
PnS: A Plain ’n SIMPLE
CFD Code

The Source Code Manual

Gerald Recktenwald
August 28, 2003

Department of Mechanical Engineering
Portland State University
P.O. Box 751
Portland, Oregon 97207
www.me.pdx.edu

2

i

Preface

The PnS code is a C language derivative of the “class” code provided by Pro-
fessor S.V. Patankar at the University of Minnesota. My C implementation is
more structured and a bit better documented. All the truly substantial ideas
are those of Professor Patankar, and those of his intellectual contemporaries.

The “Plain ’n SIMPLE” moniker is a nod to my good friend Dr. Scott
Forbes, who wrote the user interface for and coined the name QUICK ’n SIM-
PLE, for a MacintoshTM version of this CFD code.

ii

Contents

1 Introduction 1

2 Overview 3

3 Boundary Conditions 11

4 Fully Developed Flow 21

5 Test Problems 27

iii

Chapter 1

Introduction

This document provides a minimal programmers manual for the PnS CFD code.
The code is organized into several source files. All but one of these source files
constitute the core code which provides the general solution capabilities. The
one file outside of the core — the so-called “user” file — is used to define the
features of the particular problem being solved. Each different physical problem
requires the user, i.e. the programmer, to supply a “user” file that is compiled
and linked with the core code to create an executable.

Chapter 2, Overview and Chapter 3 Boundary Conditions of this manual
describe the core code. Chapter 5 Test Problems document a series of “user” files
designed to highlight specific features of the code. In particular the procedures
for solving the following types of physical problems are presented

• different coordinate systems

• different boundary conditions

• heat conduction only

• thermal source terms

• fully-developed flow

• isothermal flow

• buoyancy-induced flow

These notes assume you are familiar with the notation used by Patankar [2].
The PnS code has evolved from a code used by Patankar in his graduate CFD
classes at the University of Minnesota.

Ferziger and Perić [1] present a more up-to-date description of the finite
volume method. In addition, Perić has provided a large archive of codes that
can be downloaded from

ftp://ftp.springer.de/pub/technik

1

Chapter 2

The PnS Model
and Core Code

This chapter is an brief summary of the core of the PnS code. PnS is short for
Plain ’n SIMPLE, which is the CFD code used in QnS (QUICK ’n SIMPLE) the
Macintosh shareware CFD program by Scott Forbes and Gerald Recktenald.

The control-volume finite-difference model is discussed. Relationships be-
tween the symoblic variables and the code statements are sketched.

Summary of the CVFD Formulation

The so-called general φ equation is one of the organizing principles of PnS.
In two-dimensional Cartesian coordinates convective transport of a scalar φ is
governed by

∂

∂x
(ρuφ) +

∂

∂y
(ρvφ) =

∂

∂x

(
Γ

∂φ

∂x

)
+

∂

∂y

(
Γ

∂φ

∂y

)
+ S = 0 (2.1)

where ρ is the fluid density, u and v are the velocity components in the x and y
directions, Γ is the diffusion coefficient and S is the volumetric source term. If
the velocity components are zero, equation (2.1) reduces to the Poisson equation,
which applies to heat conduction and simple fully-developed duct flow.

The control-volume finite-difference (CVFD) method obtains an approxi-
mate solution to equation (2.1) for a set of discrete ϕ values corresponding
to nodes on a finite-volume mesh. Equation (2.1) is converted to a system
of linearized algebraic equations with one equation for each nodal value of ϕ.
The system of equations is solved iteratively using either line-based relaxation
techniques or algebraic multigrid. Details of the solution algorithms are not
presented here.

Equation (2.1) governs the conservation of a generic, scalar field variable,
ϕ. For two-dimensional, incompressible flow there is one ϕ equation for each

3

4 CHAPTER 2. OVERVIEW

of the velocity components, u and v. A discrete equation for the pressure field
is obtained by manipulating the two momentum equations and the continuity
equation. The three field equations are coupled to each other and, in principle,
must be solved simultaneously. The SIMPLE algorithm [2] allows these three
coupled equations to be iteratively solved in a sequential procedure. In SIMPLE,
each of the field equations (say the equation for u) is solved by temporarily
freezing values from the other discrete fields (v and p) to which it is coupled.

The Finite Volume Grid

Figure 2.1 depicts a rectangular domain of length Lx in the x-direction and Ly

in the y-direction. The domain is divided into non-overlapping control volumes
by the grid lines. The control volumes are square in Figure 2.1, but this is
not required. Use of similar grids in other coordinate systems requires the
introduction of additional notation.

At the center of each control volume is a node, designated by an open circle.
Two sets of grid lines can be identified: the grid lines that define the control
volume faces, and the grid lines (not shown) that define the locations of the
nodes. In the PnS code the grid lines that define node locations are stored
in the variables x[i] and y[j]. The grid lines that define the control volume
interfaces are stored in xu[i] and yv[j].

