
1

Chapter 5

Input / Output

2

The Spectrum of I/O Devices

3

Device Controllers

The Device vs. its Controller
Some duties of a device controller:
Interface between CPU and the Device
Start/Stop device activity
Convert serial bit stream to a block of bytes
Deal with errors
 Detection / Correction
Move data to/from main memory

Some controllers may handle several (similar) devices

4

Approaches to I/O

Each port has a separate number.

CPU has special commands
 in r4,3
 out 3,r4

Port numbers form an “address space”
...separate from main memory

Contrast with
 load r4,3
 store 3,r4

The I/O Port Number

5

Memory-Mapped I/O

One address space for
main memory
I/O devices

CPU has no special instructions
 load r4,3
 store 3,r4

I/O devices are “mapped” into
 very high addresses

0x00000000

0xFFFF0000

0xFFFFFFFF

Physical
Installed
Memory

I/O
Devices

6

Single vs. Dual Bus

7

Direct Memory Access (DMA)

Data transferred from device straight to/from memory.

CPU not involved.

The DMA controller:
Does the work of moving the data
CPU sets up the DMA controller (“programs it”)
CPU continues
The DMA controller moves the bytes

8

DMA

9

Direct Memory Access (DMA)

Cycle Stealing
DMA Controller acquires control of bus
Transfers a single byte (or word)
Releases the bus
The CPU is slowed down

Burst Mode
DMA Controller acquires control of bus
Transfers all the data
Releases the bus
The CPU operation is suspended

10

Direct Memory Access (DMA)

Cycle Stealing
DMA Controller acquires control of bus
Transfers a single byte (or word)
Releases the bus
The CPU is slowed down
Not as efficient

Burst Mode
DMA Controller acquires control of bus
Transfers all the data
Releases the bus
The CPU operation is suspended
The CPU may not service interrupts in a timely way

11

Principles of I/O Software

Device Independence
Programs can access any I/O device
 Hard Drive, CD-ROM, Floppy,...
 ... without specifying the device in advance

Uniform Naming
Devices / Files are named with simple strings
Names should not depend on the device

Error Handling
...should be as close to the hardware as possible

12

Principles of I/O Software

Synchronous vs. Asynchronous Transfers
Process is blocked vs. Interrupt-driven approach

Buffering
Data comes off a device
Can’t know the final destination of the data
 e.g., a network packet... Where to put it???

Sharable vs. Dedicated Devices
Disk should be sharable
Keyboard, Screen dedicated to one process

13

Programmed I/O

Example:
Writing a string to a serial output�
Printing a string on the printer

 CopyFromUser(kernelBuffer, virtAddr, byteCount)
 for i = 0 to byteCount-1
 while *serialStatusReg != READY
 endWhile
 *serialDataReg = kernelBuffer[i]
 endFor
 return

“Busy Waiting”
“Polling”

14

Interrupt-Driven I/O

Getting the I/O started:
 CopyFromUser(kernelBuffer, virtAddr, byteCount)
 EnableInterrupts()
 while *serialStatusReg != READY
 endWhile
 *serialDataReg = kernelBuffer[0]
 Sleep ()

The Interrupt Handler:
 if i == byteCount
 Wake up the user process
 else
 *serialDataReg = kernelBuffer[i]
 i = i + 1
 endIf
 Return from interrupt

15

Sending data to a device using DMA

Getting the I/O started:
 CopyFromUser(kernelBuffer, virtAddr, byteCount)
 Set up DMA controller
 Sleep ()

The Interrupt Handler:
 Acknowledge interrupt
 Wake up the user process
 Return from interrupt

16

Layers of the I/O Software System

17

Interrupt Handling

Interrupt handlers are best hidden.
I/O Driver starts the operation
Then blocks until an interrupt occurs
Then it wakes up, finishes, & returns

The Interrupt Handler
Does whatever is immediately necessary
Then unblocks the driver

Example: The BLITZ “DiskDriver”
Start I/O and block (waits on semaphore)
Interrupt routine signals the semaphore & returns

18

Device Drivers

19

Device-Independent I/O Software

Functions and responsibilities:

• Uniform interfacing for device drivers
• Buffering
• Error reporting
• Allocating and releasing dedicated devices
• Providing a device-independent block size

20

Device-Independent I/O Software

21

Issues with Buffers

(a) Unbuffered input
(b) Buffering in user space
(c) Buffering in the kernel followed by
 copying to user space

(d) Double buffering in the kernel

22

Issues with Buffers

Networking often involves lots of copying!

23

Layers within the I/O Subsystem

24

User-Space I/O Software

In user’s (C) program

 count = write (fd, buffer, nbytes);
 printf (“The value of %s is %d\n”, str, i);

Linked with library routines.

