
1

Project 7�
Discussion

2

FileManager . Init

Initialize FCB table
 and FCB free list

Initialize OpenFile table
 and OpenFile free list

Allocate a frame

Reads sector zero into that frame

3

FileManager . Open

Call “findFCB”
 Consult the directory (in memory)
 Allocate a new FCB (or return existing FCB)
 May wait, if necessary

Allocate an OpenFile
 May wait, if necessary

Initialize the OpenFile object
 openFile.fcb = ...
 openFile.currentPos = 0
 openFile.numberOfUsers = 1

4

Handle_Sys_Open

First, deal with arguments.

Next, locate an empty slot in the fileDescriptors table.

No need to acqurie lock, since we assume that this process has
only one thread, this thread is the current thread, and that
only the process’s thread can modify the fileDescriptors array
for this PCB.

Set “i” to the free entry.

for i = 0 to ...
if pcb.fileDescriptor [i] == null
 ...

If there are no free entries, return -1.
(continued)

5

Handle_Sys_Open

Open the file. This may block.

open = fileManager.Open (filename)

If this fails, return -1.

pcb.fileDescriptor [i] = open

return i

6

Handle_Sys_Read

-- Check the file descriptor...
if fileDesc < 0 || fileDesc >= MAX_FILES_PER_PROCESS
return -1

-- Get the OpenFile...
open = currentThread.myProcess.fileDescriptor [fileDesc]
if null, then return -1

-- Check for a bad argument...
If sizeInBytes == zero, return ...
If sizeInBytes < zero, return ...

(continued)

7

Handle_Sys_Read

Acquire “fileManagerLock”.
Using the current size of the file and current position...
Figure out exactly which sectors we are going to read
and check the arguments.

If any problems...
 (Nothing is read)
 Release “fileManagerLock”
 Return -1

If everything is OK, continue...
Update the new current position.
Release “fileManagerLock”.
Do the reading.
Invoke fileManager.SynchRead to do the read

8

Handle_Sys_Read

Must move data into virtual address space.

The target area may be spread over several pages.
 But frames are not contiguous!

Must divide the reading into several read operations.

Identify “chunks”
Each chunk is a separate call to fileManager.SynchRead

And don’t forget to mark each frame as “dirty”!

9

Handle_Sys_Read

Virt. Addr. Space Disk

10

Handle_Sys_Read

Virt. Addr. Space Disk

11

Handle_Sys_Read

Virt. Addr. Space Disk

Frames

12

Handle_Sys_Read

Virt. Addr. Space Disk

Frames

13

Handle_Sys_Read

Virt. Addr. Space Disk

Frames

14

Handle_Sys_Read

Virt. Addr. Space Disk

Frames

15

Handle_Sys_Read

Disk

Frames

16

Handle_Sys_Read

Problem:
Must divide the reading into several “chunks”
Some pages may be invalid or not-writable.
This is an error...
 Specs say: Must return -1 without doing any I/O

Approach:
Go through the chunks twice.
Pass 1: Compute chunk locations
 Check for errors, and return if any
Pass 2: Re-compute all chunk locations
 Perform the reading
 Update dirty bits

17

Handle_Sys_Seek

Acquire FileManagerLock
-- Check the fileDescriptor. Is it in the array?
-- Does it point to an “open” OpenFile?
if problems...
release FileManagerLock
return -1

endIf
-- Check for bad argument
if newCurrentPos < -1 or greater than file size...
release FileManagerLock
return -1

endIf
(continued)

18

Handle_Sys_Seek

-- If newCurrentPos is -1, set newCurrentPos to
-- current size of file...
 if newCurrentPos == -1
newCurrentPos = open.fcb.sizeOfFileInBytes

endIf

-- Set the currentPos...
... = newCurrentPos

-- Release lock and return it...
Release FileManagerLock
return ...

19

FileManager.Close

method Close (open: ptr to OpenFile)

Write out the buffer, if dirty.

The "numberOfUsers" for the OpenFile is decremented and, if
zero, the OpenFile is freed.

If the OpenFile is freed, then the "numberOfUsers" for the
FCB is decremented. If it too is zero, the FCB is freed.

 (continued)

20

FileManager.Close

acquire “fileManagerLock”
fileManager.Flush (open)
fcb = open.fcb
decrement open.numberOfUsers
if it became zero...
openFileFreeList.AddToEnd (open)
anOpenFileBecameFree.Signal (...)
decrement fcb.numberOfUsers
if it became zero...
 fcbFreeList.AddToEnd (fcb)
 anFCBBecameFree.Signal (...)

release “fileManagerLock”

21

FileManager.Flush

method Flush (open: ptr to OpenFile)

Write out the buffer, if dirty.
Assumption: caller already holds the fileManagerLock.

22

FileManager.Flush

method Flush (open: ptr to OpenFile)

Write out the buffer, if dirty.
Assumption: caller already holds the fileManagerLock.

if open.fcb.bufferIsDirty
...bufferIsDirty = false
diskDriver.SynchWriteSector (
relativeSectorInBuffer + ...startingSectorOfFile,
 1,
 ...bufferPtr...)

endIf

23

Handle_Sys_Close

Check the argument
Is it a legal array index?
Does it point to an open file?

open = currentThread.myProcess.fileDescriptor [fileDesc]
currentThread.myProcess.fileDescriptor [fileDesc] = null

-- Make sure this file was really open...
if open == null...

fileManager.Close (open)

