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Memory 
Management

Chapter 3 �

Part 1
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Outline of Chapter 3

• Basic memory management
• Swapping
• Virtual memory
• Page replacement algorithms
• Modeling page replacement algorithms
• Design issues for paging systems
• Implementation issues
• Segmentation

in this file 
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The Memory Hierarchy

Ideally programmers want memory that is...
Large
Fast
Non volatile 

Memory Hierarchy
Small amount of fast, expensive memory -- cache
Some medium speed, medium priced -- main memory
Gigabytes of slow, cheap storage -- disk

Memory Manager manages the hierarchy 
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Simplest Memory Organization

Monoprogramming
One user program at a time
Plus the OS

No protection
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Simplest Memory Organization

Palm OSMainframes   MS Dos
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Multiprogramming with Fixed Partitions

Main memory divided into “partitions”
Done once, e.g., at startup

To run a program...
Select a partition
 (Must find one that is large enough)
Put program into partition

Not enough memory for all runnable programs?
The “input queue”
 A list of programs waiting to be run
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Multiprogramming with Fixed Partitions
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Modelling Multiprogramming

Assume each process...
20% - computing
80% - waiting on I/O

Each process spends some fraction of time waiting
p = .8

Many processes are running
N = Degree of multiprogramming  (e.g., N = 5 procs)

The probability that all processes are waiting for I/O
pN

CPU Utilization
1 - pN
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CPU Utilization

CPU utilization as a function of number of processes in 
memory:

Degree of multiprogramming
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Analysis of System Performance

Example:
4 jobs
Each job has 20% compute and 80% wait time
Each job arrives at a different time

Job Arrival Time Total CPU minutes needed
 1  10:00  4
 2  10:10  3
 3  10:15  2
 4  10:20  2
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Analysis of System Performance
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Relocation and Protection

Cannot know ahead of time
where in memory a program will be loaded.

Compiler produces code containing embedded addresses.
These addresses cannot be absolute!

Linker combines pieces of the program.
 Assumes the program will be loaded at address 0.

Option 1:
Modify the addresses at load-time

Option 2:
Modify the addresses at run-time

Protection:
Keep program A out of program B’s partition
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Base and Limit Registers

The simplest scheme
These 2 registers describe a partition.
Every address generated at runtime...
Compare to the limit register (& abort if larger)
Add to the base register to give physical memory address

Multiprogramming
Each process is in a partition
Context switch?
 Load new values into
      base and limit

OS

Partition A

Partition B
Partition C
Partition D
Partition E

base

limit
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Swapping

When a program is running...
• The entire program must be in memory.
• Each program is put into a single partition.

When the program is not running...
• May remain resident in memory
• May get “swapped” out to disk.

Over time...
• Programs come into memory
• Programs leave memory
 get “swapped out”
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Swapping

asd

Shaded regions are unused

Time
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Swapping

Programs may want to grow during execution.
More room for stack
More room for heap allocation
...Etc...

Problem:
The partition is too small.
 Must move programs around... Ugh!

Idea:
Make the partitions a little larger than necessary.
Can accommodate some growth easily!
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Swapping
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Managing Memory

Divide main memory into chucks
Bytes <----> pages

Each chunk is either
• Unused (“free”)
• Used by some process

Operations
• Find a chunk of unused memory
 (big enough to hold a new process)
• Return a chunk of memory to the free pool
 (after a process terminates / is swapped out)
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Managing Memory with Bit Maps

Technique #1: Bit Map
A long bit string
One bit for every chunk of memory
 1 = in use
 0 = free
Size of allocation unit is an issue
Example: chunk size = 32 bits
 overhead for bit string: 1/33 = 3%
Example: chunk size = 4Kbytes
 overhead for bit string: 1/32,769
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Managing Memory with Bit Maps
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Managing Memory with Linked Lists

Technique #2: Linked List
Keep a list of elements
Each element describes one chunk of memory
 • Free / In-use Bit (“P=process, H=hole”)
 • Starting address
 • Length
 • Pointer to next element
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Managing Memory with Linked Lists

0 
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Merging Holes

Whenever a chunk of memory is freed...
we want to merge adjacent holes!
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Merging Holes

Whenever a chunk of memory is freed...
we want to merge adjacent holes!
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Merging Holes

Whenever a chunk of memory is freed...
we want to merge adjacent holes!
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Merging Holes

Whenever a chunk of memory is freed...
we want to merge adjacent holes!
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Managing Memory with Linked Lists

Need to find a hole? (...big enough for some new process)
Search the list!
• First Fit
• Next Fit
 Start from current location in the list
 Not as good as first fit
• Best Fit
 Find the smallest hole that will work
 Tends to create lots of little holes
• Worst Fit
 Find the largest hole (remainder will be big)
 No good
• Quick Fit
 Keep separate lists for common sizes
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Virtual Memory

With Swapping
• The entire process must be in memory
• Can’t run a program larger than physical memory!
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Virtual Memory

With Swapping
• The entire process must be in memory
• Can’t run a program larger than physical memory!

