
1

File
Systems

Chapter 4 �

Part 1

2

Reading

Chapter 4: File Systems

Chapter 10: Case Study 1: Linux (& Unix)

3

Long-Term Storage of Information

Must store large amounts of data

Information must survive the termination
of the process using it
 “persistence”

Multiple processes must be able to access
the information concurrently

4

File Naming - Extensions

Typical File Extensions

5

File Structure

asd

Sequence
of bytes

Sequence
of records

Tree
of records

6

File Types

An executable file An archive

7

File Access

Sequential Access
Read all bytes/records from the beginning
Cannot jump around (but could rewind or back up)

convenient when medium was magnetic tape

Random Access
Can read bytes (or records) in any order
Essential for database systems
 Option 1:
 move position, then read
 Option 2:
 perform read, then update current position

8

File Attributes (some examples)

Examples

9

Some Important Operations on Files

• Create a file
• Delete a file
• Open
• Close
• Read
• Write
• Append
• Seek (move to new position)
• Get attributes
• Set/modify attributes
• Rename file

10

A “C” Program to Copy a File

(continued)

11

A “C” Program to Copy a File

12

Memory-Mapped Files

Before:
Use syscalls (e.g., open, read, write, ...)
 to move data from disk to memory

13

Memory-Mapped Files

Before:
Use syscalls (e.g., open, read, write, ...)
 to move data from disk to memory

Notice:
The kernel does this all the time
 Pages moved to/from PAGEFILE

14

Memory-Mapped Files

Before:
Use syscalls (e.g., open, read, write, ...)
 to move data from disk to memory

Notice:
The kernel does this all the time
 Pages moved to/from PAGEFILE

Idea:
“Map” files into the virtual address space
To read from file:
 Just access that region of virtual address space
 Kernel will fetch pages from disk when needed
To write file:
 Modify bytes in memory
Open & Close syscalls → Map & Unmap syscalls

15

Memory-Mapped Files

Virtual Address Space
Stack

Text
&

Data

File on Disk

16

Memory-Mapped Files

Virtual Address Space
Stack

Text
&

Data

File on Disk

“Map” syscall is made

17

Memory-Mapped Files

Virtual Address Space
Stack

Text
&

Data

File on Disk

“Map” syscall is made

18

Memory-Mapped Files

Virtual Address Space
Stack

Text
&

Data

File on Disk

“Map” syscall is made

19

Memory-Mapped Files

Virtual Address Space
Stack

Text
&

Data

File on Disk

“Map” syscall is made

Demand Paging:
Only read pages when needed

20

Memory-Mapped Files

Unix / Linux:

 #include <sys/mman.h>

 void* mmap (
 void * start, Address of memory region
 size_t length, Length of memory region
 int prot, Read / write / execute flag
 int flags,
 int fd, File descriptor
 off_t offset); Offset in the file

 int munmap (
 void * start, Address of memory region
 size_t length); Length of memory region

21

Directories

“Folder”
Early OSs
Single-Level Directory Systems

22

Directories

“Folder”
Early OSs
Single-Level Directory Systems

Root Directory

c d a b

“Files” and “directories” are
different, unrelated concepts.

23

Directories

“Folder”
Early OSs
Single-Level Directory Systems

Problem:
Sharing amongst users

Appropriate for small, embedded systems

Root Directory

c d a b

“Files” and “directories” are
different, unrelated concepts.

