
1

Chapter 2 (Third part)

Monitors, Reentrant
Code, Message Passing

2

Introduction

It is difficult to produce correct programs
using locks and semaphores!!!

Correct ordering of Up and Down operations is tricky!

Desirable:
Language / compiler support for IPC

What are suitable high-level abstractions for
synchronization?

3

Monitors

Collect related, shared objects together in a “monitor”

Characteristics:
• Local data variables are accessible only via the

monitor’s procedures/methods
• Threads enter the monitor by invoking one of its

procedures/methods
• Only one thread may execute within the monitor at

a given time

“Condition Variables” (cv)
Wait(cv) – block on condition
Signal(cv) – wake up one thread waiting on cv

4

Monitor structures

initialization
code

“entry” methods

y
x

shared data

condition variables
monitor entry queue

local methods

5

Monitor structures

initialization
code

“entry” methods

y
x

shared data

condition variables
monitor entry queue

List of threads
waiting to

enter the monitor

Can be called from
outside the monitor.
Only one active at

any moment.

Local to monitor
(Each has an associated
list of waiting threads)

local methods

6

Example: The “Bounded-Buffer” Monitor

Producer Thread:
 while true
 -- Produce char “c”
 BoundedBuffer.deposit(c)
 endWhile

Consumer Thread:
 while true
 c = BoundedBuffer.remove()
 -- Consume char “c”
 endWhile

monitor BoundedBuffer
 var buffer: ...
 nextIn, nextOut :...

 entry deposit(c: char)
 begin
 ...
 end

 entry remove()
 begin
 ...
 return c
 end

endMonitor

7

The “BoundedBuffer” Monitor
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 ...

 entry remove()
 ...

endMonitor

A
N-1 0

B C D

nextInnextOut

cntFull=4

8

Code for the “deposit” entry routine
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 if cntFull == N
 notFull.Wait()
 endIf
 buffer[nextIn] = c
 nextIn = (nextIn+1) mod N
 cntFull = cntFull + 1
 notEmpty.Signal()
 endEntry

 entry remove()
 ...

endMonitor

A
N-1 0

B C D

nextInnextOut

cntFull=4

9

Code for the “remove” entry routine
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 ...

 entry remove()
 if cntFull == 0
 notEmpty.Wait()
 endIf
 c = buffer[nextOut]
 nextOut = (nextOut+1) mod N
 cntFull = cntFull - 1
 notFull.Signal()
 endEntry

endMonitor

A
N-1 0

B C D

nextInnextOut

cntFull=4

10

Condition Variables

“Condition variables allow processes to synchronize
based on some state of the monitor variables.”

 Examples from producer/consumer:
 “Buffer-Not-Full” condition
 “Buffer-Not-Empty” condition

Operations Wait(cv) and Signal(cv)
allow synchronization within the monitor

 When a producer thread adds an element...
 A consumer may be sleeping
 Need to wake the consumer... Signal

11

Condition synchronization semantics

“Only one thread can be executing in the monitor
at any one time.”

Scenario:
Thread A is executing in the monitor.
Thread A does a Signal, waking up thread B.
What happens now?
Signaling and signaled threads can not both run!

12

Condition synchronization semantics

Option 1: Hoare Semantics

What happens when a Signal is performed?
The signaling thread (A) is suspended.
The signaled thread (B) wakes up and runs immediately.
 B can assume the condition is now true/satisfied

• Stronger guarantees
• Easier to prove correctness

When B leaves monitor, then A can run.
After B leaves monitor...
 A might resume execution immediately
 ... or maybe another thread (C) will slip in!

13

Condition synchronization semantics

Option 2: MESA Semantics (Xerox PARC)

What happens when a Signal is performed?
• The signaling thread (A) continues.
• The signaled thread (B) waits.
 When A leaves monitor, then B runs.

Issue: What happens when B waits?
When A leaves the monitor,
 can some other thread (C) slip in first?
(Can some other thread (C) run
 after A signals, but before B runs?)

