
1 

Chapter 2 (Second Part) 

Slide Credits: 
Jonathan Walpole 

Andrew Tanenbaum 

Interprocess 
Communication and 

Synchronization 



2 

Outline 

Race Conditions 
Mutual Exclusion and Critical Regions 
Mutex Locks 
Test-And-Set Instruction 
Sleep, Yield, Wakeup 
Disabling Interrupts in the Kernel 
Classical IPC Problems: 

 • Producer-Consumer 
 • Readers-Writers 
 • Dining Philosophers 
 • Sleeping Barber 



3 

Multiple Processes will Cooperate 

Assumptions: 
 Two or more threads (or processes) 
 Each executes in (pseudo) parallel 
  Cannot predict exact running speeds 
 The threads can interact 
  Example: Access to a shared variable 

Example: 
 One thread writes a variable 
 The other thread reads from the same variable 

Problem: 
 The order of READs and WRITEs can make a 
difference!!! 



4 

Race Condition: An Example 

Incrementing a counter (load, increment, store) 
Context switch can occur after load and before increment! 



5 

Race Conditions 

Whenever the output depends on the precise execution 
 order of the processes!!! 

Why do race conditions occur? 
• values of memory locations replicated in registers 

   during execution 
• context switches at arbitrary times during execution 
• threads can see “stale” memory values in registers 

What solutions can we apply? 
• prevent context switches by preventing interrupts 
• make threads coordinate with each other to ensure mutual 

exclusion in accessing “critical sections” of code 



6 

Mutual Exclusion 

Critical Region (Critical Section): 

 The part of the code accessing shared data 

Desired Conditions: 
 (1) No two threads simultaneously in critical region.  
 (2) No assumptions made about speeds or numbers of CPUs. 
 (3) No thread running outside its critical region 
   may block another thread. 
 (4) No thread must wait forever to enter its critical region 
   (no “starvation”). 



7 

Critical regions with mutual exclusion 



8 

How can we enforce mutual exclusion? 

What about using a binary “lock” variable in memory and 
having threads check it and set it before entry to critical 
regions? 

Solves the problem of exclusive access to shared data. 
Expresses intention to enter Critical Section 
Acquiring a lock prevents concurrent access 

Assumptions: 
 Every threads sets lock before accessing shared data! 
 Every threads releases the lock after it is done! 



9 

Acquiring and Releasing Locks 

Free 
Lock 

Thread A


Thread D


Thread C
Thread B




10 

Acquiring and Releasing Locks 

Free 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock




11 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock




12 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock




13 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B




14 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock




15 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock




16 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock




17 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock




18 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock


Unlock




19 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock


Unlock




20 

Acquiring and Releasing Locks 

Free 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock




21 

Acquiring and Releasing Locks 

Free 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock




22 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock




23 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock
 Lock


Lock




24 

Acquiring and Releasing Locks 

Set 
Lock 

Thread A


Thread D


Thread C
Thread B


Lock


Lock




25 

Mutex Locks 

• An abstract data type 
• Can be used for synchronization and mutual exclusion 
• The “mutex” is either: 

 • Locked    (“the lock is held”) 
 • Unlocked   (“the lock is free”) 

• Two operations: 

Lock (mutex) 
 Acquire the lock, if it is free 
 If the lock is not free, then wait until it can be acquired 

Unlock (mutex) 
 Release the lock 
 If there are waiting threads, then wake up one of them 

Both Lock and Unlock are assumed to be atomic!!! 
 (A kernel implementation will ensure atomicity) 



26 

An Example using a Mutex 

1 repeat 

2   Lock(myLock); 

3   critical section 

4   Unlock(myLock); 

5   remainder section 

6 until FALSE 

1 repeat 

2   Lock(myLock); 

3   critical section 

4   Unlock(myLock); 

5   remainder section 

6 until FALSE 

Shared data: 

 Mutex myLock; 



27 

How can we implement mutual exclusion? 

Many computers have some limited hardware support 
  for setting locks... 

