
1

Memory
Management

Chapter 3 �

Part 3

Outline of Chapter 3

• Basic memory management
• Swapping
• Virtual memory
• Page replacement algorithms
• Modeling page replacement algorithms
• Design issues for paging systems
• Implementation issues
• Segmentation

2

in this file

3

Local vs. Global Page Replacement

Assume several processes: A, B, C, ...
Some process gets a page fault.
(say, process A)

Choose a page to replace.

Local Page Replacement
Only choose one of A’s pages

Global Page Replacement
Choose any page

4

Local vs. Global Page Replacement

Original Local Global

Example: Process has a page fault...

5

Local vs. Global Page Replacement

Assume we have
5,000 frames in memory
10 processes

Idea: Give each process 500 frames

Fairness?
Small processes: do not need all those pages
Large processes: may benefit from even more frames

Idea:
Look at the size of each process
Give them a pro-rated number of frames
With a minimum of (say) 10 frames per process

6

Page Fault Frequency

“If you give a process more pages,
its page fault frequency will decline.”

7

Page Fault Frequency

“If you give a process more pages,
its page fault frequency will decline.”

Too High: Need to give this
process some more frames!

Too Low: Take some frames
away and give to other processes!

8

Page Fault Frequency

Measure the page fault frequency of each process.
Count the number of faults every second.

May want to consider the past few seconds as well.

9

Page Fault Frequency

Measure the page fault frequency of each process.
Count the number of faults every second.

May want to consider the past few seconds as well.

Aging:
Keep a running value.
Every second
 Count number of page faults
 Divide running value by 2
 Add in the count for this second

10

Load Control

Assume:
• The best page replacement algorithm
• Optimal global allocation of page frames

11

Load Control

Assume:
• The best page replacement algorithm
• Optimal global allocation of page frames

Thrashing is still possible!

12

Load Control

Assume:
• The best page replacement algorithm
• Optimal global allocation of page frames

Thrashing is still possible!
• Too many page faults!
• No useful work is getting done!
• Demand for frames is too great!

13

Load Control

Assume:
• The best page replacement algorithm
• Optimal global allocation of page frames

Thrashing is still possible!
• Too many page faults!
• No useful work is getting done!
• Demand for frames is too great!

Solution:
• Get rid of some processes (temporarily).
• Swap them out.
• “Two-level scheduling”

14

Which Page Size is Best?

Smaller Page Sizes...

Advantages
 • Less internal fragmentation
 On average: half of the last page is wasted
 • Working set takes less memory
 Less unused program in memory

Disadvantages
 • Page tables are larger
 • Disk-seek time dominates transfer time
 (It takes same time to read large page as small page)

15

Which Page Size is Best?

Let
s = size of average process
e = bytes required for each page table entry
p = size of page, in bytes

s/p = Number of pages per process
es/p = Size of page table
p/2 = space wasted due to internal fragmentation

overhead = se/p + p/2

16

Which Page Size is Best?

Let
s = size of average process
e = bytes required for each page table entry
p = size of page, in bytes

overhead = se/p + p/2

Want to choose p to minimize overhead.

Take derivative w.r.t. p and set to zero
-se/p2 + 1/2 = 0

Solving for p...
p = sqrt (2se)

17

Which Page Size is Best?

Let
s = size of average process = 1MB
e = bytes required for each page table entry = 8 bytes
p = size of page, in bytes

Solving for p...
p = sqrt (2se)

Example:

18

Which Page Size is Best?

Let
s = size of average process = 1MB
e = bytes required for each page table entry = 8 bytes
p = size of page, in bytes

Solving for p...
p = sqrt (2se)

Example:
p = sqrt (2 * 1MB * 8) = 4K

19

Which Page Size is Best?

Let
s = size of average process = 8MB
e = bytes required for each page table entry = 4 bytes
p = size of page, in bytes

Solving for p...
p = sqrt (2se)

Example:
p = sqrt (2 * 8MB * 4) = 8K

20

Sharing Pages

In a large multiprogramming system...
Many users
Some running the same program at the same time

Goal:
Share pages
 Can only share read-only pages (text segment)

21

Sharing Pages

22

Sharing Pages

In Unix:
A “Fork” syscall
Copy the parent’s virtual address space
 ... and immediately do an “Exec” syscall
Desired Semantics:
 “Data and text segments are copied”

23

Sharing Pages

In Unix:
A “Fork” syscall
Copy the parent’s virtual address space
 ... and immediately do an “Exec” syscall
Desired Semantics:
 “Data and text segments are copied”

Idea: Copy-On-Write
• Share all pages
• Mark all pages “read-only”
• Page Fault:
 Is this a “data” page?
 Copy the page
 Mark both copies “writable”
 Resume execution

24

Paging Daemon

Paging works best if there are plenty of free frames.
If all pages are full of dirty pages...
 Must perform 2 disk operations for each page fault

25

Paging Daemon

Paging works best if there are plenty of free frames.
If all pages are full of dirty pages...
 Must perform 2 disk operations for each page fault

Page Daemon
• A kernel process
• Wakes up periodically
• Counts the number of free pages
• If too few, run the page replacement algorithm...
 • Select a page & write it to disk
 • Mark the page as clean

If this page is needed later... then it is still there.
If an empty frame is needed later... this page is evicted.

26

New System Calls for Page Management

Goal:
Allow some processes more control over paging!