24

Two-Level Directory Systems

Each user has a directory.
Files accessed with user/filename.
/james/d

Root Directory

harry

c a b

felicia

c d e

james

d g a

zach

e b

25

Two-Level Directory Systems

Each user has a directory.
Files accessed with user/filename.
/james/d

Directories and files are seen as “different” creatures.
Security options:
No protection, full sharing
Full protection, no sharing

Root Directory

harry

c a b

felicia

c d e

james

d g a

zach

e b

26

Hierarchical Directory Systems

A tree of directories
Interior nodes: Directories
Leaves: Files /

E D

C B A

F

G H

i j

m n

o

k l

p q

27

Hierarchical Directory Systems

A tree of directories
Interior nodes: Directories
Leaves: Files /

E D

C B A

F

G H

i j

m n

o

k l

p q

User’s Directories

Root Directory

Sub-directories

28

Path Names

MULTICS
>usr>harry>mailbox

Unix
/usr/harry/mailbox

Windows
\usr\harry\mailbox

29

Path Names

MULTICS
>usr>harry>mailbox

Unix
/usr/harry/mailbox

Windows
\usr\harry\mailbox

Absolute Path Name
/usr/harry/mailbox

Relative Path Name
“working directory” (or “current directory”)
mailbox

Each process has its own
working directory

30

A Unix Directory Tree

. is the “current directory”

.. is the parent

31

Typical Directory Operations

Create a new directory
Delete a directory
Open a directory for reading
Close
Readdir - Return next entry in the directory
(Returns the entry in a standard format, regardless of the
internal representation)

Rename a directory
Link - Add this directory as a sub directory in another

directory. (Make a “hard link”.)
Unlink - Remove a “hard link”

32

Unix Directory-Related Syscalls

s = error code
dir = directory stream
dirent = directory entry

33

File System Implementation

Sector 0: “Master Boot Record” (MBR)
Contains the partition map

Rest of disk divided into “partitions”
Partition: sequence of consecutive sectors.

Each partition can hold its own file system.
• Unix file system
• Window file system
• Apple file system

Every partition starts with a “boot block”
Contains a small program
This “boot program” reads in an OS
 from the file system in that partition

OS Startup
BIOS reads MBR , then reads & execs a boot block

34

An Example Disk

35

An Example Disk

Unix File System

36

Contiguous Allocation

Idea:
All blocks in a file are contiguous on the disk.

After deleting D and F...

37

Contiguous Allocation

Idea:
All blocks in a file are contiguous on the disk.

After deleting D and F...

38

Contiguous Allocation

Advantages:
• Simple to implement
 (Need only starting sector & length of file)
• Performance is good (for reading)

39

Contiguous Allocation

Advantages:
• Simple to implement
 (Need only starting sector & length of file)
• Performance is good (for reading)

Disadvantages:
• After deletions, disk becomes fragmented
• Will need periodic compaction (time-consuming)
• Will need to manage free lists
 If new file put at end of disk...
 No problem
 If new file is put into a “hole”...
 Must know a file’s maximum possible size
 ... at the time it is created

40

Contiguous Allocation

Good for CD-ROMs
• All file sizes are known in advance
• Files are never deleted

41

Linked List Allocation

Each file is a sequence of blocks
First word in each block contains number of next block

42

Linked List Allocation

Each file is a sequence of blocks
First word in each block contains number of next block

Random access into the file is slow!

43

File Allocation Table (FAT)

Keep a table in memory
On entry per block on the disk
Each entry contains the address of the “next” block
A special value (-2) indicates the block is free

44

File Allocation Table (FAT)

45

File Allocation Table (FAT)

46

File Allocation Table (FAT)

47

File Allocation Table (FAT)

48

File Allocation Table (FAT)

49

File Allocation Table (FAT)

50

File Allocation Table (FAT)

51

File Allocation Table (FAT)

52

File Allocation Table (FAT)

Random access...
Search the linked list (but all in memory)

Directory Entry needs only one number
Starting block number

53

File Allocation Table (FAT)

Random access...
Search the linked list (but all in memory)

Directory Entry needs only one number
Starting block number

Disadvantage:
Entire table must be in memory all at once!

54

File Allocation Table (FAT)

Random access...
Search the linked list (but all in memory)

Directory Entry needs only one number
Starting block number

Disadvantage:
Entire table must be in memory all at once!