Nodes in the domain may be identified by their (i, j) grid indices. By con-
vention an additional naming convention based on the directions on a map is
used to simplify the algebra. Figure 2.2 is a detailed sketch of one of the control
volumes in the domain. A typical node (i, j) in Figure 2.1 is also referred to as
node P in Figure 2.2. The (i+1, j) and (i− 1, j) neighbors of P are designated
E for east and W for west, respectively. The (i, j +1) and (i, j−1) neighbors of
P are referred to as N and S for north and south, respectively. Figure 2.2 also
defines numerous geometric variables. In general the width, ∆x, of a control
volume will not be equal to the distances δxe and δxw between P and its east
and west neighbors. Regardless of the grid spacing P is always located in the
geometric center of its control volume. Thus

xP − xw = xe − xP =
∆x

2
(2.2)

yP − ys = yn − yP =
∆y

2
(2.3)

In these expressions it is crucial to distinguish between upper and lower case
letters used as subscripts. Lower case subscripts refer to the locations of the
control volume faces. Upper case subscripts refer to the locations of the nodes.

5

Interior node

Boundary node

Ambiguous corner node

x

y

1 2 nx

i = 1 3
j = 1

3

4

4 L2

xu[1] = 0

x[i]

y[j]

xu[i]

2

yv[j]

yv[1] = 0

yv[m1] = Ly

xu[L1] = Lx

2

nx+1 nx+2

L1

m2

m1
N = nx ny

Figure 2.1: The finite volume grid.

6 CHAPTER 2. OVERVIEW

S

PW E

N

∆x
xw xe

yn

ys

∆x

δxw δxw

δyn

δys

Figure 2.2: Geometric variables for a typical control-volume. The point P is
located in the center of the control volume even if the grid is non-uniform.

Discrete Approximation for Interior Control Vol-
umes

The control volume finite-difference method is used to transform equation (2.1)
to a system of discrete equations for the nodal values of φ. First, equation (2.1)
is integrated over the typical control volume depicted in Figure 2.2. This re-
duces the equation to one involving only first derivatives in space. Then these
first derivatives are replaced with central difference approximations or upwind
approxmations as appropriate. Consult Patankar [2] for details. The resulting
discrete equation for node P can be written

−aSφS − aW φW + aP φP − aEφE − aNφN = b (2.4)

This is a pentadiagonal matrix equation

Ax = b

where the elements of the x vector are the interior φ values. Patankar prefers
to write

aP φP = aEφE + aW φW + aNφN + aSφS = b (2.5)

Source Terms

The b term in equations (2.4) and (2.5) arise from discretization of the source
term, S, in equation (2.1). In addition to true source term, additional effec-

7

S

PW E

N

υn

υs

uw

Figure 2.3: Velocity variables for a typical control volume.

tive source terms arise in the implementation of the boundary conditions (see
Chapter 3).

Nonlinearities in the source terms must be treated with care. See Patankar [2]
for details.

The SIMPLE and SIMPLER Algorithms

Let uij , vij and pij be the discrete field values on the two-dimensional mesh.
The i and j subscripts are grid indices. A simplified version of the SIMPLE
algorithm is

1. Obtain the system equations for the uij by assuming the the vij and pij

values are known (constant).

2. Solve the system of equations for uij to obtain an updated field u∗
ij .

3. Obtain the system equations for the vij by assuming the the u∗
ij and pij

values are known (constant).

4. Solve the system of equations for vij to obtain an updated field v∗
ij .

5. Given the u∗
ij and v∗

ij fields, obtain the system of equations for the pressure
correction equation, p′ij .

6. Solve the sytem of equations for p′ij .

7. Update the velocity and pressure fields

uij = u∗
ij + u′

ij

vij = v∗
ij + v′

ij

pij = p∗ij + p′ij

8 CHAPTER 2. OVERVIEW

φ global index Γ

u nUeqn gammaf[nUeqn] = gammaf[nVeqn] ⇔ µ

v nVeqn gammaf[nUeqn] = gammaf[nVeqn] ⇔ µ

p nPeqn not applicable

p′ nPCeqn not applicable

φ1 FirstScalar gammaf[FirstScalar] ⇔ Γφ1

φ2 FirstScalar+1 gammaf[FirstScalar+1] ⇔ Γφ2

...
...

...

φm LastScalar gammaf[LastScalar] ⇔ Γφm

Table 2.1: Variables associated with the scalar φ equations. Note that
gammaf[n] is a pointer to a two dimensional array, not a scalar.

where u′
ij and v′

ij are related to p′ij .

These steps are repeated until the discrete fields converge. More details are
provided by Patankar [2].

Organization of the Dependent Variables

The PnS code uses a so-called segregated solution algorithm in which each field
variable (u, v, p, T ,. . .) is solved separately. Coupling between the variables
is resolved by iteration. The kernels of the solution algorithms are designed to
set up and solve one φ field at a time. Table 2.1 lists the program variables
associated with each scalar φ field. The second column is the global index
variable associated with that field.

Code Structure

PnS is divided into two primary sections: the core code and the user code.
The user-defined code implements the geometry definitions, boundary condi-
tions, source terms, intermediate print-out, and post-processing necessary for a
particular physical problem.

The core code contains routines for

• Implementation of SIMPLE and SIMPLER

• Computation auxillary grid variables given the user-defined grid parame-
ters.

