
Overview of the�
Kernel and Shell
Outline:

• User Processes
• Kernel
• Virtual Address Space
• User Mode / System Mode
• Syscall Interface
• A Simple Shell

2

User Processes

“Virtual Address Space”
“Logical Address Space”
“Core Image”

Program
and
Data

Stack

0000 0000

FFFF FFFF

3

User Processes

“Virtual Address Space”
“Logical Address Space”
“Core Image”

Program
and
Data

Stack

Stack
Register

0000 0000

FFFF FFFF

4

User Processes

“Virtual Address Space”
“Logical Address Space”
“Core Image”

Program
and
Data

Stack

Stack
Register

0000 0000

FFFF FFFF

Will usually include
library routines, which
are “linked” into user’s

code. [These are not
kernel code!]

5

User Processes

“Virtual Address Space”
“Logical Address Space”
“Core Image”

Has its own set of registers.
Cannot even see the memory of
kernel or other processes.

Runs in “user mode”.
Some instructions are disallowed.
(I/O, page table, etc.)

Has a single “thread of execution”.
Has its own PC (“program counter”)

Program
and
Data

Stack

Stack
Register

0000 0000

FFFF FFFF

Will usually include
library routines, which
are “linked” into user’s

code. [These are not
kernel code!]

6

The Kernel

“Physical Address Space”
(actual installed main memory) Kernel Code

& Data

0000 0000

FFFF FFFF

Process 2

Process 1

Process 2

Process 3

Memory
Mapped I/O

7

The Kernel

“Physical Address Space”
(actual installed main memory)

Process 2’s Address Space
 ... is all over physical memory,
 ... and partly on disk,
 ... and shared with other processes.

We’ll discuss:
“Virtual Memory Management”
“PAGE TABLE hardware”

Kernel Code
& Data

0000 0000

FFFF FFFF

Process 2

Process 1

Process 2

Process 3

Memory
Mapped I/O

8

The Kernel

“Physical Address Space”
(actual installed main memory)

Kernel runs in “System Mode”.

Must manage user processes.
Page Tables --> Virtual Memory

Switches from one process to another.
Time-slicing / multitasking

Must manage I/O devices.

Kernel Code
& Data

0000 0000

FFFF FFFF

Process 2

Process 1

Process 2

Process 3

Memory
Mapped I/O

9

System Calls

User Process
• Runs in its own separate address space
• Runs in “User Mode”
• Can’t use a normal CALL instruction

•••

Kernel

User Process

Call Return

User Process

Call Return

User Process

Call Return

10

System Calls

The SYSCALL Instruction
• Invoked by user code
• Switches into “System Mode”
• Transfers control to a kernel routine
• Args may be passed to kernel
 (including a function code)

Kernel

••• User Process

Call Return

User Process

Call Return

User Process

Call Return

11

System Calls

The Return-From-Interrupt (RETI) Instruction
• Invoked by kernel code
• Switches back to “User Mode”
• Transfers control back to just after the SYSCALL

Kernel

••• User Process

Call Return

User Process

Call Return

User Process

Call Return

12

The “POSIX” Standard Interface

A set of SYSCALL functions
Implemented in all UNIX/LINUX kernels

File Management
 fd = open (filename, how, ...)
 x = close (fd)
 n = read (fd, buffer, numBytes)
 n = write (fd, buffer, numBytes)
 position = lseek (fd, offset, whence)
 s = stat (filename, bufferAddr)

13

The “POSIX” Standard Interface

A set of SYSCALL functions
Implemented in all UNIX/LINUX kernels

File Management
 fd = open (filename, how, ...)
 x = close (fd)
 n = read (fd, buffer, numBytes)
 n = write (fd, buffer, numBytes)
 position = lseek (fd, offset, whence)
 s = stat (filename, bufferAddr)

 For each, there is a “stub routine”.
 • Included from library
 • Coded in assembly
 • Move args into registers
 • Execute a SYSCALL
 • After return from kernel, return

14

The “POSIX” Standard Interface

Directory Management
 s = mkdir (name, mode)
 s = rmdir (name)
 s = link (name1, name2)
 s = unlink (name)
 s = mount (special, name, flag)
 s = unmount (special)

15

The “POSIX” Standard Interface

Misc Syscalls
 s = chdir (directoryName)
 s = chmod (fileName, newModeBits)
 s = kill (pid, signalType)

Send a “Signal” to a user process.
Somewhat like an “interrupt”.

 seconds = time (&seconds)
 Get the current date and time.

16

The “POSIX” Standard Interface

Misc Syscalls
 pid = fork ()

 s = execve (filename, argv, environp)

 exit (status)

 pid = waitpid (pid, &statloc, options)

17

The “POSIX” Standard Interface

Misc Syscalls
 pid = fork ()

 s = execve (filename, argv, environp)

 exit (status)

 pid = waitpid (pid, &statloc, options)

• Used to create a new process.
• Executed by the “parent” process.
• Create a new process, called the “child”.
• Make a new copy of parent’s address space.
• In parent, return “process id” of the child.
• In child, return 0.

18

The “POSIX” Standard Interface

Misc Syscalls
 pid = fork ()

 s = execve (filename, argv, environp)

 exit (status)

 pid = waitpid (pid, &statloc, options)

• Read from a new program in from a file.
• Replace this process’s memory image.
• Begin executing the new program.
• Never returns, except when errors.

19

The “POSIX” Standard Interface

Misc Syscalls
 pid = fork ()

 s = execve (filename, argv, environp)

 exit (status)

 pid = waitpid (pid, &statloc, options)

• Terminate this process.
• Pass “exit status” (an integer)

 to the parent process.
• No return from this syscall!

20

The “POSIX” Standard Interface

Misc Syscalls
 pid = fork ()

 s = execve (filename, argv, environp)

 exit (status)

 pid = waitpid (pid, &statloc, options)

• Wait for a child to exit.
 (Option: wait for a specific child or any child.)
• Save the child’s “exit status” in statloc.
• If the child terminated earlier,

 then return its exit status immediately.

21

A UNIX Shell Program

while (TRUE) {
 type_prompt ();
 read_command (command, parameters);
 if (fork () != 0) {

 waitpid (-1, &status, 0);

 } else {

 execve (command, parameters, 0);

 }
}

22

A UNIX Shell Program

while (TRUE) {
 type_prompt ();
 read_command (command, parameters);
 if (fork () != 0) {

 waitpid (-1, &status, 0);

 } else {

 execve (command, parameters, 0);

 }
}

Parent’s
Code

Child’s
Code

Wait for any child

