Chapter 4

File
Systems

Part 1

Reading

Chapter 4: File Systems

Chapter 10: Case Study 1: Linux (& Unix)

Long-Term Storage of Information

Must store large amounts of data

Information must survive the termination
of the process using it
“persistence”

Multiple processes must be able to access
the information concurrently

Flle Namlng Extensmns

Typical File Extensions

Extension Meaning

file.bak Backup file

file.c C source program

file.qif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Flle Structure

1 Byte 1 Record
e e
Ant Fox Pig
Cat || Cow || Dog Goat || Lion || Owl Pony || Rat |[Worm
Hen || Ibis || Lamb
Sequence Sequence Tree
of bytes of records of records

e A

A i
Module
Magic number Head name
eader
Text size
Data size Dat
ate
% BSS size
= - Object Owner
% Symbol table size module
S — Protection
///////// Size
Fl
ags Header
s Text 2
Object
module
gt Data ~ Header
A Relocation L
T bits T
Object
module
A Symbol ~
T table b il

An executable file An archive

File Access

Sequential Access
Read all bytes/records from the beginning
Cannot jump around (but could rewind or back up)
convenient when medium was magnetic tape

Random Access
Can read bytes (or records) in any order
Essential for database systems
Option 1.
move position, then read
Option 2:
perform read, then update current position

File Attributes (some examples)

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag O for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag O for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

O for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Some Important Operations on Files

e Create a file

e Delete a file

* Open

* Close

e Read

e Write

e Append

* Seek (move to new position)
e Get attributes

e Set/modify attributes
e Rename file

A “C” Program to Copy a Flle

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv(]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])

{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc !=3) exit(1); /* syntax error if argc is not 3 */ 1 O
(continued)

A “C” Program to Copy a Flle

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd__count <= 0) break; /* if end of file or error, exit loop */
wt__count = write(out_ fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt__count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd__count == 0) /* no error on last read */
exit(0);

else

exit(5); /* error on last read */ 1 1

Memory-Mapped Files

e e A,

Before:
Use syscalls (e.g., open, read, write, ...
to move data from disk to memory

Memory-Mapped Files

Before:
Use syscalls (e.g., open, read, write, ...)
to move data from disk to memory
Notice:
The kernel does this all the time
Pages moved to/from PAGEFILE

13

Memory-Mapped Files

Before:
Use syscalls (e.g., open, read, write, ...)
to move data from disk to memory
Notice:
The kernel does this all the time
Pages moved to/from PAGEFILE
Idea:
“Map” files into the virtual address space
To read from file:
Just access that region of virtual address space
Kernel will fetch pages from disk when needed
To write file:
Modify bytes in memory
Open & Close syscalls — Map & Unmap syscalls

14

[]
emory-Mapped Files
B B B

eee

Virtual Address Space

Stack

_

Text

Data

A
\/

File on Disk

N— -

15

Memory-Mapped Flles

Virtual Address Space

Stack

N

Text

Data

~ N

N S
File on Disk

N— -

16

Memory-Mapped Files

e e A,

Virtual Address Space “Map’’ syscall is made

Stack
% ~ N

File on Disk
N— S

Text

Data

Memory-Mapped Files

Virtual Address Space “Map’’ syscall is made

Stack

7

A

File on Disk
\ /
Text
&
Data

Memory-Mapped Files

Virtual Address Space

Stack

Data

~—

File on Disk

__—~

Demand Paging:

Only read pages when needed

Memory-Mapped Files

A A

o T o g o o o o g o o
o

e
S

o

A A B i
5 il s B B B o B B o B o o o o o o o o o o o o o o o o i i o

&

- - B

Unix / Linux:

#include <sys/mman.h>

void* mmap (

void * start, Address of memory region
size t length, Length of memory region

int prot, Read | write | execute flag
int flags,

int fd, File descriptor

off t offset); Offsetin the file

int munmap (
void * start, Address of memory region

size t length); Length of memory region 2 O

Directories

“Folder”
Early OSs

Single-Level Directory Systems

Dlrectorles

“Folder”
Early OSs
Single-Level Directory Systems

Root Directory “Files” and “directories” are
different, unrelated concepts.

