
Smalltalk Implementation

Harry Porter, October 2009

Smalltalk�
Implementation

Prof. Harry Porter

Portland State University

1

Smalltalk Implementation

Harry Porter, October 2009
 2

The Image

The object heap

The Virtual Machine

The underlying system (e.g., Mac OS X)

The ST language interpreter

The object-memory manager

Outline:

Describe a simple implementation

Representation of objects in memory

The “bytecode” representation of ST code

The bytecode interpreter

Memory management / garbage collection algorithms

Optimization Techniques

Smalltalk Implementation

Harry Porter, October 2009
 3

 References

• Smalltalk-80: The Language and its Implementation, by Goldberg and

Robson (Part IV), Addison-Wesley, 1983.

• Smalltalk-80: The Language, by Goldberg and Robson (Chapter 21),

Addison-Wesley, 1989.

• Smalltalk-80: Bits of History, Words of Advice, ed. Glen Krasner,

Addison-Wesley, 1983.

• Generation Scavenging: A Non-Disruptive High Performance Storage

Reclamation Algorithm, by David Ungar, ACM Software Engineering

Notes/SIGPLAN Notices: Software Engineering Symposium on

Practical Software Development Environments, Pittsburgh, PA, 1984.

• Efficient Implementation of the ST-80 System, by Peter L. Deutsch and

Allan M. Schiffman, POPL-84, Salt Lake City, UT, 1984.

• Architecture of SOAR: Smalltalk on a RISC, by Ungar, Blau, Foley,

Samples, Patterson, 11th Annual Symposium on Computer Architecture,

Ann Arbor, MI, 1984.

• The Design and Evaluation of a High Performance Smalltalk System,

by David M. Ungar, MIT Press, ACM Distinguished

Dissertation (1986), 1987.

Smalltalk Implementation

Harry Porter, October 2009
 4

Representing Objects

Object = Block of memory (i.e., “struct”, “record”)

Field = Offset into record (“instance variable”)

name

ssNumber

addr

Person

32-bits

Smalltalk Implementation

Harry Porter, October 2009

Object = Block of memory (i.e., “struct”, “record”)

Field = Offset into record (“instance variable”)

Header

A “hidden” field, included in every object.

Tells the class of the object (and other stuff).

5

Representing Objects

<header>

name

ssNumber

addr

Person

32-bits

Smalltalk Implementation

Harry Porter, October 2009
 6

Representing Objects

Subclassing:

Existing fields in the same locations

New fields added to end of record

Example: Student is a subclass of Person

<header>

name

ssNumber

addr

<header>

name

ssNumber

addr

major

advisor

gpa

Person
 Student

32-bits

32-bits

Smalltalk Implementation

Harry Porter, October 2009

Object-Oriented Pointers (OOPs)

SmallIntegers (-1,073,741,824 .. 1,073,741,823)

Objects

size

class
 header
0

0

1

0

0

0

1

0

1

7

Tagged Values

Each field is “tagged”

instance

 variables

0

32 bits

to an (even) address in memory

1

32 bits

564,321

Smalltalk Implementation

Harry Porter, October 2009
 8

Other formats for objects (containing “raw” bits)

ByteArray

WordArray

size

class

size

class

01 23 A0 4F

23 CC D6 FF

45 4A F0 80

56 86 7F 7F

78 00 00 00

0123A04F

23CCD6FF

454AF080

56867F7F

78303132

Normal

 Instance

 Variables

Normal

 Instance

 Variables

Header
 Header

0

0

1

0

0

0

1

0

These fields are not “tagged”

Smalltalk Implementation

Harry Porter, October 2009
 9

Bytecodes

The instructions of the virtual machine (VM) interpreter

The VM executes one bytecode instruction after another.

Note: “execute” = “interpret” = “emulate”

A real machine executes instructions.

The VM executes bytecodes.

Like machine language instructions

• Comparable level of detail

• 1 to 4 bytes long

• Tight encoding into the available bits (CISC architecture)

(Java used ST’s approach VM, bytecodes, etc.)