9

dense()

boundary()

iterOutput()

iterControl()

LastOutput()

gammaSource()

boundFix()

problemSize()

control()

userGrid()

start()

#include "controlVar.h"
#include "fieldVar.h"

Global Variables

Core Code

“User” Code

called once

called once
per iteration

Figure 2.4: Geometric variables for a typical control-volume.

• Computation of the discrete systems of equations for the dependent vari-
ables.

• Solution of the discrete system of equations.

Links between the core code and the user-defined code are represented schemat-
ically in Figure 2.4.

Chapter 3

Boundary Condition
Implementation

Heat Conduction and Scalar Equations

Transport equations for scalars like internal energy (temperature), pollutant
concentration are readily related to the general ϕ equation. In this section the
implementation of boundary conditions for the energy equation will be used to
demonstrate how boundary conditions for any scalar can be treated.

Dirichlet Boundary Conditions

The solution algorithms in PnS treats Dirichlet boundary conditions by default.
All that is needed to specify the T = constant boundary conditions is to assign
temperature values to the appropriate boundary nodes.

Adiabatic (Neumann) Boundary Conditions

The adiabatic boundaries are implemented via a “trick” that is used throughout
the code. Equation (2.4) corresponds to an energy balance on the control volume
surrounding the “P” node. An adiabatic boundary, by definition, results in zero
heat flow across the boundary. A control volume adjacent to a boundary has one
of the faces coincident with the boundary surface, and therefore if the boundary
is adiabatic there is no heat flow across that face of the control volume.

Consider the control volume shown in Figure 3.1. The node on the boundary
has a temperature Tb and the first interior node adjacent to the boundary has
temperature Ti. (The subscript “i” refers to “interior”, not the grid index in
the x direction.) The distance between these nodes is δ. Using the harmonic
mean formulation [2] the heat flux into the control volume across the boundary
is

q =
Γeff

δ
(Tb − Ti)

11

12 CHAPTER 3. BOUNDARY CONDITIONS

δ

Tb Ti

q

Γb

Figure 3.1: Control volume adjacent to an adiabatic boundary.

where

Γeff =
Γb Γi

βΓb + (1 − β)Γi

and β is a geometric weighting parameter. If we set Γb equal to zero in this
expression (regardless of the value of β), Γeff will be zero, which leads to zero
heat flux across the boundary.

Setting Γb to zero on the boundary guarantees that the energy balance, and
therefore the coefficients in equation (2.4), for the near-boundary control volume
will result in zero heat flow across the boundary. When the system of equations
for all the internal φ values is obtained it will give the correct temperature
distribution inside the solid. The solution algorithm in the PnS code only solves
the discrete equations for the interior nodal values. The boundary nodal values
are never changed. This makes it easier to write the solution routines, but it
shifts some additional computational burden onto the “user” routines. So how
do we find the value of Tb once the value of Ti is known?

An adiabatic boundary requires that the temperature gradient is zero in
the direction normal to the boundary. A finite-difference approximation to the
temperature gradient involving the nodes in Figure 3.1 is

∂T

∂x
≈ Ti − Tb

δ
(3.1)

A zero gradient requires Tb = Ti. This is easily handled by updating the bound-
ary temperatures after the internal temperatures have been obtained by the
built-in PnS solver.

In summary an adiabatic boundary is implemented in PnS with the following
steps

1. Set Γb = 0 for the node on the boundary

2. Update the boundary temperature with Tb = Ti after the internal tem-
peratures have been computed.

13

Prescribed Flux Boundary Conditions

Prescribed flux boundary conditions are implemented as a variation on the adi-
abatic boundary condition described in the preceding section. For the control
volume in Figure 3.1 the flux, q, is known, but not zero.

1. Add a fixed, distributed source term for the near wall control volume. The
strength of the volumetric source term is

S =
qA

V

where A is the area of the control volume face through which q passes,
and V is the volume of the control volume.

2. Set Γb = 0 for the node on the boundary. This isolates the value of Ti from
the value of Tb during the solution of the internal nodal temperatures. The
correct contribution to the energy balance on the near-wall control volume
is guaranteed by the preceding step.

3. Update the boundary temperature with

Tb = Ti +
qδ

Γb

after the internal temperatures have been computed.

Convective Boundary Conditions

Though convective boundary conditions are physically quite different, in the
PnS code these are treated as an extension of the prescribed flux boundary
condition.

A convective boundary condition applies when the heat flux from the surface
to a surrounding fluid is given by

q = h(Tb − Tf) (3.2)

where h is a heat transfer coefficient, Tb is the temperature of the boundary
node, and Tf is the temperature of the fluid (a known constant). Continuity of
heat flow at the surface of the domain also requires

q = Γb
Tb − Ti

δ
(3.3)

Combining equation (3.2) and (3.3) gives1

q = Γb
Tf − Ti

1/h + δ/Γb
(3.4)

1If A = a/b = c/d, then A = (a + c)/(b + d)

14 CHAPTER 3. BOUNDARY CONDITIONS

As with the prescribed flux boundary condition, equation (3.2) is used to
specify source term for the near-wall control volume of the form.