• A signal is more like a hint.
• Requires B to recheck the state of the monitor variables
to see if it can proceed or must wait some more.

14

Code for the “deposit” entry routine
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 if cntFull == N
 notFull.Wait()
 endIf
 buffer[nextIn] = c
 nextIn = (nextIn+1) mod N
 cntFull = cntFull + 1
 notEmpty.Signal()
 endEntry

 entry remove()
 ...

endMonitor

Hoare Semantics

15

Code for the “deposit” entry routine
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 while cntFull == N
 notFull.Wait()
 endWhile
 buffer[nextIn] = c
 nextIn = (nextIn+1) mod N
 cntFull = cntFull + 1
 notEmpty.Signal()
 endEntry

 entry remove()
 ...

endMonitor

MESA Semantics

16

Code for the “remove” entry routine
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 ...

 entry remove()
 if cntFull == 0
 notEmpty.Wait()
 endIf
 c = buffer[nextOut]
 nextOut = (nextOut+1) mod N
 cntFull = cntFull - 1
 notFull.Signal()
 endEntry

endMonitor

Hoare Semantics

17

Code for the “remove” entry routine
monitor BoundedBuffer
 var buffer: array[n] of char
 nextIn, nextOut: int = 0
 cntFull: int = 0
 notEmpty: Condition
 notFull: Condition

 entry deposit(c: char)
 ...

 entry remove()
 while cntFull == 0
 notEmpty.Wait()
 endWhile
 c = buffer[nextOut]
 nextOut = (nextOut+1) mod N
 cntFull = cntFull - 1
 notFull.Signal()
 endEntry

endMonitor

MESA Semantics

18

“Hoare Semantics”

What happens when a Signal is performed?
The signaling thread (A) is suspended.
The signaled thread (B) wakes up and runs immediately.
 B can assume the condition is now true/satisfied

From the original Hoare Paper:
“No other thread can intervene [and enter the monitor]

between the signal and the continuation of exactly one
waiting thread.”

“If more than one thread is waiting on a condition, we
postulate that the signal operation will reactivate the
longest waiting thread. This gives a simple neutral
queuing discipline which ensures that every waiting
thread will eventually get its turn.”

19

Implementing Hoare Semantics

Implementation?
Thread A holds the monitor lock.
Thread A issues a Signal.
Thread B will be moved back to the ready queue.
Thread A must be suspended...
Possession of the monitor lock must be passed
 from A to B.
When B finishes and gets ready to return...
 The lock can be released.
Thread A must re-aquire the lock.
 Perhaps A is blocked, waiting to re-aquire the lock.

20

Implementing Hoare Semantics

Problem:
“Possession of the monitor lock must be passed
 from A to B.”
Each mutex remembers which thread holds it.
My version of Mutex:
 Any attempt by thread B to release the monitor
 lock will cause an error message.

Your Solution:
Modify Mutex to eliminate the check?

21

Implementing Hoare Semantics

Recommendation:
Do not modify the methods that I am supplying.
 (Future code I release will use them)
Create new classes:
 MonitorLock -- similar to Mutex
 HoareCondition -- similar to Condition

22

Implementing Hoare Semantics

Scenario:
Thread B does a Wait.
Thread A executes a Signal.
Thread B wakes up, executes, and returns.
Last thing B does: Unlock the monitor lock.

Problem: What happens next?
Thread A is waiting for B to finish.
 It is trying to reaquire the monitor lock.
What about thread C?
 Also trying to acquire lock, and waiting longer?
Hoare: “A must get the lock after B.”
 C must continue to wait.

23

Implementing Hoare Semantics

Things are getting complex.
Simply ending monitor entry methods with
 monLock.Unlock()
will no longer work.

Implementation Ideas:
Need a special thing called a “MonitorLock”.
Consider a thread like A to be “urgent”.
 Thread C is not “urgent”.