The library routines contain:
• Lots of code
 Buffering
• The syscall to the kernel

25

Comparison of Disk Technology

26

Disk Zones

• Constant rotation speed
• Want constant bit density

Inner tracks:
 Fewer sectors per track
Outer tracks:
 More sectors per track

27

Disk Geometry

Physical Geometry
The actual layout of sectors on the disk
May be complicated

The controller does the translation
The CPU sees a “virtual geometry”.

28

Disk Geometry

virtual geometryphysical geometry

(192 sectors in each view)

29

RAID

Redundant Array of Independent Disks
Redundant Array of Inexpensive Disks

Goals:
• Increased reliability
• Increased performance

30

RAID

31

RAID

32

CDs & CD-ROMs

33

CD-ROMs

7203 bytes to encode 2048 (2K) data bytes
32x CD-ROM = 5,000,000 Bytes/Sec
SCSI-2 is twice as fast.

34

CD-R (CD-Recordable)

35

Updating Write-Once Media

VTOC = Volume Table of Contents
When writing, an entire track is written at once.
Each track has its own VTOC.

36

Updating Write-Once Media

VTOC = Volume Table of Contents
When writing, an entire track is written at once.
Each track has its own VTOC.
Upon inserting a CD-R,
Find the last track
Obtain the most recent VTOC
 This can refer to data in earlier tracks
This tells which files are on the disk
Each VTOC supercedes the previous VTOC

37

Updating Write-Once Media

VTOC = Volume Table of Contents
When writing, an entire track is written at once.
Each track has its own VTOC.
Upon inserting a CD-R,
Find the last track
Obtain the most recent VTOC
 This can refer to data in earlier tracks
This tells which files are on the disk
Each VTOC supercedes the previous VTOC

Deleting files?
Just leave out of VTOC for next write

38

CD-RW

Uses a special alloy.

Alloy has two states, with different reflectivities
Crystalline (highly reflective) - Looks like “land”
Amorphous (low reflectivity) - Looks like a “pit”

Laser has 3 powers
Low power: Sense the state without changing it
High power: Change to amorphous state
Medium power: Change to crystalline state

39

DVDs

“Digital Versatile Disk”
Smaller Pits
Tighter Spiral
Laser with different frequency

Transfer speed
1X = 1.4MB/sec (about 10 times faster than CD)

Capacity
4.7 GB Single-sided, single-layer (7 times a CD-ROM)
8.5 GB Single-sided, double-layer
9.4 GB Double-sided, single-layer
17 GB Double-sided, double-layer

40

DVDs

0.6mm
Single-sided

disk

0.6mm
Single-sided

disk

41

Disk Formatting

A disk sector

Typically
512 bytes / sector
ECC = 16 bytes

42

Cylinder Skew

43

Disk Capacity

For communication...

1 Kbps = 1,000 bits per second (103)
1 Mbps = 1,000,000 bits per second (106)
1 Gbps = 1,000,000,000 bits per second (109)

K kilo 103 = 1000
M mega 106 = 1000 * 1000 = 1,000,000
G giga 109 = 10003 = 1,000,000,000

44

Disk Capacity

For communication...

1 Kbps = 1,000 bits per second (103)
1 Mbps = 1,000,000 bits per second (106)
1 Gbps = 1,000,000,000 bits per second (109)

For disks and memories...

K kilo 210 = 1024
M mega 220 = 1024 * 1024 = 1,048,576
G giga 230 = 10243 = 1,073,741,824

45

Disk Capacity

For communication...

1 Kbps = 1,000 bits per second (103)
1 Mbps = 1,000,000 bits per second (106)
1 Gbps = 1,000,000,000 bits per second (109)

For disks and memories...

K kilo Ki kibi 210 = 1024
M mega Mi mibi 220 = 1024 * 1024 = 1,048,576
G giga Gi gibi 230 = 10243 = 1,073,741,824

46

Disk Capacity

For communication...

1 Kbps = 1,000 bits per second (103)
1 Mbps = 1,000,000 bits per second (106)
1 Gbps = 1,000,000,000 bits per second (109)

For disks and memories...

K kilo Ki kibi 210 = 1024
M mega Mi mibi 220 = 1024 * 1024 = 1,048,576
G giga Gi gibi 230 = 10243 = 1,073,741,824

 Examples: 30 KiB, 40 MiB, 50 GiB

47

Sector Interleaving

No
Interleaving

Single
Interleaving

Double
Interleaving

48

Disk Arm Scheduling Algorithms

• Seek Time
• Rotational Delay
• Transfer Time

Seek time dominates
Want to “schedule” disk reads & writes to minimize it

Scheduling Algorithms:
FCFS: First come, first served
SSF: Shortest seek first
Elevator: keep moving in one direction.

49

Shortest Seek First (SSF)

50

Shortest Seek First (SSF)

Cuts arm motion in half.
Fatal problem:
Starvation is possible!