With Virtual Memory
• Put only part of the program in memory.
• Can run a program larger than physical memory!
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Virtual Memory

With Swapping
• The entire process must be in memory
• Can’t run a program larger than physical memory!

With Virtual Memory
• Put only part of the program in memory.
• Can run a program larger than physical memory!

The “working set” idea:
• Normally, programs do not access all of their memory
• Accesses tend to be concentrated within small regions
• You only really need 16K to run a 16M program
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Virtual Memory

With Swapping
• The entire process must be in memory
• Can’t run a program larger than physical memory!

With Virtual Memory
• Put only part of the program in memory.
• Can run a program larger than physical memory!

The “working set” idea:
• Normally, programs do not access all of their memory
• Accesses tend to be concentrated within small regions
• You only really need 16K to run a 16M program

The real benefit:
Can get more runnable processes into memory at once!



32 

Memory Management Unit (MMU)
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Virtual Address Spaces and the Page Table

Here is the virtual address space
(as seen by the process)

Lowest address

Highest address

Virtual Addr Space
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Virtual Address Spaces and the Page Table

Virtual Addr Space
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Virtual Address Spaces and the Page Table

The address spaces is divided into “pages”
In BLITZ, the page size is 8K

Virtual Addr Space

0 
1 
2 
3 
4 
5 
6 
7 

N 

Page Numbers
(not addresses)
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Virtual Address Spaces and the Page Table

The address spaces is divided into “pages”
In BLITZ, the page size is 8K

Page 0

Page N

Page 1

Virtual Addr Space

0 
1 
2 
3 
4 
5 
6 
7 

N 

A Page

Page Numbers
(not addresses)
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Virtual Address Spaces and the Page Table

In reality, only some of the process’s pages are in memory.

Virtual Addr Space

0 
1 
2 
3 
4 
5 
6 
7 

N 

Not in memory
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Virtual Address Spaces and the Page Table

Physical memory is divided into “page frames”
(Page size = frame size)

Physical memoryVirtual Addr Space

0 
1 
2 
3 
4 
5 
6 
7 

N 

A Frame

A Page
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Virtual Address Spaces and the Page Table

Some page frames are used for this process.

These frames
are used for
this process

Virtual Addr Space Physical memory

0 
1 
2 
3 
4 
5 
6 
7 

N 
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Virtual Address Spaces and the Page Table

Some page frames are used for this process.

Used by
other processes

Virtual Addr Space Physical memory

0 
1 
2 
3 
4 
5 
6 
7 

N 
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Virtual Address Spaces and the Page Table

A “mapping” tells which frame holds which page

Virtual Addr Space Physical memory

0 
1 
2 
3 
4 
5 
6 
7 

N 
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Virtual Address Spaces and the Page Table

The “Page Table” tells
for each page...
 • is it in memory
 • if so, which frame

It has N entries.

Virtual Addr Space Physical memory

0 
1 
2 
3 
4 
5 
6 
7 

N 



Page Size
8 Kbytes

43 

The BLITZ Architecture



Page Size
8 Kbytes

Logical Addresses (“virtual addresses”)
24 bits  -->  16 Mbyte virtual address space

An address:

44 

The BLITZ Architecture

0 23 
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The BLITZ Architecture

Page Size
8 Kbytes

Logical Addresses (“virtual addresses”)
24 bits  -->  16 Mbyte virtual address space
2K Pages  --> 11 bits

An address: 0 12 13 23 
11 bits 13 bits 

offset page number 
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The BLITZ Architecture

Page Size
8 Kbytes

Logical Addresses (“virtual addresses”)
24 bits  -->  16 Mbyte virtual address space
2K Pages  --> 11 bits

An address:

Physical Addresses
32 bits  -->  4 Gbyte installed memory (max)

0 12 13 23 
11 bits 13 bits 

offset page number 

0 31 
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The BLITZ Architecture

Page Size
8 Kbytes

Logical Addresses (“virtual addresses”)
24 bits  -->  16 Mbyte virtual address space
2K Pages  --> 11 bits

An address:

Physical Addresses
32 bits  -->  4 Gbyte installed memory (max)
512K Frames --> 19 bits

0 12 13 23 
11 bits 13 bits 

offset page number 

0 12 13 31 
19 bits 13 bits 

offset frame number 
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The BLITZ Architecture

The Page Table Mapping:
Page --> Frame

Virtual Address:

Physical Address:

0 12 13 23 
11 bits 

0 12 13 31 
19 bits 
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Example from Textbook
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The Page Table

An array of “page table entries”
Kept in memory

2K pages in a virtual address space?
--->  2K entries in the table

Each entry is 4 bytes long
19 bits The Frame Number
1 bit Valid Bit
1 bit Writable Bit
1 bit Dirty Bit
1 bit Referenced Bit
9 bits Unused (and available for OS algorithms)
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The Page Table

