Chapter 2 - (First Part)

Processes and

Threads

Slide Credits:

Jonathan Walpole
Andrew Tanenbaum

Lecture overview

Processes

Process Scheduler

Process States

Process Hierarchies
Relevant Unix System Calls

Threads

Comparison to Processes

Examples
User-Level Thread Package

Processes

A process is a program in execution.

Program
Description of how to perform an activity
Instructions and static data values

Process
A snapshot of a program in execution.
e Memory
(Instructions, Data, Runtime Stack)
e CPU state (Registers, PC, SP, etc.)
e Operating system state
(open files, accounting statistics, etc.)

/[or “Logical” Address S pace]

Each process runs in its own virtual memory address space
Which consists of...
Text — the program code (usually read-only)
Data space — variables (initialized/uninitialized)
Stack space — used for function calls

Virtual Address Space

4 stack

Address < {
space data

text

-

Invoke the same program multiple times?
... Results in the creation of multiple, distinct address spaces. 4

Process Switching

In its simplest form, a computer performs instructions on
operands. Registers are used to hold values temporarily to
speed things up.

Memory CPU
Program ALU
Code

Program rﬁ
Data Regs SP| | PC

Process Switching

In its simplest form, a computer performs instructions on
operands. Registers are used to hold values temporarily to

speed things up.
Program 1 is running

CPU
Memory ADD R1, R2
Program| —> ALU
Code ﬂ J
/
Program
Data < —P Regs |m SP| | PC

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

Memory CPU
Program ALU
Code

Program rﬁ
Data Regs SP| [PC

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

Memory

Program
Code

Program
Data

CPU

ALU

Regs m SP

PC

Program
State

Save the state of program 1

3

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

Program 2 now has the CPU

CPU
Memory SUB R3, R4
Program| |Program) ALU
Code Code
Program| |Program rﬁl
Data Data B P Regs SP| | PC
Program

State 9

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

Memory CPU
Program| |Program ALU
Code Code
Program| |Program 'ﬁ
Data Data ces SP| [PC

Save the state of program 2

10

Program
State

Program
State

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

Memory

Program| |Program
Code Code

Program| |Program
Data Data

CPU
ALU

Regsm SP | | PC

Program
State

Program
State

Restore the state of

program 2

11

Process Switching

Saving all the information about a process allows a process to
be temporarily suspended.

Program 1 has the CPU

CPU
Memory ADD RS, R6
Program| |Program —> ALU
Code Code
Program| JProgram rﬁl
Data Data » Regs SP| | PC
Program| [Program
State State 1 2

Why use the process abstraction?

One program counter

— Four program counters
A Process
E switch a D —_
Ly E 2
o C - -
o
C A * B Y € ¢ DY B| =— —
(= AL —
j D Time —=
(a) (b) (c)

e Multiprogramming of four programs in the same address space
* Conceptual model of 4 independent, sequential processes

* Only one program is active at any instant

13

The Role of the Scheduler

Processes

Scheduler

Lowest layer of process-structured OS
handles interrupts & scheduling of processes

Above that layer are sequential processes

14

Process States

1. Process blocks for input
2. Scheduler picks another process

3. Scheduler picks this process
4. Input becomes available

Possible states of a process:
RUNNING
BLOCKED
READY

15

Implementation of process switching

Skeleton of what the lowest levels of the OS do
when an interrupt occurs

1. Hardware stacks program counter, etc.
2. Hardware loads new program counter from interrupt vector.

3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).
6. Scheduler decides which process is to run next.

7. G procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

16

How Can Processes Be Created?

Events that create processes...
e System initialization
e Initiation of a batch job
e Execution of a “process creation” system call
(from another process)

* User request to create a new process

17

Process Hierarchies

Parent creates a child process.

Special system calls for communicating with and waiting
for child processes

Each process is assigned
a unique identifying number
The “Process ID” or “pid”.

Child processes can create their own child processes.

Forms a hierarchy
UNIX calls this a “Process Group”

Windows has no concept of process hierarchy.
“All processes are created equal.”

18

How do Processes Terminate?

Conditions which terminate processes...
* Normal exit (voluntary)
* Error exit (voluntary)
e Fatal error (involuntary)
e Killed by another process (involuntary)

19

Process creation in UNIX

All processes have a unique process id
getpid(), getppid() allow processes to get their information

Process creation
fork() creates an exact copy of the process
identical with exception of the return value of fork()

exec() replaces an address space with a new program
system() like CreateProcess()

Process termination, signaling

signal(), kill() allows a process to be terminated or have
specific signals sent to it

20

Example: Process Creation in UNIX

csh (pid =22)

pid = fork()
if (pid == 0) {
// child..

