‘Makefile.in’s. There is a fix to this, however—at least for the

Kerberos V5 tree, we’ve modified things to call in common ‘post.in’ and ‘pre.in’ ‘Makefile’

fragments for the entire tree. This means that a lot of common things don’t have to be duplicated,

even though they normally are in configure setups.



Chapter 13: Upgrading From Version 1 86

13 Upgrading FromVersion 1

Autoconf version 2 is mostly backward compatible with version 1. However, it introduces better

ways to do some things, and doesn’t support some of the ugly things in version 1. So, depending

on how sophisticated your ‘configure.in’ files are, you might have to do some manual work in

order to upgrade to version 2. This chapter points out some problems to watch for when upgrading.

Also, perhaps your configure scripts could benefit from some of the new features in version 2; the

changes are summarized in the file ‘NEWS’ in the Autoconf distribution.

First, make sure you have GNU m4 version 1.1 or higher installed, preferably 1.3 or higher.

Versions before 1.1 have bugs that prevent them from working with Autoconf version 2. Versions

1.3 and later are much faster than earlier versions, because as of version 1.3, GNU m4 has a more

efficient implementation of diversions and can freeze its internal state in a file that it can read back

quickly.

13.1 Changed File Names

If you have an ‘aclocal.m4’ installed with Autoconf (as opposed to in a particular package’s

source directory), you must rename it to ‘acsite.m4’. See Section 2.4 [Invoking autoconf], page 7.

If you distribute ‘install.sh’ with your package, rename it to ‘install-sh’ so make builtin

rules won’t inadvertently create a file called ‘install’ from it. AC_PROG_INSTALL looks for the

script under both names, but it is best to use the new name.

If you were using ‘config.h.top’ or ‘config.h.bot’, you still can, but you will have less clutter

if you merge them into ‘acconfig.h’. See Section 3.4.2 [Invoking autoheader], page 19.

13.2 Changed Makefiles

Add ‘@CFLAGS@’, ‘@CPPFLAGS@’, and ‘@LDFLAGS@’ in your ‘Makefile.in’ files, so they can take

advantage of the values of those variables in the environment when configure is run. Doing this

isn’t necessary, but it’s a convenience for users.

Also add ‘@configure_input@’ in a comment to each non-‘Makefile’ input file for AC_OUTPUT,

so that the output files will contain a comment saying they were produced by configure. Auto-



Chapter 13: Upgrading From Version 1 87

matically selecting the right comment syntax for all the kinds of files that people call AC_OUTPUT

on became too much work.

Add ‘config.log’ and ‘config.cache’ to the list of files you remove in distclean targets.

If you have the following in ‘Makefile.in’:

prefix = /usr/local
exec_prefix = ${prefix}

you must change it to:

prefix = @prefix@
exec_prefix = @exec_prefix@

The old behavior of replacing those variables without ‘@’ characters around them has been removed.

13.3 Changed Macros

Many of the macros were renamed in Autoconf version 2. You can still use the old names, but

the new ones are clearer, and it’s easier to find the documentation for them. See Chapter 15 [Old

Macro Names], page 96, for a table showing the new names for the old macros. Use the autoupdate

program to convert your ‘configure.in’ to using the new macro names. See Section 13.4 [Invoking

autoupdate], page 89.

Some macros have been superseded by similar ones that do the job better, but are not call-

compatible. If you get warnings about calling obsolete macros while running autoconf, you may

safely ignore them, but your configure script will generally work better if you follow the advice it

prints about what to replace the obsolete macros with. In particular, the mechanism for reporting

the results of tests has changed. If you were using echo or AC_VERBOSE (perhaps via AC_COMPILE_

CHECK), your configure script’s output will look better if you switch to AC_MSG_CHECKING and AC_

MSG_RESULT. See Section 6.4 [Printing Messages], page 60. Those macros work best in conjunction

with cache variables. See Section 6.3 [Caching Results], page 57.