0 12 13 31 
frame number D R W V unused 

dirty bit
referenced bit

writable bit
valid bit

19 bits
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The Page Table

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register

Indexed by the page frame number
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The Page Table

0 12 13 23 
page number offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register
virtual address
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The Page Table

0 12 13 23 
page number offset 

0 31 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register
virtual address

physical address
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The Page Table

0 12 13 23 
page number offset 

0 12 13 31 
offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register
virtual address

physical address
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The Page Table

0 12 13 23 
page number offset 

0 12 13 31 
offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register
virtual address

physical address
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The Page Table

0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register
virtual address

physical address
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The Page Table

Two registers in the CPU
• Page Table Base Register
• Page Table Length Register

These define the current page table.
(Virtual address space is smaller? Use a smaller table!)

Bits in the CPU “status register”
“System Mode”
“Interrupts Enabled”
“Paging Enabled”
 1 = Perform page table translation
  for every memory access
 0 = Do not do translation
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Internal Fragmentation

A process will fill several pages.
The last page will be partially full.
On average, last page will be half full.

This space is wasted, lost!!!

Example: 8K page size
---> 4K is wasted for every running process
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External Fragmentation

Memory is divided into chunks (“partitions”)
Each partition has a different size.
Processes are allocated space and later freed.
After a while...
Memory will be full of small holes.



61 

External Fragmentation

Memory is divided into chunks (“partitions”)
Each partition has a different size.
Processes are allocated space and later freed.
After a while...
Memory will be full of small holes.
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Page Size Issues

Choose a large page size
More loss due to internal fragmentation
Assume a process is using 5 regions of memory heavily
 ... Will need 5 pages, regardless of page size
  ---> Ties up more memory
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Page Size Issues

Choose a large page size
More loss due to internal fragmentation
Assume a process is using 5 regions of memory heavily
 ... Will need 5 pages, regardless of page size
  ---> Ties up more memory

Choose a small page size
The page table will become very large
Example:
 Virtual Address Space: 4G bytes
 Page Size: 4K (e.g., Pentium)
 Page table size: 1M entries!  (4Mbytes)
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Multi-level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 
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Multi-level Page Tables

A Virtual Address:

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 

PT1 offset PT2 
10-bits 10-bits 12-bits
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Multi-level Page Tables

A Virtual Address:

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 

PT1 offset PT2 
10-bits 10-bits 12-bits
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Multi-level Page Tables

A Virtual Address:

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 

PT1 offset PT2 
10-bits 10-bits 12-bits
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Multi-level Page Tables

A Virtual Address:

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 

PT1 offset PT2 
10-bits 10-bits 12-bits
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Multi-level Page Tables

A Virtual Address:

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 

PT1 offset PT2 
10-bits 10-bits 12-bits
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Multi-level Page Tables

A Virtual Address:

Top-level
Page table

2nd-level tables

frames
in

memory
• • 
• 

PT1 offset PT2 
10-bits 10-bits 12-bits
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Multi-level Page Tables
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Translation Lookaside Buffers (TLBs)

Problem:
MMU must go to page table for every memory access!



73 

Translation Lookaside Buffers (TLBs)

Problem:
MMU must go to page table for every memory access!

Solution:
Cache the page table entries
Hardware cache in the MMU
Small number of entries (e.g., 64)
Each entry contains
 Page Number
 Other stuff from page table entry
Associatively indexed
 On page number
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Translation Lookaside Buffers (TLBs)

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 
5 

37 

Key 

Other 
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Translation Lookaside Buffers (TLBs)

0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

virtual address

physical address

5 

37 

Key 

Other 
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Translation Lookaside Buffers (TLBs)

0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address

5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)

0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address

5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)

0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address

5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)

0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address

5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)

What if the entry is not in the TLB?
Go to page table
Find the right entry
Move it into the TLB
Which entry to replace?
 Software trap -- Let OS deal with the problem
Valid Bit
Page tables become entirely a OS data structure!

Want to do a context switch?
Must empty the TLB
 Just clear the “Valid Bit”
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64-Bit Virtual Addresses

Assume 4 Kbyte pages (12 bits)
Virtual Space = 252 pages (page table too large!)
Assume 256 Mbyte memory
Can only have 64K pages in memory

Only need entries for the pages in memory
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64-Bit Virtual Addresses

Assume 4 Kbyte pages (12 bits)
Virtual Space = 252 pages (page table too large!)
Assume 256 Mbyte memory
Can only have 64K pages in memory

Only need entries for the pages in memory

“Inverted Page Table”
One entry for every frame in memory
 Tells which page is in that frame
When running the program
 Given a virtual page, need the frame
 Search all pages?  No
 Use an indexed, e.g., Hash table
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Inverted Page Table


