
Smalltalk Implementation

Harry Porter, October 2009

Smalltalk�
Implementation

Prof. Harry Porter
Portland State University

1

Smalltalk Implementation

Harry Porter, October 2009 2

The Image
The object heap

The Virtual Machine
The underlying system (e.g., Mac OS X)
The ST language interpreter
The object-memory manager

Outline:

Describe a simple implementation
 Representation of objects in memory
 The “bytecode” representation of ST code
 The bytecode interpreter
Memory management / garbage collection algorithms
Optimization Techniques

Smalltalk Implementation

Harry Porter, October 2009 3

 References
• Smalltalk-80: The Language and its Implementation, by Goldberg and
 Robson (Part IV), Addison-Wesley, 1983.
• Smalltalk-80: The Language, by Goldberg and Robson (Chapter 21),
 Addison-Wesley, 1989.
• Smalltalk-80: Bits of History, Words of Advice, ed. Glen Krasner,
 Addison-Wesley, 1983.
• Generation Scavenging: A Non-Disruptive High Performance Storage
 Reclamation Algorithm, by David Ungar, ACM Software Engineering
 Notes/SIGPLAN Notices: Software Engineering Symposium on
 Practical Software Development Environments, Pittsburgh, PA, 1984.
• Efficient Implementation of the ST-80 System, by Peter L. Deutsch and
 Allan M. Schiffman, POPL-84, Salt Lake City, UT, 1984.
• Architecture of SOAR: Smalltalk on a RISC, by Ungar, Blau, Foley,
 Samples, Patterson, 11th Annual Symposium on Computer Architecture,
 Ann Arbor, MI, 1984.
• The Design and Evaluation of a High Performance Smalltalk System,
 by David M. Ungar, MIT Press, ACM Distinguished
 Dissertation (1986), 1987.

Smalltalk Implementation

Harry Porter, October 2009 4

Representing Objects
Object = Block of memory (i.e., “struct”, “record”)
Field = Offset into record (“instance variable”)

name
ssNumber

addr

Person

32-bits

Smalltalk Implementation

Harry Porter, October 2009

Object = Block of memory (i.e., “struct”, “record”)
Field = Offset into record (“instance variable”)

Header
A “hidden” field, included in every object.
Tells the class of the object (and other stuff).

5

Representing Objects

<header>
name

ssNumber
addr

Person

32-bits

Smalltalk Implementation

Harry Porter, October 2009 6

Representing Objects
Subclassing:
Existing fields in the same locations
New fields added to end of record

Example: Student is a subclass of Person

<header>
name

ssNumber
addr

<header>
name

ssNumber
addr

major
advisor

gpa

Person Student

32-bits

32-bits

Smalltalk Implementation

Harry Porter, October 2009

Object-Oriented Pointers (OOPs)

SmallIntegers (-1,073,741,824 .. 1,073,741,823)

Objects
size
class header0

0
1
0
0
0
1
0
1

7

Tagged Values

Each field is “tagged”
instance
 variables

0
32 bits

to an (even) address in memory

1
32 bits

564,321

Smalltalk Implementation

Harry Porter, October 2009 8

Other formats for objects (containing “raw” bits)

ByteArray WordArray
size
class

size
class

01 23 A0 4F
23 CC D6 FF
45 4A F0 80
56 86 7F 7F
78 00 00 00

0123A04F
23CCD6FF
454AF080
56867F7F
78303132

Normal
 Instance
 Variables

Normal
 Instance
 Variables

Header Header
0
0
1
0

0
0
1
0

These fields are not “tagged”

Smalltalk Implementation

Harry Porter, October 2009 9

Bytecodes
The instructions of the virtual machine (VM) interpreter
The VM executes one bytecode instruction after another.

Note: “execute” = “interpret” = “emulate”
A real machine executes instructions.
The VM executes bytecodes.

Like machine language instructions
 • Comparable level of detail
 • 1 to 4 bytes long
 • Tight encoding into the available bits (CISC architecture)

(Java used ST’s approach VM, bytecodes, etc.)