51

The Elevator Algorithm

One bit: which direction the arm is moving.
Up
Down

Keep moving in that direction.
Service the next pending request in that direction
When there are no more requests in the current direction,
reverse direction.

52

The Elevator Algorithm

53

Errors on Disks

Transient errors v. Hard errors

Manufacturing defects are unavoidable
Some will be masked with the ECC in each sector

Dealing with bad sectors
Allocate several spare sectors per track

At the factory, some sectors are remapped to spares
Errors may occur during the disk lifetime

The sector must be remapped to a spare
By the OS
By the device controller

54

Using Spare Sectors

Substituting
a new sector

Shifting
sectors

55

Handling Bad Sectors in the OS

Add all bad sectors to a special file.
Hidden; not in file system
Users will never see the bad sectors
 Never an attempt to access the file

Backups
Some backup programs copy entire tracks at a time
 Efficient
Problem:
 May try to copy every sector
 Must be aware of bad sectors

56

Stable Storage

The model of possible errors:
The unit of I/O is a “disk block”.
• The write operation writes incorrect bits
 ... but it will be detected upon reading the block
 Probability of an error being missed?
 Assume 16 bytes of ECC code
 8 × 16 bits (= 128 bits) of ECC
 1 / 2128 chance ECC just happens to be right
• Disk blocks can go bad spontaneously
 ... but subsequent reads will detect the error
• Computer can fail (Failure model: hardware just stops)
 ... disk writes in progress are detectable errors
• Highly unlikely to loose the same block on two disks
 ... on the same day

57

Stable Storage

Use two disks for redundancy.

Each write is done twice.
Each disk has N blocks.
Each disk contains exactly the same data.

To read the data,
... you can read from either disk

To perform a write...
must update the same block on both disks.

If one disk goes bad...
You can recover from the other disk.

58

Stable Storage

Stable Write

Write block on disk # 1.
Read back to verify.
If problems...
 Try again several times to get the block written.
 Then declare the sector bad and remap the sector.
 Repeat until the write to disk #1 succeeds.
Write same data to corresponding block on disk #2
 Read back to verify
 Retry until it also succeeds

59

Stable Storage

Stable Read

Read the block from disk # 1
If problems...
 Try again several times to get the block
If the block can not be read from disk #1...
 Read the corresponding block from disk #2

Our Assumption:
 The same block will not simultaneously
 go bad on both disks.

60

Stable Storage

Crash Recovery

Scan both disks
Compare corresponding blocks
For each pair of blocks...

If both are good and have same data...
 Do nothing; go on to next pair of blocks.
If one is bad (failed ECC)...
 Copy the block from the good disk.
If both are good, but contain different data...
 (CPU must have crashed during a “Stable Write”)
 Copy the data from disk #1 to disk #2.

61

Crashes During a Stable Write

62

Stable Storage

Disk blocks can spontaneously decay.
Given enough time...
The same block on both disks may go bad
 Data could be lost!
Must scan both disks to watch for bad blocks
 (e.g., every day)

Many variants to improve performance
Goal: avoid scanning entire disk after a crash.
Goal: improve performance
 Every Stable Write requires: 2 writes & 2 reads
 Can do better...

Database Technology

63

Programmable Clocks

One-shot mode:
Counter decremented until zero
A single interrupt occurs

Square wave mode:
When counter reaches zero, it is reloaded.
Periodic interrupts (called “clock ticks”)

64

Time

500 MHz Crystal (every 2 nanoseconds)
32 bit register overflows in 8.6 seconds

Backup clock
Similar to digital watch
Low-power circuitry, battery-powered
Periodically reset from the internet
UTC: Universal Coordinated Time
Unix: Seconds since Jan. 1, 1970
Windows: Seconds since Jan. 1, 1980

65

Goals of Clock Software

• Maintain time of day
Must update the time-of-day every tick

• Prevent processes from running too long
• Account for CPU usage
Separate timer for every process
Charge each tick to the current process

• Handling the “Alarm” syscall
User programs ask to be sent a signal at a given time

• Providing watchdog timers for the OS itself
E.g., when to spin down the disk

• Doing profiling, monitoring, and statistics gathering

66

Software Timers

A process can ask for notification at time T.
At time T, the OS will signal the process

Processes can “go to sleep until time T”.

Several processes can have active timers.
The CPU has only one clock.
Must service the alarms in the right order.

Keep a sorted list of all timers.
Each entry tells when the alarm goes off
and what to do then.

67

Software Timers

Alarms set for 4203, 4207, 4213, 4215 and 4216.
Each entry tells how many ticks past the previous entry.
On each tick, decrement the “NextSignal”.
When it gets to 0, then signal the process.