S =
qA

V

As indicated by equation (3.4), the source term depends on the unknown value
of Ti. To accelerate convergence the source term is linearized according to the
recommendation of Patankar [2] as

S = Sc + SpTi

where Sc is a constant term, and Sp is a coefficient that must be negative for a
stable linearization. Linearizing equation (3.4) according to this recommenda-
tion gives

Sc =
A

V

Tf

1/h + δ/Γb
(3.5)

Sp = −A

V

1
1/h + δ/Γb

(3.6)

The steps for implementing the convective boundary condition are

1. Add the source terms in equation (3.5) and (3.6) for the near wall control
volume.

2. Set Γb = 0 for the node on the boundary. This isolates the value of Ti from
the value of Tb during the solution of the internal nodal temperatures. The
correct contribution to the energy balance on the near-wall control volume
is guaranteed by the preceding step.

3. Update the boundary temperature with

Tb =
hTf + (Γb/δ)Ti

h + (Γb/δ)

after the internal temperatures have been computed.

Decoration of Boundary Values

Use of the source term modifications effectively eliminates the boundary values
as unknowns. Once the problem has been solved we still need to know the values
of the unknown ϕ variables at the boundary. In some cases these boundary
values must be known during the solution procedure. Regardless of whether
these boundary values are needed during the solution, it is usually desirable to
compute the boundary values at the end of the solution to prepare contour plots
or other means of displaying the solution. In the situations the calculation of
the boundary values is like a decoration on the solution procedure–it is useful
or nice, but not essential because the interior values are already known.

15

xdif[L1]

i = L2 L1

qe

x

y

Figure 3.2: Hypothetical problem with imposed heat flux qE imposed on the far
eastern boundary of the domain.

Constant flux boundary conditions impose a relationship between the bound-
ary values and the interior values. Once the interior values are known the
boundary values are computed from imposed boundary condition.

A Neumann boundary condition is the easiest to decorate. Since the condi-
tion

∂ϕ

∂n
= 0

implies that there is no change in ϕ in the direction n, normal to the boundary,
the boundary value is set equal to its nearest interior neighbor.

The computed boundary value obviously depends on the type of imposed
boundary conditions, but it also depends on the discretization procedure for the
interior control volumes. This is the case for constant flux boundary conditions.
Consider the constant flux boundary condition depicted in Figure 3.2. For heat
conduction (no flow) the imposed flux requires

qx|x=xL1
= −k

∂T

∂x

∣∣∣∣
x=xL1

= qe (3.7)

on the eastern boundary of the domain (x = xL1). The boundary value of T
is decorated with the discrete equivalent of equation (3.7). In the CVFD code
the diffusion terms are approximated by central differences so equation (3.7)
becomes

−qe = conduct ∗ (T[L1][j] − T[L2][j])/xdif[L1] (3.8)

where qe is the applied heat flux (negative because for positive qe the heat flows
in the negative x direction), conduct is the thermal conductivity, T[L1][j] is
the temperature on the far eastern boundary, T[L2][j] is the temperature at
the next interior node, and xdif[L1] is x-direction grid spacing between these

16 CHAPTER 3. BOUNDARY CONDITIONS

two nodes as shown in Figure 3.2. Solving equation (3.8) for the unknown
boundary temperature gives

T[L1][j] = T[L2][j] − qe ∗ xdif[L1]/conduct

which is the formula used to decorate the boundary after the source term mod-
ifications have been used to compute the internal temperature field.

Constraints on Interior Values

Complex physical problems often require irregular domains and internal block-
ages to flow. Solution of conjugate heat transfer problems is possible by allowing
fluid flow in part of the domain and discontinuities in thermal conductivity at
the fluid/solid interface. Another use of interior constraints is the approxima-
tion of irregular domains by blocking off regions in one of the regular coordinate
systems (Cartesian, axisymmetric, and polar) used in the CVFD code. Each
of these applications requires the imposition of internal constraints on internal
nodes values.

Patankar [2, Chapter 7, p. 145] gives a method for constraining interior
values of ϕ. This technique is based on modifications to the discrete ϕ equation
so that the effect of neighboring values of ϕ are negligible. The discrete ϕ
equation can be written

(∑
anb − SP ∆V

)
ϕP =

∑
anbϕnb + SC∆V (3.9)

If the desired internal constraint is ϕ = ϕdesired, then Patankar recommends
setting

SP = H

SC = Hϕdesired

where H is some huge number (say, H ∼ 1030). With this substitution equa-
tion (3.9) reduces to

Hϕ = Hϕdesired (3.10)

where the influence of the neighboring coefficients and ϕ values has been swamped
by the magnitude of H. The obvious solution to equation (3.10) is ϕ = ϕdesired.
The advantage of this trick is that it achieves the desired result without requir-
ing modification of solution algorithm or the basic calculation of the coefficients.
An important undesirable consequence is that the norm of the residual, ‖r‖, is
rendered meaningless because the constrained elements of the solution vector, x
(in Ax = b) is a factor of H larger than the unconstrained values, and the diag-
onal of the A matrix contains coefficients that have no meaningful relationship
to the other diagonal coefficients or the other coefficients in the same row.