Smalltalk Implementation

Harry Porter, October 2009 10

The Compiler
Translates methods (i.e., Strings) into instances of a class called

CompiledMethod
Contains a sequence of bytes (the “bytecodes” to execute)

Smalltalk Implementation

Harry Porter, October 2009 11

The Compiler
Translates methods (i.e., Strings) into instances of a class called

CompiledMethod
Contains a sequence of bytes (the “bytecodes” to execute)

CompiledMethod is subclass of ByteArray.

size
class

01 23 A0 4F
23 CC D6 FF
45 4A F0 80
56 86 7F 7F
78 00 00 00

literals, constants, etc. (optional)

header
0
0
1
0

bytecodes to be executed

Smalltalk Implementation

Harry Porter, October 2009 12

Class Symbol
Symbols are used for method selectors.
 'hello' 'at:put:'
 #hello #at:put:

Like the class String.
Symbol is a subclass of String.

Consider a string 'hello' … there may be many Strings with these chars.
Consider the symbol #hello … there is only one Symbol with these chars.

There is a system-wide collection of all Symbol objects.
All Symbol objects are kept in this “symbol table”.

String
 'hello' and 'hello' may be two different objects.
 = will compare characters, one-by-one.
 You should always use = to test Strings.
Symbol
 You can always rely on == , which is fast!

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

13

size/flags
class

An object

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

14

size/flags
class

superclass
methods
inst size

header

An object
 An object
(representing a class)

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

15

size/flags
class

superclass
methods
inst size

header

An object
 An object
(representing a class)

drawOn: … code …

do:ifError: … code …

myMethod: … code …

 etc.

a MethodDictionary

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

16

size/flags
class

superclass
methods
inst size

header drawOn: … code …

do:ifError: … code …

myMethod: … code …

 etc.

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

17

size/flags
class

superclass
methods
inst size

header drawOn: … code …

do:ifError: … code …

myMethod: … code …

 etc.

superclass
methods
inst size

header

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

18

size/flags
class

superclass
methods
inst size

header drawOn: … code …

do:ifError: … code …

myMethod: … code …

 etc.

superclass
methods
inst size

header drawOn: … code …

do:ifError: … code …

myMethod: … code …

 etc.

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

19

size/flags
class

superclass
methods
inst size

header

superclass
methods
inst size

header drawOn: … code …

do:ifError: … code …

myMethod: … code …

 etc.

 N header

header

N

#drawOn: method

N

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

20

size/flags
class

superclass
methods
inst size

header

superclass
methods
inst size

header

 N header

header

N

#drawOn: method

N

 M header

header

M

#drawOn: method

M

Smalltalk Implementation

Harry Porter, October 2009 21

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:

Compiler produces:

Smalltalk Implementation

Harry Porter, October 2009 22

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
 4 + y

Compiler produces:
push 4
push y
add

Smalltalk Implementation

Harry Porter, October 2009 23

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y;

Compiler produces:
push 4
push y
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 24

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y;

Compiler produces:
push 4
push y
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 25

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 26

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Example Source:
x := 4 + foo(a,b+c) * z;

Compiler produces:

Smalltalk Implementation

Harry Porter, October 2009 27

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Example Source:
x := 4 + foo(a,b+c) * z;

Compiler produces:
push 4

push z
mult
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 28

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Example Source:
x := 4 + foo(a,b+c) * z;

Compiler produces:
push 4

push b
push c
add

push z
mult
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 29

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Example Source:
x := 4 + foo(a,b+c) * z;

Compiler produces:
push 4
push a
push b
push c
add
call foo
push z
mult
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 30

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Example Source:
x := 4 + (a do: b+c) * z;

Compiler produces:
push 4
push a
push b
push c
add
call foo
push z
mult
add
pop x

Smalltalk Implementation

Harry Porter, October 2009 31

Stack Machine Architectures
Typical instructions:
push
pop
add
call
return
jump

Example Source:
x := 4 + y * z;

Compiler produces:
push 4
push y
push z
mult
add
pop x

Example Source:
x := 4 + (a do: b+c) * z;

Compiler produces:
push 4
push a
push b
push c
add
call foo
push z
mult
add
pop x

send

send #do:

Smalltalk Implementation

Harry Porter, October 2009

Typical instructions:
push x
pop x
sendMessage #xxx
returnTop
jump x
… etc …

Each is encoded into 8-bit bytecode:
00 push receiver’s 1st instance variable
01 push receiver’s 2nd instance variable
60 pop into 1st instance variable
61 pop into 2nd instance variable
76 push constant 1
C0 send #at:
B1 send #-
7C return top
… etc …