 Example:
 20 GB = disk size
 1 KB = block size
 4 bytes = FAT entry size
 80 MB of memory used to store the FAT

55

I-Nodes

Each I-Node (“index-node”) is a structure / record
Contains info about the file
• Attributes
• Location of the blocks containing the file

Other
Attributes

Blocks
on disk

I-Node

56

I-Nodes

Each I-Node (“index-node”) is a structure / record
Contains info about the file
• Attributes
• Location of the blocks containing the file

Enough space
for 10 pointers

Other
Attributes

Blocks
on disk

I-Node

57

I-Nodes

Each I-Node (“index-node”) is a structure / record
Contains info about the file
• Attributes
• Location of the blocks containing the file

Enough space
for 10 pointers Blocks

on disk

Other
Attributes

I-Node

58

The UNIX File System

The layout of the disk:

59

The UNIX File System

60

The UNIX File System

Structure of an I-Node

61

The UNIX File System

62

Directories

List of files
• File name
• File Attributes

63

Directories

List of files
• File name
• File Attributes

Simple Approach:
Put all attributes in the directory

64

Directories

List of files
• File name
• File Attributes

Simple Approach:
Put all attributes in the directory

Unix Approach:
Directory contains
 File name
 I-Node number
I-Node contains
 File Attributes

65

Directories

Simple Approach

“Kernel.h”
“Kernel.c”
“Main.c”
“Proj7.pdf”
“temp”
“os”

attributes
attributes
attributes
attributes
attributes
attributes

•
•
•

•
•
•

66

Directories

Unix Approach

“Kernel.h”
“Kernel.c”
“Main.c”
“Proj7.pdf”
“temp”
“os”

i-node

i-node

i-node

i-node

i-node

i-node•
•
•

•
•
•

67

Filenames

Short, Fixed Length Names
MS-DOS/Windows
 8 + 3 “FILE3.BAK”
 Each directory entry has 11 bytes for the name
Unix (original)
 Max 14 chars

68

Filenames

Short, Fixed Length Names
MS-DOS/Windows
 8 + 3 “FILE3.BAK”
 Each directory entry has 11 bytes for the name
Unix (original)
 Max 14 chars

Variable Length Names
Unix (today)
 Max 255 chars
 Directory structure gets more complex

69

Variable-Length Filenames

 Approach #1 Approach #2

70

Variable-Length Filenames

 Approach #1 Approach #2

71

Sharing Files

One file appears in several directories.
Tree → DAG

/

E D

C B A

F

G H

i j

m

n o

k l

p q

72

Sharing Files

One file appears in several directories.
Tree → DAG (Directed Acyclic Graph)

/

E D

C B A

F

G H

i j

m

n o

k l

p q

73

Sharing Files

One file appears in several directories.
Tree → DAG (Directed Acyclic Graph)

/

E D

C B A

F

G H

i j

m

n o

k l

p q

74

Sharing Files

One file appears in several directories.
Tree → DAG (Directed Acyclic Graph)

/

E D

C B A

F

G H

i j

m

n o

k l

p q

What if the file changes?
New disk blocks are used.
Better not store this info
 in the directories!!!

75

Hard Links and Symbolic Links

In Unix:
Hard links
 Both directories point to the same i-node

Symbolic links
 One directory points to the file’s i-node
 Other directory contains the “path”

76

Hard Links

/

E D

C B A

F

G H

i j

m

n o

k l

p q

77

Hard Links

Assume i-node number of “n” is 45.

/

E D

C B A

F

G H

i j

m

n o

k l

p q

78

Hard Links

Assume i-node number of “n” is 45.

/

E D

C B A

F

G H

i j

m

n o

k l

p q

“m”
“n”

123
45

•
•
•

•
•
•

“n”
“o”

45
87

•
•
•

•
•
•

Directory “D”

Directory “G”

79

Hard Links

Assume i-node number of “n” is 45.