;xec();
}
else {
// parent
wait () ;

}

21

Example: Process Creation in UNIX

csh (pid =22)

pid = fork()
// child.

;xec();
}
else {
// parent
wait () ;

}

if (pid == 0) {

csh (pid = 24)

pid = fork()
if (pid == 0) {
// child..

;xec();
}
else {
// parent
wait () ;

}

22

Example: Process Creation in UNIX

csh (pid =22)

pid = fork()
// child.

;xec();
}
else {
// parent
wait () ;

}

if (pid == 0) {

csh (pid = 24)

pid = fork()
if (pid == 0) {
// child..

;xec();
}
else {
// parent
wait () ;

}

23

Example: Process Creation in UNIX

csh (pid =22)

pid = fork()
// child.

;xec();
}
else {
// parent
wait () ;

}

if (pid == 0) {

csh (pid = 24)

pid = fork()
if (pid == 0) {
// child.

;xec();
}
else {
// parent
wait () ;

}

24

Example: Process Creation in UNIX

csh (pid =22)

pid = fork()
// child.

;xec();
}
else {
// parent
wait () ;

}

if (pid == 0) {

Is (pid = 24)

//ls program
main () {

//look up dir

25

What other process state does the OS manage?

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Fields of a process table entry

26

What about the OS?

Is the OS a process?

It is a program in execution, after all ...
Does it need a process control block?

Who manages its state when its not running?

27

Threads

Processes have the following components:
* an address space
* a collection of operating system state
e a CPU context ... or thread of control

On multiprocessor systems, with several CPUs, it would
make sense for a process to have several CPU contexts
(threads of control)

Multiple threads of control can run in the same address
space on a single CPU system too!

“thread of control” and “address space” are orthogonal
concepts

28

Threads

* Threads share a process address space

with zero or more other threads
e Threads have their own
CPU State (PC, SP, register values, etc.)
Stack

* What other OS state should be private to threads?

A traditional process can be viewed as:

An address space with a single thread!

29

Threads vs Processes

Process 1 Process 1 Process 1 Process
\ | | i
User <
space
Thread Thread
Kernel
space Kernel Kernel

(a) (b)

(a) Three processes each with one thread
(b) One process with three threads

30

Process State vs Thread State

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

f

Items shared by all threads in a process

Items private to each thread

31

Independent execution of threads

Thread 2

Thread 1 Thread 3
\ /

_—~ Process

Thread 3's stack

Thread 1's >H E H*
stack U

Kernel

Each thread has its own stack

32

Thread Usage (1)

B B B B B B o B B o o B B o B o B B B B B B B B o o B o o B o B B B o o o B o o o o o o o o o o o o o o s o o s

Four score and seven| [nation, o any nation | [lives that this nation| [who struggled hete] [her 1o the unfinished | [they gave the fast full
years ago, our fathers [|so conceived and so|| might live. 1t is|| have consecrated it, far| | work which they who | |measure of devotion,
brought forth pon this || dedicated, can long || altogether fitting and| | above our poor power| [fought here have this | [that we here highly
continent a new nation: || endure. We are met on || proper that we should [| to add or detract. The| | far so nobly acvanced. | [resolve that these dead

conceived in liberty, [[a great battlefield of || do this. world will little note,| |1t is rther for w5 to be | [shall not have died in
and dedicated to the || that war. But, ina largersemse, || nor long temember, | | here dedicated to the | [vain that this nation,
proposition that all || We have come to | wecannot dedicate, we | | what we say here, but| | great task remaining | [under God, shall have
men are created equal. | [dedicate a portion of || cannot consecrate we||it can never forget||before ws, that from | [a new birth of freedom

Now we are engaged || that field as a final || cannot hallow this | | whatthey did here. these honared dead we | [and that government of

in a great civil war [|resting place for those || ground. The brve|| 1tis for us the living, | [take increased devotion | [the people by the
testing whether that || who here gave their|| men, living and dead,|| mther, to be dedicated | |to that cause for which | |people, for the people

L J
Vv

ANEEE S
L
LU

1
1
|
1
1
a |
1]

Kernel
Keyboard Disk

A word processor with three threads

Processes versus threads - example

Web server receives a request for a page...