Chapter 13: Upgrading From Version 1 88

13.4 Using autoupdate to Modernize configure

The autoupdate program updates a ‘configure.in’ file that calls Autoconf macros by their old

names to use the current macro names. In version 2 of Autoconf, most of the macros were renamed

to use a more uniform and descriptive naming scheme. See Section 7.2 [Macro Names], page 62,

for a description of the new scheme. Although the old names still work (see Chapter 15 [Old

Macro Names], page 96, for a list of the old macro names and the corresponding new names), you

can make your ‘configure.in’ files more readable and make it easier to use the current Autoconf

documentation if you update them to use the new macro names.

If given no arguments, autoupdate updates ‘configure.in’, backing up the original version

with the suffix ‘~’ (or the value of the environment variable SIMPLE_BACKUP_SUFFIX, if that is set).

If you give autoupdate an argument, it reads that file instead of ‘configure.in’ and writes the

updated file to the standard output.

autoupdate accepts the following options:

--help

-h Print a summary of the command line options and exit.

--macrodir=dir

-m dir Look for the Autoconf macro files in directory dir instead of the default installation

directory. You can also set the AC_MACRODIR environment variable to a directory; this

option overrides the environment variable.

--version

Print the version number of autoupdate and exit.

13.5 Changed Results

If you were checking the results of previous tests by examining the shell variable DEFS, you need

to switch to checking the values of the cache variables for those tests. DEFS no longer exists while

configure is running; it is only created when generating output files. This difference from version

1 is because properly quoting the contents of that variable turned out to be too cumbersome and

inefficient to do every time AC_DEFINE is called. See Section 6.3.1 [Cache Variable Names], page 58.

For example, here is a ‘configure.in’ fragment written for Autoconf version 1:

AC_HAVE_FUNCS(syslog)



Chapter 13: Upgrading From Version 1 89

case "$DEFS" in
*-DHAVE_SYSLOG*) ;;
*) # syslog is not in the default libraries. See if it’s in some other.
saved_LIBS="$LIBS"
for lib in bsd socket inet; do

AC_CHECKING(for syslog in -l$lib)
LIBS="$saved_LIBS -l$lib"
AC_HAVE_FUNCS(syslog)
case "$DEFS" in
*-DHAVE_SYSLOG*) break ;;
*) ;;
esac
LIBS="$saved_LIBS"

done ;;
esac

Here is a way to write it for version 2:

AC_CHECK_FUNCS(syslog)
if test $ac_cv_func_syslog = no; then
# syslog is not in the default libraries. See if it’s in some other.
for lib in bsd socket inet; do

AC_CHECK_LIB($lib, syslog, [AC_DEFINE(HAVE_SYSLOG)
LIBS="$LIBS $lib"; break])

done
fi

If you were working around bugs in AC_DEFINE_UNQUOTED by adding backslashes before quotes,

you need to remove them. It now works predictably, and does not treat quotes (except backquotes)

specially. See Section 6.2 [Setting Output Variables], page 56.

All of the boolean shell variables set by Autoconf macros now use ‘yes’ for the true value. Most

of them use ‘no’ for false, though for backward compatibility some use the empty string instead. If

you were relying on a shell variable being set to something like 1 or ‘t’ for true, you need to change

your tests.

13.6 Changed MacroWriting

When defining your own macros, you should now use AC_DEFUN instead of define. AC_DEFUN

automatically calls AC_PROVIDE and ensures that macros called via AC_REQUIRE do not interrupt

other macros, to prevent nested ‘checking. . .’ messages on the screen. There’s no actual harm in



Chapter 13: Upgrading From Version 1 90

continuing to use the older way, but it’s less convenient and attractive. See Section 7.1 [Macro

Definitions], page 62.

You probably looked at the macros that came with Autoconf as a guide for how to do things. It

would be a good idea to take a look at the new versions of them, as the style is somewhat improved

and they take advantage of some new features.

If you were doing tricky things with undocumented Autoconf internals (macros, variables, di-

versions), check whether you need to change anything to account for changes that have been made.

