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Memory 
Management


Chapter 3 �

Part 1
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Outline of Chapter 3


• Basic memory management

• Swapping

• Virtual memory

• Page replacement algorithms

• Modeling page replacement algorithms

• Design issues for paging systems

• Implementation issues

• Segmentation


in this file 
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The Memory Hierarchy


Ideally programmers want memory that is...


Large


Fast


Non volatile 


Memory Hierarchy


Small amount of fast, expensive memory -- cache


Some medium speed, medium priced -- main memory


Gigabytes of slow, cheap storage -- disk


Memory Manager manages the hierarchy 
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Simplest Memory Organization


Monoprogramming


One user program at a time


Plus the OS


No protection
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Simplest Memory Organization


Palm OS
Mainframes 
 

 MS Dos
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Multiprogramming with Fixed Partitions


Main memory divided into “partitions”


Done once, e.g., at startup


To run a program...


Select a partition


 
(Must find one that is large enough)


Put program into partition


Not enough memory for all runnable programs?


The “input queue”


 
A list of programs waiting to be run
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Multiprogramming with Fixed Partitions
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Modelling Multiprogramming


Assume each process...


20% - computing


80% - waiting on I/O


Each process spends some fraction of time waiting


p = .8


Many processes are running


N = Degree of multiprogramming  (e.g., N = 5 procs)


The probability that all processes are waiting for I/O


pN


CPU Utilization


1 - pN
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CPU Utilization


CPU utilization as a function of number of processes in 
memory:


Degree of multiprogramming


C
PU
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io
n 

(in
 p

er
ce

nt
)




10 

Analysis of System Performance


Example:


4 jobs


Each job has 20% compute and 80% wait time


Each job arrives at a different time



Job 
Arrival Time 
Total CPU minutes needed


 
1 
 
10:00 
 
4


 
2 
 
10:10 
 
3


 
3 
 
10:15 
 
2


 
4 
 
10:20 
 
2
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Analysis of System Performance
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Relocation and Protection


Cannot know ahead of time


where in memory a program will be loaded.


Compiler produces code containing embedded addresses.


These addresses cannot be absolute!


Linker combines pieces of the program.


 Assumes the program will be loaded at address 0.


Option 1:


Modify the addresses at load-time


Option 2:


Modify the addresses at run-time


Protection:


Keep program A out of program B’s partition
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Base and Limit Registers


The simplest scheme

These 2 registers describe a partition.

Every address generated at runtime...


Compare to the limit register (& abort if larger)


Add to the base register to give physical memory address


Multiprogramming


Each process is in a partition


Context switch?


 
Load new values into


 
     base and limit


OS


Partition A


Partition B

Partition C

Partition D

Partition E


base


limit
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Swapping


When a program is running...


• The entire program must be in memory.


• Each program is put into a single partition.


When the program is not running...


• May remain resident in memory


• May get “swapped” out to disk.


Over time...


• Programs come into memory


• Programs leave memory


 
get “swapped out”
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Swapping


asd


Shaded regions are unused


Time
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Swapping


Programs may want to grow during execution.


More room for stack


More room for heap allocation


...Etc...


Problem:


The partition is too small.


 
Must move programs around... Ugh!


Idea:


Make the partitions a little larger than necessary.


Can accommodate some growth easily!
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Swapping
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Managing Memory


Divide main memory into chucks


Bytes <----> pages


Each chunk is either


• Unused (“free”)


• Used by some process


Operations


• Find a chunk of unused memory


 
(big enough to hold a new process)


• Return a chunk of memory to the free pool


 
(after a process terminates / is swapped out)
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Managing Memory with Bit Maps


Technique #1: Bit Map


A long bit string


One bit for every chunk of memory


 
1 = in use


 
0 = free


Size of allocation unit is an issue


Example: chunk size = 32 bits


 
overhead for bit string: 1/33 = 3%


Example: chunk size = 4Kbytes


 
overhead for bit string: 1/32,769
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Managing Memory with Bit Maps
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Managing Memory with Linked Lists


Technique #2: Linked List


Keep a list of elements


Each element describes one chunk of memory


 
• Free / In-use Bit (“P=process, H=hole”)


 
• Starting address


 
• Length


 
• Pointer to next element
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Managing Memory with Linked Lists


0 
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Merging Holes


Whenever a chunk of memory is freed...


we want to merge adjacent holes!
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Merging Holes


Whenever a chunk of memory is freed...


we want to merge adjacent holes!
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Merging Holes


Whenever a chunk of memory is freed...


we want to merge adjacent holes!
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Merging Holes


Whenever a chunk of memory is freed...


we want to merge adjacent holes!
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Managing Memory with Linked Lists


Need to find a hole? (...big enough for some new process)

Search the list!


• First Fit


• Next Fit


 
Start from current location in the list


 
Not as good as first fit


• Best Fit


 
Find the smallest hole that will work


 
Tends to create lots of little holes


• Worst Fit


 
Find the largest hole (remainder will be big)


 
No good


• Quick Fit


 
Keep separate lists for common sizes
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Virtual Memory


With Swapping


• The entire process must be in memory


• Can’t run a program larger than physical memory!
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Virtual Memory


With Swapping


• The entire process must be in memory


• Can’t run a program larger than physical memory!