A simple modification (Van Doormaal and Raithby, 1984) to the trick in
equation (3.10) removes this undesirable side-effect. Let aP,ref be a value of aP

17

from a control volume that is physically close to the control volume in which
the constraint on ϕ is imposed. Then

SP = −aP,ref

SC = −aP,ref ϕdesired

has the effect of constraining ϕ without changing the character of the A matrix
or the magnitude of the residual for the ϕ equation. With this trick the residual
reduction criteria can be applied to all ϕ equations. The following code fragment
implements this constraint.

constant = ...;

apref = ap[...][...];

for (i=...; i<=...; i++)

for (j=...; j<=...; j++)

ap[i][j] = apref;

con[i][j] = constant*apref;

ae[i][j] = aw[i][j] = an[i][j] = as[i][j] = 0.0;

The ellipses (. . .) should be replaced by appropriate values, indices or index
limits, as appropriate. This code should be in function boundFix(). Note that
ap[i][j] = apref is consistent with the specification

Fluid Flow

Outflow Boundary Conditions

The conservative nature of the CVFD formulation and the SIMPLE-based algo-
rithms provides major advantages at the cost of the exacting discipline required
to maintain mass conservation. The u-v-p coupling algorithms enforce strict
mass conservation. An apparently trivial error that leads to mass balance er-
rors will cause the code to fail. The outflow boundary treatment must preserve
mass conservation at each iteration.

The SIMPLE and SIMPLER algorithms use the pressure correction equation
to bring the velocity fields obtained by solving the momentum equation into
exact agreement with the continuity equation on a control-volume by control-
volume basis. Because the outflow velocities are used in the source terms to the
pressure correction equation these boundary velocities must be consistent with
overall mass conservation.

Two basic techniques are used to specify the velocity at the outflow boundary
for incompressible flows. These techniques will be referred to as the additive
factor and multiplicative factor methods. Both methods relate the velocities at
the outflow boundary to the interior nodes adjacent to the outflow boundary.
The sketch in Figure V.2 represents at typical flow problem in which the outflow

18 CHAPTER 3. BOUNDARY CONDITIONS

L2 L1

x

y

i = L3

inflow

outflow

i = 1 2

Figure 3.3: Hypothetical problem with an outflow boundary on the far eastern
boundary of the domain.

boundary is at the far eastern boundary of the domain. For clarity only the x-
direction velocities at the inflow and outflow are shown.

Conservation of mass in a steady, incompressible flow problem requires that
the total outflow equals the total inflow. This is an integral constraint on the
velocities on the outflow boundary. One way of satisfying to this constraint
would be to prescribe an uniform velocity at the outflow boundary such that∫

Ain

ρu · dA =
∫

Aout

ρu · dA

where Ain is the area of the inlet, and Aout is the area of the outlet. For the
situation depicted in Figure 3.3 this integral would be evaluated as

∑
jin

rho[1][j] ∗ u[2][j] ∗ ycv[j] =
∑
jout

rho[L1][j] ∗ u[L1][j] ∗ ycv[j]

substituting, uout, an unknown but uniform value of the velocity at the outflow
boundary gives (set u[L1][j] = uout)

uout =

∑
jin

rho[1][j] ∗ u[2][j] ∗ ycv[j]∑
jout

rho[L1][j] ∗ ycv[j]
Thus, global mass conservation is used to obtain the boundary condition at the
outflow boundary. Clearly, a uniform velocity is not expected to give very realis-
tic flow field near the outflow boundary. The additive factor and multiplicative
factor methods presented in the following sections provide methods of using the
interior flow field as guidance for the velocity profile at the outflow boundary.

Additive Factor

Instead of assuming that the outflow velocity profile is uniform, suppose that
the velocity profile at the outflow boundary is related to the velocity profile at

19

the nearest upstream (interior) control volumes. Specifically, assume that these
velocity values are related by an additive factor. For the problem depicted in
Figure V.2 this would be

u[L1][j] = u[L2][j] + C

where C is an unknown that is uniform across the outflow boundary. Thus,
conservation of mass (inflow = outflow) requires

∑
jin

rho[1][j] ∗ u[2][j] ∗ ycv[j] =
∑
jout

rho[L1][j] ∗ (u[L1][j] + C) ∗ ycv[j]

and solving for C yields

C =

∑
jin

rho[1][j] ∗ u[2][j] ∗ ycv[j] − ∑
jout

rho[L1][j] ∗ ycv[j]∑
jout

rho[L1][j] ∗ ycv[j]

Multiplicative Factor

This is similar to the additive factor treatment except that the velocity profile
at the outflow boundary is related to the velocity profile at the nearest upstream
location by a multiplicative factor. For the problem depicted in Figure V.2 this
would be

u[L1][j] = C ∗ u[L2][j]
Conservation of mass (inflow = outflow) requires

∑
jin

rho[1][j] ∗ u[2][j] ∗ ycv[j] =
∑
jout

rho[L1][j] ∗ C ∗ u[L2][j] ∗ ycv[j]

and solving for C yields

C =

∑
jin

rho[1][j] ∗ u[2][j] ∗ ycv[j]∑
jout

rho[L1][j] ∗ ycv[j]

Chapter 4

Fully Developed Flow
in Ducts

Hydrodynamically Fully-Developed Flow

Consider the situation depicted in Figure 4.1. Fluid is flowing through a duct
of arbitrary but constant cross-section. If the duct is long enough, the flow field
becomes invariant with z and the pressure gradient, dp/dz, becomes constant.
The flow is then said to be hydrodynamically fully developed.