68

Watchdog Timers

Scenario:
• Embedded system
• Detect and recover from crashes, infinite loops
 Example: Space probe, bug, infinite loop

Initialize the timer with a “interval” of time
 e.g., 1 second

Software must “feed” the timer
 ...every second
By writing 0x12345678 to a special device register

Failure to “feed” the watch dog?
Full “SYSTEM RESET” will be triggered.

69

Character-Oriented I/O

RS-232 / Serial interface / Modem / Terminals / tty / COM
Bit serial (9- or 25-pin connectors), only 3 wires used
UART: Universal Asynchronous Receiver Transmitter
byte → serialize bits → wire → collect bits → byte

70

Terminals

56,000 baud = 56,000 bits per second = 8000 bytes / sec
ASCII character codes

Dumb CRTs / teletypes
Very few control characters
 newline, return, backspace

Intelligent CRTs
Also accept “escape sequences”
Reposition the cursor, clear the screen, insert lines, etc.
The standard “terminal interface” for computers
 Example programs: vi, emacs
VT-100: The terminal emulator standard

71

Input Software

Character Processing
User types “hella←o”
Computer echoes as: “hella←_←o”
Program will see “hello”

Raw Mode
The driver delivers all characters to application
No modifications, no echoes.
vi, emacs, the BLITZ emulator, password entry

Cooked Mode
The driver does echoing and processing of special chars.
“Canonical mode”

72

Cooked Mode

The terminal driver must...
• Buffer an entire line before returning to application
• Processes special control characters
 Control-C
 Backspace, line-erase, tabs
• Echo the character just typed
• Accommodate type-ahead
 Need an internal buffer

Approach 1 (for computers with many terminals)
Have a pool of buffers to use as necessary

Approach 2 (for single-user computer)
Have one buffer (e.g., 500 bytes) per terminal

73

Central Buffer Pool vs. Dedicated Buffers

74

The End-Of-Line Problem

NL “newline” (ASCII 0x0A, \n)
Move cursor down one line (no horizontal movement)

CR “return” (ASCII 0x0D, \r)
Move cursor to column 1 (no vertical movement)

“ENTER key”
Behavior depends on the terminal specs.
May send CR, may send NL, may send both.
Software must be device independent.

Unix, Macintosh:
Each line (in a file) ends with a NL.

Windows:
Each line (in a file) ends with CR & NL.

75

Special Control Characters (in “cooked mode”)

76

Control-D: EOF

Typing Control-D (“End of file”)
causes the read request to be satisfied immediately

Do not wait for “enter key”
Do not wait for any characters at all
May return 0 characters

Within the user program

 count = Read (fd, buffer, buffSize)
 if count == 0
 -- Assume end-of-file reached...

77

Outputting to a Terminal

The terminal accepts an “escape sequence”
Tells it to do something special
Example:
esc [3 ; 1 H esc [0 K esc [1 M

Each terminal manufacturer had
a slightly different specifcation.
 Makes device independent software difficult

Unix “termcap” file
Database of different terminals and their behaviors.

Move to
position (3,1)

on screen

Erase
the line

Shift
following

lines up one

ESCAPE:
0x1B

78

ANSI Escape Sequence Standard

79

Graphical User Interfaces (GUIs)

Memory-Mapped Displays
 “bit-mapped graphics”

Video driver moves bits into special memory region
Changes appear on the screen
 Video controller constantly scans video ram

Black and white displays
 1 bit = 1 pixel

Color
 24 bits = 3 bytes = 1 pixels
 red (0-255)
 green (0-255)
 blue (0-255)

1280 * 854 * 3
= 3 MB

80

Graphical User Interfaces (GUIs)

81

X Window System

Client - Server
Remote Procedure Calls (RPC)
Client makes a call.
Server is awakened; the procedure is executed.

Intelligent terminals (“X terminals”)

The display side is the server.
The application side is the client.
The application (client) makes requests to the display server.
Client and server are separate processes
(May be on the same machine)

82

X Window System

83

X Window System

 X-Server
Display text and geometric shapes, move bits
Collect mouse and keyboard status

X-Client
Xlib
 library procedures; low-level access to X-Server
Intrinsics
 provide “widgets”
 buttons, scroll bars, frames, menus, etc.
Motif
 provide a “look-and-feel” / style
Window Manager
 Application independent functionality
 Create & move windows

84

The SLIM Network Terminal

Stateless Low-level Interface Machine (SLIM)
Sun Microsystems

Philosophy: Keep the terminal-side very simple!

Back to “dumb” terminals”

Interface to X-Server:
100’s of functions

SLIM:
Just a few messages
The host tells which pixels to put where
The host contains all the intelligence

85

The SLIM Network Terminal

The SLIM Protocol
from application-side (server)
to terminal (the “thin” client)

86

Also in Chapter 5 – But not covered here

Power Management

Graphical User Interfaces

Soft Timers