• Atomic “Test and Set Lock” instruction 
• Atomic “Compare and Swap” operation 

Can be used to implement “Mutex” locks 



28 

The “Test-And-Set” Instruction (TSL, tset) 

A lock is a variable with two values 
 • One word: 
  0=FALSE=not locked 
  1=TRUE=locked 

Test-and-set does the following atomically: 
• Get the (old) value 
• Set the lock to TRUE 
• Return the old value 

 If the returned value was FALSE... 
  Then you got the lock!!! 
 If the returned value was TRUE... 
  Then someone else already has the lock. 
       (so try again later) 



29 

Critical section entry code with TSL 

1 repeat 
2   while(TSL(lock)) 
3     no-op; 

4   critical section 

5   lock = FALSE; 

6   remainder section 

7 until FALSE 

1 repeat 
2    while(TSL(lock)) 
3     no-op; 

4   critical section 

5   lock = FALSE; 

6   remainder section 

7 until FALSE 

B A 

This code ensures that... 

       Only one thread at a time will  enter its “critical section”. 



30 

Busy Waiting 

Also called “Polling” 

The thread consumes CPU cycles to evaluate when lock 
 becomes free!!! 

• Shortcoming: 
 On a single CPU system... 
  A busy-waiting thread can prevent the lock holder 
   from running & completing its critical section 
   & releasing the lock! 

Better: Block instead of busy wait 
    (on a single CPU system) 



31 

Synchronization Primitives 

Sleep  
 Put a thread to sleep 
 Thread becomes BLOCKed 

Wakeup 
 Move a BLOCKed thread back onto “Ready List” 
 Thread becomes READY (or RUNNING) 

Yield 
 Move to another thread 
 Does not BLOCK thread 
 Just gives up the current time-slice 

But how can these be implemented? 



32 

Synchronization Primitives 

Sleep  
Wakeup 
Yield 
ThreadCreateAndStart 
ThreadKill 
...etc... 

Implementation: 

 In User Programs: 
   Syscalls to kernel 
 In Kernel: 
   Calls to the thread “Scheduler” routines 



33 

Concurrency Control in the Kernel 

Different threads call Yield, Sleep, ...  
Scheduler routines manipulate the “Ready List” 
Ready List is shared data 

Problem: 
 How can scheduler routines be programmed correctly? 

Solution: 
 • Scheduler can disable interrupts, or 
 • Scheduler can use “Test And Set Lock” instruction 



34 

Disabling interrupts 

Disabling interrupts in the OS 
  vs  

Disabling interrupts in user processes 

• Why not allow user processes to disable interrupts? 
• Is it ok to disable interrupts in the OS? 
• What precautions should you take? 



35 

Disabling interrupts in the Kernel 

Scenario 
 A thread is running; wants to access shared data 
 Disable interrupts 
 Access shared data (“critical section”) 
 Enable interrupts 



36 

Disabling interrupts in the Kernel 

Scenario 
 A thread is running; wants to access shared data 
 Disable interrupts 
 Access shared data (“critical section”) 
 Enable interrupts 

Scenario #2 
 Interrupts are already disabled 
 Thread wants to access critical section 
  ...using the above sequence... 



37 

Disabling interrupts in the Kernel 

Scenario 
 A thread is running; wants to access shared data 
 Save previous interrupt status (enabled/disabled) 
 Disable interrupts 
 Access shared data (“critical section”) 
 Restore interrupt status to what it was before 

Scenario #2 
 Interrupts are already disabled 
 Thread wants to access critical section 
  ...using the above sequence... 



38 

Classical IPC Synchronization Problems 

Producer-Consumer 
 • One thread produces data items 
 • Another thread consumes them 
 • Use a bounded buffer / queue between the threads 
 • The buffer is a shared resource 
  Must control access to it!!! 
 • Must suspend the producer thread if buffer is full 
 • Must suspend the consumer thread if buffer is empty 

Readers and Writers 
Dining Philosophers 
Sleeping Barber 



39 

Producer/Consumer with Busy Waiting 

thread producer { 
while(1){ 
  // Produce char c 
  while (count==n) { 
    no_op 
  } 
  buf[InP] = c 
  InP = InP + 1 mod n 
  count++ 
} 

} 

thread consumer { 
while(1){ 
  while (count==0) { 
    no_op 
  } 
  c = buf[OutP] 
  OutP = OutP + 1 mod n 
  count-- 
  // Consume char 
} 

} 

0 

1 

2 

n-1 

… 

Global variables: 
    char buf[n] 
    int InP = 0   // place to add 
    int OutP = 0  // place to get 
    int count 



40 

Problems with this code 

• Count variable can be corrupted if context switch occurs 
  at the wrong time 

• A race condition exists! 
  Race bugs very difficult to track down 

• What if buffer is full? 
  Produce will busy-wait 
  Consumer will not be able to empty the buffer 

• What if buffer is empty? 
  Consumer will busy-wait 
  Producer will not be able to fill the buffer 



41 

Problems with this code 

• Count variable can be corrupted if context switch occurs 
  at the wrong time 

• A race condition exists! 
  Race bugs very difficult to track down 

• What if buffer is full? 
  Produce will busy-wait 
  Consumer will not be able to empty the buffer 

• What if buffer is empty? 
  Consumer will busy-wait 
  Producer will not be able to fill the buffer 

addressing 
  these 
    issues 
      next... 



