
1

Chapter 2 - (First Part)

Slide Credits:
Jonathan Walpole

Andrew Tanenbaum

Processes and
Threads

2

Lecture overview

Processes
 Process Scheduler
 Process States
 Process Hierarchies
 Relevant Unix System Calls

Threads
 Comparison to Processes
 Examples
 User-Level Thread Package

3

Processes

A process is a program in execution.
Program

Description of how to perform an activity
Instructions and static data values

Process
A snapshot of a program in execution.
 • Memory
 (Instructions, Data, Runtime Stack)

 • CPU state (Registers, PC, SP, etc.)
 • Operating system state
 (open files, accounting statistics, etc.)

4

Virtual Address Space

Each process runs in its own virtual memory address space
 Which consists of...

 Text – the program code (usually read-only)
 Data space – variables (initialized/uninitialized)
 Stack space – used for function calls

Invoke the same program multiple times?
 ... Results in the creation of multiple, distinct address spaces.

stack

text

data
Address

space

or “Logical” Address Space

5

Memory
Program

Code

Program
Data

Process Switching

In its simplest form, a computer performs instructions on
operands. Registers are used to hold values temporarily to
speed things up.

CPU

ALU

SP PC Regs

6

Memory
Program

Code

Program
Data

Process Switching

In its simplest form, a computer performs instructions on
operands. Registers are used to hold values temporarily to
speed things up.

CPU

ALU
ADD R1, R2

SP PC Regs

Program 1 is running

7

Memory
Program

Code

Program
Data

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

CPU

ALU

SP PC Regs

8

Memory
Program

Code

Program
Data

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

CPU

ALU

SP PC Regs

Program
State

Save the state of program 1

9

Memory
Program

Code

Program
Data

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

CPU

ALU
SUB R3, R4

SP PC Regs

Program 2 now has the CPU

Program
Code

Program
Data

Program
State

10

Memory
Program

Code

Program
Data

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

CPU

ALU

SP PC Regs

Program
Code

Program
Data

Program
State

Program
State

Save the state of program 2

11

Memory
Program

Code

Program
Data

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

CPU

ALU

SP PC Regs

Program
Code

Program
Data

Program
State

Program
State

Restore the state of
program 2

12

Memory
Program

Code

Program
Data

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

CPU

ALU
ADD R5, R6

SP PC Regs

Program
Code

Program
Data

Program
State

Program
State

Program 1 has the CPU

13

Why use the process abstraction?

• Multiprogramming of four programs in the same address space
• Conceptual model of 4 independent, sequential processes
• Only one program is active at any instant

14

The Role of the Scheduler

Lowest layer of process-structured OS
handles interrupts & scheduling of processes

Above that layer are sequential processes

15

Process States

Possible states of a process:
RUNNING
BLOCKED
READY

16

Implementation of process switching

Skeleton of what the lowest levels of the OS do
 when an interrupt occurs

17

How Can Processes Be Created?

Events that create processes...
 • System initialization
 • Initiation of a batch job
 • Execution of a “process creation” system call
 (from another process)
 • User request to create a new process

18

Process Hierarchies

Parent creates a child process.
Special system calls for communicating with and waiting

for child processes

 Each process is assigned
 a unique identifying number
 The “Process ID” or “pid”.

Child processes can create their own child processes.
 Forms a hierarchy

 UNIX calls this a “Process Group”

Windows has no concept of process hierarchy.
“All processes are created equal.”

19

How do Processes Terminate?

Conditions which terminate processes...
 • Normal exit (voluntary)
 • Error exit (voluntary)
 • Fatal error (involuntary)
 • Killed by another process (involuntary)

20

Process creation in UNIX

All processes have a unique process id
getpid(), getppid() allow processes to get their information

Process creation
fork() creates an exact copy of the process
 identical with exception of the return value of fork()
exec() replaces an address space with a new program
system() like CreateProcess()

Process termination, signaling
signal(), kill() allows a process to be terminated or have

specific signals sent to it

21

Example: Process Creation in UNIX

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 22)

22

Example: Process Creation in UNIX

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 22)

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 24)

23

Example: Process Creation in UNIX

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 22)

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 24)

24

Example: Process Creation in UNIX

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 22)

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 24)

25

Example: Process Creation in UNIX

…

pid = fork()
if (pid == 0) {
 // child…
 …
 exec();
 }
else {
 // parent
 wait();
 }
…

csh (pid = 22)

//ls program

main(){

 //look up dir

 …

}

ls (pid = 24)

26

What other process state does the OS manage?

Fields of a process table entry

27

What about the OS?

Is the OS a process?
It is a program in execution, after all …
Does it need a process control block?
Who manages its state when its not running?

