
Janaka Jayawardena

�
����� ���

��
�����	��

������� ��
�	������

Janaka Jayawardena

The Bourne Shell

Not really a contender as an interactive shell

� Classic Bourne shell hopelessly outclassed as an inter-
active shell by the C shell and others

� Newer versions of the Bourne shell (and ksh) have
most of the C shell’s interactive usage features but
these shells are not widely available

Still the shell of choice for scripting

� Available on every UNIX platform

� Perhaps less readable, but contains a very stable and
predictable set of control flow structures

� Need to know for System Administration needs as
most startup scripts on UNIX variants are all written in
Bourne shell

� The predominantly used scripting language for the
installation of software packages.

Janaka Jayawardena

Bourne Shell

I/O Redirection

Redirecting standard output

��

���� ��
��	��
	

Redirecting standard output and standard error

��

���� ����� ��
��	��
	

Redirecting standard error only

��

���� ���
��	��
	

Pipes

Pipe standard output

��

���� �� ��

����

Pipe standard output and standard error

��

���� ����� �� ��

���

Background Jobs

Run a process in the background

��

���� �� ��

���� ��
��	� �

Janaka Jayawardena

Bourne Shell Programming

Creating and running a shell script

The echo command

Variables (and environment variables)

The significance of quotes

Arithmetic operations

Manipulating path names

Intro to conditionals (the if statement)

The test command

Other forms of the if statement

The for and while loops

The case (switch) statement

Miscellaneous

Parsing command line arguments

Helpful tools
awk, sed, other misc shell utilities

Janaka Jayawardena

Creating and Running a Shell Script

Shell script

File that contains UNIX commands and shell directives that are to be exe-
cuted in sequence.

Make a subshell execute the script

�
� 	�����
����

or

	
��
� ���� 	�����
����

	�����
����

To ensure that the right shell is used by system to process the file, the line:

��������

must be the first line in the shell script (on most systems).

Make current shell execute the script

�� � 	�����
����

Comments in shell scripts

Anything that follows a pound sign (#) is considered to be a comment

this is a line that is entirely a comment

ls # everything from here on is a comment

Janaka Jayawardena

The echo command

echo

Print out all arguments to the command

���� ������ ��� �� �
����
�

���� ����� ��� �� �
����

���� ������ � � � � � � � ��� �� � � � � � � �
����
�

���� �����

���� �	�
�

set

Prints out the currently defined local variables to the shell.

env

Prints out the currently defined environment variables to the shell.

Janaka Jayawardena

Variables (and environment variables)

Variables

By default, all variables are local (accessible only to the shell that is proc-
essing these commands). Variables hold string values.

��������������

�������
�

������������
�� 	�����������

Using Variables

The string contained in a variable is accessed by:

���������

This is called variable expansion.

Environment Variables

All variables can be turned into environment variables by:

������� ��������

The values of environment variables are then visible to programs (com-
mands, subshells, etc) run from the current shell.

������� ��
�

Some pre–defined environment variables:
HOME, PATH, SHELL, TERM, USER

Janaka Jayawardena

The significance of quotes

Back quotes

Text surrounded by back quotes will be executed as through it were a com-
mand and the back quoted string will be replaced by the standard output
of the command.

�
��� ����� �� �
� ���

Single Quotes

Text enclosed in single quotes is treated as a single piece of text without
any special processing.

�
��� �
���� ��� �� �������� �������

�
��� ���� ����� ����
����� ��� ��	���

Double Quotes

Text enclosed in double quotes have shell variable expansions performed
on them.

�
��� �
���� ��� �� �������� �������

�
��� ���� ����� ����
����� ��� ��	���

Janaka Jayawardena

Arithmetic Operations

Expr

Since variables are string quantities, the expr command is used in Bourne
shell scripts to perform integer arithmetic operations.

��

���
�������� ��� �� ���
����� ��

Some of the arithmetic operators supported by expr are:
���� �� ���
���� 	� ���
���� �� ���
����
� ���
���� �� ���
�� ���� �
���� ������ ��� (where relop can be: <, <=, =, !=, >=, >)
����� �� ���� (exp1 if it is not null or zero, exp2 if

 otherwise)
����� �� ���� (exp if neither exp is null or zero, 0 if

 otherwise)

Be careful to use back slashes to escape expr operators that clash with shell
metacharacters.