In a fully-developed flow, one is interested in the friction factor f

f =
Dh

1
2ρw̄2

(
−dp

dz

)
(4.1)

where Dh is the hydraulic diameter, w̄ is the average velocity in the z direction.
Also of interest is the duct Reynolds number

Re =
ρw̄Dh

µ
. (4.2)

where Dh is the hydraulic diameter, Dh. For fully-developed laminar flow in a
duct the product fRe is a constant. In other words, fRe is only determined by
the geometry of the duct.

In general the velocity field will be a vector valued function

u = êxu + êyv + êzw

where êx, êy, and êz are the unit basis vectors, and u, v, and w are the velocity
components in the x, y, and z directions, respectively. For fully-developed flow
u and v can be non-zero, but w must not be a function of z.

For incompressible flow the average velocity in the duct is

w̄ ≡ 1
Ac

∫
Ac

w dA (4.3)

21

22 CHAPTER 4. FULLY DEVELOPED FLOW

x

y

z

arbitrary but constant
cross section, A ≠ f(z)

Figure 4.1: Fully-developed flow and heat transfer in a duct of arbitrary cross-
section.

where Ac is the cross-sectional area of the duct normal to the z direction.
For so-called simple fully-developed flow, u = v = 0, and the Navier-Stokes

equations reduce to

0 = µ

(
∂2w

∂x2
+

∂2w

∂y2

)
− dp

dz
(4.4)

with boundary conditions w = 0 on the duct walls. To solve the flow problem,
one imposes an arbitrary pressure gradient and solves Equation (4.4). The
solution gives w(x, y) which is used to compute w̄ from Equation (4.3). Different
values of dp/dz yield different values of w̄. However the fRe product

fRe = −dp

dz

D2
h

µw̄
(4.5)

is a constant for a given cross section.

Thermally Fully-Developed Flow

If the flow is hydrodynamically fully-developed, then under certain types of ther-
mal boundary conditions, the flow can also become thermally fully-developed.
In that case, one can define a dimensionless temperature that is invariant with
z. In a thermally fully-developed flow, the dimensional temperature, e.g. the
temperature in ◦C or ◦F, will vary with z.

Remember that the flow must be hydrodynamically fully-developed in order
for it to become thermally fully-developed. On the other hand if the fluid
properties are unaffected by temperature the flow can be hydrodynamically
fully-developed without being thermally fully-developed.

23

z

Tw

A
B

C
Tb

A

B

C

Points A, B and C are at
different positions in the
duct cross-section

x

y

Figure 4.2: Temperature variation in the flow direction for thermally fully-
developed flow in a duct with constant wall temperature.

Define the fluid bulk temperature (mixing cup temperature)

Tb ≡

∫
Ac

ρw cp T dA

cp,ref

∫
Ac

ρw dA

The numerator in this expression is the energy flowing through the duct cross-
section at some position z. The denominator is cp,ref times the mass flowing
through the duct cross section at z. For incompressible flow of fluid with uniform
properties the expression for the bulk temperature reduces to

Tb ≡

∫
Ac

w T dA

∫
Ac

w dA

If the duct wall temperature is uniform at Tw then Tb asymptotically approaches
Tw as shown in Figure 4.2. Note that the temperature is not uniform across the
duct.

For thermally fully-developed flow there exists is a suitably defined dimen-
sionless temperature variable, θ, that is independent of z. When Tw is uniform
θ is

θ =
T (x, y, z) − Tw

Tb(z) − Tw
uniform Tw only (4.6)

Under thermally fully-developed flow conditions the energy equation is

ρcpw
∂T

∂z
= k

(
∂2T

∂x2
+

∂2T

∂y2

)
(4.7)

24 CHAPTER 4. FULLY DEVELOPED FLOW

Solve equation (4.6) for T and differentiate with respect to z to get

∂T

∂z
= θ

dTb

dz
(4.8)

Note that this equation is not restricted to any point in the cross-section. There-
fore the temperature curves in on the left side of Figure 4.2 are all parallel. Sub-
stitute equation (4.6) and equation (4.8) into equation (4.7) to get the governing
equation for θ

k

(
∂2θ

∂x2
+

∂2θ

∂y2

)
= ρ cp w

∂Tb

∂z

or
∂2θ

∂x2
+

∂2θ

∂y2
=

(
ρ cp

k

∂Tb

∂z

)
w θ (4.9)

From Figure 4.2 we see that the value of dTb/dz is determined by the z position
in the duct. Though the actual value of dTb/dz is arbitrary, and changes with
z, the value of θ̄

θ̄ ≡

∫
Ac

wθdA

∫
Ac

wdA

(4.10)

is constant for thermally fully-developed flow.

25

Example Problem

In this example problem we obtain the thermally fully-developed temperature
field for the case of uniform wall temperature in a rectangular duct. Remember
that there are other boundary conditions that admit thermally fully-developed
flow.