32

The Virtual Machine

Smalltalk Implementation

Harry Porter, October 2009

Typical instructions:
push x
pop x
sendMessage #xxx
returnTop
jump x
… etc …

Each is encoded into 8-bit bytecode:
00 push receiver’s 1st instance variable
01 push receiver’s 2nd instance variable
60 pop into 1st instance variable
61 pop into 2nd instance variable
76 push constant 1
C0 send #at:
B1 send #-
7C return top
… etc …

33

The Virtual Machine

size
class

discussed later

header
0
0
1
0

00 01 60 61
76 C0 B1 7C

As Stored in the Object: bytecodes

Smalltalk Implementation

Harry Porter, October 2009 34

An Example Method
Class:
Lifo

Instance Variables:
lifoArray (1st inst var)
lifoTop (2nd inst var)

Method:
popLifo
 | myTemp |
 myTemp ← lifoArray at: lifoTop.
 lifoTop ← lifoTop - 1.
 ^ myTemp

 Compiled Bytecodes:

Smalltalk Implementation

Harry Porter, October 2009 35

An Example Method
Class:
Lifo

Instance Variables:
lifoArray (1st inst var)
lifoTop (2nd inst var)

Method:
popLifo
 | myTemp |
 myTemp ← lifoArray at: lifoTop.
 lifoTop ← lifoTop - 1.
 ^ myTemp

 Compiled Bytecodes:
00 Push receiver’s 1st instance variable (lifoArray)
01 Push receiver's 2nd instance variable (lifoTop)
C0 Send binary message #at:

 68 Pop stack into 1st temp variable (myTemp)
01 Push receiver’s 2nd instance variable (lifoTop)
76 Push constant 1

 B1 Send binary message #-
61 Pop stack into receiver’s 2nd instance variable (lifoTop)
10 Push 1st temp variable (myTemp)
7C Return stack top

Smalltalk Implementation

Harry Porter, October 2009 36

Bytecodes Can Refer to Operands
Directly:
The receiver (self)
The arguments to the method
The receiver’s instance variables
The temporary variables (i.e., “local” variables)
Some common constants:
 nil, true, false, -1, 0, 1, 2
32 common message selectors:
 + - < = at: at:put: @ x y …

Indirectly:
Thru the “literal frame”:
 • Constants occurring within the method (e.g., 57, $a, ‘abc’)
 • All other message selectors
 • Global variables (e.g., class names)

Smalltalk Implementation

Harry Porter, October 2009 37

The Format of CompiledMethod Objects

Obj-header
meth-header

00 01 C0 68
01 76 B1 61
10 7C CC D6
45 4A F0 80
5B 00 00 01

Literal
 Frame

Bytecodes

OOPs

String
“abcde”

Symbol
#drawOn:with:

Association
#Person Person

Smalltalk Implementation

Harry Porter, October 2009 38

The CompiledMethod Header
• The size of the activation record (i.e., the “stack frame”)

• The number of temporary variables for this method
• Number of literals (i.e., where to find 1st bytecode)

• Additional flags:
 Just return self
 Just return instance variable k (where k = 0 .. 31)
 Is this a “normal” method?
 Number of arguments? 0 .. 4
 An extension header word is used for all other cases
 Number of arguments? (0 .. 31)
 Is this a primitive method? (0 .. 255)

Smalltalk Implementation

Harry Porter, October 2009 39

Message Selectors
From the bytecode, the interpreter can get
the message selector
the number of arguments

32 commonly used selectors are handled specially
 + - < = @ do: at: at:put: class …

Two versions of the “send-message” bytecode
• Optimized encoding for the 32 common selectors
 1 0 1 - - - - -
• The more general version
 Longer than 1 byte

The number of arguments
32 common selectors Implicit
“general” send-message bytecode Encoded into the instruction

Smalltalk Implementation

Harry Porter, October 2009 40

All Other Selectors
The remaining selectors are stored in the literal area
The bytecode for a “general” send includes:
 • Which literal field points to the selector
 • Number of arguments

Bytecode:
 B4 23 Send (literal: 2; numArgs: 3)

1:
2:
3:

Obj-header
meth-header

00 01 C0 68
01 76 B1 61
10 7C CC D6
B4 23 F0 80
5B 00 00 01

Symbol
Literal
 Frame

#drawOn:at:width:

Smalltalk Implementation

Harry Porter, October 2009 41

Activation Records
• When a method is called, a MethodContext is created.
• Like an “Activation Record” or “Frame” in traditional language

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

Smalltalk Implementation

Harry Porter, October 2009 42

Activation Records
• When a method is called, a MethodContext is created.
• Like an “Activation Record” or “Frame” in traditional language

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

Smalltalk Implementation

Harry Porter, October 2009 43

What Happens When a Message is Sent?
x at: y put: z

00 push x onto the stack
00 push y onto the stack
00 push z onto the stack
00 send #at:put: message (numArgs: 2)
 (Pops recvr and args. Leave result on top of sender’s stack.)