Consider 2 wait lists associated with each MonitorLock
• UrgentlyWaitingThreads
• NonurgentlyWaitingThreads

Want to wake up urgent threads first, if any.

24

Brinch-Hansen Semantics

Hoare Semantics
On signal, allow signaled process to run.
Upon its exit from the monitor, signaler process

continues.

Brinch-Hansen Semantics
Signaler must immediately exit following
any invocation of signal.

(Implementation is easier.)

25

Reentrant Code

A function/method is said to be “reentrant” if...

“A function that has been invoked may be invoked again
before the first invocation has returned,
 and will still work correctly.”

Recursive routines are reentrant.

In the context of multi-programming...
A reentrant function can be executed simultaneously
 by more than one thread, with no ill effects.

26

Reentrant Code

Consider this function...

 var count: int = 0

 function GetUnique () returns int
 count = count + 1
 return count
 endFunction

What if it is executed by different threads?

27

Reentrant Code

Consider this function...

 var count: int = 0

 function GetUnique () returns int
 count = count + 1
 return count
 endFunction

What if it is executed by different threads?
The results may be incorrect!
This routine is not reentrant!

28

Reentrant Code

When is code “reentrant”?

Assumptions:
A multi-threaded program
Some variables are
 “local” -- to the function/method/routine
 “global” -- sometimes called “static”

Access to local variables?
A new stack frame is created for each invocation.

Access to global variables?
Must use synchronization!

29

Making this Function Reentrant

 var count: int = 0
 myLock: Mutex

 function GetUnique () returns int
 var i: int
 myLock.Lock()
 count = count + 1
 i = count
 myLock.Unlock()
 return i
 endFunction

30

Message Passing

Interprocess Communication
• via shared memory
• across machine boundaries

Message passing can be used locally or remotely.
Can be used for...
synchronization, or
general communication

Processes use Send and Receive primitives
• Receive can block (like Waiting on a Semaphore)
• Send unblocks a process blocked on Receive
(Just as a Signal unblocks a Waiting process)

31

Design Choices for Message Passing

Option 1: “Mailboxes”
System maintains a buffer of sent, but not yet received,

messages.
Must specify the size of the mailbox ahead of time.
Sender will be blocked if buffer is full.
Receiver will be blocked if the buffer is empty.

32

Design Choices for Message Passing

Option 1: “Mailboxes”
System maintains a buffer of sent, but not yet received,

messages.
Must specify the size of the mailbox ahead of time.
Sender will be blocked if buffer is full.
Receiver will be blocked if the buffer is empty.

Option 2: The kernel does no buffering
If Send happens first, the sending thread blocks.
If Receiver happens first, the receiving thread blocks.
“Rendezvous”
 Both threads are ready for the transfer.
 The data is copied / transmitted

Both threads are then allowed to proceed.

33

Producer-Consumer with Message Passing

Idea:
After producing, the producer sends the
 data to consumer in a message.
The system buffers messages.
 The producer can out-run the consumer.
 The messages will be kept in order.
After consuming the data,
 the consumer sends back an “empty” message.
A fixed number of messages (N=100)
The messages circulate back and forth.

34

Producer-Consumer with Message Passing

thread consumer
 var c, em: char
 while true
 Receive(producer, &c) -- Wait for a char
 Send(producer, &em) -- Send empty message back
 // Consume char...
 endWhile
end

const N = 100 -- Size of message buffer
var em: char
for i = 1 to N -- Get things started by
 Send (producer, &em) -- sending N empty messages
endFor

35

Producer-Consumer with Message Passing

thread producer
 var c, em: char
 while true
 // Produce char c...
 Receive(consumer, &em) -- Wait for an empty msg
 Send(consumer, &c) -- Send c to consumer
 endWhile
end

36

Barriers

• Processes approaching a barrier
• All processes but one blocked at barrier
• Last process arrives; all are let through