42 

0  thread consumer { 
1    while(1) { 
2      while (count==0) { 
3        sleep(empty) 
4      } 
5      c = buf[OutP] 
6      OutP = OutP + 1 mod n 
7      count--; 
8      if (count == n-1) 
9        wakeup(full) 
10      // Consume char 
11    } 
12 } 

Producer/Consumer with Blocking 

0  thread producer { 
1    while(1) { 
2      // Produce char c 
3      if (count==n) { 
4        sleep(full) 
5      } 
6      buf[InP] = c; 
7      InP = InP + 1 mod n 
8      count++ 
9      if (count == 1) 
10        wakeup(empty) 
11      } 
12  } 

0 

1 

2 

n-1 

… 

Global variables: 
    char buf[n] 
    int InP = 0   // place to add 
    int OutP = 0  // place to get 
    int count 



43 

This code is still incorrect! 

The “count” variable can be corrupted: 

 Increments or decrements may be lost! 
  Possible Consequences: 
   • Both threads may sleep forever 

   • Buffer contents may be over-written 

What is this problem called?   



44 

This code is still incorrect! 

The “count” variable can be corrupted: 

 Increments or decrements may be lost! 
  Possible Consequences: 
   • Both threads may sleep forever 

   • Buffer contents may be over-written 

What is this problem called?  Race Condition 

Code that manipulates count must be made  
 into a ??? 
  and protected using  ???. 



45 

This code is still incorrect! 

The “count” variable can be corrupted: 

 Increments or decrements may be lost! 
  Possible Consequences: 
   • Both threads may sleep forever 

   • Buffer contents may be over-written 

What is this problem called?  Race Condition 

Code that manipulates count must be made  
 into a Critical Section 
  and protected using Mutual Exclusion. 



46 

Semaphores 

• An abstract data type that can be used for condition  
 synchronization and mutual exclusion 

• Integer variable with two operations: 
Down (sem) 

 (called “Wait” in BLITZ) 
   Decrement sem by 1 
   if sem would go negative, “wait” until possible 

Up (sem) 
 (called “Signal” in BLITZ) 
   increment sem by 1 

The integer will always be >= 0. 
Both Up( ) and Down( ) are assumed to be atomic!!! 

 A kernel implementation will ensure atomicity 



47 

Semaphores 

There are multiple names for the two operations 
Down(S)  Wait(S)   P(S) 
Up(S)  Signal(S)  V(S) 

Each semaphore contains an integer... 
 Signal (also called Up) 
  Increment integer 
  (May wake up another thread) 
 Wait (also called Down) 
  Decrement integer, but never go negative. 
  (May cause the thread to sleep) 



48 

Semaphores 

There are multiple names for the two operations 
Down(S)  Wait(S)   P(S) 
Up(S)  Signal(S)  V(S) 

Each semaphore contains an integer... 
 Signal (also called Up) 
  Increment integer 
  (May wake up another thread) 
 Wait (also called Down) 
  Decrement integer, but never go negative. 
  (May cause the thread to sleep) 

But you must NEVER access the integer directly!!! 
 Why? 



49 

Variation: Binary Semaphores 

Counting Semaphores 
 (same as just “semaphore”) 

Binary Semaphores 
 A specialized use of semaphores 
 The semaphore is used to implement a Mutex Lock 



50 

Variation: Binary Semaphores 

Counting Semaphores 
 (same as just “semaphore”) 

Binary Semaphores 
 A specialized use of semaphores 
 The semaphore is used to implement a Mutex Lock 
 The count will always be either 
  0 = locked 
  1 = unlocked 



51 

Variation: Binary Semaphores 

Counting Semaphores 
 (same as just “semaphore”) 

Binary Semaphores 
 A specialized use of semaphores 
 The semaphore is used to implement a Mutex Lock 
 The count will always be either 
  0 = locked 
  1 = unlocked 

 Up = Unlock the mutex (may wake up another thread) 
 Down = Lock (may wait if already locked) 