Smalltalk Implementation

Harry Porter, October 2009
 10

The Compiler

Translates methods (i.e., Strings) into instances of a class called

CompiledMethod

Contains a sequence of bytes (the “bytecodes” to execute)

Smalltalk Implementation

Harry Porter, October 2009
 11

The Compiler

Translates methods (i.e., Strings) into instances of a class called

CompiledMethod

Contains a sequence of bytes (the “bytecodes” to execute)

CompiledMethod is subclass of ByteArray.

size

class

01 23 A0 4F

23 CC D6 FF

45 4A F0 80

56 86 7F 7F

78 00 00 00

literals, constants, etc. (optional)

header

0

0

1

0

bytecodes to be executed

Smalltalk Implementation

Harry Porter, October 2009
 12

Class Symbol

Symbols are used for method selectors.

'hello'
'at:put:'

#hello
#at:put:

Like the class String.

Symbol is a subclass of String.

Consider a string 'hello' … there may be many Strings with these chars.

Consider the symbol #hello … there is only one Symbol with these chars.

There is a system-wide collection of all Symbol objects.

All Symbol objects are kept in this “symbol table”.

String

'hello' and 'hello' may be two different objects.

= will compare characters, one-by-one.

You should always use = to test Strings.

Symbol

You can always rely on == , which is fast!

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

13

size/flags

class

An object

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

14

size/flags

class

superclass

methods

inst size

header

An object

 An object

(representing a class)

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

15

size/flags

class

superclass

methods

inst size

header

An object

 An object

(representing a class)

drawOn:
… code …

do:ifError:
… code …

myMethod:
… code …

 etc.

a MethodDictionary

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

16

size/flags

class

superclass

methods

inst size

header
 drawOn:
… code …

do:ifError:
… code …

myMethod:
… code …

 etc.

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

17

size/flags

class

superclass

methods

inst size

header
 drawOn:
… code …

do:ifError:
… code …

myMethod:
… code …

 etc.

superclass

methods

inst size

header

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

18

size/flags

class

superclass

methods

inst size

header
 drawOn:
… code …

do:ifError:
… code …

myMethod:
… code …

 etc.

superclass

methods

inst size

header
 drawOn:
… code …

do:ifError:
… code …

myMethod:
… code …

 etc.

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

19

size/flags

class

superclass

methods

inst size

header

superclass

methods

inst size

header
 drawOn:
… code …

do:ifError:
… code …

myMethod:
… code …

 etc.

 N
 header

header

N

#drawOn:
 method

N

Smalltalk Implementation

Harry Porter, October 2009

Representing Classes

20

size/flags

class

superclass

methods

inst size

header

superclass

methods

inst size

header

 N
 header

header

N

#drawOn:
 method

N

 M
 header

header

M

#drawOn:
 method

M

Smalltalk Implementation

Harry Porter, October 2009
 21

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

Compiler produces:

Smalltalk Implementation

Harry Porter, October 2009
 22

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

 4 + y

Compiler produces:

push 4

push y

add

Smalltalk Implementation

Harry Porter, October 2009
 23

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y;

Compiler produces:

push 4

push y

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 24

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y;

Compiler produces:

push 4

push y

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 25

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 26

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Example Source:

x := 4 + foo(a,b+c) * z;

Compiler produces:

Smalltalk Implementation

Harry Porter, October 2009
 27

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Example Source:

x := 4 + foo(a,b+c) * z;

Compiler produces:

push 4

push z

mult

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 28

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Example Source:

x := 4 + foo(a,b+c) * z;

Compiler produces:

push 4

push b

push c

add

push z

mult

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 29

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Example Source:

x := 4 + foo(a,b+c) * z;

Compiler produces:

push 4

push a

push b

push c

add

call foo

push z

mult

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 30

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Example Source:

x := 4 + (a do: b+c) * z;

Compiler produces:

push 4

push a

push b

push c

add

call foo

push z

mult

add

pop x

Smalltalk Implementation

Harry Porter, October 2009
 31

Stack Machine Architectures

Typical instructions:

push

pop

add

call

return

jump

Example Source:

x := 4 + y * z;

Compiler produces:

push 4

push y

push z

mult

add

pop x

Example Source:

x := 4 + (a do: b+c) * z;

Compiler produces:

push 4

push a

push b

push c

add

call foo

push z

mult

add

pop x

send

send #do:

Smalltalk Implementation

Harry Porter, October 2009

Typical instructions:

push x

pop x

sendMessage #xxx

returnTop

jump x

… etc …

Each is encoded into 8-bit bytecode:

00 push receiver’s 1st instance variable

01 push receiver’s 2nd instance variable

60 pop into 1st instance variable

61 pop into 2nd instance variable

76 push constant 1

C0 send #at:

B1 send #-

7C return top

… etc …

32

The Virtual Machine

Smalltalk Implementation

Harry Porter, October 2009

Typical instructions:

push x

pop x

sendMessage #xxx

returnTop

jump x

… etc …

Each is encoded into 8-bit bytecode:

00 push receiver’s 1st instance variable

01 push receiver’s 2nd instance variable

60 pop into 1st instance variable

61 pop into 2nd instance variable

76 push constant 1

C0 send #at:

B1 send #-

7C return top

… etc …

33

The Virtual Machine

size

class

discussed later

header

0

0

1

0

00 01 60 61

76 C0 B1 7C

As Stored in the Object:
 bytecodes

Smalltalk Implementation

Harry Porter, October 2009
 34

An Example Method

Class:

Lifo

Instance Variables:

lifoArray (1st inst var)

lifoTop (2nd inst var)

Method:

popLifo

| myTemp |

myTemp ← lifoArray at: lifoTop.

lifoTop ← lifoTop - 1.

^ myTemp

 Compiled Bytecodes:

Smalltalk Implementation

Harry Porter, October 2009
 35

An Example Method

Class:

Lifo

Instance Variables:

lifoArray (1st inst var)

lifoTop (2nd inst var)

Method:

popLifo

| myTemp |

myTemp ← lifoArray at: lifoTop.

lifoTop ← lifoTop - 1.

^ myTemp

 Compiled Bytecodes:

00 Push receiver’s 1st instance variable (lifoArray)

01 Push receiver's 2nd instance variable (lifoTop)

C0 Send binary message #at:

68 Pop stack into 1st temp variable (myTemp)

01 Push receiver’s 2nd instance variable (lifoTop)

76 Push constant 1

B1 Send binary message #-

61 Pop stack into receiver’s 2nd instance variable (lifoTop)

10 Push 1st temp variable (myTemp)

7C Return stack top

Smalltalk Implementation

Harry Porter, October 2009
 36

Bytecodes Can Refer to Operands

Directly:

The receiver (self)

The arguments to the method

The receiver’s instance variables

The temporary variables (i.e., “local” variables)

Some common constants:

nil, true, false, -1, 0, 1, 2

32 common message selectors:

+ - < = at: at:put: @ x y …

Indirectly:

Thru the “literal frame”:

• Constants occurring within the method (e.g., 57, $a, ‘abc’)

• All other message selectors

• Global variables (e.g., class names)

Smalltalk Implementation

Harry Porter, October 2009
 37

The Format of CompiledMethod Objects

Obj-header

meth-header

00 01 C0 68

01 76 B1 61

10 7C CC D6

45 4A F0 80

5B 00 00 01

Literal

 Frame

Bytecodes

OOPs

String

“abcde”

Symbol

#drawOn:with:

Association

#Person  Person

Smalltalk Implementation

Harry Porter, October 2009
 38

The CompiledMethod Header

• The size of the activation record (i.e., the “stack frame”)

• The number of temporary variables for this method

• Number of literals (i.e., where to find 1st bytecode)

• Additional flags:

Just return self

Just return instance variable k (where k = 0 .. 31)

Is this a “normal” method?

Number of arguments? 0 .. 4

An extension header word is used for all other cases

Number of arguments? (0 .. 31)

Is this a primitive method? (0 .. 255)

Smalltalk Implementation

Harry Porter, October 2009
 39

Message Selectors

From the bytecode, the interpreter can get

the message selector

the number of arguments

32 commonly used selectors are handled specially

+ - < = @ do: at: at:put: class …

Two versions of the “send-message” bytecode

• Optimized encoding for the 32 common selectors

1 0 1 - - - - -

• The more general version

Longer than 1 byte

The number of arguments

32 common selectors  Implicit

“general” send-message bytecode  Encoded into the instruction

Smalltalk Implementation

Harry Porter, October 2009
 40

All Other Selectors

The remaining selectors are stored in the literal area

The bytecode for a “general” send includes:

• Which literal field points to the selector

• Number of arguments

Bytecode:

B4 23 Send (literal: 2; numArgs: 3)

1:

2:

3:

Obj-header

meth-header

00 01 C0 68

01 76 B1 61

10 7C CC D6

B4 23 F0 80

5B 00 00 01

Symbol

Literal

 Frame

#drawOn:at:width:

Smalltalk Implementation

Harry Porter, October 2009
 41

Activation Records

• When a method is called, a MethodContext is created.