Perhaps you can even use an officially supported technique in version 2 instead of kludging. Or

perhaps not.

To speed up your locally written feature tests, add caching to them. See whether any of your

tests are of general enough usefulness to encapsulate into macros that you can share.



Chapter 14: History of Autoconf 91

14 History of Autoconf

You may be wondering, Why was Autoconf originally written? How did it get into its present

form? (Why does it look like gorilla spit?) If you’re not wondering, then this chapter contains no

information useful to you, and you might as well skip it. If you are wondering, then let there be

light. . .

14.1 Genesis

In June 1991 I was maintaining many of the GNU utilities for the Free Software Foundation.

As they were ported to more platforms and more programs were added, the number of ‘-D’ options

that users had to select in the ‘Makefile’ (around 20) became burdensome. Especially for me—I

had to test each new release on a bunch of different systems. So I wrote a little shell script to guess

some of the correct settings for the fileutils package, and released it as part of fileutils 2.0. That

configure script worked well enough that the next month I adapted it (by hand) to create similar

configure scripts for several other GNU utilities packages. Brian Berliner also adapted one of my

scripts for his CVS revision control system.

Later that summer, I learned that Richard Stallman and Richard Pixley were developing similar

scripts to use in the GNU compiler tools; so I adapted my configure scripts to support their

evolving interface: using the file name ‘Makefile.in’ as the templates; adding ‘+srcdir’, the first

option (of many); and creating ‘config.status’ files.

14.2 Exodus

As I got feedback from users, I incorporated many improvements, using Emacs to search and

replace, cut and paste, similar changes in each of the scripts. As I adapted more GNU utilities

packages to use configure scripts, updating them all by hand became impractical. Rich Murphey,

the maintainer of the GNU graphics utilities, sent me mail saying that the configure scripts were

great, and asking if I had a tool for generating them that I could send him. No, I thought, but

I should! So I started to work out how to generate them. And the journey from the slavery of

hand-written configure scripts to the abundance and ease of Autoconf began.

Cygnus configure, which was being developed at around that time, is table driven; it is meant

to deal mainly with a discrete number of system types with a small number of mainly unguessable

features (such as details of the object file format). The automatic configuration system that Brian



Chapter 14: History of Autoconf 92

Fox had developed for Bash takes a similar approach. For general use, it seems to me a hopeless

cause to try to maintain an up-to-date database of which features each variant of each operating

system has. It’s easier and more reliable to check for most features on the fly—especially on hybrid

systems that people have hacked on locally or that have patches from vendors installed.

I considered using an architecture similar to that of Cygnus configure, where there is a single

configure script that reads pieces of ‘configure.in’ when run. But I didn’t want to have to

distribute all of the feature tests with every package, so I settled on having a different configure

made from each ‘configure.in’ by a preprocessor. That approach also offered more control and

flexibility.

I looked briefly into using the Metaconfig package, by Larry Wall, Harlan Stenn, and Raphael

Manfredi, but I decided not to for several reasons. The Configure scripts it produces are interactive,

which I find quite inconvenient; I didn’t like the ways it checked for some features (such as library

functions); I didn’t know that it was still being maintained, and the Configure scripts I had seen

didn’t work on many modern systems (such as System V R4 and NeXT); it wasn’t very flexible in

what it could do in response to a feature’s presence or absence; I found it confusing to learn; and it

was too big and complex for my needs (I didn’t realize then how much Autoconf would eventually

have to grow).

I considered using Perl to generate my style of configure scripts, but decided that m4 was better

suited to the job of simple textual substitutions: it gets in the way less, because output is implicit.

Plus, everyone already has it. (Initially I didn’t rely on the GNU extensions to m4.) Also, some

of my friends at the University of Maryland had recently been putting m4 front ends on several

programs, including tvtwm, and I was interested in trying out a new language.

14.3 Leviticus

Since my configure scripts determine the system’s capabilities automatically, with no interac-

tive user intervention, I decided to call the program that generates them Autoconfig. But with a

version number tacked on, that name would be too long for old UNIX file systems, so I shortened

it to Autoconf.