/

E D

C B A

F

G H

i j

m

n o

k l

p q

“m”
“n1”

123
45

•
•
•

•
•
•

“n2”
“o”

45
87

•
•
•

•
•
•

Directory “D”

Directory “G”

The file may have a
different name in

each directory
/B/D/n1
/C/F/G/n2

80

Hard Links

The name of a file is stored in the directory
 that points to the file.
Edges are labeled. /

E D

C B A

F

G H

i j

m

n o

k l

p q

/B/D/n1
/C/F/G/n2

81

Hard Links

The name of a file is stored in the directory
 that points to the file.
Edges are labeled.

E D

C B A

F

G H

i j

m

n o

k l

p q

/B/D/n1
/C/F/G/n2

82

Hard Links

The name of a file is stored in the directory
 that points to the file.
Edges are labeled.

E D

C B A

F

G H

i j

m

n o

k l

p q

i k l

m

j

p o n2 q

A
B

C

D E F

G H

/B/D/n1
/C/F/G/n2

n1

83

Hard Links

The name of a file is stored in the directory
 that points to the file.
Edges are labeled.

i k l

m

j

p o n2 q

A
B

C

D E F

G H n1

/B/D/n1
/C/F/G/n2

84

Symbolic Links

i k l

m

j

p o n2 q

A
B

C

D E F

G H n1

85

Symbolic Links

i k l

m

j

p o n2 q

A
B

C

D E F

G H Symbolic Link
n1

Hard Link

86

Symbolic Links

Assume i-node number of “n” is 45

i k l

m

j

p o n2 q

A
B

C

D E F

G H Symbolic Link

“m”
“n1”

123
45

•
•
•

•
•
•

Directory “D”

n1

Hard Link

87

Symbolic Links

Assume i-node number of “n” is 45

i k l

m

j

p o n2 q

A
B

C

D E F

G H Symbolic Link

“m”
“n1”

123
45

•
•
•

•
•
•

“n2”
“o”

/B/D/n1
87

•
•
•

•
•
•

Directory “D”

Directory “G” n1

Hard Link

88

Symbolic Links

Assume i-node number of “n” is 45

i k l

m

j

p o n2 q

A
B

C

D E F

G H Symbolic Link

“m”
“n1”

123
45

•
•
•

•
•
•

“n2”
“o”

/B/D/n1
87

•
•
•

•
•
•

Directory “D”

Directory “G”

“/B/D/n1”

n1

Hard Link

89

Symbolic Links

Assume i-node number of “n” is 45

i k l

m

j

p o n2 q

A
B

C

D E F

G H Symbolic Link

“m”
“n1”

123
45

•
•
•

•
•
•

“n2”
“o”

/B/D/n1
87

•
•
•

•
•
•

Directory “D”

Directory “G”

“/B/D/n1”
Separate file
i-node = 91

n1

Hard Link

90

Symbolic Links

Assume i-node number of “n” is 45

i k l

m

j

p o n2 q

A
B

C

D E F

G H Symbolic Link

“m”
“n1”

123
45

•
•
•

•
•
•

“n2”
“o”

91
87

•
•
•

•
•
•

Directory “D”

Directory “G”

Separate file
i-node = 91

n1

“/B/D/n1”

Hard Link

91

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

92

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

What about sharing???
Multiple links to one file (in Unix)

93

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

What about sharing???
Multiple links to one file (in Unix)

Hard Links
Put a “reference count” field in each i-node
Counts number of directories that point to the file
When removing file from directory, decrement count
When count goes to zero, reclaim all blocks in the file

94

Deleting a File

Directory entry is removed from directory
All blocks in file are returned to free list

What about sharing???
Multiple links to one file (in Unix)

Hard Links
Put a “reference count” field in each i-node
Counts number of directories that point to the file
When removing file from directory, decrement count
When count goes to zero, reclaim all blocks in the file

Symbolic Link
Remove the real file... (normal file deletion)
Symbolic link becomes “broken”