• Like an “Activation Record” or “Frame” in traditional language

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

Smalltalk Implementation

Harry Porter, October 2009
 42

Activation Records

• When a method is called, a MethodContext is created.

• Like an “Activation Record” or “Frame” in traditional language

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

Smalltalk Implementation

Harry Porter, October 2009
 43

What Happens When a Message is Sent?

x at: y put: z

00 push x onto the stack

00 push y onto the stack

00 push z onto the stack

00 send #at:put: message (numArgs: 2)

(Pops recvr and args. Leave result on top of sender’s stack.)

• Find the receiver buried underneath the args

• Do method lookup to obtain the CompiledMethod object

• Allocate a new MethodContext

(The CompiledMethod tells how big the MethodContext should be)

• Initialize the MethodContext

• Pointer to receiver

• Instruction pointer

• Pointer to the CompiledMethod object

• Pointer to the top of the stack

• Pointer to the sending context

• Pop the message arguments and store into the new MethodContext

• Begin executing bytecodes in the new method, using the new MethodContext

Smalltalk Implementation

Harry Porter, October 2009
 44

MethodContexts are Objects!

Advantages

• MethodContexts live in the object heap

Running code can be saved in the “image” file

• Debugger can access them easily

Debugging tools can be written in Smalltalk

• Blocks are represented as objects, too!

A BlockContext object can be passed around, stored, etc.

You can send messages to blocks (e.g., #value)

Disadvantages

Smalltalk Implementation

Harry Porter, October 2009
 45

MethodContexts are Objects!

Advantages

• MethodContexts live in the object heap

Running code can be saved in the “image” file

• Debugger can access them easily

Debugging tools can be written in Smalltalk

• Blocks are represented as objects, too!

A BlockContext object can be passed around, stored, etc.

You can send messages to blocks (e.g., #value)

Disadvantages

• Creation overhead!

• Very short lifetimes!

 Big strain on the garbage collector

Smalltalk Implementation

Harry Porter, October 2009
 46

MethodContexts are Objects!

Advantages

• MethodContexts live in the object heap

Running code can be saved in the “image” file

• Debugger can access them easily

Debugging tools can be written in Smalltalk

• Blocks are represented as objects, too!

A BlockContext object can be passed around, stored, etc.

You can send messages to blocks (e.g., #value)

Disadvantages

• Creation overhead!

• Very short lifetimes!

 Big strain on the garbage collector

 Conclusion:

 A worthwhile abstraction

… but special optimizations are mandatory!

 (A stack is really used)

Smalltalk Implementation

Harry Porter, October 2009
 47

PrimitiveMethods

• Some methods are implemented directly in the VM.

SmallInteger arithmetic, I/O, performance critical code, etc.

• The VM executes a native “C” function.

Normal bytecode execution does not happen.

• Primitive operations may “fail”.

e.g., the “C” code cannot handle some special cases.

The native code terminates

The method is executed, as normal.

Smalltalk Implementation

Harry Porter, October 2009
 48

PrimitiveMethods

• Some methods are implemented directly in the VM.

SmallInteger arithmetic, I/O, performance critical code, etc.

• The VM executes a native “C” function.

Normal bytecode execution does not happen.

• Primitive operations may “fail”.

e.g., the “C” code cannot handle some special cases.

The native code terminates

The method is executed, as normal.

Example from SmallInteger:

/ aNumber

 <primitive: 10>

 aNumber isZero

ifTrue: [^(ZeroDivide dividend: self) signal].

 (aNumber isMemberOf: SmallInteger)

ifTrue: [^(Fraction numerator: self

 denominator: aNumber) reduced]

ifFalse: [^super / aNumber]

The “backup” method

Smalltalk Implementation

Harry Porter, October 2009
 49

PrimitiveMethods – Implementation

A flag in the header of the CompiledMethod

• Does this method have a “primitive” implementation?

• Header includes the primitive number (0 .. 255)

The MethodContext is not created

Instead, a native routine in the VM is called.

The native routine manipulates values on the sender’s stack

• Pop arguments off the stack

• Leave the result on the stack

Problems while executing a primitive?