• Find the receiver buried underneath the args
• Do method lookup to obtain the CompiledMethod object
• Allocate a new MethodContext
(The CompiledMethod tells how big the MethodContext should be)

• Initialize the MethodContext
• Pointer to receiver
• Instruction pointer
• Pointer to the CompiledMethod object
• Pointer to the top of the stack
• Pointer to the sending context

• Pop the message arguments and store into the new MethodContext
• Begin executing bytecodes in the new method, using the new MethodContext

Smalltalk Implementation

Harry Porter, October 2009 44

MethodContexts are Objects!
Advantages
• MethodContexts live in the object heap
 Running code can be saved in the “image” file
• Debugger can access them easily
 Debugging tools can be written in Smalltalk
• Blocks are represented as objects, too!
 A BlockContext object can be passed around, stored, etc.
 You can send messages to blocks (e.g., #value)

Disadvantages

Smalltalk Implementation

Harry Porter, October 2009 45

MethodContexts are Objects!
Advantages
• MethodContexts live in the object heap
 Running code can be saved in the “image” file
• Debugger can access them easily
 Debugging tools can be written in Smalltalk
• Blocks are represented as objects, too!
 A BlockContext object can be passed around, stored, etc.
 You can send messages to blocks (e.g., #value)

Disadvantages
• Creation overhead!
• Very short lifetimes!
 Big strain on the garbage collector

Smalltalk Implementation

Harry Porter, October 2009 46

MethodContexts are Objects!
Advantages
• MethodContexts live in the object heap
 Running code can be saved in the “image” file
• Debugger can access them easily
 Debugging tools can be written in Smalltalk
• Blocks are represented as objects, too!
 A BlockContext object can be passed around, stored, etc.
 You can send messages to blocks (e.g., #value)

Disadvantages
• Creation overhead!
• Very short lifetimes!
 Big strain on the garbage collector

 Conclusion:
 A worthwhile abstraction
 … but special optimizations are mandatory!
 (A stack is really used)

Smalltalk Implementation

Harry Porter, October 2009 47

PrimitiveMethods
• Some methods are implemented directly in the VM.
 SmallInteger arithmetic, I/O, performance critical code, etc.

• The VM executes a native “C” function.
 Normal bytecode execution does not happen.

• Primitive operations may “fail”.
 e.g., the “C” code cannot handle some special cases.
The native code terminates
The method is executed, as normal.

Smalltalk Implementation

Harry Porter, October 2009 48

PrimitiveMethods
• Some methods are implemented directly in the VM.
 SmallInteger arithmetic, I/O, performance critical code, etc.

• The VM executes a native “C” function.
 Normal bytecode execution does not happen.

• Primitive operations may “fail”.
 e.g., the “C” code cannot handle some special cases.
The native code terminates
The method is executed, as normal.

Example from SmallInteger:
/ aNumber
 <primitive: 10>
 aNumber isZero
 ifTrue: [^(ZeroDivide dividend: self) signal].
 (aNumber isMemberOf: SmallInteger)
 ifTrue: [^(Fraction numerator: self
 denominator: aNumber) reduced]
 ifFalse: [^super / aNumber]

The “backup” method

Smalltalk Implementation

Harry Porter, October 2009 49

PrimitiveMethods – Implementation
A flag in the header of the CompiledMethod
• Does this method have a “primitive” implementation?
• Header includes the primitive number (0 .. 255)

The MethodContext is not created
Instead, a native routine in the VM is called.
 The native routine manipulates values on the sender’s stack
 • Pop arguments off the stack
 • Leave the result on the stack

Problems while executing a primitive?
Primitives execution “fails”
 Undo any partial execution
 Execute the backup method
 Create a MethodContext
 Execute the CompiledMethod’s bytecodes

Smalltalk Implementation

Harry Porter, October 2009 50

Blocks
Every block is an object

...

b4 := [:x :y | stmt. stmt. stmt. x+y].
...