PnS Implementation

To solve equation (4.4) with the PnS code we need to

1. choose and arbitrary dp/dz

2. solve the Poisson equation for w(x, y)

The pressure gradient is a source term in the w equation.
Because the PnS code uses an iterative two-dimensional solution algorithm

the discrete w equation is solved until fRe is a constant. If the code used a
direct solution technique, such as LU decomposition with back-substitution, no
iterations would be necessary.
To solve equation (4.9)

1. choose an arbitrary value of dTb/dz

2. guess T (x, y)

3. compute θ(x, y) from the guessed T (x, y)

4. solve equation (4.9)

and repeat steps 3 and 4 until convergence.

Chapter 5

Test Problems

This chapter describes a series of test problems for the PnS codes. Each problem
involves a hand-coded set of routines that work with the core code to analyze
a specific situation. Table 5.1 lists these test problems by the source file that
contains the implementation.

One-Dimensional Heat Conduction: user0.c

This trivial problem is designed for testing and debugging the solution algo-
rithms used to solve Equation (2.4). When the boundary conditions are cor-
rectly specified the PnS code will yield the exact solution to one-dimensional
heat conduction with uniform properties.

With φ = T , ρ = 1, u = v = 0, Γ = 1 and S = 0, Equation (2.1) reduces to

∂2T

∂x2
+

∂2T

∂y2
= 0

which governs steady heat conduction with no source term and uniform prop-
erties. user0.c involves solution to this equation for two different orienta-
tions. Version (a) involves the one-dimensional temperature variation in the
x-direction

T (x, y) = T1 + (T2 − T1)
x

L

and version (b) involves the corresponding problem in the y-direction

T (x, y) = T1 + (T2 − T1)
y

L

The physical problems are represented by the sketch in Figure 5.1. Uniform
temperatures are imposed on opposite ends of the domain and the remaining
boundaries are adiabatic. The user0a.c and user0b.c codes implement the
solution to version (a) and version (b), respectively. Details of implementing
version (a) are described in Chapter 3.

27

28 CHAPTER 5. TEST PROBLEMS

Table 5.1: User-defined problems described in this chapter. Problems are listed
in order of increasing complexity

source file Description

user0a.c 1-D conduction in the y-direction

user0b.c 1-D conduction in the x-direction

user1.c 2-D conduction with an exact solution

user2.c 2-D conduction with complex boundary conditions

user3.c fully-developed flow and heat transfer

user4.c fully-developed flow with conjugate heat transfer

user5.c convective transport in a corner

cavity.c flow in a cavity having a sliding lid

box.c flow through a box

user6.c sudden expansion with buoyancy

y

x

2

1

y

x

2

1

T1 T2

T1

T2

version (a) version (b)

Figure 5.1: Schematic of problems solved with user0a.c and user0b.c. Cross-
hatched boundaries are adiabatic.

29

y

x

2

1

Figure 5.2: Calculation domain for sample problem solved with user1.c.

Two-Dimensional Heat Conduction: user1.c

Solve the steady-state heat conduction problem in a rectangle with uniform heat
conduction and no source term. As shown in Figure 5.2 the calculation domain
is one unit long in the x direction and two units long in the y direction.

The boundary temperatures are given by

T (x, y) = x + y + xy

which is also the exact solution to the temperature field. This problem is a
simple extension to user0. All boundary conditions are Dirichlet.

The computer program will obtain the exact solution. Although the tem-
perature distribution is nonlinear in x and y, the temperature gradients

∂T

∂x
= 1 + y

∂T

∂y
= 1 + x

are linear. Thus, the central difference formulation yields the exact local tem-
perature gradients.

Heat Conduction with Complex Boundary Con-
ditions: user2.c

Highlights

• use cylindrical coordinates

• include a thermal source term

• use a temperature-dependent thermal conductivity

30 CHAPTER 5. TEST PROBLEMS

1

1

2

q = 50

k = 50
q = h (T – Tf)

k = f(T)

T = 100 (1 + y)

x
y

r
x

Figure 5.3: Calculation domain for sample problem 2, and implemented in
user2.c.

• implement various thermal boundary conditions, including two variants
on convective boundary conditions

This problem involves solution of the heat conduction equation

1
r

∂

∂r

(
rk

∂T

∂r

)
+

∂

∂x

(
k

∂T

∂x

)
+ S = 0 (5.1)

in the cylindrical (x, r) domain illustrated in Figure 5.3. Thermal conductivity
in shaded region is temperature dependent

k = 0.2
(

1 +
T

100

)

The volumetric heat source term throughout the solid is

S = 100 − 0.5T

The boundary conditions are

q = 50 on r = 1 q = 0 on r = 2

T = 100(1 + y) on x = 0 q = h(T − Tf) on x = 2

The primary emphasis in this problem is on the handling of boundary conditions.
The constant temperature and adiabatic boundary conditions are applied with
the same techniques used for user0.c. The boundary conditions at r = 1
(constant heat flux) and x = 2 (convective boundary condition) are new, and
are described in Chapter 3.

31

1 x
y

1

Figure 5.4: Fully-developed flow and heat transfer in a square duct.

Material Properties

Comparing Equation (5.1) with Equation (2.1) one finds that the thermal con-
ductivity is the Γ variable. Within each control volume Γ is assumed to be
uniform, but it can vary from control volume to control volume. This is im-
plemented by giving each dependent variable (each φ) an associated array of Γ
values. The array is pointed to by gammaf[n] as summarized in Table 2.1.