Janaka Jayawardena

Manipulating path names

basename

��������� �����
� ��		��

Suffix is optional. Basename deletes any prefix ending in / and the option-
al suffix.

dirname

�������� �����

Often found on System V only, dirname delivers all but the last level of
the path name in string.

Embedding a variable in a string

Curly–braces may be used to embed a variable in a string.

������
��
����� ���	����������		��

Filename generation metacharacters

Used to provide wild card matching of filenames (at the shell level).

* Match zero more characters
? Match exactly one character
[abc] Match exactly one of the characters
[a–z] Match exactly one character in the specified range

Examples:
ls *.c
cat [a–f]*.?
cp ../book/chap?.txt .

Janaka Jayawardena

Intro to conditionals (the if statement)

The basic if statement

��� ������	
�

�
� � � � � � � � � ������	�
��

Triggering a conditional

Most flow control constructs are triggered by the exit status of the condi-
tional command.

exit status 0 –––––––– OK (true)
exit status non zero ––– NO (false)

All UNIX commands return an exit status. Some commands use the exit
status to indicate the success/failure of the command’s mission.

Inquiring the exit status

The special shell variable $? contains the exit status of the most recently
run command. /dev/null is a data hole, where anything sent to it disap-
pears.

��
�� ���� � ���� �
������	� � �� �	
������

�
�� ��
��
�� ��� � ����� �
������	� �� �	
������

�
�� ��

�
�� ��

Command with known exit status

The command true returns an exit status of zero. The command false re-
turns an exit status of 1.

Janaka Jayawardena

The test command

test

The test command is used in Bourne Shell scripts to evaluate logical ex-
pressions. If the logical expression is true, test returns zero (0). If the log-
ical expression is false, test returns one (1).

Compare strings

�
�� � ���
���� �� ���
���

�
��� ���
���� ��� ���
���

Compare integers

�
���
���� �
����
���

where relop can be:
����� � ��
�� � �
��� � ��
�� � ��
�� � ���

Test path names (file/directory names)

�
��� ��� �
�
���

�
��� ��� �
�
���

�
��� ��� �
�
���

�
��� �	� �
�
���

�
��� ��� �
�
���

Janaka Jayawardena

Other forms of the if statement

The if–else statement

��� ��

���

����

� � � � � � � � ��

���

�	
��

� � � � � � � ��

���

��

The if–elseif statement

��� ��

���

����

� � � � � � � ��

���

�	��� ��

���

����

� � � � � � � ��

���

�	
�

� � � � � � � ��

���

��

There can be as many elif clauses as needed. There need not be an ending
else clause.

Janaka Jayawardena

The for and while loops

The for loop

���� �����

����

� ����
��
� � � � � � � � �����
��
��
�

For each string in the argument list, sets the value of the loop–index vari-
able to that string and executes the command until the argument list if ex-
hausted.

The while loop

�	
��� �����
�
��
� � � � � � � � �����
��
��
�

While the command in the while clause returns a zero exit status, execute
the commands within the loop.

Janaka Jayawardena

The case (switch) statement

�
�
� �������������� ��
� � � � � � � � �
��
����� � ����
������ 		
� � � � � � � � �
��
����� � ����
�����		
� � � � � � � � �
��
����� � ����
�����		
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � ��� � ����
���� 		

�
�

If the switch–string matches any of the patterns (1,2,3, etc), the specific
command cluster is executed.

The patterns may contain filename generation metacharacters for wild-
carding of strings.

The commands may be any number of commands that are ended by the ;;.

*) represents a default clause if nothing matches. This may be omitted.

Janaka Jayawardena

Miscellaneous

Reading from the standard input into a variable

���
� �����	
�

The next line from the standard input (up to and not including the newline)
is read literally into the variable. Embedded spaces in the input line are
preserved.

���
� �����	
��� �����	
��� �����	
�������

The first word in the input line is stored in variable1, the next in variable2,
the next in variable3, etc. If there are more words than variables, the last
variables gets all the last words.

Terminating execution of the shell script

����� ���������
��

����� �

When this statement is executed, the shell script will terminate, returning
the specified exit status value to the calling process.