In the fall of 1991 I called together a group of fellow questers after the Holy Grail of portability

(er, that is, alpha testers) to give me feedback as I encapsulated pieces of my handwritten scripts in

m4 macros and continued to add features and improve the techniques used in the checks. Prominent

among the testers were François Pinard, who came up with the idea of making an ‘autoconf’ shell

script to run m4 and check for unresolved macro calls; Richard Pixley, who suggested running the



Chapter 14: History of Autoconf 93

compiler instead of searching the file system to find include files and symbols, for more accurate

results; Karl Berry, who got Autoconf to configure TEX and added the macro index to the doc-

umentation; and Ian Taylor, who added support for creating a C header file as an alternative to

putting ‘-D’ options in a ‘Makefile’, so he could use Autoconf for his UUCP package. The alpha

testers cheerfully adjusted their files again and again as the names and calling conventions of the

Autoconf macros changed from release to release. They all contributed many specific checks, great

ideas, and bug fixes.

14.4 Numbers

In July 1992, after months of alpha testing, I released Autoconf 1.0, and converted many GNU

packages to use it. I was surprised by how positive the reaction to it was. More people started

using it than I could keep track of, including people working on software that wasn’t part of the

GNU Project (such as TCL, FSP, and Kerberos V5). Autoconf continued to improve rapidly, as

many people using the configure scripts reported problems they encountered.

Autoconf turned out to be a good torture test for m4 implementations. UNIX m4 started to

dump core because of the length of the macros that Autoconf defined, and several bugs showed up

in GNU m4 as well. Eventually, we realized that we needed to use some features that only GNU m4

has. 4.3BSD m4, in particular, has an impoverished set of builtin macros; the System V version is

better, but still doesn’t provide everything we need.

More development occurred as people put Autoconf under more stresses (and to uses I hadn’t

anticipated). Karl Berry added checks for X11. david zuhn contributed C++ support. François

Pinard made it diagnose invalid arguments. Jim Blandy bravely coerced it into configuring GNU

Emacs, laying the groundwork for several later improvements. Roland McGrath got it to configure

the GNU C Library, wrote the autoheader script to automate the creation of C header file tem-

plates, and added a ‘--verbose’ option to configure. Noah Friedman added the ‘--macrodir’

option and AC_MACRODIR environment variable. (He also coined the term autoconfiscate to mean

“adapt a software package to use Autoconf”.) Roland and Noah improved the quoting protection

in AC_DEFINE and fixed many bugs, especially when I got sick of dealing with portability problems

from February through June, 1993.

14.5 Deuteronomy

A long wish list for major features had accumulated, and the effect of several years of patching

by various people had left some residual cruft. In April 1994, while working for Cygnus Support,



Chapter 14: History of Autoconf 94

I began a major revision of Autoconf. I added most of the features of the Cygnus configure

that Autoconf had lacked, largely by adapting the relevant parts of Cygnus configure with the

help of david zuhn and Ken Raeburn. These features include support for using ‘config.sub’,

‘config.guess’, ‘--host’, and ‘--target’; making links to files; and running configure scripts in

subdirectories. Adding these features enabled Ken to convert GNU as, and Rob Savoye to convert

DejaGNU, to using Autoconf.

I added more features in response to other peoples’ requests. Many people had asked for

configure scripts to share the results of the checks between runs, because (particularly when

configuring a large source tree, like Cygnus does) they were frustratingly slow. Mike Haertel sug-

gested adding site-specific initialization scripts. People distributing software that had to unpack

on MS-DOS asked for a way to override the ‘.in’ extension on the file names, which produced

file names like ‘config.h.in’ containing two dots. Jim Avera did an extensive examination of the

problems with quoting in AC_DEFINE and AC_SUBST; his insights led to significant improvements.

Richard Stallman asked that compiler output be sent to ‘config.log’ instead of ‘/dev/null’, to

help people debug the Emacs configure script.