22

Dlrectorles

“Folder”
Early OSs
Single-Level Directory Systems

Root Directory “Files” and “directories” are
different, unrelated concepts.

Problem:
Sharing amongst users
Appropriate for small, embedded systems 2 3

o
WO-L.€V€ Irector y SY stems
B

eee

Each user has a directory.
Files accessed with user/filename.
/james/d

Root Directory

harry felicia james zach

@ ® W@ W @ W ® «

24

Two-Level Directory Systems

Each user has a directory.
Files accessed with user/filename.
/james/d
Directories and files are seen as ‘‘different” creatures.
Security options:
No protection, full sharing Root Directory
Full protection, no sharing

harry felicia james zach

@ ® W@ W @ W ® «

25

Hi hical Di t Syst
B

eee

A tree of directories
Interior nodes: Directories

Leaves: Files

B
O b @© [E [F © O
®w @

0 ® @ 26

Hlerarchlcal Dlrectory Systems

A tree of directories
Interior nodes: Directories

Leaves: Files

[User’s Directories 6 m ﬂ @ 0

G
[Sub-directories] AD @ @ 2 7

Path Names

MULTICS
>usr>harry>mailbox

Unix
/usr/harry/mailbox

Windows
\usr\harry\mailbox

23

Path Names

A

A

A

it - - -~

MULTICS
>usr>harry>mailbox

Unix
/usr/harry/mailbox

Windows
\usr\harry\mailbox

Absolute Path Name
/usr/harry/mailbox

Each process has its own
working directory

Relative Path Name
“working directory”’ (or ‘“current directory’’)

mailbox 2 9

A Uan Dlrectory Tree

/
bin [<— Root directory
etc . is the “current directory”
lib .. 1is the parent
usr
tmp
bin etc lib usr tmp
ast
jim
lib
ast lib jim

: —— /usr/jim
dict.

Typical Directory Operations

Create a new directory

Delete a directory

Open a directory for reading

Close

Readdir - Return next entry in the directory
(Returns the entry in a standard format, regardless of the
internal representation)

Rename a directory

Link - Add this directory as a sub directory in another
directory. (Make a ‘“hard link”.)

Unlink - Remove a “hard link”

31

o [d
nix Director y-I€ ate ySCalis
B A A i

;;;;;;;
eee

System call Description
s = mkdir(path, mode) Create a new directory
s = rmdir(path) Remove a directory
s = link(oldpath, newpath) | Create a link to an existing file
s = unlink(path) Unlink a file
s = chdir(path) Change the working directory
dir = opendir(path) Open a directory for reading
s = closedir(dir) Close a directory
dirent = readdir(dir) Read one directory entry
rewinddir(dir) Rewind a directory so it can be reread

S = error code
dir = directory stream

dirent = directory entry 3 2

File System Implementation

Sector 0: ‘“Master Boot Record” (MBR)
Contains the partition map

Rest of disk divided into “‘partitions”
Partition: sequence of consecutive sectors.

Each partition can hold its own file system.
 Unix file system
 Window file system
e Apple file system

Every partition starts with a ‘“‘boot block”
Contains a small program
This *‘boot program’ reads in an OS

from the file system in that partition

OS Startup
BIOS reads MBR , then reads & execs a boot block

33

An Example Disk

Entire disk

Partition table Disk partition

MBR

i s R S S S S S S S s s s s s s

Partition table

\

/

Entire disk

Disk partition

} T

MBR

Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories
~—
e
Unix File System

35

5 A e o e e e e

Idea:
All blocks in a file are contiguous on the disk.

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
(—H r - Al r - N r—/%

H_) %/—J L ~ J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)

36

5 A e o e e e e

Idea:
All blocks in a file are contiguous on the disk.