With Virtual Memory


• Put only part of the program in memory.


• Can run a program larger than physical memory!




30 

Virtual Memory


With Swapping


• The entire process must be in memory


• Can’t run a program larger than physical memory!


With Virtual Memory


• Put only part of the program in memory.


• Can run a program larger than physical memory!


The “working set” idea:


• Normally, programs do not access all of their memory


• Accesses tend to be concentrated within small regions


• You only really need 16K to run a 16M program
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Virtual Memory


With Swapping


• The entire process must be in memory


• Can’t run a program larger than physical memory!


With Virtual Memory


• Put only part of the program in memory.


• Can run a program larger than physical memory!


The “working set” idea:


• Normally, programs do not access all of their memory


• Accesses tend to be concentrated within small regions


• You only really need 16K to run a 16M program


The real benefit:


Can get more runnable processes into memory at once!
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Memory Management Unit (MMU)
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Virtual Address Spaces and the Page Table


Here is the virtual address space


(as seen by the process)


Lowest address


Highest address


Virtual Addr Space
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Virtual Address Spaces and the Page Table


Virtual Addr Space
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Virtual Address Spaces and the Page Table


The address spaces is divided into “pages”


In BLITZ, the page size is 8K


Virtual Addr Space


0 
1 
2 
3 
4 
5 
6 
7 

N 

Page Numbers

(not addresses)
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Virtual Address Spaces and the Page Table


The address spaces is divided into “pages”


In BLITZ, the page size is 8K


Page 0


Page N


Page 1


Virtual Addr Space


0 
1 
2 
3 
4 
5 
6 
7 

N 

A Page


Page Numbers

(not addresses)
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Virtual Address Spaces and the Page Table


In reality, only some of the process’s pages are in memory.


Virtual Addr Space


0 
1 
2 
3 
4 
5 
6 
7 

N 

Not in memory
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Virtual Address Spaces and the Page Table


Physical memory is divided into “page frames”


(Page size = frame size)


Physical memory
Virtual Addr Space


0 
1 
2 
3 
4 
5 
6 
7 

N 

A Frame


A Page
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Virtual Address Spaces and the Page Table


Some page frames are used for this process.


These frames

are used for

this process


Virtual Addr Space
 Physical memory


0 
1 
2 
3 
4 
5 
6 
7 

N 
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Virtual Address Spaces and the Page Table


Some page frames are used for this process.


Used by

other processes


Virtual Addr Space
 Physical memory


0 
1 
2 
3 
4 
5 
6 
7 

N 
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Virtual Address Spaces and the Page Table


A “mapping” tells which frame holds which page


Virtual Addr Space
 Physical memory


0 
1 
2 
3 
4 
5 
6 
7 

N 
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Virtual Address Spaces and the Page Table


The “Page Table” tells


for each page...


 
• is it in memory


 
• if so, which frame


It has N entries.


Virtual Addr Space
 Physical memory


0 
1 
2 
3 
4 
5 
6 
7 

N 



Page Size


8 Kbytes
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The BLITZ Architecture




Page Size


8 Kbytes


Logical Addresses (“virtual addresses”)


24 bits  -->  16 Mbyte virtual address space


An address:
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The BLITZ Architecture


0 23 
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The BLITZ Architecture


Page Size


8 Kbytes


Logical Addresses (“virtual addresses”)


24 bits  -->  16 Mbyte virtual address space


2K Pages  --> 11 bits


An address:
 0 12 13 23 
11 bits 13 bits 

offset page number 
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The BLITZ Architecture


Page Size


8 Kbytes


Logical Addresses (“virtual addresses”)


24 bits  -->  16 Mbyte virtual address space


2K Pages  --> 11 bits


An address:


Physical Addresses


32 bits  -->  4 Gbyte installed memory (max)


0 12 13 23 
11 bits 13 bits 

offset page number 

0 31 
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The BLITZ Architecture


Page Size


8 Kbytes


Logical Addresses (“virtual addresses”)


24 bits  -->  16 Mbyte virtual address space


2K Pages  --> 11 bits


An address:


Physical Addresses


32 bits  -->  4 Gbyte installed memory (max)


512K Frames --> 19 bits


0 12 13 23 
11 bits 13 bits 

offset page number 

0 12 13 31 
19 bits 13 bits 

offset frame number 
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The BLITZ Architecture


The Page Table Mapping:


Page --> Frame


Virtual Address:


Physical Address:


0 12 13 23 
11 bits 

0 12 13 31 
19 bits 
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Example from Textbook
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The Page Table


An array of “page table entries”


Kept in memory


2K pages in a virtual address space?