Primitives execution “fails”

Undo any partial execution

Execute the backup method

Create a MethodContext

Execute the CompiledMethod’s bytecodes

Smalltalk Implementation

Harry Porter, October 2009
 50

Blocks

Every block is an object

...

b4 := [:x :y | stmt. stmt. stmt. x+y].

...

...

z := b4 value: a value: b.

...

Smalltalk Implementation

Harry Porter, October 2009
 51

Blocks

Every block is an object

BlockContext

When encountered in execution, a BlockContext is created.

When evaluated, it’s like invoking a method.

After execution, the block returns

… to the caller

[:x :y | stmt. stmt. stmt. x+y]

… from the method where it was created

[:x :y | stmt. stmt. stmt. ^x+y]

The BlockContext object will be garbage collected

when no longer needed (i.e., not reachable)

...

b4 := [:x :y | stmt. stmt. stmt. x+y].

...

...

z := b4 value: a value: b.

...

Smalltalk Implementation

Harry Porter, October 2009
 52

How are Blocks Represented?

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

Smalltalk Implementation

Harry Porter, October 2009
 53

How are Blocks Represented?

 When created, the BlockContext has a pointer

back to its “home context”.

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

BlockContext

 calling context

 instruction ptr

 stack ptr

 number of args

 initial inst. ptr

 home context

execution

 stack

Smalltalk Implementation

Harry Porter, October 2009
 54

How are Blocks Represented?

The BlockContext has its own execution stack

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

BlockContext

 calling context

 instruction ptr

 stack ptr

 number of args

 initial inst. ptr

 home context

execution

 stack

Smalltalk Implementation

Harry Porter, October 2009
 55

How are Blocks Represented?

 When evaluated (i.e., when invoked / called)…

the BlockContext is added to the “calling stack” of frames.

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

BlockContext

 calling context

 instruction ptr

 stack ptr

 number of args

 initial inst. ptr

 home context

execution

 stack

Smalltalk Implementation

Harry Porter, October 2009
 56

How are Blocks Represented?

 NOTE: The block keeps it temps and arguments in the home context.

Only one invocation active at one time; NO RECURSION!

MethodContext

sendingContext

instruction ptr

stack ptr

method

(unused)

receiver object

arguments

temp variables

execution

 stack

CompiledMethod

meth-header

literals

bytecodes

the

 receiver

BlockContext

 calling context

 instruction ptr

 stack ptr

 number of args

 initial inst. ptr

 home context

execution

 stack

Smalltalk Implementation

Harry Porter, October 2009
 57

The blockCopy: primitive

Will create a block object.

Will push a ptr to it onto stack.

Smalltalk Implementation

Harry Porter, October 2009
 58

The blockCopy: primitive

CompiledMethod:

Header:

Literals:

Bytecodes:

incrAll

^ self do: [:x | x incr]
 Will create a block object.

Will push a ptr to it onto stack

Smalltalk Implementation

Harry Porter, October 2009
 59

The blockCopy: primitive

CompiledMethod:

Header: 1 temp variable needed (x)

Literals: #incr

Bytecodes:

70 Push receiver (self) onto stack

)

CB Send #do:

7C Return stack top

incrAll

^ self do: [:x | x incr]
 Will create a block object.

Will push a ptr to it onto stack

Smalltalk Implementation

Harry Porter, October 2009
 60

The blockCopy: primitive

CompiledMethod:

Header: 1 temp variable needed (x)

Literals: #incr

Bytecodes:

70 Push receiver (self) onto stack

89 Push the active context onto the stack

76 Push 1 onto the stack (num args to block)

C8 Send #blockCopy:

A4 04 Jump around next 4 bytes

68 Pop stack into 1st temp variable (x)

10 Push 1st temp var (x) onto the stack

D0 Send #incr

7D Block Return (return stack top as block’s result)

CB Send #do:

7C Return stack top

incrAll

^ self do: [:x | x incr]
 Will create a block object.

Will push a ptr to it onto stack

Smalltalk Implementation

Harry Porter, October 2009
 61

blockCopy:

• A primitive method

Passed the number of arguments

Sent to the current context

(The “home context”)

• Creates a new BlockContext object

Initializes its “HomeContext” field

Initializes its “InitialInstructionPointer” field

Based on the current instruction pointer + 2

Pushes an OOP to the new BlockContext onto the current stack

• Storage for arguments to the block…

The block’s arguments must be allocated space somewhere.