28

Threads

Processes have the following components:
• an address space
• a collection of operating system state
• a CPU context … or thread of control

On multiprocessor systems, with several CPUs, it would
make sense for a process to have several CPU contexts
(threads of control)

Multiple threads of control can run in the same address
space on a single CPU system too!
“thread of control” and “address space” are orthogonal

concepts

29

Threads

• Threads share a process address space
 with zero or more other threads

• Threads have their own
CPU State (PC, SP, register values, etc.)
Stack

• What other OS state should be private to threads?

A traditional process can be viewed as:
 An address space with a single thread!

30

Threads vs Processes

(a) Three processes each with one thread
(b) One process with three threads

31

Process State vs Thread State

Items shared by all threads in a process
 Items private to each thread

32

Independent execution of threads

Each thread has its own stack

33

Thread Usage (1)

A word processor with three threads

34

Processes versus threads - example

Web server receives a request for a page...

GET / HTTP/1.0
HTTPD

disk

35

Processes versus threads - example

Web server receives a request for a page...

GET / HTTP/1.0
HTTPD

disk

Why is this not a good web server design?

36

HTTPD

Processes versus threads - example

Web server receives a request for a page...

GET / HTTP/1.0
HTTPD

disk

37

Processes versus threads - example

Web server receives a request for a page...

GET / HTTP/1.0
HTTPD

disk

GET / HTTP/1.0

38

Processes versus threads - example

Web server receives a request for a page...

GET / HTTP/1.0
HTTPD

disk
GET / HTTP/1.0

GET / HTTP/1.0

GET / HTTP/1.0

39

Threads in a web server

A multithreaded Web server

40

Threads in a web server

Outline of code for previous slide:

 Dispatcher thread Worker thread

41

System structuring options

Three ways to construct a server

42

Pros & Cons of Threads

Pros
• Overlap I/O with computation!
• Cheaper context switches
• Better mapping to shared memory multiprocessors

Cons
• Potential thread interactions
• Complexity of debugging
• Complexity of multi-threaded programming
• Backwards compatibility with existing code

43

There is a global variable.
The global variable is modified.
The global variable is then tested.

Making Single-Threaded Code Multithreaded

44

There is a global variable.
The global variable is modified.
The global variable is then tested.

Typical “C” code...

 i = read (file, &buff, n);
 if (errno) { ...print error message... }

Making Single-Threaded Code Multithreaded

45

There is a global variable.
The global variable is modified.
The global variable is then tested.

Typical “C” code...

 i = read (file, &buff, n);
 if (errno) { ...print error message... }

Now imagine that several threads are executing...

Making Single-Threaded Code Multithreaded

46

Making Single-Threaded Code Multithreaded

Thread 1

T
im

e

read (errno is set)

if errno... (errno is inspected)

47

Making Single-Threaded Code Multithreaded

Thread 2 Thread 1

T
im

e

read (errno is set)

read

if errno... (errno is inspected)

48

Making Single-Threaded Code Multithreaded

Thread 2 Thread 1

T
im

e read

if errno... (errno is inspected)

read (errno is set)

49

Making Single-Threaded Code Multithreaded

Thread 2 Thread 1

T
im

e read (errno is overwritten)

if errno... (errno is inspected)

read (errno is set)

50
Threads can have private global variables

Making Single-Threaded Code Multithreaded

51

User-Level Threads

Threads can be implemented...
 • By the OS, or
 • At user level

Kernel-Level Thread Implementation
The Kernel contains the code to switch

 switch between different threads.

User-Level Thread Implementations
Thread scheduler runs as user code.
All thread management done by user code.

 (Kernel sees only a traditional process.)

52

1: Implementing Threads in the Kernel

The thread switching code is in the kernel.

53

2: A “User-Level Threads Package”

The thread switching code is in the user address space.

54

User-level threads

Advantages
• Cheap context switch costs!
• User-programmable scheduling policy!

Disadvantages
• How to deal with blocking system calls!
• How to overlap I/O and computation!

55

Hybrid Thread Implementations

 Multiplexing user-level threads onto kernel-level threads

56

Scheduler Activations

Goals: • Mimic functionality of kernel threads
 • Gain performance of user space threads

The idea - kernel upcalls to user-level thread scheduling code when it
handles a blocking system call or page fault
• User level thread scheduler can choose to run a different thread

rather than blocking
• Kernel upcalls when system call or page fault returns

Kernel assigns virtual processors to each process
 (which contains a user level thread scheduler)

Lets user level thread scheduler allocate threads to processors

Problem: Relies on upcalls
 Kernel (lower layer) calls procedures in user space (higher layer)

57

Summary

• Processes
• Threads

Project 2:
 Due in 1 week!
 Okay to discuss my code,
 ... but write your own code!!!