...

z := b4 value: a value: b.
...

Smalltalk Implementation

Harry Porter, October 2009 51

Blocks
Every block is an object

BlockContext
When encountered in execution, a BlockContext is created.
When evaluated, it’s like invoking a method.

After execution, the block returns
… to the caller
 [:x :y | stmt. stmt. stmt. x+y]

 … from the method where it was created
 [:x :y | stmt. stmt. stmt. ^x+y]

The BlockContext object will be garbage collected
when no longer needed (i.e., not reachable)

...

b4 := [:x :y | stmt. stmt. stmt. x+y].
...

...

z := b4 value: a value: b.
...

Smalltalk Implementation

Harry Porter, October 2009 52

How are Blocks Represented?

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

Smalltalk Implementation

Harry Porter, October 2009 53

How are Blocks Represented?

 When created, the BlockContext has a pointer
back to its “home context”.

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

BlockContext
 calling context
 instruction ptr
 stack ptr
 number of args
 initial inst. ptr
 home context

execution
 stack

Smalltalk Implementation

Harry Porter, October 2009 54

How are Blocks Represented?

The BlockContext has its own execution stack

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

BlockContext
 calling context
 instruction ptr
 stack ptr
 number of args
 initial inst. ptr
 home context

execution
 stack

Smalltalk Implementation

Harry Porter, October 2009 55

How are Blocks Represented?

 When evaluated (i.e., when invoked / called)…
the BlockContext is added to the “calling stack” of frames.

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

BlockContext
 calling context
 instruction ptr
 stack ptr
 number of args
 initial inst. ptr
 home context

execution
 stack

Smalltalk Implementation

Harry Porter, October 2009 56

How are Blocks Represented?

 NOTE: The block keeps it temps and arguments in the home context.
Only one invocation active at one time; NO RECURSION!

MethodContext
sendingContext
instruction ptr
stack ptr
method
(unused)
receiver object

arguments

temp variables

execution
 stack

CompiledMethod
meth-header

literals

bytecodes

the
 receiver

BlockContext
 calling context
 instruction ptr
 stack ptr
 number of args
 initial inst. ptr
 home context

execution
 stack

Smalltalk Implementation

Harry Porter, October 2009 57

The blockCopy: primitive

Will create a block object.
Will push a ptr to it onto stack.

Smalltalk Implementation

Harry Porter, October 2009 58

The blockCopy: primitive

CompiledMethod:
Header:
Literals:
Bytecodes:

incrAll
^ self do: [:x | x incr] Will create a block object.

Will push a ptr to it onto stack

Smalltalk Implementation

Harry Porter, October 2009 59

The blockCopy: primitive

CompiledMethod:
Header: 1 temp variable needed (x)
Literals: #incr
Bytecodes:
 70 Push receiver (self) onto stack

)

 CB Send #do:
 7C Return stack top

incrAll
^ self do: [:x | x incr] Will create a block object.

Will push a ptr to it onto stack

Smalltalk Implementation

Harry Porter, October 2009 60

The blockCopy: primitive

CompiledMethod:
Header: 1 temp variable needed (x)
Literals: #incr
Bytecodes:
 70 Push receiver (self) onto stack
 89 Push the active context onto the stack
 76 Push 1 onto the stack (num args to block)
 C8 Send #blockCopy:
 A4 04 Jump around next 4 bytes
 68 Pop stack into 1st temp variable (x)
 10 Push 1st temp var (x) onto the stack
 D0 Send #incr
 7D Block Return (return stack top as block’s result)

 CB Send #do:
 7C Return stack top

incrAll
^ self do: [:x | x incr] Will create a block object.

Will push a ptr to it onto stack

Smalltalk Implementation

Harry Porter, October 2009 61

blockCopy:
• A primitive method
Passed the number of arguments
Sent to the current context
 (The “home context”)

• Creates a new BlockContext object
Initializes its “HomeContext” field
Initializes its “InitialInstructionPointer” field
 Based on the current instruction pointer + 2
Pushes an OOP to the new BlockContext onto the current stack

• Storage for arguments to the block…
The block’s arguments must be allocated space somewhere.
They are allocated in the home context (as temp variables)
A block begins by popping its arguments into the home context
 What if the method that created the block has already returned?
 No problem; the space still exists.
 Why will the home context not get garbage collected?