For example, the following snippet of code specifies value of Γ = 3.2 over a
subset of control volumes

for (i=3; i<=7; i++)

for (j=2; j<=6; j++) gammaf[nPhi][i][j] = 3.2;

where nPhi must be an appropriate index into the master φ data structure (cf.
Table 2.1). The variable Γ field is treated with the harmonic mean formula-
tion [2] in the core part of the PnS code.

Fully-Developed Flow and Heat Transfer: user3.c

Highlights

• solve fully-developed flow problem with uniform wall temperature

• show how multiple φ equations can be solved at one time

Background for the solution to this problem is provide in Chapter 4.
The equation governing the flow in the duct is (since u = v = 0)

0 =
∂

∂x

(
µ

∂w

∂x

)
+

∂

∂y

(
µ

∂w

∂y

)
− dp

dz

32 CHAPTER 5. TEST PROBLEMS

Comparing this to the general ϕ equation leads to the observation that

Γ = µ Sc =
dp

dz

The friction factor and Reynolds numbers are defined by Equations (4.1) and
(4.2), respectively. The flow is uncoupled from the heat transfer so the equation
for w may be solved first. The equation for w requires an iterative solution

1. Specify an arbitrary dp/dz

2. Solve for the velocity distribution, wij

3. Compute the friction factor

4. Return to step 2 until f converges

The energy equation is

ρcpw
∂T

∂z
=

∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)

For the constant wall temperature boundary condition the appropriate dimen-
sionless temperature is

Θ =
T − Tw

Tb − Tw

where T = T (x, y) is the temperature of the fluid in the duct at position (x, y),
Tw = Tw(z) is the wall temperature, and Tb = Tb(z) is the bulk fluid temper-
ature. For fully-developed flow Θ is independent of z. Solving the preceding
equation for T gives

T = Tw + Θ(Tb − Tw)

and from ∂Θ/∂z = 0 we get
∂T

∂z
= Θ

∂Tb

∂z

The source term in the energy equation is, therefore,

SC = −ρcpw(x, y)Θ(x, y)
dTb

dz

The procedure for solving the energy (temperature) equation is

1. Choose a value of dTb/dz. This corresponds to specifying an axial position
in the duct.

2. Guess a Tij field.

3. Calculate a Θij distribution for use in the energy equation source term.

4. Calculate a new Tij field by solving the discrete system of equations for
the nodal T values.

5. Return to step 3 until convergence.

33

calculation domain

Tw = constant

Figure 5.5: user4.c involves fully-developed flow in an annulus with radial fins.
Because of the symmetry, only a small part of the flow needs to be analyzed.

Fully-Developed Flow with Conjugate Heat Trans-
fer: user4.c

Background for the solution to this problem is provided in Chapter 4. High-
lights:

• use polar coordinates

• solve fully-developed flow problem with uniform heat flux boundary con-
dition

• solve a conjugate heat transfer problem

• evaluate the heat flux with the harmonic mean

• impose internal constraints

• demonstrate how to define a variable grid

34 CHAPTER 5. TEST PROBLEMS

θf

∆θ = 15°

r1

rM1
rf

Figure 5.6: Detail of the thick radial fin as part of the calculation domain for
user4.c.

35

T = 100

y

x

Figure 5.7: Flow in a corner with prescribed velocities.

Convective Transport in a Corner: user5.c

Highlights:

• solve convection without solving the flow field

• convective outflow boundary conditions

• energy balance

The flow situation is depicted by the sketch in Figure 5.7

36 CHAPTER 5. TEST PROBLEMS

L

U

L

Figure 5.8: Flow in a driven cavity.

The Driven Cavity: cavity.c

Highlights:

• solve a flow field

The driven cavity is a standard benchmark problem for CFD codes. The
physical problem is depicted by the sketch in Figure 5.8. The fluid occupies a
square domain of dimension L. The top surface of the domain moves to the right
with velocity U . The only parameter of this problem is the Reynolds number

Re =
ρUL

µ

where ρ and µ are, respectively, the density and dynamic viscosity of the fluid.

37

x

y

m
.

yin

ybox

xbox

yout

m
.

Figure 5.9: Flow through a box.

Flow through a Box: box.c

Highlights:

• solve a flow field

• specify inflow and outflow boundaries

This problem involves flow of water through a infinitely long chamber. There
is one inlet and one outlet. Figure 5.9 is a schematic of this flow.

38 CHAPTER 5. TEST PROBLEMS

0.5

d1

2.0

Figure 5.10: Sudden expansion in a channel. Because of symmetry only the left
half of the problem needs to be simulated.

Sudden Expansion with Buoyancy Effects: user6.c

Highlights:

• solve buoyancy-driven flow: energy equation is coupled with the momen-
tum and mass conservation equatoins

• convective outflow boundary conditions

• energy balance

The flow situation is depicted by the sketch in Figure 5.10

Bibliography

[1] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics.
Springer-Verlag, Berlin, third edition, 2001.

[2] S. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, Wash-
ington D.C., 1980.

39