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
—— r - 3 s - 3 —

S R PRI C 2)
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
After deleting D and F...
(File A) (File C) (File E) (File G)
= i N ” N
- - . g)

File B EFree blocks) 6 Free blocks y 3 7

Contlguous Allocatlon

Advantages:
e Simple to implement
(Need only starting sector & length of file)
* Performance is good (for reading)

33

Contiguous Allocation

Advantages:
e Simple to implement
(Need only starting sector & length of file)
* Performance is good (for reading)

Disadvantages:
e After deletions, disk becomes fragmented
e Will need periodic compaction (time-consuming)
* Will need to manage free lists
If new file put at end of disk...
No problem
If new file is put into a ‘‘hole”...
Must know a file’s maximum possible size
... at the time it is created

39

Contiguous Allocation

Good for CD-ROMs

o All file sizes are known in advance

* Files are never deleted

Llnked Llst Allocatlon

Each file is a sequence of blocks
First word in each block contains number of next block

File A
-1 -1 —_ e 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 v 2 10 12
block
File B
i —— - —— 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

41

Llnked Llst Allocatlon

Each file is a sequence of blocks
First word in each block contains number of next block

File A
- - . —+— —+— 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 v 2 10 12
block
File B
—— — —— 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Random access into the file is slow!

42

Flle Allocatlon Table (FAT)

Keep a table in memory

On entry per block on the disk

Each entry contains the address of the “next” block
A special value (-2) indicates the block is free

43

Flle Allocatlon Table (FAT)

Physical
block

0 N o o A W N = O

—_ A A A a4
OO A W N -~ O ©O

10

11

—-—— File A starts here

—-—— File B starts here

——— Unused block

Flle Allocatlon Table (FAT)

Physical
block

0 N o o A W N = O

—_ A A A a4
OO A W N -~ O ©O

10

11

File A starts here

—<—— Bié B starts here

——— Unused block

Flle Allocatlon Table (FAT)

Physical
block

0 N o o A W N = O

—_ A A A a4
OO A W N -~ O ©O

10

11

Filg A starts here

«— Bieé B starts here

——— Unused block

Flle Allocatlon Table (FAT)

Physical
block

0

O 00 N o o0 A W N =

—_ A A A a4
OO A W N =+ O

10

11

Filg A starts here

«— B8 B starts here

12

14

——— Unused block

47

Flle Allocatlon Table (FAT)

Physical
block

0

O 00 N o o0 A W N =

—_ A A A a4
OO A W N =+ O

10

11

Filg A starts here

«— B8 B starts here

12

14

=

——— Unused block

43

Flle Allocatlon Table (FAT)

Physical
block

0
1
2

10
11
12
13
14
15

10

11

Filg A starts here

«— B8 B starts here

12

14

=

——— Unused block

49

Flle Allocatlon Table (FAT)

Physical
block

0
1
2

10

12
13
14
15

10

11

Filg A starts here

«— B8 B starts here

12

14

=

—<—— Unused block

50

Flle Allocatlon Table (FAT)

Physical
block

0

1

10

11

Filg A starts here

«— B8 B starts here

12

14

=

2
| 4
3
7
8
9
10
1
12
13
1
15

—<—— Unused block

51

File Allocation Table (FAT)
B B B

eee

Random access...
Search the linked list (but all in memory)
Directory Entry needs only one number
Starting block number

52

File Allocation Table (FAT)

Random access...
Search the linked list (but all in memory)
Directory Entry needs only one number
Starting block number

Disadvantage:
Entire table must be in memory all at once!

53

Flle Allocatlon Table (FAT)

Random access...
Search the linked list (but all in memory)

Directory Entry needs only one number
Starting block number

Disadvantage:
Entire table must be in memory all at once!

Example:

20 GB = disk size

1 KB = block size

4 bytes = FAT entry size

80 MB of memory used to store the FAT

54

I-Node

Each I-Node (‘‘index-node”) is a structure / record
Contains info about the file

e Attributes

* Location of the blocks containing the file

/

/

N —> Blocks
> on disk

Other
Attributes

I-Node Y, 5 5

I-Node

Each I-Node (‘‘index-node”) is a structure / record
Contains info about the file

e Attributes

* Location of the blocks containing the file

\
(// —>
Enough space < o ‘
for 10 pointers — > Blocks
B on disk
Repnlis
Y
Other
Attributes

I-Node Y, 5 6

I-Node

Each I-Node (‘‘index-node”) is a structure / record
Contains info about the file

e Attributes

* Location of the blocks containing the file

\
(// —>
Enough space < o ‘
for 10 pointers — > Blocks
B on disk
— /'
YNy
Other //
Attributes '/
I-Node — ‘ 5 7