They are allocated in the home context (as temp variables)

A block begins by popping its arguments into the home context

What if the method that created the block has already returned?

No problem; the space still exists.

Why will the home context not get garbage collected?

Skip this slide

Smalltalk Implementation

Harry Porter, October 2009
 62

Blocks have two ways of returning

(x < y)

ifTrue: [stmt. stmt. stmt. 43]

ifFalse: [stmt. stmt. stmt. ^43]

How does a block return?

Pop a value off of the current stack.

Push it (the return value) onto the caller’s stack.

Resume executing caller’s instructions.

Normal return from a block:

Push result onto Calling Context’s stack.

Resume execution using Calling Context’s instruction pointer.

Return from enclosing method:

Look at the Home Context.

Look at its Sending Context

Push result onto that context’s stack.

Resume execution using that context.

Smalltalk Implementation

Harry Porter, October 2009
 63

Blocks in Smalltalk are not “Closures”

The block invokes itself recursively.

This code will not work correctly!

Only one BlockContext is created.

Storage for only one copy of “n”

The interpreter will catch this.

“Attempt to evaluate a block that is already being evaluated”

| fact |

fact ← [:n |

(n < 1)

ifTrue: [1]

ifFalse: [n * (fact value: (n - 1))]

].

fact value: 4  ???

In Smalltalk / Squeak:

Blocks may not be entered recursively.

Smalltalk Implementation

Harry Porter, October 2009
 64

Pharo Implements Blocks Differently

incrAll

^ self do: [:x | x incr]

CompiledMethod:

Header:
 numArgs=0, numTemps=0, isPrimitive=No,

Literals: #incr

Bytecodes:

70
Push receiver (self) onto stack

8F

01

00

03

10
pushTemp: 0

D0
send: #incr

7D
Block Return (return stack top as block’s result)

CB
Send #do:

7C
Return stack top

closureNumCopied: 0, numArgs=1, next 3 bytes

Smalltalk Implementation

Harry Porter, October 2009
 65

Message Sending in C++

Skip these slides

Smalltalk Implementation

Harry Porter, October 2009
 66

Message Sending in C++
Source:

p calcBenefits: x with: y

Bytecodes:

push p

push x

push y

send 8, 2

<header>

name

ssNumber

addr

className

size

8:

12:

16:

20:

calcBenefits:

 …code…

 return

setName:

 …code…

foo:

 …code…

bar:

 …code…

“Person”

16

Smalltalk Implementation

Harry Porter, October 2009

Source:

p calcBenefits: x with: y

Bytecodes:

push p

push x

push y

send 8, 2

67

Message Sending in C++

<header>

name

ssNumber

addr

<header>

name

ssNumber

addr

major

advisor

gpa

className

size

8:

12:

16:

20:

calcBenefits:

 …code…

 return

setName:

 …code…

foo:

 …code…

bar:

 …code…

“Person”

16

className

size

8:

12:

16:

20:

24:

28:

32:

“Student”

 28

Add a subclass...

Smalltalk Implementation

Harry Porter, October 2009
 68

Message Sending in C++
Source:

p calcBenefits: x with: y

Bytecodes:

push p

push x

push y

send 8, 2

<header>

name

ssNumber

addr

<header>

name

ssNumber

addr

major

advisor

gpa

className

size

8:

12:

16:

20:

calcBenefits:

 …code…

 return

setName:

 …code…

foo:

 …code…

bar:

 …code…

calcBenefits:

 …code…

method2:

 …code…

method3:

 …code…

method4:

 …code…

“Person”

16

className

size

8:

12:

16:

20:

24:

28:

32:

“Student”

 28

Override some methods,

 and add new ones...

Smalltalk Implementation

Harry Porter, October 2009
 69

Message Sending in C++
Source:

p calcBenefits: x with: y

Bytecodes:

push p

push x

push y

send 8, 2

<header>

name

ssNumber

addr

<header>

name

ssNumber

addr

major

advisor

gpa

className

size

8:

12:

16:

20:

calcBenefits:

 …code…

 return

setName:

 …code…

foo:

 …code…

bar:

 …code…

calcBenefits:

 …code…

method2:

 …code…

method3:

 …code…

method4:

 …code…

“Person”

16

className

size

8:

12:

16:

20:

24:

28:

32:

“Student”

 28