I made some other changes because of my dissatisfaction with the quality of the program. I made

the messages showing results of the checks less ambiguous, always printing a result. I regularized

the names of the macros and cleaned up coding style inconsistencies. I added some auxiliary

utilities that I had developed to help convert source code packages to use Autoconf. With the

help of François Pinard, I made the macros not interrupt each others’ messages. (That feature

revealed some performance bottlenecks in GNU m4, which he hastily corrected!) I reorganized the

documentation around problems people want to solve. And I began a testsuite, because experience

had shown that Autoconf has a pronounced tendency to regress when we change it.

Again, several alpha testers gave invaluable feedback, especially François Pinard, Jim Meyering,

Karl Berry, Rob Savoye, Ken Raeburn, and Mark Eichin.

Finally, version 2.0 was ready. And there was much rejoicing. (And I have free time again. I

think. Yeah, right.)



Chapter 15: Old Macro Names 95

15 OldMacroNames

In version 2 of Autoconf, most of the macros were renamed to use a more uniform and descriptive

naming scheme. Here are the old names of the macros that were renamed, followed by the current

names of those macros. Although the old names are still accepted by the autoconf program for

backward compatibility, the old names are considered obsolete. See Section 7.2 [Macro Names],

page 62, for a description of the new naming scheme.

AC_ALLOCA

AC_FUNC_ALLOCA

AC_ARG_ARRAY

removed because of limited usefulness

AC_CHAR_UNSIGNED

AC_C_CHAR_UNSIGNED

AC_CONST AC_C_CONST

AC_CROSS_CHECK

AC_C_CROSS

AC_ERROR AC_MSG_ERROR

AC_FIND_X

AC_PATH_X

AC_FIND_XTRA

AC_PATH_XTRA

AC_FUNC_CHECK

AC_CHECK_FUNC

AC_GCC_TRADITIONAL

AC_PROG_GCC_TRADITIONAL

AC_GETGROUPS_T

AC_TYPE_GETGROUPS

AC_GETLOADAVG

AC_FUNC_GETLOADAVG

AC_HAVE_FUNCS

AC_CHECK_FUNCS

AC_HAVE_HEADERS

AC_CHECK_HEADERS



Chapter 15: Old Macro Names 96

AC_HAVE_POUNDBANG

AC_SYS_INTERPRETER (different calling convention)