Skip this slide

Smalltalk Implementation

Harry Porter, October 2009 62

Blocks have two ways of returning
(x < y)
ifTrue: [stmt. stmt. stmt. 43]
ifFalse: [stmt. stmt. stmt. ^43]

How does a block return?
Pop a value off of the current stack.
Push it (the return value) onto the caller’s stack.
Resume executing caller’s instructions.

Normal return from a block:
Push result onto Calling Context’s stack.
Resume execution using Calling Context’s instruction pointer.

Return from enclosing method:
Look at the Home Context.
 Look at its Sending Context
Push result onto that context’s stack.
Resume execution using that context.

Smalltalk Implementation

Harry Porter, October 2009 63

Blocks in Smalltalk are not “Closures”

 The block invokes itself recursively.
 This code will not work correctly!

Only one BlockContext is created.
 Storage for only one copy of “n”

The interpreter will catch this.
 “Attempt to evaluate a block that is already being evaluated”

| fact |
fact ← [:n |
(n < 1)
 ifTrue: [1]
 ifFalse: [n * (fact value: (n - 1))]
].

fact value: 4 ???

In Smalltalk / Squeak:
Blocks may not be entered recursively.

Smalltalk Implementation

Harry Porter, October 2009 64

Pharo Implements Blocks Differently
incrAll
^ self do: [:x | x incr]

CompiledMethod:
Header: numArgs=0, numTemps=0, isPrimitive=No,
Literals: #incr
Bytecodes:
 70 Push receiver (self) onto stack
 8F
 01
 00
 03
 10 pushTemp: 0
 D0 send: #incr
 7D Block Return (return stack top as block’s result)

 CB Send #do:
 7C Return stack top

closureNumCopied: 0, numArgs=1, next 3 bytes

Smalltalk Implementation

Harry Porter, October 2009 65

Message Sending in C++

Skip these slides

Smalltalk Implementation

Harry Porter, October 2009 66

Message Sending in C++Source:
p calcBenefits: x with: y

Bytecodes:
push p
push x
push y
send 8, 2

<header>
name

ssNumber
addr

className
size
8:
12:
16:
20:

calcBenefits:
 …code…
 return

setName:
 …code…

foo:
 …code…

bar:
 …code…

“Person”
16

Smalltalk Implementation

Harry Porter, October 2009

Source:
p calcBenefits: x with: y

Bytecodes:
push p
push x
push y
send 8, 2

67

Message Sending in C++

<header>
name

ssNumber
addr

<header>
name

ssNumber
addr
major

advisor
gpa

className
size
8:
12:
16:
20:

calcBenefits:
 …code…
 return

setName:
 …code…

foo:
 …code…

bar:
 …code…

“Person”
16

className
size
8:
12:
16:
20:
24:
28:
32:

“Student”
 28

Add a subclass...

Smalltalk Implementation

Harry Porter, October 2009 68

Message Sending in C++Source:
p calcBenefits: x with: y

Bytecodes:
push p
push x
push y
send 8, 2

<header>
name

ssNumber
addr

<header>
name

ssNumber
addr
major

advisor
gpa

className
size
8:
12:
16:
20:

calcBenefits:
 …code…
 return

setName:
 …code…

foo:
 …code…

bar:
 …code…

calcBenefits:
 …code…

method2:
 …code…

method3:
 …code…

method4:
 …code…

“Person”
16

className
size
8:
12:
16:
20:
24:
28:
32:

“Student”
 28

Override some methods,
 and add new ones...

Smalltalk Implementation

Harry Porter, October 2009 69

Message Sending in C++Source:
p calcBenefits: x with: y

Bytecodes:
push p
push x
push y
send 8, 2

<header>
name

ssNumber
addr

<header>
name

ssNumber
addr
major

advisor
gpa

className
size
8:
12:
16:
20:

calcBenefits:
 …code…
 return

setName:
 …code…

foo:
 …code…

bar:
 …code…

calcBenefits:
 …code…

method2:
 …code…

method3:
 …code…

method4:
 …code…

“Person”
16

className
size
8:
12:
16:
20:
24:
28:
32:

“Student”
 28