GET /HTTP/1.0

disk

34

Processes versus threads - example

Web server receives a request for a page...

GET /HTTP/1.0

disk

Why is this not a good web server design?

35

Processes versus threads - example

Web server receives a request for a page...

GET /HTTP/1.0

disk

36

Processes versus threads - example

Web server receives a request for a page...

GET /HTTP/1.0

disk

37

Processes versus threads - example

Web server receives a request for a page...

GET /HTTP/1.0

[TTP/1.0
HTTP/1.0

‘vs disk
/HTTP/1.0,__
—

33

Threads in a web server

Web server process

Y

Dispatcher thread

- >2 W Worker thread

Web page cache

Kernel

Network
connection

A multithreaded Web server

User
space

Kernel
space

39

Threads in a web server

Outline of code for previous slide:

Dispatcher thread Worker thread

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);

}
(0)

System structuring options

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

41

Pros & Cons of Threads

Pros

* Overlap I/O with computation!
e Cheaper context switches

* Better mapping to shared memory multiprocessors

Cons

* Potential thread interactions

* Complexity of debugging

* Complexity of multi-threaded programming
* Backwards compatibility with existing code

42

Making Single-Threaded Code Multithreaded

There is a global variable.
The global variable is modified.
The global variable is then tested.

43

Making Single-Threaded Code Multithreaded

There is a global variable.
The global variable is modified.
The global variable is then tested.

Typical “C” code...

i1 = read (file, &buff, n);
if (errno) { ...print error message... }

44

Making Single-Threaded Code Multithreaded

There is a global variable.
The global variable is modified.
The global variable is then tested.

Typical “C” code...

= read (file, &buff, n);
if (errno) { ...print error message... }

Now imagine that several threads are executing...

43

Making Single-Threaded Code Multithreaded

Thread 1
I

read (errno is set)

if errno... (errnoisinspected)

<——— Time

46

Making Single-Threaded Code Multithreaded

Thread 1 Thread 2
I

read (errno is set)

read

if errno... (errnoisinspected)

<——— Time

47

Making Single-Threaded Code Multithreaded

Thread 1 Thread 2
I

read (errno is set)

if errno... (errnoisinspected)

<—— Time
1
|
1
|
1
|
1
1
1
1
1
|
1
|
1
|
|
|
1
|
1
1
1
|
1
|
|
|
|
|
1
|
1

43

Making Single-Threaded Code Multithreaded

Thread 1 Thread 2
I

read (errno is set)

if errno... (errnoisinspected)

<——— Time

read (errno is overwritten)

49

Making Single-Threaded Code Multithreaded

Thread 1's
code

Thread 2's
code

Thread 1's
stack Y

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

Threads can have private global variables

50

User-Level Threads

Threads can be implemented...
* By the OS, or
* At user level

Kernel-Level Thread Implementation

The Kernel contains the code to switch
switch between different threads.

User-Level Thread Implementations

Thread scheduler runs as user code.
All thread management done by user code.
(Kernel sees only a traditional process.)

51

1: Implementing Threads in the Kernel

The thread switching code is in the kernel.

Process Thread
Kernel
—
Process Thread
table table

52

2: A “User-Level Threads Package”

The thread switching code is in the user address space.

Process Thread

__/

i \
User
space <
Kernel
space Kernel .
/ X
Run-time Thread Process

system table table

53

User-level threads

Advantages

e Cheap context switch costs!
e User-programmable scheduling policy!

Disadvantages

 How to deal with blocking system calls!
* How to overlap 1I/0 and computation!

54

Hybrid Thread Implementations

Multiplexing user-level threads onto kernel-level threads

Multiple user threads
on a kernel thread

\ !

> User
space

Kernel
Kernel <— Kernel thread space 55

Scheduler Activations

Goals: * Mimic functionality of kernel threads
e Gain performance of user space threads

The idea - kernel upcalls to user-level thread scheduling code when it
handles a blocking system call or page fault

e User level thread scheduler can choose to run a different thread
rather than blocking

* Kernel upcalls when system call or page fault returns

Kernel assigns virtual processors to each process
(which contains a user level thread scheduler)
Lets user level thread scheduler allocate threads to processors

Problem: Relies on upcalls

Kernel (lower layer) calls procedures in user space (higher layer)

56

Summary

* Processes
e Threads

Project 2:
Due in 1 week!
Okay to discuss my code,

... but write your own code!!!

ST

