
1

Chapter 6�

(A Quick Introduction)

Deadlock

2

Resources and Deadlocks

Processes need access to resources in order to make progress.

Examples of Resources:
• Kernel Data Structures
 (ProcessControlBlocks, Threads, OpenFile…)

• Locks/semaphores to protect critical sections
• Memory (page frames, buffers, etc.)
• Files
• I/O Devices
 (printers, ports, tape drives, speaker, etc.)

3

Resources and Deadlocks

Scenario:

Process P1...
 is holding resource A, and
 is requesting resource B

Process P2...
 is holding resource B, and
 is requesting resource A

Both are blocked and remain so …

 This is deadlock

4

Resource Usage Model

Sequence of events required to use a resource:
request the resource (e.g., acquire a mutex lock)
use the resource
release the resource (e.g., release a mutex lock)

Must wait if request is denied

gloss

5

Preemptable vs Nonpreemptable Resources

Preemptable resources
Can be taken away from a process with no ill effects

Nonpreemptable resources
Once given to the process, can’t be taken back

“Deadlocks occur when processes are granted exclusive
access to non-preemptable resources and wait when
the resource is not available.”

6

Definition of Deadlock

“A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause.”

Usually the event is:
 The release of a currently held resource

All processes in the set are waiting
... for a resource request to be granted.

None of the processes can proceed
... so no process can release the resources it holds.

7

Starvation vs. Deadlock

Starvation and Deadlock are two different things!

Deadlock:
• No work is being accomplished for the processes that
 are deadlocked, because processes are waiting
 for each other. Once present, will not go away!

Starvation:
• Work (progress) is occurring. However, a particular
 set of processes may not be getting any work done
 because they cannot obtain the resources they need.
• May only last a short time; may go away.

Both are probabilistic events & may occur only rarely.

8

Deadlock Conditions

A deadlock situation can occur if and only if the following
conditions hold simultaneously...

Mutual Exclusion Condition
A resource can be assigned to only one process at a
time

Hold And Wait Condition
Processes can get more than one resource

No Preemption Condition

Circular Wait Condition
A cyclic chain of two or more processes (must be
waiting for resource from next one in chain)

9

Resource acquisition scenarios

acquire (resource_1)
use resource_1
release (resource_1)

Thread A:

Example:
 var r1_mutex: Mutex
 ...
 r1_mutex.Lock()
 Use resource_1
 r1_mutex.Unlock()

10

Resource acquisition scenarios

Thread A:
acquire (resource_1)
use resource_1
release (resource_1)

 Another Example:
 var r1_sem: Semaphore
 r1_sem.Up()
 ...
 r1_sem.Down()
 Use resource_1
 r1_sem.Up()

11

Resource acquisition scenarios

acquire (resource_2)
use resource_2
release (resource_2)

Thread A: Thread B:

No deadlock can occur here!

acquire (resource_1)
use resource_1
release (resource_1)

12

Resource Acquisition Scenarios: 2 Resources

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

Thread A: Thread B:

No deadlock can occur here!

13

Resource Acquisition Scenarios: 2 Resources

acquire (resource_1)
use resources 1
release (resource_1)
acquire (resource_2)
use resources 2
release (resource_2)

acquire (resource_2)
use resources 2
release (resource_2)
acquire (resource_1)
use resources 1
release (resource_1)

Thread A: Thread B:

No deadlock can occur here!

14

Resource Acquisition Scenarios: 2 Resources

acquire (resource_1)
acquire (resource_2)
use resources 1 & 2
release (resource_2)
release (resource_1)

acquire (resource_2)
acquire (resource_1)
use resources 1 & 2
release (resource_1)
release (resource_2)

Thread A: Thread B:

Deadlock is possible!

15

Other examples of deadlock

16

Resource Allocation Graphs

Resource

R

AProcess/Thread

“is held by”

17

Resource Allocation Graphs

R

A

“is requesting”

S

Resource

Process/Thread
Resource

18

Resource Allocation Graphs

Deadlock = a cycle in the graph

R

A S

B

19

Dealing with deadlock

General strategies

Ignore the Problem
Hmm… advantages, disadvantages?

Detection and Recovery

Avoidance
 through careful resource allocation

Prevention
 by structurally negating one of the four conditions

20

Recovery from Deadlock

What should be done to recover?
• Abort deadlocked processes and reclaim resources
• Temporarily reclaim resource, if possible
• Abort one process at a time until deadlock cycle is

eliminated

gloss