System calls added to the kernel
Example: A process can request a page before it is needed

Processes can share pages
 Allows fast movement of data between processes

Processes can grow
Heap manager
 • User-level code
 • May request more memory, as needed

27

Unix Processes

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

28

Unix Processes

Stack Pages

Data Pages

Text Pages

Page Zero: Environment
(Filled in with

parameters to the process)

Not allocated to the
virtual address space

29

Unix Processes

The stack grows;
Page fault occurs here

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

30

Unix Processes

The stack grows;
Page fault occurs here
A new page is allocated
 and process continues

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

31

Unix Processes

The stack grows;
Page fault occurs here
A new page is allocated
 and process continues

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

32

Unix Processes

The heap grows;
Page fault occurs here

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

33

Unix Processes

The heap grows;
Page fault occurs here
A new page is allocated
 and process continues

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

34

Unix Processes

The heap grows;
Page fault occurs here
A new page is allocated
 and process continues

Stack Pages

Data Pages

Text Pages

Not allocated to the
virtual address space

35

Virtual Memory Implementation

When is the kernel involved?

36

Virtual Memory Implementation

When is the kernel involved?
• Process Creation

• Process is scheduled to run

• Page Fault Occurs

• Process Termination

37

Virtual Memory Implementation

When is the kernel involved?
• Process Creation
 Determine the process size
 Create page table
• Process is scheduled to run

• Page Fault Occurs

• Process Termination

38

Virtual Memory Implementation

When is the kernel involved?
• Process Creation
 Determine the process size
 Create page table
• Process is scheduled to run
 MMU is initialized to point to new page table
 TLB is flushed
• Page Fault Occurs

• Process Termination

39

Virtual Memory Implementation

When is the kernel involved?
• Process Creation
 Determine the process size
 Create page table
• Process is scheduled to run
 MMU is initialized to point to new page table
 TLB is flushed
• Page Fault Occurs
 Determine the virtual address causing the problem
 Swap the evicted page out & read in the desired page
• Process Termination

40

Virtual Memory Implementation

When is the kernel involved?
• Process Creation
 Determine the process size
 Create page table
• Process is scheduled to run
 MMU is initialized to point to new page table
 TLB is flushed
• Page Fault Occurs
 Determine the virtual address causing the problem
 Swap the evicted page out & read in the desired page
• Process Termination
 Release / free all frames
 Release / free the page table

41

Handling a Page Fault

Hardware traps to kernel
PC and SR are saved on stack

Save rest of registers
Determine the virtual address causing the problem
Check validity of the address; determine which page needed
May need to just kill the process

Find the frame to use (page replacement algorithm)
Is the target frame dirty? Write it out.
(& schedule other processes)

Read in the desired frame from swapping file.
Update the page tables

 (continued)

42

Handling a Page Fault

Back up the current instruction
The “faulting instruction”

Schedule the faulting process to run again
Return to scheduler
...
Reload registers
Resume execution

43

Backing the PC Up to Restart an Instruction

Consider a multi-word instruction.
The instruction makes several memory accesses.
One of them faults.
The value of the PC depends on when the fault occurred.
How can you know what instruction was executing???

44

Solutions

• Lot’s of clever code in the kernel

• Hardware support
Dump internal CPU state into special registers
Make “hidden” registers accessible to kernel

• Better ISA design

45

Locking Pages in Memory

“Pinning” the Pages
Virtual Memory and I/O interact

Example:
One process does a Sys_Read
 (This process suspends during I/O)
Another process runs
 It has a page fault
 Some pages is selected for eviction
 The frame selected contains the page involved above!!!

Solution:
Each frame has a flag: “Do not evict me”.
Must always remember to un-pin the page!

46

Swap Area on Disk

Approach #1:
A process starts up
 Assume it has N pages in its virtual address space
A region of the swap area is set aside for the pages
There are N pages in the swap region
The pages are kept in order
 For each process, we need to know:
 • Disk address of page 0
 • Number of pages in address space
Each page is either...
 • In a memory frame
 • Stored on disk

47

Approach #1

a

48

Problem

What if the virtual address space grows during execution?

Approach #2
Store the pages in the swap in a random order.
View the swap file as a collection of free “swap frames”.
Need to evict a frame from memory?
 Find a free “swap frame”.
 Write the page to this place on the disk.
 Make a note of where the page is.
 Use the page table entry.
 Just make sure the valid bit is still zero!
Next time the page is swapped out,
 it may be written somewhere else.

49

Approach #2

a
This picture uses a

separate data structure
to tell where pages are.

But perhaps you can use
the page table entries.

50

Separation of Policy and Mechanism

Kernel contains
• Code to manipulate the MMU
 Machine dependent
• Code to handle page faults
 Machine independent

User-level Process
• “External Pager”
 Determines policy
 • Which page to evict
 • When to perform disk I/O
 • How to manage the swap file

Examples: Mach, Minix

51

Separation of Policy and Mechanism

52

Problem with a Flat Address Space

Example:
 A compiler

53

Segmentation

Traditional Virtual Address Space
“flat” address space (1 dimensional)

Segmented Address Space
Program made of several “pieces”
Each segment is like a mini-address space
Addresses within a segment start at zero
The program must always say which segment it means
Addresses:
 Segment + Offset
Each segment can grow independently of others

54

Segmented Memory

Each space grows, shrinks independently!

55

Implementation of Pure Segmentation

Time

56

Implementation of Pure Segmentation

Time

57

Implementation of Pure Segmentation

Time

58 Time

Implementation of Pure Segmentation

Internal Fragmentation

59 Time

Implementation of Pure Segmentation

Internal Fragmentation Compaction

60

Segmenting with Paging (MULTICS)

Each segment is divided up into a pages.
A segment consists of several pages.

Each segment descriptor points to a page table.

61

Segmenting with Paging (MULTICS)

Each entry in segment table...

62

Segmenting with Paging (MULTICS)

Each address is a 34-bit number.

63

Comparison