--->  2K entries in the table


Each entry is 4 bytes long


19 bits 
The Frame Number


1 bit 
Valid Bit


1 bit 
Writable Bit


1 bit 
Dirty Bit


1 bit 
Referenced Bit


9 bits 
Unused (and available for OS algorithms)




51 

The Page Table


0 12 13 31 
frame number D R W V unused 

dirty bit

referenced bit


writable bit

valid bit


19 bits
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The Page Table


0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register


Indexed by the page frame number
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The Page Table


0 12 13 23 
page number offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register

virtual address
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The Page Table


0 12 13 23 
page number offset 

0 31 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register

virtual address


physical address
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The Page Table


0 12 13 23 
page number offset 

0 12 13 31 
offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register

virtual address


physical address
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The Page Table


0 12 13 23 
page number offset 

0 12 13 31 
offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register

virtual address


physical address
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The Page Table


0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

0 12 13 31 
frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

frame number D R W V unused 

0 
1 
2 

2K 

page table base register

virtual address


physical address
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The Page Table


Two registers in the CPU


• Page Table Base Register


• Page Table Length Register


These define the current page table.


(Virtual address space is smaller? Use a smaller table!)


Bits in the CPU “status register”


“System Mode”


“Interrupts Enabled”


“Paging Enabled”


 
1 = Perform page table translation


 
 
for every memory access


 
0 = Do not do translation
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Internal Fragmentation


A process will fill several pages.

The last page will be partially full.


On average, last page will be half full.


This space is wasted, lost!!!


Example: 8K page size


---> 4K is wasted for every running process
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External Fragmentation


Memory is divided into chunks (“partitions”)

Each partition has a different size.

Processes are allocated space and later freed.

After a while...


Memory will be full of small holes.
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External Fragmentation


Memory is divided into chunks (“partitions”)

Each partition has a different size.

Processes are allocated space and later freed.

After a while...


Memory will be full of small holes.
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Page Size Issues


Choose a large page size


More loss due to internal fragmentation


Assume a process is using 5 regions of memory heavily


 
... Will need 5 pages, regardless of page size


 
 
---> Ties up more memory
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Page Size Issues


Choose a large page size


More loss due to internal fragmentation


Assume a process is using 5 regions of memory heavily


 
... Will need 5 pages, regardless of page size


 
 
---> Ties up more memory


Choose a small page size


The page table will become very large


Example:


 
Virtual Address Space: 4G bytes


 
Page Size: 4K (e.g., Pentium)


 
Page table size: 1M entries!  (4Mbytes)
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Multi-level Page Tables


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 
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Multi-level Page Tables


A Virtual Address:


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 

PT1 offset PT2 
10-bits
 10-bits
 12-bits
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Multi-level Page Tables


A Virtual Address:


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 

PT1 offset PT2 
10-bits
 10-bits
 12-bits
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Multi-level Page Tables


A Virtual Address:


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 

PT1 offset PT2 
10-bits
 10-bits
 12-bits




68 

Multi-level Page Tables


A Virtual Address:


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 

PT1 offset PT2 
10-bits
 10-bits
 12-bits
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Multi-level Page Tables


A Virtual Address:


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 

PT1 offset PT2 
10-bits
 10-bits
 12-bits
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Multi-level Page Tables


A Virtual Address:


Top-level

Page table


2nd-level tables


frames

in


memory

• • 
• 

PT1 offset PT2 
10-bits
 10-bits
 12-bits
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Multi-level Page Tables
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Translation Lookaside Buffers (TLBs)


Problem:


MMU must go to page table for every memory access!
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Translation Lookaside Buffers (TLBs)


Problem:


MMU must go to page table for every memory access!


Solution:


Cache the page table entries


Hardware cache in the MMU


Small number of entries (e.g., 64)


Each entry contains


 
Page Number


 
Other stuff from page table entry


Associatively indexed


 
On page number
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Translation Lookaside Buffers (TLBs)


Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 
5 

37 

Key 

Other 
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Translation Lookaside Buffers (TLBs)


0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

virtual address


physical address


5 

37 

Key 

Other 
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Translation Lookaside Buffers (TLBs)


0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address


5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)


0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address


5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)


0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address


5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)


0 12 13 23 
page number offset 

0 12 13 31 
frame number offset 

Page Number Frame Number 
D R W V unused 

50 D R W V unused 

24 D R W V unused 

19 D R W V unused 

 6 D R W V unused 

23 
17 
92 

12 

physical address


5 

37 

Key 

Other 

virtual address
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Translation Lookaside Buffers (TLBs)


What if the entry is not in the TLB?


Go to page table


Find the right entry


Move it into the TLB


Which entry to replace?


 
Software trap -- Let OS deal with the problem


Valid Bit


Page tables become entirely a OS data structure!


Want to do a context switch?


Must empty the TLB


 
Just clear the “Valid Bit”
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64-Bit Virtual Addresses


Assume 4 Kbyte pages (12 bits)

Virtual Space = 252 pages (page table too large!)

Assume 256 Mbyte memory


Can only have 64K pages in memory


Only need entries for the pages in memory
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64-Bit Virtual Addresses


Assume 4 Kbyte pages (12 bits)

Virtual Space = 252 pages (page table too large!)

Assume 256 Mbyte memory


Can only have 64K pages in memory


Only need entries for the pages in memory


“Inverted Page Table”


One entry for every frame in memory


 
Tells which page is in that frame


When running the program


 
Given a virtual page, need the frame


 
Search all pages?  No


 
Use an indexed, e.g., Hash table
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Inverted Page Table



