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Optimization Ideas
• Just-In-Time (JIT) compiling

When a method is first invoked, compile it into native code.

• Caching the Method Dictionary
Method Look-up will be speeded up.

• Inline Method Sending
Will turn many SENDs into native CALL instructions

• Use the hardware calling stack
MethodContexts  activation records allocated on a stack

• Code the VM directly in Smalltalk
Automatic translation into “C”
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Misc Points
Porting the Smalltalk Interpreter

The virtual machine is implemented in Smalltalk!
Using a subset of Smalltalk, called “Slang”

The image also includes a translator / compiler
Slang “C”

Steps to porting:
• Produce automatically generated interpreter in “C”
• Hand-code the machine-dependent parts in “C”
• Compile
• Use any existing image
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Misc Points
Porting Images

Each VM executes the same bytecodes.
Any image can be executed on by any VM.

EXAMPLE: An image produced on MAC OS X
          can be executed on Windows.

Porting Code Fragments
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Misc Points
Porting Images

Each VM executes the same bytecodes.
Any image can be executed on by any VM.

EXAMPLE: An image produced on MAC OS X
          can be executed on Windows.

Porting Code Fragments
Also, code fragments can be filed out

… and filed in to another image

Will it work?
The Smalltalk language is uniform.
What pre-existing classes does the code use?
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Misc Points
Hash Values

Some classes rely on “hash values”.
Dictionary, Set, etc.

  Every object must be capable of providing its hash value:
i := x hashValue.
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Misc Points
Hash Values

Some classes rely on “hash values”.
Dictionary, Set, etc.

  Every object must be capable of providing its hash value:
i := x hashValue.

Two objects can contain exactly the same values.
They differ only in where they are in memory

…and GC will move objects around
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Misc Points
Hash Values

Some classes rely on “hash values”.
Dictionary, Set, etc.

  Every object must be capable of providing its hash value:
i := x hashValue.
Two objects can contain exactly the same values.
They differ only in where they are in memory
…and GC will move objects around

     Need special VM support for hash values!
      • Each object contains a hash value.
      • 12 bits
      • Stored in it header
      • Initialized when the object is created
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Optimizations to the Interpreter

Virtual Machine
Does not match underlying hardware well
Examples:

OOP/SmallInteger Tagging
Registers versus Stacks in Context objects

Bytecodes vs. Machine Instructions
The bytecodes are interpreted

Fetch-decode-execute done at two levels.
Difficult to optimize bytecodes

Bytecodes are complex operations
Corresponding to several machine level instructions
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“Just in Time” Compiling

Translate bytecodes into native machine language
… and execute them directly

Do it “on the fly”
… on individual methods

Source  bytecodes  machine instructions

When the method is first invoked…
• Call the JIT compiler
• Translate bytecodes to native instructions
• Save the native code for next time.
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“Just in Time” Compiling

Benefits:
• Optional

Compatible with existing system
• Still have bytecodes

(for the debugging tools)
• Can perform many optimizations at the native code level
• Can do it just to frequently invoked methods
• Running out of memory?

Throw away some of the compiled methods
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“Just in Time” Compiling
Problem:

Activation records are user-visible
MethodContexts, BlockContexts

Activation record contains a pointer to the current 
bytecode

“instructionPointer” = “Program Counter (PC)”
Used by the debugging tools!

Solution:
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“Just in Time” Compiling
Problem:

Activation records are user-visible
MethodContexts, BlockContexts

Activation record contains a pointer to the current 
bytecode

“instructionPointer” = “Program Counter (PC)”
Used by the debugging tools!

Solution:
Whenever an activation record becomes user-visible…

Map the native code PC back into a bytecode PC
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Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”
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Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk VM…
linked list of Context objects

Want to use the hardware stack
Want to store each Context as a “stack frame”

Contexts are usually allocated in LIFO (stack) order.
Not usually accessed as an object
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Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk VM…
linked list of Context objects

Want to use the hardware stack
Want to store each Context as a “stack frame”

Contexts are usually allocated in LIFO (stack) order.
Not usually accessed as an object

Exception: When debugging, the debugger
Asks for a pointer to the current context
Treats it as (non-stack) data

The Idea:
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Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk VM…
linked list of Context objects

Want to use the hardware stack
Want to store each Context as a “stack frame”

Contexts are usually allocated in LIFO (stack) order.
Not usually accessed as an object

Exception: When debugging, the debugger
Asks for a pointer to the current context
Treats it as (non-stack) data

The Idea:
Store stack frames on hardware stack, not as objects.
When a pointer is generated to the current context…

Convert the stack frame into a real object.
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Details
Converting a stack frame into a real object… 

Allocate a new Context object and fill in its fields
Convert the program counter (PC)

absolute address  byte offset into a CompiledMethod 
object

Contexts point to other Contexts 
But other Contexts are still on hardware stack

Convert all frames into Objects…?  No!

The Technique:
stack-frame

hybrid

MethodContext
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Caching the Method Dictionary
Method Lookup:

Given:   • the receiver’s class
  • the message selector

Find:
  • the right CompiledMethod

The Idea:
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Caching the Method Dictionary
Method Lookup:

Given:   • the receiver’s class
  • the message selector

Find:
  • the right CompiledMethod

The Idea:
Use a Hash Table
Maintained by the VM

(it is not an object)
Not in the hash table?

• Do a full method lookup
• Add an entry to the hash table

Rectangle    #draw:on:

CompiledMethod

key
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Inline Method Caching
Assume methods are compiled into native code.

A routine that searches for
the proper method/routine

and then calls it.

A machine-language
CALL instruction
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Inline Method Caching
Assume methods are compiled into native code.

The Idea:
• Upon locating the correct routine…

Replace the CALL to the “MessageSend” routine
… with a CALL straight to the native code routine!

• Next time we execute the above code,
we CALL the right routine immediately.

• Gradually all message sends are replaced with
native code CALL instructions.
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Inline Method Caching
Problem:

Dynamic Look-Up
The receiver’s class determines which method to invoke.
Different class?    Different method!

Assumption:

Approach:
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Inline Method Caching
Problem:

Dynamic Look-Up
The receiver’s class determines which method to invoke.
Different class?    Different method!

Assumption:
Any particular SEND will invoke the same method

… almost always!

Approach:
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Inline Method Caching
Problem:

Dynamic Look-Up
The receiver’s class determines which method to invoke.
Different class?    Different method!

Assumption:
Any particular SEND will invoke the same method
… almost always!

Approach:
At the beginning of each method:
• Check the class of the receiver
• If it is what this method expects
… continue with this method.
• If the receiver has the wrong class…
• Perform a full method lookup.
• Overwrite the CALL (to jump to the correct method next time)
• Jump to the correct method.
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Effectiveness of Optimizations

 
space time

Straight
  interpreter 1.0 1.0

Compiler 2.3 .69

Compiler
  w/ inline caching 3.4 .62

Compiler
  w/ peephole 5.0 .56
      optimizer

Compiler
  w/ inline caching 5.0 .51
  w/ optimizer
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