AC_HEADER_CHECK

AC_CHECK_HEADER

AC_HEADER_EGREP

AC_EGREP_HEADER

AC_INLINE

AC_C_INLINE

AC_LN_S AC_PROG_LN_S

AC_LONG_DOUBLE

AC_C_LONG_DOUBLE

AC_LONG_FILE_NAMES

AC_SYS_LONG_FILE_NAMES

AC_MAJOR_HEADER

AC_HEADER_MAJOR

AC_MINUS_C_MINUS_O

AC_PROG_CC_C_O

AC_MMAP AC_FUNC_MMAP

AC_MODE_T

AC_TYPE_MODE_T

AC_OFF_T AC_TYPE_OFF_T

AC_PID_T AC_TYPE_PID_T

AC_PREFIX

AC_PREFIX_PROGRAM

AC_PROGRAMS_CHECK

AC_CHECK_PROGS

AC_PROGRAMS_PATH

AC_PATH_PROGS

AC_PROGRAM_CHECK

AC_CHECK_PROG

AC_PROGRAM_EGREP

AC_EGREP_CPP

AC_PROGRAM_PATH

AC_PATH_PROG



Chapter 15: Old Macro Names 97

AC_REMOTE_TAPE

removed because of limited usefulness

AC_RESTARTABLE_SYSCALLS

AC_SYS_RESTARTABLE_SYSCALLS

AC_RETSIGTYPE

AC_TYPE_SIGNAL

AC_RSH removed because of limited usefulness

AC_SETVBUF_REVERSED

AC_FUNC_SETVBUF_REVERSED

AC_SET_MAKE

AC_PROG_MAKE_SET

AC_SIZEOF_TYPE

AC_CHECK_SIZEOF

AC_SIZE_T

AC_TYPE_SIZE_T

AC_STAT_MACROS_BROKEN

AC_HEADER_STAT

AC_STDC_HEADERS

AC_HEADER_STDC

AC_STRCOLL

AC_FUNC_STRCOLL

AC_ST_BLKSIZE

AC_STRUCT_ST_BLKSIZE

AC_ST_BLOCKS

AC_STRUCT_ST_BLOCKS

AC_ST_RDEV

AC_STRUCT_ST_RDEV

AC_SYS_SIGLIST_DECLARED

AC_DECL_SYS_SIGLIST

AC_TEST_CPP

AC_TRY_CPP

AC_TEST_PROGRAM

AC_TRY_RUN

AC_TIMEZONE

AC_STRUCT_TIMEZONE



Chapter 15: Old Macro Names 98

AC_TIME_WITH_SYS_TIME

AC_HEADER_TIME

AC_UID_T AC_TYPE_UID_T

AC_UTIME_NULL

AC_FUNC_UTIME_NULL

AC_VFORK AC_FUNC_VFORK

AC_VPRINTF

AC_FUNC_VPRINTF

AC_WAIT3 AC_FUNC_WAIT3

AC_WARN AC_MSG_WARN

AC_WORDS_BIGENDIAN

AC_C_BIGENDIAN

AC_YYTEXT_POINTER

AC_DECL_YYTEXT



Environment Variable Index 99

EnvironmentVariable Index

This is an alphabetical list of the environment variables that Autoconf checks.

A
AC MACRODIR . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7, 8, 9, 20, 89

C
CONFIG FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CONFIG HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CONFIG SHELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

CONFIG SITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CONFIG STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

S
SIMPLE BACKUP SUFFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Output Variable Index 100

OutputVariable Index

This is an alphabetical list of the variables that Autoconf can substitute into files that it creates,

typically one or more ‘Makefile’s. See Section 6.2 [Setting Output Variables], page 56, for more

information on how this is done.

A
ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

AWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B
bindir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

build. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

build alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

build cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

build os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

build vendor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 25, 43

CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 24

configure input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CPPFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CXX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CXXCPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CXXFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 24

D
datadir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

DEFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

E
exec prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

H
host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

host alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

host cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

host os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

host vendor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

I
includedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

infodir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

INSTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

INSTALL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

INSTALL PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

K
KMEM GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

L
LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

LEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

LEX OUTPUT ROOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

LEXLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

libdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

libexecdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

LIBOBJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 32, 38

LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 43, 44

LN S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

localstatedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

M
mandir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

N
NEED SETGID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

O
oldincludedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

P
prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

program transform name . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Output Variable Index 101

R
RANLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

S
sbindir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SET MAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

sharedstatedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

srcdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

subdirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

sysconfdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

T
target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

target alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

target cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

target os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

target vendor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

top srcdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

X
X CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

X EXTRA LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

X LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

X PRE LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Y
YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Preprocessor Symbol Index 102

Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define. To

work with Autoconf, C source code needs to use these names in #if directives.

CHAR UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ALL SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

MINIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

POSIX 1 SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

POSIX SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

POSIX VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C
C ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CLOSEDIR VOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

const. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

D
DGUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

DIRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

G
GETGROUPS T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

GETLODAVG PRIVILEGED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

GETPGRP VOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

gid t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

H
HAVE ALLOCA H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

HAVE CONFIG H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

HAVE DIRENT H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

HAVE DOPRNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

HAVE GETMNTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

HAVE header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

HAVE LONG DOUBLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

HAVE LONG FILE NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

HAVE MMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE NDIR H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

HAVE RESTARTABLE SYSCALLS . . . . . . . . . . . . . . . . . . . . . . . 42

HAVE ST BLKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HAVE ST BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HAVE ST RDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HAVE STRCOLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE STRFTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE SYS DIR H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