Janaka Jayawardena

Parsing command line arguments

Command line arguments

Sometimes referred to as positional parameters, command line arguments
are the space/tab separated strings that are given to the shell script when
it is invoked.

���� ���� ���

In the above, scr is the name of the file that is being executed and foo and
bar are two command line arguments.

Accessing command line arguments from a
script

A number of special variables hold the values of the command line argu-
ments.

$0 is the name of the script
$1 is the value of the first command line argument
$2 is the value of the second command line argument

The variable $# contains the number of arguments the script was invoked
with. This number does not include the name of the script ($0).

The variable $* expands to all the command line arguments. Within a
double quoted string, the variable $@ expands to all command line argu-
ments as separately quoted strings.

Shift

The shift command moves the command line arguments to the left, losing
the leftmost value. (ie. $0 is lost, $1 becomes $0, $2 becomes $1,
and so on.)

Janaka Jayawardena

Awk

A pattern scanning and processing language, it contains many constructs
that are familiar to C programmers. Invocation is of the form:

��
� ��
�
��	�� ������ ���������� �
��	�����

where:
–f file The awk program is contained in file.
–F c Make the character c the field separator.
program Execute the awk commands in the argument string

program.
files Read input from the named files (standard input is

the default)

Awk commands are of the form:
����	��� ��������

where pattern maybe any regular expression (or complex awk expression
which may also include regular expressions). When the pattern is matched
in the input files, the accompanying action is executed. The special pat-
terns BEGIN and END cause the associated actions to be executed at the
beginning of and at the end of the awk run. Action is a valid awk program
statement.

Janaka Jayawardena

Awk program constructs

Statements

if (conditional) statement [else statement]
while (conditional) statement
for (variable in array) statement
for (expression ; conditional; expression) statement
break
continue
{ [statement]..... }
variable = expression
print [expression–list] [expression]
printf format [, expression–list] [expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Expression Operators

= += –= *= /= %= Assignment
|| OR
&& AND
! Negate value of expression
> >= < <= Relational operators
== != ~ !~ Relational operators
string1 string2 String concatenation, resulting in string1string2
+ – Plus, minus
* / % Multiply, divide, remainder
++ –– Increment, decrement (prefix or postfix)

Janaka Jayawardena

Awk program constructs

Some built–in variables

FILENAME Name of current input file
FS Input field separator character
NF Number of fields in input record
NR Number of input record
OFMT Output format for numbers
OFS Output field separator string
ORS Output record separator string
RS Input record separator character
$n The nth field in the current input record
$0 The entire input record

Built–in functions

cos(expr) Cosine of expr
exp(expr) Exponential of expr
getline() Reads next input line
index(s1, s2) Position of string s2 in s1
int(expr) Integer part of expr
length(s) Length of string s
log(expr) Natural logarithm of expr
sin(expr) Sine of expr
split(s,a,c) Split s into a[1]...a[n] on character c, return n
sprintf(fmt,....) Format according to fmt
substr(s,m,n) n–character substring of s beginning at position m

Janaka Jayawardena

Sed

A stream editor. Invoked as:

�
	 � ��
� ������	� �� ���� �
�
�� ����� � �� �
�
����� �

where
–e command Command is a sed command. Multiple

commands may be issued. If there is
only one –e option and no –f options,
the –e can be omitted.

–f file Take the sed script from the file.
–n Only print selected output.

Sed copies the named files (or the standard input by default) to the stan-
dard output, editing their contents with an ed–like sequence of commands
of the form:

�� �		�
��� ��� �		�
��� �� �� � ������	� � �� �����
���� � �

Address could be a regular expression or numeric line number.

Janaka Jayawardena

Sed Commands

a\ Append lines to output until one not ending in \
b label Branch to command :label
c\ Change lines to following text, as in the a command
d Delete line
i\ Insert following text before next output
l List line– make non–printing characters visible
p Print line
q Quit
r file Read in file
s/old/new/f Substitute new for old. Values for f include:

g replace all occurrences
p print
w file write to file

t label Test: branch to label if substitution made to current
line

w file Write line to file
y/str1/str2/ Replace each character from string1 with

corresponding character from string2
= Print current input line number
!cmd Do sed command only if line not selected
:label Set label for b and t commands
{ Treat commands up to matching } as a group