52 

Using Semaphores for Mutex 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

semaphore mutex = 1 

Thread A Thread B 



53 

Using Semaphores for Mutex 

semaphore mutex = 0 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

Thread A Thread B 



54 

Using Semaphores for Mutex 

semaphore mutex = 0 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

Thread A Thread B 



55 

Using Semaphores for Mutex 

semaphore mutex = 0 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

Thread A Thread B 



56 

Using Semaphores for Mutex 

semaphore mutex = 1 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

Thread A Thread B 



57 

Using Semaphores for Mutex 

semaphore mutex = 0 This thread is released. 
It can now proceed! 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

1 repeat 

2   down(mutex); 

3   critical section 

4   up(mutex); 

5   remainder section 

6 until FALSE 

Thread A Thread B 



58 

Project 2… 

Implement Producer-Consumer Solution 
 ... in BLITZ framework 



59 

Counting semaphores in producer/consumer 

0 thread producer { 
1    while(1){ 
2      // Produce char c... 
3      down(empty_buffs) 
4      buf[InP] = c 
5      InP = InP + 1 mod n 
6      up(full_buffs) 
7   } 
8 } 

0 thread consumer { 
1    while(1){ 
2      down(full_buffs) 
3      c = buf[OutP] 
4      OutP = OutP + 1 mod n 
5      up(empty_buffs) 
6      // Consume char... 
7    } 
8 } 

Global variables 
  semaphore full_buffs = 0; 
  semaphore empty_buffs = n; 
  char buff[n]; 
  int InP, OutP; 



60 

Implementing Semaphores 

Hardware mechanisms to support semaphores: 
• Control over interrupts (almost all computers) 
• Special atomic instructions in ISA 

test and set lock 
compare and swap 

Techniques 
• Spin-locks (busy waiting) 

may waste a lot of cycles on uni-processors 
• Blocking the thread 

may waste a lot of cycles on multi-processors 



61 

Implementing Semaphores (using blocking) 

Up(semaphore sem) 
  DISABLE_INTS 
    sem.val++ 
    if (sem.val <= 0) { 
      th = remove next 
         thread from sem.L 
      wakeup(th) 
    } 
  ENABLE_INTS 

struct semaphore { 
         int val; 
         list L; 
       } 

Down(semaphore sem) 
  DISABLE_INTS 
    sem.val-- 
    if (sem.val < 0){ 
      add thread to sem.L 
      block(thread) 
    } 
  ENABLE_INTS 



62 

Semaphores in UNIX 

User-accessible semaphores in UNIX are 
 somewhat complex 

Each up and down operation is done atomically 
 on an “array” of semaphores.   

********* WARNING ********* 
Semaphores are allocated by (and in) the operating 

system. (Number based on configuration parameters.)   
Semaphores in UNIX are a shared resource, 

 potentially used by almost everyone.  
Must REMOVE your semaphores after you are done with 

them.   



63 

Typical usage 

 main(){ 
  int sem_id; 
  sem_id = NewSemaphore(1); 
  ... 
  Down(sem_id);   
       
  [CRITICAL SECTION]   
        
  Up (sem_id);     

  ...  
  FreeSemaphore(sem_id); 
 } 



64 

Managing your UNIX semaphores 

Listing currently allocated ipc resources 

  ipcs 

Removing semaphores 

  ipcrm -s <sem number> 



65 

Implementation Possibilities 

• Implement Mutex Locks 
 ... Using Semaphores 

• Implement Counting Semaphores  
 ... Using Binary Semaphores 
 ... Using Mutex Locks 

• Implement Binary Semaphores  
 ... etc 

Can also implement using 
   Test-And-Set 
   Calls to Sleep, Wake-Up 



66 

Dining Philosophers Problem 

Five philosophers sit at a table 

Between each philosopher there is one fork 

Philosophers: 

Why do they need to synchronize? 
How should they do it? 

while(TRUE) { 
  Think(); 
  Grab first fork; 
  Grab second fork; 
  Eat(); 
  Put down first fork; 
  Put down second fork; 
} 

Each philosopher is

modelled with a thread




67 

Dining philospher’s solution??? 

Why doesn’t this work? 

#define N 5 

Philosopher() { 
  while(TRUE) { 
    Think(); 
    take_fork(i); 
    take_fork((i+1)% N); 
    Eat(); 
    put_fork(i); 
    put_fork((i+1)% N); 
  } 
} 



68 

Dining philospher’s solution (part 1) 



69 

Dining philospher’s solution (part 2) 



70 

Dining Philosophers 

Is this correct? 
What does it mean for it to be correct? 
Is there an easier way? 