HAVE SYS NDIR H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

HAVE SYS WAIT H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

HAVE TM ZONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HAVE TZNAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HAVE UNISTD H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

HAVE UTIME NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE VFORK H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE VPRINTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

HAVE WAIT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

I
inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

INT 16 BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

L
LONG 64 BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

M
MAJOR IN MKDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

MAJOR IN SYSMACROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

mode t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

N
NDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

NEED MEMORY H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

NEED SETGID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

NLIST NAME UNION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

NLIST STRUCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

NO MINUS C MINUS O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



Preprocessor Symbol Index 103

O
off t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

P
pid t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

R
RETSIGTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

S
SETVBUF REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

size t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

STDC HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

SVR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SYS SIGLIST DECLARED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

SYSDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

SYSNDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

T
TIME WITH SYS TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

TM IN SYS TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

U
uid t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

UMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

UMAX4 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

USG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

V
vfork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VOID CLOSEDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

W
WORDS BIGENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Y
YYTEXT POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Macro Index 104

Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the macros

are listed without their preceding ‘AC_’.

A
AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ARG ARRAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ARG ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ARG PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ARG WITH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B
BEFORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C
C BIGENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C CHAR UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

C CONST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C CROSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

C INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C LONG DOUBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CACHE CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

CACHE VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CANONICAL HOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CANONICAL SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAR UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

CHECK FUNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHECK FUNCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHECK HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHECK HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHECK LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHECK PROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHECK PROGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHECK SIZEOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHECK TOOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHECK TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CHECKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

COMPILE CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CONFIG AUX DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CONFIG HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CONFIG SUBDIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CONST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

CROSS CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D
DECL SYS SIGLIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DECL YYTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

DEFINE UNQUOTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

DEFUN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

DIR HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DYNIX SEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

E
EGREP CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

EGREP HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ERROR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

F
FIND X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

FIND XTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

FUNC ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

FUNC CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

FUNC CLOSEDIR VOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

FUNC GETLOADAVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

FUNC GETMNTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

FUNC GETPGRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

FUNC MEMCMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

FUNC MMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FUNC SETVBUF REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FUNC STRCOLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FUNC STRFTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FUNC UTIME NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FUNC VFORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Macro Index 105

FUNC VPRINTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FUNC WAIT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G
GCC TRADITIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

GETGROUPS T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

GETLOADAVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

H
HAVE FUNCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

HAVE HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

HAVE LIBRARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

HAVE POUNDBANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

HEADER CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

HEADER DIRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

HEADER EGREP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

HEADER MAJOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

HEADER STAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

HEADER STDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

HEADER SYS WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

HEADER TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

I
INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

INT 16 BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IRIX SUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ISC POSIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

L
LANG C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

LANG CPLUSPLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

LANG RESTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

LANG SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

LINK FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

LN S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

LONG 64 BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

LONG DOUBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

LONG FILE NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

M
MAJOR HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MEMORY H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

MINIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

MINUS C MINUS O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MODE T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MSG CHECKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

MSG ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

MSG RESULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

MSG WARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

O
OBSOLETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

OFF T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

P
PATH PROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

PATH PROGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

PATH X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

PATH XTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

PID T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PREFIX PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

PREREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

PROG AWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PROG CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PROG CC C O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PROG CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PROG CXX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

PROG CXXCPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

PROG GCC TRADITIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

PROG INSTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

PROG LEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

PROG LN S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

PROG MAKE SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

PROG RANLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

PROG YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

PROGRAM CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PROGRAM EGREP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PROGRAM PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PROGRAMS CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PROGRAMS PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

PROVIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Macro Index 106

R
REMOTE TAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REPLACE FUNCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

REQUIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REQUIRE CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

RESTARTABLE SYSCALLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

RETSIGTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

RSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

S
SCO INTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

SET MAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

SETVBUF REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

SIZE T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

SIZEOF TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ST BLKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ST BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ST RDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