The UN IX Flle System

The layout of the disk:

Boot Super
block block

Y ¥

| nodes

Data blocks

)
(

)
(

The UNIX File System

i-node

Mode

Link count
Uid
Gid

File size

Times

Addresses of
first 10
disk blocks

Single indirect

Pointers to
—% disk blocks

Y

Double indirect

Triple indirect

AEN

Triple
indirect /
block Double
indirect /

block

AT

Single
indirect
block

A A

;;;;;;;;;;;;
eee

Field | Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 39 Address of first 10 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 Time the i-node was last changed (except the other times)

Structure of an I-Node

60

The UNIX File System

B B A

ff

Open file
description i-node
Parent’s File position
file 7 AW / Moce

descriptor Pointer to i-node Link count

table . - i

- File position Uid
f~ R/W H
. Gid
Child's Pointer to i-node
fllg File size

descriptor

table A L Times
Unrelated Ad?irriﬁ%s of Pointers to

rocess’ disk block
-l disk blocks —7 ciskblocts
descriptor Single indirect

table L

Double indirect >
Triple indirect

AEN

Triple
indirect /
block Double /

indirect Sinal
block .>N9'€
indirect

block

AT

Directories

List of files
e File name
e File Attributes

Dlrectorles

List of files
e File name
e File Attributes

Simple Approach:
Put all attributes in the directory

63

Dlrectorles

List of files
e File name
e File Attributes

Simple Approach:
Put all attributes in the directory

Unix Approach:
Directory contains
File name
I-Node number
I-Node contains
File Attributes

64

Directories

Simple Approach
‘“Kernel.h” attributes
“Kernel.c”’ attributes
‘“Main.c” attributes
“Proj7.pdf”’ attributes
“temp”’ attributes
“08” attributes

65

Directories

Unix Approach / i-node

\ i-node

“Kernel.h” // i-nOde

66 1) —_—

Ker.nel.c ! i-node
‘“Main.c”’

“Proj7.pdf”’ 2| i-node
“tem 929 —

“os’;p — —>| i-node

66

Fllenames

Short, Fixed Length Names
MS-DOS/Windows
8 +3 “FILE3.BAK”
Each directory entry has 11 bytes for the name
Unix (original)
Max 14 chars

67

Fllenames

Short, Fixed Length Names
MS-DOS/Windows
8 +3 “FILE3.BAK”
Each directory entry has 11 bytes for the name
Unix (original)
Max 14 chars

Variable Length Names
Unix (today)
Max 255 chars

Directory structure gets more complex

63

Varlable Length Fllenames

Approach #1

File 1 entry length

File 1 attributes

Entry . 5 .
for one P J
file e c t -
b u d g

L t D

File 2 entry length
File 2 attributes

p e r

o n n e

! X
File 3 entry length

File 3 attributes

f 0 o) X

Varlable Length Fllenames

Approach #1 Approach #2
[File 1 entry length L Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry . 5 . : —
for oHE p J Pointer to file 2's name ~
file e c t Ei s
b 5 d 9 ile 2 attributes
o t X . Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
p e r
o n n e :
| X p r 0 |
File 3 entry length e a t -
b u d g
File 3 attributes e t X p
> Heap
f o o X e r s o
n e I
f o] o] 7
m) O

Sharing Files

One file appears in several directories.

Tree — DAG

C

Fl 0 @

A

@D [@ [E

S 71

Sharing Files

One file appears in several directories.

Tree — DAG (Directed Acyclic Graph)

C

Fl 0 @

A

@D [@ [E

5 T2

Sharing Files

One file appears in several directories.

Tree — DAG (Directed Acyclic Graph)

C

Fl 0 @

A

@ [@ [E

H

G

&73

Sharlng Flles

One file appears in several directories.
Tree — DAG (Directed Acyclic Graph)

B

O b @© [E [F © O

What if the file changes? @
New disk blocks are used.
Better not store this info

in the directories!!!

G

@{})74

Hard LlIlkS and Symbollc LlIlkS

In Unix:
Hard links
Both directories point to the same i-node

Symbolic links
One directory points to the file’s i-node
Other directory contains the *‘path”

73

Hard Links

C

Fl 0 @

A

D [@ [E

H

G

@{})76

Hard Links

Assume i-node number of *‘n”’ is 45.