71 

The Sleeping Barber Problem 



72 

The Sleeping Barber Problem 

Barber: 
While there are people waiting for a hair cut, 

 put one in the barber chair, and give him a haircut 
 When done, move to the next customer. 

Else go to sleep, until someone comes in. 

Customer:   
If the barber is sleeping,  

 wake him up and get a haircut.  
If someone is getting a haircut... 

 wait for the barber to free up by sitting in a chair 
If the waiting chairs are all full, 

 leave the barbershop. 



73 

Solution to the sleeping barber problem 

Barber Thread: 
  while true 
    Down(customerReady) 
    Lock(lock) 
    numWaiting = numWaiting-1 
    Up(barberReady) 
    Unlock(lock) 
    CutHair() 
  endWhile 

Customer Thread: 
  Lock(lock) 
  if numWaiting < CHAIRS 
    numWaiting = numWaiting+1 
    Up(customerReady) 
    Unlock(lock) 
    Down(barberReady) 
    GetHaircut() 
  else  -- give up & go home 
    Unlock(lock) 
  endIf 

const CHAIRS = 5 
var customerReady: Semaphore 
    barberReady: Semaphore 
    lock: Mutex 
    numWaiting: int = 0 



74 

The Readers and Writers Problem 

• Readers and writers want to access a database. 
 (Each is a thread) 

• Multiple readers can proceed concurrently. 
• Writers must synchronize with readers and other 

writers. 
  Only one writer at a time. 
  When someone is writing, must be no readers. 

Goals: 
 • Maximize concurrency. 
 • Prevent starvation. 



75 

One solution to readers and writers 

Reader Thread: 
  while true 
    Lock(mut) 
    rc = rc + 1 
    if rc == 1 
      Down(db) 
    endIf 
    Unlock(mut) 
    ... Read shared data... 
    Lock(mut) 
    rc = rc - 1 
    if rc == 0 
      Up(db) 
    endIf 
    Unlock(mut) 
    ... Remainder Section... 
  endWhile 

var mut: Mutex = unlocked 
    db: Semaphore = 1 
    rc: int = 0 



76 

One solution to readers and writers 

Writer Thread: 
  while true 
    ...Remainder Section... 
    Down(db) 
    ...Write shared data... 
    Up(db) 
  endWhile 

var mut: Mutex = unlocked 
    db: Semaphore = 1 
    rc: int = 0 



77 

Implementing Counting Semaphores 

Problem: Implement a counting semaphore 
    Up () 
    Down () 
   ...using just Mutex locks. 



78 

Possible Solution 

var cnt: int = 0        -- Signal count 
var m1: Mutex           -- Protects access to “cnt” 
    m2: Mutex = locked  -- Locked when waiting 

Down (): 

  Lock(m1) 
  cnt = cnt – 1 
  if cnt<0 
    Unlock(m1) 
    Lock(m2) 
  else 
    Unlock(m1) 
  endIf 

Up(): 

  Lock(m1) 
  cnt = cnt + 1 
  if cnt<=0 
    Unlock(m2) 
  endIf 
  Unlock(m1) 



79 

Possible Solution 

var cnt: int = 0        -- Signal count 
var m1: Mutex           -- Protects access to “cnt” 
    m2: Mutex = locked  -- Locked when waiting 

Down (): 

  Lock(m1) 
  cnt = cnt – 1 
  if cnt<0 
    Unlock(m1) 
    Lock(m2) 
  else 
    Unlock(m1) 
  endIf 

Up(): 

  Lock(m1) 
  cnt = cnt + 1 
  if cnt<=0 
    Unlock(m2) 
  endIf 
  Unlock(m1) 



80 

STILL INCORRECT 

var cnt: int = 0        -- Signal count 
var m1: Mutex           -- Protects access to “cnt” 
    m2: Mutex = locked  -- Locked when waiting 
    m3: Mutex 

Down (): 
  Lock(m3) 
  Lock(m1) 
  cnt = cnt – 1 
  if cnt<0 
    Unlock(m1) 
    Lock(m2) 
  else 
    Unlock(m1) 
  endIf 
  Unlock(m3) 

Up(): 

  Lock(m1) 
  cnt = cnt + 1 
  if cnt<=0 
    Unlock(m2) 
  endIf 
  Unlock(m1) 