STAT MACROS BROKEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 98

STDC HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

STRCOLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

STRUCT ST BLKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

STRUCT ST BLOCKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

STRUCT ST RDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

STRUCT TIMEZONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

STRUCT TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

SUBST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SUBST FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

SYS INTERPRETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

SYS LONG FILE NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

SYS RESTARTABLE SYSCALLS . . . . . . . . . . . . . . . . . . . . . . . . 42

SYS SIGLIST DECLARED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

T
TEST CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

TEST PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

TIME WITH SYS TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

TIMEZONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

TRY COMPILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

TRY CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

TRY LINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

TRY RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

TYPE GETGROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TYPE MODE T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TYPE OFF T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TYPE PID T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TYPE SIGNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TYPE SIZE T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TYPE UID T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

U
UID T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

UNISTD H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

USG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

UTIME NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

V
VERBOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

VFORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VPRINTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

W
WAIT3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

WARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

WITH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

WORDS BIGENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

X
XENIX DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Y
YYTEXT POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



i

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Making configure Scripts . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Writing ‘configure.in’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Using autoscan to Create ‘configure.in’ . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Using ifnames to List Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Using autoconf to Create configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Using autoreconf to Update configure Scripts . . . . . . . . . . . . . . . . . . 8

3 Initialization and Output Files . . . . . . . . . . . . . . . . . 10

3.1 Finding configure Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Creating Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Substitutions in Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Preset Output Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Build Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Automatic Remaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Configuration Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Configuration Header Templates . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Using autoheader to Create ‘config.h.in’. . . . . . . . . . . . . 19

3.5 Configuring Other Packages in Subdirectories. . . . . . . . . . . . . . . . . . . . 20

3.6 Default Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Version Numbers in configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Existing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Alternative Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Particular Program Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Generic Program Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Library Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Particular Function Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Generic Function Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Particular Header Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.2 Generic Header Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Typedefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.1 Particular Typedef Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



ii

4.6.2 Generic Typedef Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Compiler Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 UNIX Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Writing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Examining Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Examining Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Examining Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Checking Run Time Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 Running Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.2 Guidelines for Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.3 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Portable Shell Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Testing Values and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Multiple Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 Language Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Results of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Defining C Preprocessor Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Setting Output Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Caching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 Cache Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.2 Cache Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Printing Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Writing Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Macro Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Macro Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Quoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 Dependencies Between Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4.1 Prerequisite Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 Suggested Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.3 Obsolete Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Manual Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.1 Specifying the System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Getting the Canonical System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3 System Type Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4 Using the System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



iii

9 Site Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1 Working With External Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.2 Choosing Package Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.3 Configuring Site Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.4 Transforming Program Names When Installing . . . . . . . . . . . . . . . . . . 71

9.4.1 Transformation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.4.2 Transformation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.4.3 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.5 Setting Site Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10 Running configure Scripts . . . . . . . . . . . . . . . . . . . . 76

10.1 Basic Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10.2 Compilers and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

10.3 Compiling For Multiple Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 77

10.4 Installation Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.5 Optional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.6 Specifying the System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.7 Sharing Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.8 Operation Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

11 Recreating a Configuration . . . . . . . . . . . . . . . . . . . . 80

12 Questions About Autoconf . . . . . . . . . . . . . . . . . . . . 82

12.1 Distributing configure Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12.2 Why Require GNU m4? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12.3 How Can I Bootstrap? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

12.4 Why Not Imake? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13 Upgrading From Version 1 . . . . . . . . . . . . . . . . . . . . 86

13.1 Changed File Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

13.2 Changed Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

13.3 Changed Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.4 Using autoupdate to Modernize configure . . . . . . . . . . . . . . . . . . . . 88

13.5 Changed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13.6 Changed Macro Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14 History of Autoconf . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14.1 Genesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14.2 Exodus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14.3 Leviticus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

14.4 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



iv

14.5 Deuteronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15 Old Macro Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Environment Variable Index . . . . . . . . . . . . . . . . . . . . . . . 99

Output Variable Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Preprocessor Symbol Index. . . . . . . . . . . . . . . . . . . . . . . 102

Macro Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104