A C

O b @ [E [F © O

G

® © 77

Hard LlIlkS

Assume i-node number of *‘n”’ is 45.

Directory “D”
66m99 123
66n99 45

Directory “G”
66n99 45
66099 87

B

O b @ [E [F © O

W

G

@{})78

Hard LlIlkS

The file may have a
different name in /B/D/nl

each directory /C/F/G/n2
Directory “D”

*
.66 99"

B
O b @ [E [F © O

"‘n2”' 45 @ G

“o” 87 ~
;0 D © G{}D 79

Hard Link
e e

;;;;;;;;;;;;;;;;;
eee

The name of a file is stored in the directory
that points to the file.
Edges are labeled.

/B/D/nl
/C/F/G/n2

B
® bl ®©E HOC
w G

® @ S0

Hard Llnks

The name of a file is stored in the directory
that points to the file.
Edges are labeled. .

/B/D/nl
/C/F/G/n2

] O/ESI

Hard Link
e e

;;;;;;;;;;;;;;;;;
eee

The name of a file is stored in the directory

that points to the file.
Edges are labeled. .
/B/D/nl A C
/C/F/G/n2 B
B C
. D7 INE F 1
i J k
O L] O Ll [JOO
m nl G H

X% &Y 82

Hard Link
e e

;;;;;;;;;;;;;;;;;
eee

The name of a file is stored in the directory

that points to the file.
Edges are labeled. .
/B/D/nl A C
/C/F/G/n2 B
N N
. D7 INE F 1
i J k
O L1 O L L1OO
m nl G H

X% &Y 83

Symbolic Links

B

B B o i

Symbolic Links

A C

S bolic Link
e e A Ly

Assume i-node number of *‘n”’ is 45

Directory *“D” .
“m’’ 123 A C

B
(14 199 45 ot
lj :) B Hard Link

S bolic Link
e e e

Assume i-node number of *‘n”’ is 45

Directory *“D” .
“m’’ 123 A C

B
(14 199 45 ot
n) B Hard Link

Directory “G”

“n2” | /B/D/nl
66099 87

S bolic Link
e e e e

Assume i-node number of *‘n”’ is 45

Directory “D”

C6ga??
m

123

“nl”

45

Directory “G”

66n2”

/B/D/nl

37

660
0
°
°
°

A C

— (Hard Lmk

Ql'bl QQ

m nl G
O O Symbolic Link |

n2 2z

p q
“Bpm1?) O O O 88

S bolic Link
e e e e

Assume i-node number of *‘n”’ is 45

Directory “D”

C6ga??
m

123

“nl”

A C

45 . (Hard Lmk

b F

QI'I IQQ

Directory “G”

66n2”

/B/D/nl

€69
0

37

m nl G
O O Symbolic Link |

n2 2z

* | j-node = 91

* (s eparate file

p q
“BDm1?) O O O 89

S bolic Link
e e e e

Assume i-node number of *‘n”’ is 45

Directory “D”

C6ga??
m

123

“nl”

45

Directory “G”

66n2”

91

€69
0

37

A C

(Hard Lmk

b F

QI'I IQQ

nl
O O

* (s eparate file

* | j-node = 91

G

Symbolic Link |

n2 2z

p q
“BDm1?) O O O 90

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

Deletlng a Flle

Directory entry is removed from directory
All blocks in file are returned to free list

What about sharing???
Multiple links to one file (in Unix)

92

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

What about sharing???
Multiple links to one file (in Unix)

Hard Links
Put a ‘“‘reference count” field in each i-node
Counts number of directories that point to the file
When removing file from directory, decrement count
When count goes to zero, reclaim all blocks in the file

93

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

What about sharing???
Multiple links to one file (in Unix)

Hard Links
Put a ‘“‘reference count” field in each i-node
Counts number of directories that point to the file
When removing file from directory, decrement count
When count goes to zero, reclaim all blocks in the file

Symbolic Link
Remove the real file... (normal file deletion)
Symbolic link becomes ‘‘broken” 9 4

